davanstrien HF staff commited on
Commit
7aeabc7
β€’
1 Parent(s): eef1d46

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +432 -0
README.md CHANGED
@@ -1,3 +1,435 @@
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-sa-4.0
3
  ---
4
+
5
+ # Gold standards and outputs
6
+
7
+ ## Dataset Description
8
+
9
+ - MapReader’s GitHub: https://github.com/Living-with-machines/MapReader
10
+ - MapReader paper: https://dl.acm.org/doi/10.1145/3557919.3565812
11
+ - Zenodo link for gold standards and outputs: https://doi.org/10.5281/zenodo.7147906
12
+ - Contacts: Katherine McDonough, The Alan Turing Institute, kmcdonough at turing.ac.uk; Kasra Hosseini, The Alan Turing Institute, k.hosseinizad at gmail.com
13
+
14
+ ### Dataset Summary
15
+
16
+ Here we share gold standard annotations and outputs from early experiments using MapReader. MapReader creates datasets for humanities research using historical map scans and metadata as inputs.
17
+
18
+ Using maps provided by the National Library of Scotland, these annotations and outputs reflect labeling tasks relevant to historical research on the [Living with Machines](https://livingwithmachines.ac.uk/) project.
19
+
20
+ Data shared here is derived from maps printed in nineteenth-century Britain by the Ordnance Survey, Britain's state mapping agency. These maps cover England, Wales, and Scotland from 1888 to 1913.
21
+
22
+ ## Directory structure
23
+
24
+ The gold standards and outputs are stored on [Zenodo](https://doi.org/10.5281/zenodo.7147906). It contains the following directories/files:
25
+
26
+ ```
27
+ MapReader_Data_SIGSPATIAL_2022
28
+ β”œβ”€β”€ README
29
+ β”œβ”€β”€ annotations
30
+ β”‚Β Β  β”œβ”€β”€ maps
31
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ map_100942121.png
32
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ ...
33
+ β”‚Β Β  β”‚Β Β  └── map_99383316.png
34
+ β”‚Β Β  β”œβ”€β”€ slice_meters_100_100
35
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ test
36
+ β”‚Β Β  β”‚Β Β  β”‚Β Β  β”œβ”€β”€ patch-...PNG
37
+ β”‚Β Β  β”‚Β Β  β”‚Β Β  β”œβ”€β”€ ...
38
+ β”‚Β Β  β”‚Β Β  β”‚Β Β  └── patch-...PNG
39
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ train
40
+ β”‚Β Β  β”‚Β Β  β”‚Β Β  β”œβ”€β”€ patch-...PNG
41
+ β”‚Β Β  β”‚Β Β  β”‚Β Β  β”œβ”€β”€ ...
42
+ β”‚Β Β  β”‚Β Β  β”‚Β Β  └── patch-...PNG
43
+ β”‚Β Β  β”‚Β Β  └── val
44
+ β”‚Β Β  β”‚Β Β  Β Β  β”œβ”€β”€ patch-...PNG
45
+ β”‚Β Β  β”‚Β Β  Β Β  β”œβ”€β”€ ...
46
+ β”‚Β Β  β”‚Β Β  Β Β  └── patch-...PNG
47
+ β”‚Β Β  β”œβ”€β”€ test.csv
48
+ β”‚Β Β  β”œβ”€β”€ train.csv
49
+ β”‚Β Β  └── valid.csv
50
+ └── outputs
51
+ β”œβ”€β”€ label_01_03
52
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_all.csv
53
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_keep_01_0250.csv
54
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_keep_05_0500.csv
55
+ β”‚Β Β  └── pred_01_03_keep_10_1000.csv
56
+ β”œβ”€β”€ label_02
57
+ β”‚Β Β  β”œβ”€β”€ pred_02_all.csv
58
+ β”‚Β Β  β”œβ”€β”€ pred_02_keep_01_0250.csv
59
+ β”‚Β Β  β”œβ”€β”€ pred_02_keep_05_0500.csv
60
+ β”‚Β Β  └── pred_02_keep_10_1000.csv
61
+ β”œβ”€β”€ patches_all.csv
62
+ β”œβ”€β”€ percentage
63
+ β”‚Β Β  └── pred_02_keep_1_250_01_03_keep_1_250_percentage.csv
64
+ └── resources
65
+ β”œβ”€β”€ StopsGB4paper.csv
66
+ └── six_inch4paper.json
67
+ ```
68
+
69
+ ## annotations
70
+
71
+ The `annotations` directory is as follows:
72
+
73
+ ```
74
+ β”œβ”€β”€ annotations
75
+ β”‚ β”œβ”€β”€ maps
76
+ β”‚ β”‚ β”œβ”€β”€ map_100942121.png
77
+ β”‚ β”‚ β”œβ”€β”€ ...
78
+ β”‚ β”‚ └── map_99383316.png
79
+ β”‚ β”œβ”€β”€ slice_meters_100_100
80
+ β”‚ β”‚ β”œβ”€β”€ test
81
+ β”‚ β”‚ β”‚ β”œβ”€β”€ patch-...PNG
82
+ β”‚ β”‚ β”‚ β”œβ”€β”€ ...
83
+ β”‚ β”‚ β”‚ └── patch-...PNG
84
+ β”‚ β”‚ β”œβ”€β”€ train
85
+ β”‚ β”‚ β”‚ β”œβ”€β”€ patch-...PNG
86
+ β”‚ β”‚ β”‚ β”œβ”€β”€ ...
87
+ β”‚ β”‚ β”‚ └── patch-...PNG
88
+ β”‚ β”‚ └── val
89
+ β”‚ β”‚ β”œβ”€β”€ patch-...PNG
90
+ β”‚ β”‚ β”œβ”€β”€ ...
91
+ β”‚ β”‚ └── patch-...PNG
92
+ β”‚ β”œβ”€β”€ test.csv
93
+ β”‚ β”œβ”€β”€ train.csv
94
+ β”‚ └── valid.csv
95
+ ```
96
+
97
+ ### annotations/train.csv, valid.csv and test.csv
98
+
99
+ In the `MapReader_Data_SIGSPATIAL_2022/annotations` directory, there are three CSV files, namely `train.csv`, `valid.csv` and `test.csv`. These files have two columns:
100
+
101
+ ```
102
+ image_id,label
103
+ slice_meters_100_100/train/patch-1390-3892-1529-4031-#map_101590193.png#.PNG,0
104
+ slice_meters_100_100/train/patch-1716-3960-1848-4092-#map_101439245.png#.PNG,0
105
+ ...
106
+ ```
107
+
108
+ in which:
109
+
110
+ - `image_id`: path to each labelled patch. For example in `slice_meters_100_100/train/patch-1390-3892-1529-4031-#map_101590193.png#.PNG`:
111
+ - `slice_meters_100_100/train`: directory where the patch is stored. (in this example, it is a patch used for training)
112
+ - `patch-1390-3892-1529-4031-#map_101590193.png#.PNG` has two parts itself: `patch-1390-3892-1529-4031` is the patch ID, and the patch itself is extracted from `map_101590193.png` map sheet.
113
+ - `label`: label assigned to each patch by an annotator.
114
+ - Labels: 0: no [building or railspace]; 1: railspace; 2: building; and 3: railspace and [non railspace] building.
115
+
116
+ ### annotations/slice_meters_100_100
117
+
118
+ Patches used for training, validation, and test in PNG format.
119
+
120
+ ```
121
+ β”œβ”€β”€ annotations
122
+ β”‚ β”œβ”€β”€ slice_meters_100_100
123
+ β”‚ β”‚ β”œβ”€β”€ test
124
+ β”‚ β”‚ β”‚ β”œβ”€β”€ patch-...PNG
125
+ β”‚ β”‚ β”‚ β”œβ”€β”€ ...
126
+ β”‚ β”‚ β”‚ └── patch-...PNG
127
+ β”‚ β”‚ β”œβ”€β”€ train
128
+ β”‚ β”‚ β”‚ β”œβ”€β”€ patch-...PNG
129
+ β”‚ β”‚ β”‚ β”œβ”€β”€ ...
130
+ β”‚ β”‚ β”‚ └── patch-...PNG
131
+ β”‚ β”‚ └── val
132
+ β”‚ β”‚ β”œβ”€β”€ patch-...PNG
133
+ β”‚ β”‚ β”œβ”€β”€ ...
134
+ β”‚ β”‚ └── patch-...PNG
135
+ ```
136
+
137
+ ### annotations/maps
138
+
139
+ Map sheets retrieved from the National Library of Scotland via webservers. These maps were later sliced into patches which can be found in `annotations/slice_meters_100_100`.
140
+
141
+ ```
142
+ β”œβ”€β”€ annotations
143
+ β”‚ β”œβ”€β”€ maps
144
+ β”‚ β”‚ β”œβ”€β”€ map_100942121.png
145
+ β”‚ β”‚ β”œβ”€β”€ ...
146
+ β”‚ β”‚ └── map_99383316.png
147
+ ```
148
+
149
+ ## outputs
150
+
151
+ The `outputs` directory is as follows:
152
+
153
+ ```
154
+ └── outputs
155
+ β”œβ”€β”€ label_01_03
156
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_all.csv
157
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_keep_01_0250.csv
158
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_keep_05_0500.csv
159
+ β”‚Β Β  └── pred_01_03_keep_10_1000.csv
160
+ β”œβ”€β”€ label_02
161
+ β”‚Β Β  β”œβ”€β”€ pred_02_all.csv
162
+ β”‚Β Β  β”œβ”€β”€ pred_02_keep_01_0250.csv
163
+ β”‚Β Β  β”œβ”€β”€ pred_02_keep_05_0500.csv
164
+ β”‚Β Β  └── pred_02_keep_10_1000.csv
165
+ β”œβ”€β”€ patches_all.csv
166
+ β”œβ”€β”€ percentage
167
+ β”‚Β Β  └── pred_02_keep_1_250_01_03_keep_1_250_percentage.csv
168
+ └── resources
169
+ β”œβ”€β”€ StopsGB4paper.csv
170
+ └── six_inch4paper.json
171
+ ```
172
+
173
+ ### outputs/label_01_03
174
+
175
+ Starting with:
176
+
177
+ ```
178
+ └── outputs
179
+ β”œβ”€β”€ label_01_03
180
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_all.csv
181
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_keep_01_0250.csv
182
+ β”‚Β Β  β”œβ”€β”€ pred_01_03_keep_05_0500.csv
183
+ β”‚Β Β  └── pred_01_03_keep_10_1000.csv
184
+ ```
185
+
186
+ The file `pred_01_03_all.csv` contains the following columns:
187
+
188
+ ```
189
+ ,center_lon,center_lat,pred,conf,mean_pixel_RGB,std_pixel_RGB,mean_pixel_A,image_id,parent_id,pub_date,url,x,y,z,opening_year_quicks,closing_year_quicks,dist2quicks
190
+ 0,-0.4011055106547341,52.61260776720805,1,0.9898980855941772,0.8450341820716858,0.1668068021535873,1.0,patch-3014-0-3151-137-#map_100890251.png#.PNG,map_100890251.png,1902,https://maps.nls.uk/view/100890251,3880925.8529841416,-27169.29919979412,5044483.051365171,1867,1929,1121.9150481268305
191
+ 1,-0.399645312864389,52.61260776720805,1,0.9999995231628418,0.823089599609375,0.1925655305385589,1.0,patch-3151-0-3288-137-#map_100890251.png#.PNG,map_100890251.png,1902,https://maps.nls.uk/view/100890251,3880926.544140446,-27070.392789791513,5044483.051365171,1867,1929,1113.0714735200893
192
+ ...
193
+ ```
194
+
195
+ - **center_lon**: longitude of the patch center
196
+ - **center_lat**: latitude of the patch center
197
+ - **pred**: predicted label for the patch
198
+ - **conf**: model confidence
199
+ - **mean_pixel_RGB**: mean pixel intensities, using all three channels
200
+ - **std_pixel_RGB**: standard deviations of pixel intensities, using all three channels
201
+ - **mean_pixel_A**: mean pixel intensities of alpha channel
202
+ - **image_id**: patch ID
203
+ - **parent_id**: ID of the map sheet that the patch belongs to
204
+ - **pub_date**: publication date of the map sheet that the patch belongs to
205
+ - **url**: URL of the map sheet that the patch belongs to
206
+ - **x, y, z**: to compute distances (using k-d tree)
207
+ - **opening_year_quicks**: Date when the railway station first opened
208
+ - **closing_year_quicks**: Date when the railway station last closed,
209
+ - **dist2quicks**: distance to the closest StopsGB in meters.
210
+
211
+ NB: See `outputs/resources` below for description of the StopsGB (railway station) data and links to related publications.
212
+
213
+ ---
214
+
215
+ The other files in `outputs/label_01_03` have the same columns as `pred_01_03_all.csv` (described above). The difference is:
216
+
217
+ - `pred_01_03_all.csv`: all patches predicted as labels 1 (railspace) or 3 (railspace and [non railspace] building).
218
+ - `pred_01_03_keep_01_0250.csv`: similar to `pred_01_03_all.csv` except that we removed those patches that had no other neighboring patches with the same label within a radius of 250 meters. Note 01 and 0250 in the name. 01 means one neighboring patch and 0250 means 250 meters.
219
+ - `pred_01_03_keep_05_0500.csv`: similar to `pred_01_03_all.csv` except that we removed those patches that had less than five neighboring patches with the same label within a radius of 500 meters.
220
+ - `pred_01_03_keep_10_1000.csv`: similar to `pred_01_03_all.csv` except that we removed those patches that had less than ten neighboring patches with the same label within a radius of 1000 meters.
221
+
222
+ ### outputs/label_02
223
+
224
+ Next, these files:
225
+
226
+ ```
227
+ β”œβ”€β”€ label_02
228
+ β”‚Β Β  β”œβ”€β”€ pred_02_all.csv
229
+ β”‚Β Β  β”œβ”€β”€ pred_02_keep_01_0250.csv
230
+ β”‚Β Β  β”œβ”€β”€ pred_02_keep_05_0500.csv
231
+ β”‚Β Β  └── pred_02_keep_10_1000.csv
232
+ ```
233
+
234
+ Are the same as the files described above for `label_01_03` except for label 02 (i.e., building).
235
+
236
+
237
+ ### outputs/patches_all.csv
238
+
239
+ And last:
240
+
241
+ ```
242
+ └── outputs
243
+ β”œβ”€β”€ patches_all.csv
244
+ ```
245
+
246
+ The file `patches_all.csv` has the following columns:
247
+
248
+ ⚠️ this file contains the results for 30,490,411 patches used in the MapReader paper.
249
+
250
+ ```
251
+ center_lat,center_lon,pred
252
+ 52.61260776720805,-0.4332298620423274,0
253
+ 52.61260776720805,-0.4317696642519822,0
254
+ ...
255
+ ```
256
+
257
+ in which:
258
+
259
+ - **center_lon**: longitude of the patch center
260
+ - **center_lat**: latitude of the patch center
261
+ - **pred**: predicted label for the patch
262
+
263
+
264
+ ### outputs/percentage
265
+
266
+ We have added one file in `outputs/percentage`:
267
+
268
+ ```
269
+ └── outputs
270
+ β”œβ”€β”€ percentage
271
+ β”‚Β Β  └── pred_02_keep_1_250_01_03_keep_1_250_percentage.csv
272
+ ```
273
+
274
+ This file has the following columns:
275
+
276
+ ```
277
+ ,center_lon,center_lat,pred,conf,mean_pixel_RGB,std_pixel_RGB,mean_pixel_A,image_id,parent_id,pub_date,url,x,y,z,dist2rail,dist2quicks,dist2quicks_km,dist2rail_km,dist2rail_minus_station,dist2quicks_km_quantized,dist2rail_km_quantized,dist2rail_minus_station_quantized,perc_neigh_rails,perc_neigh_builds,harmonic_mean_rail_build
278
+ 0,-0.4040259062354244,52.61260776720805,2,0.9999010562896729,0.8095282316207886,0.1955385357141494,1.0,patch-2740-0-2877-137-#map_100890251.png#.PNG,map_100890251.png,1902,https://maps.nls.uk/view/100890251,3880924.4631095687,-27367.11196679585,5044483.051365171,197.8176497186437,1164.8640633870857,1.1648640633870857,0.1978176497186437,0.9670464136684418,1.0,0.0,0.5,7.198443579766536,4.669260700389105,5.664349046373668
279
+ 1,-0.4054861040257695,52.61171342293056,2,0.9999876022338868,0.8741853833198547,0.1160899400711059,1.0,patch-2603-137-2740-274-#map_100890251.png#.PNG,map_100890251.png,1902,https://maps.nls.uk/view/100890251,3881002.836728637,-27466.57793328472,5044422.621073416,296.73252022623865,1290.9640259717814,1.2909640259717814,0.2967325202262386,0.9942315057455428,1.0,0.0,0.5,7.050092764378478,4.452690166975881,5.45813633371237
280
+ ...
281
+ ```
282
+
283
+ in which:
284
+
285
+ - **center_lon**: longitude of the patch center
286
+ - **center_lat**: latitude of the patch center
287
+ - **pred**: predicted label for the patch
288
+ - **conf**: model confidence
289
+ - **mean_pixel_RGB**: mean pixel intensities, using all three channels
290
+ - **std_pixel_RGB**: standard deviations of pixel intensities, using all three channels
291
+ - **mean_pixel_A**: mean pixel intensities of alpha channel
292
+ - **image_id**: patch ID
293
+ - **parent_id**: ID of the map sheet that the patch belongs to
294
+ - **pub_date**: publication date of the map sheet that the patch belongs to
295
+ - **url**: URL of the map sheet that the patch belongs to
296
+ - **x, y, z**: to compute distances (using k-d tree)
297
+ - **dist2rail**: distance to the closest railspace patch (i.e., the patch that is classified as 1: railspace or 3: railspace and [non railspace] building)
298
+ - **dist2quicks**: distance to the closest StopsGB station in meters.
299
+ - **dist2quicks_km**: distance to the closest StopsGB station in km.
300
+ - **dist2rail_km**: similar to **dist2rail** except in km.
301
+ - **dist2rail_minus_station**: | dist2rail_km - dist2quicks_km |
302
+ - **dist2quicks_km_quantized**: discrete version of **dist2quicks_km**, we used these intervals: [0. , 0.5), [0.5, 1.), [1., 1.5), ... , [4.5, 5.) and [5., inf).
303
+ - **dist2rail_km_quantized**: discrete version of **dist2rail_km**, we used these intervals: [0. , 0.5), [0.5, 1.), [1., 1.5), ... , [4.5, 5.) and [5., inf).
304
+ - **dist2rail_minus_station_quantized**: discrete version of **dist2rail_minus_station**, we used these intervals: [0. , 0.5), [0.5, 1.), [1., 1.5), ... , [4.5, 5.) and [5., inf).
305
+ - **perc_neigh_rails**: what is the percentage of neighboring patches predicted as rail (labels 01 and 03).
306
+ - **perc_neigh_builds**: what is the percentage of neighboring patches predicted as building (label 02).
307
+ - **harmonic_mean_rail_build**: Harmonic mean of *perc_neigh_rails* and **perc_neigh_builds**.
308
+
309
+ These additional `percentage` attributes shed light on the relationship between 'railspace' and stations, something we explore in further Living with Machines research.
310
+
311
+ ### outputs/resources
312
+
313
+ Finally, we have the following files:
314
+
315
+ ```
316
+ └── outputs
317
+ └── resources
318
+ β”œβ”€β”€ StopsGB4paper.csv
319
+ └── six_inch4paper.json
320
+ ```
321
+
322
+ - `StopsGB4paper.csv`: this is a trimmed down version of StopsGB, a dataset documenting passenger railway stations in Great Britain (see [this link](https://bl.iro.bl.uk/concern/datasets/0abea1b1-2a43-4422-ba84-39b354c8bb09?locale=en) for the complete dataset). We filtered the stations as follows:
323
+ - Keep only stations for which "ghost_entry" and "cross_ref" columns are "False". (These two fields help remove records in the StopsGB dataset that are not actually stations, but relics of the original publication formatting.)
324
+ - "Opening" was NOT "unknown".
325
+ - The map sheet was surveyed during a year when the station was operational (i.e., "opening_year_quicks" <= survey_date_of_map_sheet <= "closing_year_quicks").
326
+
327
+ You can learn more about the StopsGB dataset and how it was created from this paper:
328
+
329
+ ```
330
+ Mariona Coll Ardanuy, Kaspar Beelen, Jon Lawrence, Katherine McDonough, Federico Nanni, Joshua Rhodes, Giorgia Tolfo, and Daniel C.S. Wilson. "Station to Station: Linking and Enriching Historical British Railway Data." In Computational Humanities Research (CHR2021). 2021.
331
+ ```
332
+
333
+ ```bibtex
334
+ @inproceedings{lwm-station-to-station-2021,
335
+ title = "Station to Station: Linking and Enriching Historical British Railway Data",
336
+ author = "Coll Ardanuy, Mariona and
337
+ Beelen, Kaspar and
338
+ Lawrence, Jon and
339
+ McDonough, Katherine and
340
+ Nanni, Federico and
341
+ Rhodes, Joshua and
342
+ Tolfo, Giorgia and
343
+ Wilson, Daniel CS",
344
+ booktitle = "Computational Humanities Research",
345
+ year = "2021",
346
+ }
347
+ ```
348
+
349
+ - `six_inch4paper.json`: similar to [metadata_OS_Six_Inch_GB_WFS_light.json](https://github.com/Living-with-machines/MapReader/blob/main/mapreader/persistent_data/metadata_OS_Six_Inch_GB_WFS_light.json) on MapReader's GitHub with some minor changes.
350
+
351
+ ## Dataset Creation
352
+
353
+ ### Curation Rationale
354
+
355
+ These annotations of map patches are part of a research project to develop humanistic methods for structuring visual information on digitized historical maps. Dividing thousands of nineteenth-century map sheets into 100m x 100m patches and labeling those patches with historically-meaningful concepts diverges from traditional methods for creating data from maps, both in terms of scale (the number of maps being examined), and of type (raster-style patches vs. pixel-level vector data). For more on the rationale for this approach, see the following paper:
356
+
357
+ ```
358
+ Kasra Hosseini, Katherine McDonough, Daniel van Strien, Olivia Vane, Daniel C S Wilson, Maps of a Nation? The Digitized Ordnance Survey for New Historical Research, *Journal of Victorian Culture*, Volume 26, Issue 2, April 2021, Pages 284–299.
359
+ ```
360
+
361
+ ```bibtex
362
+ @article{hosseini_maps_2021,
363
+ title = {Maps of a Nation? The Digitized Ordnance Survey for New Historical Research},
364
+ volume = {26},
365
+ rights = {All rights reserved},
366
+ issn = {1355-5502},
367
+ url = {https://doi.org/10.1093/jvcult/vcab009},
368
+ doi = {10.1093/jvcult/vcab009},
369
+ shorttitle = {Maps of a Nation?},
370
+ pages = {284--299},
371
+ number = {2},
372
+ journaltitle = {Journal of Victorian Culture},
373
+ author = {Hosseini, Kasra and {McDonough}, Katherine and van Strien, Daniel and Vane, Olivia and Wilson, Daniel C S},
374
+ urldate = {2021-05-19},
375
+ date = {2021-04-01},
376
+ }
377
+ ```
378
+
379
+ ### Source Data
380
+
381
+ #### Initial Data Access
382
+
383
+ Data was accessed via the National Library of Scotland's Historical Maps API: https://maps.nls.uk/projects/subscription-api/
384
+
385
+ The data shared here is derived from the six-inch to one mile sheets printed between 1888-1913: https://maps.nls.uk/projects/subscription-api/#gb6inch
386
+
387
+ ### Annotations and Outputs
388
+
389
+ The annotations and output datasets collected here are related to experiments to identify the 'footprint' of rail infrastructure in the UK, a concept we call 'railspace'. We also created a dataset to identify buildings on the maps.
390
+
391
+ #### Annotation process
392
+
393
+ The custom annotation interface built into MapReader is designed specifically to assist researchers in labeling patches relevant to concepts of interest to their research questions.
394
+
395
+ Our **guidelines** for the data shared here were:
396
+ - for any non-null label (railspace, building, or railspace + building), if a patch contains any visual signal for that label (e.g. 'railspace'), it should be assigned the relevant label. For example, if it is possible for an annotator to see a railway track passing through the corner of a patch, that patch is labeled as 'railspace'.
397
+ - the context around the patch should not be used as an aid in extreme cases where it is nearly impossible to determine whether a patch contains a non-null label
398
+ - however, the patch context shown in the annotation interface can be used to quickly distinguish between different content types, particularly where the contiguity of a type across patches is useful in determining what label to assign
399
+ - for 'railspace': use this label for any type of rail infrastructure as determined by expert labelers. This includes, for example, single-track mining railroads; larger double-track passenger routes; sidings and embankments; etc. It excludes urban trams.
400
+ - for 'building': use this label for any size building
401
+ - for 'building + railspace': use this label for patches combining these two types of content
402
+
403
+ Because 'none' (e.g. null) patches made up the vast majority of patches in the total dataset from these map sheets, we ordered patches to annotate based on their pixel intensity. This allowed us to focus first on patches containing more visual content printed on the map sheet, and later to move more quickly through the patches that captured parts of the map with little to no printed features.
404
+
405
+
406
+ #### Who are the annotators?
407
+
408
+ Data shared here was annotated by Kasra Hosseini and Katherine McDonough.
409
+
410
+ Members of the Living with Machines research team contributed early annotations during the development of MapReader: Ruth Ahnert, Kaspar Beelen, Mariona Coll-Ardanuy, Emma Griffin, Tim Hobson, Jon Lawrence, Giorgia Tolfo, Daniel van Strien, Olivia Vane, and Daniel C.S. Wilson.
411
+
412
+ ## Credits and re-use terms
413
+
414
+ ### MapReader outputs
415
+
416
+ The files shared here (other than ```resources```) under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/) (CC-BY-NC-SA) licence.
417
+
418
+ If you are interested in working with OS maps used to create these results, please also note the re-use terms of the original map images and metadata detailed below.
419
+
420
+ ### Digitized maps
421
+
422
+ MapReader can retrieve maps from NLS (National Library of Scotland) via webservers. For all the digitized maps (retrieved or locally stored), please note the re-use terms:
423
+
424
+ Use of the digitised maps for commercial purposes is currently restricted by contract. Use of these digitised maps for non-commercial purposes is permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/) (CC-BY-NC-SA) licence. Please refer to https://maps.nls.uk/copyright.html#exceptions-os for details on copyright and re-use license.
425
+
426
+ ### Map metadata
427
+
428
+ We have provided some metadata files in on MapReader’s GitHub page (https://github.com/Living-with-machines/MapReader/tree/main/mapreader/persistent_data). For all these file, please note the re-use terms:
429
+
430
+ Use of the digitised maps for commercial purposes is currently restricted by contract. Use of these digitised maps for non-commercial purposes is permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (https://creativecommons.org/licenses/by-nc-sa/4.0/) (CC-BY-NC-SA) licence. Please refer to https://maps.nls.uk/copyright.html#exceptions-os for details on copyright and re-use license.
431
+
432
+ ## Acknowledgements
433
+
434
+ This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1).
435
+ Living with Machines, funded by the UK Research and Innovation (UKRI) Strategic Priority Fund, is a multidisciplinary collaboration delivered by the Arts and Humanities Research Council (AHRC), with The Alan Turing Institute, the British Library and the Universities of Cambridge, East Anglia, Exeter, and Queen Mary University of London.