start
timestamp[us]
target
sequence
feat_static_cat
sequence
feat_dynamic_real
null
item_id
stringlengths
6
6
2012-01-01T01:00:00
[-0.19363673541224083,-0.08851588245610625,-0.19363673541224083,-0.08851588245610581,-0.141076308934(...TRUNCATED)
[ 0 ]
null
MT_001
2012-01-01T01:00:00
[-0.7670478012651036,-0.711666063830166,-0.7393569325476368,-0.8778112761349713,-0.9055021448524383,(...TRUNCATED)
[ 1 ]
null
MT_002
2012-01-01T01:00:00
[5.979014764830118,5.979014764830118,5.979014764830118,5.979014764830118,5.979014764830118,3.4501017(...TRUNCATED)
[ 2 ]
null
MT_003
2012-01-01T01:00:00
[0.7505563515381487,0.7239395037700361,0.7106310798859866,-0.19434174422996173,-0.7266786995922804,-(...TRUNCATED)
[ 3 ]
null
MT_004
2012-01-01T01:00:00
[1.2971192259991395,1.1747047180437682,0.964851275834564,0.03799857274390112,-0.25929380371914146,-0(...TRUNCATED)
[ 4 ]
null
MT_005
2012-01-01T01:00:00
[2.5625262188234315,2.419487032222773,1.5731718448355245,0.05934045331186476,-0.5247362253075035,-0.(...TRUNCATED)
[ 5 ]
null
MT_006
2012-01-01T01:00:00
[0.3800059977182203,0.13153345303024824,0.0901213622489197,-0.1790572278297153,-0.36541163634569435,(...TRUNCATED)
[ 6 ]
null
MT_007
2012-01-01T01:00:00
[0.42068878220555556,0.36244023053898267,-0.2637316998768013,-0.9481521819591582,-1.2976434919586723(...TRUNCATED)
[ 7 ]
null
MT_008
2012-01-01T01:00:00
[0.9366519850737007,0.6665218837317595,0.5002879752136429,-0.5594531915893506,-0.3516608059417032,-0(...TRUNCATED)
[ 8 ]
null
MT_009
2012-01-01T01:00:00
[1.2370097894560281,1.0163219779980743,0.6169821286932055,-0.39187643797172883,-0.5390016456103648,-(...TRUNCATED)
[ 9 ]
null
MT_010

Download the Dataset:

from datasets import load_dataset

dataset = load_dataset("LeoTungAnh/electricity_hourly")

Dataset Card for Electricity Consumption

This dataset encompasses hourly electricity consumption in kilowatts (kW) across a span of three years (2012-2014), involving 370 individual clients in Portugal.

Preprocessing information:

  • Grouped by hour (frequency: "1H").
  • Applied Standardization as preprocessing technique ("Std").

Dataset information:

  • Number of time series: 370
  • Number of training samples: 26208
  • Number of validation samples: 26256 (number_of_training_samples + 48)
  • Number of testing samples: 26304 (number_of_validation_samples + 48)

Dataset format:

  Dataset({
  
      features: ['start', 'target', 'feat_static_cat', 'feat_dynamic_real', 'item_id'],
      
      num_rows: 370
      
  })

Data format for a sample:

  • 'start': datetime.datetime

  • 'target': list of a time series data

  • 'feat_static_cat': time series index

  • 'feat_dynamic_real': None

  • 'item_id': name of time series

Data example:

{'start': datetime.datetime(2012, 1, 1, 1, 0),

 'target': [-0.19363673541224083, -0.08851588245610625, -0.19363673541224083, ... -0.5615597207587115,...],
 
 'feat_static_cat': [0],
 
 'feat_dynamic_real': None,
 
 'item_id': 'MT_001'
}

Usage:

  • The dataset can be used by available Transformer, Autoformer, Informer of Huggingface.
  • Other algorithms can extract data directly by making use of 'target' feature.
Downloads last month
63