CC-NEWS-ES-titles / README.md
CNLeonardoCordoba
json to jsonl, script and reame
de62c91
|
raw
history blame
4.59 kB
metadata
annotations_creators:
  - no-annotation
language_creators:
  - found
languages:
  - es
licenses:
  - mit
multilinguality:
  - monolingual
size_categories:
  - 100K<n<1M
source_datasets:
  - cc-news
task_categories:
  - conditional-text-generation
task_ids:
  - summarization

Dataset Card for CC-NEWS-ES-titles

Table of Contents

Dataset Description

Dataset Summary

CC-NEWS-ES-titles is a Spanish-language dataset for news titles generation. The text and titles comes from 2019 and 2020 CC-NEWS data (which is part of Common Crawl).

It contains 402.310 pairs of news title and body, splitted in :

Train: 370.125 Eval: 16.092 Test: 16.092

Supported Tasks and Leaderboards

  • text-classification, sentiment-classification: The dataset can be used to train a model for news title generation which can be considered a subset of abstractive summarization.

Languages

The text is in Spanish. The BCP-47 code for Spanish is es.

Dataset Structure

Data Instances

Each data instance contains the following features: text and output_text.

  • text is the body of the news.
  • output_text is the title of the news.

An example from the Allociné train set looks like the following:

{'text': 'Hoy en el Boletín Oficial también se publicó la disposición para universidades, institutos universitarios y de educación superior de todas las jurisdicciones, a las que recomienda que "adecúen las condiciones en que se desarrolla la actividad académica presencial en el marco de la emergencia conforme con las recomendaciones del Ministerio de Salud", según lo publicado por la agencia\t',
 'output_text': 'Coronavirus: "Seguimos educando", la plataforma online para que los chicos estudien en cuarentena'}

Data Fields

  • 'text': a string containing the body of the news.
  • 'output_text': a string containing the title of the news.

Data Splits

The Allociné dataset has 3 splits: train, validation, and test. The splits contain disjoint sets of movies. The following table contains the number of reviews in each split and the percentage of positive and negative reviews.

Dataset Split Number of Instances in Split
Train 370.125
Eval 16.092
Test 16.092

Dataset Creation

Curation Rationale

[N/A]

Source Data

Initial Data Collection and Normalization

TODO

Who are the source language producers?

Common Crawl: https://commoncrawl.org/

Annotations

The dataset does not contain any additional annotations.

Annotation process

[N/A]

Who are the annotators?

[N/A]

Personal and Sensitive Information

[N/A]

Considerations for Using the Data

Social Impact of Dataset

Abstractive summarization is a complex task and Spanish is a underrepresented language in the NLP domain. As a consequence, adding a Spanish resource may help others to improve their research and educational activities.

Discussion of Biases

[N/A]

Other Known Limitations

[N/A]

Additional Information

Dataset Curators

[N/A]

Licensing Information

[N/A]

Citation Information

TODO

Contributions

[N/A]