dataset_info:
- config_name: continuation
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 246278017
num_examples: 108647
- name: test
num_bytes: 17566431
num_examples: 7983
download_size: 32940424
dataset_size: 263844448
- config_name: ling_1s
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 370567628
num_examples: 108647
- name: test
num_bytes: 26716156
num_examples: 7983
download_size: 45617587
dataset_size: 397283784
- config_name: verb_1s_top1
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 358384680
num_examples: 108647
- name: test
num_bytes: 25825045
num_examples: 7983
download_size: 43652362
dataset_size: 384209725
- config_name: verb_1s_topk
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 421399946
num_examples: 108647
- name: test
num_bytes: 30465904
num_examples: 7983
download_size: 49079023
dataset_size: 451865850
- config_name: verb_2s_cot
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 344246082
num_examples: 108647
- name: test
num_bytes: 24783094
num_examples: 7983
download_size: 42255130
dataset_size: 369029176
- config_name: verb_2s_top1
features:
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 269308616
num_examples: 108647
- name: test
num_bytes: 19261708
num_examples: 7983
download_size: 35998169
dataset_size: 288570324
configs:
- config_name: continuation
data_files:
- split: train
path: continuation/train-*
- split: test
path: continuation/test-*
- config_name: ling_1s
data_files:
- split: train
path: ling_1s/train-*
- split: test
path: ling_1s/test-*
- config_name: verb_1s_top1
data_files:
- split: train
path: verb_1s_top1/train-*
- split: test
path: verb_1s_top1/test-*
- config_name: verb_1s_topk
data_files:
- split: train
path: verb_1s_topk/train-*
- split: test
path: verb_1s_topk/test-*
- config_name: verb_2s_cot
data_files:
- split: train
path: verb_2s_cot/train-*
- split: test
path: verb_2s_cot/test-*
- config_name: verb_2s_top1
data_files:
- split: train
path: verb_2s_top1/train-*
- split: test
path: verb_2s_top1/test-*
Dataset Card for coqa
This is a preprocessed version of coqa dataset for benchmarks in LM-Polygraph.
Dataset Details
Dataset Description
- Curated by: https://huggingface.co/LM-Polygraph
- License: https://github.com/IINemo/lm-polygraph/blob/main/LICENSE.md
Dataset Sources [optional]
- Repository: https://github.com/IINemo/lm-polygraph
Uses
Direct Use
This dataset should be used for performing benchmarks on LM-polygraph.
Out-of-Scope Use
This dataset should not be used for further dataset preprocessing.
Dataset Structure
This dataset contains the "continuation" subset, which corresponds to main dataset, used in LM-Polygraph. It may also contain other subsets, which correspond to instruct methods, used in LM-Polygraph.
Each subset contains two splits: train and test. Each split contains two string columns: "input", which corresponds to processed input for LM-Polygraph, and "output", which corresponds to processed output for LM-Polygraph.
Dataset Creation
Curation Rationale
This dataset is created in order to separate dataset creation code from benchmarking code.
Source Data
Data Collection and Processing
Data is collected from https://huggingface.co/datasets/coqa and processed by using build_dataset.py script in repository.
Who are the source data producers?
People who created https://huggingface.co/datasets/coqa
Bias, Risks, and Limitations
This dataset contains the same biases, risks, and limitations as its source dataset https://huggingface.co/datasets/coqa
Recommendations
Users should be made aware of the risks, biases and limitations of the dataset.