Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
squad_kor_v1 / README.md
system's picture
system HF staff
Update files from the datasets library (from 1.3.0)
8b62734
|
raw
history blame
5.55 kB
metadata
annotations_creators:
  - crowdsourced
language_creators:
  - found
languages:
  - ko
licenses:
  - cc-by-nd-2-0
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - question-answering
task_ids:
  - extractive-qa

Dataset Card for KorQuAD v1.0

Table of Contents

Dataset Description

Dataset Summary

KorQuAD 1.0 is a large-scale question-and-answer dataset constructed for Korean machine reading comprehension, and investigate the dataset to understand the distribution of answers and the types of reasoning required to answer the question. This dataset benchmarks the data generating process of SQuAD v1.0 to meet the standard.

Supported Tasks and Leaderboards

question-answering

Languages

Korean

Dataset Structure

Follows the standars SQuAD format.

Data Instances

An example from the data set looks as follows:

{'answers': {'answer_start': [54], 'text': ['ꡐν–₯곑']},
 'context': '1839λ…„ λ°”κ·Έλ„ˆλŠ” κ΄΄ν…Œμ˜ νŒŒμš°μŠ€νŠΈμ„ 처음 읽고 κ·Έ λ‚΄μš©μ— 마음이 끌렀 이λ₯Ό μ†Œμž¬λ‘œ ν•΄μ„œ ν•˜λ‚˜μ˜ ꡐν–₯곑을 μ“°λ €λŠ” λœ»μ„ κ°–λŠ”λ‹€. 이 μ‹œκΈ° λ°”κ·Έλ„ˆλŠ” 1838년에 λΉ› λ…μ΄‰μœΌλ‘œ μ‚°μ „μˆ˜μ „μ„ λ‹€ 걲은 상황이라 쒌절과 싀망에 κ°€λ“ν–ˆμœΌλ©° λ©”ν”ΌμŠ€ν† νŽ λ ˆμŠ€λ₯Ό λ§Œλ‚˜λŠ” 파우슀트의 심경에 κ³΅κ°ν–ˆλ‹€κ³  ν•œλ‹€. λ˜ν•œ νŒŒλ¦¬μ—μ„œ μ•„λΈŒλ„€ν¬μ˜ μ§€νœ˜λ‘œ 파리 μŒμ•…μ› κ΄€ν˜„μ•…λ‹¨μ΄ μ—°μ£Όν•˜λŠ” λ² ν† λ²€μ˜ ꡐν–₯곑 9λ²ˆμ„ λ“£κ³  κΉŠμ€ 감λͺ…을 λ°›μ•˜λŠ”λ°, 이것이 이듬해 1월에 파우슀트의 μ„œκ³‘μœΌλ‘œ 쓰여진 이 μž‘ν’ˆμ— μ‘°κΈˆμ΄λΌλ„ 영ν–₯을 λΌμ³€μœΌλ¦¬λΌλŠ” 것은 μ˜μ‹¬ν•  여지가 μ—†λ‹€. μ—¬κΈ°μ˜ 라단쑰 μ‘°μ„±μ˜ κ²½μš°μ—λ„ 그의 전기에 μ ν˜€ μžˆλŠ” κ²ƒμ²˜λŸΌ λ‹¨μˆœν•œ 정신적 ν”Όλ‘œλ‚˜ μ‹€μ˜κ°€ 반영된 것이 μ•„λ‹ˆλΌ λ² ν† λ²€μ˜ 합창ꡐν–₯곑 μ‘°μ„±μ˜ 영ν–₯을 받은 것을 λ³Ό 수 μžˆλ‹€. κ·Έλ ‡κ²Œ ꡐν–₯곑 μž‘κ³‘μ„ 1839λ…„λΆ€ν„° 40년에 걸쳐 νŒŒλ¦¬μ—μ„œ μ°©μˆ˜ν–ˆμœΌλ‚˜ 1μ•…μž₯을 μ“΄ 뒀에 μ€‘λ‹¨ν–ˆλ‹€. λ˜ν•œ μž‘ν’ˆμ˜ μ™„μ„±κ³Ό λ™μ‹œμ— κ·ΈλŠ” 이 μ„œκ³‘(1μ•…μž₯)을 파리 μŒμ•…μ›μ˜ μ—°μ£ΌνšŒμ—μ„œ μ—°μ£Όν•  νŒŒνŠΈλ³΄κΉŒμ§€ μ€€λΉ„ν•˜μ˜€μœΌλ‚˜, μ‹€μ œλ‘œλŠ” μ΄λ£¨μ–΄μ§€μ§€λŠ” μ•Šμ•˜λ‹€. κ²°κ΅­ μ΄ˆμ—°μ€ 4λ…„ 반이 μ§€λ‚œ 후에 λ“œλ ˆμŠ€λ΄μ—μ„œ μ—°μ£Όλ˜μ—ˆκ³  μž¬μ—°λ„ μ΄λ£¨μ–΄μ‘Œμ§€λ§Œ, 이후에 κ·ΈλŒ€λ‘œ 방치되고 λ§μ•˜λ‹€. κ·Έ 사이에 κ·ΈλŠ” λ¦¬μ—”μΉ˜μ™€ λ°©ν™©ν•˜λŠ” λ„€λœλž€λ“œμΈμ„ μ™„μ„±ν•˜κ³  νƒ„ν˜Έμ΄μ €μ—λ„ μ°©μˆ˜ν•˜λŠ” λ“± λΆ„μ£Όν•œ μ‹œκ°„μ„ λ³΄λƒˆλŠ”λ°, 그런 λ°”μœ μƒν™œμ΄ 이 곑을 잊게 ν•œ 것이 μ•„λ‹Œκ°€ ν•˜λŠ” μ˜κ²¬λ„ μžˆλ‹€.',
 'id': '6566495-0-0',
 'question': 'λ°”κ·Έλ„ˆλŠ” κ΄΄ν…Œμ˜ 파우슀트λ₯Ό 읽고 무엇을 μ“°κ³ μž ν–ˆλŠ”κ°€?',
 'title': '파우슀트_μ„œκ³‘'}

Data Fields

{'id': Value(dtype='string', id=None),
 'title': Value(dtype='string', id=None),
 'context': Value(dtype='string', id=None),
 'question': Value(dtype='string', id=None),
 'answers': Sequence(feature={'text': Value(dtype='string', id=None), 'answer_start': Value(dtype='int32', id=None)}, length=-1, id=None)}

Data Splits

  • Train: 60407
  • Validation: 5774

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Wikipedia

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

CC BY-ND 2.0 KR

Citation Information

@article{lim2019korquad1,
  title={Korquad1. 0: Korean qa dataset for machine reading comprehension},
  author={Lim, Seungyoung and Kim, Myungji and Lee, Jooyoul},
  journal={arXiv preprint arXiv:1909.07005},
  year={2019}

Contributions

Thanks to @cceyda for adding this dataset.