license: apache-2.0
dataset_info:
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: entry_point
dtype: string
- name: test
dtype: string
- name: description
dtype: string
- name: language
dtype: string
- name: canonical_solution
sequence: string
splits:
- name: train
num_bytes: 505355
num_examples: 161
download_size: 174830
dataset_size: 505355
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Evaluation summary
We introduce HumanEval for Kotlin, created from scratch by human experts. All HumanEval solutions and tests are written by an expert olympiad programmer with 6 years experience in Kotlin, and independently checked by a programmer with 4 years experience in Kotlin. The tests we implement are eqivalent to the original HumanEval tests for Python, and we fix the prompt signatures to address the generic variable signature we describe above.
How to use
The evaluation presented as dataset which is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline.
During the code generation step, we use early stopping on the }\n}
sequence to expedite the process. We also perform some code post-processing before evaluation—specifically, we remove all comments and signatures.
The early stopping method, post-processing steps, and evaluation code are available in the example below.
import torch
import jsonlines
import re
from tqdm import tqdm
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
StoppingCriteria,
StoppingCriteriaList,
)
from mxeval.data import get_data
from mxeval.evaluation import evaluate_functional_correctness
from datasets import load_dataset
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops, tokenizer):
(StoppingCriteria.__init__(self),)
self.stops = rf"{stops}"
self.tokenizer = tokenizer
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
last_three_tokens = [int(x) for x in input_ids.data[0][-3:]]
decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens)
return bool(re.search(self.stops, decoded_last_three_tokens))
def generate(problem):
stopping_criteria = StoppingCriteriaList(
[
StoppingCriteriaSub(
stops= "\n}\n", tokenizer=tokenizer
)
]
)
problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
sample = model.generate(
problem,
temperature=0.1,
max_new_tokens=256,
min_new_tokens=128,
pad_token_id=tokenizer.eos_token_id,
do_sample=False,
num_beams=1,
stopping_criteria=stopping_criteria,
)
answer = tokenizer.decode(sample[0], skip_special_tokens=True)
return answer
def clean_asnwer(code):
# Clean comments
code_without_line_comments = re.sub(r"//.*", "", code)
code_without_all_comments = re.sub(
r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
)
#Clean signatures
lines = code.split("\n")
for i, line in enumerate(lines):
if line.startswith("fun "):
return "\n".join(lines[i + 1 :])
return code
model_name = "JetBrains/CodeLlama-7B-Kexer"
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
problem_dict = {problem['task_id']: problem for problem in dataset}
model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.bfloat16).to('cuda')
tokenizer = AutoTokenizer.from_pretrained(model_name)
output = []
for key in tqdm(list(problem_dict.keys()), leave=False):
problem = problem_dict[key]["prompt"]
answer = generate(problem)
answer = clean_asnwer(answer)
output.append({"task_id": key, "completion": answer, "language": "kotlin"})
output_file = f"answers"
with jsonlines.open(output_file, mode="w") as writer:
for line in output:
writer.write(line)
evaluate_functional_correctness(
sample_file=output_file,
k=[1],
n_workers=16,
timeout=15,
problem_file=problem_dict,
)
Results:
We evaluated multiple coding models using this benchmark, and the results are presented in the table below.