albertvillanova
HF staff
Move ans2label and id2feature loading to _generate_examples
5370727
verified
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The GQA dataset preprocessed for LXMERT.""" | |
import base64 | |
import csv | |
import json | |
import os | |
import sys | |
import datasets | |
import numpy as np | |
csv.field_size_limit(sys.maxsize) | |
_CITATION = """\ | |
@inproceedings{hudson2019gqa, | |
title={Gqa: A new dataset for real-world visual reasoning and compositional question answering}, | |
author={Hudson, Drew A and Manning, Christopher D}, | |
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition}, | |
pages={6700--6709}, | |
year={2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
GQA is a new dataset for real-world visual reasoning and compositional question answering, | |
seeking to address key shortcomings of previous visual question answering (VQA) datasets. | |
""" | |
_URLS = { | |
"train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json", | |
"valid": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json", | |
"trainval_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip", | |
"testdev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/testdev.json", | |
"test_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/gqa_testdev_obj36.zip", | |
"ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json", | |
} | |
TRAINVAL_FEAT_PATH = "vg_gqa_imgfeat/vg_gqa_obj36.tsv" | |
TEST_FEAT_PATH = "vg_gqa_imgfeat/gqa_testdev_obj36.tsv" | |
FIELDNAMES = [ | |
"img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features" | |
] | |
_SHAPE_FEATURES = (36, 2048) | |
_SHAPE_BOXES = (36, 4) | |
class GqaLxmert(datasets.GeneratorBasedBuilder): | |
"""The GQA dataset preprocessed for LXMERT, with the objects features detected by a Faster RCNN replacing the | |
raw images.""" | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="gqa", version=datasets.Version("1.0.0"), description="GQA dataset."), | |
] | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"question": datasets.Value("string"), | |
"question_id": datasets.Value("int32"), | |
"image_id": datasets.Value("string"), | |
"features": datasets.Array2D(_SHAPE_FEATURES, dtype="float32"), | |
"normalized_boxes": datasets.Array2D(_SHAPE_BOXES, dtype="float32"), | |
"label": datasets.ClassLabel(num_classes=1842), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_dir = dl_manager.download_and_extract(_URLS) | |
trainval_features_path = os.path.join(dl_dir["trainval_feat"], TRAINVAL_FEAT_PATH) | |
test_features_path = os.path.join(dl_dir["test_feat"], TEST_FEAT_PATH) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": dl_dir["train"], | |
"ans2label_path": dl_dir["ans2label"], | |
"features_path": trainval_features_path, | |
"testset": False, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": dl_dir["valid"], | |
"ans2label_path": dl_dir["ans2label"], | |
"features_path": trainval_features_path, | |
"testset": False, | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": dl_dir["testdev"], | |
"ans2label_path": dl_dir["ans2label"], | |
"features_path": test_features_path, | |
"testset": True, | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, ans2label_path, features_path, testset=False): | |
""" Yields examples as (key, example) tuples.""" | |
if not hasattr(self, "ans2label"): | |
with open(ans2label_path, encoding="utf-8") as f: | |
self.ans2label = json.load(f) | |
if testset: | |
self.test_id2features = self._load_features(features_path) | |
else: | |
if not hasattr(self, "trainval_id2features"): | |
self.trainval_id2features = self._load_features(features_path) | |
with open(filepath, encoding="utf-8") as f: | |
gqa = json.load(f) | |
for id_, d in enumerate(gqa): | |
# test_id2features only contains features of a subset of samples in testdev.json | |
if testset: | |
try: | |
img_features = self.test_id2features[d["img_id"]] | |
except KeyError: | |
continue | |
label_key = next(iter(d["label"])) | |
if label_key not in self.ans2label: | |
print ("Ignored one sample because of unseen label.") | |
continue | |
label = self.ans2label[label_key] | |
else: | |
img_features = self.trainval_id2features[d["img_id"]] | |
label = self.ans2label[next(iter(d["label"]))] | |
yield id_, { | |
"question": d["sent"], | |
"question_id": d["question_id"], | |
"image_id": d["img_id"], | |
"features": img_features["features"], | |
"normalized_boxes": img_features["normalized_boxes"], | |
"label": label, | |
} | |
def _load_features(self, filepath): | |
"""Returns a dictionary mapping an image id to the corresponding image's objects features.""" | |
id2features = {} | |
with open(filepath) as f: | |
reader = csv.DictReader(f, FIELDNAMES, delimiter="\t") | |
for i, item in enumerate(reader): | |
features = {} | |
img_h = int(item["img_h"]) | |
img_w = int(item["img_w"]) | |
num_boxes = int(item["num_boxes"]) | |
features["features"] = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape( | |
(num_boxes, -1) | |
) | |
boxes = np.frombuffer(base64.b64decode(item["boxes"]), dtype=np.float32).reshape((num_boxes, 4)) | |
features["normalized_boxes"] = self._normalize_boxes(boxes, img_h, img_w) | |
id2features[item["img_id"]] = features | |
return id2features | |
def _normalize_boxes(self, boxes, img_h, img_w): | |
""" Normalizes the input boxes given the original image size.""" | |
normalized_boxes = boxes.copy() | |
normalized_boxes[:, (0, 2)] /= img_w | |
normalized_boxes[:, (1, 3)] /= img_h | |
return normalized_boxes | |