File size: 7,584 Bytes
1b5b6d6 6019dbe 810aa11 6019dbe 810aa11 1b5b6d6 810aa11 1b5b6d6 5b41dab 1b59541 1b5b6d6 5370727 1b5b6d6 5370727 1b5b6d6 5370727 810aa11 5370727 1b5b6d6 5370727 1b5b6d6 5370727 1b5b6d6 810aa11 1b5b6d6 5b41dab 1b5b6d6 5370727 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The GQA dataset preprocessed for LXMERT."""
import base64
import csv
import json
import os
import sys
import datasets
import numpy as np
csv.field_size_limit(sys.maxsize)
_CITATION = """\
@inproceedings{hudson2019gqa,
title={Gqa: A new dataset for real-world visual reasoning and compositional question answering},
author={Hudson, Drew A and Manning, Christopher D},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={6700--6709},
year={2019}
}
"""
_DESCRIPTION = """\
GQA is a new dataset for real-world visual reasoning and compositional question answering,
seeking to address key shortcomings of previous visual question answering (VQA) datasets.
"""
_URLS = {
"train": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/train.json",
"valid": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/valid.json",
"trainval_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/vg_gqa_obj36.zip",
"testdev": "https://nlp.cs.unc.edu/data/lxmert_data/gqa/testdev.json",
"test_feat": "https://nlp.cs.unc.edu/data/lxmert_data/vg_gqa_imgfeat/gqa_testdev_obj36.zip",
"ans2label": "https://raw.githubusercontent.com/airsplay/lxmert/master/data/gqa/trainval_ans2label.json",
}
TRAINVAL_FEAT_PATH = "vg_gqa_imgfeat/vg_gqa_obj36.tsv"
TEST_FEAT_PATH = "vg_gqa_imgfeat/gqa_testdev_obj36.tsv"
FIELDNAMES = [
"img_id", "img_h", "img_w", "objects_id", "objects_conf", "attrs_id", "attrs_conf", "num_boxes", "boxes", "features"
]
_SHAPE_FEATURES = (36, 2048)
_SHAPE_BOXES = (36, 4)
class GqaLxmert(datasets.GeneratorBasedBuilder):
"""The GQA dataset preprocessed for LXMERT, with the objects features detected by a Faster RCNN replacing the
raw images."""
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="gqa", version=datasets.Version("1.0.0"), description="GQA dataset."),
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"question_id": datasets.Value("int32"),
"image_id": datasets.Value("string"),
"features": datasets.Array2D(_SHAPE_FEATURES, dtype="float32"),
"normalized_boxes": datasets.Array2D(_SHAPE_BOXES, dtype="float32"),
"label": datasets.ClassLabel(num_classes=1842),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_URLS)
trainval_features_path = os.path.join(dl_dir["trainval_feat"], TRAINVAL_FEAT_PATH)
test_features_path = os.path.join(dl_dir["test_feat"], TEST_FEAT_PATH)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": dl_dir["train"],
"ans2label_path": dl_dir["ans2label"],
"features_path": trainval_features_path,
"testset": False,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dl_dir["valid"],
"ans2label_path": dl_dir["ans2label"],
"features_path": trainval_features_path,
"testset": False,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": dl_dir["testdev"],
"ans2label_path": dl_dir["ans2label"],
"features_path": test_features_path,
"testset": True,
},
),
]
def _generate_examples(self, filepath, ans2label_path, features_path, testset=False):
""" Yields examples as (key, example) tuples."""
if not hasattr(self, "ans2label"):
with open(ans2label_path, encoding="utf-8") as f:
self.ans2label = json.load(f)
if testset:
self.test_id2features = self._load_features(features_path)
else:
if not hasattr(self, "trainval_id2features"):
self.trainval_id2features = self._load_features(features_path)
with open(filepath, encoding="utf-8") as f:
gqa = json.load(f)
for id_, d in enumerate(gqa):
# test_id2features only contains features of a subset of samples in testdev.json
if testset:
try:
img_features = self.test_id2features[d["img_id"]]
except KeyError:
continue
label_key = next(iter(d["label"]))
if label_key not in self.ans2label:
print ("Ignored one sample because of unseen label.")
continue
label = self.ans2label[label_key]
else:
img_features = self.trainval_id2features[d["img_id"]]
label = self.ans2label[next(iter(d["label"]))]
yield id_, {
"question": d["sent"],
"question_id": d["question_id"],
"image_id": d["img_id"],
"features": img_features["features"],
"normalized_boxes": img_features["normalized_boxes"],
"label": label,
}
def _load_features(self, filepath):
"""Returns a dictionary mapping an image id to the corresponding image's objects features."""
id2features = {}
with open(filepath) as f:
reader = csv.DictReader(f, FIELDNAMES, delimiter="\t")
for i, item in enumerate(reader):
features = {}
img_h = int(item["img_h"])
img_w = int(item["img_w"])
num_boxes = int(item["num_boxes"])
features["features"] = np.frombuffer(base64.b64decode(item["features"]), dtype=np.float32).reshape(
(num_boxes, -1)
)
boxes = np.frombuffer(base64.b64decode(item["boxes"]), dtype=np.float32).reshape((num_boxes, 4))
features["normalized_boxes"] = self._normalize_boxes(boxes, img_h, img_w)
id2features[item["img_id"]] = features
return id2features
def _normalize_boxes(self, boxes, img_h, img_w):
""" Normalizes the input boxes given the original image size."""
normalized_boxes = boxes.copy()
normalized_boxes[:, (0, 2)] /= img_w
normalized_boxes[:, (1, 3)] /= img_h
return normalized_boxes
|