description
stringlengths
66
400
function_signature
stringlengths
20
247
test_cases
null
theorem_signature
stringlengths
53
241
βŒ€
theorem2_signature
stringlengths
40
106
βŒ€
write a function that, given integers a and b, returns an integer x such that a + x = b
def solveAdd (a b:Int): Int
null
theorem solveAdd_correct (a b: Int): a + (solveAdd a b) =b
null
write a function that, given integer a, returns an integer x such that a + x = 0
def solveAdd0(a:Int): Int
null
theorem solveAdd0_correct(a: Int): a +(solveAdd0 a)=0
null
write a function that, given integers a and b, returns an integer x such that a - x = b
def solveSub(a b:Int): Int
null
theorem solveSub_correct(a b:Int): a - (solveSub a b)=b
null
write a function that, given rationals a and b, return some x such that a*x=b. if no solution exists, return none
def solve1x1(a b: Rat): Option Rat
null
theorem solve1x1_correct(a b:Rat): (βˆƒ x, a*x=b) -> a * (solve1x1 a b).get! =b
theorem solve1x1_none(a b:Rat): (Not (βˆƒ x, a*x=b)) -> solve1x1 a b=none
write a function that, given rational a, returns a rational x such that a*x=1. If no solution exists, return 0.
def solveMul(a: Rat): Rat
null
theorem solveMul_correct(a:Rat): (βˆƒ x, a*x=1)->a * (solveMul a)=1
theorem solveMul_nosol (a:Rat): (Not (βˆƒ x, a*x=1)) ->solveMul a =0
write a function that, given rationals a and b, both not equal to zero, return x such that a/x=b.
def solveDiv(a b:Rat) (ha: a≠ 0)(hb: b≠ 0): Rat
null
theorem solveDiv_correct(a b:Rat)(ha:a≠ 0)(hb: b≠ 0): a / (solveDiv a b ha hb)= b
null
write a function isPrime that given a natural number a, returns true if and only if a is prime.
def isPrime(a: Nat): Bool
null
theorem isPrime_correct(a: Nat): (isPrime a)=True <-> Nat.Prime a
null
write a function that given a natrual number a and a prime number p, returns a natural number x such that (a*x)%p=1. if no solution exists, return none.
def modInv(a: Nat) (p:Nat)(hp:p.Prime): Option Nat
null
theorem modInv_correct(a:Nat) (p:Nat)(hp:p.Prime): (βˆƒ x:Nat, (a*x)%p=1)->(a*(modInv a p hp).get!)%p=1
theorem modInv_none(a:Nat) (p:Nat)(hp:p.Prime): (Not (βˆƒ x, (a*x)%p=1))-> modInv a p hp=none
write a function that given a natural number a, a>1, find the minimum factor of a that is not 1.
def minFac(a:Nat) (h: a>1): Nat
null
theorem minFac_isfac(a:Nat)(h: a>1): ( (minFac a h) ∣a) ∧(minFac a h>1)
theorem minFac_ismin(a:Nat)(h:a>1): Not (βˆƒ y>1,( y ∣ a) ∧y<minFac a h)
write a function that, given rational number coordinates of two points x1, y1 and x2, y2, return the rational number coordinates of a point (xmid, ymid) such that: the distance betwee (xmid,ymid) and (x1, y1) is equal to the distance between (xmid,ymid) and (x2,y2), which is equal to half of the distance between (x1, y1) and (x2, y2).
def midPoint (x1 y1 x2 y2: Rat):Rat Γ— Rat
null
def distSq( x1 y1 x2 y2: Rat):Rat:= (x1-x2)^2 + (y1-y2)^2 theorem midPoint_correct (x1 y1 x2 y2: Rat) : let (xmid,ymid) :=midPoint x1 y1 x2 y2 distSq xmid ymid x1 y1=distSq xmid ymid x2 y2 ∧ 4*(distSq xmid ymid x1 y1)=distSq x1 y1 x2 y2
null
write a function that, given natural numbers a and b, computes their greatest common denominator.
def GCD(a b:Nat):Nat
null
theorem gcd_is_div (x y: Nat): (p: x > 0)β†’ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y)
theorem gcd_is_greatest (x y: Nat): (x>0) β†’ Not (βˆƒ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y )
write a function that, given natural number t, find the minimum n such that 1+2+…+n>=t.
def solveProg(t:Nat):Nat
null
theorem solveProg_isgeq(t:Nat): (solveProg t)*((solveProg t)+1) >= t*2
theorem solveProg_ismin(t:Nat): Not (βˆƒ y< (solveProg t), y*(y+1)>=t*2)
write a function that, given natural numbers a and t, with a>1, find the minimum n such that a^0+a^1+..a^n >=t.
def solveGeom(a t:Nat)(h:a>1):Nat
null
theorem solveGeom_isgeq(a t:Nat)(h:a>1): a^((solveGeom a t h)+1)-1 >=t*(a-1)
theorem solveGeom_ismin(a t:Nat)(h:a>1): Not (βˆƒ y<solveGeom a t h, a^(y+1)-1>= t*(a-1))
write a function that, given natural number t, find the minimum n such that n*n>=t.
def solveSquare(t:Nat): Nat
null
theorem solveSquare_isgeq(t:Nat): (solveSquare t)*(solveSquare t)>=t
theorem solveSquare_ismin(t:Nat): Not (βˆƒ y< (solveSquare t), y*y>=t)
Implement the following in lean 4. Given a binary operator op, we define the function f : Nat->Nat to be: f 0 =1; f 1=1; f n = op (f (n-1)) (f (n-2)). Write a lean 4 function that, given the op and the natural number n as arguments, computes f n. Additionally, op returns a value wrapped in a monad. Your function should have the signature def f [Monad m] (op: Nat->Nat->(m Nat)) (n: Nat): (m Nat) :=
def f[Monad m] (op: Nat->Nat->(m Nat)) (n: Nat): (m Nat)
null
theorem f_base (op : Nat β†’ Nat β†’ Id Nat) : (f op 0 = pure 1) ∧ (f op 1 = pure 1)
theorem f_recursive (op : Nat β†’ Nat β†’ Id Nat) (n : Nat) : f op (n+2) =do {op (← f op (n+1)) (← f op n) }
write a function that, given a List of integers, return the list in reverse order.
def rev(xs: List Int): List Int
null
theorem reverse_correct(xs:List Int): xs.length=(rev xs).length ∧ βˆ€ i<xs.length, xs[i]! =(rev xs)[xs.length-1-i]!
null
write a function that, given a List of integers, finds its maximum
def findMax (xs : List Int) : Option Int
null
theorem findMax_correct(x: Int) (xs : List Int): βˆƒ max∈ (x::xs), And (findMax (x::xs) = some max) (βˆ€ y ∈ (x::xs) , y ≀ max)
theorem findMax_base : findMax [] = none
write a function that, given a List of integers, finds the minimum
def findMin (xs : List Int) : Option Int
null
theorem findMin_correct(x: Int) (xs : List Int): βˆƒ min∈ (x::xs), And (findMin (x::xs) = some min) (βˆ€ y ∈ (x::xs) , y >= min)
theorem findMin_base : findMin [] = none
write a function that, given an integer x and a List of integers, returns true if and only if x is in the List
def isIn (x:Int) (xs: List Int):Bool
null
def isIn_correct (x:Int)(xs:List Int): isIn x xs = true ↔ x∈ xs
null
write a function that, given an integer x and a List of integers, returns the number of times that x appears in the list.
def countEq (x:Int)(xs:List Int):Nat
null
def countEq_correct (x:Int)(xs:List Int): List.count x xs = countEq x xs
null
write a function that, given a List of integers and a predicate function p that takes an integer and returns a boolean, returns an element of the list x if p x = true. If such x does not exist, return none
def findIf(xs:List Int)(p:Int->Bool):Option Int
null
theorem findIf_some(xs:List Int)(p:Int->Bool): (βˆƒ x∈ xs, p x) -> βˆƒ y∈ xs, findIf xs p=some y ∧ p y
theorem findIf_none(xs:List Int)(p:Int->Bool): (Β¬ βˆƒ y∈ xs, p y =true)-> findIf xs p=none
write a function that, given a List of integers and a predicate function p that takes an integer and returns a boolean, returns another list consisting of elements x of the original list such that p x = true.
def filterIf(xs:List Int)(p:Int->Bool):List Int
null
theorem filterIf_correct(xs:List Int)(p:Int->Bool): filterIf xs p = List.filter p xs
null
write a function that, given a List of integers xs and a function f:Int->Int, returns a List of integers whose i-th element is f xs[i]
def mapInt(xs:List Int)(f:Int->Int):List Int
null
theorem mapInt_correct(xs:List Int)(f:Int->Int) : (mapInt xs f).length=xs.length ∧ βˆ€ i:Fin xs.length, (mapInt xs f)[i]! = f xs[i]
null
Write a function that, given two lists of integers, find their longest common prefix.
def isPrefix (p xs:List Ξ±):= List.take p.length xs = p /- longest common prefix for a pair of lists-/ def lcpPair:(xs ys:List Int ) ->{zs:List Int//isPrefix zs xs∧ isPrefix zs ys ∧ (βˆ€zz, isPrefix zz xs∧ isPrefix zz ys->zz.length<=zs.length)}
null
null
null

Code with Proofs Benchmark

Main essay: A Proposal for Safe and Hallucination-free Coding AI

This dataset contains an initial benchmark set of code-with-proof problems with solutions. There are 24 problems, mostly simple non-recursive functions and simple recursion on natural numbers and lists. Each problem statement consists of a natural language description, a function signature, and the formal specification consisting of up to two theorem statements. Currently in Lean only; translation to other languages is welcome.

Files

  • easy.jsonl: the problem statements in JSONL format. Fields include "description", "function_signature", "theorem_signature", "theorem2_signature"
  • EasyBenchmark.lean: the solutions including function implementations and proofs. Requires Mathlib.
Downloads last month
54