Datasets:
annotations_creators:
- none
language_creators:
- unknown
language:
- en
license:
- mit
multilinguality:
- unknown
pretty_name: sportsett_basketball
size_categories:
- unknown
source_datasets:
- original
task_categories:
- data-to-text
task_ids:
- unknown
Dataset Card for GEM/sportsett_basketball
Dataset Description
- Homepage: https://github.com/nlgcat/sport_sett_basketball
- Repository: https://github.com/nlgcat/sport_sett_basketball
- Paper: https://aclanthology.org/2020.intellang-1.4/
- Leaderboard: N/A
- Point of Contact: Craig Thomson
Link to Main Data Card
You can find the main data card on the GEM Website.
Dataset Summary
The sportsett dataset is an English data-to-text dataset in the basketball domain. The inputs are statistics summarizing an NBA game and the outputs are high-quality descriptions of the game in natural language.
You can load the dataset via:
import datasets
data = datasets.load_dataset('GEM/sportsett_basketball')
The data loader can be found here.
website
paper
authors
Craig Thomson, Ashish Upadhyay
Dataset Overview
Where to find the Data and its Documentation
Webpage
Download
Paper
BibTex
@inproceedings{thomson-etal-2020-sportsett,
title = "{S}port{S}ett:Basketball - A robust and maintainable data-set for Natural Language Generation",
author = "Thomson, Craig and
Reiter, Ehud and
Sripada, Somayajulu",
booktitle = "Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation",
month = sep,
year = "2020",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Lingustics",
url = "https://aclanthology.org/2020.intellang-1.4",
pages = "32--40",
}
Contact Name
Craig Thomson
Contact Email
Has a Leaderboard?
no
Languages and Intended Use
Multilingual?
no
Covered Dialects
American English
One dialect, one language.
Covered Languages
English
Whose Language?
American sports writers
License
mit: MIT License
Intended Use
Maintain a robust and scalable Data-to-Text generation resource with structured data and textual summaries
Primary Task
Data-to-Text
Communicative Goal
A model trained on this dataset should summarise the statistical and other information from a basketball game. This will be focused on a single game, although facts from prior games, or aggregate statistics over many games can and should be used for comparison where appropriate. There no single common narrative, although summaries usually start with who player, when, where, and the score. They then provide high level commentary on what the difference in the game was (why the winner won). breakdowns of statistics for prominent players follow, winning team first. Finally, the upcoming schedule for both teams is usually included. There are, however, other types of fact that can be included, and other narrative structures.
Credit
Curation Organization Type(s)
academic
Curation Organization(s)
University of Aberdeen, Robert Gordon University
Dataset Creators
Craig Thomson, Ashish Upadhyay
Funding
EPSRC
Who added the Dataset to GEM?
Craig Thomson, Ashish Upadhyay
Dataset Structure
Data Fields
Each instance in the dataset has five fields.
"sportsett_id": This is a unique id as used in the original SportSett database. It starts with '1' with the first instance in the train-set and ends with '6150' with the last instance in test-set.
"gem_id": This is a unique id created as per GEM's requirement which follows the
GEM-${DATASET_NAME}-${SPLIT-NAME}-${id}
pattern."game": This field contains a dictionary with information about current game. It has information such as date on which the game was played alongwith the stadium, city, state where it was played.
"teams": This filed is a dictionary of multiple nested dictionaries. On the highest level, it has two keys: 'home' and 'vis', which provide the stats for home team and visiting team of the game. Both are dictionaries with same structure. Each dictionary will contain team's information such as name of the team, their total wins/losses in current season, their conference standing, the SportSett ids for their current and previous games. Apart from these general information, they also have the box- and line- scores for the team in the game. Box score is the stats of players from the team at the end of the game, while line score along with the whole game stats is divided into quarters and halves as well as the extra-time (if happened in the game). After these scores, there is another field of next-game, which gives general information about team's next game such as the place and opponent's name of the next game.
"summaries": This is a list of summaries for each game. Some games will have more than one summary, in that case, the list will have more than one entries. Each summary in the list is a string which can be tokenised by a space, following the practices in RotoWire-FG dataset (Wang, 2019).
Reason for Structure
The structure mostly follows the original structure defined in RotoWire dataset (Wiseman et. al. 2017) with some modifications (such as game and next-game keys) address the problem of information gap between input and output data (Thomson et. al. 2020).
How were labels chosen?
Similar to RotoWire dataset (Wiseman et. al. 2017)
Example Instance
{
"sportsett_id": "1",
"gem_id": "GEM-sportsett_basketball-train-0",
"game": {
"day": "1",
"month": "November",
"year": "2014",
"dayname": "Saturday",
"season": "2014",
"stadium": "Wells Fargo Center",
"city": "Philadelphia",
"state": "Pennsylvania",
"attendance": "19753",
"capacity": "20478",
"game_id": "1"
},
"teams": {
"home": {
"name": "76ers",
"place": "Philadelphia",
"conference": "Eastern Conference",
"division": "Atlantic",
"wins": "0",
"losses": "3",
"conference_standing": 15,
"game_number": "3",
"previous_game_id": "42",
"next_game_id": "2",
"line_score": {
"game": {
"FG3A": "23",
"FG3M": "7",
"FG3_PCT": "30",
"FGA": "67",
"FGM": "35",
"FG_PCT": "52",
"FTA": "26",
"FTM": "19",
"FT_PCT": "73",
"DREB": "33",
"OREB": "4",
"TREB": "37",
"BLK": "10",
"AST": "28",
"STL": "9",
"TOV": "24",
"PF": "21",
"PTS": "96",
"MIN": "4"
},
"H1": {
"FG3A": "82",
"FG3M": "30",
"FG3_PCT": "37",
"FGA": "2115",
"FGM": "138",
"FG_PCT": "7",
"FTA": "212",
"FTM": "18",
"FT_PCT": "8",
"DREB": "810",
"OREB": "21",
"TREB": "831",
"BLK": "51",
"AST": "107",
"STL": "21",
"TOV": "64",
"PTS": "3024",
"MIN": "6060"
},
"H2": {
"FG3A": "85",
"FG3M": "40",
"FG3_PCT": "47",
"FGA": "1615",
"FGM": "104",
"FG_PCT": "6",
"FTA": "66",
"FTM": "55",
"FT_PCT": "83",
"DREB": "96",
"OREB": "10",
"TREB": "106",
"BLK": "22",
"AST": "92",
"STL": "24",
"TOV": "68",
"PTS": "2913",
"MIN": "6060"
},
"Q1": {
"FG3A": "8",
"FG3M": "3",
"FG3_PCT": "38",
"FGA": "21",
"FGM": "13",
"FG_PCT": "62",
"FTA": "2",
"FTM": "1",
"FT_PCT": "50",
"DREB": "8",
"OREB": "2",
"TREB": "10",
"BLK": "5",
"AST": "10",
"STL": "2",
"TOV": "6",
"PTS": "30",
"MIN": "60"
},
"Q2": {
"FG3A": "2",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "15",
"FGM": "8",
"FG_PCT": "53",
"FTA": "12",
"FTM": "8",
"FT_PCT": "67",
"DREB": "10",
"OREB": "1",
"TREB": "11",
"BLK": "1",
"AST": "7",
"STL": "1",
"TOV": "4",
"PTS": "24",
"MIN": "60"
},
"Q3": {
"FG3A": "8",
"FG3M": "4",
"FG3_PCT": "50",
"FGA": "16",
"FGM": "10",
"FG_PCT": "62",
"FTA": "6",
"FTM": "5",
"FT_PCT": "83",
"DREB": "9",
"OREB": "1",
"TREB": "10",
"BLK": "2",
"AST": "9",
"STL": "2",
"TOV": "6",
"PTS": "29",
"MIN": "60"
},
"Q4": {
"FG3A": "5",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "15",
"FGM": "4",
"FG_PCT": "27",
"FTA": "6",
"FTM": "5",
"FT_PCT": "83",
"DREB": "6",
"OREB": "0",
"TREB": "6",
"BLK": "2",
"AST": "2",
"STL": "4",
"TOV": "8",
"PTS": "13",
"MIN": "60"
},
"OT": {
"FG3A": "0",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "0",
"FGM": "0",
"FG_PCT": "0",
"FTA": "0",
"FTM": "0",
"FT_PCT": "0",
"DREB": "0",
"OREB": "0",
"TREB": "0",
"BLK": "0",
"AST": "0",
"STL": "0",
"TOV": "0",
"PTS": "0",
"MIN": "0"
}
},
"box_score": [
{
"first_name": "Tony",
"last_name": "Wroten",
"name": "Tony Wroten",
"starter": "True",
"MIN": "33",
"FGM": "6",
"FGA": "11",
"FG_PCT": "55",
"FG3M": "1",
"FG3A": "4",
"FG3_PCT": "25",
"FTM": "8",
"FTA": "11",
"FT_PCT": "73",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "10",
"STL": "1",
"BLK": "1",
"TOV": "4",
"PF": "1",
"PTS": "21",
"+/-": "-11",
"DOUBLE": "double"
},
{
"first_name": "Hollis",
"last_name": "Thompson",
"name": "Hollis Thompson",
"starter": "True",
"MIN": "32",
"FGM": "4",
"FGA": "8",
"FG_PCT": "50",
"FG3M": "2",
"FG3A": "5",
"FG3_PCT": "40",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "2",
"STL": "0",
"BLK": "3",
"TOV": "2",
"PF": "2",
"PTS": "10",
"+/-": "-17",
"DOUBLE": "none"
},
{
"first_name": "Henry",
"last_name": "Sims",
"name": "Henry Sims",
"starter": "True",
"MIN": "27",
"FGM": "4",
"FGA": "9",
"FG_PCT": "44",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "2",
"FT_PCT": "50",
"OREB": "1",
"DREB": "3",
"TREB": "4",
"AST": "2",
"STL": "0",
"BLK": "1",
"TOV": "0",
"PF": "1",
"PTS": "9",
"+/-": "-10",
"DOUBLE": "none"
},
{
"first_name": "Nerlens",
"last_name": "Noel",
"name": "Nerlens Noel",
"starter": "True",
"MIN": "25",
"FGM": "1",
"FGA": "4",
"FG_PCT": "25",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "5",
"TREB": "5",
"AST": "3",
"STL": "1",
"BLK": "1",
"TOV": "3",
"PF": "1",
"PTS": "2",
"+/-": "-19",
"DOUBLE": "none"
},
{
"first_name": "Luc",
"last_name": "Mbah a Moute",
"name": "Luc Mbah a Moute",
"starter": "True",
"MIN": "19",
"FGM": "4",
"FGA": "10",
"FG_PCT": "40",
"FG3M": "0",
"FG3A": "2",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "2",
"FT_PCT": "50",
"OREB": "3",
"DREB": "4",
"TREB": "7",
"AST": "3",
"STL": "1",
"BLK": "0",
"TOV": "6",
"PF": "3",
"PTS": "9",
"+/-": "-12",
"DOUBLE": "none"
},
{
"first_name": "Brandon",
"last_name": "Davies",
"name": "Brandon Davies",
"starter": "False",
"MIN": "23",
"FGM": "7",
"FGA": "9",
"FG_PCT": "78",
"FG3M": "1",
"FG3A": "2",
"FG3_PCT": "50",
"FTM": "3",
"FTA": "4",
"FT_PCT": "75",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "0",
"STL": "3",
"BLK": "0",
"TOV": "3",
"PF": "3",
"PTS": "18",
"+/-": "-1",
"DOUBLE": "none"
},
{
"first_name": "Chris",
"last_name": "Johnson",
"name": "Chris Johnson",
"starter": "False",
"MIN": "21",
"FGM": "2",
"FGA": "4",
"FG_PCT": "50",
"FG3M": "1",
"FG3A": "3",
"FG3_PCT": "33",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "2",
"TREB": "2",
"AST": "0",
"STL": "3",
"BLK": "0",
"TOV": "2",
"PF": "5",
"PTS": "5",
"+/-": "3",
"DOUBLE": "none"
},
{
"first_name": "K.J.",
"last_name": "McDaniels",
"name": "K.J. McDaniels",
"starter": "False",
"MIN": "20",
"FGM": "2",
"FGA": "4",
"FG_PCT": "50",
"FG3M": "1",
"FG3A": "3",
"FG3_PCT": "33",
"FTM": "3",
"FTA": "4",
"FT_PCT": "75",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "2",
"STL": "0",
"BLK": "3",
"TOV": "2",
"PF": "3",
"PTS": "8",
"+/-": "-10",
"DOUBLE": "none"
},
{
"first_name": "Malcolm",
"last_name": "Thomas",
"name": "Malcolm Thomas",
"starter": "False",
"MIN": "19",
"FGM": "4",
"FGA": "4",
"FG_PCT": "100",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "9",
"TREB": "9",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "2",
"PTS": "8",
"+/-": "-6",
"DOUBLE": "none"
},
{
"first_name": "Alexey",
"last_name": "Shved",
"name": "Alexey Shved",
"starter": "False",
"MIN": "14",
"FGM": "1",
"FGA": "4",
"FG_PCT": "25",
"FG3M": "1",
"FG3A": "4",
"FG3_PCT": "25",
"FTM": "3",
"FTA": "3",
"FT_PCT": "100",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "6",
"STL": "0",
"BLK": "0",
"TOV": "2",
"PF": "0",
"PTS": "6",
"+/-": "-7",
"DOUBLE": "none"
},
{
"first_name": "JaKarr",
"last_name": "Sampson",
"name": "JaKarr Sampson",
"starter": "False",
"MIN": "2",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "0",
"STL": "0",
"BLK": "1",
"TOV": "0",
"PF": "0",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
},
{
"first_name": "Michael",
"last_name": "Carter-Williams",
"name": "Michael Carter-Williams",
"starter": "False",
"MIN": "0",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "0",
"TREB": "0",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "0",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
}
],
"next_game": {
"day": "3",
"month": "November",
"year": "2014",
"dayname": "Monday",
"stadium": "Wells Fargo Center",
"city": "Philadelphia",
"opponent_name": "Rockets",
"opponent_place": "Houston",
"is_home": "True"
}
},
"vis": {
"name": "Heat",
"place": "Miami",
"conference": "Eastern Conference",
"division": "Southeast",
"wins": "2",
"losses": "0",
"conference_standing": 1,
"game_number": "2",
"previous_game_id": "329",
"next_game_id": "330",
"line_score": {
"game": {
"FG3A": "24",
"FG3M": "12",
"FG3_PCT": "50",
"FGA": "83",
"FGM": "41",
"FG_PCT": "49",
"FTA": "29",
"FTM": "20",
"FT_PCT": "69",
"DREB": "26",
"OREB": "9",
"TREB": "35",
"BLK": "0",
"AST": "33",
"STL": "16",
"TOV": "16",
"PF": "20",
"PTS": "114",
"MIN": "4"
},
"H1": {
"FG3A": "69",
"FG3M": "44",
"FG3_PCT": "64",
"FGA": "2321",
"FGM": "1110",
"FG_PCT": "48",
"FTA": "106",
"FTM": "64",
"FT_PCT": "60",
"DREB": "35",
"OREB": "23",
"TREB": "58",
"BLK": "00",
"AST": "88",
"STL": "53",
"TOV": "34",
"PTS": "3228",
"MIN": "6060"
},
"H2": {
"FG3A": "45",
"FG3M": "22",
"FG3_PCT": "49",
"FGA": "1920",
"FGM": "1010",
"FG_PCT": "53",
"FTA": "85",
"FTM": "55",
"FT_PCT": "65",
"DREB": "612",
"OREB": "22",
"TREB": "634",
"BLK": "00",
"AST": "98",
"STL": "35",
"TOV": "36",
"PTS": "2727",
"MIN": "6060"
},
"Q1": {
"FG3A": "6",
"FG3M": "4",
"FG3_PCT": "67",
"FGA": "23",
"FGM": "11",
"FG_PCT": "48",
"FTA": "10",
"FTM": "6",
"FT_PCT": "60",
"DREB": "3",
"OREB": "2",
"TREB": "5",
"BLK": "0",
"AST": "8",
"STL": "5",
"TOV": "3",
"PTS": "32",
"MIN": "60"
},
"Q2": {
"FG3A": "9",
"FG3M": "4",
"FG3_PCT": "44",
"FGA": "21",
"FGM": "10",
"FG_PCT": "48",
"FTA": "6",
"FTM": "4",
"FT_PCT": "67",
"DREB": "5",
"OREB": "3",
"TREB": "8",
"BLK": "0",
"AST": "8",
"STL": "3",
"TOV": "4",
"PTS": "28",
"MIN": "60"
},
"Q3": {
"FG3A": "4",
"FG3M": "2",
"FG3_PCT": "50",
"FGA": "19",
"FGM": "10",
"FG_PCT": "53",
"FTA": "8",
"FTM": "5",
"FT_PCT": "62",
"DREB": "6",
"OREB": "2",
"TREB": "8",
"BLK": "0",
"AST": "9",
"STL": "3",
"TOV": "3",
"PTS": "27",
"MIN": "60"
},
"Q4": {
"FG3A": "5",
"FG3M": "2",
"FG3_PCT": "40",
"FGA": "20",
"FGM": "10",
"FG_PCT": "50",
"FTA": "5",
"FTM": "5",
"FT_PCT": "100",
"DREB": "12",
"OREB": "2",
"TREB": "14",
"BLK": "0",
"AST": "8",
"STL": "5",
"TOV": "6",
"PTS": "27",
"MIN": "60"
},
"OT": {
"FG3A": "0",
"FG3M": "0",
"FG3_PCT": "0",
"FGA": "0",
"FGM": "0",
"FG_PCT": "0",
"FTA": "0",
"FTM": "0",
"FT_PCT": "0",
"DREB": "0",
"OREB": "0",
"TREB": "0",
"BLK": "0",
"AST": "0",
"STL": "0",
"TOV": "0",
"PTS": "0",
"MIN": "0"
}
},
"box_score": [
{
"first_name": "Chris",
"last_name": "Bosh",
"name": "Chris Bosh",
"starter": "True",
"MIN": "33",
"FGM": "9",
"FGA": "17",
"FG_PCT": "53",
"FG3M": "2",
"FG3A": "5",
"FG3_PCT": "40",
"FTM": "10",
"FTA": "11",
"FT_PCT": "91",
"OREB": "3",
"DREB": "5",
"TREB": "8",
"AST": "4",
"STL": "2",
"BLK": "0",
"TOV": "3",
"PF": "2",
"PTS": "30",
"+/-": "10",
"DOUBLE": "none"
},
{
"first_name": "Dwyane",
"last_name": "Wade",
"name": "Dwyane Wade",
"starter": "True",
"MIN": "32",
"FGM": "4",
"FGA": "18",
"FG_PCT": "22",
"FG3M": "0",
"FG3A": "1",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "3",
"FT_PCT": "33",
"OREB": "1",
"DREB": "2",
"TREB": "3",
"AST": "10",
"STL": "3",
"BLK": "0",
"TOV": "6",
"PF": "1",
"PTS": "9",
"+/-": "13",
"DOUBLE": "none"
},
{
"first_name": "Luol",
"last_name": "Deng",
"name": "Luol Deng",
"starter": "True",
"MIN": "29",
"FGM": "7",
"FGA": "11",
"FG_PCT": "64",
"FG3M": "1",
"FG3A": "3",
"FG3_PCT": "33",
"FTM": "0",
"FTA": "1",
"FT_PCT": "0",
"OREB": "2",
"DREB": "2",
"TREB": "4",
"AST": "2",
"STL": "2",
"BLK": "0",
"TOV": "1",
"PF": "0",
"PTS": "15",
"+/-": "4",
"DOUBLE": "none"
},
{
"first_name": "Shawne",
"last_name": "Williams",
"name": "Shawne Williams",
"starter": "True",
"MIN": "29",
"FGM": "5",
"FGA": "9",
"FG_PCT": "56",
"FG3M": "3",
"FG3A": "5",
"FG3_PCT": "60",
"FTM": "2",
"FTA": "2",
"FT_PCT": "100",
"OREB": "0",
"DREB": "4",
"TREB": "4",
"AST": "4",
"STL": "1",
"BLK": "0",
"TOV": "1",
"PF": "4",
"PTS": "15",
"+/-": "16",
"DOUBLE": "none"
},
{
"first_name": "Norris",
"last_name": "Cole",
"name": "Norris Cole",
"starter": "True",
"MIN": "27",
"FGM": "4",
"FGA": "7",
"FG_PCT": "57",
"FG3M": "2",
"FG3A": "4",
"FG3_PCT": "50",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "1",
"TREB": "1",
"AST": "4",
"STL": "2",
"BLK": "0",
"TOV": "0",
"PF": "1",
"PTS": "10",
"+/-": "6",
"DOUBLE": "none"
},
{
"first_name": "Mario",
"last_name": "Chalmers",
"name": "Mario Chalmers",
"starter": "False",
"MIN": "25",
"FGM": "6",
"FGA": "9",
"FG_PCT": "67",
"FG3M": "2",
"FG3A": "2",
"FG3_PCT": "100",
"FTM": "6",
"FTA": "10",
"FT_PCT": "60",
"OREB": "0",
"DREB": "2",
"TREB": "2",
"AST": "4",
"STL": "4",
"BLK": "0",
"TOV": "0",
"PF": "1",
"PTS": "20",
"+/-": "18",
"DOUBLE": "none"
},
{
"first_name": "Shabazz",
"last_name": "Napier",
"name": "Shabazz Napier",
"starter": "False",
"MIN": "20",
"FGM": "2",
"FGA": "3",
"FG_PCT": "67",
"FG3M": "1",
"FG3A": "2",
"FG3_PCT": "50",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "4",
"STL": "2",
"BLK": "0",
"TOV": "1",
"PF": "4",
"PTS": "5",
"+/-": "11",
"DOUBLE": "none"
},
{
"first_name": "Chris",
"last_name": "Andersen",
"name": "Chris Andersen",
"starter": "False",
"MIN": "17",
"FGM": "0",
"FGA": "2",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "1",
"DREB": "2",
"TREB": "3",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "2",
"PTS": "0",
"+/-": "6",
"DOUBLE": "none"
},
{
"first_name": "Josh",
"last_name": "McRoberts",
"name": "Josh McRoberts",
"starter": "False",
"MIN": "11",
"FGM": "1",
"FGA": "3",
"FG_PCT": "33",
"FG3M": "0",
"FG3A": "1",
"FG3_PCT": "0",
"FTM": "1",
"FTA": "2",
"FT_PCT": "50",
"OREB": "0",
"DREB": "3",
"TREB": "3",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "2",
"PF": "3",
"PTS": "3",
"+/-": "1",
"DOUBLE": "none"
},
{
"first_name": "James",
"last_name": "Ennis",
"name": "James Ennis",
"starter": "False",
"MIN": "7",
"FGM": "2",
"FGA": "3",
"FG_PCT": "67",
"FG3M": "1",
"FG3A": "1",
"FG3_PCT": "100",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "1",
"DREB": "1",
"TREB": "2",
"AST": "1",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "1",
"PTS": "5",
"+/-": "2",
"DOUBLE": "none"
},
{
"first_name": "Justin",
"last_name": "Hamilton",
"name": "Justin Hamilton",
"starter": "False",
"MIN": "5",
"FGM": "1",
"FGA": "1",
"FG_PCT": "100",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "1",
"DREB": "1",
"TREB": "2",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "1",
"PF": "0",
"PTS": "2",
"+/-": "3",
"DOUBLE": "none"
},
{
"first_name": "Andre",
"last_name": "Dawkins",
"name": "Andre Dawkins",
"starter": "False",
"MIN": "1",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "0",
"TREB": "0",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "1",
"PF": "1",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
},
{
"first_name": "Shannon",
"last_name": "Brown",
"name": "Shannon Brown",
"starter": "False",
"MIN": "0",
"FGM": "0",
"FGA": "0",
"FG_PCT": "0",
"FG3M": "0",
"FG3A": "0",
"FG3_PCT": "0",
"FTM": "0",
"FTA": "0",
"FT_PCT": "0",
"OREB": "0",
"DREB": "0",
"TREB": "0",
"AST": "0",
"STL": "0",
"BLK": "0",
"TOV": "0",
"PF": "0",
"PTS": "0",
"+/-": "0",
"DOUBLE": "none"
}
],
"next_game": {
"day": "2",
"month": "November",
"year": "2014",
"dayname": "Sunday",
"stadium": "American Airlines Arena",
"city": "Miami",
"opponent_name": "Raptors",
"opponent_place": "Toronto",
"is_home": "True"
}
}
},
"summaries": [
"The Miami Heat ( 20 ) defeated the Philadelphia 76ers ( 0 - 3 ) 114 - 96 on Saturday . Chris Bosh scored a game - high 30 points to go with eight rebounds in 33 minutes . Josh McRoberts made his Heat debut after missing the entire preseason recovering from toe surgery . McRoberts came off the bench and played 11 minutes . Shawne Williams was once again the starter at power forward in McRoberts ' stead . Williams finished with 15 points and three three - pointers in 29 minutes . Mario Chalmers scored 18 points in 25 minutes off the bench . Luc Richard Mbah a Moute replaced Chris Johnson in the starting lineup for the Sixers on Saturday . Hollis Thompson shifted down to the starting shooting guard job to make room for Mbah a Moute . Mbah a Moute finished with nine points and seven rebounds in 19 minutes . K.J . McDaniels , who suffered a minor hip flexor injury in Friday 's game , was available and played 21 minutes off the bench , finishing with eight points and three blocks . Michael Carter-Williams is expected to be out until Nov. 13 , but Tony Wroten continues to put up impressive numbers in Carter-Williams ' absence . Wroten finished with a double - double of 21 points and 10 assists in 33 minutes . The Heat will complete a back - to - back set at home Sunday against the Tornoto Raptors . The Sixers ' next game is at home Monday against the Houston Rockets ."
]
}
Data Splits
- Train: NBA seasons - 2014, 2015, & 2016; total instances - 3690
- Validation: NBA seasons - 2017; total instances - 1230
- Test: NBA seasons - 2018; total instances - 1230
Splitting Criteria
The splits were created as per different NBA seasons. All the games in regular season (no play-offs) are added in the dataset
Dataset in GEM
Rationale for Inclusion in GEM
Why is the Dataset in GEM?
This dataset contains a data analytics problem in the classic sense (Reiter, 2007). That is, there is a large amount of data from which insights need to be selected. Further, the insights should be both from simple shallow queries (such as dirext transcriptions of the properties of a subject, i.e., a player and their statistics), as well as aggregated (how a player has done over time). There is far more on the data side than is required to be realised, and indeed, could be practically realised. This depth of data analytics problem does not exist in other datasets.
Similar Datasets
no
Ability that the Dataset measures
Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
GEM-Specific Curation
Modificatied for GEM?
no
Additional Splits?
no
Getting Started with the Task
Pointers to Resources
For dataset discussion see Thomson et al, 2020
For evaluation see:
For a system using the relational database form of SportSett, see:
For recent systems using the Rotowire dataset, see:
Previous Results
Previous Results
Measured Model Abilities
Many, if not all aspects of data-to-text systems can be measured with this dataset. It has complex data analytics, meaninful document planning (10-15 sentence documents with a narrative structure), as well as microplanning and realisation requirements. Finding models to handle this volume of data, as well as methods for meaninfully evaluate generations is a very open question.
Metrics
BLEU
Proposed Evaluation
BLEU is the only off-the-shelf metric commonly used. Works have also used custom metrics like RG (Wiseman et al, 2017), and a recent shared task explored other metrics and their corrolation with human evaluation (Thomson & Reiter, 2021).
Previous results available?
yes
Other Evaluation Approaches
Most results from prior works use the original Rotowire dataset, which has train/validation/test contamination. For results of BLEU and RG on the relational database format of SportSett, as a guide, see Thomson et al, 2020.
Relevant Previous Results
The results on this dataset are largely unexplored, as is the selection of suitable metrics that correlate with human judgment. See Thomson et al, 2021 (https://aclanthology.org/2021.inlg-1.23) for an overview, and Kasner et al (2021) for the best performing metric at the time of writing (https://aclanthology.org/2021.inlg-1.25).
Dataset Curation
Original Curation
Original Curation Rationale
The references texts were taken from the existing dataset RotoWire-FG (Wang, 2019), which is in turn based on Rotowire (Wiseman et al, 2017). The rationale behind this dataset was to re-structure the data such that aggregate statistics over multiple games, as well as upcoming game schedules could be included, moving the dataset from snapshots of single games, to a format where almost everything that could be present in the reference texts could be found in the data.
Communicative Goal
Create a summary of a basketball, with insightful facts about the game, teams, and players, both within the game, withing periods during the game, and over the course of seasons/careers where appropriate. This is a data-to-text problem in the classic sense (Reiter, 2007) in that it has a difficult data analystics state, in addition to ordering and transcription of selected facts.
Sourced from Different Sources
yes
Source Details
RotoWire-FG (https://www.rotowire.com). Wikipedia (https://en.wikipedia.org/wiki/Main_Page) Basketball Reference (https://www.basketball-reference.com)
Language Data
How was Language Data Obtained?
Found
Where was it found?
Multiple websites
Language Producers
None
Topics Covered
Summaries of basketball games (in the NBA).
Data Validation
not validated
Data Preprocessing
It retains the original tokenization scheme employed by Wang 2019
Was Data Filtered?
manually
Filter Criteria
Games from the 2014 through 2018 seasons were selected. Within these seasons games are not filtered, all are present, but this was an arbitrary solution from the original RotoWirte-FG dataset.
Structured Annotations
Additional Annotations?
none
Annotation Service?
no
Consent
Any Consent Policy?
no
Justification for Using the Data
The dataset consits of a pre-existing dataset, as well as publically available facts.
Private Identifying Information (PII)
Contains PII?
unlikely
Categories of PII
generic PII
Any PII Identification?
no identification
Maintenance
Any Maintenance Plan?
no
Broader Social Context
Previous Work on the Social Impact of the Dataset
Usage of Models based on the Data
no
Impact on Under-Served Communities
Addresses needs of underserved Communities?
no
Discussion of Biases
Any Documented Social Biases?
yes
Links and Summaries of Analysis Work
Unaware of any work, but, this is a dataset considting solely of summaries of mens professional basketball games. It does not cover different levels of the sport, or different genders, and all pronouns are likely to be male unless a specific player is referred to by other pronouns in the training text. This makes it difficult to train systems where gender can be specified as an attribute, although it is an interesting, open problem that could be investigated using the dataset.
Are the Language Producers Representative of the Language?
No, it is very specifically American English from the sports journalism domain.
Considerations for Using the Data
PII Risks and Liability
Potential PII Risk
All information relating to persons is of public record.
Licenses
Copyright Restrictions on the Dataset
public domain
Copyright Restrictions on the Language Data
public domain
Known Technical Limitations
Technical Limitations
SportSett resolved the major overlap problems of RotoWire, although some overlap is unavoidable. For example, whilst it is not possible to find career totals and other historic information for all players (the data only goes back to 2014), it is possible to do so for some players. It is unavoidable that some data which is aggregated, exists in its base form in previous partitions. The season-based partition scheme heavily constrains this however.
Unsuited Applications
Factual accuray continues to be a problem, systems may incorrectly represent the facts of the game.
Discouraged Use Cases
Using the RG metric to maximise the number of true facts in a generate summary is not nececeraly