Datasets:
GEM
/

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,480 Bytes
5efe2da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import csv
import json
import os

import datasets


_CITATION = """\
@inproceedings{puduppully-etal-2019-data,
    title = "Data-to-text Generation with Entity Modeling",
    author = "Puduppully, Ratish  and
      Dong, Li  and
      Lapata, Mirella",
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
    month = jul,
    year = "2019",
    address = "Florence, Italy",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P19-1195",
    doi = "10.18653/v1/P19-1195",
    pages = "2023--2035",
}
"""

_DESCRIPTION = """\
The MLB dataset for data to text generation contains Major League Baseball games statistics and 
their human-written summaries. 
"""

_HOMEPAGE = "https://github.com/ratishsp/mlb-data-scripts"

_LICENSE = ""

_URLs = {
    "train": "train.jsonl",
    "validation": "validation.jsonl",
    "test": "test.jsonl"
}


class MlbDataToText(datasets.GeneratorBasedBuilder):
    """MLB dataset for data to text generation"""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "home_name": datasets.Value("string"),
                "box_score": dict,
                "home_city": datasets.Value("string"),
                "vis_name": datasets.Value("string"),
                "play_by_play": dict,
                "vis_line": dict,
                "vis_city": datasets.Value("string"),
                "day": datasets.Value("string"),
                "home_line": dict,
                "summary": list,
                "gem_id": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        data_dir = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["test"],
                    "split": "test"
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["validation"],
                    "split": "validation",
                },
            ),
        ]

    def _generate_examples(
        self, filepath, split  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    ):
        """ Yields examples as (key, example) tuples. """
        # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is here for legacy reason (tfds) and is not important in itself.

        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                data = json.loads(row)
                yield id_, {
                    "home_name": data["home_name"],
                    "box_score": data["box_score"],
                    "home_city": data["home_city"],
                    "vis_name": data["vis_name"],
                    "play_by_play": data["play_by_play"],
                    "vis_line": data["vis_line"],
                    "vis_city": data["vis_city"],
                    "day": data["day"],
                    "home_line": data["home_line"],
                    "summary": data["summary"],
                    "gem_id": data["gem_id"]
                }