Datasets:
Tasks:
Table to Text
Modalities:
Text
Languages:
English
Size:
10K - 100K
Tags:
data-to-text
License:
ratishsp
commited on
Commit
•
5efe2da
1
Parent(s):
315c458
data loader script
Browse files- mlb_data_to_text.py +146 -0
mlb_data_to_text.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{puduppully-etal-2019-data,
|
27 |
+
title = "Data-to-text Generation with Entity Modeling",
|
28 |
+
author = "Puduppully, Ratish and
|
29 |
+
Dong, Li and
|
30 |
+
Lapata, Mirella",
|
31 |
+
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
|
32 |
+
month = jul,
|
33 |
+
year = "2019",
|
34 |
+
address = "Florence, Italy",
|
35 |
+
publisher = "Association for Computational Linguistics",
|
36 |
+
url = "https://www.aclweb.org/anthology/P19-1195",
|
37 |
+
doi = "10.18653/v1/P19-1195",
|
38 |
+
pages = "2023--2035",
|
39 |
+
}
|
40 |
+
"""
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
The MLB dataset for data to text generation contains Major League Baseball games statistics and
|
44 |
+
their human-written summaries.
|
45 |
+
"""
|
46 |
+
|
47 |
+
_HOMEPAGE = "https://github.com/ratishsp/mlb-data-scripts"
|
48 |
+
|
49 |
+
_LICENSE = ""
|
50 |
+
|
51 |
+
_URLs = {
|
52 |
+
"train": "train.jsonl",
|
53 |
+
"validation": "validation.jsonl",
|
54 |
+
"test": "test.jsonl"
|
55 |
+
}
|
56 |
+
|
57 |
+
|
58 |
+
class MlbDataToText(datasets.GeneratorBasedBuilder):
|
59 |
+
"""MLB dataset for data to text generation"""
|
60 |
+
|
61 |
+
VERSION = datasets.Version("1.1.0")
|
62 |
+
|
63 |
+
def _info(self):
|
64 |
+
features = datasets.Features(
|
65 |
+
{
|
66 |
+
"home_name": datasets.Value("string"),
|
67 |
+
"box_score": dict,
|
68 |
+
"home_city": datasets.Value("string"),
|
69 |
+
"vis_name": datasets.Value("string"),
|
70 |
+
"play_by_play": dict,
|
71 |
+
"vis_line": dict,
|
72 |
+
"vis_city": datasets.Value("string"),
|
73 |
+
"day": datasets.Value("string"),
|
74 |
+
"home_line": dict,
|
75 |
+
"summary": list,
|
76 |
+
"gem_id": datasets.Value("string")
|
77 |
+
}
|
78 |
+
)
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
features=features,
|
82 |
+
supervised_keys=None,
|
83 |
+
homepage=_HOMEPAGE,
|
84 |
+
license=_LICENSE,
|
85 |
+
citation=_CITATION,
|
86 |
+
)
|
87 |
+
|
88 |
+
def _split_generators(self, dl_manager):
|
89 |
+
"""Returns SplitGenerators."""
|
90 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
91 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
92 |
+
|
93 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
94 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
95 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
96 |
+
data_dir = dl_manager.download_and_extract(_URLs)
|
97 |
+
return [
|
98 |
+
datasets.SplitGenerator(
|
99 |
+
name=datasets.Split.TRAIN,
|
100 |
+
# These kwargs will be passed to _generate_examples
|
101 |
+
gen_kwargs={
|
102 |
+
"filepath": data_dir["train"],
|
103 |
+
"split": "train",
|
104 |
+
},
|
105 |
+
),
|
106 |
+
datasets.SplitGenerator(
|
107 |
+
name=datasets.Split.TEST,
|
108 |
+
# These kwargs will be passed to _generate_examples
|
109 |
+
gen_kwargs={
|
110 |
+
"filepath": data_dir["test"],
|
111 |
+
"split": "test"
|
112 |
+
},
|
113 |
+
),
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.VALIDATION,
|
116 |
+
# These kwargs will be passed to _generate_examples
|
117 |
+
gen_kwargs={
|
118 |
+
"filepath": data_dir["validation"],
|
119 |
+
"split": "validation",
|
120 |
+
},
|
121 |
+
),
|
122 |
+
]
|
123 |
+
|
124 |
+
def _generate_examples(
|
125 |
+
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
126 |
+
):
|
127 |
+
""" Yields examples as (key, example) tuples. """
|
128 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
129 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
130 |
+
|
131 |
+
with open(filepath, encoding="utf-8") as f:
|
132 |
+
for id_, row in enumerate(f):
|
133 |
+
data = json.loads(row)
|
134 |
+
yield id_, {
|
135 |
+
"home_name": data["home_name"],
|
136 |
+
"box_score": data["box_score"],
|
137 |
+
"home_city": data["home_city"],
|
138 |
+
"vis_name": data["vis_name"],
|
139 |
+
"play_by_play": data["play_by_play"],
|
140 |
+
"vis_line": data["vis_line"],
|
141 |
+
"vis_city": data["vis_city"],
|
142 |
+
"day": data["day"],
|
143 |
+
"home_line": data["home_line"],
|
144 |
+
"summary": data["summary"],
|
145 |
+
"gem_id": data["gem_id"]
|
146 |
+
}
|