|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- question-answering |
|
- text-generation |
|
annotations_creators: |
|
- crowdsourced |
|
- expert-generated |
|
language: |
|
- amh |
|
- arb |
|
- ary |
|
- ars |
|
- acq |
|
- arz |
|
- apc |
|
- ben |
|
- ceb |
|
- dan |
|
- deu |
|
- ell |
|
- eng |
|
- eus |
|
- fil |
|
- fin |
|
- fra |
|
- gle |
|
- guj |
|
- hat |
|
- hau |
|
- hin |
|
- hun |
|
- ibo |
|
- ind |
|
- ita |
|
- jav |
|
- jpn |
|
- kan |
|
- kir |
|
- kor |
|
- kur |
|
- lit |
|
- mal |
|
- mar |
|
- mlg |
|
- msa |
|
- mya |
|
- nep |
|
- nld |
|
- nso |
|
- nya |
|
- pan |
|
- pes |
|
- pol |
|
- por |
|
- pus |
|
- rus |
|
- sin |
|
- sna |
|
- snd |
|
- som |
|
- spa |
|
- sqi |
|
- srp |
|
- sun |
|
- swa |
|
- swe |
|
- tam |
|
- tel |
|
- tha |
|
- tur |
|
- ukr |
|
- urd |
|
- vie |
|
- wol |
|
- xho |
|
- yor |
|
- zho |
|
- zul |
|
language_creators: |
|
- crowdsourced |
|
- expert-generated |
|
multilinguality: |
|
- multilingual |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
[CohereForAI/aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) in ChatML format, ready to use in [HuggingFace TRL's SFT Trainer](https://huggingface.co/docs/trl/main/en/sft_trainer). |
|
|
|
Python code used for conversion: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Felladrin/Llama-160M-Chat-v1") |
|
|
|
dataset = load_dataset("CohereForAI/aya_dataset", split="train") |
|
|
|
def format(columns): |
|
messages = [ |
|
{ |
|
"role": "user", |
|
"content": columns["inputs"].strip(), |
|
}, |
|
{ |
|
"role": "assistant", |
|
"content": columns["targets"].strip(), |
|
}, |
|
] |
|
|
|
return { "text": tokenizer.apply_chat_template(messages, tokenize=False) } |
|
|
|
dataset.map(format).select_columns(['text', 'language', 'language_code', 'annotation_type', 'user_id']).to_parquet("train.parquet") |
|
``` |
|
|