prompt
large_stringlengths 72
9.34k
| completion
large_stringlengths 0
7.61k
|
---|---|
<|file_name|>dummy_operator.py<|end_file_name|><|fim▁begin|>#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults
class DummyOperator(BaseOperator):
"""
Operator that does literally nothing. It can be used to group tasks in a
DAG.
"""
ui_color = '#e8f7e4'
@apply_defaults
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def execute(self, context):
<|fim_middle|>
<|fim▁end|> | pass |
<|file_name|>dummy_operator.py<|end_file_name|><|fim▁begin|>#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults
class DummyOperator(BaseOperator):
"""
Operator that does literally nothing. It can be used to group tasks in a
DAG.
"""
ui_color = '#e8f7e4'
@apply_defaults
def <|fim_middle|>(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def execute(self, context):
pass
<|fim▁end|> | __init__ |
<|file_name|>dummy_operator.py<|end_file_name|><|fim▁begin|>#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from airflow.models import BaseOperator
from airflow.utils.decorators import apply_defaults
class DummyOperator(BaseOperator):
"""
Operator that does literally nothing. It can be used to group tasks in a
DAG.
"""
ui_color = '#e8f7e4'
@apply_defaults
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
def <|fim_middle|>(self, context):
pass
<|fim▁end|> | execute |
<|file_name|>guimporter.py<|end_file_name|><|fim▁begin|>#guimporter.py
import sys
from PySide import QtGui, QtCore, QtWebKit<|fim▁hole|><|fim▁end|> | Signal = QtCore.Signal |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1<|fim▁hole|>#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | #notes : |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
<|fim_middle|>
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | tour=list(range(tour_length))
random.shuffle(tour)
return tour |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
<|fim_middle|>
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | '''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
<|fim_middle|>
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | T = start_temp
while True:
yield T
T = alpha * T |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
<|fim_middle|>
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature ) |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
<|fim_middle|>
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | '''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
<|fim_middle|>
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | self.objective_function=objective_function
self.best=None
self.best_score=None |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
<|fim_middle|>
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
<|fim_middle|>
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best) |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
<|fim_middle|>
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png"); |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
<|fim_middle|>
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
<|fim_middle|>
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | copy[i:j+1]=reversed(tour[i:j+1]) |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
<|fim_middle|>
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:]) |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
<|fim_middle|>
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | yield copy |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
<|fim_middle|>
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | return 1.0 |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
<|fim_middle|>
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | return math.exp( -abs(next_score-prev_score)/temperature ) |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
<|fim_middle|>
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | self.best_score=score
self.best=solution |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
<|fim_middle|>
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | done=True
break |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
<|fim_middle|>
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | current = next
current_score= next_score
break |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: <|fim_middle|>
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | break |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
<|fim_middle|>
<|fim▁end|> | SolveTSP(); |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def <|fim_middle|>(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | GenerateInitialPath |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def <|fim_middle|>(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | reversed_sections |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def <|fim_middle|>(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | kirkpatrick_cooling |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def <|fim_middle|>(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | P |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def <|fim_middle|>(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | __init__ |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def <|fim_middle|>(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | __call__ |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def <|fim_middle|>(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def SolveTSP():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | ApplySimulatedAnnealing |
<|file_name|>SolveTSPSimulatedAnnealing.py<|end_file_name|><|fim▁begin|>#==============================================================================
#description : Solves travelling salesman problem by using Hill Climbing.
#author : Yakup Cengiz
#date : 20151121
#version : 0.1
#notes :
#python_version : 3.5.0
#Reference : http://www.psychicorigami.com/category/tsp/
#==============================================================================
import math
import sys
import os
import random
CommonPath = os.path.abspath(os.path.join('..', 'Common'))
sys.path.append(CommonPath)
import tsp
def GenerateInitialPath(tour_length):
tour=list(range(tour_length))
random.shuffle(tour)
return tour
MAX_ITERATION = 50000
def reversed_sections(tour):
'''generator to return all possible variations where the section between two cities are swapped'''
for i,j in tsp.AllEdges(len(tour)):
if i != j:
copy=tour[:]
if i < j:
copy[i:j+1]=reversed(tour[i:j+1])
else:
copy[i+1:]=reversed(tour[:j])
copy[:j]=reversed(tour[i+1:])
if copy != tour: # no point returning the same tour
yield copy
def kirkpatrick_cooling(start_temp, alpha):
T = start_temp
while True:
yield T
T = alpha * T
def P(prev_score,next_score,temperature):
if next_score > prev_score:
return 1.0
else:
return math.exp( -abs(next_score-prev_score)/temperature )
class ObjectiveFunction:
'''class to wrap an objective function and
keep track of the best solution evaluated'''
def __init__(self,objective_function):
self.objective_function=objective_function
self.best=None
self.best_score=None
def __call__(self,solution):
score=self.objective_function(solution)
if self.best is None or score > self.best_score:
self.best_score=score
self.best=solution
return score
def ApplySimulatedAnnealing(init_function,move_operator,objective_function,max_evaluations,start_temp,alpha):
# wrap the objective function (so we record the best)
objective_function=ObjectiveFunction(objective_function)
current = init_function()
current_score = objective_function(current)
iterationCount = 1
cooling_schedule = kirkpatrick_cooling(start_temp, alpha)
for temperature in cooling_schedule:
done = False
# examine moves around our current position
for next in move_operator(current):
if iterationCount >= max_evaluations:
done=True
break
next_score=objective_function(next)
iterationCount+=1
# probablistically accept this solution always accepting better solutions
p = P(current_score, next_score, temperature)
# random.random() basic function random() generates a random float uniformly in the range [0.0, 1.0).
# p function returns data in range [0.0, 1.0]
if random.random() < p:
current = next
current_score= next_score
break
# see if completely finished
if done: break
best_score = objective_function.best_score
best = objective_function.best
return (iterationCount,best_score,best)
def <|fim_middle|>():
print("Starting to solve travel salesman problem")
coordinates = tsp.ReadCoordinatesFromFile(".\cityCoordinates.csv")
distance_matrix = tsp.ComputeDistanceMatrix(coordinates);
init_function = lambda: GenerateInitialPath(len(coordinates))
objective_function = lambda tour: -tsp.ComputeTourLength(distance_matrix, tour)
start_temp,alpha = 100, 0.995
iterationCount,best_score,shortestPath = ApplySimulatedAnnealing(init_function, reversed_sections, objective_function, MAX_ITERATION,start_temp,alpha)
print(iterationCount, best_score, shortestPath);
tsp.DrawPath(coordinates, shortestPath, "TSP.png");
if __name__ == "__main__":
SolveTSP();<|fim▁end|> | SolveTSP |
<|file_name|>print_MODFLOW_inputs_res_NWT.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
"""
Created on Sun Sep 17 22:06:52 2017
Based on: print_MODFLOW_inputs_res_NWT.m
@author: gcng
"""
# print_MODFLOW_inputs
import numpy as np
import MODFLOW_NWT_lib as mf # functions to write individual MODFLOW files
import os # os functions
from ConfigParser import SafeConfigParser
parser = SafeConfigParser()
parser.read('settings.ini')
LOCAL_DIR = parser.get('settings', 'local_dir')
GSFLOW_DIR = LOCAL_DIR + "/GSFLOW"
<|fim▁hole|>
# - directories
sw_2005_NWT = 2 # 1 for MODFLOW-2005; 2 for MODFLOW-NWT algorithm (both can be
# carried out with MODFLOW-NWT code)
fl_BoundConstH = 0 # 1 for const head at high elev boundary, needed for numerical
# convergence for AGU2016 poster. Maybe resolved with MODFLOW-NWT?
if sw_2005_NWT == 1:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_2005/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_2005/'
elif sw_2005_NWT == 2:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_NWT/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_NWT/'
infile_pre = 'test2lay_py';
NLAY = 2;
DZ = [100, 50] # [NLAYx1] [m] ***testing
# DZ = [350, 100] # [NLAYx1] [m] ***testing
# length of transient stress period (follows 1-day steady-state period) [d]
# perlen_tr = 365; # [d], ok if too long
# perlen_tr = 365*5 + ceil(365*5/4); # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
perlen_tr = 365*30 + np.ceil(365*30/4) # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
GIS_indir = GSFLOW_DIR + '/DataToReadIn/GIS/';
# use restart file as initial cond (empty string to not use restart file)
fil_res_in = '' # empty string to not use restart file
#fil_res_in = '/home/gcng/workspace/Pfil_res_inrojectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/test2lay_melt_30yr.out' % empty string to not use restart file
# for various files: ba6, dis, uzf, lpf
surfz_fil = GIS_indir + 'topo.asc'
# surfz_fil = GIS_indir + 'SRTM_new_20161208.asc'
# for various files: ba6, uzf
mask_fil = GIS_indir + 'basinmask_dischargept.asc'
# for sfr
reach_fil = GIS_indir + 'reach_data.txt'
segment_fil_all = [GIS_indir + 'segment_data_4A_INFORMATION_Man.csv',
GIS_indir + 'segment_data_4B_UPSTREAM_Man.csv',
GIS_indir + 'segment_data_4C_DOWNSTREAM_Man.csv']
# create MODFLOW input directory if it does not exist:
if not os.path.isdir(GSFLOW_indir):
os.makedirs(GSFLOW_indir)
# while we're at it, create MODFLOW output file if it does not exist:
if not os.path.isdir(GSFLOW_outdir):
os.makedirs(GSFLOW_outdir)
##
mf.write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ, perlen_tr);
mf.write_ba6_MOD3_2(GSFLOW_indir, infile_pre, mask_fil, fl_BoundConstH); # list this below write_dis_MOD2_f
# flow algorithm
if sw_2005_NWT == 1:
mf.write_lpf_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
elif sw_2005_NWT == 2:
# MODFLOW-NWT files
mf.write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
mf.NWT_write_file(GSFLOW_indir, infile_pre);
# unsat zone and streamflow input files
mf.make_uzf3_f_2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil);
mf.make_sfr2_f_Mannings(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all); # list this below write_dis_MOD2_f
# Write PCG file (only used for MODFLOW-2005, but this function also creates OC file)
mf.write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr);
# Write namefile
mf.write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in, sw_2005_NWT);<|fim▁end|> | |
<|file_name|>print_MODFLOW_inputs_res_NWT.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
"""
Created on Sun Sep 17 22:06:52 2017
Based on: print_MODFLOW_inputs_res_NWT.m
@author: gcng
"""
# print_MODFLOW_inputs
import numpy as np
import MODFLOW_NWT_lib as mf # functions to write individual MODFLOW files
import os # os functions
from ConfigParser import SafeConfigParser
parser = SafeConfigParser()
parser.read('settings.ini')
LOCAL_DIR = parser.get('settings', 'local_dir')
GSFLOW_DIR = LOCAL_DIR + "/GSFLOW"
# - directories
sw_2005_NWT = 2 # 1 for MODFLOW-2005; 2 for MODFLOW-NWT algorithm (both can be
# carried out with MODFLOW-NWT code)
fl_BoundConstH = 0 # 1 for const head at high elev boundary, needed for numerical
# convergence for AGU2016 poster. Maybe resolved with MODFLOW-NWT?
if sw_2005_NWT == 1:
# MODFLOW input files
<|fim_middle|>
elif sw_2005_NWT == 2:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_NWT/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_NWT/'
infile_pre = 'test2lay_py';
NLAY = 2;
DZ = [100, 50] # [NLAYx1] [m] ***testing
# DZ = [350, 100] # [NLAYx1] [m] ***testing
# length of transient stress period (follows 1-day steady-state period) [d]
# perlen_tr = 365; # [d], ok if too long
# perlen_tr = 365*5 + ceil(365*5/4); # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
perlen_tr = 365*30 + np.ceil(365*30/4) # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
GIS_indir = GSFLOW_DIR + '/DataToReadIn/GIS/';
# use restart file as initial cond (empty string to not use restart file)
fil_res_in = '' # empty string to not use restart file
#fil_res_in = '/home/gcng/workspace/Pfil_res_inrojectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/test2lay_melt_30yr.out' % empty string to not use restart file
# for various files: ba6, dis, uzf, lpf
surfz_fil = GIS_indir + 'topo.asc'
# surfz_fil = GIS_indir + 'SRTM_new_20161208.asc'
# for various files: ba6, uzf
mask_fil = GIS_indir + 'basinmask_dischargept.asc'
# for sfr
reach_fil = GIS_indir + 'reach_data.txt'
segment_fil_all = [GIS_indir + 'segment_data_4A_INFORMATION_Man.csv',
GIS_indir + 'segment_data_4B_UPSTREAM_Man.csv',
GIS_indir + 'segment_data_4C_DOWNSTREAM_Man.csv']
# create MODFLOW input directory if it does not exist:
if not os.path.isdir(GSFLOW_indir):
os.makedirs(GSFLOW_indir)
# while we're at it, create MODFLOW output file if it does not exist:
if not os.path.isdir(GSFLOW_outdir):
os.makedirs(GSFLOW_outdir)
##
mf.write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ, perlen_tr);
mf.write_ba6_MOD3_2(GSFLOW_indir, infile_pre, mask_fil, fl_BoundConstH); # list this below write_dis_MOD2_f
# flow algorithm
if sw_2005_NWT == 1:
mf.write_lpf_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
elif sw_2005_NWT == 2:
# MODFLOW-NWT files
mf.write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
mf.NWT_write_file(GSFLOW_indir, infile_pre);
# unsat zone and streamflow input files
mf.make_uzf3_f_2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil);
mf.make_sfr2_f_Mannings(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all); # list this below write_dis_MOD2_f
# Write PCG file (only used for MODFLOW-2005, but this function also creates OC file)
mf.write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr);
# Write namefile
mf.write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in, sw_2005_NWT);
<|fim▁end|> | GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_2005/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_2005/' |
<|file_name|>print_MODFLOW_inputs_res_NWT.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
"""
Created on Sun Sep 17 22:06:52 2017
Based on: print_MODFLOW_inputs_res_NWT.m
@author: gcng
"""
# print_MODFLOW_inputs
import numpy as np
import MODFLOW_NWT_lib as mf # functions to write individual MODFLOW files
import os # os functions
from ConfigParser import SafeConfigParser
parser = SafeConfigParser()
parser.read('settings.ini')
LOCAL_DIR = parser.get('settings', 'local_dir')
GSFLOW_DIR = LOCAL_DIR + "/GSFLOW"
# - directories
sw_2005_NWT = 2 # 1 for MODFLOW-2005; 2 for MODFLOW-NWT algorithm (both can be
# carried out with MODFLOW-NWT code)
fl_BoundConstH = 0 # 1 for const head at high elev boundary, needed for numerical
# convergence for AGU2016 poster. Maybe resolved with MODFLOW-NWT?
if sw_2005_NWT == 1:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_2005/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_2005/'
elif sw_2005_NWT == 2:
# MODFLOW input files
<|fim_middle|>
infile_pre = 'test2lay_py';
NLAY = 2;
DZ = [100, 50] # [NLAYx1] [m] ***testing
# DZ = [350, 100] # [NLAYx1] [m] ***testing
# length of transient stress period (follows 1-day steady-state period) [d]
# perlen_tr = 365; # [d], ok if too long
# perlen_tr = 365*5 + ceil(365*5/4); # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
perlen_tr = 365*30 + np.ceil(365*30/4) # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
GIS_indir = GSFLOW_DIR + '/DataToReadIn/GIS/';
# use restart file as initial cond (empty string to not use restart file)
fil_res_in = '' # empty string to not use restart file
#fil_res_in = '/home/gcng/workspace/Pfil_res_inrojectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/test2lay_melt_30yr.out' % empty string to not use restart file
# for various files: ba6, dis, uzf, lpf
surfz_fil = GIS_indir + 'topo.asc'
# surfz_fil = GIS_indir + 'SRTM_new_20161208.asc'
# for various files: ba6, uzf
mask_fil = GIS_indir + 'basinmask_dischargept.asc'
# for sfr
reach_fil = GIS_indir + 'reach_data.txt'
segment_fil_all = [GIS_indir + 'segment_data_4A_INFORMATION_Man.csv',
GIS_indir + 'segment_data_4B_UPSTREAM_Man.csv',
GIS_indir + 'segment_data_4C_DOWNSTREAM_Man.csv']
# create MODFLOW input directory if it does not exist:
if not os.path.isdir(GSFLOW_indir):
os.makedirs(GSFLOW_indir)
# while we're at it, create MODFLOW output file if it does not exist:
if not os.path.isdir(GSFLOW_outdir):
os.makedirs(GSFLOW_outdir)
##
mf.write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ, perlen_tr);
mf.write_ba6_MOD3_2(GSFLOW_indir, infile_pre, mask_fil, fl_BoundConstH); # list this below write_dis_MOD2_f
# flow algorithm
if sw_2005_NWT == 1:
mf.write_lpf_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
elif sw_2005_NWT == 2:
# MODFLOW-NWT files
mf.write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
mf.NWT_write_file(GSFLOW_indir, infile_pre);
# unsat zone and streamflow input files
mf.make_uzf3_f_2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil);
mf.make_sfr2_f_Mannings(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all); # list this below write_dis_MOD2_f
# Write PCG file (only used for MODFLOW-2005, but this function also creates OC file)
mf.write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr);
# Write namefile
mf.write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in, sw_2005_NWT);
<|fim▁end|> | GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_NWT/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_NWT/' |
<|file_name|>print_MODFLOW_inputs_res_NWT.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
"""
Created on Sun Sep 17 22:06:52 2017
Based on: print_MODFLOW_inputs_res_NWT.m
@author: gcng
"""
# print_MODFLOW_inputs
import numpy as np
import MODFLOW_NWT_lib as mf # functions to write individual MODFLOW files
import os # os functions
from ConfigParser import SafeConfigParser
parser = SafeConfigParser()
parser.read('settings.ini')
LOCAL_DIR = parser.get('settings', 'local_dir')
GSFLOW_DIR = LOCAL_DIR + "/GSFLOW"
# - directories
sw_2005_NWT = 2 # 1 for MODFLOW-2005; 2 for MODFLOW-NWT algorithm (both can be
# carried out with MODFLOW-NWT code)
fl_BoundConstH = 0 # 1 for const head at high elev boundary, needed for numerical
# convergence for AGU2016 poster. Maybe resolved with MODFLOW-NWT?
if sw_2005_NWT == 1:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_2005/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_2005/'
elif sw_2005_NWT == 2:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_NWT/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_NWT/'
infile_pre = 'test2lay_py';
NLAY = 2;
DZ = [100, 50] # [NLAYx1] [m] ***testing
# DZ = [350, 100] # [NLAYx1] [m] ***testing
# length of transient stress period (follows 1-day steady-state period) [d]
# perlen_tr = 365; # [d], ok if too long
# perlen_tr = 365*5 + ceil(365*5/4); # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
perlen_tr = 365*30 + np.ceil(365*30/4) # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
GIS_indir = GSFLOW_DIR + '/DataToReadIn/GIS/';
# use restart file as initial cond (empty string to not use restart file)
fil_res_in = '' # empty string to not use restart file
#fil_res_in = '/home/gcng/workspace/Pfil_res_inrojectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/test2lay_melt_30yr.out' % empty string to not use restart file
# for various files: ba6, dis, uzf, lpf
surfz_fil = GIS_indir + 'topo.asc'
# surfz_fil = GIS_indir + 'SRTM_new_20161208.asc'
# for various files: ba6, uzf
mask_fil = GIS_indir + 'basinmask_dischargept.asc'
# for sfr
reach_fil = GIS_indir + 'reach_data.txt'
segment_fil_all = [GIS_indir + 'segment_data_4A_INFORMATION_Man.csv',
GIS_indir + 'segment_data_4B_UPSTREAM_Man.csv',
GIS_indir + 'segment_data_4C_DOWNSTREAM_Man.csv']
# create MODFLOW input directory if it does not exist:
if not os.path.isdir(GSFLOW_indir):
<|fim_middle|>
# while we're at it, create MODFLOW output file if it does not exist:
if not os.path.isdir(GSFLOW_outdir):
os.makedirs(GSFLOW_outdir)
##
mf.write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ, perlen_tr);
mf.write_ba6_MOD3_2(GSFLOW_indir, infile_pre, mask_fil, fl_BoundConstH); # list this below write_dis_MOD2_f
# flow algorithm
if sw_2005_NWT == 1:
mf.write_lpf_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
elif sw_2005_NWT == 2:
# MODFLOW-NWT files
mf.write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
mf.NWT_write_file(GSFLOW_indir, infile_pre);
# unsat zone and streamflow input files
mf.make_uzf3_f_2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil);
mf.make_sfr2_f_Mannings(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all); # list this below write_dis_MOD2_f
# Write PCG file (only used for MODFLOW-2005, but this function also creates OC file)
mf.write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr);
# Write namefile
mf.write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in, sw_2005_NWT);
<|fim▁end|> | os.makedirs(GSFLOW_indir) |
<|file_name|>print_MODFLOW_inputs_res_NWT.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
"""
Created on Sun Sep 17 22:06:52 2017
Based on: print_MODFLOW_inputs_res_NWT.m
@author: gcng
"""
# print_MODFLOW_inputs
import numpy as np
import MODFLOW_NWT_lib as mf # functions to write individual MODFLOW files
import os # os functions
from ConfigParser import SafeConfigParser
parser = SafeConfigParser()
parser.read('settings.ini')
LOCAL_DIR = parser.get('settings', 'local_dir')
GSFLOW_DIR = LOCAL_DIR + "/GSFLOW"
# - directories
sw_2005_NWT = 2 # 1 for MODFLOW-2005; 2 for MODFLOW-NWT algorithm (both can be
# carried out with MODFLOW-NWT code)
fl_BoundConstH = 0 # 1 for const head at high elev boundary, needed for numerical
# convergence for AGU2016 poster. Maybe resolved with MODFLOW-NWT?
if sw_2005_NWT == 1:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_2005/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_2005/'
elif sw_2005_NWT == 2:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_NWT/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_NWT/'
infile_pre = 'test2lay_py';
NLAY = 2;
DZ = [100, 50] # [NLAYx1] [m] ***testing
# DZ = [350, 100] # [NLAYx1] [m] ***testing
# length of transient stress period (follows 1-day steady-state period) [d]
# perlen_tr = 365; # [d], ok if too long
# perlen_tr = 365*5 + ceil(365*5/4); # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
perlen_tr = 365*30 + np.ceil(365*30/4) # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
GIS_indir = GSFLOW_DIR + '/DataToReadIn/GIS/';
# use restart file as initial cond (empty string to not use restart file)
fil_res_in = '' # empty string to not use restart file
#fil_res_in = '/home/gcng/workspace/Pfil_res_inrojectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/test2lay_melt_30yr.out' % empty string to not use restart file
# for various files: ba6, dis, uzf, lpf
surfz_fil = GIS_indir + 'topo.asc'
# surfz_fil = GIS_indir + 'SRTM_new_20161208.asc'
# for various files: ba6, uzf
mask_fil = GIS_indir + 'basinmask_dischargept.asc'
# for sfr
reach_fil = GIS_indir + 'reach_data.txt'
segment_fil_all = [GIS_indir + 'segment_data_4A_INFORMATION_Man.csv',
GIS_indir + 'segment_data_4B_UPSTREAM_Man.csv',
GIS_indir + 'segment_data_4C_DOWNSTREAM_Man.csv']
# create MODFLOW input directory if it does not exist:
if not os.path.isdir(GSFLOW_indir):
os.makedirs(GSFLOW_indir)
# while we're at it, create MODFLOW output file if it does not exist:
if not os.path.isdir(GSFLOW_outdir):
<|fim_middle|>
##
mf.write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ, perlen_tr);
mf.write_ba6_MOD3_2(GSFLOW_indir, infile_pre, mask_fil, fl_BoundConstH); # list this below write_dis_MOD2_f
# flow algorithm
if sw_2005_NWT == 1:
mf.write_lpf_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
elif sw_2005_NWT == 2:
# MODFLOW-NWT files
mf.write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
mf.NWT_write_file(GSFLOW_indir, infile_pre);
# unsat zone and streamflow input files
mf.make_uzf3_f_2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil);
mf.make_sfr2_f_Mannings(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all); # list this below write_dis_MOD2_f
# Write PCG file (only used for MODFLOW-2005, but this function also creates OC file)
mf.write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr);
# Write namefile
mf.write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in, sw_2005_NWT);
<|fim▁end|> | os.makedirs(GSFLOW_outdir) |
<|file_name|>print_MODFLOW_inputs_res_NWT.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
"""
Created on Sun Sep 17 22:06:52 2017
Based on: print_MODFLOW_inputs_res_NWT.m
@author: gcng
"""
# print_MODFLOW_inputs
import numpy as np
import MODFLOW_NWT_lib as mf # functions to write individual MODFLOW files
import os # os functions
from ConfigParser import SafeConfigParser
parser = SafeConfigParser()
parser.read('settings.ini')
LOCAL_DIR = parser.get('settings', 'local_dir')
GSFLOW_DIR = LOCAL_DIR + "/GSFLOW"
# - directories
sw_2005_NWT = 2 # 1 for MODFLOW-2005; 2 for MODFLOW-NWT algorithm (both can be
# carried out with MODFLOW-NWT code)
fl_BoundConstH = 0 # 1 for const head at high elev boundary, needed for numerical
# convergence for AGU2016 poster. Maybe resolved with MODFLOW-NWT?
if sw_2005_NWT == 1:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_2005/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_2005/'
elif sw_2005_NWT == 2:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_NWT/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_NWT/'
infile_pre = 'test2lay_py';
NLAY = 2;
DZ = [100, 50] # [NLAYx1] [m] ***testing
# DZ = [350, 100] # [NLAYx1] [m] ***testing
# length of transient stress period (follows 1-day steady-state period) [d]
# perlen_tr = 365; # [d], ok if too long
# perlen_tr = 365*5 + ceil(365*5/4); # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
perlen_tr = 365*30 + np.ceil(365*30/4) # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
GIS_indir = GSFLOW_DIR + '/DataToReadIn/GIS/';
# use restart file as initial cond (empty string to not use restart file)
fil_res_in = '' # empty string to not use restart file
#fil_res_in = '/home/gcng/workspace/Pfil_res_inrojectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/test2lay_melt_30yr.out' % empty string to not use restart file
# for various files: ba6, dis, uzf, lpf
surfz_fil = GIS_indir + 'topo.asc'
# surfz_fil = GIS_indir + 'SRTM_new_20161208.asc'
# for various files: ba6, uzf
mask_fil = GIS_indir + 'basinmask_dischargept.asc'
# for sfr
reach_fil = GIS_indir + 'reach_data.txt'
segment_fil_all = [GIS_indir + 'segment_data_4A_INFORMATION_Man.csv',
GIS_indir + 'segment_data_4B_UPSTREAM_Man.csv',
GIS_indir + 'segment_data_4C_DOWNSTREAM_Man.csv']
# create MODFLOW input directory if it does not exist:
if not os.path.isdir(GSFLOW_indir):
os.makedirs(GSFLOW_indir)
# while we're at it, create MODFLOW output file if it does not exist:
if not os.path.isdir(GSFLOW_outdir):
os.makedirs(GSFLOW_outdir)
##
mf.write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ, perlen_tr);
mf.write_ba6_MOD3_2(GSFLOW_indir, infile_pre, mask_fil, fl_BoundConstH); # list this below write_dis_MOD2_f
# flow algorithm
if sw_2005_NWT == 1:
<|fim_middle|>
elif sw_2005_NWT == 2:
# MODFLOW-NWT files
mf.write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
mf.NWT_write_file(GSFLOW_indir, infile_pre);
# unsat zone and streamflow input files
mf.make_uzf3_f_2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil);
mf.make_sfr2_f_Mannings(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all); # list this below write_dis_MOD2_f
# Write PCG file (only used for MODFLOW-2005, but this function also creates OC file)
mf.write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr);
# Write namefile
mf.write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in, sw_2005_NWT);
<|fim▁end|> | mf.write_lpf_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY); |
<|file_name|>print_MODFLOW_inputs_res_NWT.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*-
"""
Created on Sun Sep 17 22:06:52 2017
Based on: print_MODFLOW_inputs_res_NWT.m
@author: gcng
"""
# print_MODFLOW_inputs
import numpy as np
import MODFLOW_NWT_lib as mf # functions to write individual MODFLOW files
import os # os functions
from ConfigParser import SafeConfigParser
parser = SafeConfigParser()
parser.read('settings.ini')
LOCAL_DIR = parser.get('settings', 'local_dir')
GSFLOW_DIR = LOCAL_DIR + "/GSFLOW"
# - directories
sw_2005_NWT = 2 # 1 for MODFLOW-2005; 2 for MODFLOW-NWT algorithm (both can be
# carried out with MODFLOW-NWT code)
fl_BoundConstH = 0 # 1 for const head at high elev boundary, needed for numerical
# convergence for AGU2016 poster. Maybe resolved with MODFLOW-NWT?
if sw_2005_NWT == 1:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_2005/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_2005/'
elif sw_2005_NWT == 2:
# MODFLOW input files
GSFLOW_indir = GSFLOW_DIR + '/inputs/MODFLOW_NWT/'
# MODFLOW output files
GSFLOW_outdir = GSFLOW_DIR + '/outputs/MODFLOW_NWT/'
infile_pre = 'test2lay_py';
NLAY = 2;
DZ = [100, 50] # [NLAYx1] [m] ***testing
# DZ = [350, 100] # [NLAYx1] [m] ***testing
# length of transient stress period (follows 1-day steady-state period) [d]
# perlen_tr = 365; # [d], ok if too long
# perlen_tr = 365*5 + ceil(365*5/4); # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
perlen_tr = 365*30 + np.ceil(365*30/4) # [d], includes leap years; ok if too long (I think, but maybe run time is longer?)
GIS_indir = GSFLOW_DIR + '/DataToReadIn/GIS/';
# use restart file as initial cond (empty string to not use restart file)
fil_res_in = '' # empty string to not use restart file
#fil_res_in = '/home/gcng/workspace/Pfil_res_inrojectFiles/AndesWaterResources/GSFLOW/outputs/MODFLOW/test2lay_melt_30yr.out' % empty string to not use restart file
# for various files: ba6, dis, uzf, lpf
surfz_fil = GIS_indir + 'topo.asc'
# surfz_fil = GIS_indir + 'SRTM_new_20161208.asc'
# for various files: ba6, uzf
mask_fil = GIS_indir + 'basinmask_dischargept.asc'
# for sfr
reach_fil = GIS_indir + 'reach_data.txt'
segment_fil_all = [GIS_indir + 'segment_data_4A_INFORMATION_Man.csv',
GIS_indir + 'segment_data_4B_UPSTREAM_Man.csv',
GIS_indir + 'segment_data_4C_DOWNSTREAM_Man.csv']
# create MODFLOW input directory if it does not exist:
if not os.path.isdir(GSFLOW_indir):
os.makedirs(GSFLOW_indir)
# while we're at it, create MODFLOW output file if it does not exist:
if not os.path.isdir(GSFLOW_outdir):
os.makedirs(GSFLOW_outdir)
##
mf.write_dis_MOD2_f(GSFLOW_indir, infile_pre, surfz_fil, NLAY, DZ, perlen_tr);
mf.write_ba6_MOD3_2(GSFLOW_indir, infile_pre, mask_fil, fl_BoundConstH); # list this below write_dis_MOD2_f
# flow algorithm
if sw_2005_NWT == 1:
mf.write_lpf_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
elif sw_2005_NWT == 2:
# MODFLOW-NWT files
<|fim_middle|>
# unsat zone and streamflow input files
mf.make_uzf3_f_2(GSFLOW_indir, infile_pre, surfz_fil, mask_fil);
mf.make_sfr2_f_Mannings(GSFLOW_indir, infile_pre, reach_fil, segment_fil_all); # list this below write_dis_MOD2_f
# Write PCG file (only used for MODFLOW-2005, but this function also creates OC file)
mf.write_OC_PCG_MOD_f(GSFLOW_indir, infile_pre, perlen_tr);
# Write namefile
mf.write_nam_MOD_f2_NWT(GSFLOW_indir, GSFLOW_outdir, infile_pre, fil_res_in, sw_2005_NWT);
<|fim▁end|> | mf.write_upw_MOD2_f2_2(GSFLOW_indir, infile_pre, surfz_fil, NLAY);
mf.NWT_write_file(GSFLOW_indir, infile_pre); |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
# coding: utf8
import os
import subprocess
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}'.commands.base import BaseCommand
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}' import PROJECT_DIR
class Configure(BaseCommand):
def execute(self):
os.chdir(os.path.join(PROJECT_DIR, 'build'))<|fim▁hole|><|fim▁end|> | subprocess.run(['cmake', PROJECT_DIR]) |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
# coding: utf8
import os
import subprocess
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}'.commands.base import BaseCommand
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}' import PROJECT_DIR
class Configure(BaseCommand):
<|fim_middle|>
<|fim▁end|> | def execute(self):
os.chdir(os.path.join(PROJECT_DIR, 'build'))
subprocess.run(['cmake', PROJECT_DIR]) |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
# coding: utf8
import os
import subprocess
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}'.commands.base import BaseCommand
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}' import PROJECT_DIR
class Configure(BaseCommand):
def execute(self):
<|fim_middle|>
<|fim▁end|> | os.chdir(os.path.join(PROJECT_DIR, 'build'))
subprocess.run(['cmake', PROJECT_DIR]) |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/python
# coding: utf8
import os
import subprocess
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}'.commands.base import BaseCommand
from '{% if cookiecutter.namespace %}{{ cookiecutter.namespace }}.{{ cookiecutter.project_slug }}{% else %}{{ cookiecutter.project_slug }}{% endif %}' import PROJECT_DIR
class Configure(BaseCommand):
def <|fim_middle|>(self):
os.chdir(os.path.join(PROJECT_DIR, 'build'))
subprocess.run(['cmake', PROJECT_DIR])
<|fim▁end|> | execute |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say<|fim▁hole|># from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2<|fim▁end|> | # def my_add (a, b):
# return a + b
#
# Then we get import this... |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
<|fim_middle|>
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2) |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
<|fim_middle|>
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | self.function = function |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
<|fim_middle|>
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | return Infix(lambda x: self.function(other, x)) |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
<|fim_middle|>
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | return self.function(other) |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
<|fim_middle|>
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | return Infix(lambda x, self=self, other=other: self.function(other, x)) |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
<|fim_middle|>
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | return self.function(other) |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
<|fim_middle|>
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | return self.function(value1, value2) |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def <|fim_middle|>(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | __init__ |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def <|fim_middle|>(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | __ror__ |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def <|fim_middle|>(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | __or__ |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def <|fim_middle|>(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | __rlshift__ |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def <|fim_middle|>(self, other):
return self.function(other)
def __call__(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | __rshift__ |
<|file_name|>Infix.py<|end_file_name|><|fim▁begin|># Allows the creation of infix operators
# Thanks to Ferdinand Jamitzky
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
class Infix(object):
def __init__(self, function):
self.function = function
def __ror__(self, other):
return Infix(lambda x: self.function(other, x))
def __or__(self, other):
return self.function(other)
def __rlshift__(self, other):
return Infix(lambda x, self=self, other=other: self.function(other, x))
def __rshift__(self, other):
return self.function(other)
def <|fim_middle|>(self, value1, value2):
return self.function(value1, value2)
# To create a binary operator just make a function that takes 2 arguments like say
# def my_add (a, b):
# return a + b
#
# Then we get import this...
# from Infix import Infix # Lets us make binary infix style operators
#
# Then we make the operator, lets call it p...
# p = Infix(my_add)
#
# Now to use it just put in
# arg1 |p| arg2
<|fim▁end|> | __call__ |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results<|fim▁hole|>from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def liner():
if request.method == 'POST':
query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
return render_template('projects/line.html', message='Please separate each line with "."')
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
abbr_expanded_text += abbr_map[word]
else:
abbr_expanded_text += word
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text])
else:
return render_template('projects/line.html')<|fim▁end|> | |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results
from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def liner():
<|fim_middle|>
<|fim▁end|> | if request.method == 'POST':
query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
return render_template('projects/line.html', message='Please separate each line with "."')
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
abbr_expanded_text += abbr_map[word]
else:
abbr_expanded_text += word
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text])
else:
return render_template('projects/line.html') |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results
from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def liner():
if request.method == 'POST':
<|fim_middle|>
else:
return render_template('projects/line.html')
<|fim▁end|> | query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
return render_template('projects/line.html', message='Please separate each line with "."')
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
abbr_expanded_text += abbr_map[word]
else:
abbr_expanded_text += word
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text]) |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results
from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def liner():
if request.method == 'POST':
query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
<|fim_middle|>
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
abbr_expanded_text += abbr_map[word]
else:
abbr_expanded_text += word
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text])
else:
return render_template('projects/line.html')
<|fim▁end|> | return render_template('projects/line.html', message='Please separate each line with "."') |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results
from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def liner():
if request.method == 'POST':
query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
return render_template('projects/line.html', message='Please separate each line with "."')
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
<|fim_middle|>
else:
abbr_expanded_text += word
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text])
else:
return render_template('projects/line.html')
<|fim▁end|> | abbr_expanded_text += abbr_map[word] |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results
from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def liner():
if request.method == 'POST':
query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
return render_template('projects/line.html', message='Please separate each line with "."')
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
abbr_expanded_text += abbr_map[word]
else:
<|fim_middle|>
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text])
else:
return render_template('projects/line.html')
<|fim▁end|> | abbr_expanded_text += word |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results
from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def liner():
if request.method == 'POST':
query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
return render_template('projects/line.html', message='Please separate each line with "."')
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
abbr_expanded_text += abbr_map[word]
else:
abbr_expanded_text += word
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text])
else:
<|fim_middle|>
<|fim▁end|> | return render_template('projects/line.html') |
<|file_name|>views.py<|end_file_name|><|fim▁begin|>from flask import Blueprint, request, render_template
from ..load import processing_results
from ..abbr import get_abbr_map
abbr_map = get_abbr_map()
liner_mod = Blueprint('liner', __name__, template_folder='templates', static_folder='static')
@liner_mod.route('/liner', methods=['GET', 'POST'])
def <|fim_middle|>():
if request.method == 'POST':
query = request.form['liner-text']
text = query.split('.')[:-1]
if len(text) == 0:
return render_template('projects/line.html', message='Please separate each line with "."')
abbr_expanded_text = ""
for word in query.split():
if word in abbr_map:
abbr_expanded_text += abbr_map[word]
else:
abbr_expanded_text += word
abbr_expanded_text += " "
data, emotion_sents, score, line_sentiment, text, length = processing_results(text)
return render_template('projects/line.html', data=[data, emotion_sents, score, zip(text, line_sentiment), length, abbr_expanded_text])
else:
return render_template('projects/line.html')
<|fim▁end|> | liner |
<|file_name|>tests.py<|end_file_name|><|fim▁begin|>import unittest
from app import read_config
class ConfigFileReaderTest(unittest.TestCase):
def test_read(self):
config = read_config('config')
self.assertEqual(config['cmus_host'], 'raspberry')<|fim▁hole|>
if __name__ == '__main__':
unittest.main()<|fim▁end|> | self.assertEqual(config['cmus_passwd'], 'PaSsWd')
self.assertEqual(config['app_host'], 'localhost')
self.assertEqual(config['app_port'], '8080') |
<|file_name|>tests.py<|end_file_name|><|fim▁begin|>import unittest
from app import read_config
class ConfigFileReaderTest(unittest.TestCase):
<|fim_middle|>
if __name__ == '__main__':
unittest.main()
<|fim▁end|> | def test_read(self):
config = read_config('config')
self.assertEqual(config['cmus_host'], 'raspberry')
self.assertEqual(config['cmus_passwd'], 'PaSsWd')
self.assertEqual(config['app_host'], 'localhost')
self.assertEqual(config['app_port'], '8080') |
<|file_name|>tests.py<|end_file_name|><|fim▁begin|>import unittest
from app import read_config
class ConfigFileReaderTest(unittest.TestCase):
def test_read(self):
<|fim_middle|>
if __name__ == '__main__':
unittest.main()
<|fim▁end|> | config = read_config('config')
self.assertEqual(config['cmus_host'], 'raspberry')
self.assertEqual(config['cmus_passwd'], 'PaSsWd')
self.assertEqual(config['app_host'], 'localhost')
self.assertEqual(config['app_port'], '8080') |
<|file_name|>tests.py<|end_file_name|><|fim▁begin|>import unittest
from app import read_config
class ConfigFileReaderTest(unittest.TestCase):
def test_read(self):
config = read_config('config')
self.assertEqual(config['cmus_host'], 'raspberry')
self.assertEqual(config['cmus_passwd'], 'PaSsWd')
self.assertEqual(config['app_host'], 'localhost')
self.assertEqual(config['app_port'], '8080')
if __name__ == '__main__':
<|fim_middle|>
<|fim▁end|> | unittest.main() |
<|file_name|>tests.py<|end_file_name|><|fim▁begin|>import unittest
from app import read_config
class ConfigFileReaderTest(unittest.TestCase):
def <|fim_middle|>(self):
config = read_config('config')
self.assertEqual(config['cmus_host'], 'raspberry')
self.assertEqual(config['cmus_passwd'], 'PaSsWd')
self.assertEqual(config['app_host'], 'localhost')
self.assertEqual(config['app_port'], '8080')
if __name__ == '__main__':
unittest.main()
<|fim▁end|> | test_read |
<|file_name|>runtests.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import os
import sys
import django
from django.conf import settings
DEFAULT_SETTINGS = dict(
INSTALLED_APPS=[
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sites",
"pinax.pinax_hello",
"pinax.pinax_hello.tests"
],
MIDDLEWARE_CLASSES=[],
DATABASES={
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": ":memory:",
}
},<|fim▁hole|> SITE_ID=1,
ROOT_URLCONF="pinax.pinax_hello.tests.urls",
SECRET_KEY="notasecret",
)
def runtests(*test_args):
if not settings.configured:
settings.configure(**DEFAULT_SETTINGS)
django.setup()
parent = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, parent)
try:
from django.test.runner import DiscoverRunner
runner_class = DiscoverRunner
test_args = ["pinax.pinax_hello.tests"]
except ImportError:
from django.test.simple import DjangoTestSuiteRunner
runner_class = DjangoTestSuiteRunner
test_args = ["tests"]
failures = runner_class(verbosity=1, interactive=True, failfast=False).run_tests(test_args)
sys.exit(failures)
if __name__ == "__main__":
runtests(*sys.argv[1:])<|fim▁end|> | |
<|file_name|>runtests.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import os
import sys
import django
from django.conf import settings
DEFAULT_SETTINGS = dict(
INSTALLED_APPS=[
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sites",
"pinax.pinax_hello",
"pinax.pinax_hello.tests"
],
MIDDLEWARE_CLASSES=[],
DATABASES={
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": ":memory:",
}
},
SITE_ID=1,
ROOT_URLCONF="pinax.pinax_hello.tests.urls",
SECRET_KEY="notasecret",
)
def runtests(*test_args):
<|fim_middle|>
if __name__ == "__main__":
runtests(*sys.argv[1:])
<|fim▁end|> | if not settings.configured:
settings.configure(**DEFAULT_SETTINGS)
django.setup()
parent = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, parent)
try:
from django.test.runner import DiscoverRunner
runner_class = DiscoverRunner
test_args = ["pinax.pinax_hello.tests"]
except ImportError:
from django.test.simple import DjangoTestSuiteRunner
runner_class = DjangoTestSuiteRunner
test_args = ["tests"]
failures = runner_class(verbosity=1, interactive=True, failfast=False).run_tests(test_args)
sys.exit(failures) |
<|file_name|>runtests.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import os
import sys
import django
from django.conf import settings
DEFAULT_SETTINGS = dict(
INSTALLED_APPS=[
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sites",
"pinax.pinax_hello",
"pinax.pinax_hello.tests"
],
MIDDLEWARE_CLASSES=[],
DATABASES={
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": ":memory:",
}
},
SITE_ID=1,
ROOT_URLCONF="pinax.pinax_hello.tests.urls",
SECRET_KEY="notasecret",
)
def runtests(*test_args):
if not settings.configured:
<|fim_middle|>
django.setup()
parent = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, parent)
try:
from django.test.runner import DiscoverRunner
runner_class = DiscoverRunner
test_args = ["pinax.pinax_hello.tests"]
except ImportError:
from django.test.simple import DjangoTestSuiteRunner
runner_class = DjangoTestSuiteRunner
test_args = ["tests"]
failures = runner_class(verbosity=1, interactive=True, failfast=False).run_tests(test_args)
sys.exit(failures)
if __name__ == "__main__":
runtests(*sys.argv[1:])
<|fim▁end|> | settings.configure(**DEFAULT_SETTINGS) |
<|file_name|>runtests.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import os
import sys
import django
from django.conf import settings
DEFAULT_SETTINGS = dict(
INSTALLED_APPS=[
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sites",
"pinax.pinax_hello",
"pinax.pinax_hello.tests"
],
MIDDLEWARE_CLASSES=[],
DATABASES={
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": ":memory:",
}
},
SITE_ID=1,
ROOT_URLCONF="pinax.pinax_hello.tests.urls",
SECRET_KEY="notasecret",
)
def runtests(*test_args):
if not settings.configured:
settings.configure(**DEFAULT_SETTINGS)
django.setup()
parent = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, parent)
try:
from django.test.runner import DiscoverRunner
runner_class = DiscoverRunner
test_args = ["pinax.pinax_hello.tests"]
except ImportError:
from django.test.simple import DjangoTestSuiteRunner
runner_class = DjangoTestSuiteRunner
test_args = ["tests"]
failures = runner_class(verbosity=1, interactive=True, failfast=False).run_tests(test_args)
sys.exit(failures)
if __name__ == "__main__":
<|fim_middle|>
<|fim▁end|> | runtests(*sys.argv[1:]) |
<|file_name|>runtests.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import os
import sys
import django
from django.conf import settings
DEFAULT_SETTINGS = dict(
INSTALLED_APPS=[
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sites",
"pinax.pinax_hello",
"pinax.pinax_hello.tests"
],
MIDDLEWARE_CLASSES=[],
DATABASES={
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": ":memory:",
}
},
SITE_ID=1,
ROOT_URLCONF="pinax.pinax_hello.tests.urls",
SECRET_KEY="notasecret",
)
def <|fim_middle|>(*test_args):
if not settings.configured:
settings.configure(**DEFAULT_SETTINGS)
django.setup()
parent = os.path.dirname(os.path.abspath(__file__))
sys.path.insert(0, parent)
try:
from django.test.runner import DiscoverRunner
runner_class = DiscoverRunner
test_args = ["pinax.pinax_hello.tests"]
except ImportError:
from django.test.simple import DjangoTestSuiteRunner
runner_class = DjangoTestSuiteRunner
test_args = ["tests"]
failures = runner_class(verbosity=1, interactive=True, failfast=False).run_tests(test_args)
sys.exit(failures)
if __name__ == "__main__":
runtests(*sys.argv[1:])
<|fim▁end|> | runtests |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):<|fim▁hole|>
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()<|fim▁end|> | global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off") |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
<|fim_middle|>
def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):
<|fim_middle|>
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off") |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def loop():
<|fim_middle|>
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
<|fim_middle|>
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
<|fim_middle|>
<|fim▁end|> | setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy() |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def <|fim_middle|>():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | setup |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def <|fim_middle|>(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | swLed |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def <|fim_middle|>():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def destroy():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | loop |
<|file_name|>knock-rgb-led-smd.py<|end_file_name|><|fim▁begin|>import RPi.GPIO as GPIO
KnockPin = 11
LedPin = 12
Led_status = 1
def setup():
GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(KnockPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led
def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
print "LED: " + ("on" if Led_status else "off")
def loop():
GPIO.add_event_detect(KnockPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling
while True:
pass # Don't do anything
def <|fim_middle|>():
GPIO.output(LedPin, GPIO.LOW) # led off
GPIO.cleanup() # Release resource
if __name__ == '__main__': # Program start from here
setup()
try:
loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
destroy()
<|fim▁end|> | destroy |
<|file_name|>_type.py<|end_file_name|><|fim▁begin|># ----------------------------------------------------------------------------
# Copyright (c) 2016-2021, QIIME 2 development team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file LICENSE, distributed with this software.
# ----------------------------------------------------------------------------
from qiime2.plugin import SemanticType
from ..plugin_setup import plugin
from . import AlphaDiversityDirectoryFormat
SampleData = SemanticType('SampleData', field_names='type')
AlphaDiversity = SemanticType('AlphaDiversity',
variant_of=SampleData.field['type'])
plugin.register_semantic_types(SampleData, AlphaDiversity)<|fim▁hole|>
plugin.register_semantic_type_to_format(
SampleData[AlphaDiversity],
artifact_format=AlphaDiversityDirectoryFormat
)<|fim▁end|> | |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]<|fim▁hole|>
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()<|fim▁end|> | return None
def get_python_diana_version(): |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
<|fim_middle|>
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
<|fim_middle|>
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1] |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
<|fim_middle|>
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | return name_pieces[1] |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
<|fim_middle|>
<|fim▁end|> | if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit() |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
<|fim_middle|>
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1) |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
<|fim_middle|>
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4] |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
<|fim_middle|>
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib" |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
<|fim_middle|>
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2] |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
<|fim_middle|>
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib" |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
<|fim_middle|>
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | os.mkdir("modules") |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
<|fim_middle|>
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
sys.exit(1)
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | os.mkdir(output_dir) |
<|file_name|>configure.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python
import glob, os, sys
import sipconfig
from PyQt4 import pyqtconfig
def get_diana_version():
depends = filter(lambda line: line.startswith("Depends:"),
open("debian/control").readlines())
for line in depends:
pieces = line.split()
for piece in pieces:
name_pieces = piece.strip(",").split("-")
if len(name_pieces) == 2 and name_pieces[0] == "diana":
return name_pieces[1]
return None
def get_python_diana_version():
line = open("debian/changelog").readline()
pieces = line.split()
return pieces[1][1:-1]
if __name__ == "__main__":
if len(sys.argv) not in (1, 3, 5):
sys.stderr.write("Usage: %s [<directory containing diana headers> <directory containing libdiana>] "
"[<directory containing metlibs headers> <directory containing metlibs libraries>]\n" % sys.argv[0])
sys.exit(1)
if len(sys.argv) == 5:
metlibs_inc_dir = sys.argv[3]
metlibs_lib_dir = sys.argv[4]
else:
metlibs_inc_dir = "/usr/include/metlibs"
metlibs_lib_dir = "/usr/lib"
if len(sys.argv) >= 3:
diana_inc_dir = sys.argv[1]
diana_lib_dir = sys.argv[2]
else:
diana_inc_dir = "/usr/include/diana"
diana_lib_dir = "/usr/lib"
qt_pkg_dir = os.getenv("qt_pkg_dir")
python_diana_pkg_dir = os.getenv("python_diana_pkg_dir")
dest_pkg_dir = os.path.join(python_diana_pkg_dir, "metno")
config = pyqtconfig.Configuration()
# The name of the SIP build file generated by SIP and used by the build
# system.
sip_files_dir = "sip"
modules = ["std", "metlibs", "diana"]
if not os.path.exists("modules"):
os.mkdir("modules")
# Run SIP to generate the code.
output_dirs = []
for module in modules:
output_dir = os.path.join("modules", module)
build_file = module + ".sbf"
build_path = os.path.join(output_dir, build_file)
if not os.path.exists(output_dir):
os.mkdir(output_dir)
sip_file = os.path.join("sip", module, module+".sip")
command = " ".join([config.sip_bin,
"-c", output_dir,
"-b", build_path,
"-I"+config.sip_inc_dir,
"-I"+config.pyqt_sip_dir,
"-I"+diana_inc_dir,
"-I/usr/include",
"-I"+metlibs_inc_dir,
"-I"+qt_pkg_dir+"/include",
"-I"+qt_pkg_dir+"/share/sip/PyQt4",
"-Isip",
config.pyqt_sip_flags,
"-w",
"-o", # generate docstrings for signatures
sip_file])
sys.stdout.write(command+"\n")
sys.stdout.flush()
if os.system(command) != 0:
<|fim_middle|>
# Create the Makefile (within the diana directory).
makefile = pyqtconfig.QtGuiModuleMakefile(
config, build_file, dir=output_dir,
install_dir=dest_pkg_dir,
qt=["QtCore", "QtGui", "QtNetwork", "QtXml", "QtXmlPatterns"]
)
if module == "diana":
makefile.extra_include_dirs += [
diana_inc_dir,
os.path.join(diana_inc_dir, "PaintGL"),
metlibs_inc_dir,
qt_pkg_dir+"/include"
]
makefile.extra_lib_dirs += [diana_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["diana"]
if module == "metlibs":
makefile.extra_include_dirs.append(diana_inc_dir)
makefile.extra_include_dirs.append("/usr/include/metlibs")
makefile.extra_lib_dirs += [diana_lib_dir, "/usr/lib", metlibs_lib_dir, qt_pkg_dir+"/lib"]
makefile.extra_lflags += ["-Wl,-rpath="+diana_lib_dir, "-Wl,-fPIC"]
makefile.extra_libs += ["miLogger", "coserver", "diana"]
makefile.generate()
output_dirs.append(output_dir)
# Update the metno package version.
diana_version = get_diana_version()
python_diana_version = get_python_diana_version()
if not diana_version or not python_diana_version:
sys.stderr.write("Failed to find version information for Diana (%s) "
"or python-diana (%s)\n" % (repr(diana_version),
repr(python_diana_version)))
sys.exit(1)
f = open("python/metno/versions.py", "w")
f.write('\ndiana_version = "%s"\npython_diana_version = "%s"\n' % (
diana_version, python_diana_version))
# Generate the top-level Makefile.
python_files = glob.glob(os.path.join("python", "metno", "*.py"))
sipconfig.ParentMakefile(
configuration = config,
subdirs = output_dirs,
installs = [(python_files, dest_pkg_dir)]
).generate()
sys.exit()
<|fim▁end|> | sys.exit(1) |