prompt
large_stringlengths
72
9.34k
completion
large_stringlengths
0
7.61k
<|file_name|>override_autoescaped.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """ templatetricks.override_autoescaped<|fim▁hole|> Override which templates are autoescaped http://flask.pocoo.org/snippets/41/ """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from flask import Flask class JHtmlEscapingFlask(Flask): def select_jinja_autoescape(self, filename): if filename.endswith('.jhtml'): return True return Flask.select_jinja_autoescape(self, filename) app = JHtmlEscapingFlask(__name__)<|fim▁end|>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
<|file_name|>override_autoescaped.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """ templatetricks.override_autoescaped ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Override which templates are autoescaped http://flask.pocoo.org/snippets/41/ """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from flask import Flask class JHtmlEscapingFlask(Flask): <|fim_middle|> app = JHtmlEscapingFlask(__name__) <|fim▁end|>
def select_jinja_autoescape(self, filename): if filename.endswith('.jhtml'): return True return Flask.select_jinja_autoescape(self, filename)
<|file_name|>override_autoescaped.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """ templatetricks.override_autoescaped ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Override which templates are autoescaped http://flask.pocoo.org/snippets/41/ """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from flask import Flask class JHtmlEscapingFlask(Flask): def select_jinja_autoescape(self, filename): <|fim_middle|> app = JHtmlEscapingFlask(__name__) <|fim▁end|>
if filename.endswith('.jhtml'): return True return Flask.select_jinja_autoescape(self, filename)
<|file_name|>override_autoescaped.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """ templatetricks.override_autoescaped ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Override which templates are autoescaped http://flask.pocoo.org/snippets/41/ """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from flask import Flask class JHtmlEscapingFlask(Flask): def select_jinja_autoescape(self, filename): if filename.endswith('.jhtml'): <|fim_middle|> return Flask.select_jinja_autoescape(self, filename) app = JHtmlEscapingFlask(__name__) <|fim▁end|>
return True
<|file_name|>override_autoescaped.py<|end_file_name|><|fim▁begin|># -*- coding: utf-8 -*- """ templatetricks.override_autoescaped ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Override which templates are autoescaped http://flask.pocoo.org/snippets/41/ """ import os import sys sys.path.insert(0, os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from flask import Flask class JHtmlEscapingFlask(Flask): def <|fim_middle|>(self, filename): if filename.endswith('.jhtml'): return True return Flask.select_jinja_autoescape(self, filename) app = JHtmlEscapingFlask(__name__) <|fim▁end|>
select_jinja_autoescape
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database"""<|fim▁hole|><|fim▁end|>
def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): <|fim_middle|> class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
"""Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): <|fim_middle|> class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): <|fim_middle|> class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
"""Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype))
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): <|fim_middle|> class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype))
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): <|fim_middle|> <|fim▁end|>
"""Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): <|fim_middle|> <|fim▁end|>
m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: <|fim_middle|> super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
msg = "An error occured for subtype {}".format(subtype)
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def <|fim_middle|>(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
__init__
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def <|fim_middle|>(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database""" def __init__(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
__init__
<|file_name|>exceptions.py<|end_file_name|><|fim▁begin|>"""Custom Exception Classes for Phylotyper Module """ class PhylotyperError(Exception): """Basic exception for errors raised by Phylotyper modules""" def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype class ValuesError(PhylotyperError): """Unknown subtype""" def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype)) class DatabaseError(PhylotyperError): """Missing data in Database""" def <|fim_middle|>(self, subtype, data, msg=None): m = "Database is missing data {} for {}".format(data, subtype) super(PhylotyperError, self).__init__(subtype, m) self.data = data<|fim▁end|>
__init__
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError):<|fim▁hole|><|fim▁end|>
UrlPath('https://localhost/test').exists()
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError <|fim_middle|> def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
UrlPath('/dev/null').touch()
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): <|fim_middle|> def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch()
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): <|fim_middle|> def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch()
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): <|fim_middle|> def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
assert UrlPath('.').resolve() == UrlPath.cwd()
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError <|fim_middle|> <|fim▁end|>
with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists()
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def <|fim_middle|>(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
test_scheme
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def <|fim_middle|>(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
test_scheme_not_supported
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def <|fim_middle|>(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
test_scheme_not_listed
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def <|fim_middle|>(): assert UrlPath('.').resolve() == UrlPath.cwd() def test_scheme_alias(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
test_file_additional
<|file_name|>test_dispatch.py<|end_file_name|><|fim▁begin|>import pytest import urllib.error from urlpathlib import UrlPath def test_scheme(): # does not raise NotImplementedError UrlPath('/dev/null').touch() def test_scheme_not_supported(): with pytest.raises(NotImplementedError): UrlPath('http:///tmp/test').touch() def test_scheme_not_listed(): with pytest.raises(NotImplementedError): UrlPath('test:///tmp/test').touch() def test_file_additional(): assert UrlPath('.').resolve() == UrlPath.cwd() def <|fim_middle|>(): # does not raise NotImplementedError with pytest.raises(urllib.error.URLError): UrlPath('https://localhost/test').exists() <|fim▁end|>
test_scheme_alias
<|file_name|>test_edalizer.py<|end_file_name|><|fim▁begin|># Copyright FuseSoC contributors # Licensed under the 2-Clause BSD License, see LICENSE for details. # SPDX-License-Identifier: BSD-2-Clause def test_generators(): import os import tempfile from fusesoc.config import Config from fusesoc.coremanager import CoreManager from fusesoc.edalizer import Edalizer from fusesoc.librarymanager import Library from fusesoc.vlnv import Vlnv tests_dir = os.path.dirname(__file__) cores_dir = os.path.join(tests_dir, "capi2_cores", "misc", "generate") lib = Library("edalizer", cores_dir) cm = CoreManager(Config()) cm.add_library(lib) <|fim▁hole|> build_root = tempfile.mkdtemp(prefix="export_") cache_root = tempfile.mkdtemp(prefix="export_cache_") export_root = os.path.join(build_root, "exported_files") edalizer = Edalizer( toplevel=core.name, flags={"tool": "icarus"}, core_manager=cm, cache_root=cache_root, work_root=os.path.join(build_root, "work"), export_root=export_root, system_name=None, ) edalizer.run() gendir = os.path.join( cache_root, "generated", "generate-testgenerate_without_params_0" ) assert os.path.isfile(os.path.join(gendir, "generated.core")) assert os.path.isfile(os.path.join(gendir, "testgenerate_without_params_input.yml")) gendir = os.path.join( cache_root, "generated", "generate-testgenerate_with_params_0" ) assert os.path.isfile(os.path.join(gendir, "generated.core")) assert os.path.isfile(os.path.join(gendir, "testgenerate_with_params_input.yml"))<|fim▁end|>
core = cm.get_core(Vlnv("::generate"))
<|file_name|>test_edalizer.py<|end_file_name|><|fim▁begin|># Copyright FuseSoC contributors # Licensed under the 2-Clause BSD License, see LICENSE for details. # SPDX-License-Identifier: BSD-2-Clause def test_generators(): <|fim_middle|> <|fim▁end|>
import os import tempfile from fusesoc.config import Config from fusesoc.coremanager import CoreManager from fusesoc.edalizer import Edalizer from fusesoc.librarymanager import Library from fusesoc.vlnv import Vlnv tests_dir = os.path.dirname(__file__) cores_dir = os.path.join(tests_dir, "capi2_cores", "misc", "generate") lib = Library("edalizer", cores_dir) cm = CoreManager(Config()) cm.add_library(lib) core = cm.get_core(Vlnv("::generate")) build_root = tempfile.mkdtemp(prefix="export_") cache_root = tempfile.mkdtemp(prefix="export_cache_") export_root = os.path.join(build_root, "exported_files") edalizer = Edalizer( toplevel=core.name, flags={"tool": "icarus"}, core_manager=cm, cache_root=cache_root, work_root=os.path.join(build_root, "work"), export_root=export_root, system_name=None, ) edalizer.run() gendir = os.path.join( cache_root, "generated", "generate-testgenerate_without_params_0" ) assert os.path.isfile(os.path.join(gendir, "generated.core")) assert os.path.isfile(os.path.join(gendir, "testgenerate_without_params_input.yml")) gendir = os.path.join( cache_root, "generated", "generate-testgenerate_with_params_0" ) assert os.path.isfile(os.path.join(gendir, "generated.core")) assert os.path.isfile(os.path.join(gendir, "testgenerate_with_params_input.yml"))
<|file_name|>test_edalizer.py<|end_file_name|><|fim▁begin|># Copyright FuseSoC contributors # Licensed under the 2-Clause BSD License, see LICENSE for details. # SPDX-License-Identifier: BSD-2-Clause def <|fim_middle|>(): import os import tempfile from fusesoc.config import Config from fusesoc.coremanager import CoreManager from fusesoc.edalizer import Edalizer from fusesoc.librarymanager import Library from fusesoc.vlnv import Vlnv tests_dir = os.path.dirname(__file__) cores_dir = os.path.join(tests_dir, "capi2_cores", "misc", "generate") lib = Library("edalizer", cores_dir) cm = CoreManager(Config()) cm.add_library(lib) core = cm.get_core(Vlnv("::generate")) build_root = tempfile.mkdtemp(prefix="export_") cache_root = tempfile.mkdtemp(prefix="export_cache_") export_root = os.path.join(build_root, "exported_files") edalizer = Edalizer( toplevel=core.name, flags={"tool": "icarus"}, core_manager=cm, cache_root=cache_root, work_root=os.path.join(build_root, "work"), export_root=export_root, system_name=None, ) edalizer.run() gendir = os.path.join( cache_root, "generated", "generate-testgenerate_without_params_0" ) assert os.path.isfile(os.path.join(gendir, "generated.core")) assert os.path.isfile(os.path.join(gendir, "testgenerate_without_params_input.yml")) gendir = os.path.join( cache_root, "generated", "generate-testgenerate_with_params_0" ) assert os.path.isfile(os.path.join(gendir, "generated.core")) assert os.path.isfile(os.path.join(gendir, "testgenerate_with_params_input.yml")) <|fim▁end|>
test_generators
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os from indico.core import signals from indico.core.db import db from .logger import logger from .oauth2 import require_oauth <|fim▁hole|>@signals.core.app_created.connect def _no_ssl_required_on_debug(app, **kwargs): if app.debug or app.testing: os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1' @signals.users.merged.connect def _delete_merged_user_tokens(target, source, **kwargs): target_app_links = {link.application: link for link in target.oauth_app_links} for source_link in source.oauth_app_links.all(): try: target_link = target_app_links[source_link.application] except KeyError: logger.info('merge: reassigning %r to %r', source_link, target) source_link.user = target else: logger.info('merge: merging %r into %r', source_link, target_link) target_link.update_scopes(set(source_link.scopes)) target_link.tokens.extend(source_link.tokens) db.session.delete(source_link)<|fim▁end|>
__all__ = ['require_oauth']
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os from indico.core import signals from indico.core.db import db from .logger import logger from .oauth2 import require_oauth __all__ = ['require_oauth'] @signals.core.app_created.connect def _no_ssl_required_on_debug(app, **kwargs): <|fim_middle|> @signals.users.merged.connect def _delete_merged_user_tokens(target, source, **kwargs): target_app_links = {link.application: link for link in target.oauth_app_links} for source_link in source.oauth_app_links.all(): try: target_link = target_app_links[source_link.application] except KeyError: logger.info('merge: reassigning %r to %r', source_link, target) source_link.user = target else: logger.info('merge: merging %r into %r', source_link, target_link) target_link.update_scopes(set(source_link.scopes)) target_link.tokens.extend(source_link.tokens) db.session.delete(source_link) <|fim▁end|>
if app.debug or app.testing: os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1'
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os from indico.core import signals from indico.core.db import db from .logger import logger from .oauth2 import require_oauth __all__ = ['require_oauth'] @signals.core.app_created.connect def _no_ssl_required_on_debug(app, **kwargs): if app.debug or app.testing: os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1' @signals.users.merged.connect def _delete_merged_user_tokens(target, source, **kwargs): <|fim_middle|> <|fim▁end|>
target_app_links = {link.application: link for link in target.oauth_app_links} for source_link in source.oauth_app_links.all(): try: target_link = target_app_links[source_link.application] except KeyError: logger.info('merge: reassigning %r to %r', source_link, target) source_link.user = target else: logger.info('merge: merging %r into %r', source_link, target_link) target_link.update_scopes(set(source_link.scopes)) target_link.tokens.extend(source_link.tokens) db.session.delete(source_link)
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os from indico.core import signals from indico.core.db import db from .logger import logger from .oauth2 import require_oauth __all__ = ['require_oauth'] @signals.core.app_created.connect def _no_ssl_required_on_debug(app, **kwargs): if app.debug or app.testing: <|fim_middle|> @signals.users.merged.connect def _delete_merged_user_tokens(target, source, **kwargs): target_app_links = {link.application: link for link in target.oauth_app_links} for source_link in source.oauth_app_links.all(): try: target_link = target_app_links[source_link.application] except KeyError: logger.info('merge: reassigning %r to %r', source_link, target) source_link.user = target else: logger.info('merge: merging %r into %r', source_link, target_link) target_link.update_scopes(set(source_link.scopes)) target_link.tokens.extend(source_link.tokens) db.session.delete(source_link) <|fim▁end|>
os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1'
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os from indico.core import signals from indico.core.db import db from .logger import logger from .oauth2 import require_oauth __all__ = ['require_oauth'] @signals.core.app_created.connect def _no_ssl_required_on_debug(app, **kwargs): if app.debug or app.testing: os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1' @signals.users.merged.connect def _delete_merged_user_tokens(target, source, **kwargs): target_app_links = {link.application: link for link in target.oauth_app_links} for source_link in source.oauth_app_links.all(): try: target_link = target_app_links[source_link.application] except KeyError: logger.info('merge: reassigning %r to %r', source_link, target) source_link.user = target else: <|fim_middle|> <|fim▁end|>
logger.info('merge: merging %r into %r', source_link, target_link) target_link.update_scopes(set(source_link.scopes)) target_link.tokens.extend(source_link.tokens) db.session.delete(source_link)
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os from indico.core import signals from indico.core.db import db from .logger import logger from .oauth2 import require_oauth __all__ = ['require_oauth'] @signals.core.app_created.connect def <|fim_middle|>(app, **kwargs): if app.debug or app.testing: os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1' @signals.users.merged.connect def _delete_merged_user_tokens(target, source, **kwargs): target_app_links = {link.application: link for link in target.oauth_app_links} for source_link in source.oauth_app_links.all(): try: target_link = target_app_links[source_link.application] except KeyError: logger.info('merge: reassigning %r to %r', source_link, target) source_link.user = target else: logger.info('merge: merging %r into %r', source_link, target_link) target_link.update_scopes(set(source_link.scopes)) target_link.tokens.extend(source_link.tokens) db.session.delete(source_link) <|fim▁end|>
_no_ssl_required_on_debug
<|file_name|>__init__.py<|end_file_name|><|fim▁begin|># This file is part of Indico. # Copyright (C) 2002 - 2022 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. import os from indico.core import signals from indico.core.db import db from .logger import logger from .oauth2 import require_oauth __all__ = ['require_oauth'] @signals.core.app_created.connect def _no_ssl_required_on_debug(app, **kwargs): if app.debug or app.testing: os.environ['AUTHLIB_INSECURE_TRANSPORT'] = '1' @signals.users.merged.connect def <|fim_middle|>(target, source, **kwargs): target_app_links = {link.application: link for link in target.oauth_app_links} for source_link in source.oauth_app_links.all(): try: target_link = target_app_links[source_link.application] except KeyError: logger.info('merge: reassigning %r to %r', source_link, target) source_link.user = target else: logger.info('merge: merging %r into %r', source_link, target_link) target_link.update_scopes(set(source_link.scopes)) target_link.tokens.extend(source_link.tokens) db.session.delete(source_link) <|fim▁end|>
_delete_merged_user_tokens
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00<|fim▁hole|> #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals<|fim▁end|>
score_total = 0.00
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: <|fim_middle|> <|fim▁end|>
def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): <|fim_middle|> def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score()
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): <|fim_middle|> def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): <|fim_middle|> def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
return self.daily_weights[day_of_week]
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): <|fim_middle|> def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10)
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): <|fim_middle|> def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): <|fim_middle|> def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): <|fim_middle|> def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
return self.location
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): <|fim_middle|> def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): <|fim_middle|> def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
return self.final_weighted
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): <|fim_middle|> def get_evals(self): return self.evals <|fim▁end|>
return self.weight_rank
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): <|fim_middle|> <|fim▁end|>
return self.evals
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: <|fim_middle|> def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score()
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: <|fim_middle|> else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
value /= ( maximum - minimum )
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: <|fim_middle|> self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
value = 0
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: <|fim_middle|> for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: <|fim_middle|> else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day]
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: <|fim_middle|> return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
self.daily_weights[day] = 0
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score <|fim_middle|> elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
weights *= 1.15 # 15% Boost
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty <|fim_middle|> elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
weights *= (PARTIAL_HOURS/FULL_HOURS)
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty <|fim_middle|> elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
weights *= (HALF_HOURS/FULL_HOURS)
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty <|fim_middle|> else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
weights *= (SPARSE_HOURS/FULL_HOURS)
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty <|fim_middle|> return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
weights *= (1.00/FULL_HOURS)
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def <|fim_middle|>(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
__init__
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def <|fim_middle|>(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
reset_daily_weights
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def <|fim_middle|>(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
get_daily_weight
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def <|fim_middle|>(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
normalize_final_weighted_score
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def <|fim_middle|>(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
calculate_final_weighted_score
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def <|fim_middle|>(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
adjust_utilization
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def <|fim_middle|>(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
get_location
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def <|fim_middle|>(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
find_location
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def <|fim_middle|>(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
get_final_weighted_score
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def <|fim_middle|>(self): return self.weight_rank def get_evals(self): return self.evals <|fim▁end|>
get_score_rank
<|file_name|>location.py<|end_file_name|><|fim▁begin|>from rec import CourseRecord from score import RoomScore from evaluation import ScheduleEvaluation FULL_HOURS = 8 # 8:00AM - 4:00PM utilization PARTIAL_HOURS = FULL_HOURS * 0.75 #75% HALF_HOURS = FULL_HOURS * 0.50 #50% SPARSE_HOURS = FULL_HOURS * 0.25 #25% class LocationScore: def __init__(self, evals=None): self.evals = evals self.courses = None self.location = None self.daily_weights = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.daily_totals = {"M": {}, "T": {}, "W": {}, "R": {}, "F": {} ,"S": {}} self.final_weighted = 0 self.weight_rank = 0 # 0 = worst, 1 = best if evals != None: self.courses = self.evals.get_records() self.location = self.find_location() self.final_weighted = self.calculate_final_weighted_score() def reset_daily_weights(self): for day in ["M", "T", "W", "R", "F", "S"]: self.daily_weights[day] = 0 self.daily_totals[day] = 0 def get_daily_weight(self,day_of_week): return self.daily_weights[day_of_week] def normalize_final_weighted_score(self,minimum,maximum): value = self.final_weighted value -= minimum if maximum - minimum > 0: value /= ( maximum - minimum ) else: value = 0 self.weight_rank = "{0:.2f}".format(value * 10) def calculate_final_weighted_score(self): score_sum = 0.00 score_total = 0.00 #reset daily stuff self.reset_daily_weights() for course, score in self.courses: days = course.rec["DAYS_OF_WEEK"] #score_sum += score.get_weighted_score(course) score_total += 1.00 for day in ["M", "T", "W", "R", "F", "S"]: if day in days: self.daily_weights[day] += score.get_weighted_score(course) self.daily_totals[day] += 1 for day in ["M", "T", "W", "R", "F", "S"]: if self.daily_totals[day] > 0: self.daily_weights[day] /= self.daily_totals[day] self.daily_weights[day] = self.adjust_utilization(self.daily_weights[day],self.daily_totals[day]) score_sum += self.daily_weights[day] else: self.daily_weights[day] = 0 return score_sum / score_total def adjust_utilization(self,weights,totals): max_score = 1.00 if totals >= FULL_HOURS: # 8 Hours or more, give slight boost to score weights *= 1.15 # 15% Boost elif totals >= PARTIAL_HOURS: # Small Penalty weights *= (PARTIAL_HOURS/FULL_HOURS) elif totals >= HALF_HOURS: # Medium Penalty weights *= (HALF_HOURS/FULL_HOURS) elif totals > SPARSE_HOURS: # Large Penalty weights *= (SPARSE_HOURS/FULL_HOURS) else: # Very Large Penalty weights *= (1.00/FULL_HOURS) return weights def get_location(self): return self.location def find_location(self): for course, score in self.courses: location = str( course.rec["BUILDING"] )+ " " + str( course.rec["ROOM"] ) # just need to find the first one, so break after this happens break return location def get_final_weighted_score(self): return self.final_weighted def get_score_rank(self): return self.weight_rank def <|fim_middle|>(self): return self.evals <|fim▁end|>
get_evals
<|file_name|>recursive_auto_encoder.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- import logging, os logging.basicConfig(level=logging.INFO) from deepy.networks import RecursiveAutoEncoder from deepy.trainers import SGDTrainer, LearningRateAnnealer from util import get_data, VECTOR_SIZE model_path = os.path.join(os.path.dirname(__file__), "models", "rae1.gz") if __name__ == '__main__':<|fim▁hole|> trainer = SGDTrainer(model) annealer = LearningRateAnnealer() trainer.run(get_data(), epoch_controllers=[annealer]) model.save_params(model_path)<|fim▁end|>
model = RecursiveAutoEncoder(input_dim=VECTOR_SIZE, rep_dim=10)
<|file_name|>recursive_auto_encoder.py<|end_file_name|><|fim▁begin|>#!/usr/bin/env python # -*- coding: utf-8 -*- import logging, os logging.basicConfig(level=logging.INFO) from deepy.networks import RecursiveAutoEncoder from deepy.trainers import SGDTrainer, LearningRateAnnealer from util import get_data, VECTOR_SIZE model_path = os.path.join(os.path.dirname(__file__), "models", "rae1.gz") if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
model = RecursiveAutoEncoder(input_dim=VECTOR_SIZE, rep_dim=10) trainer = SGDTrainer(model) annealer = LearningRateAnnealer() trainer.run(get_data(), epoch_controllers=[annealer]) model.save_params(model_path)
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] <|fim▁hole|> @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo']<|fim▁end|>
@pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): <|fim_middle|> @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
return [i for i in xrange(10)]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): <|fim_middle|> @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
return [i for i in xrange(9, -1, -1)]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): <|fim_middle|> def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): <|fim_middle|> def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): <|fim_middle|> def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): <|fim_middle|> def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): <|fim_middle|> def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9]
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): <|fim_middle|> <|fim▁end|>
l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo']
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def <|fim_middle|>(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
sorted_list
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def <|fim_middle|>(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
reverse_list
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def <|fim_middle|>(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
average_list
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def <|fim_middle|>(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
test_sorted
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def <|fim_middle|>(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
test_worst
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def <|fim_middle|>(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
test_average
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def <|fim_middle|>(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def test_multiple_types(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
test_repeats
<|file_name|>test_insertion_sort.py<|end_file_name|><|fim▁begin|># -*- coding utf-8 -*- from __future__ import unicode_literals import pytest from structures.insertion_sort import insertion_sort @pytest.fixture def sorted_list(): return [i for i in xrange(10)] @pytest.fixture def reverse_list(): return [i for i in xrange(9, -1, -1)] @pytest.fixture def average_list(): return [5, 9, 2, 4, 1, 6, 8, 7, 0, 3] def test_sorted(sorted_list): insertion_sort(sorted_list) assert sorted_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_worst(reverse_list): insertion_sort(reverse_list) assert reverse_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_average(average_list): insertion_sort(average_list) assert average_list == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] def test_repeats(): l = [3, 6, 7, 3, 9, 5, 2, 7] insertion_sort(l) assert l == [2, 3, 3, 5, 6, 7, 7, 9] def <|fim_middle|>(): l = [3, 'foo', 2.8, True, []] # python 2 sorting is crazy insertion_sort(l) assert l == [True, 2.8, 3, [], 'foo'] <|fim▁end|>
test_multiple_types
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): def test_img2patch(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape) class TestPatch2Img(unittest.TestCase): def test_patch2img(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all()) <|fim▁hole|><|fim▁end|>
if __name__ == '__main__': unittest.main()
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): <|fim_middle|> class TestPatch2Img(unittest.TestCase): def test_patch2img(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all()) if __name__ == '__main__': unittest.main() <|fim▁end|>
def test_img2patch(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape)
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): def test_img2patch(self): <|fim_middle|> class TestPatch2Img(unittest.TestCase): def test_patch2img(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all()) if __name__ == '__main__': unittest.main() <|fim▁end|>
img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape)
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): def test_img2patch(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape) class TestPatch2Img(unittest.TestCase): <|fim_middle|> if __name__ == '__main__': unittest.main() <|fim▁end|>
def test_patch2img(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all())
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): def test_img2patch(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape) class TestPatch2Img(unittest.TestCase): def test_patch2img(self): <|fim_middle|> if __name__ == '__main__': unittest.main() <|fim▁end|>
img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all())
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): def test_img2patch(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape) class TestPatch2Img(unittest.TestCase): def test_patch2img(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all()) if __name__ == '__main__': <|fim_middle|> <|fim▁end|>
unittest.main()
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): def <|fim_middle|>(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape) class TestPatch2Img(unittest.TestCase): def test_patch2img(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all()) if __name__ == '__main__': unittest.main() <|fim▁end|>
test_img2patch
<|file_name|>test_util.py<|end_file_name|><|fim▁begin|>import unittest import numpy as np from bayesnet.image.util import img2patch, patch2img class TestImg2Patch(unittest.TestCase): def test_img2patch(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=3, step=1) expected = np.asarray([ [img[0, 0:3, 0:3, 0], img[0, 0:3, 1:4, 0]], [img[0, 1:4, 0:3, 0], img[0, 1:4, 1:4, 0]] ]) expected = expected[None, ..., None] self.assertTrue((patch == expected).all()) imgs = [ np.random.randn(2, 5, 6, 3), np.random.randn(3, 10, 10, 2), np.random.randn(1, 23, 17, 5) ] sizes = [ (1, 1), 2, (3, 4) ] steps = [ (1, 2), (3, 1), 3 ] shapes = [ (2, 5, 3, 1, 1, 3), (3, 3, 9, 2, 2, 2), (1, 7, 5, 3, 4, 5) ] for img, size, step, shape in zip(imgs, sizes, steps, shapes): self.assertEqual(shape, img2patch(img, size, step).shape) class TestPatch2Img(unittest.TestCase): def <|fim_middle|>(self): img = np.arange(16).reshape(1, 4, 4, 1) patch = img2patch(img, size=2, step=2) self.assertTrue((img == patch2img(patch, (2, 2), (1, 4, 4, 1))).all()) patch = img2patch(img, size=3, step=1) expected = np.arange(0, 32, 2).reshape(1, 4, 4, 1) expected[0, 0, 0, 0] /= 2 expected[0, 0, -1, 0] /= 2 expected[0, -1, 0, 0] /= 2 expected[0, -1, -1, 0] /= 2 expected[0, 1:3, 1:3, 0] *= 2 self.assertTrue((expected == patch2img(patch, (1, 1), (1, 4, 4, 1))).all()) if __name__ == '__main__': unittest.main() <|fim▁end|>
test_patch2img
<|file_name|>read_job.py<|end_file_name|><|fim▁begin|># JoeTraffic - Web-Log Analysis Application utilizing the JoeAgent Framework. # Copyright (C) 2004 Rhett Garber # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA from JoeAgent import job, event import db_interface import os, os.path import logging import log_parser LINEINCR = 30 log = logging.getLogger("agent.LogReader") class ReadLogCompleteEvent(event.Event): """Event to indicate the file is completely read. This event will be caught by the FindLogJob that is watching it. The file will continue to be checked for modifications""" pass class ReadLogContinueEvent(event.Event): """Event to indicate we should continue reading the file. Log file processing will be done in chunks so as not to block the agent for too long.""" pass class ReadLogJob(job.Job): def __init__(self, agent_obj, logfile): job.Job.__init__(self, agent_obj) assert os.path.isfile(logfile), "Not a file: %s" % str(logfile) self._log_size = os.stat(logfile).st_size log.debug("Log size is %d" % self._log_size) self._logfile_path = logfile self._logfile_hndl = open(logfile, 'r') self._progress = 0 # Data read from file self._db = db_interface.getDB() def getFilePath(self): return self._logfile_path def getBytesRead(self): return self._progress def getBytesTotal(self): return self._log_size def run(self): evt = ReadLogContinueEvent(self) self.getAgent().addEvent(evt) def notify(self, evt): job.Job.notify(self, evt) if isinstance(evt, ReadLogContinueEvent) and evt.getSource() == self: log.debug("Continuing read of file") # Continue to read the log try: self._progress += log_parser.read_log( self._logfile_hndl, self._db, LINEINCR) log.debug("Read %d %% of file (%d / %d)" % (self.getProgress(), self._progress,<|fim▁hole|> self._progress = self._log_size # Log file is complete, updated the db entry self._mark_complete() # Add an event to notify that the file is complete self._logfile_hndl.close() new_evt = ReadLogCompleteEvent(self) self.getAgent().addEvent(new_evt) except log_parser.InvalidLogException, e: log.warning("Invalid log file: %s" % str(e)) self._logfile_hndl.close() new_evt = ReadLogCompleteEvent(self) self.getAgent().addEvent(new_evt) else: # Add an event to continue reading new_evt = ReadLogContinueEvent(self) self.getAgent().addEvent(new_evt) def _update_db(self): """Update the entry in the database for this logfile""" log.debug("Updating file %s" % self._logfile_path) pass def _mark_invalid(self): """Update the database to indicate that this is not a valid log file""" log.debug("Marking file %s invalid" % self._logfile_path) pass def _mark_complete(self): log.debug("Marking file %s complete" % self._logfile_path) pass def getProgress(self): """Return a percentage complete value""" if self._log_size == 0: return 0 return int((float(self._progress) / self._log_size) * 100)<|fim▁end|>
self._log_size)) except log_parser.EndOfLogException, e: