|
--- |
|
pretty_name: LoWRA-Bench |
|
dataset_info: |
|
- config_name: mistral-7b-v0.1-dpo |
|
features: |
|
- name: task_name |
|
dtype: string |
|
- name: layer_model |
|
dtype: string |
|
- name: layer_name |
|
dtype: string |
|
- name: pre_ft_name |
|
dtype: string |
|
- name: pre_ft_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_name |
|
dtype: string |
|
- name: lora_0_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_rank |
|
dtype: int64 |
|
- name: lora_0_alpha |
|
dtype: int64 |
|
- name: lora_1_name |
|
dtype: string |
|
- name: lora_1_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_rank |
|
dtype: int64 |
|
- name: lora_1_alpha |
|
dtype: int64 |
|
- name: lora_2_name |
|
dtype: string |
|
- name: lora_2_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_rank |
|
dtype: int64 |
|
- name: lora_2_alpha |
|
dtype: int64 |
|
- name: lora_3_name |
|
dtype: string |
|
- name: lora_3_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_rank |
|
dtype: int64 |
|
- name: lora_3_alpha |
|
dtype: int64 |
|
- name: lora_4_name |
|
dtype: string |
|
- name: lora_4_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_rank |
|
dtype: int64 |
|
- name: lora_4_alpha |
|
dtype: int64 |
|
- name: lora_5_name |
|
dtype: string |
|
- name: lora_5_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_rank |
|
dtype: int64 |
|
- name: lora_5_alpha |
|
dtype: int64 |
|
- name: lora_6_name |
|
dtype: string |
|
- name: lora_6_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_rank |
|
dtype: int64 |
|
- name: lora_6_alpha |
|
dtype: int64 |
|
- name: lora_7_name |
|
dtype: string |
|
- name: lora_7_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_rank |
|
dtype: int64 |
|
- name: lora_7_alpha |
|
dtype: int64 |
|
- name: lora_8_name |
|
dtype: string |
|
- name: lora_8_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_rank |
|
dtype: int64 |
|
- name: lora_8_alpha |
|
dtype: int64 |
|
- name: lora_9_name |
|
dtype: string |
|
- name: lora_9_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_rank |
|
dtype: int64 |
|
- name: lora_9_alpha |
|
dtype: int64 |
|
- name: lora_10_name |
|
dtype: string |
|
- name: lora_10_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_rank |
|
dtype: int64 |
|
- name: lora_10_alpha |
|
dtype: int64 |
|
- name: lora_11_name |
|
dtype: string |
|
- name: lora_11_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_rank |
|
dtype: int64 |
|
- name: lora_11_alpha |
|
dtype: int64 |
|
- name: lora_12_name |
|
dtype: string |
|
- name: lora_12_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_rank |
|
dtype: int64 |
|
- name: lora_12_alpha |
|
dtype: int64 |
|
- name: lora_13_name |
|
dtype: string |
|
- name: lora_13_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_rank |
|
dtype: int64 |
|
- name: lora_13_alpha |
|
dtype: int64 |
|
- name: lora_14_name |
|
dtype: string |
|
- name: lora_14_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_rank |
|
dtype: int64 |
|
- name: lora_14_alpha |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 8661875544 |
|
num_examples: 128 |
|
download_size: 3419054382 |
|
dataset_size: 8661875544 |
|
- config_name: mistral-7b-v0.1-sft |
|
features: |
|
- name: task_name |
|
dtype: string |
|
- name: layer_model |
|
dtype: string |
|
- name: layer_name |
|
dtype: string |
|
- name: pre_ft_name |
|
dtype: string |
|
- name: pre_ft_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_name |
|
dtype: string |
|
- name: lora_0_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_rank |
|
dtype: int64 |
|
- name: lora_0_alpha |
|
dtype: int64 |
|
- name: lora_1_name |
|
dtype: string |
|
- name: lora_1_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_rank |
|
dtype: int64 |
|
- name: lora_1_alpha |
|
dtype: int64 |
|
- name: lora_2_name |
|
dtype: string |
|
- name: lora_2_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_rank |
|
dtype: int64 |
|
- name: lora_2_alpha |
|
dtype: int64 |
|
- name: lora_3_name |
|
dtype: string |
|
- name: lora_3_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_rank |
|
dtype: int64 |
|
- name: lora_3_alpha |
|
dtype: int64 |
|
- name: lora_4_name |
|
dtype: string |
|
- name: lora_4_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_rank |
|
dtype: int64 |
|
- name: lora_4_alpha |
|
dtype: int64 |
|
- name: lora_5_name |
|
dtype: string |
|
- name: lora_5_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_rank |
|
dtype: int64 |
|
- name: lora_5_alpha |
|
dtype: int64 |
|
- name: lora_6_name |
|
dtype: string |
|
- name: lora_6_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_rank |
|
dtype: int64 |
|
- name: lora_6_alpha |
|
dtype: int64 |
|
- name: lora_7_name |
|
dtype: string |
|
- name: lora_7_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_rank |
|
dtype: int64 |
|
- name: lora_7_alpha |
|
dtype: int64 |
|
- name: lora_8_name |
|
dtype: string |
|
- name: lora_8_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_rank |
|
dtype: int64 |
|
- name: lora_8_alpha |
|
dtype: int64 |
|
- name: lora_9_name |
|
dtype: string |
|
- name: lora_9_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_rank |
|
dtype: int64 |
|
- name: lora_9_alpha |
|
dtype: int64 |
|
- name: lora_10_name |
|
dtype: string |
|
- name: lora_10_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_rank |
|
dtype: int64 |
|
- name: lora_10_alpha |
|
dtype: int64 |
|
- name: lora_11_name |
|
dtype: string |
|
- name: lora_11_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_rank |
|
dtype: int64 |
|
- name: lora_11_alpha |
|
dtype: int64 |
|
- name: lora_12_name |
|
dtype: string |
|
- name: lora_12_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_rank |
|
dtype: int64 |
|
- name: lora_12_alpha |
|
dtype: int64 |
|
- name: lora_13_name |
|
dtype: string |
|
- name: lora_13_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_rank |
|
dtype: int64 |
|
- name: lora_13_alpha |
|
dtype: int64 |
|
- name: lora_14_name |
|
dtype: string |
|
- name: lora_14_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_rank |
|
dtype: int64 |
|
- name: lora_14_alpha |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 8661875544 |
|
num_examples: 128 |
|
download_size: 5791365905 |
|
dataset_size: 8661875544 |
|
- config_name: stable-diffusion-1.5 |
|
features: |
|
- name: task_name |
|
dtype: string |
|
- name: layer_model |
|
dtype: string |
|
- name: layer_name |
|
dtype: string |
|
- name: pre_ft_name |
|
dtype: string |
|
- name: pre_ft_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_name |
|
dtype: string |
|
- name: lora_0_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_rank |
|
dtype: int64 |
|
- name: lora_0_alpha |
|
dtype: float64 |
|
- name: lora_1_name |
|
dtype: string |
|
- name: lora_1_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_rank |
|
dtype: int64 |
|
- name: lora_1_alpha |
|
dtype: float64 |
|
- name: lora_2_name |
|
dtype: string |
|
- name: lora_2_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_rank |
|
dtype: int64 |
|
- name: lora_2_alpha |
|
dtype: float64 |
|
- name: lora_3_name |
|
dtype: string |
|
- name: lora_3_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_rank |
|
dtype: int64 |
|
- name: lora_3_alpha |
|
dtype: float64 |
|
- name: lora_4_name |
|
dtype: string |
|
- name: lora_4_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_rank |
|
dtype: int64 |
|
- name: lora_4_alpha |
|
dtype: float64 |
|
- name: lora_5_name |
|
dtype: string |
|
- name: lora_5_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_rank |
|
dtype: int64 |
|
- name: lora_5_alpha |
|
dtype: float64 |
|
- name: lora_6_name |
|
dtype: string |
|
- name: lora_6_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_rank |
|
dtype: int64 |
|
- name: lora_6_alpha |
|
dtype: float64 |
|
- name: lora_7_name |
|
dtype: string |
|
- name: lora_7_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_rank |
|
dtype: int64 |
|
- name: lora_7_alpha |
|
dtype: float64 |
|
- name: lora_8_name |
|
dtype: string |
|
- name: lora_8_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_rank |
|
dtype: int64 |
|
- name: lora_8_alpha |
|
dtype: float64 |
|
- name: lora_9_name |
|
dtype: string |
|
- name: lora_9_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_rank |
|
dtype: int64 |
|
- name: lora_9_alpha |
|
dtype: float64 |
|
- name: lora_10_name |
|
dtype: string |
|
- name: lora_10_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_rank |
|
dtype: int64 |
|
- name: lora_10_alpha |
|
dtype: float64 |
|
- name: lora_11_name |
|
dtype: string |
|
- name: lora_11_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_rank |
|
dtype: int64 |
|
- name: lora_11_alpha |
|
dtype: float64 |
|
- name: lora_12_name |
|
dtype: string |
|
- name: lora_12_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_rank |
|
dtype: int64 |
|
- name: lora_12_alpha |
|
dtype: float64 |
|
- name: lora_13_name |
|
dtype: string |
|
- name: lora_13_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_rank |
|
dtype: int64 |
|
- name: lora_13_alpha |
|
dtype: float64 |
|
- name: lora_14_name |
|
dtype: string |
|
- name: lora_14_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_rank |
|
dtype: int64 |
|
- name: lora_14_alpha |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 2561357508 |
|
num_examples: 264 |
|
download_size: 1724766354 |
|
dataset_size: 2561357508 |
|
- config_name: vit |
|
features: |
|
- name: task_name |
|
dtype: string |
|
- name: layer_model |
|
dtype: string |
|
- name: layer_name |
|
dtype: string |
|
- name: pre_ft_name |
|
dtype: string |
|
- name: pre_ft_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_name |
|
dtype: string |
|
- name: lora_0_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_0_rank |
|
dtype: int64 |
|
- name: lora_0_alpha |
|
dtype: int64 |
|
- name: lora_1_name |
|
dtype: string |
|
- name: lora_1_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_1_rank |
|
dtype: int64 |
|
- name: lora_1_alpha |
|
dtype: int64 |
|
- name: lora_2_name |
|
dtype: string |
|
- name: lora_2_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_2_rank |
|
dtype: int64 |
|
- name: lora_2_alpha |
|
dtype: int64 |
|
- name: lora_3_name |
|
dtype: string |
|
- name: lora_3_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_3_rank |
|
dtype: int64 |
|
- name: lora_3_alpha |
|
dtype: int64 |
|
- name: lora_4_name |
|
dtype: string |
|
- name: lora_4_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_4_rank |
|
dtype: int64 |
|
- name: lora_4_alpha |
|
dtype: int64 |
|
- name: lora_5_name |
|
dtype: string |
|
- name: lora_5_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_5_rank |
|
dtype: int64 |
|
- name: lora_5_alpha |
|
dtype: int64 |
|
- name: lora_6_name |
|
dtype: string |
|
- name: lora_6_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_6_rank |
|
dtype: int64 |
|
- name: lora_6_alpha |
|
dtype: int64 |
|
- name: lora_7_name |
|
dtype: string |
|
- name: lora_7_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_7_rank |
|
dtype: int64 |
|
- name: lora_7_alpha |
|
dtype: int64 |
|
- name: lora_8_name |
|
dtype: string |
|
- name: lora_8_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_8_rank |
|
dtype: int64 |
|
- name: lora_8_alpha |
|
dtype: int64 |
|
- name: lora_9_name |
|
dtype: string |
|
- name: lora_9_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_9_rank |
|
dtype: int64 |
|
- name: lora_9_alpha |
|
dtype: int64 |
|
- name: lora_10_name |
|
dtype: string |
|
- name: lora_10_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_10_rank |
|
dtype: int64 |
|
- name: lora_10_alpha |
|
dtype: int64 |
|
- name: lora_11_name |
|
dtype: string |
|
- name: lora_11_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_11_rank |
|
dtype: int64 |
|
- name: lora_11_alpha |
|
dtype: int64 |
|
- name: lora_12_name |
|
dtype: string |
|
- name: lora_12_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_12_rank |
|
dtype: int64 |
|
- name: lora_12_alpha |
|
dtype: int64 |
|
- name: lora_13_name |
|
dtype: string |
|
- name: lora_13_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_13_rank |
|
dtype: int64 |
|
- name: lora_13_alpha |
|
dtype: int64 |
|
- name: lora_14_name |
|
dtype: string |
|
- name: lora_14_A_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_B_weight |
|
sequence: |
|
sequence: float32 |
|
- name: lora_14_rank |
|
dtype: int64 |
|
- name: lora_14_alpha |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 93231628 |
|
num_examples: 24 |
|
download_size: 111481540 |
|
dataset_size: 93231628 |
|
configs: |
|
- config_name: mistral-7b-v0.1-dpo |
|
data_files: |
|
- split: train |
|
path: mistral-7b-v0.1-dpo/train-* |
|
- config_name: mistral-7b-v0.1-sft |
|
data_files: |
|
- split: train |
|
path: mistral-7b-v0.1-sft/train-* |
|
- config_name: stable-diffusion-1.5 |
|
data_files: |
|
- split: train |
|
path: stable-diffusion-1.5/train-* |
|
- config_name: vit |
|
data_files: |
|
- split: train |
|
path: vit/train-* |
|
--- |
|
|
|
# Dataset Card for the LoWRA Bench Dataset |
|
The ***Lo***RA ***W***eight ***R***ecovery ***A***ttack (LoWRA) Bench is a comprehensive |
|
benchmark designed to evaluate Pre-Fine-Tuning (Pre-FT) weight recovery methods as presented |
|
in the "Recovering the Pre-Fine-Tuning Weights of Generative Models" paper. |
|
|
|
- [Task Details](#task-details) |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Subsets](#data-subsets) |
|
- [Data Fields](#data-fields) |
|
- [Layer Merging Example](#layer-merging-example) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Risks and Out-of-Scope Use](#risks-and-out-of-scope-use) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
|
|
|
|
- **🌐 Homepage:** |
|
https://vision.huji.ac.il/spectral_detuning/ |
|
- **🧑💻 Repository:** |
|
https://github.com/eliahuhorwitz/Spectral-DeTuning |
|
- **📃 Paper:** |
|
https://arxiv.org/abs/2402.10208 |
|
- **✉️ Point of Contact:** |
|
[email protected] |
|
|
|
|
|
## Task Details |
|
**Pre-Fine-Tuning Weight Recovery Attack Setting:** We uncover a vulnerability in LoRA fine-tuned models wherein an attacker is |
|
able to undo the fine-tuning process and recover the weights of the original pre-trained model. |
|
The setting for the vulnerability is as follows: |
|
|
|
(a) The attacker only has access to n different LoRA fine-tuned models. |
|
|
|
(b) The attacker assumes that all n models originated from the same source model. |
|
|
|
(c) Using only the n visible models, the attacker attempts to recover the original source model. |
|
|
|
**Note: The attacker has no access to the low-rank decomposition of the fine-tuned models.** |
|
|
|
## Dataset Description |
|
|
|
The LoWRA Bench dataset is designed to evaluate the performance of Pre-FT weight recovery methods. |
|
The dataset encompasses three pre-trained representative source models: |
|
1. A Vision Transformer (ViT) pre-trained on ImageNet-1K. |
|
2. Mistral-7B-v0.1. |
|
3. Stable Diffusion 1.5. |
|
|
|
These models collectively cover supervised and self-supervised objectives, spanning both vision and |
|
natural language processing (NLP) domains, as well as generative and discriminative tasks. |
|
Notably, these models are widely used and deployed in numerous production systems. |
|
|
|
For each source model, we curate 15 LoRA models fine-tuned on diverse datasets, tasks, and objectives. |
|
The dataset comprises a diverse array of layer types, including self-attention, cross-attention, |
|
and MLPs. This diversity enables us to assess the generalization capabilities of Pre-FT methods. |
|
The evaluation can be conducted on a per-model basis, per layer type, or layer depth, |
|
allowing for a comprehensive analysis of Pre-FT methods. Overall, our dataset includes 544 source |
|
model layers. When taking into account the fine-tuned LoRA layers, the dataset includes over |
|
8,000 layers. |
|
|
|
|
|
## Dataset Structure |
|
The dataset contains 4 subsets, for each subset we curate 15 LoRA fine-tuned models. |
|
Each row of the dataset represents a single layer that should be recovered and contains all the needed information for the recovery and numerical evaluation. |
|
In particular, for each layer, the dataset includes the original Pre-FT weights and the *unmerged* fine-tuned LoRA weight matrices. |
|
We decided to provide the unmerged weights instead of the merged ones for two reasons: |
|
1. Providing the unmerged weights significantly reduces the storage size of the dataset (e.g., for a single Mistral subset this reduces the size from ~100GB to ~8GB). |
|
2. Providing the unmerged weights allows the dataset user to study the properties of the fine-tuned LoRA layers and may help when developing new methods. |
|
|
|
We leave the merging of the layers to the user, keep in mind this should be done carefully and tested to ensure the original Pre-FT weights are not simply |
|
provided to the method verbatim. See [Layer Merging Example ](#layer-merging-example) for an example taken from our GitHub repository. |
|
|
|
|
|
### Data Subsets |
|
The table below describes the dataset subsets in detail: |
|
|
|
| Subset Name | Pre-FT Model | Task | Fine-tuning Task | # Pre-FT Layers | # Fine-tuned Layers | |
|
|----------------------|----------------------|-------------------------------|------------------|-----------------|---------------------| |
|
| vit | ViT | Image Classification | VTAB-1K | 24 | 360 | |
|
| stable-diffusion-1.5 | Stable Diffusion 1.5 | Text-to-Image <br/>Generation | Personalization | 264 | 3960 | |
|
| mistral-7b-v0.1-sft | Mistral-7B-v0.1 | Text Generation | UltraChat SFT | 128 | 1920 | |
|
| mistral-7b-v0.1-dpo | Mistral-7B-v0.1 | Text Generation | UltraFeedback DPO| 128 | 1920 | |
|
|
|
|
|
### Data Fields |
|
As described above, each row of the dataset represents a single layer that should be recovered and contains the following fields: |
|
|
|
task_name - The name of the task the model was fine-tuned on (subset). |
|
layer_model - In some cases a Pre-FT model has more than one model (e.g., Stable Diffusion fine-tuned both |
|
the UNet and the Text Encoder). This field specifies the model the layer belongs to. |
|
layer_name - The name of the layer in the Pre-FT model as it appears in the model state_dict. |
|
pre_ft_name - The name of the Pre-FT model (e.g., runwayml/stable-diffusion-v1-5). |
|
pre_ft_weight - The weight matrix of the Pre-FT models layer. |
|
lora_{lora_idx}_name - The name of the LoRA fine-tuned model. |
|
lora_{lora_idx}_A_weight - The LoRA A weight matrix of the LoRA fine-tuned models layer. |
|
lora_{lora_idx}_B_weight - The LoRA B weight matrix of the LoRA fine-tuned models layer. |
|
lora_{lora_idx}_rank - The LoRA rank of the LoRA fine-tuned models layer. |
|
lora_{lora_idx}_alpha - The LoRA alpha of the LoRA fine-tuned models layer. |
|
|
|
where `{lora_idx}` is the index of the LoRA fine-tuned model in the subset (there are 15 LoRA models per subset). |
|
|
|
|
|
### Layer Merging Example |
|
The following code snippet demonstrates merging the LoRA fine-tuned weights with the Pre-FT weights. |
|
```python |
|
def merge_lora_weights(args, layer_idx, device): |
|
dataset = load_dataset(args.dataset, name=args.subset, cache_dir=args.cache_dir) |
|
layer = deepcopy(dataset.with_format("torch")["train"][layer_idx]) |
|
|
|
merged_layer = {} |
|
|
|
# Note: load the ground truth Pre-FT weights |
|
merged_layer['layer_model'] = layer['layer_model'] |
|
merged_layer['layer_name'] = layer['layer_name'] |
|
merged_layer['pre_ft_name'] = layer['pre_ft_name'] |
|
W_pre_ft = deepcopy(layer['pre_ft_weight']).to(device).float() |
|
merged_layer['pre_ft_weight'] = deepcopy(W_pre_ft) |
|
|
|
# Note: merge the LoRA weights for all existing LoRA models |
|
for lora_idx in args.lora_ids: |
|
alpha = layer[f'lora_{lora_idx}_alpha'] |
|
rank = layer[f'lora_{lora_idx}_rank'] |
|
B = deepcopy(layer[f'lora_{lora_idx}_B_weight']).to(device).float() |
|
A = deepcopy(layer[f'lora_{lora_idx}_A_weight']).to(device).float() |
|
|
|
merged_layer[f'lora_{lora_idx}_name'] = layer[f'lora_{lora_idx}_name'] |
|
merged_layer[f'lora_{lora_idx}_rank'] = rank |
|
merged_layer[f'lora_{lora_idx}_alpha'] = alpha |
|
merged_layer[f'lora_{lora_idx}_merged_weights'] = W_pre_ft + ((alpha / rank * B) @ A) |
|
|
|
assert torch.allclose(merged_layer['pre_ft_weight'], layer['pre_ft_weight']) |
|
assert not torch.allclose(merged_layer[f'lora_{lora_idx}_merged_weights'], layer['pre_ft_weight']) |
|
assert not torch.allclose(merged_layer[f'lora_{lora_idx}_merged_weights'], merged_layer['pre_ft_weight']) |
|
return merged_layer |
|
``` |
|
|
|
|
|
|
|
## Dataset Creation |
|
|
|
### Source Data |
|
- The fine-tuning of the ViT models was performed using the [PEFT](https://huggingface.co/docs/peft/en/index) library |
|
on various datasets from the [VTAB-1K](https://google-research.github.io/task_adaptation/) benchmark. |
|
- The fine-tuned LoRA models for Stable Diffusion are taken from civitai and were fine-tuned by [RalFinger](https://civitai.com/user/RalFinger). |
|
- The fine-tuning of Mistral was performed based on the Zephyr model as seen [here](https://github.com/huggingface/alignment-handbook/tree/main). |
|
|
|
For the full list of models and hyper-parameters see the appendix of the [paper](https://arxiv.org/abs/2402.10208). |
|
|
|
|
|
## Risks and Out-of-Scope Use |
|
Our work uncovers a significant vulnerability in fine-tuned models, allowing attackers to |
|
access pre-fine-tuning weights. While this discovery reveals potential security risks, |
|
our primary objective is to advance the field of Machine Learning and raise awareness within the |
|
research community about the existing vulnerabilities in current models. |
|
|
|
Instead of using the findings of this study to execute attacks, we advocate for their use by |
|
model creators to enhance the safety and security of their models. By acknowledging and |
|
addressing vulnerabilities, creators can proactively safeguard against potential threats. |
|
|
|
Following established practices in the cyber-security community, we emphasize the importance of open |
|
discussion and encourage the reporting of vulnerabilities. By fostering transparency and collaboration, |
|
we can collectively create a safer environment for deploying machine learning models. |
|
|
|
## Considerations for Using the Data |
|
### Licensing Information |
|
[More Information Needed] |
|
|
|
### Citation Information |
|
If you use this dataset in your work please cite the following paper: |
|
|
|
**BibTeX:** |
|
``` |
|
@article{horwitz2024recovering, |
|
title={Recovering the Pre-Fine-Tuning Weights of Generative Models}, |
|
author={Horwitz, Eliahu and Kahana, Jonathan and Hoshen, Yedid}, |
|
journal={arXiv preprint arXiv:2402.10208}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|