Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
wikitext_document_level / wikitext_document_level.py.backup
baber's picture
Rename wikitext_document_level.py to wikitext_document_level.py.backup
6472347 verified
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# NOTE: This is a modified version of https://github.com/huggingface/datasets/blob/master/datasets/wikitext/wikitext.py
# that returns Wiki pages instead of Wiki text line-by-line.
"""WikiText Dataset."""
# import os
# import datasets
# _CITATION = """\
# @misc{merity2016pointer,
# title={Pointer Sentinel Mixture Models},
# author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
# year={2016},
# eprint={1609.07843},
# archivePrefix={arXiv},
# primaryClass={cs.CL}
# }
# """
# _DESCRIPTION = """\
# The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified
# Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike
# License.
# """
# _HOMEPAGE = "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/"
# _LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
# _DATA_URL = "https://wikitext.smerity.com"
# class WikitextConfig(datasets.BuilderConfig):
# """BuilderConfig for GLUE."""
# def __init__(self, data_url, **kwargs):
# """BuilderConfig for Wikitext
# Args:
# data_url: `string`, url to the dataset (word or raw level)
# **kwargs: keyword arguments forwarded to super.
# """
# super(WikitextConfig, self).__init__(
# version=datasets.Version(
# "1.0.0",
# ),
# **kwargs,
# )
# self.data_url = data_url
# class Wikitext(datasets.GeneratorBasedBuilder):
# """TODO(wikitext_103): Short description of my dataset."""
# # TODO(wikitext_103): Set up version.
# VERSION = datasets.Version("0.1.0")
# BUILDER_CONFIGS = [
# WikitextConfig(
# name="wikitext-103-v1",
# data_url=_DATA_URL + "/" + "wikitext-103-v1.zip",
# description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
# ),
# WikitextConfig(
# name="wikitext-2-v1",
# data_url=_DATA_URL + "/" + "wikitext-2-v1.zip",
# description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
# ),
# WikitextConfig(
# name="wikitext-103-raw-v1",
# data_url=_DATA_URL + "/" + "wikitext-103-raw-v1.zip",
# description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
# "They should only be used for character level work or for creating newly derived datasets.",
# ),
# WikitextConfig(
# name="wikitext-2-raw-v1",
# data_url=_DATA_URL + "/" + "wikitext-2-raw-v1.zip",
# description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
# "They should only be used for character level work or for creating newly derived datasets.",
# ),
# ]
# def _info(self):
# # TODO(wikitext): Specifies the datasets.DatasetInfo object
# return datasets.DatasetInfo(
# # This is the description that will appear on the datasets page.
# description=_DESCRIPTION,
# # datasets.features.FeatureConnectors
# features=datasets.Features(
# {
# "page": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# ),
# # If there's a common (input, target) tuple from the features,
# # specify them here. They'll be used if as_supervised=True in
# # builder.as_dataset.
# supervised_keys=None,
# homepage=_HOMEPAGE,
# license=_LICENSE,
# citation=_CITATION,
# )
# def _split_generators(self, dl_manager):
# """Returns SplitGenerators."""
# # TODO(wikitext): Downloads the data and defines the splits
# # dl_manager is a datasets.download.DownloadManager that can be used to
# # download and extract URLs
# if self.config.name == "wikitext-103-v1":
# data_file = dl_manager.download_and_extract(self.config.data_url)
# data_dir = os.path.join(data_file, "wikitext-103")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.test.tokens"),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.train.tokens"),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.valid.tokens"),
# "split": "valid",
# },
# ),
# ]
# else:
# if self.config.name == "wikitext-103-raw-v1":
# data_file = dl_manager.download_and_extract(self.config.data_url)
# data_dir = os.path.join(data_file, "wikitext-103-raw")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.test.raw"),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.train.raw"),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.valid.raw"),
# "split": "valid",
# },
# ),
# ]
# else:
# if self.config.name == "wikitext-2-raw-v1":
# data_file = dl_manager.download_and_extract(self.config.data_url)
# data_dir = os.path.join(data_file, "wikitext-2-raw")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.test.raw"),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.train.raw"),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.valid.raw"),
# "split": "valid",
# },
# ),
# ]
# else:
# if self.config.name == "wikitext-2-v1":
# data_file = dl_manager.download_and_extract(
# self.config.data_url
# )
# data_dir = os.path.join(data_file, "wikitext-2")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(
# data_dir, "wiki.test.tokens"
# ),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(
# data_dir, "wiki.train.tokens"
# ),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(
# data_dir, "wiki.valid.tokens"
# ),
# "split": "valid",
# },
# ),
# ]
# def _generate_examples(self, data_file, split):
# """Yields examples."""
# with open(data_file, encoding="utf-8") as f:
# key = 0
# ret = []
# data = f.read().split("\n")
# for line in data:
# rline = line.replace("= = =", "===").replace("= =", "==").strip()
# if rline.startswith("= ") and rline.strip().endswith(" ="):
# page = "\n".join(ret)
# if page.strip():
# yield key, {"page": page}
# key += 1
# ret = []
# ret.append(line)
# page = "\n".join(ret)
# yield key, {"page": page}