File size: 11,145 Bytes
6472347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# NOTE: This is a modified version of https://github.com/huggingface/datasets/blob/master/datasets/wikitext/wikitext.py
# that returns Wiki pages instead of Wiki text line-by-line.
"""WikiText Dataset."""
# import os
# import datasets
# _CITATION = """\
# @misc{merity2016pointer,
# title={Pointer Sentinel Mixture Models},
# author={Stephen Merity and Caiming Xiong and James Bradbury and Richard Socher},
# year={2016},
# eprint={1609.07843},
# archivePrefix={arXiv},
# primaryClass={cs.CL}
# }
# """
# _DESCRIPTION = """\
# The WikiText language modeling dataset is a collection of over 100 million tokens extracted from the set of verified
# Good and Featured articles on Wikipedia. The dataset is available under the Creative Commons Attribution-ShareAlike
# License.
# """
# _HOMEPAGE = "https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/"
# _LICENSE = "Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)"
# _DATA_URL = "https://wikitext.smerity.com"
# class WikitextConfig(datasets.BuilderConfig):
# """BuilderConfig for GLUE."""
# def __init__(self, data_url, **kwargs):
# """BuilderConfig for Wikitext
# Args:
# data_url: `string`, url to the dataset (word or raw level)
# **kwargs: keyword arguments forwarded to super.
# """
# super(WikitextConfig, self).__init__(
# version=datasets.Version(
# "1.0.0",
# ),
# **kwargs,
# )
# self.data_url = data_url
# class Wikitext(datasets.GeneratorBasedBuilder):
# """TODO(wikitext_103): Short description of my dataset."""
# # TODO(wikitext_103): Set up version.
# VERSION = datasets.Version("0.1.0")
# BUILDER_CONFIGS = [
# WikitextConfig(
# name="wikitext-103-v1",
# data_url=_DATA_URL + "/" + "wikitext-103-v1.zip",
# description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
# ),
# WikitextConfig(
# name="wikitext-2-v1",
# data_url=_DATA_URL + "/" + "wikitext-2-v1.zip",
# description="Word level dataset. No processing is needed other than replacing newlines with <eos> tokens.",
# ),
# WikitextConfig(
# name="wikitext-103-raw-v1",
# data_url=_DATA_URL + "/" + "wikitext-103-raw-v1.zip",
# description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
# "They should only be used for character level work or for creating newly derived datasets.",
# ),
# WikitextConfig(
# name="wikitext-2-raw-v1",
# data_url=_DATA_URL + "/" + "wikitext-2-raw-v1.zip",
# description="Raw level dataset: the raw tokens before the addition of <unk> tokens. "
# "They should only be used for character level work or for creating newly derived datasets.",
# ),
# ]
# def _info(self):
# # TODO(wikitext): Specifies the datasets.DatasetInfo object
# return datasets.DatasetInfo(
# # This is the description that will appear on the datasets page.
# description=_DESCRIPTION,
# # datasets.features.FeatureConnectors
# features=datasets.Features(
# {
# "page": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# ),
# # If there's a common (input, target) tuple from the features,
# # specify them here. They'll be used if as_supervised=True in
# # builder.as_dataset.
# supervised_keys=None,
# homepage=_HOMEPAGE,
# license=_LICENSE,
# citation=_CITATION,
# )
# def _split_generators(self, dl_manager):
# """Returns SplitGenerators."""
# # TODO(wikitext): Downloads the data and defines the splits
# # dl_manager is a datasets.download.DownloadManager that can be used to
# # download and extract URLs
# if self.config.name == "wikitext-103-v1":
# data_file = dl_manager.download_and_extract(self.config.data_url)
# data_dir = os.path.join(data_file, "wikitext-103")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.test.tokens"),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.train.tokens"),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.valid.tokens"),
# "split": "valid",
# },
# ),
# ]
# else:
# if self.config.name == "wikitext-103-raw-v1":
# data_file = dl_manager.download_and_extract(self.config.data_url)
# data_dir = os.path.join(data_file, "wikitext-103-raw")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.test.raw"),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.train.raw"),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.valid.raw"),
# "split": "valid",
# },
# ),
# ]
# else:
# if self.config.name == "wikitext-2-raw-v1":
# data_file = dl_manager.download_and_extract(self.config.data_url)
# data_dir = os.path.join(data_file, "wikitext-2-raw")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.test.raw"),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.train.raw"),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(data_dir, "wiki.valid.raw"),
# "split": "valid",
# },
# ),
# ]
# else:
# if self.config.name == "wikitext-2-v1":
# data_file = dl_manager.download_and_extract(
# self.config.data_url
# )
# data_dir = os.path.join(data_file, "wikitext-2")
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "data_file": os.path.join(
# data_dir, "wiki.test.tokens"
# ),
# "split": "test",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "data_file": os.path.join(
# data_dir, "wiki.train.tokens"
# ),
# "split": "train",
# },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "data_file": os.path.join(
# data_dir, "wiki.valid.tokens"
# ),
# "split": "valid",
# },
# ),
# ]
# def _generate_examples(self, data_file, split):
# """Yields examples."""
# with open(data_file, encoding="utf-8") as f:
# key = 0
# ret = []
# data = f.read().split("\n")
# for line in data:
# rline = line.replace("= = =", "===").replace("= =", "==").strip()
# if rline.startswith("= ") and rline.strip().endswith(" ="):
# page = "\n".join(ret)
# if page.strip():
# yield key, {"page": page}
# key += 1
# ret = []
# ret.append(line)
# page = "\n".join(ret)
# yield key, {"page": page}
|