Nayose-Bench-QA / README.md
stardust-eques's picture
Update README.md
b63dbc4 verified
metadata
license: cc-by-sa-4.0
task_categories:
  - question-answering
language:
  - ja
viewer: true
columns:
  - name: id
    type: int
  - name: question
    type: string
  - name: choice0
    type: string
  - name: choice1
    type: string
  - name: choice2
    type: string
  - name: choice3
    type: string
  - name: choice4
    type: string
  - name: label
    type: int
  - name: task
    type: string

Dataset Card for Nayose-Bench-Instruction

This dataset was created as a benchmark for the entity resolution task in the pharmaceutical domain.

Dataset Details

This dataset is designed for the entity resolution task in the pharmaceutical domain. The entity resolution task refers to a paraphrasing task, such as rephrasing drug names, converting chemical substances into brand names, or rewriting chemical substances into chemical formulas.

Uses

from datasets import load_dataset
load_dataset("EQUES/Nayose-Bench-QA")
{
  "id": 7542,
  "question": "イベルドミド塩酸塩の別表現は?",
  "choice0": "イムガツズマブ",
  "choice1": "Plusonermin (JAN)",
  "choice2": "Iberdomide hydrochloride (USAN)",
  "choice3": "ハートナップ病",
  "choice4": "カルメグリプチン二塩酸塩",
  "label": 2,
  "task": "replace"
}

Dataset Structure

The data is stored in a JSONL file, where each record consists of the following fields: "id", "question", "choice0", "choice1", "choice2", "choice3", "choice4", "label", "task".

Example:

{"id": 30512, "question": "トリプロピオン酸エストリオールの別呼称は?", "choice0": "シデフェロン (JAN)", "choice1": "Lemildipine (JAN/INN)", "choice2": "アッシャー症候群", "choice3": "ナファゾリン塩酸塩・マレイン酸フェニラミン", "choice4": "Estriol tripropionate (JAN)", "label": 4, "task": "replace"}

Source Data

This dataset was created by processing the KEGG DRUG Database, a database that centrally aggregates pharmaceutical information from the perspective of chemical structures and components.

Dataset Creater

Created by Takuro Fujii ([email protected])

Acknowledgement

本データセットは、経済産業省及び国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)による生成AI開発力強化プロジェクト「GENIAC」により支援を受けた成果の一部である。