File size: 3,096 Bytes
9376984
 
 
d3a7896
9376984
d3a7896
95b08a9
 
 
 
 
9376984
 
d3a7896
c2261f2
 
 
 
 
 
 
 
61579cc
 
c2261f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9376984
 
 
8515b81
a207fce
9376984
 
 
 
 
 
 
 
 
 
 
61579cc
 
9376984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3a7896
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: cc-by-nc-4.0
task_categories:
- text-classification
language:
- en
tags:
- event-forecasting
- international-relations
- geopolitics
- text-classification
pretty_name: WORLDREP
size_categories:
- 100K<n<1M
dataset_info:
  features:
  - name: EventID
    dtype: string
  - name: SourceURL
    dtype: string
  - name: DATE
    dtype: string
  - name: CONTENT
    dtype: string
  - name: Country1
    dtype: string
  - name: Country2
    dtype: string
  - name: Score
    dtype: float64
  splits:
  - name: train
    num_bytes: 19348381
    num_examples: 147697
  download_size: 2949164
  dataset_size: 19348381
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---


# WORLDREP: A Dataset for Forecasting Future International Events
WORLDREP (**WORLD Relationship and Event Prediction**) is a high-quality dataset designed for predicting future international events based on textual information, such as news articles. It provides the relationships between countries with numerical scores ranging from **0.0 (cooperation)** to **1.0 (conflict)**.

## Dataset Overview

This dataset was introduced in:
**Forecasting Future International Events: A Reliable Dataset for Text-Based Event Modeling**  ([Link](https://arxiv.org/abs/2411.14042))

### **Dataset Structure**
| Column       | Description                                                                 |
|--------------|-----------------------------------------------------------------------------|
| `EventID`    | Unique identifier for the event                                            |
| `SourceURL`  | URL of the news article reporting the event                                |
| `DATE`       | Publication date of the article in `YYYYMMDDHHMMSS` format                 |
| `CONTENT`    | Content of the news article                                                |
| `Country1`   | The first country involved in the event                                    |
| `Country2`   | The second country involved in the event                                   |
| `Score`      | Numerical value (0.0-1.0) representing the relationship between countries. A score close to **0.0** indicates **cooperation**, while a score close to **1.0** indicates **conflict**. |

## Applications
- Predicting future international events
- Understanding geopolitical trends
- Training machine learning models for event forecasting

## License
This dataset is licensed under the [Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/).

## Citation
If you use this dataset, please cite the corresponding paper:

```
@inproceedings{gwak2024worldrep,
title={Forecasting Future International Events: A Reliable Dataset for Text-Based Event Modeling},
author={Daehoon Gwak, Junwoo Park, Minho Park, Chaehun Park, Hyunchan Lee, Edward Choi and Jaegul Choo},
booktitle={EMNLP Findings},
year={2024}
}
```

### Related Resources
- [Paper](https://arxiv.org/abs/2411.14042)
- [GitHub Repository for WORLDREP](https://github.com/eogns282/WORLDREP)