Daehoon commited on
Commit
9376984
·
1 Parent(s): 9ae655a

Add WORLDREP dataset

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +59 -0
  3. worldrep_dataset.csv +3 -0
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ worldrep_dataset.csv filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - event-forecasting
9
+ - international-relations
10
+ - geopolitics
11
+ - text-classification
12
+ pretty_name: WORLDREP
13
+ size_categories:
14
+ - 100K<n<1M
15
+ ---
16
+
17
+
18
+ # WORLDREP: A Dataset for Analyzing and Predicting Global Relations
19
+ WORLDREP (WORLD Relationship and Event Prediction) is a high-quality dataset designed for predicting future international events based on textual information, such as news articles. It features labeled relationships between countries with confidence scores ranging from 0.0 (cooperation) to 1.0 (conflict).
20
+
21
+ ## Dataset Overview
22
+
23
+ This dataset was introduced in:
24
+ **Forecasting Future International Events: A Reliable Dataset for Text-Based Event Modeling** ([Link](https://arxiv.org/abs/2411.14042))
25
+
26
+ ### **Dataset Structure**
27
+ | Column | Description |
28
+ |--------------|-----------------------------------------------------------------------------|
29
+ | `EventID` | Unique identifier for the event |
30
+ | `SourceURL` | URL of the news article reporting the event |
31
+ | `DATE` | Publication date of the article in `YYYYMMDDHHMMSS` format |
32
+ | `Country1` | The first country involved in the event |
33
+ | `Country2` | The second country involved in the event |
34
+ | `Score` | Numerical value (0.0-1.0) representing the relationship between countries. A score close to **0.0** indicates **cooperation**, while a score close to **1.0** indicates **conflict**. |
35
+
36
+ ## Applications
37
+ - Predicting future international events
38
+ - Understanding geopolitical trends
39
+ - Training machine learning models for event forecasting
40
+
41
+ ## License
42
+ This dataset is licensed under the [Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)](https://creativecommons.org/licenses/by-nc/4.0/).
43
+
44
+ ## Citation
45
+ If you use this dataset, please cite the corresponding paper:
46
+
47
+ ```
48
+ @inproceedings{gwak2024worldrep,
49
+ title={Forecasting Future International Events: A Reliable Dataset for Text-Based Event Modeling},
50
+ author={Daehoon Gwak, Junwoo Park, Minho Park, Chaehun Park, Hyunchan Lee, Edward Choi and Jaegul Choo},
51
+ booktitle={EMNLP Findings},
52
+ year={2024}
53
+ }
54
+ ```
55
+
56
+ ### Related Resources
57
+ - [Paper](https://arxiv.org/abs/2411.14042)
58
+ - [GitHub Repository for WORLDREP](https://github.com/eogns282/WORLDREP)
59
+
worldrep_dataset.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36bd5132e0c918259b3905efa37dc34099d5dfc5d1bc1aaedde9de1c1d28e8eb
3
+ size 16342370