ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
5022c468-76d4-4d66-9465-6171e0aac452
cpp
tensorflow/tensorflow
tf_op_registry
tensorflow/core/ir/tf_op_registry.cc
tensorflow/core/ir/tf_op_registry_test.cc
#include "tensorflow/core/ir/tf_op_registry.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/Operation.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/ir/interfaces.h" #include "tensorflow/core/ir/ops.h" namespace mlir { namespace tfg { TensorFlowOpRegistryInterface::TensorFlowOpRegistryInterface(Dialect *dialect) : TensorFlowOpRegistryInterface(dialect, tensorflow::OpRegistry::Global()) { } static bool IsStatefulImpl(const tensorflow::OpRegistry *registry, StringRef op_name) { const tensorflow::OpRegistrationData *op_reg_data = registry->LookUp(op_name.str()); if (!op_reg_data) return true; return op_reg_data->op_def.is_stateful(); } bool TensorFlowOpRegistryInterface::isStateful(Operation *op) const { if (op->hasTrait<OpTrait::IntrinsicOperation>()) return false; if (auto func = dyn_cast<GraphFuncOp>(op)) return func.getIsStateful(); StringRef op_name = op->getName().stripDialect(); if (op->getNumRegions() && op_name.ends_with("Region")) op_name = op_name.drop_back(6); return IsStatefulImpl(registry_, op_name); } } }
#include "tensorflow/core/ir/tf_op_registry.h" #include <string> #include "llvm/ADT/STLExtras.h" #include "llvm/Support/FormatVariadic.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/interfaces.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { namespace { void PrepareContext(MLIRContext *context) { DialectRegistry registry; registry.insert<TFGraphDialect>(); registry.addExtension(+[](mlir::MLIRContext *ctx, TFGraphDialect *dialect) { dialect->addInterfaces<TensorFlowOpRegistryInterface>(); }); context->appendDialectRegistry(registry); } TEST(TensorFlowOpRegistryInterface, TestIntrinsicOps) { MLIRContext context(MLIRContext::Threading::DISABLED); PrepareContext(&context); const char *const code = R"mlir( tfg.func @test(%arg: tensor<i32>) -> (tensor<i32>) { return(%arg) : tensor<i32> } )mlir"; OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); auto func_op = cast<GraphFuncOp>(&module->front()); auto ret_op = cast<ReturnOp>(func_op.getBody().front().getTerminator()); EXPECT_FALSE(dyn_cast<TensorFlowRegistryInterface>(*func_op)); EXPECT_FALSE(dyn_cast<TensorFlowRegistryInterface>(*ret_op)); } TEST(TensorFlowOpRegistryInterface, TestStatelessTFOps) { MLIRContext context(MLIRContext::Threading::DISABLED); PrepareContext(&context); const char *const code = R"mlir( tfg.func @test(%lhs: tensor<i32>, %rhs: tensor<i32>) -> (tensor<i32>) { %Add, %ctl = Add(%lhs, %rhs) : (tensor<i32>, tensor<i32>) -> (tensor<i32>) return(%Add) : tensor<i32> } )mlir"; OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); Operation *add = &cast<GraphFuncOp>(&module->front()).getBody().front().front(); auto iface = dyn_cast<TensorFlowRegistryInterface>(add); ASSERT_TRUE(iface); EXPECT_FALSE(iface.isStateful()); } TEST(TensorFlowOpRegistryInterface, TestStatelessAndStatefulRegionOps) { MLIRContext context(MLIRContext::Threading::DISABLED); PrepareContext(&context); const char *const code_template = R"mlir( tfg.func @test(%idx: tensor<i32>, %arg: tensor<i32>) -> (tensor<i32>) {{ %Case, %ctl = {0}CaseRegion %idx {{ yield(%arg) : tensor<i32> } : (tensor<i32>) -> (tensor<i32>) return(%Case) : tensor<i32> } )mlir"; SmallVector<StringRef, 2> prefixes = {"", "Stateless"}; SmallVector<bool, 2> expected = {true, false}; for (auto it : llvm::zip(prefixes, expected)) { std::string code = llvm::formatv(code_template, std::get<0>(it)).str(); OwningOpRef<ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); Operation *case_op = &cast<GraphFuncOp>(&module->front()).getBody().front().front(); auto iface = dyn_cast<TensorFlowRegistryInterface>(case_op); ASSERT_TRUE(iface); EXPECT_EQ(iface.isStateful(), std::get<1>(it)); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ir/tf_op_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ir/tf_op_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ade33ad4-1708-4f0a-a0ca-5ac3d17384c5
cpp
google/tsl
cpu_utils
tsl/platform/profile_utils/cpu_utils.cc
tsl/platform/profile_utils/cpu_utils_test.cc
#include "tsl/platform/profile_utils/cpu_utils.h" #include <fstream> #include <limits> #include <mutex> #if defined(_WIN32) #include <windows.h> #endif #if defined(__APPLE__) #include <sys/sysctl.h> #endif #include "absl/base/call_once.h" #include "tsl/platform/logging.h" #include "tsl/platform/profile_utils/android_armv7a_cpu_utils_helper.h" namespace tsl { namespace profile_utils { constexpr int64_t CpuUtils::INVALID_FREQUENCY; static ICpuUtilsHelper* cpu_utils_helper_instance_ = nullptr; #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \ (defined(__s390x__)) uint64 CpuUtils::GetCycleCounterFrequency() { static const uint64 cpu_frequency = GetCycleCounterFrequencyImpl(); return cpu_frequency; } #else int64_t CpuUtils::GetCycleCounterFrequency() { static const int64_t cpu_frequency = GetCycleCounterFrequencyImpl(); return cpu_frequency; } #endif double CpuUtils::GetMicroSecPerClock() { static const double micro_sec_per_clock = (1000.0 * 1000.0) / static_cast<double>(GetCycleCounterFrequency()); return micro_sec_per_clock; } void CpuUtils::ResetClockCycle() { GetCpuUtilsHelperSingletonInstance().ResetClockCycle(); } void CpuUtils::EnableClockCycleProfiling() { GetCpuUtilsHelperSingletonInstance().EnableClockCycleProfiling(); } void CpuUtils::DisableClockCycleProfiling() { GetCpuUtilsHelperSingletonInstance().DisableClockCycleProfiling(); } std::chrono::duration<double> CpuUtils::ConvertClockCycleToTime( const int64_t clock_cycle) { return std::chrono::duration<double>(static_cast<double>(clock_cycle) / GetCycleCounterFrequency()); } int64_t CpuUtils::GetCycleCounterFrequencyImpl() { #if defined(__ANDROID__) return GetCpuUtilsHelperSingletonInstance().CalculateCpuFrequency(); #elif defined(__linux__) std::ifstream cpuinfo("/proc/cpuinfo"); if (!cpuinfo) { LOG(WARNING) << "Failed to open /proc/cpuinfo"; return INVALID_FREQUENCY; } string line; while (std::getline(cpuinfo, line)) { double cpu_freq = 0.0; int retval = 0; double freq_factor = 2.0; #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) retval = sscanf(line.c_str(), "clock : %lfMHz", &cpu_freq); freq_factor = 1.0; #elif defined(__s390x__) retval = sscanf(line.c_str(), "bogomips per cpu: %lf", &cpu_freq); #elif defined(__aarch64__) retval = sscanf(line.c_str(), "BogoMIPS : %lf", &cpu_freq); #else retval = sscanf(line.c_str(), "bogomips : %lf", &cpu_freq); #endif if (retval > 0) { const double freq_ghz = cpu_freq / 1000.0 / freq_factor; if (retval != 1 || freq_ghz < 0.01) { LOG(WARNING) << "Failed to get CPU frequency: " << freq_ghz << " GHz"; return INVALID_FREQUENCY; } const int64_t freq_n = static_cast<int64_t>(freq_ghz * 1000.0 * 1000.0 * 1000.0); VLOG(1) << "CPU Frequency: " << freq_n << " Hz"; return freq_n; } } LOG(WARNING) << "Failed to find bogomips or clock in /proc/cpuinfo; cannot determine " "CPU frequency"; return INVALID_FREQUENCY; #elif defined(__APPLE__) int64_t freq_hz = 0; size_t freq_hz_size = sizeof(freq_hz); int retval = sysctlbyname("hw.cpufrequency_max", &freq_hz, &freq_hz_size, NULL, 0); if (retval != 0 || freq_hz < 1e6) { int64_t tbfrequency = 0; size_t tbfrequency_size = sizeof(tbfrequency); retval = sysctlbyname("hw.tbfrequency", &tbfrequency, &tbfrequency_size, NULL, 0); if (retval == 0) { clockinfo clock_info; size_t clock_info_size = sizeof(clock_info); retval = sysctlbyname("kern.clockrate", &clock_info, &clock_info_size, NULL, 0); if (retval == 0) { freq_hz = clock_info.hz * tbfrequency; } } if (retval != 0 || freq_hz < 1e6) { LOG(WARNING) << "Failed to get CPU frequency: " << freq_hz << " Hz"; return INVALID_FREQUENCY; } } return freq_hz; #elif defined(_WIN32) LARGE_INTEGER freq; QueryPerformanceFrequency(&freq); return freq.QuadPart; #else return INVALID_FREQUENCY; #endif } ICpuUtilsHelper& CpuUtils::GetCpuUtilsHelperSingletonInstance() { static absl::once_flag flag; absl::call_once(flag, []() { if (cpu_utils_helper_instance_ != nullptr) { LOG(FATAL) << "cpu_utils_helper_instance_ is already instantiated."; } #if defined(__ANDROID__) && (__ANDROID_API__ >= 21) && \ (defined(__ARM_ARCH_7A__) || defined(__aarch64__)) cpu_utils_helper_instance_ = new AndroidArmV7ACpuUtilsHelper(); #else cpu_utils_helper_instance_ = new DefaultCpuUtilsHelper(); #endif }); return *cpu_utils_helper_instance_; } } }
#include "tsl/platform/profile_utils/cpu_utils.h" #include "tsl/platform/logging.h" #include "tsl/platform/profile_utils/clock_cycle_profiler.h" #include "tsl/platform/test.h" namespace tsl { namespace profile_utils { static constexpr bool DBG = false; class CpuUtilsTest : public ::testing::Test { protected: void SetUp() override { CpuUtils::EnableClockCycleProfiling(); } }; TEST_F(CpuUtilsTest, SetUpTestCase) {} TEST_F(CpuUtilsTest, TearDownTestCase) {} TEST_F(CpuUtilsTest, CheckGetCurrentClockCycle) { static constexpr int LOOP_COUNT = 10; const uint64 start_clock_count = CpuUtils::GetCurrentClockCycle(); CHECK_GT(start_clock_count, 0); uint64 prev_clock_count = start_clock_count; for (int i = 0; i < LOOP_COUNT; ++i) { const uint64 clock_count = CpuUtils::GetCurrentClockCycle(); CHECK_GE(clock_count, prev_clock_count); prev_clock_count = clock_count; } const uint64 end_clock_count = CpuUtils::GetCurrentClockCycle(); if (DBG) { LOG(INFO) << "start clock = " << start_clock_count; LOG(INFO) << "end clock = " << end_clock_count; LOG(INFO) << "average clock = " << ((end_clock_count - start_clock_count) / LOOP_COUNT); } } TEST_F(CpuUtilsTest, CheckCycleCounterFrequency) { #if (defined(__powerpc__) || \ defined(__ppc__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)) || \ (defined(__s390x__)) const uint64 cpu_frequency = CpuUtils::GetCycleCounterFrequency(); CHECK_GT(cpu_frequency, 0); CHECK_NE(cpu_frequency, unsigned(CpuUtils::INVALID_FREQUENCY)); #else const int64_t cpu_frequency = CpuUtils::GetCycleCounterFrequency(); CHECK_GT(cpu_frequency, 0); CHECK_NE(cpu_frequency, CpuUtils::INVALID_FREQUENCY); #endif if (DBG) { LOG(INFO) << "Cpu frequency = " << cpu_frequency; } } TEST_F(CpuUtilsTest, CheckMicroSecPerClock) { const double micro_sec_per_clock = CpuUtils::GetMicroSecPerClock(); CHECK_GT(micro_sec_per_clock, 0.0); if (DBG) { LOG(INFO) << "Micro sec per clock = " << micro_sec_per_clock; } } TEST_F(CpuUtilsTest, SimpleUsageOfClockCycleProfiler) { static constexpr int LOOP_COUNT = 10; ClockCycleProfiler prof; for (int i = 0; i < LOOP_COUNT; ++i) { prof.Start(); prof.Stop(); } EXPECT_EQ(LOOP_COUNT, static_cast<int>(prof.GetCount() + 0.5)); if (DBG) { prof.DumpStatistics("CpuUtilsTest"); } } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/profile_utils/cpu_utils.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/profile_utils/cpu_utils_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
78838912-1249-42c4-bc35-dbab34023c54
cpp
tensorflow/tensorflow
async_value
third_party/xla/xla/tsl/concurrency/async_value.cc
third_party/xla/xla/tsl/concurrency/async_value_test.cc
#include "xla/tsl/concurrency/async_value.h" #include <atomic> #include <cstdint> #include <cstdlib> #include <limits> #include <utility> #include "absl/base/optimization.h" #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/synchronization/blocking_counter.h" #include "absl/types/span.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/concurrency/ref_count.h" #include "tsl/platform/logging.h" namespace tsl { class NotifierListNode { public: explicit NotifierListNode(absl::AnyInvocable<void()> notification) : next_(nullptr), notification_(std::move(notification)) {} private: friend class AsyncValue; NotifierListNode* next_; absl::AnyInvocable<void()> notification_; }; uint16_t AsyncValue::CreateTypeInfoAndReturnTypeIdImpl( const TypeInfo& type_info) { size_t type_id = GetTypeInfoTableSingleton()->emplace_back(type_info) + 1; DCHECK(type_id < std::numeric_limits<uint16_t>::max()) << "Too many different AsyncValue types."; return type_id; } AsyncValue::TypeInfoTable* AsyncValue::GetTypeInfoTableSingleton() { constexpr int kInitialCapacity = 64; static auto* type_info_table = new TypeInfoTable(kInitialCapacity); return type_info_table; } std::atomic<size_t> AsyncValue::total_allocated_async_values_; void AsyncValue::NotifyAvailable(State available_state) { DCHECK((kind() == Kind::kConcrete || kind() == Kind::kIndirect)) << "Should only be used by ConcreteAsyncValue or IndirectAsyncValue"; DCHECK(available_state == State::kConcrete || available_state == State::kError); auto old_value = waiters_and_state_.exchange( WaitersAndState(nullptr, available_state), std::memory_order_acq_rel); DCHECK(old_value.state() == State::kUnconstructed || old_value.state() == State::kConstructed); RunWaiters(old_value.waiter()); } void AsyncValue::RunWaiters(NotifierListNode* list) { while (list) { NotifierListNode* node = list; node->notification_(); list = node->next_; delete node; } } void AsyncValue::EnqueueWaiter(absl::AnyInvocable<void()> waiter, WaitersAndState old_value) { auto* node = new NotifierListNode(std::move(waiter)); auto old_state = old_value.state(); node->next_ = old_value.waiter(); auto new_value = WaitersAndState(node, old_state); while (!waiters_and_state_.compare_exchange_weak(old_value, new_value, std::memory_order_acq_rel, std::memory_order_acquire)) { if (old_value.state() == State::kConcrete || old_value.state() == State::kError) { DCHECK(old_value.waiter() == nullptr); node->notification_(); delete node; return; } node->next_ = old_value.waiter(); } DCHECK(old_value.state() == State::kUnconstructed || old_value.state() == State::kConstructed); } void AsyncValue::SetError(absl::Status status) { DCHECK(!status.ok()); if (kind() == Kind::kConcrete) { GetTypeInfo().set_error(this, std::move(status)); } else { DCHECK(kind() == Kind::kIndirect); auto error_av = MakeErrorAsyncValueRef(std::move(status)); static_cast<IndirectAsyncValue*>(this)->ForwardTo(std::move(error_av)); } } void IndirectAsyncValue::ForwardTo(RCReference<AsyncValue> value) { DCHECK(IsUnavailable()); auto s = value->state(); if (s == State::kConcrete || s == State::kError) { DCHECK(!value_) << "IndirectAsyncValue::ForwardTo is called more than once"; auto* concrete_value = value.release(); if (concrete_value->kind() == Kind::kIndirect) { auto* indirect_value = static_cast<IndirectAsyncValue*>(concrete_value); concrete_value = indirect_value->value_; DCHECK(concrete_value != nullptr); DCHECK(concrete_value->kind() == Kind::kConcrete); concrete_value->AddRef(); indirect_value->DropRef(); } DCHECK(type_id_ == kUnknownTypeId || type_id_ == concrete_value->type_id_ || concrete_value->IsType<DummyValueForErrorAsyncValue>()) << "IndirectAsyncValue::ForwardTo value has an unexpected type id"; value_ = concrete_value; type_id_ = concrete_value->type_id_; NotifyAvailable(s); } else { AsyncValue* av = value.get(); av->AndThen([self = FormRef(this), value = std::move(value)]() mutable { self->ForwardTo(std::move(value)); }); } } void BlockUntilReady(AsyncValue* async_value) { if (ABSL_PREDICT_TRUE(async_value->IsAvailable())) return; absl::BlockingCounter cnt(1); async_value->AndThen([&] { cnt.DecrementCount(); }); cnt.Wait(); } void RunWhenReady(absl::Span<AsyncValue* const> values, absl::AnyInvocable<void()> callee) { absl::InlinedVector<AsyncValue*, 4> unavailable_values; for (auto i : values) { if (!i->IsAvailable()) unavailable_values.push_back(i); } if (unavailable_values.empty()) return callee(); if (unavailable_values.size() == 1) { unavailable_values[0]->AndThen( [callee = std::move(callee)]() mutable { callee(); }); return; } struct CounterAndCallee { std::atomic<size_t> counter; absl::AnyInvocable<void()> callee; }; auto* data = new CounterAndCallee{{unavailable_values.size()}, std::move(callee)}; for (auto* val : unavailable_values) { val->AndThen([data]() { if (data->counter.fetch_sub(1) != 1) return; data->callee(); delete data; }); } } void RunWhenReady(absl::Span<RCReference<AsyncValue> const> values, absl::AnyInvocable<void()> callee) { absl::InlinedVector<AsyncValue*, 8> pointers; pointers.reserve(values.size()); for (const auto& ref : values) { pointers.push_back(ref.get()); } RunWhenReady(pointers, std::move(callee)); } }
#include "xla/tsl/concurrency/async_value.h" #include <cstdint> #include <memory> #include <utility> #include "absl/status/status.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/test.h" namespace tsl { TEST(AsyncValueTest, ConstructedToError) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); bool callback_triggered = false; EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([&] { callback_triggered = true; }); EXPECT_FALSE(callback_triggered); value->SetError(absl::InternalError("test error")); EXPECT_TRUE(callback_triggered); EXPECT_TRUE(value->IsAvailable()); EXPECT_FALSE(value->IsConcrete()); EXPECT_TRUE(value->IsError()); value->DropRef(); } TEST(AsyncValueTest, ConstructedToConcrete) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([] {}); value->SetStateConcrete(); EXPECT_TRUE(value->IsAvailable()); EXPECT_TRUE(value->IsConcrete()); EXPECT_FALSE(value->IsError()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); } TEST(AsyncValueTest, UnconstructedEmplace) { AsyncValue* value = MakeUnconstructedAsyncValueRef<int32_t>().release(); EXPECT_FALSE(value->IsConstructed()); EXPECT_FALSE(value->IsConcrete()); EXPECT_FALSE(value->IsAvailable()); value->AndThen([] {}); value->emplace<int32_t>(123); EXPECT_FALSE(value->IsConstructed()); EXPECT_TRUE(value->IsAvailable()); EXPECT_TRUE(value->IsConcrete()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); } TEST(AsyncValueTest, AddAndDropRef) { AsyncValue* value = MakeConstructedAsyncValueRef<int32_t>(123).release(); value->AndThen([] {}); value->SetStateConcrete(); EXPECT_TRUE(value->IsConcrete()); EXPECT_TRUE(value->IsUnique()); value->AddRef(); EXPECT_FALSE(value->IsUnique()); EXPECT_EQ(123, value->get<int32_t>()); value->DropRef(); EXPECT_TRUE(value->IsUnique()); value->DropRef(); } TEST(AsyncValueTest, KeepPayloadOnError) { int payload_value = 0; struct Payload : AsyncPayload::KeepOnError { explicit Payload(int* value) : value{value} { *value = 1; } ~Payload() { *value = 2; } int* value; }; { AsyncValueRef<Payload> value = MakeConstructedAsyncValueRef<Payload>(&payload_value); EXPECT_EQ(1, *value->value); value.SetStateConcrete(); EXPECT_EQ(1, *value->value); EXPECT_TRUE(!value.IsError()); } EXPECT_EQ(2, payload_value); { AsyncValueRef<Payload> value = MakeConstructedAsyncValueRef<Payload>(&payload_value); EXPECT_TRUE(!value.IsError()); value.SetError(absl::InternalError("error")); EXPECT_EQ(1, *value->value); EXPECT_TRUE(value.IsError()); EXPECT_EQ("error", value.GetError().message()); } EXPECT_EQ(2, payload_value); } TEST(AsyncValueTest, StackAllocatedAsyncValue) { int32_t counter = 0; class Payload { public: explicit Payload(int32_t& counter) : counter_{counter} { counter_++; } ~Payload() { counter_++; } int32_t count() const { return counter_; } private: int32_t& counter_; }; internal::AsyncValueStorage<Payload> storage; AsyncValueOwningRef<Payload> owner = MakeConstructedAsyncValueRef<Payload>(storage, counter); AsyncValuePtr<Payload> ptr = owner.AsPtr(); AsyncValue* value = ptr.value(); EXPECT_TRUE(value->IsConstructed()); EXPECT_FALSE(value->IsAvailable()); EXPECT_EQ(1, counter); EXPECT_EQ(1, ptr->count()); ptr.SetStateConcrete(); EXPECT_TRUE(ptr.IsAvailable()); std::make_unique<AsyncValueOwningRef<Payload>>(std::move(owner)); EXPECT_EQ(2, counter); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/async_value.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/concurrency/async_value_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3028451e-22e9-4606-b27f-2af99eba21ae
cpp
tensorflow/tensorflow
node_def_util
tensorflow/core/framework/node_def_util.cc
tensorflow/core/framework/node_def_util_test.cc
#include "tensorflow/core/framework/node_def_util.h" #include <algorithm> #include <unordered_map> #include <vector> #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/scanner.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/strcat.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { const char* const kColocationAttrName = "_class"; const char* const kColocationGroupPrefix = "loc:@"; const char* const kTpuExecuteStagingOp = "IdentityN"; const char* const kTpuExecuteStagingNodeName = "_variable_copy"; AttrSlice::AttrSlice() : ndef_(nullptr) { static const AttrValueMap* const kEmptyAttrValueMap = new AttrValueMap; attrs_ = kEmptyAttrValueMap; } AttrSlice::AttrSlice(const NodeDef& node_def) : ndef_(&node_def), attrs_(nullptr) {} AttrSlice::AttrSlice(const AttrValueMap* a) : ndef_(nullptr), attrs_(a) {} string SummarizeAttrsHelper(AttrSlice attrs, StringPiece device) { string ret; std::vector<string> attr_names; attr_names.reserve(attrs.size()); for (const auto& attr : attrs) { attr_names.push_back(attr.first); } std::sort(attr_names.begin(), attr_names.end()); bool first = true; for (const string& attr_name : attr_names) { if (!first) strings::StrAppend(&ret, ", "); first = false; strings::StrAppend(&ret, attr_name, "=", SummarizeAttrValue(*attrs.Find(attr_name))); } if (!device.empty()) { if (!first) strings::StrAppend(&ret, ", "); first = false; strings::StrAppend(&ret, "_device=\"", device, "\""); } return ret; } string AttrSlice::SummarizeNode() const { return ndef_ ? SummarizeNodeDef(*ndef_) : strings::StrCat( "[", SummarizeAttrsHelper(*this, StringPiece()), "]"); } string AttrSlice::DebugString() const { std::vector<string> attr_key_vals; attr_key_vals.reserve(attrs()->size()); for (const auto& it : *this) { const string& name = it.first; const AttrValue& attr_value = it.second; attr_key_vals.push_back( absl::StrCat(name, "=", SummarizeAttrValue(attr_value))); } return absl::StrJoin(attr_key_vals, ", "); } string SummarizeNodeDef(const NodeDef& node_def, int max_inputs_in_summary) { string ret = strings::StrCat(errors::FormatNodeNameForError(node_def.name()), " = ", node_def.op(), "["); strings::StrAppend(&ret, SummarizeAttrsHelper(node_def, node_def.device())); strings::StrAppend(&ret, "]("); bool first = true; for (const string& input : node_def.input()) { if (!first) strings::StrAppend(&ret, ", "); first = false; if (max_inputs_in_summary-- == 0) { strings::StrAppend(&ret, "..."); break; } strings::StrAppend(&ret, input); } strings::StrAppend(&ret, ")"); return ret; } string SummarizeAttrs(const NodeDef& node_def) { return SummarizeAttrsHelper(node_def, node_def.device()); } string FormatNodeDefForError( StringPiece node_name, bool has_experimental_debug_info, const NodeDef_ExperimentalDebugInfo& experimental_debug_info) { return !has_experimental_debug_info || experimental_debug_info.original_node_names().empty() ? errors::FormatNodeNameForError(string(node_name)) : errors::FormatOriginalNodeLocationForError( experimental_debug_info.original_node_names(), experimental_debug_info.original_func_names()); } string FormatNodeDefForError(const NodeDef& node_def) { return FormatNodeDefForError(node_def.name(), node_def.has_experimental_debug_info(), node_def.experimental_debug_info()); } const AttrValue* AttrSlice::Find(StringPiece attr_name) const { for (const auto& attr : *attrs()) { if (attr.first == attr_name) { return &attr.second; } } return nullptr; } const AttrValue* AttrSlice::FindByString(const string& attr_name) const { auto iter = attrs()->find(attr_name); if (iter != attrs()->end()) { return &iter->second; } else { return nullptr; } } Status AttrSlice::CheckFind(StringPiece attr_name, const AttrValue* attr_value) const { if (attr_value != nullptr) { return absl::OkStatus(); } Status s = errors::NotFound("No attr named '", attr_name, "' in NodeDef:"); if (!absl::StartsWith(attr_name, "_") && ndef_ != nullptr) { s = AttachDef(s, *ndef_); } return s; } Status AttrSlice::Find(StringPiece attr_name, const AttrValue** attr_value) const { *attr_value = Find(attr_name); return CheckFind(attr_name, *attr_value); } Status AttrSlice::FindByString(const string& attr_name, const AttrValue** attr_value) const { *attr_value = FindByString(attr_name); return CheckFind(attr_name, *attr_value); } bool AttrSlice::EqualAttrs(AttrSlice other, Scratch* scratch) const { if (size() != other.size()) return false; for (const auto& attr : *other.attrs()) { auto iter = attrs()->find(attr.first); if (iter == attrs()->end()) return false; iter->second.SerializeToString(&scratch->a); attr.second.SerializeToString(&scratch->b); if (scratch->a != scratch->b) return false; } return true; } #define DEFINE_GET_ATTR(TYPE, FIELD, ATTR_TYPE, APPEND_OP, CAST, ...) \ Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, \ TYPE* value) { \ const AttrValue* attr_value; \ TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); \ TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, ATTR_TYPE)); \ const auto& v = attr_value->FIELD(); \ __VA_ARGS__; \ *value = CAST; \ return OkStatus(); \ } \ Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, \ std::vector<TYPE>* value) { \ const AttrValue* attr_value; \ TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); \ TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "list(" ATTR_TYPE ")")); \ value->reserve(attr_value->list().FIELD().size()); \ for (const auto& v : attr_value->list().FIELD()) { \ __VA_ARGS__; \ value->APPEND_OP(CAST); \ } \ return OkStatus(); \ } #define DEFINE_TRY_GET_ATTR(TYPE, FIELD, ATTR_TYPE, APPEND_OP, CAST, ...) \ bool TryGetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, \ TYPE* value) { \ const AttrValue* attr_value = attrs.Find(attr_name); \ if (attr_value == nullptr) { \ return false; \ } \ Status s = AttrValueHasType(*attr_value, ATTR_TYPE); \ if (!s.ok()) { \ return false; \ } \ const auto& v = attr_value->FIELD(); \ __VA_ARGS__; \ *value = CAST; \ return true; \ } \ bool TryGetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, \ std::vector<TYPE>* value) { \ const AttrValue* attr_value = attrs.Find(attr_name); \ if (attr_value == nullptr) { \ return false; \ } \ Status s = AttrValueHasType(*attr_value, "list(" ATTR_TYPE ")"); \ if (!s.ok()) { \ return false; \ } \ value->reserve(attr_value->list().FIELD().size()); \ for (const auto& v : attr_value->list().FIELD()) { \ __VA_ARGS__; \ value->APPEND_OP(CAST); \ } \ return true; \ } DEFINE_GET_ATTR(tstring, s, "string", emplace_back, v, ;) DEFINE_TRY_GET_ATTR(tstring, s, "string", emplace_back, v, ;) DEFINE_GET_ATTR(string, s, "string", emplace_back, v, ;) DEFINE_TRY_GET_ATTR(string, s, "string", emplace_back, v, ;) DEFINE_GET_ATTR(int64_t, i, "int", emplace_back, v, ;) DEFINE_TRY_GET_ATTR(int64_t, i, "int", emplace_back, v, ;) DEFINE_GET_ATTR( int32, i, "int", emplace_back, static_cast<int32>(v), if (static_cast<int64_t>(static_cast<int32>(v)) != v) { return errors::InvalidArgument("Attr ", attr_name, " has value ", v, " out of range for an int32"); }) DEFINE_TRY_GET_ATTR( int32, i, "int", emplace_back, static_cast<int32>(v), if (static_cast<int64_t>(static_cast<int32>(v)) != v) { static int log_counter = 0; if (log_counter < 10) { log_counter++; LOG(WARNING) << "Attr " << attr_name << " has value " << v << " out of range for an int32"; } return false; }) DEFINE_GET_ATTR(float, f, "float", emplace_back, v, ;) DEFINE_TRY_GET_ATTR(float, f, "float", emplace_back, v, ;) DEFINE_GET_ATTR(bool, b, "bool", emplace_back, v, ;) DEFINE_TRY_GET_ATTR(bool, b, "bool", emplace_back, v, ;) DEFINE_GET_ATTR(DataType, type, "type", emplace_back, static_cast<DataType>(v), ;) DEFINE_TRY_GET_ATTR(DataType, type, "type", emplace_back, static_cast<DataType>(v), ;) DEFINE_GET_ATTR(TensorShapeProto, shape, "shape", emplace_back, v, ;) DEFINE_GET_ATTR(TensorShape, shape, "shape", emplace_back, TensorShape(v), TF_RETURN_IF_ERROR(TensorShape::IsValidShape(v));) DEFINE_TRY_GET_ATTR( TensorShape, shape, "shape", emplace_back, TensorShape(v), if (!TensorShape::IsValidShape(v).ok()) { static int log_counter = 0; if (log_counter < 10) { log_counter++; LOG(WARNING) << "Attr " << attr_name << " has invalid shape value " << v.DebugString(); } return false; }) DEFINE_GET_ATTR(PartialTensorShape, shape, "shape", emplace_back, PartialTensorShape(v), TF_RETURN_IF_ERROR(PartialTensorShape::IsValidShape(v));) DEFINE_GET_ATTR( Tensor, tensor, "tensor", emplace_back, t, Tensor t; if (!t.FromProto(v)) { return errors::InvalidArgument("Attr ", attr_name, " has value ", v.ShortDebugString(), " that can't be converted to a Tensor"); }) DEFINE_GET_ATTR(NameAttrList, func, "func", emplace_back, v, ;); #undef DEFINE_GET_ATTR bool HasNodeAttr(const NodeDef& node_def, StringPiece attr_name) { return node_def.attr().find(string(attr_name)) != node_def.attr().end(); } static const string& kEmptyString = *new string(); const string& GetNodeAttrString(const AttrSlice& attrs, StringPiece attr_name) { const AttrValue* attr_value = attrs.Find(attr_name); if (attr_value == nullptr) { return kEmptyString; } Status s = AttrValueHasType(*attr_value, "string"); if (!s.ok()) { return kEmptyString; } return attr_value->s(); } bool TryGetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, std::vector<const string*>* value) { const AttrValue* attr_value = attrs.Find(attr_name); if (attr_value == nullptr) { return false; } Status s = AttrValueHasType(*attr_value, "list(string)"); if (!s.ok()) { return false; } value->reserve(attr_value->list().s().size()); for (const auto& v : attr_value->list().s()) { value->push_back(&v); } return true; } bool TryGetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, std::vector<const TensorShapeProto*>* value) { const AttrValue* attr_value = attrs.Find(attr_name); if (attr_value == nullptr) { return false; } Status s = AttrValueHasType(*attr_value, "list(shape)"); if (!s.ok()) { return false; } value->reserve(attr_value->list().shape().size()); for (const auto& v : attr_value->list().shape()) { value->push_back(&v); } return true; } Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, DataTypeVector* value) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "list(type)")); for (const auto& v : attr_value->list().type()) { value->push_back(static_cast<DataType>(v)); } return absl::OkStatus(); } Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, const TensorProto** value) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "tensor")); *value = &attr_value->tensor(); return absl::OkStatus(); } bool TryGetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, const TensorProto** value) { const AttrValue* attr_value = attrs.Find(attr_name); if (attr_value == nullptr) { return false; } Status s = AttrValueHasType(*attr_value, "tensor"); if (!s.ok()) { return false; } *value = &attr_value->tensor(); return true; } Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, const NameAttrList** value) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(attrs.Find(attr_name, &attr_value)); TF_RETURN_IF_ERROR(AttrValueHasType(*attr_value, "func")); *value = &attr_value->func(); return absl::OkStatus(); } bool TryGetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, const NameAttrList** value) { const AttrValue* attr_value = attrs.Find(attr_name); if (attr_value == nullptr) { return false; } Status s = AttrValueHasType(*attr_value, "func"); if (!s.ok()) { return false; } *value = &attr_value->func(); return true; } Status GetNodeAttr(const AttrSlice& attrs, StringPiece attr_name, Padding* value) { string str_value; TF_RETURN_IF_ERROR(GetNodeAttr(attrs, attr_name, &str_value)); return GetPaddingFromString(str_value, value); } namespace { template <class NodeDefOrAttrSlice> Status AddArgToSig(const NodeDefOrAttrSlice& node_or_attrs, const OpDef::ArgDef& arg_def, DataTypeVector* sig) { const int original_size = sig->size(); if (!arg_def.number_attr().empty()) { int64_t repeats = -1; TF_RETURN_IF_ERROR( GetNodeAttr(node_or_attrs, arg_def.number_attr(), &repeats)); if (static_cast<int64_t>(static_cast<int32>(repeats)) != repeats) { return errors::InvalidArgument("Number of outputs is too big: ", repeats); } if (repeats < 0) { return errors::InvalidArgument("Value for number_attr() ", repeats, " < 0"); } if (!arg_def.type_attr().empty()) { DataType dtype; TF_RETURN_IF_ERROR( GetNodeAttr(node_or_attrs, arg_def.type_attr(), &dtype)); for (int i = 0; i < repeats; ++i) { sig->push_back(dtype); } } else if (arg_def.type() != DT_INVALID) { for (int i = 0; i < repeats; ++i) { sig->push_back(arg_def.type()); } } else { return errors::InvalidArgument("Missing type or type_attr field in ", arg_def.ShortDebugString()); } } else if (!arg_def.type_attr().empty()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(AttrSlice(node_or_attrs) .FindByString(arg_def.type_attr(), &attr_value)); sig->push_back(attr_value->type()); } else if (!arg_def.type_list_attr().empty()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR( AttrSlice(node_or_attrs) .FindByString(arg_def.type_list_attr(), &attr_value)); for (int dtype : attr_value->list().type()) { sig->push_back(static_cast<DataType>(dtype)); } } else if (arg_def.type() != DT_INVALID) { sig->push_back(arg_def.type()); } else { return errors::InvalidArgument("No type fields in ", arg_def.ShortDebugString()); } if (arg_def.is_ref()) { for (size_t i = original_size; i < sig->size(); ++i) { if (IsRefType((*sig)[i])) { return errors::InvalidArgument( "Requested reference to a reference type: ", arg_def.ShortDebugString()); } (*sig)[i] = MakeRefType((*sig)[i]); } } return absl::OkStatus(); } } Status InputTypeForNode(const NodeDef& node_def, const OpDef& op_def, int input_port, DataType* input_type) { DataTypeVector input_types; for (const auto& arg : op_def.input_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, &input_types)); int input_types_size = input_types.size(); if (input_types_size > input_port) { const DataType dtype = input_types[input_port]; *input_type = dtype; return absl::OkStatus(); } } return errors::InvalidArgument("Input ", input_port, " not found for node ", node_def.name()); } Status InputTypesForNode(const NodeDef& node_def, const OpDef& op_def, DataTypeVector* inputs) { for (const auto& arg : op_def.input_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, inputs)); } return absl::OkStatus(); } Status OutputTypeForNode(const NodeDef& node_def, const OpDef& op_def, int output_port, DataType* output_type) { DataTypeVector output_types; for (const auto& arg : op_def.output_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, &output_types)); int output_types_size = output_types.size(); if (output_types_size > output_port) { const DataType dtype = output_types[output_port]; *output_type = dtype; return absl::OkStatus(); } } return errors::InvalidArgument("Output ", output_port, " not found for node ", node_def.name()); } Status OutputTypesForNode(const NodeDef& node_def, const OpDef& op_def, DataTypeVector* outputs) { for (const auto& arg : op_def.output_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(node_def, arg, outputs)); } return absl::OkStatus(); } Status OutputTypesForNode(const AttrSlice& attrs, const OpDef& op_def, DataTypeVector* outputs) { for (const auto& arg : op_def.output_arg()) { TF_RETURN_IF_ERROR(AddArgToSig(attrs, arg, outputs)); } return absl::OkStatus(); } Status InOutTypesForNode(const NodeDef& node_def, const OpDef& op_def, DataTypeVector* inputs, DataTypeVector* outputs) { TF_RETURN_IF_ERROR(InputTypesForNode(node_def, op_def, inputs)); return OutputTypesForNode(node_def, op_def, outputs); } Status NumOutputsForNode(const NodeDef& node_def, const OpDef& op_def, int* num_outputs) { DataTypeVector outputs; TF_RETURN_IF_ERROR(OutputTypesForNode(node_def, op_def, &outputs)); *num_outputs = outputs.size(); return absl::OkStatus(); } int OpPortIdToArgId(const NodeDef& node, const protobuf::RepeatedPtrField<OpDef::ArgDef>& args, int port_id) { for (int arg_id = 0; arg_id < args.size(); ++arg_id) { if (port_id < 0) { return -1; } else if (port_id == 0) { return arg_id; } int n = 1; const auto& arg = args.Get(arg_id); if (!arg.number_attr().empty()) { n = node.attr().at(arg.number_attr()).i(); } else if (!arg.type_list_attr().empty()) { n = node.attr().at(arg.type_list_attr()).list().type_size(); } if (n < 0) { DCHECK_GE(n, 0); return -1; } else if (port_id < n) { return arg_id; } port_id -= n; } return -1; } Status ValidateNodeDef(const NodeDef& node_def, const OpDef& op_def) { if (node_def.op() != op_def.name()) { return errors::InvalidArgument( "NodeDef op '", node_def.op(), "' does not match ", SummarizeOpDef(op_def), "; NodeDef: ", FormatNodeDefForError(node_def)); } bool seen_control = false; size_t num_inputs = 0; for (const string& input : node_def.input()) { if (absl::StartsWith(input, "^")) { seen_control = true; if (input.find(':') != string::npos) { return errors::InvalidArgument("Control input '", input, "' must not have ':' in NodeDef: ", FormatNodeDefForError(node_def)); } } else if (seen_control) { return errors::InvalidArgument("Non-control input '", input, "' after control input in NodeDef: ", FormatNodeDefForError(node_def)); } else { ++num_inputs; } } std::unordered_map<string, const OpDef::AttrDef*> op_attrs; for (const auto& attr : op_def.attr()) { if (!gtl::InsertIfNotPresent(&op_attrs, attr.name(), &attr)) { return errors::InvalidArgument("OpDef has duplicate attr name '", attr.name(), "': ", SummarizeOpDef(op_def)); } } for (const auto& attr : node_def.attr()) { if (absl::StartsWith(attr.first, "_")) { continue; } auto iter = op_attrs.find(attr.first); if (iter == op_attrs.end()) { LOG_EVERY_N_SEC(ERROR, 5) << "NodeDef mentions attribute " << attr.first << " which is not in the op definition: " << SummarizeOpDef(op_def) << " This may be expected if your graph generating binary is newer " << " than this binary. Unknown attributes will be ignored." << " NodeDef: " << FormatNodeDefForError(node_def); continue; } if (attr.second.placeholder().empty()) { TF_RETURN_WITH_CONTEXT_IF_ERROR( ValidateAttrValue(attr.second, *iter->second), "; NodeDef: ", FormatNodeDefForError(node_def), "; ", SummarizeOpDef(op_def)); } op_attrs.erase(iter); } if (!op_attrs.empty()) { string attrs; for (const auto& attr_pair : op_attrs) { if (!attrs.empty()) strings::StrAppend(&attrs, "', '"); strings::StrAppend(&attrs, attr_pair.first); } return errors::InvalidArgument( "NodeDef missing attr", op_attrs.size() == 1 ? " '" : "s '", attrs, "' from ", SummarizeOpDef(op_def), "; NodeDef: ", FormatNodeDefForError(node_def)); } DataTypeVector inputs, outputs; TF_RETURN_IF_ERROR(InOutTypesForNode(node_def, op_def, &inputs, &outputs)); if (num_inputs != inputs.size()) { return errors::InvalidArgument( "NodeDef expected inputs '", DataTypeVectorString(inputs), "' do not match ", num_inputs, " inputs specified; ", SummarizeOpDef(op_def), "; NodeDef: ", FormatNodeDefForError(node_def)); } return absl::OkStatus(); } namespace { Status ComputeArgRange(const AttrSlice& attrs, const OpDef::ArgDef& arg_def, const OpDef& op_def, int* num) { if (!arg_def.number_attr().empty()) { return GetNodeAttr(attrs, arg_def.number_attr(), num); } else if (!arg_def.type_list_attr().empty()) { const AttrValue* attr_value; TF_RETURN_IF_ERROR(attrs.Find(arg_def.type_list_attr(), &attr_value)); *num = attr_value->list().type_size(); } else if (!arg_def.type_attr().empty() || arg_def.type() != DT_INVALID) { *num = 1; } else { return errors::InvalidArgument( "Argument '", arg_def.name(), "' incorrectly specified in op definition: ", SummarizeOpDef(op_def)); } return absl::OkStatus(); } Status NameRangesHelper(const AttrSlice& attrs, const protobuf::RepeatedPtrField<OpDef::ArgDef>& args, const OpDef& op_def, NameRangeMap* result) { int start = 0; int num; for (const auto& arg : args) { TF_RETURN_IF_ERROR(ComputeArgRange(attrs, arg, op_def, &num)); (*result)[arg.name()] = std::make_pair(start, start + num); start += num; } return absl::OkStatus(); } } Status NameRangesForNode(const AttrSlice& attrs, const OpDef& op_def, NameRangeMap* inputs, NameRangeMap* outputs) { if (inputs != nullptr) { TF_RETURN_IF_ERROR( NameRangesHelper(attrs, op_def.input_arg(), op_def, inputs)); } if (outputs != nullptr) { return NameRangesHelper(attrs, op_def.output_arg(), op_def, outputs); } return absl::OkStatus(); } void AddDefaultsToNodeDef(const OpDef& op_def, NodeDef* node_def) { for (const auto& attr_def : op_def.attr()) { AttrSlice attrs(*node_def); if (attr_def.has_default_value() && !attrs.Find(attr_def.name())) { AddNodeAttr(attr_def.name(), attr_def.default_value(), node_def); } } } void StripDefaultsFromNodeDef(const OpDef& op_def, NodeDef* node_def) { AttrSlice attrs(*node_def); for (const auto& attr_def : op_def.attr()) { if (attr_def.has_default_value()) { const AttrValue* attr = attrs.Find(attr_def.name()); if (attr && AreAttrValuesEqual(*attr, attr_def.default_value())) node_def->mutable_attr()->erase(attr_def.name()); } } } namespace { using ::tensorflow::tstring; using ::tensorflow::strings::Scanner; bool IsValidNodeName(StringPiece sp) { Scanner scanner(sp); scanner.One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); while (true) { if (!scanner.GetResult()) return false; if (scanner.empty()) return true; scanner.One(Scanner::RANGLE) .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); } } bool IsValidDataInputName(StringPiece sp) { Scanner scan(sp); scan.One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); while (true) { if (!scan.GetResult()) return false; if (scan.empty()) return true; if (scan.Peek() == ':') { scan.OneLiteral(":"); if (scan.Peek() == '0') { scan.OneLiteral("0"); } else { scan.Many(Scanner::DIGIT); } } else { scan.One(Scanner::RANGLE) .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); } } } bool IsValidControlInputName(StringPiece sp) { Scanner scan(sp); scan.OneLiteral("^") .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); while (true) { if (!scan.GetResult()) return false; if (scan.empty()) return true; scan.One(Scanner::RANGLE) .One(Scanner::LETTER_DIGIT_DOT) .Any(Scanner::LETTER_DIGIT_DASH_DOT_SLASH_UNDERSCORE); } } const StringPiece kColocationGroupPrefixStringPiece(kColocationGroupPrefix); } Status ValidateOpInput(const string& input_name, bool* is_control_input) { *is_control_input = false; if (IsValidDataInputName(input_name)) { return absl::OkStatus(); } else if (IsValidControlInputName(input_name)) { *is_control_input = true; return absl::OkStatus(); } else { return errors::InvalidArgument("Illegal op input name '", input_name, "'"); } } Status ValidateNodeName(const string& node_name) { if (IsValidNodeName(node_name)) { return absl::OkStatus(); } else { return errors::InvalidArgument("Illegal op name '", node_name, "'"); } } Status ValidateExternalNodeDefSyntax(const NodeDef& node_def) { Status s = ValidateNodeName(node_def.name()); if (!s.ok()) { return AttachDef(s, node_def); } bool in_control_inputs = false; for (const string& input_name : node_def.input()) { bool is_control_input; s = ValidateOpInput(input_name, &is_control_input); if (!s.ok()) { return AttachDef(s, node_def); } if (in_control_inputs && !is_control_input) { return AttachDef(errors::InvalidArgument( "All control inputs must follow all data inputs"), node_def); } in_control_inputs = is_control_input; } return absl::OkStatus(); } Status AttachDef(const Status& status, const NodeDef& node_def, bool allow_multiple_formatted_node) { string node_error; if (!allow_multiple_formatted_node && absl::StrContains(status.message(), "{{node ")) { node_error = node_def.name(); } else { node_error = FormatNodeDefForError(node_def); } return errors::CreateWithUpdatedMessage( status, strings::StrCat(status.message(), "\n\t", " [[", node_error, "]]")); } void AddNodeAttr(StringPiece name, const AttrValue& value, NodeDef* node_def) { node_def->mutable_attr()->insert( AttrValueMap::value_type(string(name), value)); } void AddNodeAttr(StringPiece name, AttrValue&& value, NodeDef* node_def) { (*node_def->mutable_attr())[string(name)] = std::move(value); } #define ADD_NODE_ATTR(T) \ void AddNodeAttr(StringPiece name, T value, NodeDef* node_def) { \ AttrValue attr_value; \ SetAttrValue(value, &attr_value); \ AddNodeAttr(name, attr_value, node_def); \ } ADD_NODE_ATTR(StringPiece) ADD_NODE_ATTR(const char*) ADD_NODE_ATTR(int32_t) ADD_NODE_ATTR(int64_t) ADD_NODE_ATTR(float) ADD_NODE_ATTR(double) ADD_NODE_ATTR(bool) ADD_NODE_ATTR(DataType) ADD_NODE_ATTR(const PartialTensorShape&) ADD_NODE_ATTR(const Tensor&) ADD_NODE_ATTR(const TensorProto&) ADD_NODE_ATTR(const NameAttrList&) ADD_NODE_ATTR(absl::Span<const StringPiece>) ADD_NODE_ATTR(absl::Span<const char* const>) ADD_NODE_ATTR(absl::Span<const string>) ADD_NODE_ATTR(absl::Span<const int32>) ADD_NODE_ATTR(absl::Span<const int64_t>) ADD_NODE_ATTR(absl::Span<const float>) ADD_NODE_ATTR(absl::Span<const bool>) ADD_NODE_ATTR(const std::vector<bool>&) ADD_NODE_ATTR(absl::Span<const DataType>) ADD_NODE_ATTR(absl::Span<const TensorShape>) ADD_NODE_ATTR(absl::Span<const PartialTensorShape>) ADD_NODE_ATTR(absl::Span<const TensorShapeProto>) ADD_NODE_ATTR(absl::Span<const Tensor>) ADD_NODE_ATTR(absl::Span<const NameAttrList>) #undef ADD_NODE_ATTR void AddAttr(StringPiece name, const AttrValue& value, AttrValueMap* map) { map->insert(AttrValueMap::value_type(string(name), value)); } #define ADD_ATTR(T) \ void AddAttr(StringPiece name, T value, AttrValueMap* map) { \ AttrValue attr_value; \ SetAttrValue(value, &attr_value); \ AddAttr(name, attr_value, map); \ } ADD_ATTR(bool) #undef ADD_ATTR Status AddPrefixAndSuffixToNode(StringPiece prefix, StringPiece suffix, NodeDef* node_def, bool uniquify_frame_name) { node_def->set_name(strings::StrCat(prefix, node_def->name(), suffix)); if (uniquify_frame_name && (node_def->op() == "Enter" || node_def->op() == "RefEnter")) { string frame_name; TF_RETURN_IF_ERROR(GetNodeAttr(*node_def, "frame_name", &frame_name)); AttrValue& attr = (*node_def->mutable_attr())["frame_name"]; frame_name = strings::StrCat(prefix, frame_name, suffix); attr.set_s(frame_name); } return absl::OkStatus(); } Status MaybeAddPrefixToColocationConstraints( const std::unordered_set<string>& match, StringPiece prefix, NodeDef* node_def) { auto attr = node_def->mutable_attr()->find(kColocationAttrName); if (attr == node_def->mutable_attr()->end()) { return absl::OkStatus(); } auto constraints_list = attr->second.mutable_list(); auto constraints_size = constraints_list->s_size(); for (size_t i = 0; i < constraints_size; ++i) { StringPiece original(constraints_list->s(i)); if (absl::ConsumePrefix(&original, kColocationGroupPrefixStringPiece)) { if (match.find(string(original)) != match.end()) { (*constraints_list->mutable_s(i)) = strings::StrCat(kColocationGroupPrefix, prefix, original); } } } return absl::OkStatus(); } Status MaybeUpdateColocationConstraintsWithMap( const std::map<absl::string_view, absl::string_view>& node_name_map, NodeDef* node_def) { auto attr = node_def->mutable_attr()->find(kColocationAttrName); if (attr == node_def->mutable_attr()->end()) { return absl::OkStatus(); } auto constraints_list = attr->second.mutable_list(); auto constraints_size = constraints_list->s_size(); for (size_t i = 0; i < constraints_size; ++i) { StringPiece original(constraints_list->s(i)); if (absl::ConsumePrefix(&original, kColocationGroupPrefixStringPiece)) { if (node_name_map.find(original) != node_name_map.end()) { (*constraints_list->mutable_s(i)) = strings::StrCat(kColocationGroupPrefix, node_name_map.at(original)); } } } return absl::OkStatus(); } void ChangeToNoOp(NodeDef* node_def) { node_def->set_op("NoOp"); node_def->clear_experimental_type(); } }
#include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { OpDef ToOpDef(const OpDefBuilder& builder) { OpRegistrationData op_reg_data; TF_EXPECT_OK(builder.Finalize(&op_reg_data)); return op_reg_data.op_def; } NodeDef ToNodeDef(const string& text) { NodeDef node_def; EXPECT_TRUE(protobuf::TextFormat::MergeFromString(text, &node_def)); return node_def; } NodeDef ToNodeDef(NodeDefBuilder&& builder) { NodeDef node_def; TF_EXPECT_OK(builder.Finalize(&node_def)); return node_def; } void ExpectSuccess(const NodeDef& good, const OpDef& op_def) { EXPECT_EQ(absl::OkStatus(), ValidateNodeDef(good, op_def)) << "NodeDef: " << SummarizeNodeDef(good) << "; OpDef: " << SummarizeOpDef(op_def); } void ExpectFailure(const NodeDef& bad, const OpDef& op_def, const string& message) { Status status = ValidateNodeDef(bad, op_def); EXPECT_FALSE(status.ok()) << "NodeDef: " << SummarizeNodeDef(bad) << "; OpDef: " << SummarizeOpDef(op_def); if (status.ok()) return; EXPECT_TRUE(errors::IsInvalidArgument(status)) << status << "; NodeDef: " << SummarizeNodeDef(bad) << "; OpDef: " << SummarizeOpDef(op_def); LOG(INFO) << "Message: " << status.message(); EXPECT_TRUE(absl::StrContains(status.ToString(), message)) << "NodeDef: " << SummarizeNodeDef(bad) << "; OpDef: " << SummarizeOpDef(op_def) << "\nActual error: " << status << "\nDoes not contain: " << message; } TEST(NodeDefUtilTest, In) { const OpDef op = ToOpDef(OpDefBuilder("In").Input("i: T").Attr("T: type")); const NodeDef node_def = ToNodeDef(R"pb( name: 'n' op: 'In' input: 'a' attr { key: 'T' value { type: DT_FLOAT } } )pb"); ExpectSuccess(node_def, op); EXPECT_EQ("{{node n}} = In[T=DT_FLOAT](a)", SummarizeNodeDef(node_def)); NodeDef bad = node_def; bad.set_op("Wrong"); ExpectFailure(bad, op, "NodeDef op 'Wrong' does not match Op<name=In;"); bad = node_def; bad.clear_attr(); ExpectFailure(bad, op, "NodeDef missing attr 'T' from Op<name=In;"); bad = node_def; bad.clear_attr(); AddNodeAttr("T", 17, &bad); ExpectFailure( bad, op, "AttrValue had value with type 'int' when 'type' expected\n\t for attr " "'T'\n\t; NodeDef: "); bad = node_def; bad.add_input("b"); ExpectFailure( bad, op, "NodeDef expected inputs 'float' do not match 2 inputs specified;"); bad = node_def; bad.clear_input(); ExpectFailure( bad, op, "NodeDef expected inputs 'float' do not match 0 inputs specified;"); NodeDef good = node_def; good.add_input("^b"); ExpectSuccess(node_def, op); bad = node_def; bad.clear_input(); bad.add_input("^b"); bad.add_input("a"); ExpectFailure(bad, op, "Non-control input 'a' after control input " "in NodeDef:"); bad = node_def; bad.add_input("^b:0"); ExpectFailure(bad, op, "Control input '^b:0' must not have ':' in NodeDef:"); } TEST(NodeDefUtilTest, Out) { const OpDef op = ToOpDef(OpDefBuilder("Out").Output("o: T").Attr("T: numbertype")); const NodeDef node_def = ToNodeDef(R"pb( name: 'n' op: 'Out' attr { key: 'T' value { type: DT_INT32 } } )pb"); ExpectSuccess(node_def, op); EXPECT_EQ("{{node n}} = Out[T=DT_INT32]()", SummarizeNodeDef(node_def)); NodeDef bad = node_def; bad.clear_attr(); AddNodeAttr("T", DT_STRING, &bad); ExpectFailure(bad, op, "Value for attr 'T' of string is not in the list of allowed " "values: float, double, int32, uint8, int16, int8, complex64, " "int64, qint8, quint8, qint32, bfloat16, qint16, quint16, " "uint16, complex128, " "half, uint32, uint64"); } TEST(NodeDefUtilTest, Enum) { const OpDef op = ToOpDef(OpDefBuilder("Enum").Attr("e: {'apple','orange'}")); const NodeDef node_def = ToNodeDef(R"pb( name: 'n' op: 'Enum' attr { key: 'e' value { s: 'apple' } } )pb"); ExpectSuccess(node_def, op); EXPECT_EQ("{{node n}} = Enum[e=\"apple\"]()", SummarizeNodeDef(node_def)); NodeDef good = node_def; good.clear_attr(); AddNodeAttr("e", "orange", &good); ExpectSuccess(good, op); NodeDef bad = node_def; bad.clear_attr(); AddNodeAttr("e", "foo", &bad); ExpectFailure(bad, op, "Value for attr 'e' of \"foo\" is not in the list of allowed " "values: \"apple\", \"orange\""); } TEST(NodeDefUtilTest, SameIn) { const OpDef op = ToOpDef(OpDefBuilder("SameIn") .Input("i: N * T") .Attr("N: int >= 2") .Attr("T: {float,double}")); const NodeDef node_def = ToNodeDef(R"pb( name: 'n' op: 'SameIn' input: 'a' input: 'b' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_DOUBLE } } )pb"); ExpectSuccess(node_def, op); EXPECT_EQ("{{node n}} = SameIn[N=2, T=DT_DOUBLE](a, b)", SummarizeNodeDef(node_def)); NodeDef bad = ToNodeDef(R"pb( name: 'n' op: 'SameIn' input: 'a' input: 'b' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_STRING } } )pb"); ExpectFailure(bad, op, "Value for attr 'T' of string is not in the list of allowed " "values: float, double"); bad = ToNodeDef(R"pb( name: 'n' op: 'SameIn' input: 'a' input: 'b' attr { key: 'N' value { i: 1 } } attr { key: 'T' value { type: DT_FLOAT } } )pb"); ExpectFailure(bad, op, "Value for attr 'N' of 1 must be at least minimum 2"); } TEST(NodeDefUtilTest, AnyIn) { const OpDef op = ToOpDef(OpDefBuilder("AnyIn").Input("i: T").Attr("T: list(type) >= 1")); const NodeDef node_def = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectSuccess(node_def, op); EXPECT_EQ("{{node n}} = AnyIn[T=[DT_INT32, DT_STRING]](a, b)", SummarizeNodeDef(node_def)); const NodeDef bad = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a' attr { key: 'T' value { list {} } } )pb"); ExpectFailure(bad, op, "Length for attr 'T' of 0 must be at least minimum 1"); const NodeDef bad2 = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a' attr { key: 'T' value {} } )pb"); ExpectFailure(bad2, op, "Length for attr 'T' of 0 must be at least minimum 1"); } TEST(NodeDefUtilTest, Device) { const OpDef op_def1 = ToOpDef(OpDefBuilder("None")); const NodeDef node_def1 = ToNodeDef(std::move(NodeDefBuilder("d", &op_def1).Device("/cpu:17"))); ExpectSuccess(node_def1, op_def1); EXPECT_EQ("{{node d}} = None[_device=\"/cpu:17\"]()", SummarizeNodeDef(node_def1)); const OpDef op_def2 = ToOpDef(OpDefBuilder("WithAttr").Attr("v: int")); const NodeDef node_def2 = ToNodeDef( std::move(NodeDefBuilder("d", &op_def2).Attr("v", 7).Device("/cpu:5"))); ExpectSuccess(node_def2, op_def2); EXPECT_EQ("{{node d}} = WithAttr[v=7, _device=\"/cpu:5\"]()", SummarizeNodeDef(node_def2)); } void ExpectValidSyntax(const NodeDef& good) { EXPECT_EQ(absl::OkStatus(), ValidateExternalNodeDefSyntax(good)) << "NodeDef: " << SummarizeNodeDef(good); } void ExpectInvalidSyntax(const NodeDef& bad, const string& message) { Status status = ValidateExternalNodeDefSyntax(bad); ASSERT_FALSE(status.ok()) << "NodeDef: " << SummarizeNodeDef(bad); EXPECT_TRUE(errors::IsInvalidArgument(status)) << status << "; NodeDef: " << SummarizeNodeDef(bad); EXPECT_TRUE(absl::StrContains(StringPiece(status.ToString()), message)) << "NodeDef: " << SummarizeNodeDef(bad) << ", " << status << ", " << message; } TEST(NodeDefUtilTest, ValidSyntax) { const NodeDef node_def = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectValidSyntax(node_def); const NodeDef node_def_namespace = ToNodeDef(R"pb( name: 'n' op: 'Project>AnyIn' input: 'a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectValidSyntax(node_def_namespace); const NodeDef node_def_explicit_inputs = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a:0' input: 'b:123' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectValidSyntax(node_def_explicit_inputs); EXPECT_EQ("{{node n}} = AnyIn[T=[DT_INT32, DT_STRING]](a:0, b:123)", SummarizeNodeDef(node_def_explicit_inputs)); const NodeDef node_def_explicit_inputs_namespace = ToNodeDef(R"pb( name: 'Project>n' op: 'Project>AnyIn' input: 'Project>a:0' input: 'Project>b:123' input: '^Project>c' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectValidSyntax(node_def_explicit_inputs_namespace); EXPECT_EQ( "{{node Project>n}} = Project>AnyIn[T=[DT_INT32, DT_STRING]]" "(Project>a:0, Project>b:123, ^Project>c)", SummarizeNodeDef(node_def_explicit_inputs_namespace)); const NodeDef node_def_partial_shape = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' attr { key: 'shp' value { shape { dim { size: -1 } dim { size: 0 } } } } )pb"); ExpectValidSyntax(node_def_partial_shape); const NodeDef node_def_control_input = ToNodeDef(R"pb( name: 'n-' op: 'AnyIn' input: 'a' input: '^b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectValidSyntax(node_def_control_input); const NodeDef node_def_invalid_name = ToNodeDef(R"pb( name: 'n:0' op: 'AnyIn' input: 'a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_invalid_name, "Illegal op name 'n:0'"); const NodeDef node_def_internal_name = ToNodeDef(R"pb( name: '_n' op: 'AnyIn' input: 'a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_internal_name, "Illegal op name '_n'"); const NodeDef node_def_slash_in_name = ToNodeDef(R"pb( name: 'n\\' op: 'AnyIn' input: 'a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_slash_in_name, "Illegal op name 'n\\'"); const NodeDef node_def_internal_input_name = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: '_a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_internal_input_name, "Illegal op input name '_a'"); const NodeDef node_def_input_name_slash = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a\\' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_input_name_slash, "Illegal op input name 'a\\'"); const NodeDef node_def_invalid_control_input_name = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a' input: '^b:0' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_invalid_control_input_name, "Illegal op input name '^b:0'"); const NodeDef node_def_control_input_name_slash = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a' input: '^b\\' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_control_input_name_slash, "Illegal op input name '^b\\'"); const NodeDef node_def_data_input_after_control = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: '^a' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_data_input_after_control, "All control inputs must follow all data inputs"); const NodeDef node_def_data_input_invalid_port = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a:b' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_data_input_invalid_port, "Illegal op input name 'a:b"); const NodeDef node_def_data_input_invalid_port2 = ToNodeDef(R"pb( name: 'n' op: 'AnyIn' input: 'a:00' input: 'b' attr { key: 'T' value { list { type: [ DT_INT32, DT_STRING ] } } } )pb"); ExpectInvalidSyntax(node_def_data_input_invalid_port2, "Illegal op input name 'a:00"); } TEST(InputTypesForNode, Simple) { const OpDef op_def = ToOpDef(OpDefBuilder("Simple") .Input("a: float") .Input("b: int32") .Output("c: string") .Output("d: bool")); const NodeDef node_def = ToNodeDef(std::move( NodeDefBuilder("simple", &op_def).Input(FakeInput()).Input(FakeInput()))); DataTypeVector types; EXPECT_TRUE(InputTypesForNode(node_def, op_def, &types).ok()); EXPECT_EQ(types[0], DT_FLOAT); EXPECT_EQ(types[1], DT_INT32); DataType type; EXPECT_TRUE(InputTypeForNode(node_def, op_def, 0, &type).ok()); EXPECT_EQ(type, DT_FLOAT); EXPECT_TRUE(InputTypeForNode(node_def, op_def, 1, &type).ok()); EXPECT_EQ(type, DT_INT32); EXPECT_FALSE(InputTypeForNode(node_def, op_def, 2, &type).ok()); } TEST(OutputTypesForNode, Simple) { const OpDef op_def = ToOpDef(OpDefBuilder("Simple") .Input("a: float") .Input("b: int32") .Output("c: string") .Output("d: bool")); const NodeDef node_def = ToNodeDef(std::move( NodeDefBuilder("simple", &op_def).Input(FakeInput()).Input(FakeInput()))); DataTypeVector types; EXPECT_TRUE(OutputTypesForNode(node_def, op_def, &types).ok()); EXPECT_EQ(types[0], DT_STRING); EXPECT_EQ(types[1], DT_BOOL); DataType type; EXPECT_TRUE(OutputTypeForNode(node_def, op_def, 0, &type).ok()); EXPECT_EQ(type, DT_STRING); EXPECT_TRUE(OutputTypeForNode(node_def, op_def, 1, &type).ok()); EXPECT_EQ(type, DT_BOOL); EXPECT_FALSE(OutputTypeForNode(node_def, op_def, 2, &type).ok()); } TEST(OutputTypesForNode, LargeOutput) { const OpDef op_def = ToOpDef(OpDefBuilder("TestSplitOp") .Input("value: int64") .Output("output: num_split * int64") .Attr("num_split: int >= 1")); int64_t num_split = 1000000000000; const NodeDef node_def = ToNodeDef(std::move(NodeDefBuilder("test_split_op", &op_def) .Input(FakeInput()) .Attr("num_split", num_split))); DataTypeVector types; EXPECT_FALSE(OutputTypesForNode(node_def, op_def, &types).ok()); } TEST(OutputTypesForNode_AttrSliceOverload, Simple) { const OpDef op_def = ToOpDef(OpDefBuilder("Simple") .Input("a: float") .Input("b: int32") .Output("c: string") .Output("d: bool")); const AttrSlice attr_slice = AttrSlice(ToNodeDef(std::move(NodeDefBuilder("simple", &op_def) .Input(FakeInput()) .Input(FakeInput())))); DataTypeVector types; EXPECT_TRUE(OutputTypesForNode(attr_slice, op_def, &types).ok()); EXPECT_EQ(types[0], DT_STRING); EXPECT_EQ(types[1], DT_BOOL); } TEST(NameRangesForNodeTest, Simple) { const OpDef op_def = ToOpDef(OpDefBuilder("Simple") .Input("a: float") .Input("b: int32") .Output("c: string") .Output("d: bool")); NameRangeMap inputs, outputs; const NodeDef node_def = ToNodeDef(std::move( NodeDefBuilder("simple", &op_def).Input(FakeInput()).Input(FakeInput()))); TF_EXPECT_OK(NameRangesForNode(node_def, op_def, &inputs, &outputs)); EXPECT_EQ(NameRangeMap({{"a", {0, 1}}, {"b", {1, 2}}}), inputs); EXPECT_EQ(NameRangeMap({{"c", {0, 1}}, {"d", {1, 2}}}), outputs); EXPECT_EQ("{{node simple}} = Simple[](a, b)", SummarizeNodeDef(node_def)); OpDef bad_op_def = op_def; bad_op_def.mutable_input_arg(0)->clear_type(); EXPECT_FALSE(NameRangesForNode(node_def, bad_op_def, &inputs, &outputs).ok()); } TEST(NameRangesForNodeTest, Polymorphic) { const OpDef op_def = ToOpDef(OpDefBuilder("Polymorphic") .Input("a: T") .Input("b: T") .Output("c: T") .Attr("T: type")); NameRangeMap inputs, outputs; const NodeDef node_def1 = ToNodeDef(std::move(NodeDefBuilder("poly", &op_def) .Input(FakeInput(DT_INT32)) .Input(FakeInput(DT_INT32)))); TF_EXPECT_OK(NameRangesForNode(node_def1, op_def, &inputs, &outputs)); EXPECT_EQ(NameRangeMap({{"a", {0, 1}}, {"b", {1, 2}}}), inputs); EXPECT_EQ(NameRangeMap({{"c", {0, 1}}}), outputs); EXPECT_EQ("{{node poly}} = Polymorphic[T=DT_INT32](a, b)", SummarizeNodeDef(node_def1)); const NodeDef node_def2 = ToNodeDef(std::move(NodeDefBuilder("poly", &op_def) .Input(FakeInput(DT_BOOL)) .Input(FakeInput(DT_BOOL)))); TF_EXPECT_OK(NameRangesForNode(node_def2, op_def, &inputs, &outputs)); EXPECT_EQ(NameRangeMap({{"a", {0, 1}}, {"b", {1, 2}}}), inputs); EXPECT_EQ(NameRangeMap({{"c", {0, 1}}}), outputs); EXPECT_EQ("{{node poly}} = Polymorphic[T=DT_BOOL](a, b)", SummarizeNodeDef(node_def2)); } TEST(NameRangesForNodeTest, NRepeats) { const OpDef op_def = ToOpDef(OpDefBuilder("NRepeats") .Input("a: N * int32") .Input("b: N * T") .Output("c: T") .Output("d: N * string") .Output("e: M * bool") .Attr("N: int") .Attr("M: int") .Attr("T: type")); NameRangeMap inputs, outputs; const NodeDef node_def1 = ToNodeDef(std::move(NodeDefBuilder("nr", &op_def) .Input(FakeInput(4, DT_INT32)) .Input(FakeInput(4, DT_FLOAT)) .Attr("M", 3))); TF_EXPECT_OK(NameRangesForNode(node_def1, op_def, &inputs, &outputs)); EXPECT_EQ(NameRangeMap({{"a", {0, 4}}, {"b", {4, 8}}}), inputs); EXPECT_EQ(NameRangeMap({{"c", {0, 1}}, {"d", {1, 5}}, {"e", {5, 8}}}), outputs); EXPECT_EQ( "{{node nr}} = NRepeats[M=3, N=4, T=DT_FLOAT](a, a:1, a:2, a:3, b, b:1, " "b:2, b:3)", SummarizeNodeDef(node_def1)); const NodeDef node_def2 = ToNodeDef(std::move(NodeDefBuilder("nr", &op_def) .Input(FakeInput(2, DT_INT32)) .Input(FakeInput(2, DT_DOUBLE)) .Attr("M", 7))); TF_EXPECT_OK(NameRangesForNode(node_def2, op_def, &inputs, &outputs)); EXPECT_EQ(NameRangeMap({{"a", {0, 2}}, {"b", {2, 4}}}), inputs); EXPECT_EQ(NameRangeMap({{"c", {0, 1}}, {"d", {1, 3}}, {"e", {3, 10}}}), outputs); EXPECT_EQ("{{node nr}} = NRepeats[M=7, N=2, T=DT_DOUBLE](a, a:1, b, b:1)", SummarizeNodeDef(node_def2)); NodeDef bad_node_def = node_def2; bad_node_def.clear_attr(); EXPECT_FALSE(NameRangesForNode(bad_node_def, op_def, &inputs, &outputs).ok()); } TEST(NameRangesForNodeTest, TypeList) { const OpDef op_def = ToOpDef(OpDefBuilder("TypeList") .Input("a: T1") .Input("b: T2") .Output("c: T2") .Output("d: T3") .Output("e: T1") .Attr("T1: list(type)") .Attr("T2: list(type)") .Attr("T3: list(type)")); NameRangeMap inputs, outputs; const NodeDef node_def1 = ToNodeDef(std::move(NodeDefBuilder("tl", &op_def) .Input(FakeInput({DT_BOOL, DT_FLOAT})) .Input(FakeInput(4, DT_FLOAT)) .Attr("T3", {DT_INT32, DT_DOUBLE, DT_STRING}))); TF_EXPECT_OK(NameRangesForNode(node_def1, op_def, &inputs, &outputs)); EXPECT_EQ(NameRangeMap({{"a", {0, 2}}, {"b", {2, 6}}}), inputs); EXPECT_EQ(NameRangeMap({{"c", {0, 4}}, {"d", {4, 7}}, {"e", {7, 9}}}), outputs); EXPECT_EQ( "{{node tl}} = TypeList[T1=[DT_BOOL, DT_FLOAT]," " T2=[DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT]," " T3=[DT_INT32, DT_DOUBLE, DT_STRING]](a, a:1, b, b:1, b:2, b:3)", SummarizeNodeDef(node_def1)); const NodeDef node_def2 = ToNodeDef(std::move(NodeDefBuilder("tl", &op_def) .Input(FakeInput(7, DT_INT32)) .Input(FakeInput({DT_DOUBLE})) .Attr("T3", {DT_DOUBLE, DT_STRING}))); TF_EXPECT_OK(NameRangesForNode(node_def2, op_def, &inputs, &outputs)); EXPECT_EQ(NameRangeMap({{"a", {0, 7}}, {"b", {7, 8}}}), inputs); EXPECT_EQ(NameRangeMap({{"c", {0, 1}}, {"d", {1, 3}}, {"e", {3, 10}}}), outputs); EXPECT_EQ( "{{node tl}} = TypeList[T1=[DT_INT32, DT_INT32, DT_INT32, DT_INT32, " "DT_INT32," " DT_INT32, DT_INT32], T2=[DT_DOUBLE], T3=[DT_DOUBLE, DT_STRING]]" "(a, a:1, a:2, a:3, a:4, a:5, a:6, b)", SummarizeNodeDef(node_def2)); NodeDef bad_node_def = node_def2; bad_node_def.clear_attr(); EXPECT_FALSE(NameRangesForNode(bad_node_def, op_def, &inputs, &outputs).ok()); } TEST(AddPrefixAndSuffixToNode, Enter) { NodeDef node_def; node_def.set_name("enter"); node_def.set_op("Enter"); AddNodeAttr("frame_name", "test_frame", &node_def); const string prefix = "prefix/"; const string suffix = "/suffix"; TF_ASSERT_OK(AddPrefixAndSuffixToNode(prefix, suffix, &node_def)); EXPECT_EQ("prefix/enter/suffix", node_def.name()); string frame_name; TF_ASSERT_OK(GetNodeAttr(node_def, "frame_name", &frame_name)); EXPECT_EQ("prefix/test_frame/suffix", frame_name); } TEST(MaybeAddPrefixToColocationConstraints, Basic) { NodeDef node_def; node_def.set_name("Identity"); node_def.set_op("Identity"); AddNodeAttr(kColocationAttrName, {strings::StrCat(kColocationGroupPrefix, "Node1"), strings::StrCat(kColocationGroupPrefix, "Node2"), strings::StrCat(kColocationGroupPrefix, "Node3")}, &node_def); std::unordered_set<string> match; match.insert("Node1"); match.insert("Node3"); TF_ASSERT_OK(MaybeAddPrefixToColocationConstraints(match, "fn/", &node_def)); std::vector<string> coloc_constraints; TF_ASSERT_OK(GetNodeAttr(node_def, kColocationAttrName, &coloc_constraints)); EXPECT_EQ( coloc_constraints, std::vector<string>({"loc:@fn/Node1", "loc:@Node2", "loc:@fn/Node3"})); } TEST(MaybeAddPrefixToColocationConstraints, NoConstraints) { NodeDef node_def; node_def.set_name("Identity"); node_def.set_op("Identity"); std::unordered_set<string> match; match.insert("Node1"); match.insert("Node3"); TF_ASSERT_OK(MaybeAddPrefixToColocationConstraints(match, "fn/", &node_def)); EXPECT_FALSE(HasNodeAttr(node_def, kColocationAttrName)); } TEST(MaybeUpdateColocationConstraintsWithMap, Basic) { NodeDef node_def; node_def.set_name("Identity"); node_def.set_op("Identity"); AddNodeAttr(kColocationAttrName, {strings::StrCat(kColocationGroupPrefix, "Node1"), strings::StrCat(kColocationGroupPrefix, "Node2"), strings::StrCat(kColocationGroupPrefix, "Node3")}, &node_def); std::map<absl::string_view, absl::string_view> node_map; node_map["Node1"] = "Node4"; node_map["Invalid"] = "Node5"; TF_ASSERT_OK(MaybeUpdateColocationConstraintsWithMap(node_map, &node_def)); std::vector<string> coloc_constraints; TF_ASSERT_OK(GetNodeAttr(node_def, kColocationAttrName, &coloc_constraints)); EXPECT_EQ(coloc_constraints, std::vector<string>({"loc:@Node4", "loc:@Node2", "loc:@Node3"})); } TEST(MaybeUpdateColocationConstraintsWithMap, NoConstraints) { NodeDef node_def; node_def.set_name("Identity"); node_def.set_op("Identity"); std::map<absl::string_view, absl::string_view> node_map; node_map["Node1"] = "Node4"; node_map["Invalid"] = "Node5"; TF_ASSERT_OK(MaybeUpdateColocationConstraintsWithMap(node_map, &node_def)); EXPECT_FALSE(HasNodeAttr(node_def, kColocationAttrName)); } TEST(FormatNodeForErrorTest, Node) { Graph g(OpRegistry::Global()); Node* node; TF_CHECK_OK(NodeBuilder("enter", "NoOp").Finalize(&g, &node)); EXPECT_EQ("{{node enter}}", FormatNodeForError(*node)); } TEST(FormatNodeForErrorTest, NodeDef) { NodeDef node_def; node_def.set_name("enter"); node_def.set_op("Enter"); AddNodeAttr("frame_name", "test_frame", &node_def); EXPECT_EQ("{{node enter}}", FormatNodeDefForError(node_def)); } TEST(FormatNodeForErrorTest, NodeDefWithOriginalNames) { NodeDef node_def; node_def.set_name("enter"); node_def.set_op("Enter"); AddNodeAttr("frame_name", "test_frame", &node_def); *(node_def.mutable_experimental_debug_info()->add_original_node_names()) = "node_name"; *(node_def.mutable_experimental_debug_info()->add_original_func_names()) = "func_name"; EXPECT_EQ("{{function_node func_name}}{{node node_name}}", FormatNodeDefForError(node_def)); *(node_def.mutable_experimental_debug_info()->add_original_node_names()) = "node_name2"; *(node_def.mutable_experimental_debug_info()->add_original_func_names()) = "func_name2"; EXPECT_EQ( "{{function_node func_name}}{{node node_name}}, " "{{function_node func_name2}}{{node node_name2}}", FormatNodeDefForError(node_def)); } TEST(AttachDef, AllowMultipleFormattedNode) { NodeDef a; a.set_name("a"); NodeDef b; b.set_name("b"); Status s = Status(absl::StatusCode::kCancelled, "Error"); Status s2 = AttachDef(s, a, true); EXPECT_EQ("Error\n\t [[{{node a}}]]", s2.message()); Status s3 = AttachDef(s2, b, true); EXPECT_EQ("Error\n\t [[{{node a}}]]\n\t [[{{node b}}]]", s3.message()); } TEST(AttachDef, DisallowMultipleFormattedNode) { NodeDef a; a.set_name("a"); NodeDef b; b.set_name("b"); Status s = Status(absl::StatusCode::kCancelled, "Error"); Status s2 = AttachDef(s, a, false); EXPECT_EQ("Error\n\t [[{{node a}}]]", s2.message()); Status s3 = AttachDef(s2, b, false); EXPECT_EQ("Error\n\t [[{{node a}}]]\n\t [[b]]", s3.message()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/node_def_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/framework/node_def_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
aa7ea541-2e72-40b9-9fb8-7bf6fee453ec
cpp
tensorflow/tensorflow
horizontal_input_fusion
third_party/xla/xla/service/gpu/transforms/horizontal_input_fusion.cc
third_party/xla/xla/service/gpu/transforms/horizontal_input_fusion_test.cc
#include "xla/service/gpu/transforms/horizontal_input_fusion.h" #include <algorithm> #include <cstddef> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/gpu_fusible.h" #include "xla/service/hlo_creation_utils.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { Shape GetInputShapeForMultiOutputFusion(const HloInstruction& instr) { const HloInstruction* real_hero = GetRealHeroForMultiOutputFusion(instr); if (real_hero->operands().empty()) { return Shape(); } else { return real_hero->operand(0)->shape(); } } class HorizontalInputFusionImpl { public: explicit HorizontalInputFusionImpl(HloComputation* computation, const se::DeviceDescription& d) : computation_(computation), device_info_(d) {} ~HorizontalInputFusionImpl() = default; absl::StatusOr<bool> Run(); private: HloComputation* computation_; const se::DeviceDescription& device_info_; }; bool CompareShapeDimsFromLeftToRight(const Shape& shape_a, const Shape& shape_b) { if (shape_a.rank() != shape_b.rank()) { return shape_a.rank() < shape_b.rank(); } auto dims_a = shape_a.dimensions(); auto dims_b = shape_b.dimensions(); for (size_t i = 0; i < dims_a.size(); ++i) { if (dims_a[i] != dims_b[i]) { return dims_a[i] < dims_b[i]; } } return true; } std::vector<HloInstruction*> FindAndSortFusionCandidates( HloInstruction* consumer) { absl::flat_hash_set<HloInstruction*> fusion_instr_set; std::vector<HloInstruction*> fusion_instrs; for (HloInstruction* opnd : consumer->operands()) { HloInstruction* predecessor = opnd->LatestNonGteAncestor(); if (!predecessor->IsCustomFusion() && IsInputFusibleReduction(*predecessor) && IsConsumerTheOnlyNonRootUser(*predecessor, *consumer)) { if (fusion_instr_set.insert(predecessor).second) { fusion_instrs.push_back(predecessor); } } } std::sort(fusion_instrs.begin(), fusion_instrs.end(), [&](const HloInstruction* a, const HloInstruction* b) { Shape shape_a = GetInputShapeForMultiOutputFusion(*a); Shape shape_b = GetInputShapeForMultiOutputFusion(*b); if (!ShapeUtil::EqualIgnoringElementType(shape_a, shape_b)) { return CompareShapeDimsFromLeftToRight(shape_a, shape_b); } return GetInstrCountOfFusible(*a) < GetInstrCountOfFusible(*b); }); return fusion_instrs; } absl::StatusOr<bool> HorizontalInputFusionImpl::Run() { bool changed = false; XLA_VLOG_LINES(3, computation_->ToString()); std::vector<HloInstruction*> def_to_use_order = computation_->MakeInstructionPostOrder(); for (HloInstruction* consumer : def_to_use_order) { auto candidates = FindAndSortFusionCandidates(consumer); if (candidates.size() <= 1) { continue; } for (size_t j = 0; j < candidates.size(); ++j) { if (candidates[j]->opcode() != HloOpcode::kFusion) { TF_ASSIGN_OR_RETURN( HloInstruction * fusion_instr, MakeFusionInstruction(candidates[j], HloInstruction::FusionKind::kInput)); candidates[j] = fusion_instr; changed = true; } } size_t fusion_anchor_id = 0; for (size_t j = 1; j < candidates.size(); ++j) { HloInstruction* fusion_anchor = candidates[fusion_anchor_id]; HloInstruction* fused = candidates[j]; if (ShapesCompatibleForMultiOutputFusion(*fusion_anchor, *fused) && FusionFitsInBudget(*fusion_anchor, *fused, device_info_)) { VLOG(3) << "Fuse " << fused->ToString() << " into " << fusion_anchor->ToString(); fusion_anchor->MergeFusionInstructionIntoMultiOutput(fused); changed = true; } else { VLOG(3) << j - fusion_anchor_id - 1 << " instructions are fused."; fusion_anchor_id = j; } } } return changed; } } absl::StatusOr<bool> HorizontalInputFusion::RunOnComputation( HloComputation* computation) { HorizontalInputFusionImpl horizontal_fusion_impl(computation, device_info_); return horizontal_fusion_impl.Run(); } absl::StatusOr<bool> HorizontalInputFusion::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; VLOG(2) << "Run horizontal input fusion."; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(changed, RunOnComputation(comp)); } return changed; } } }
#include "xla/service/gpu/transforms/horizontal_input_fusion.h" #include <cstdint> #include <utility> #include <vector> #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal_util.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/tests/gpu_codegen_test.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test.h" namespace xla { namespace gpu { namespace { namespace m = ::xla::match; class HorizontalInputFusionTest : public GpuCodegenTest { public: se::DeviceDescription device_description_{ TestGpuDeviceInfo::RTXA6000DeviceInfo()}; HorizontalInputFusion horizontal_input_fusion_{device_description_}; }; TEST_F(HorizontalInputFusionTest, BasicTest) { auto module = ParseAndReturnVerifiedModule(R"( HloModule BasicTest %add_f16 { %x = f16[] parameter(0) %y = f16[] parameter(1) ROOT %add = f16[] add(%x, %y) } fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) ROOT reduce1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 } fused_computation.2 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) ROOT reduce1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) fusion.1 = f16[] fusion(arg.1), kind=kInput, calls=fused_computation.1 fusion.2 = f16[] fusion(arg.2), kind=kInput, calls=fused_computation.2 ROOT tuple.1 = (f16[], f16[]) tuple(fusion.1, fusion.2) } )") .value(); EXPECT_TRUE(horizontal_input_fusion_.Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple((m::GetTupleElement(m::Fusion(&fusion))), (m::GetTupleElement(m::Fusion()))))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(HorizontalInputFusionTest, ManyInputFusions) { auto module = CreateNewVerifiedModule(); HloComputation* reduce_computation; { auto embedded_builder = HloComputation::Builder("add"); auto lhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 0, ShapeUtil::MakeShape(F32, {}), "lhs")); auto rhs = embedded_builder.AddInstruction(HloInstruction::CreateParameter( 1, ShapeUtil::MakeShape(F32, {}), "rhs")); embedded_builder.AddInstruction( HloInstruction::CreateBinary(lhs->shape(), HloOpcode::kAdd, lhs, rhs)); reduce_computation = module->AddEmbeddedComputation(embedded_builder.Build()); } HloComputation::Builder builder(TestName()); std::vector<HloInstruction*> var_outs; auto input_shape = ShapeUtil::MakeShape(F32, {1024, 1024}); auto output_shape = ShapeUtil::MakeShape(F32, {1024}); for (int64_t i = 0; i < 130; ++i) { HloInstruction* param_var_in = builder.AddInstruction( HloInstruction::CreateParameter(i * 2 + 0, input_shape, "var.in")); HloInstruction* param_alpha = builder.AddInstruction(HloInstruction::CreateParameter( i * 2 + 1, ShapeUtil::MakeShape(F32, {}), "alpha")); auto alpha_broadcasted = builder.AddInstruction( HloInstruction::CreateBroadcast(input_shape, param_alpha, {})); auto mul = builder.AddInstruction(HloInstruction::CreateBinary( input_shape, HloOpcode::kMultiply, param_var_in, alpha_broadcasted)); HloInstruction* const0 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0))); auto reduce = builder.AddInstruction(HloInstruction::CreateReduce( output_shape, mul, const0, {1}, reduce_computation)); var_outs.push_back(reduce); } builder.AddInstruction(HloInstruction::CreateTuple(var_outs)); module->AddEntryComputation(builder.Build()); if (GetDebugOptionsForTest().xla_gpu_mlir_emitter_level() < 4) { CompileAndVerifyIr(module->Clone(), R"(CHECK: reduce-group-6)", false); } else { CompileAndVerifyIr(module->Clone(), R"(CHECK: switch {{.*}} label {{.*}} [ CHECK-NEXT: label)", false); } EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{1e-5, 1e-5})); } TEST_F(HorizontalInputFusionTest, MultiOutputFusionTest) { auto module = ParseAndReturnVerifiedModule(R"( HloModule MultiOutputFusionTest %add_f16 { %x = f16[] parameter(0) %y = f16[] parameter(1) ROOT %add = f16[] add(%x, %y) } fused_computation.1 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) reduce.1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 add.0 = f16[1024] add(arg.1, arg.1) ROOT tuple.1 = (f16[], f16[1024]) tuple(reduce.1, add.0) } fused_computation.2 { arg.1 = f16[1024]{0} parameter(0) constant0 = f16[] constant(0) reduce.1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 add.0 = f16[1024] add(arg.1, arg.1) ROOT tuple.1 = (f16[], f16[1024]) tuple(reduce.1, add.0) } fused_computation.3 { arg.0 = f16[1024]{0} parameter(0) arg.1 = f16[1024]{0} parameter(1) add.0 = f16[1024] add(arg.0, arg.1) mul.0 = f16[1024] multiply(arg.0, arg.1) ROOT tuple.1 = (f16[1024], f16[1024]) tuple(add.0, mul.0) } ENTRY entry_computation { arg.1 = f16[1024]{0} parameter(0) arg.2 = f16[1024]{0} parameter(1) fusion.1 = (f16[],f16[1024]) fusion(arg.1), kind=kInput, calls=fused_computation.1 fusion.2 = (f16[],f16[1024]) fusion(arg.2), kind=kInput, calls=fused_computation.2 gte.3 = f16[] get-tuple-element(fusion.1), index=0 gte.1 = f16[1024]{0} get-tuple-element(fusion.1), index=1 gte.2 = f16[1024]{0} get-tuple-element(fusion.2), index=1 gte.6 = f16[] get-tuple-element(fusion.2), index=0 fusion.3 = (f16[1024],f16[1024]) fusion(gte.1, gte.2), kind=kLoop, calls=fused_computation.3 gte.4 = f16[1024] get-tuple-element(fusion.3), index=0 gte.5 = f16[1024]{0} get-tuple-element(fusion.3), index=1 ROOT tuple.1 = (f16[], f16[1024], f16[1024]{0}, f16[]) tuple(gte.3, gte.4, gte.5, gte.6) } )") .value(); EXPECT_TRUE(horizontal_input_fusion_.Run(module.get()).value()); } TEST_F(HorizontalInputFusionTest, NonfusionInstrs) { auto module = ParseAndReturnVerifiedModule(R"( HloModule NonfusionInstrs %add_f16 { %x = f16[] parameter(0) %y = f16[] parameter(1) ROOT %add = f16[] add(%x, %y) } ENTRY entry_computation { arg.0 = f16[1024]{0} parameter(0) arg.1 = f16[1024]{0} parameter(1) constant0 = f16[] constant(0) reduce.0 = f16[] reduce(arg.0, constant0), dimensions={0}, to_apply=%add_f16 reduce.1 = f16[] reduce(arg.1, constant0), dimensions={0}, to_apply=%add_f16 ROOT tuple.0 = (f16[], f16[]) tuple(reduce.0, reduce.1) } )") .value(); EXPECT_TRUE(horizontal_input_fusion_.Run(module.get()).value()); const HloInstruction* entry_root = module->entry_computation()->root_instruction(); const HloInstruction* fusion = nullptr; ASSERT_THAT(entry_root, GmockMatch(m::Tuple((m::GetTupleElement(m::Fusion(&fusion))), (m::GetTupleElement(m::Fusion()))))); ASSERT_TRUE(fusion->IsMultiOutputFusion()); EXPECT_THAT(fusion->fused_expression_root(), GmockMatch(m::Tuple(m::Reduce(), m::Reduce()))); } TEST_F(HorizontalInputFusionTest, DoesNotFuseCustomFusions) { auto module = ParseAndReturnVerifiedModule(R"( max { p0 = f16[] parameter(0) p1 = f16[] parameter(1) ROOT max = f16[] maximum(p0, p1) } triton_a { p = f16[128,256] parameter(0) c = f16[] constant(0) ROOT n = f16[128] reduce(p, c), dimensions={1}, to_apply=max } triton_b { p = f16[128,256] parameter(0) c = f16[] constant(0) ROOT n = f16[128] reduce(p, c), dimensions={1}, to_apply=max } ENTRY entry_computation { p = f16[128,256] parameter(0) fa = f16[128] fusion(p), kind=kCustom, calls=triton_a fb = f16[128] fusion(p), kind=kCustom, calls=triton_b ROOT tuple = (f16[128], f16[128]) tuple(fa, fb) } )") .value(); EXPECT_FALSE(horizontal_input_fusion_.Run(module.get()).value()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/horizontal_input_fusion.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/horizontal_input_fusion_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f33bd101-d6e4-43c2-8486-407ea91aac0e
cpp
tensorflow/tensorflow
sparse_fill_empty_rows_op
tensorflow/core/kernels/sparse_fill_empty_rows_op.cc
tensorflow/core/kernels/sparse_fill_empty_rows_op_test.cc
#define EIGEN_USE_THREADS #include <algorithm> #include <numeric> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_util.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/kernels/fill_empty_rows_functor.h" #include "tensorflow/core/lib/gtl/inlined_vector.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/util/sparse/sparse_tensor.h" namespace tensorflow { using CPUDevice = Eigen::ThreadPoolDevice; using GPUDevice = Eigen::GpuDevice; namespace { template <typename Device, typename T, typename Tindex> void SparseFillEmptyRowsOpImpl(OpKernelContext* context, AsyncOpKernel::DoneCallback done = nullptr) { if (!done) { done = [] {}; } const int kIndicesInput = 0; const int kValuesInput = 1; const int kDenseShapeInput = 2; const int kDefaultValueInput = 3; const Tensor& indices_t = context->input(kIndicesInput); const Tensor& values_t = context->input(kValuesInput); const Tensor& dense_shape_t = context->input(kDenseShapeInput); const Tensor& default_value_t = context->input(kDefaultValueInput); OP_REQUIRES_ASYNC( context, TensorShapeUtils::IsVector(dense_shape_t.shape()), errors::InvalidArgument("dense_shape must be a vector, saw: ", dense_shape_t.shape().DebugString()), done); OP_REQUIRES_ASYNC(context, TensorShapeUtils::IsMatrix(indices_t.shape()), errors::InvalidArgument("indices must be a matrix, saw: ", indices_t.shape().DebugString()), done); OP_REQUIRES_ASYNC(context, TensorShapeUtils::IsVector(values_t.shape()), errors::InvalidArgument("values must be a vector, saw: ", values_t.shape().DebugString()), done); OP_REQUIRES_ASYNC( context, indices_t.dim_size(0) == values_t.dim_size(0), errors::InvalidArgument("The length of `values` (", values_t.dim_size(0), ") must match the first dimension of `indices` (", indices_t.dim_size(0), ")."), done); OP_REQUIRES_ASYNC( context, indices_t.dim_size(1) == dense_shape_t.dim_size(0), errors::InvalidArgument("The length of `dense_shape` (", dense_shape_t.dim_size(0), ") must match the second dimension of `indices` ", "(", indices_t.dim_size(1), ")."), done); OP_REQUIRES_ASYNC( context, TensorShapeUtils::IsScalar(default_value_t.shape()), errors::InvalidArgument("default_value must be a scalar, saw: ", default_value_t.shape().DebugString()), done); OP_REQUIRES_ASYNC(context, dense_shape_t.NumElements() != 0, errors::InvalidArgument("Dense shape cannot be empty."), done); using FunctorType = functor::FillEmptyRows<Device, T, Tindex, false>; OP_REQUIRES_OK_ASYNC(context, FunctorType()(context, default_value_t, indices_t, values_t, dense_shape_t, done), done); } } template <typename Device, typename T, typename Tindex> class SparseFillEmptyRowsOp : public OpKernel { public: explicit SparseFillEmptyRowsOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { SparseFillEmptyRowsOpImpl<Device, T, Tindex>(context); } }; #define REGISTER_KERNELS(D, T, Tindex) \ REGISTER_KERNEL_BUILDER(Name("SparseFillEmptyRows") \ .Device(DEVICE_##D) \ .HostMemory("dense_shape") \ .TypeConstraint<T>("T"), \ SparseFillEmptyRowsOp<D##Device, T, Tindex>) #define REGISTER_CPU_KERNELS(T) REGISTER_KERNELS(CPU, T, int64) TF_CALL_ALL_TYPES(REGISTER_CPU_KERNELS); #undef REGISTER_CPU_KERNELS #undef REGISTER_KERNELS #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM template <typename T, typename Tindex> class SparseFillEmptyRowsGPUOp : public AsyncOpKernel { public: explicit SparseFillEmptyRowsGPUOp(OpKernelConstruction* context) : AsyncOpKernel(context) {} void ComputeAsync(OpKernelContext* context, DoneCallback done) override { SparseFillEmptyRowsOpImpl<GPUDevice, T, Tindex>(context, done); } }; #define REGISTER_KERNELS(T, Tindex) \ REGISTER_KERNEL_BUILDER(Name("SparseFillEmptyRows") \ .Device(DEVICE_GPU) \ .HostMemory("dense_shape") \ .TypeConstraint<T>("T"), \ SparseFillEmptyRowsGPUOp<T, Tindex>) #define REGISTER_KERNELS_TINDEX(T) REGISTER_KERNELS(T, int64) TF_CALL_POD_TYPES(REGISTER_KERNELS_TINDEX) #undef REGISTER_KERNELS_TINDEX #undef REGISTER_KERNELS #endif template <typename Device, typename T, typename Tindex> class SparseFillEmptyRowsGradOp : public OpKernel { public: explicit SparseFillEmptyRowsGradOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { const Tensor* reverse_index_map_t; const Tensor* grad_values_t; OP_REQUIRES_OK(context, context->input("reverse_index_map", &reverse_index_map_t)); OP_REQUIRES_OK(context, context->input("grad_values", &grad_values_t)); OP_REQUIRES( context, TensorShapeUtils::IsVector(reverse_index_map_t->shape()), errors::InvalidArgument("reverse_index_map must be a vector, saw: ", reverse_index_map_t->shape().DebugString())); OP_REQUIRES(context, TensorShapeUtils::IsVector(grad_values_t->shape()), errors::InvalidArgument("grad_values must be a vector, saw: ", grad_values_t->shape().DebugString())); const auto reverse_index_map = reverse_index_map_t->vec<Tindex>(); const auto grad_values = grad_values_t->vec<T>(); const Tindex N = reverse_index_map_t->shape().dim_size(0); Tensor* d_values_t; OP_REQUIRES_OK(context, context->allocate_output( "d_values", TensorShape({N}), &d_values_t)); auto d_values = d_values_t->vec<T>(); Tensor* d_default_value_t; OP_REQUIRES_OK(context, context->allocate_output("d_default_value", TensorShape({}), &d_default_value_t)); auto d_default_value = d_default_value_t->scalar<T>(); OP_REQUIRES_OK(context, functor::FillEmptyRowsGrad<Device, T, Tindex>()( context, reverse_index_map, grad_values, d_values, d_default_value)); } }; #define REGISTER_KERNELS(D, T, Tindex) \ REGISTER_KERNEL_BUILDER(Name("SparseFillEmptyRowsGrad") \ .Device(DEVICE_##D) \ .TypeConstraint<T>("T"), \ SparseFillEmptyRowsGradOp<D##Device, T, Tindex>) #define REGISTER_CPU_KERNELS(T) REGISTER_KERNELS(CPU, T, int64) TF_CALL_NUMBER_TYPES(REGISTER_CPU_KERNELS); #undef REGISTER_CPU_KERNELS #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #define REGISTER_GPU_KERNELS(T) REGISTER_KERNELS(GPU, T, int64) TF_CALL_REAL_NUMBER_TYPES(REGISTER_GPU_KERNELS); #undef REGISTER_GPU_KERNELS #endif #undef REGISTER_KERNELS }
#include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class SparseFillEmptyRowsTest : public OpsTestBase { protected: void MakeOp(DataType index_type, DataType value_type) { TF_ASSERT_OK(NodeDefBuilder("sparsefillemptyrows", "SparseFillEmptyRows") .Input(FakeInput(index_type)) .Input(FakeInput(value_type)) .Input(FakeInput(index_type)) .Input(FakeInput(value_type)) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SparseFillEmptyRowsTest, SparseFillEmptyRows) { MakeOp(DT_INT64, DT_FLOAT); AddInputFromArray<int64>(TensorShape({4, 2}), {0, 1, 0, 3, 2, 0, 3, 1}); AddInputFromArray<float>(TensorShape({4}), {0, 3, 1, 2}); AddInputFromArray<int64>(TensorShape({2}), {5, 6}); AddInputFromArray<float>(TensorShape({}), {4}); TF_ASSERT_OK(RunOpKernel()); Tensor expected0(allocator(), DT_INT64, {6, 2}); expected0.tensor<int64, 2>()(0, 0) = 0; expected0.tensor<int64, 2>()(0, 1) = 1; expected0.tensor<int64, 2>()(1, 0) = 0; expected0.tensor<int64, 2>()(1, 1) = 3; expected0.tensor<int64, 2>()(2, 0) = 1; expected0.tensor<int64, 2>()(2, 1) = 0; expected0.tensor<int64, 2>()(3, 0) = 2; expected0.tensor<int64, 2>()(3, 1) = 0; expected0.tensor<int64, 2>()(4, 0) = 3; expected0.tensor<int64, 2>()(4, 1) = 1; expected0.tensor<int64, 2>()(5, 0) = 4; expected0.tensor<int64, 2>()(5, 1) = 0; test::ExpectTensorEqual<int64>(expected0, *GetOutput(0)); Tensor expected1(allocator(), DT_FLOAT, {6}); test::FillValues<float>(&expected1, {0, 3, 4, 1, 2, 4}); test::ExpectTensorEqual<float>(expected1, *GetOutput(1)); Tensor expected2(allocator(), DT_BOOL, {5}); test::FillValues<bool>(&expected2, {false, true, false, false, true}); test::ExpectTensorEqual<bool>(expected2, *GetOutput(2)); Tensor expected3(allocator(), DT_INT64, {4}); test::FillValues<int64>(&expected3, {0, 1, 3, 4}); test::ExpectTensorEqual<int64>(expected3, *GetOutput(3)); } TEST_F(SparseFillEmptyRowsTest, IndicesValuesUnmatch) { MakeOp(DT_INT64, DT_FLOAT); AddInputFromArray<int64>(TensorShape({4, 2}), {0, 1, 0, 3, 2, 0, 3, 1}); AddInputFromArray<float>(TensorShape({3}), {0, 3, 1}); AddInputFromArray<int64>(TensorShape({2}), {5, 6}); AddInputFromArray<float>(TensorShape({}), {4}); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "The length of `values` (3) must match the " "first dimension of `indices` (4).")); } TEST_F(SparseFillEmptyRowsTest, IndicesDenseShapeUnmatch) { MakeOp(DT_INT64, DT_FLOAT); AddInputFromArray<int64>(TensorShape({4, 0}), {}); AddInputFromArray<float>(TensorShape({4}), {0, 3, 1, 2}); AddInputFromArray<int64>(TensorShape({2}), {5, 6}); AddInputFromArray<float>(TensorShape({}), {4}); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "The length of `dense_shape` (2) must match " "the second dimension of `indices` (0).")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_fill_empty_rows_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_fill_empty_rows_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f0985b7a-a24b-4d9e-9677-12ff0a6d68d6
cpp
google/tensorstore
verbose_flag
tensorstore/internal/log/verbose_flag.cc
tensorstore/internal/log/verbose_flag_test.cc
#include "tensorstore/internal/log/verbose_flag.h" #include <stddef.h> #include <atomic> #include <cassert> #include <string> #include <string_view> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/base/no_destructor.h" #include "absl/base/optimization.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/flags/flag.h" #include "absl/log/absl_log.h" #include "absl/strings/numbers.h" #include "absl/strings/str_split.h" #include "absl/synchronization/mutex.h" #include "tensorstore/internal/env.h" ABSL_FLAG(std::string, tensorstore_verbose_logging, {}, "comma-separated list of tensorstore verbose logging flags") .OnUpdate([]() { if (!absl::GetFlag(FLAGS_tensorstore_verbose_logging).empty()) { tensorstore::internal_log::UpdateVerboseLogging( absl::GetFlag(FLAGS_tensorstore_verbose_logging), true); } }); namespace tensorstore { namespace internal_log { namespace { ABSL_CONST_INIT absl::Mutex g_mutex(absl::kConstInit); ABSL_CONST_INIT VerboseFlag* g_list_head ABSL_GUARDED_BY(g_mutex) = nullptr; struct LoggingLevelConfig { int default_level = -1; absl::flat_hash_map<std::string, int> levels; }; void UpdateLoggingLevelConfig(LoggingLevelConfig& config, std::string_view input) { auto& levels = config.levels; for (std::string_view flag : absl::StrSplit(input, ',', absl::SkipEmpty())) { const size_t eq = flag.rfind('='); if (eq == flag.npos) { levels.insert_or_assign(std::string(flag), 0); continue; } if (eq == 0) continue; int level; if (!absl::SimpleAtoi(flag.substr(eq + 1), &level)) continue; if (level < -1) { level = -1; } else if (level > 1000) { level = 1000; } levels.insert_or_assign(std::string(flag.substr(0, eq)), level); } config.default_level = -1; if (auto it = levels.find("all"); it != levels.end()) { config.default_level = it->second; } } int GetLevelForVerboseFlag(const LoggingLevelConfig& config, std::string_view name) { while (!name.empty()) { auto it = config.levels.find(name); if (it != config.levels.end()) { return it->second; } auto pos = name.rfind('.'); if (pos == name.npos) { break; } name = name.substr(0, pos); } return config.default_level; } LoggingLevelConfig& GetLoggingLevelConfig() ABSL_EXCLUSIVE_LOCKS_REQUIRED(g_mutex) { static absl::NoDestructor<LoggingLevelConfig> flags{[] { LoggingLevelConfig config; if (auto env = internal::GetEnv("TENSORSTORE_VERBOSE_LOGGING"); env) { UpdateLoggingLevelConfig(config, *env); } return config; }()}; return *flags; } } void UpdateVerboseLogging(std::string_view input, bool overwrite) ABSL_LOCKS_EXCLUDED(g_mutex) { ABSL_LOG(INFO) << "--tensorstore_verbose_logging=" << input; LoggingLevelConfig config; UpdateLoggingLevelConfig(config, input); absl::MutexLock lock(&g_mutex); VerboseFlag* slist = g_list_head; LoggingLevelConfig& global_config = GetLoggingLevelConfig(); std::swap(global_config.levels, config.levels); std::swap(global_config.default_level, config.default_level); if (!overwrite) { if (global_config.levels.count("all")) { global_config.default_level = config.default_level; } global_config.levels.merge(config.levels); } int vlevel = GetLevelForVerboseFlag(global_config, "verbose_logging"); while (slist != nullptr) { int value = GetLevelForVerboseFlag(global_config, slist->name_); ABSL_LOG_IF(INFO, vlevel >= 1) << slist->name_ << "=" << value; slist->value_.store(value, std::memory_order_seq_cst); slist = slist->next_; } } int VerboseFlag::RegisterVerboseFlag(VerboseFlag* flag) { absl::MutexLock lock(&g_mutex); int old_v = flag->value_.load(std::memory_order_relaxed); if (old_v == kValueUninitialized) { const auto& config = GetLoggingLevelConfig(); old_v = GetLevelForVerboseFlag(config, flag->name_); flag->value_.store(old_v, std::memory_order_relaxed); flag->next_ = std::exchange(g_list_head, flag); } return old_v; } bool VerboseFlag::VerboseFlagSlowPath(VerboseFlag* flag, int old_v, int level) { if (ABSL_PREDICT_TRUE(old_v != kValueUninitialized)) { return old_v >= level; } old_v = RegisterVerboseFlag(flag); return ABSL_PREDICT_FALSE(old_v >= level); } static_assert(std::is_trivially_destructible<VerboseFlag>::value, "VerboseFlag must be trivially destructible"); } }
#include "tensorstore/internal/log/verbose_flag.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/attributes.h" using ::tensorstore::internal_log::UpdateVerboseLogging; using ::tensorstore::internal_log::VerboseFlag; #define TENSORSTORE_VERBOSE_FLAG(X) \ []() -> ::tensorstore::internal_log::VerboseFlag& { \ ABSL_CONST_INIT static ::tensorstore::internal_log::VerboseFlag flag(X); \ return flag; \ }() namespace { TEST(VerboseFlag, Basic) { UpdateVerboseLogging("a=2", true); ABSL_CONST_INIT static VerboseFlag a("a"); ABSL_CONST_INIT static VerboseFlag ab("a.b"); auto& b = TENSORSTORE_VERBOSE_FLAG("b"); EXPECT_THAT((bool)a, true); EXPECT_THAT(a.Level(0), true); EXPECT_THAT(a.Level(1), true); EXPECT_THAT(a.Level(2), true); EXPECT_THAT(a.Level(3), false); EXPECT_THAT(ab.Level(3), false); EXPECT_THAT(ab.Level(2), true); EXPECT_THAT(ab.Level(1), true); EXPECT_THAT(ab.Level(0), true); EXPECT_THAT((bool)ab, true); EXPECT_THAT((bool)b, false); EXPECT_THAT(b.Level(0), false); UpdateVerboseLogging("b,a=-1,a.b=1", false); EXPECT_THAT((bool)a, false); EXPECT_THAT(a.Level(0), false); EXPECT_THAT(a.Level(1), false); EXPECT_THAT((bool)ab, true); EXPECT_THAT(ab.Level(0), true); EXPECT_THAT(ab.Level(1), true); EXPECT_THAT(ab.Level(2), false); EXPECT_THAT((bool)b, true); EXPECT_THAT(b.Level(0), true); EXPECT_THAT(b.Level(1), false); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/log/verbose_flag.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/log/verbose_flag_test.cc
4f887a6430414cd6088e1743555015b10f116d50
6857c23b-75e7-41e2-917d-67f9283e7e56
cpp
google/quiche
http_decoder
quiche/quic/core/http/http_decoder.cc
quiche/quic/core/http/http_decoder_test.cc
#include "quiche/quic/core/http/http_decoder.h" #include <algorithm> #include <cstdint> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/strings/string_view.h" #include "quiche/http2/http2_constants.h" #include "quiche/quic/core/http/http_frames.h" #include "quiche/quic/core/quic_data_reader.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { constexpr QuicByteCount kPayloadLengthLimit = 1024 * 1024; } HttpDecoder::HttpDecoder(Visitor* visitor) : visitor_(visitor), allow_web_transport_stream_(false), state_(STATE_READING_FRAME_TYPE), current_frame_type_(0), current_length_field_length_(0), remaining_length_field_length_(0), current_frame_length_(0), remaining_frame_length_(0), current_type_field_length_(0), remaining_type_field_length_(0), error_(QUIC_NO_ERROR), error_detail_(""), enable_origin_frame_(GetQuicReloadableFlag(enable_h3_origin_frame)) { QUICHE_DCHECK(visitor_); } HttpDecoder::~HttpDecoder() {} bool HttpDecoder::DecodeSettings(const char* data, QuicByteCount len, SettingsFrame* frame) { QuicDataReader reader(data, len); uint64_t frame_type; if (!reader.ReadVarInt62(&frame_type)) { QUIC_DLOG(ERROR) << "Unable to read frame type."; return false; } if (frame_type != static_cast<uint64_t>(HttpFrameType::SETTINGS)) { QUIC_DLOG(ERROR) << "Invalid frame type " << frame_type; return false; } absl::string_view frame_contents; if (!reader.ReadStringPieceVarInt62(&frame_contents)) { QUIC_DLOG(ERROR) << "Failed to read SETTINGS frame contents"; return false; } QuicDataReader frame_reader(frame_contents); while (!frame_reader.IsDoneReading()) { uint64_t id; if (!frame_reader.ReadVarInt62(&id)) { QUIC_DLOG(ERROR) << "Unable to read setting identifier."; return false; } uint64_t content; if (!frame_reader.ReadVarInt62(&content)) { QUIC_DLOG(ERROR) << "Unable to read setting value."; return false; } auto result = frame->values.insert({id, content}); if (!result.second) { QUIC_DLOG(ERROR) << "Duplicate setting identifier."; return false; } } return true; } QuicByteCount HttpDecoder::ProcessInput(const char* data, QuicByteCount len) { QUICHE_DCHECK_EQ(QUIC_NO_ERROR, error_); QUICHE_DCHECK_NE(STATE_ERROR, state_); QuicDataReader reader(data, len); bool continue_processing = true; while (continue_processing && (reader.BytesRemaining() != 0 || state_ == STATE_BUFFER_OR_PARSE_PAYLOAD || state_ == STATE_FINISH_PARSING)) { QUICHE_DCHECK_EQ(QUIC_NO_ERROR, error_); QUICHE_DCHECK_NE(STATE_ERROR, state_); switch (state_) { case STATE_READING_FRAME_TYPE: continue_processing = ReadFrameType(reader); break; case STATE_READING_FRAME_LENGTH: continue_processing = ReadFrameLength(reader); break; case STATE_BUFFER_OR_PARSE_PAYLOAD: continue_processing = BufferOrParsePayload(reader); break; case STATE_READING_FRAME_PAYLOAD: continue_processing = ReadFramePayload(reader); break; case STATE_FINISH_PARSING: continue_processing = FinishParsing(); break; case STATE_PARSING_NO_LONGER_POSSIBLE: continue_processing = false; QUIC_BUG(HttpDecoder PARSING_NO_LONGER_POSSIBLE) << "HttpDecoder called after an indefinite-length frame has been " "received"; RaiseError(QUIC_INTERNAL_ERROR, "HttpDecoder called after an indefinite-length frame has " "been received"); break; case STATE_ERROR: break; default: QUIC_BUG(quic_bug_10411_1) << "Invalid state: " << state_; } } return len - reader.BytesRemaining(); } bool HttpDecoder::ReadFrameType(QuicDataReader& reader) { QUICHE_DCHECK_NE(0u, reader.BytesRemaining()); if (current_type_field_length_ == 0) { current_type_field_length_ = reader.PeekVarInt62Length(); QUICHE_DCHECK_NE(0u, current_type_field_length_); if (current_type_field_length_ > reader.BytesRemaining()) { remaining_type_field_length_ = current_type_field_length_; BufferFrameType(reader); return true; } bool success = reader.ReadVarInt62(&current_frame_type_); QUICHE_DCHECK(success); } else { BufferFrameType(reader); if (remaining_type_field_length_ != 0) { return true; } QuicDataReader type_reader(type_buffer_.data(), current_type_field_length_); bool success = type_reader.ReadVarInt62(&current_frame_type_); QUICHE_DCHECK(success); } if (decoded_frame_types_.size() < 10) { decoded_frame_types_.push_back(current_frame_type_); } if (current_frame_type_ == static_cast<uint64_t>(http2::Http2FrameType::PRIORITY) || current_frame_type_ == static_cast<uint64_t>(http2::Http2FrameType::PING) || current_frame_type_ == static_cast<uint64_t>(http2::Http2FrameType::WINDOW_UPDATE) || current_frame_type_ == static_cast<uint64_t>(http2::Http2FrameType::CONTINUATION)) { RaiseError(QUIC_HTTP_RECEIVE_SPDY_FRAME, absl::StrCat("HTTP/2 frame received in a HTTP/3 connection: ", current_frame_type_)); return false; } if (current_frame_type_ == static_cast<uint64_t>(HttpFrameType::CANCEL_PUSH)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "CANCEL_PUSH frame received."); return false; } if (current_frame_type_ == static_cast<uint64_t>(HttpFrameType::PUSH_PROMISE)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "PUSH_PROMISE frame received."); return false; } state_ = STATE_READING_FRAME_LENGTH; return true; } bool HttpDecoder::ReadFrameLength(QuicDataReader& reader) { QUICHE_DCHECK_NE(0u, reader.BytesRemaining()); if (current_length_field_length_ == 0) { current_length_field_length_ = reader.PeekVarInt62Length(); QUICHE_DCHECK_NE(0u, current_length_field_length_); if (current_length_field_length_ > reader.BytesRemaining()) { remaining_length_field_length_ = current_length_field_length_; BufferFrameLength(reader); return true; } bool success = reader.ReadVarInt62(&current_frame_length_); QUICHE_DCHECK(success); } else { BufferFrameLength(reader); if (remaining_length_field_length_ != 0) { return true; } QuicDataReader length_reader(length_buffer_.data(), current_length_field_length_); bool success = length_reader.ReadVarInt62(&current_frame_length_); QUICHE_DCHECK(success); } if (allow_web_transport_stream_ && current_frame_type_ == static_cast<uint64_t>(HttpFrameType::WEBTRANSPORT_STREAM)) { visitor_->OnWebTransportStreamFrameType( current_length_field_length_ + current_type_field_length_, current_frame_length_); state_ = STATE_PARSING_NO_LONGER_POSSIBLE; return false; } if (IsFrameBuffered() && current_frame_length_ > MaxFrameLength(current_frame_type_)) { RaiseError(QUIC_HTTP_FRAME_TOO_LARGE, "Frame is too large."); return false; } bool continue_processing = true; const QuicByteCount header_length = current_length_field_length_ + current_type_field_length_; switch (current_frame_type_) { case static_cast<uint64_t>(HttpFrameType::DATA): continue_processing = visitor_->OnDataFrameStart(header_length, current_frame_length_); break; case static_cast<uint64_t>(HttpFrameType::HEADERS): continue_processing = visitor_->OnHeadersFrameStart(header_length, current_frame_length_); break; case static_cast<uint64_t>(HttpFrameType::CANCEL_PUSH): QUICHE_NOTREACHED(); break; case static_cast<uint64_t>(HttpFrameType::SETTINGS): continue_processing = visitor_->OnSettingsFrameStart(header_length); break; case static_cast<uint64_t>(HttpFrameType::PUSH_PROMISE): QUICHE_NOTREACHED(); break; case static_cast<uint64_t>(HttpFrameType::GOAWAY): break; case static_cast<uint64_t>(HttpFrameType::MAX_PUSH_ID): break; case static_cast<uint64_t>(HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM): continue_processing = visitor_->OnPriorityUpdateFrameStart(header_length); break; case static_cast<uint64_t>(HttpFrameType::ACCEPT_CH): continue_processing = visitor_->OnAcceptChFrameStart(header_length); break; case static_cast<uint64_t>(HttpFrameType::METADATA): continue_processing = visitor_->OnMetadataFrameStart(header_length, current_frame_length_); break; default: if (enable_origin_frame_ && current_frame_type_ == static_cast<uint64_t>(HttpFrameType::ORIGIN)) { QUIC_CODE_COUNT_N(enable_h3_origin_frame, 1, 2); continue_processing = visitor_->OnOriginFrameStart(header_length); break; } continue_processing = visitor_->OnUnknownFrameStart( current_frame_type_, header_length, current_frame_length_); break; } remaining_frame_length_ = current_frame_length_; if (IsFrameBuffered()) { state_ = STATE_BUFFER_OR_PARSE_PAYLOAD; return continue_processing; } state_ = (remaining_frame_length_ == 0) ? STATE_FINISH_PARSING : STATE_READING_FRAME_PAYLOAD; return continue_processing; } bool HttpDecoder::IsFrameBuffered() { switch (current_frame_type_) { case static_cast<uint64_t>(HttpFrameType::SETTINGS): return true; case static_cast<uint64_t>(HttpFrameType::GOAWAY): return true; case static_cast<uint64_t>(HttpFrameType::MAX_PUSH_ID): return true; case static_cast<uint64_t>(HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM): return true; case static_cast<uint64_t>(HttpFrameType::ORIGIN): if (enable_origin_frame_) { QUIC_CODE_COUNT_N(enable_h3_origin_frame, 2, 2); return true; } return false; case static_cast<uint64_t>(HttpFrameType::ACCEPT_CH): return true; } return false; } bool HttpDecoder::ReadFramePayload(QuicDataReader& reader) { QUICHE_DCHECK(!IsFrameBuffered()); QUICHE_DCHECK_NE(0u, reader.BytesRemaining()); QUICHE_DCHECK_NE(0u, remaining_frame_length_); bool continue_processing = true; switch (current_frame_type_) { case static_cast<uint64_t>(HttpFrameType::DATA): { QuicByteCount bytes_to_read = std::min<QuicByteCount>( remaining_frame_length_, reader.BytesRemaining()); absl::string_view payload; bool success = reader.ReadStringPiece(&payload, bytes_to_read); QUICHE_DCHECK(success); QUICHE_DCHECK(!payload.empty()); continue_processing = visitor_->OnDataFramePayload(payload); remaining_frame_length_ -= payload.length(); break; } case static_cast<uint64_t>(HttpFrameType::HEADERS): { QuicByteCount bytes_to_read = std::min<QuicByteCount>( remaining_frame_length_, reader.BytesRemaining()); absl::string_view payload; bool success = reader.ReadStringPiece(&payload, bytes_to_read); QUICHE_DCHECK(success); QUICHE_DCHECK(!payload.empty()); continue_processing = visitor_->OnHeadersFramePayload(payload); remaining_frame_length_ -= payload.length(); break; } case static_cast<uint64_t>(HttpFrameType::CANCEL_PUSH): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::SETTINGS): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::PUSH_PROMISE): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::GOAWAY): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::MAX_PUSH_ID): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::ACCEPT_CH): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::METADATA): { QuicByteCount bytes_to_read = std::min<QuicByteCount>( remaining_frame_length_, reader.BytesRemaining()); absl::string_view payload; bool success = reader.ReadStringPiece(&payload, bytes_to_read); QUICHE_DCHECK(success); QUICHE_DCHECK(!payload.empty()); continue_processing = visitor_->OnMetadataFramePayload(payload); remaining_frame_length_ -= payload.length(); break; } default: { if (enable_origin_frame_ && current_frame_type_ == static_cast<uint64_t>(HttpFrameType::ORIGIN)) { QUICHE_NOTREACHED(); break; } continue_processing = HandleUnknownFramePayload(reader); break; } } if (remaining_frame_length_ == 0) { state_ = STATE_FINISH_PARSING; } return continue_processing; } bool HttpDecoder::FinishParsing() { QUICHE_DCHECK(!IsFrameBuffered()); QUICHE_DCHECK_EQ(0u, remaining_frame_length_); bool continue_processing = true; switch (current_frame_type_) { case static_cast<uint64_t>(HttpFrameType::DATA): { continue_processing = visitor_->OnDataFrameEnd(); break; } case static_cast<uint64_t>(HttpFrameType::HEADERS): { continue_processing = visitor_->OnHeadersFrameEnd(); break; } case static_cast<uint64_t>(HttpFrameType::CANCEL_PUSH): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::SETTINGS): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::PUSH_PROMISE): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::GOAWAY): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::MAX_PUSH_ID): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::ACCEPT_CH): { QUICHE_NOTREACHED(); break; } case static_cast<uint64_t>(HttpFrameType::METADATA): { continue_processing = visitor_->OnMetadataFrameEnd(); break; } default: if (enable_origin_frame_ && current_frame_type_ == static_cast<uint64_t>(HttpFrameType::ORIGIN)) { QUICHE_NOTREACHED(); break; } continue_processing = visitor_->OnUnknownFrameEnd(); } ResetForNextFrame(); return continue_processing; } void HttpDecoder::ResetForNextFrame() { current_length_field_length_ = 0; current_type_field_length_ = 0; state_ = STATE_READING_FRAME_TYPE; } bool HttpDecoder::HandleUnknownFramePayload(QuicDataReader& reader) { QuicByteCount bytes_to_read = std::min<QuicByteCount>(remaining_frame_length_, reader.BytesRemaining()); absl::string_view payload; bool success = reader.ReadStringPiece(&payload, bytes_to_read); QUICHE_DCHECK(success); QUICHE_DCHECK(!payload.empty()); remaining_frame_length_ -= payload.length(); return visitor_->OnUnknownFramePayload(payload); } bool HttpDecoder::BufferOrParsePayload(QuicDataReader& reader) { QUICHE_DCHECK(IsFrameBuffered()); QUICHE_DCHECK_EQ(current_frame_length_, buffer_.size() + remaining_frame_length_); if (buffer_.empty() && reader.BytesRemaining() >= current_frame_length_) { remaining_frame_length_ = 0; QuicDataReader current_payload_reader(reader.PeekRemainingPayload().data(), current_frame_length_); bool continue_processing = ParseEntirePayload(current_payload_reader); reader.Seek(current_frame_length_); ResetForNextFrame(); return continue_processing; } QuicByteCount bytes_to_read = std::min<QuicByteCount>(remaining_frame_length_, reader.BytesRemaining()); absl::StrAppend(&buffer_, reader.PeekRemainingPayload().substr( 0, bytes_to_read)); reader.Seek(bytes_to_read); remaining_frame_length_ -= bytes_to_read; QUICHE_DCHECK_EQ(current_frame_length_, buffer_.size() + remaining_frame_length_); if (remaining_frame_length_ > 0) { QUICHE_DCHECK(reader.IsDoneReading()); return false; } QuicDataReader buffer_reader(buffer_); bool continue_processing = ParseEntirePayload(buffer_reader); buffer_.clear(); ResetForNextFrame(); return continue_processing; } bool HttpDecoder::ParseEntirePayload(QuicDataReader& reader) { QUICHE_DCHECK(IsFrameBuffered()); QUICHE_DCHECK_EQ(current_frame_length_, reader.BytesRemaining()); QUICHE_DCHECK_EQ(0u, remaining_frame_length_); switch (current_frame_type_) { case static_cast<uint64_t>(HttpFrameType::CANCEL_PUSH): { QUICHE_NOTREACHED(); return false; } case static_cast<uint64_t>(HttpFrameType::SETTINGS): { SettingsFrame frame; if (!ParseSettingsFrame(reader, frame)) { return false; } return visitor_->OnSettingsFrame(frame); } case static_cast<uint64_t>(HttpFrameType::GOAWAY): { GoAwayFrame frame; if (!reader.ReadVarInt62(&frame.id)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read GOAWAY ID."); return false; } if (!reader.IsDoneReading()) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Superfluous data in GOAWAY frame."); return false; } return visitor_->OnGoAwayFrame(frame); } case static_cast<uint64_t>(HttpFrameType::MAX_PUSH_ID): { uint64_t unused; if (!reader.ReadVarInt62(&unused)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read MAX_PUSH_ID push_id."); return false; } if (!reader.IsDoneReading()) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Superfluous data in MAX_PUSH_ID frame."); return false; } return visitor_->OnMaxPushIdFrame(); } case static_cast<uint64_t>(HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM): { PriorityUpdateFrame frame; if (!ParsePriorityUpdateFrame(reader, frame)) { return false; } return visitor_->OnPriorityUpdateFrame(frame); } case static_cast<uint64_t>(HttpFrameType::ORIGIN): { OriginFrame frame; if (!ParseOriginFrame(reader, frame)) { return false; } return visitor_->OnOriginFrame(frame); } case static_cast<uint64_t>(HttpFrameType::ACCEPT_CH): { AcceptChFrame frame; if (!ParseAcceptChFrame(reader, frame)) { return false; } return visitor_->OnAcceptChFrame(frame); } default: QUICHE_NOTREACHED(); return false; } } void HttpDecoder::BufferFrameLength(QuicDataReader& reader) { QuicByteCount bytes_to_read = std::min<QuicByteCount>( remaining_length_field_length_, reader.BytesRemaining()); bool success = reader.ReadBytes(length_buffer_.data() + current_length_field_length_ - remaining_length_field_length_, bytes_to_read); QUICHE_DCHECK(success); remaining_length_field_length_ -= bytes_to_read; } void HttpDecoder::BufferFrameType(QuicDataReader& reader) { QuicByteCount bytes_to_read = std::min<QuicByteCount>( remaining_type_field_length_, reader.BytesRemaining()); bool success = reader.ReadBytes(type_buffer_.data() + current_type_field_length_ - remaining_type_field_length_, bytes_to_read); QUICHE_DCHECK(success); remaining_type_field_length_ -= bytes_to_read; } void HttpDecoder::RaiseError(QuicErrorCode error, std::string error_detail) { state_ = STATE_ERROR; error_ = error; error_detail_ = std::move(error_detail); visitor_->OnError(this); } bool HttpDecoder::ParseSettingsFrame(QuicDataReader& reader, SettingsFrame& frame) { while (!reader.IsDoneReading()) { uint64_t id; if (!reader.ReadVarInt62(&id)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read setting identifier."); return false; } uint64_t content; if (!reader.ReadVarInt62(&content)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read setting value."); return false; } auto result = frame.values.insert({id, content}); if (!result.second) { RaiseError(QUIC_HTTP_DUPLICATE_SETTING_IDENTIFIER, "Duplicate setting identifier."); return false; } } return true; } bool HttpDecoder::ParsePriorityUpdateFrame(QuicDataReader& reader, PriorityUpdateFrame& frame) { if (!reader.ReadVarInt62(&frame.prioritized_element_id)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read prioritized element id."); return false; } absl::string_view priority_field_value = reader.ReadRemainingPayload(); frame.priority_field_value = std::string(priority_field_value.data(), priority_field_value.size()); return true; } bool HttpDecoder::ParseOriginFrame(QuicDataReader& reader, OriginFrame& frame) { QUICHE_DCHECK(enable_origin_frame_); while (!reader.IsDoneReading()) { absl::string_view origin; if (!reader.ReadStringPiece16(&origin)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read ORIGIN origin."); return false; } frame.origins.push_back(std::string(origin)); } return true; } bool HttpDecoder::ParseAcceptChFrame(QuicDataReader& reader, AcceptChFrame& frame) { absl::string_view origin; absl::string_view value; while (!reader.IsDoneReading()) { if (!reader.ReadStringPieceVarInt62(&origin)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read ACCEPT_CH origin."); return false; } if (!reader.ReadStringPieceVarInt62(&value)) { RaiseError(QUIC_HTTP_FRAME_ERROR, "Unable to read ACCEPT_CH value."); return false; } frame.entries.push_back({std::string(origin.data(), origin.size()), std::string(value.data(), value.size())}); } return true; } QuicByteCount HttpDecoder::MaxFrameLength(uint64_t frame_type) { QUICHE_DCHECK(IsFrameBuffered()); switch (frame_type) { case static_cast<uint64_t>(HttpFrameType::SETTINGS): return kPayloadLengthLimit; case static_cast<uint64_t>(HttpFrameType::GOAWAY): return quiche::VARIABLE_LENGTH_INTEGER_LENGTH_8; case static_cast<uint64_t>(HttpFrameType::MAX_PUSH_ID): return quiche::VARIABLE_LENGTH_INTEGER_LENGTH_8; case static_cast<uint64_t>(HttpFrameType::PRIORITY_UPDATE_REQUEST_STREAM): return kPayloadLengthLimit; case static_cast<uint64_t>(HttpFrameType::ACCEPT_CH): return kPayloadLengthLimit; case static_cast<uint64_t>(HttpFrameType::ORIGIN): return kPayloadLengthLimit; default: QUICHE_NOTREACHED(); return 0; } } std::string HttpDecoder::DebugString() const { return absl::StrCat( "HttpDecoder:", "\n state: ", state_, "\n error: ", error_, "\n current_frame_type: ", current_frame_type_, "\n current_length_field_length: ", current_length_field_length_, "\n remaining_length_field_length: ", remaining_length_field_length_, "\n current_frame_length: ", current_frame_length_, "\n remaining_frame_length: ", remaining_frame_length_, "\n current_type_field_length: ", current_type_field_length_, "\n remaining_type_field_length: ", remaining_type_field_length_); } }
#include "quiche/quic/core/http/http_decoder.h" #include <memory> #include <string> #include <utility> #include "absl/base/macros.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/http/http_encoder.h" #include "quiche/quic/core/http/http_frames.h" #include "quiche/quic/core/quic_data_writer.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" using ::testing::_; using ::testing::AnyNumber; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::InSequence; using ::testing::Return; namespace quic { namespace test { class HttpDecoderPeer { public: static uint64_t current_frame_type(HttpDecoder* decoder) { return decoder->current_frame_type_; } }; namespace { class HttpDecoderTest : public QuicTest { public: HttpDecoderTest() : decoder_(&visitor_) { ON_CALL(visitor_, OnMaxPushIdFrame()).WillByDefault(Return(true)); ON_CALL(visitor_, OnGoAwayFrame(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnSettingsFrameStart(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnSettingsFrame(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnDataFrameStart(_, _)).WillByDefault(Return(true)); ON_CALL(visitor_, OnDataFramePayload(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnDataFrameEnd()).WillByDefault(Return(true)); ON_CALL(visitor_, OnHeadersFrameStart(_, _)).WillByDefault(Return(true)); ON_CALL(visitor_, OnHeadersFramePayload(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnHeadersFrameEnd()).WillByDefault(Return(true)); ON_CALL(visitor_, OnPriorityUpdateFrameStart(_)) .WillByDefault(Return(true)); ON_CALL(visitor_, OnPriorityUpdateFrame(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnAcceptChFrameStart(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnAcceptChFrame(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnOriginFrameStart(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnOriginFrame(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnMetadataFrameStart(_, _)).WillByDefault(Return(true)); ON_CALL(visitor_, OnMetadataFramePayload(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnMetadataFrameEnd()).WillByDefault(Return(true)); ON_CALL(visitor_, OnUnknownFrameStart(_, _, _)).WillByDefault(Return(true)); ON_CALL(visitor_, OnUnknownFramePayload(_)).WillByDefault(Return(true)); ON_CALL(visitor_, OnUnknownFrameEnd()).WillByDefault(Return(true)); } ~HttpDecoderTest() override = default; uint64_t current_frame_type() { return HttpDecoderPeer::current_frame_type(&decoder_); } QuicByteCount ProcessInput(absl::string_view input) { return decoder_.ProcessInput(input.data(), input.size()); } void ProcessInputCharByChar(absl::string_view input) { for (char c : input) { EXPECT_EQ(1u, decoder_.ProcessInput(&c, 1)); } } QuicByteCount ProcessInputWithGarbageAppended(absl::string_view input) { std::string input_with_garbage_appended = absl::StrCat(input, "blahblah"); QuicByteCount processed_bytes = ProcessInput(input_with_garbage_appended); QUICHE_DCHECK_LE(processed_bytes, input_with_garbage_appended.size()); EXPECT_LE(processed_bytes, input.size()); return processed_bytes; } testing::StrictMock<MockHttpDecoderVisitor> visitor_; HttpDecoder decoder_; }; TEST_F(HttpDecoderTest, InitialState) { EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, UnknownFrame) { std::unique_ptr<char[]> input; const QuicByteCount payload_lengths[] = {0, 14, 100}; const uint64_t frame_types[] = { 0x21, 0x40, 0x5f, 0x7e, 0x9d, 0x6f, 0x14 }; for (auto payload_length : payload_lengths) { std::string data(payload_length, 'a'); for (auto frame_type : frame_types) { const QuicByteCount total_length = QuicDataWriter::GetVarInt62Len(frame_type) + QuicDataWriter::GetVarInt62Len(payload_length) + payload_length; input = std::make_unique<char[]>(total_length); QuicDataWriter writer(total_length, input.get()); writer.WriteVarInt62(frame_type); writer.WriteVarInt62(payload_length); const QuicByteCount header_length = writer.length(); if (payload_length > 0) { writer.WriteStringPiece(data); } EXPECT_CALL(visitor_, OnUnknownFrameStart(frame_type, header_length, payload_length)); if (payload_length > 0) { EXPECT_CALL(visitor_, OnUnknownFramePayload(Eq(data))); } EXPECT_CALL(visitor_, OnUnknownFrameEnd()); EXPECT_EQ(total_length, decoder_.ProcessInput(input.get(), total_length)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); ASSERT_EQ("", decoder_.error_detail()); EXPECT_EQ(frame_type, current_frame_type()); } } } TEST_F(HttpDecoderTest, CancelPush) { InSequence s; std::string input; ASSERT_TRUE( absl::HexStringToBytes("03" "01" "01", &input)); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(1u, ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ("CANCEL_PUSH frame received.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, PushPromiseFrame) { InSequence s; std::string push_promise_bytes; ASSERT_TRUE( absl::HexStringToBytes("05" "08" "1f", &push_promise_bytes)); std::string input = absl::StrCat(push_promise_bytes, "Headers"); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(1u, ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ("PUSH_PROMISE frame received.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, MaxPushId) { InSequence s; std::string input; ASSERT_TRUE( absl::HexStringToBytes("0D" "01" "01", &input)); EXPECT_CALL(visitor_, OnMaxPushIdFrame()).WillOnce(Return(false)); EXPECT_EQ(input.size(), ProcessInputWithGarbageAppended(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnMaxPushIdFrame()); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnMaxPushIdFrame()); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, SettingsFrame) { InSequence s; std::string input; ASSERT_TRUE(absl::HexStringToBytes( "04" "07" "01" "02" "06" "05" "4100" "04", &input)); SettingsFrame frame; frame.values[1] = 2; frame.values[6] = 5; frame.values[256] = 4; absl::string_view remaining_input(input); EXPECT_CALL(visitor_, OnSettingsFrameStart(2)).WillOnce(Return(false)); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(2u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnSettingsFrame(frame)).WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_THAT(decoder_.decoded_frame_types(), ElementsAre(4)); EXPECT_CALL(visitor_, OnSettingsFrameStart(2)); EXPECT_CALL(visitor_, OnSettingsFrame(frame)); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_THAT(decoder_.decoded_frame_types(), ElementsAre(4, 4)); EXPECT_CALL(visitor_, OnSettingsFrameStart(2)); EXPECT_CALL(visitor_, OnSettingsFrame(frame)); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_THAT(decoder_.decoded_frame_types(), ElementsAre(4, 4, 4)); } TEST_F(HttpDecoderTest, CorruptSettingsFrame) { const char* const kPayload = "\x42\x11" "\x80\x22\x33\x44" "\x58\x39" "\xf0\x22\x33\x44\x55\x66\x77\x88"; struct { size_t payload_length; const char* const error_message; } kTestData[] = { {1, "Unable to read setting identifier."}, {5, "Unable to read setting value."}, {7, "Unable to read setting identifier."}, {12, "Unable to read setting value."}, }; for (const auto& test_data : kTestData) { std::string input; input.push_back(4u); input.push_back(test_data.payload_length); const size_t header_length = input.size(); input.append(kPayload, test_data.payload_length); HttpDecoder decoder(&visitor_); EXPECT_CALL(visitor_, OnSettingsFrameStart(header_length)); EXPECT_CALL(visitor_, OnError(&decoder)); QuicByteCount processed_bytes = decoder.ProcessInput(input.data(), input.size()); EXPECT_EQ(input.size(), processed_bytes); EXPECT_THAT(decoder.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ(test_data.error_message, decoder.error_detail()); } } TEST_F(HttpDecoderTest, DuplicateSettingsIdentifier) { std::string input; ASSERT_TRUE( absl::HexStringToBytes("04" "04" "01" "01" "01" "02", &input)); EXPECT_CALL(visitor_, OnSettingsFrameStart(2)); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_DUPLICATE_SETTING_IDENTIFIER)); EXPECT_EQ("Duplicate setting identifier.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, DataFrame) { InSequence s; std::string type_and_length_bytes; ASSERT_TRUE( absl::HexStringToBytes("00" "05", &type_and_length_bytes)); std::string input = absl::StrCat(type_and_length_bytes, "Data!"); EXPECT_CALL(visitor_, OnDataFrameStart(2, 5)).WillOnce(Return(false)); absl::string_view remaining_input(input); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(2u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("Data!"))) .WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_CALL(visitor_, OnDataFrameEnd()).WillOnce(Return(false)); EXPECT_EQ(0u, ProcessInputWithGarbageAppended("")); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnDataFrameStart(2, 5)); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("Data!"))); EXPECT_CALL(visitor_, OnDataFrameEnd()); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnDataFrameStart(2, 5)); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("D"))); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("a"))); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("t"))); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("a"))); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("!"))); EXPECT_CALL(visitor_, OnDataFrameEnd()); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, FrameHeaderPartialDelivery) { InSequence s; std::string input(2048, 'x'); quiche::QuicheBuffer header = HttpEncoder::SerializeDataFrameHeader( input.length(), quiche::SimpleBufferAllocator::Get()); EXPECT_EQ(1u, decoder_.ProcessInput(header.data(), 1)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnDataFrameStart(3, input.length())); EXPECT_EQ(header.size() - 1, decoder_.ProcessInput(header.data() + 1, header.size() - 1)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view(input))); EXPECT_CALL(visitor_, OnDataFrameEnd()); EXPECT_EQ(2048u, decoder_.ProcessInput(input.data(), 2048)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, PartialDeliveryOfLargeFrameType) { const uint64_t frame_type = 0x1f * 0x222 + 0x21; const QuicByteCount payload_length = 0; const QuicByteCount header_length = QuicDataWriter::GetVarInt62Len(frame_type) + QuicDataWriter::GetVarInt62Len(payload_length); auto input = std::make_unique<char[]>(header_length); QuicDataWriter writer(header_length, input.get()); writer.WriteVarInt62(frame_type); writer.WriteVarInt62(payload_length); EXPECT_CALL(visitor_, OnUnknownFrameStart(frame_type, header_length, payload_length)); EXPECT_CALL(visitor_, OnUnknownFrameEnd()); auto raw_input = input.get(); for (uint64_t i = 0; i < header_length; ++i) { char c = raw_input[i]; EXPECT_EQ(1u, decoder_.ProcessInput(&c, 1)); } EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_EQ(frame_type, current_frame_type()); } TEST_F(HttpDecoderTest, GoAway) { InSequence s; std::string input; ASSERT_TRUE( absl::HexStringToBytes("07" "01" "01", &input)); EXPECT_CALL(visitor_, OnGoAwayFrame(GoAwayFrame({1}))) .WillOnce(Return(false)); EXPECT_EQ(input.size(), ProcessInputWithGarbageAppended(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnGoAwayFrame(GoAwayFrame({1}))); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnGoAwayFrame(GoAwayFrame({1}))); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, HeadersFrame) { InSequence s; std::string type_and_length_bytes; ASSERT_TRUE( absl::HexStringToBytes("01" "07", &type_and_length_bytes)); std::string input = absl::StrCat(type_and_length_bytes, "Headers"); EXPECT_CALL(visitor_, OnHeadersFrameStart(2, 7)).WillOnce(Return(false)); absl::string_view remaining_input(input); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(2u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("Headers"))) .WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_CALL(visitor_, OnHeadersFrameEnd()).WillOnce(Return(false)); EXPECT_EQ(0u, ProcessInputWithGarbageAppended("")); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnHeadersFrameStart(2, 7)); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("Headers"))); EXPECT_CALL(visitor_, OnHeadersFrameEnd()); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnHeadersFrameStart(2, 7)); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("H"))); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("e"))); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("a"))); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("d"))); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("e"))); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("r"))); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("s"))); EXPECT_CALL(visitor_, OnHeadersFrameEnd()); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, MetadataFrame) { InSequence s; std::string type_and_length_bytes; ASSERT_TRUE( absl::HexStringToBytes("404d" "08", &type_and_length_bytes)); std::string input = absl::StrCat(type_and_length_bytes, "Metadata"); EXPECT_CALL(visitor_, OnMetadataFrameStart(3, 8)).WillOnce(Return(false)); absl::string_view remaining_input(input); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(3u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("Metadata"))) .WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_CALL(visitor_, OnMetadataFrameEnd()).WillOnce(Return(false)); EXPECT_EQ(0u, ProcessInputWithGarbageAppended("")); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnMetadataFrameStart(3, 8)); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("Metadata"))); EXPECT_CALL(visitor_, OnMetadataFrameEnd()); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnMetadataFrameStart(3, 8)); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("M"))); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("e"))); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("t"))); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("a"))); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("d"))); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("a"))); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("t"))); EXPECT_CALL(visitor_, OnMetadataFramePayload(absl::string_view("a"))); EXPECT_CALL(visitor_, OnMetadataFrameEnd()); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, EmptyDataFrame) { InSequence s; std::string input; ASSERT_TRUE( absl::HexStringToBytes("00" "00", &input)); EXPECT_CALL(visitor_, OnDataFrameStart(2, 0)).WillOnce(Return(false)); EXPECT_EQ(input.size(), ProcessInputWithGarbageAppended(input)); EXPECT_CALL(visitor_, OnDataFrameEnd()).WillOnce(Return(false)); EXPECT_EQ(0u, ProcessInputWithGarbageAppended("")); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnDataFrameStart(2, 0)); EXPECT_CALL(visitor_, OnDataFrameEnd()); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnDataFrameStart(2, 0)); EXPECT_CALL(visitor_, OnDataFrameEnd()); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, EmptyHeadersFrame) { InSequence s; std::string input; ASSERT_TRUE( absl::HexStringToBytes("01" "00", &input)); EXPECT_CALL(visitor_, OnHeadersFrameStart(2, 0)).WillOnce(Return(false)); EXPECT_EQ(input.size(), ProcessInputWithGarbageAppended(input)); EXPECT_CALL(visitor_, OnHeadersFrameEnd()).WillOnce(Return(false)); EXPECT_EQ(0u, ProcessInputWithGarbageAppended("")); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnHeadersFrameStart(2, 0)); EXPECT_CALL(visitor_, OnHeadersFrameEnd()); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnHeadersFrameStart(2, 0)); EXPECT_CALL(visitor_, OnHeadersFrameEnd()); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, GoawayWithOverlyLargePayload) { std::string input; ASSERT_TRUE(absl::HexStringToBytes( "07" "10", &input)); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(2u, ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_FRAME_TOO_LARGE)); EXPECT_EQ("Frame is too large.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, MaxPushIdWithOverlyLargePayload) { std::string input; ASSERT_TRUE( absl::HexStringToBytes("0d" "10", &input)); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(2u, ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_FRAME_TOO_LARGE)); EXPECT_EQ("Frame is too large.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, FrameWithOverlyLargePayload) { constexpr size_t max_input_length = sizeof(uint64_t) + sizeof(uint64_t) + sizeof(uint8_t); char input[max_input_length]; for (uint64_t frame_type = 0; frame_type < 1025; frame_type++) { ::testing::NiceMock<MockHttpDecoderVisitor> visitor; HttpDecoder decoder(&visitor); QuicDataWriter writer(max_input_length, input); ASSERT_TRUE(writer.WriteVarInt62(frame_type)); ASSERT_TRUE( writer.WriteVarInt62(quiche::kVarInt62MaxValue)); ASSERT_TRUE(writer.WriteUInt8(0x00)); EXPECT_NE(decoder.ProcessInput(input, writer.length()), 0u) << frame_type; } } TEST_F(HttpDecoderTest, MalformedSettingsFrame) { char input[30]; QuicDataWriter writer(30, input); writer.WriteUInt8(0x04); writer.WriteVarInt62(2048 * 1024); writer.WriteStringPiece("Malformed payload"); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(5u, decoder_.ProcessInput(input, ABSL_ARRAYSIZE(input))); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_FRAME_TOO_LARGE)); EXPECT_EQ("Frame is too large.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, Http2Frame) { std::string input; ASSERT_TRUE(absl::HexStringToBytes( "06" "05" "15", &input)); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(1u, ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_RECEIVE_SPDY_FRAME)); EXPECT_EQ("HTTP/2 frame received in a HTTP/3 connection: 6", decoder_.error_detail()); } TEST_F(HttpDecoderTest, HeadersPausedThenData) { InSequence s; std::string headers_type_and_length_bytes; ASSERT_TRUE( absl::HexStringToBytes("01" "07", &headers_type_and_length_bytes)); std::string headers = absl::StrCat(headers_type_and_length_bytes, "Headers"); std::string data_type_and_length_bytes; ASSERT_TRUE( absl::HexStringToBytes("00" "05", &data_type_and_length_bytes)); std::string data = absl::StrCat(data_type_and_length_bytes, "Data!"); std::string input = absl::StrCat(headers, data); EXPECT_CALL(visitor_, OnHeadersFrameStart(2, 7)); EXPECT_CALL(visitor_, OnHeadersFramePayload(absl::string_view("Headers"))); EXPECT_CALL(visitor_, OnHeadersFrameEnd()).WillOnce(Return(false)); absl::string_view remaining_input(input); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(9u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnDataFrameStart(2, 5)); EXPECT_CALL(visitor_, OnDataFramePayload(absl::string_view("Data!"))); EXPECT_CALL(visitor_, OnDataFrameEnd()); processed_bytes = ProcessInput(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, CorruptFrame) { InSequence s; struct { const char* const input; const char* const error_message; } kTestData[] = {{"\x0D" "\x01" "\x40", "Unable to read MAX_PUSH_ID push_id."}, {"\x0D" "\x04" "\x05" "foo", "Superfluous data in MAX_PUSH_ID frame."}, {"\x07" "\x01" "\x40", "Unable to read GOAWAY ID."}, {"\x07" "\x04" "\x05" "foo", "Superfluous data in GOAWAY frame."}, {"\x40\x89" "\x01" "\x40", "Unable to read ACCEPT_CH origin."}, {"\x40\x89" "\x01" "\x05", "Unable to read ACCEPT_CH origin."}, {"\x40\x89" "\x04" "\x05" "foo", "Unable to read ACCEPT_CH origin."}, {"\x40\x89" "\x04" "\x03" "foo", "Unable to read ACCEPT_CH value."}, {"\x40\x89" "\x05" "\x03" "foo" "\x40", "Unable to read ACCEPT_CH value."}, {"\x40\x89" "\x08" "\x03" "foo" "\x05" "bar", "Unable to read ACCEPT_CH value."}}; for (const auto& test_data : kTestData) { { HttpDecoder decoder(&visitor_); EXPECT_CALL(visitor_, OnAcceptChFrameStart(_)).Times(AnyNumber()); EXPECT_CALL(visitor_, OnError(&decoder)); absl::string_view input(test_data.input); decoder.ProcessInput(input.data(), input.size()); EXPECT_THAT(decoder.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ(test_data.error_message, decoder.error_detail()); } { HttpDecoder decoder(&visitor_); EXPECT_CALL(visitor_, OnAcceptChFrameStart(_)).Times(AnyNumber()); EXPECT_CALL(visitor_, OnError(&decoder)); absl::string_view input(test_data.input); for (auto c : input) { decoder.ProcessInput(&c, 1); } EXPECT_THAT(decoder.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ(test_data.error_message, decoder.error_detail()); } } } TEST_F(HttpDecoderTest, EmptySettingsFrame) { std::string input; ASSERT_TRUE( absl::HexStringToBytes("04" "00", &input)); EXPECT_CALL(visitor_, OnSettingsFrameStart(2)); SettingsFrame empty_frame; EXPECT_CALL(visitor_, OnSettingsFrame(empty_frame)); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, EmptyGoAwayFrame) { std::string input; ASSERT_TRUE( absl::HexStringToBytes("07" "00", &input)); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ("Unable to read GOAWAY ID.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, EmptyMaxPushIdFrame) { std::string input; ASSERT_TRUE( absl::HexStringToBytes("0d" "00", &input)); EXPECT_CALL(visitor_, OnError(&decoder_)); EXPECT_EQ(input.size(), ProcessInput(input)); EXPECT_THAT(decoder_.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ("Unable to read MAX_PUSH_ID push_id.", decoder_.error_detail()); } TEST_F(HttpDecoderTest, LargeStreamIdInGoAway) { GoAwayFrame frame; frame.id = 1ull << 60; std::string goaway = HttpEncoder::SerializeGoAwayFrame(frame); EXPECT_CALL(visitor_, OnGoAwayFrame(frame)); EXPECT_GT(goaway.length(), 0u); EXPECT_EQ(goaway.length(), decoder_.ProcessInput(goaway.data(), goaway.length())); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, ObsoletePriorityUpdateFrame) { const QuicByteCount header_length = 2; const QuicByteCount payload_length = 3; InSequence s; std::string input; ASSERT_TRUE( absl::HexStringToBytes("0f" "03" "666f6f", &input)); EXPECT_CALL(visitor_, OnUnknownFrameStart(0x0f, header_length, payload_length)); EXPECT_CALL(visitor_, OnUnknownFramePayload(Eq("foo"))); EXPECT_CALL(visitor_, OnUnknownFrameEnd()).WillOnce(Return(false)); EXPECT_EQ(header_length + payload_length, ProcessInputWithGarbageAppended(input)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnUnknownFrameStart(0x0f, header_length, payload_length)); EXPECT_CALL(visitor_, OnUnknownFramePayload(Eq("f"))); EXPECT_CALL(visitor_, OnUnknownFramePayload(Eq("o"))); EXPECT_CALL(visitor_, OnUnknownFramePayload(Eq("o"))); EXPECT_CALL(visitor_, OnUnknownFrameEnd()); ProcessInputCharByChar(input); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, PriorityUpdateFrame) { InSequence s; std::string input1; ASSERT_TRUE( absl::HexStringToBytes("800f0700" "01" "03", &input1)); PriorityUpdateFrame priority_update1; priority_update1.prioritized_element_id = 0x03; EXPECT_CALL(visitor_, OnPriorityUpdateFrameStart(5)).WillOnce(Return(false)); absl::string_view remaining_input(input1); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(5u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnPriorityUpdateFrame(priority_update1)) .WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnPriorityUpdateFrameStart(5)); EXPECT_CALL(visitor_, OnPriorityUpdateFrame(priority_update1)); EXPECT_EQ(input1.size(), ProcessInput(input1)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnPriorityUpdateFrameStart(5)); EXPECT_CALL(visitor_, OnPriorityUpdateFrame(priority_update1)); ProcessInputCharByChar(input1); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); std::string input2; ASSERT_TRUE( absl::HexStringToBytes("800f0700" "04" "05" "666f6f", &input2)); PriorityUpdateFrame priority_update2; priority_update2.prioritized_element_id = 0x05; priority_update2.priority_field_value = "foo"; EXPECT_CALL(visitor_, OnPriorityUpdateFrameStart(5)).WillOnce(Return(false)); remaining_input = input2; processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(5u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnPriorityUpdateFrame(priority_update2)) .WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnPriorityUpdateFrameStart(5)); EXPECT_CALL(visitor_, OnPriorityUpdateFrame(priority_update2)); EXPECT_EQ(input2.size(), ProcessInput(input2)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnPriorityUpdateFrameStart(5)); EXPECT_CALL(visitor_, OnPriorityUpdateFrame(priority_update2)); ProcessInputCharByChar(input2); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, CorruptPriorityUpdateFrame) { std::string payload; ASSERT_TRUE(absl::HexStringToBytes("4005", &payload)); struct { size_t payload_length; const char* const error_message; } kTestData[] = { {0, "Unable to read prioritized element id."}, {1, "Unable to read prioritized element id."}, }; for (const auto& test_data : kTestData) { std::string input; ASSERT_TRUE(absl::HexStringToBytes("800f0700", &input)); input.push_back(test_data.payload_length); size_t header_length = input.size(); input.append(payload.data(), test_data.payload_length); HttpDecoder decoder(&visitor_); EXPECT_CALL(visitor_, OnPriorityUpdateFrameStart(header_length)); EXPECT_CALL(visitor_, OnError(&decoder)); QuicByteCount processed_bytes = decoder.ProcessInput(input.data(), input.size()); EXPECT_EQ(input.size(), processed_bytes); EXPECT_THAT(decoder.error(), IsError(QUIC_HTTP_FRAME_ERROR)); EXPECT_EQ(test_data.error_message, decoder.error_detail()); } } TEST_F(HttpDecoderTest, AcceptChFrame) { InSequence s; std::string input1; ASSERT_TRUE( absl::HexStringToBytes("4089" "00", &input1)); AcceptChFrame accept_ch1; EXPECT_CALL(visitor_, OnAcceptChFrameStart(3)).WillOnce(Return(false)); absl::string_view remaining_input(input1); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(3u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnAcceptChFrame(accept_ch1)).WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnAcceptChFrameStart(3)); EXPECT_CALL(visitor_, OnAcceptChFrame(accept_ch1)); EXPECT_EQ(input1.size(), ProcessInput(input1)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnAcceptChFrameStart(3)); EXPECT_CALL(visitor_, OnAcceptChFrame(accept_ch1)); ProcessInputCharByChar(input1); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); std::string input2; ASSERT_TRUE( absl::HexStringToBytes("4089" "08" "03" "666f6f" "03" "626172", &input2)); AcceptChFrame accept_ch2; accept_ch2.entries.push_back({"foo", "bar"}); EXPECT_CALL(visitor_, OnAcceptChFrameStart(3)).WillOnce(Return(false)); remaining_input = input2; processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(3u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnAcceptChFrame(accept_ch2)).WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnAcceptChFrameStart(3)); EXPECT_CALL(visitor_, OnAcceptChFrame(accept_ch2)); EXPECT_EQ(input2.size(), ProcessInput(input2)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnAcceptChFrameStart(3)); EXPECT_CALL(visitor_, OnAcceptChFrame(accept_ch2)); ProcessInputCharByChar(input2); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, OriginFrame) { if (!GetQuicReloadableFlag(enable_h3_origin_frame)) { return; } InSequence s; std::string input1; ASSERT_TRUE( absl::HexStringToBytes("0C" "00", &input1)); OriginFrame origin1; EXPECT_CALL(visitor_, OnOriginFrameStart(2)).WillOnce(Return(false)); absl::string_view remaining_input(input1); QuicByteCount processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(2u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnOriginFrame(origin1)).WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnOriginFrameStart(2)); EXPECT_CALL(visitor_, OnOriginFrame(origin1)); EXPECT_EQ(input1.size(), ProcessInput(input1)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnOriginFrameStart(2)); EXPECT_CALL(visitor_, OnOriginFrame(origin1)); ProcessInputCharByChar(input1); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); std::string input2; ASSERT_TRUE( absl::HexStringToBytes("0C" "0A" "0003" "666f6f" "0003" "626172", &input2)); ASSERT_EQ(12, input2.length()); OriginFrame origin2; origin2.origins = {"foo", "bar"}; EXPECT_CALL(visitor_, OnOriginFrameStart(2)).WillOnce(Return(false)); remaining_input = input2; processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(2u, processed_bytes); remaining_input = remaining_input.substr(processed_bytes); EXPECT_CALL(visitor_, OnOriginFrame(origin2)).WillOnce(Return(false)); processed_bytes = ProcessInputWithGarbageAppended(remaining_input); EXPECT_EQ(remaining_input.size(), processed_bytes); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnOriginFrameStart(2)); EXPECT_CALL(visitor_, OnOriginFrame(origin2)); EXPECT_EQ(input2.size(), ProcessInput(input2)); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); EXPECT_CALL(visitor_, OnOriginFrameStart(2)); EXPECT_CALL(visitor_, OnOriginFrame(origin2)); ProcessInputCharByChar(input2); EXPECT_THAT(decoder_.error(), IsQuicNoError()); EXPECT_EQ("", decoder_.error_detail()); } TEST_F(HttpDecoderTest, OriginFrameDisabled) { if (GetQuicReloadableFlag(enable_h3_origin_frame)) { return; } InSequence s; std::string input1; ASSERT_TRUE( absl::HexStringToBytes("0C" "00", &input1)); EXPECT_CALL(visitor_, OnUnknownFrameStart(0x0C, 2, 0)); EXPECT_CALL(visitor_, OnUnknownFrameEnd()); EXPECT_EQ(ProcessInput(input1), input1.size()); std::string input2; ASSERT_TRUE( absl::HexStringToBytes("0C" "0A" "0003" "666f6f" "0003" "626172", &input2)); EXPECT_CALL(visitor_, OnUnknownFrameStart(0x0C, 2, input2.size() - 2)); EXPECT_CALL(visitor_, OnUnknownFramePayload(input2.substr(2))); EXPECT_CALL(visitor_, OnUnknownFrameEnd()); EXPECT_EQ(ProcessInput(input2), input2.size()); } TEST_F(HttpDecoderTest, WebTransportStreamDisabled) { InSequence s; std::string input; ASSERT_TRUE(absl::HexStringToBytes("40414104", &input)); EXPECT_CALL(visitor_, OnUnknownFrameStart(0x41, input.size(), 0x104)); EXPECT_EQ(ProcessInput(input), input.size()); } TEST(HttpDecoderTestNoFixture, WebTransportStream) { testing::StrictMock<MockHttpDecoderVisitor> visitor; HttpDecoder decoder(&visitor); decoder.EnableWebTransportStreamParsing(); std::string input; ASSERT_TRUE(absl::HexStringToBytes("40414104ffffffff", &input)); EXPECT_CALL(visitor, OnWebTransportStreamFrameType(4, 0x104)); QuicByteCount bytes = decoder.ProcessInput(input.data(), input.size()); EXPECT_EQ(bytes, 4u); } TEST(HttpDecoderTestNoFixture, WebTransportStreamError) { testing::StrictMock<MockHttpDecoderVisitor> visitor; HttpDecoder decoder(&visitor); decoder.EnableWebTransportStreamParsing(); std::string input; ASSERT_TRUE(absl::HexStringToBytes("404100", &input)); EXPECT_CALL(visitor, OnWebTransportStreamFrameType(_, _)); decoder.ProcessInput(input.data(), input.size()); EXPECT_QUIC_BUG( { EXPECT_CALL(visitor, OnError(_)); decoder.ProcessInput(input.data(), input.size()); }, "HttpDecoder called after an indefinite-length frame"); } TEST_F(HttpDecoderTest, DecodeSettings) { std::string input; ASSERT_TRUE(absl::HexStringToBytes( "04" "07" "01" "02" "06" "05" "4100" "04", &input)); SettingsFrame frame; frame.values[1] = 2; frame.values[6] = 5; frame.values[256] = 4; SettingsFrame out; EXPECT_TRUE(HttpDecoder::DecodeSettings(input.data(), input.size(), &out)); EXPECT_EQ(frame, out); ASSERT_TRUE( absl::HexStringToBytes("0D" "01" "01", &input)); EXPECT_FALSE(HttpDecoder::DecodeSettings(input.data(), input.size(), &out)); ASSERT_TRUE(absl::HexStringToBytes( "04" "01" "42", &input)); EXPECT_FALSE(HttpDecoder::DecodeSettings(input.data(), input.size(), &out)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/http_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/http_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
a1838971-fec5-40fa-ae1d-8854e5cd60e1
cpp
google/tensorstore
constant_vector
tensorstore/util/constant_vector.cc
tensorstore/util/constant_vector_test.cc
#include "tensorstore/util/constant_vector.h" #include <string> #include "tensorstore/rank.h" namespace tensorstore { namespace internal_constant_vector { const std::string kStringArray[kMaxRank] = {}; } }
#include "tensorstore/util/constant_vector.h" #include <string> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/span.h" namespace { using ::tensorstore::GetConstantVector; using ::tensorstore::span; TEST(GetConstantVectorTest, RunTimeLengthInt) { auto x = GetConstantVector<int, 3>(5); static_assert(std::is_same_v<decltype(x), span<const int>>); EXPECT_THAT(x, ::testing::ElementsAreArray(std::vector<int>(5, 3))); } TEST(GetConstantVectorTest, ZeroRunTimeLengthInt) { auto x = GetConstantVector<int, 3>(0); static_assert(std::is_same_v<decltype(x), span<const int>>); EXPECT_EQ(0, x.size()); } TEST(GetConstantVectorTest, StaticLengthInt) { constexpr auto x = GetConstantVector<int, 3, 5>(); static_assert(std::is_same_v<decltype(x), const span<const int, 5>>); EXPECT_THAT(x, ::testing::ElementsAreArray(std::vector<int>(5, 3))); } TEST(GetConstantVectorTest, StaticLengthIntUsingStaticRankValue) { constexpr auto x = GetConstantVector<int, 3>(tensorstore::StaticRank<5>{}); static_assert(std::is_same_v<decltype(x), const span<const int, 5>>); EXPECT_THAT(x, ::testing::ElementsAreArray(std::vector<int>(5, 3))); } TEST(GetConstantVectorTest, StaticZeroLengthInt) { constexpr auto x = GetConstantVector<int, 3, 0>(); static_assert(std::is_same_v<decltype(x), const span<const int, 0>>); } TEST(GetDefaultStringVectorTest, StaticLength) { auto x = tensorstore::GetDefaultStringVector<2>(); static_assert(std::is_same_v<decltype(x), span<const std::string, 2>>); EXPECT_THAT(x, ::testing::ElementsAre("", "")); } TEST(GetDefaultStringVectorTest, DynamicLength) { auto x = tensorstore::GetDefaultStringVector(2); static_assert(std::is_same_v<decltype(x), span<const std::string>>); EXPECT_THAT(x, ::testing::ElementsAre("", "")); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/constant_vector.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/constant_vector_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f8ba3194-ffe1-415c-af89-f97e6987e7a8
cpp
google/tensorstore
transform_array
tensorstore/index_space/internal/transform_array.cc
tensorstore/index_space/transform_array_test.cc
#include "tensorstore/index_space/internal/transform_array.h" #include "absl/status/status.h" #include "tensorstore/index_space/internal/iterate_impl.h" #include "tensorstore/index_space/internal/propagate_bounds.h" #include "tensorstore/index_space/internal/transform_rep_impl.h" namespace tensorstore { namespace internal_index_space { Result<SharedElementPointer<const void>> TransformArraySubRegion( const SharedArrayView<const void, dynamic_rank, offset_origin>& array, TransformRep* transform, const Index* result_origin, const Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); for (DimensionIndex i = 0; i < input_rank; ++i) { if (result_shape[i] == 0) { std::fill_n(result_byte_strides, input_rank, 0); return SharedElementPointer<const void>(std::shared_ptr<const void>(), array.dtype()); } } namespace flags = input_dimension_iteration_flags; flags::Bitmask input_dimension_flags[kMaxRank]; std::fill_n( &input_dimension_flags[0], input_rank, flags::GetDefaultBitmask(constraints.repeated_elements_constraint())); SingleArrayIterationState single_array_states[2]; TENSORSTORE_RETURN_IF_ERROR( internal_index_space::InitializeSingleArrayIterationState( array, transform, result_origin, result_shape, &single_array_states[0], &input_dimension_flags[0])); if (single_array_states[0].num_array_indexed_output_dimensions == 0) { if (constraints.allocate_constraint() != must_allocate) { std::copy_n(&single_array_states[0].input_byte_strides[0], input_rank, result_byte_strides); return SharedElementPointer<void>( std::shared_ptr<void>(array.pointer(), single_array_states[0].base_pointer), array.element_pointer().dtype()); } const StridedLayoutView<> source_layout( input_rank, result_shape, &single_array_states[0].input_byte_strides[0]); const StridedLayoutView<> new_layout(input_rank, result_shape, result_byte_strides); auto element_pointer = internal::AllocateArrayLike( array.element_pointer().dtype(), source_layout, result_byte_strides, constraints.iteration_constraints(), default_init); CopyArray(ArrayView<const void>( ElementPointer<void>(single_array_states[0].base_pointer, array.element_pointer().dtype()), source_layout), ArrayView<void>(element_pointer, new_layout)); return element_pointer; } MarkSingletonDimsAsSkippable(span(result_shape, input_rank), &input_dimension_flags[0]); SharedElementPointer<void> new_element_pointer; if (constraints.order_constraint()) { Index new_shape[kMaxRank]; for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { new_shape[input_dim] = input_dimension_flags[input_dim] == flags::can_skip ? 1 : result_shape[input_dim]; } ComputeStrides(constraints.order_constraint().order(), array.dtype()->size, span<const Index>(&new_shape[0], input_rank), span(result_byte_strides, input_rank)); for (DimensionIndex input_dim = 0; input_dim < input_rank; ++input_dim) { if (new_shape[input_dim] <= 1) result_byte_strides[input_dim] = 0; } const Index new_origin_offset = IndexInnerProduct(input_rank, result_byte_strides, result_origin); new_element_pointer = internal::AllocateAndConstructSharedElements( ProductOfExtents(span<const Index>(new_shape, input_rank)), default_init, array.dtype()); const absl::Status init_status = internal_index_space::InitializeSingleArrayIterationState( ArrayView<void, dynamic_rank, offset_origin>( AddByteOffset(ElementPointer<void>(new_element_pointer), -new_origin_offset), StridedLayoutView<dynamic_rank, offset_origin>( input_rank, result_origin, &new_shape[0], result_byte_strides)), nullptr, result_origin, result_shape, &single_array_states[1], &input_dimension_flags[0]); assert(init_status.ok()); } DimensionIterationOrder base_layout = constraints.order_constraint() ? ComputeDimensionIterationOrder<2>( single_array_states, span(input_dimension_flags).first(input_rank), {}) : ComputeDimensionIterationOrder<1>( {&single_array_states[0], 1}, span(input_dimension_flags).first(input_rank), {}); if (!constraints.order_constraint()) { Index new_shape[kMaxRank]; Index new_byte_strides[kMaxRank]; for (DimensionIndex i = 0; i < base_layout.pure_strided_end_dim; ++i) { const DimensionIndex input_dim = base_layout.input_dimension_order[i]; new_shape[i] = result_shape[input_dim]; } std::fill_n(result_byte_strides, input_rank, 0); ComputeStrides( ContiguousLayoutOrder::c, array.dtype()->size, span<const Index>(&new_shape[0], base_layout.pure_strided_end_dim), span<Index>(&new_byte_strides[0], base_layout.pure_strided_end_dim)); for (DimensionIndex i = 0; i < base_layout.pure_strided_end_dim; ++i) { const DimensionIndex input_dim = base_layout.input_dimension_order[i]; result_byte_strides[input_dim] = new_byte_strides[i]; } new_element_pointer = internal::AllocateAndConstructSharedElements( ProductOfExtents( span<const Index>(&new_shape[0], base_layout.pure_strided_end_dim)), default_init, array.dtype()); const Index new_origin_offset = IndexInnerProduct(input_rank, result_byte_strides, result_origin); const absl::Status init_status = internal_index_space::InitializeSingleArrayIterationState( ArrayView<void, dynamic_rank, offset_origin>( AddByteOffset(ElementPointer<void>(new_element_pointer), -new_origin_offset), StridedLayoutView<dynamic_rank, offset_origin>( input_rank, result_origin, &new_shape[0], result_byte_strides)), nullptr, result_origin, result_shape, &single_array_states[1], &input_dimension_flags[0]); assert(init_status.ok()); } SimplifiedDimensionIterationOrder layout = SimplifyDimensionIterationOrder<2>( base_layout, span(result_shape, input_rank), single_array_states); const std::array<std::ptrdiff_t, 2> element_sizes{array.dtype()->size, array.dtype()->size}; [[maybe_unused]] const bool success = IterateUsingSimplifiedLayout<2>( layout, span(result_shape, input_rank), {&array.dtype()->copy_assign, nullptr}, nullptr, single_array_states, element_sizes); assert(success); return new_element_pointer; } Result<SharedElementPointer<const void>> TransformArrayPreservingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_origin, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); TENSORSTORE_RETURN_IF_ERROR(PropagateExplicitBounds( array.domain(), transform, MutableBoxView<>(input_rank, result_origin, result_shape))); TENSORSTORE_ASSIGN_OR_RETURN( auto element_pointer, TransformArraySubRegion(array, transform, result_origin, result_shape, result_byte_strides, constraints)); return AddByteOffset(std::move(element_pointer), -IndexInnerProduct(transform->input_rank, result_byte_strides, result_origin)); } Result<SharedElementPointer<const void>> TransformArrayDiscardingOrigin( SharedArrayView<const void, dynamic_rank, offset_origin> array, TransformRep* transform, Index* result_shape, Index* result_byte_strides, TransformArrayConstraints constraints) { const DimensionIndex input_rank = transform ? transform->input_rank : array.rank(); Index result_origin[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(PropagateExplicitBounds( array.domain(), transform, MutableBoxView<>(input_rank, &result_origin[0], result_shape))); return TransformArraySubRegion(array, transform, &result_origin[0], result_shape, result_byte_strides, constraints); } } }
#include "tensorstore/index_space/internal/transform_array.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::DimensionIndex; using ::tensorstore::IdentityTransform; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::MakeArray; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MatchesStatus; TEST(TransformArrayTest, OneDimensionalIdentity) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IdentityTransform<1>()) .value(); EXPECT_EQ(original_array, new_array); } TEST(TransformArrayTest, OneDimensionalIdentityWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IdentityTransform<1>()) .value(); EXPECT_EQ(original_array, new_array); } TEST(TransformArrayTest, OneDimensionalSliceUnstrided) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(1), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceUnstridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 5, 1, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(6), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 3}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceStrided) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, -1, 2, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(1), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 4}), new_array); } TEST(TransformArrayTest, OneDimensionalSliceStridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray(original_array, IndexTransformBuilder<1, 1>() .input_origin({1}) .input_shape({2}) .output_single_input_dimension(0, 4, 2, 0) .Finalize() .value()) .value(); EXPECT_EQ(&original_array(6), &new_array(1)); EXPECT_EQ(MakeOffsetArray<int>({1}, {2, 4}), new_array); } TEST(TransformArrayTest, OneDArrayOneDIndexArray) { auto original_array = tensorstore::MakeArray<int>({1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, 1, 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({2}, {2, 4, 4, 3}), new_array); } TEST(TransformArrayTest, OneDArrayOneDIndexArray1025) { constexpr Index kSize = 1025; auto index_array = tensorstore::AllocateArray<Index>({kSize}); for (Index i = 0; i < kSize; ++i) index_array(i) = i; auto new_array = tensorstore::TransformArray(index_array, IndexTransformBuilder<1, 1>() .input_shape({kSize}) .output_index_array(0, 0, 1, index_array) .Finalize() .value()) .value(); EXPECT_EQ(index_array, new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayRetainZeroStride) { auto index_array = tensorstore::MakeArray<Index>({0, 1, 2, 3, 4}); tensorstore::SharedArray<Index, 2> index_array2; index_array2.element_pointer() = index_array.element_pointer(); index_array2.shape()[0] = 5; index_array2.shape()[1] = 2; index_array2.byte_strides()[0] = index_array.byte_strides()[0]; index_array2.byte_strides()[1] = 0; EXPECT_EQ(index_array2, MakeArray<Index>({{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}})); auto new_array = tensorstore::TransformArray(index_array2, IndexTransformBuilder<2, 2>() .input_shape({5, 2}) .output_index_array(0, 0, 1, index_array2) .output_single_input_dimension(1, 1) .Finalize() .value()) .value(); EXPECT_EQ(index_array2, new_array); EXPECT_EQ(index_array2.layout(), new_array.layout()); } TEST(TransformArrayTest, IndexArrayBoundsOverflow) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); EXPECT_THAT(tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, std::numeric_limits<Index>::min(), 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Integer overflow propagating range.*")); } TEST(TransformArrayTest, OneDArrayOneDIndexArrayWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5}, {1, 2, 3, 4}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<1, 1>() .input_origin({2}) .input_shape({4}) .output_index_array(0, 6, 1, MakeArray<Index>({0, 2, 2, 1})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({2}, {2, 4, 4, 3}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArray) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, -1, 1, 0) .output_index_array(1, 1, 1, MakeArray<Index>({{0, 2, 2, 1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{2, 4, 4, 3}, {6, 8, 8, 7}}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 4, 1, 0) .output_index_array(1, 7, 1, MakeArray<Index>({{0, 2, 2, 1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{2, 4, 4, 3}, {6, 8, 8, 7}}), new_array); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayStrided) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); } TEST(TransformArrayTest, ArrayIndexOutOfBounds) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3, 4}, {5, 6, 7, 8}}); EXPECT_THAT( tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, 2, 1, 0}})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index 2 is outside valid range \\[0, 2\\).*")); EXPECT_THAT( tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 2, -1, 0) .output_index_array(1, 1, 2, MakeArray<Index>({{0, -1, 1, 0}})) .Finalize() .value()) .status(), MatchesStatus(absl::StatusCode::kOutOfRange, ".*Index -1 is outside valid range \\[0, 2\\).*")); } TEST(TransformArrayTest, TwoDArrayOneDIndexArrayStridedWithOrigin) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2)); } TEST(TransformArrayTest, IncludeRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::include_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT( new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 2, sizeof(int) * 4, sizeof(int))); } TEST(TransformArrayTest, SkipSingleton) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 1}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::skip_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6}, {8}, {8}, {6}}, {{2}, {4}, {4}, {2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2, 0)); } TEST(TransformArrayTest, SkipRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), tensorstore::skip_repeated_elements) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int), sizeof(int) * 2, 0)); } TEST(TransformArrayTest, OrderConstraint) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({2, 4}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{0, 1, 1, 0}})) .Finalize() .value(), tensorstore::c_order) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2}, {{6, 8, 8, 6}, {2, 4, 4, 2}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 4, sizeof(int))); } TEST(TransformArrayTest, OrderConstraintIncludeRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), {tensorstore::c_order, tensorstore::include_repeated_elements}) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT( new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 8, sizeof(int) * 2, sizeof(int))); } TEST(TransformArrayTest, OrderConstraintSkipRepeated) { auto original_array = tensorstore::MakeOffsetArray<int>({5, 6}, {{1, 2, 3, 4}, {5, 6, 7, 8}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<3, 2>() .input_origin({1, 2, 3}) .input_shape({2, 4, 2}) .output_single_input_dimension(0, 7, -1, 0) .output_index_array(1, 7, 2, MakeArray<Index>({{{0}, {1}, {1}, {0}}})) .Finalize() .value(), {tensorstore::c_order, tensorstore::skip_repeated_elements}) .value(); EXPECT_EQ(MakeOffsetArray<int>({1, 2, 3}, {{{6, 6}, {8, 8}, {8, 8}, {6, 6}}, {{2, 2}, {4, 4}, {4, 4}, {2, 2}}}), new_array); EXPECT_THAT(new_array.byte_strides(), ::testing::ElementsAre(sizeof(int) * 4, sizeof(int), 0)); } TEST(TransformArrayTest, MultipleArrayIndexedDimensions) { auto original_array = tensorstore::MakeArray<int>({{1, 2}, {5, 6}}); auto new_array = tensorstore::TransformArray( original_array, IndexTransformBuilder<2, 2>() .input_origin({0, 0}) .input_shape({2, 2}) .output_index_array(0, 0, 1, MakeArray<Index>({{0, 1}})) .output_index_array(1, 0, 1, MakeArray<Index>({{0}, {1}})) .Finalize() .value()) .value(); EXPECT_EQ(MakeArray<int>({{1, 5}, {2, 6}}), new_array); } TEST(TransformArrayTest, EmptyDomain) { auto original_array = tensorstore::MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transform, (IndexTransformBuilder<2, 2>() .input_shape({0, 3}) .implicit_upper_bounds({1, 0}) .output_single_input_dimension(0, 0) .output_index_array(0, 0, 1, MakeArray<Index>({{0, 1, 2}})) .Finalize())); EXPECT_THAT(tensorstore::TransformArray(original_array, transform), ::testing::Optional(tensorstore::AllocateArray<int>({0, 3}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/internal/transform_array.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/transform_array_test.cc
4f887a6430414cd6088e1743555015b10f116d50
2b46fc07-d111-4925-b26a-7aae4df750d2
cpp
google/tensorstore
output_index_map
tensorstore/index_space/output_index_map.h
tensorstore/index_space/output_index_map_test.cc
#ifndef TENSORSTORE_INDEX_SPACE_OUTPUT_INDEX_MAP_H_ #define TENSORSTORE_INDEX_SPACE_OUTPUT_INDEX_MAP_H_ #include <cassert> #include "tensorstore/array.h" #include "tensorstore/index_space/internal/transform_rep.h" #include "tensorstore/index_space/output_index_method.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/element_pointer.h" namespace tensorstore { template <DimensionIndex InputRank = dynamic_rank> class OutputIndexMapRef { public: class IndexArrayView { public: SharedArrayView<const Index, InputRank, offset_origin> shared_array_ref() const { return {element_pointer(), layout()}; } ArrayView<const Index, InputRank, offset_origin> array_ref() const { return {element_pointer(), layout()}; } const SharedElementPointer<const Index>& element_pointer() const { return index_array_data_->element_pointer; } IndexInterval index_range() const { return index_array_data_->index_range; } StaticOrDynamicRank<InputRank> rank() const { return StaticRankCast<InputRank, unchecked>( static_cast<DimensionIndex>(rep_->input_rank)); } StridedLayoutView<InputRank, offset_origin> layout() const { return StridedLayoutView<InputRank, offset_origin>( rank(), rep_->input_origin().data(), rep_->input_shape().data(), index_array_data_->byte_strides); } span<const Index, InputRank> byte_strides() const { return {index_array_data_->byte_strides, rank()}; } private: template <DimensionIndex> friend class OutputIndexMapRef; explicit IndexArrayView( internal_index_space::IndexArrayData* index_array_data, internal_index_space::TransformRep* rep) : index_array_data_(index_array_data), rep_(rep) {} internal_index_space::IndexArrayData* index_array_data_; internal_index_space::TransformRep* rep_; }; OutputIndexMapRef() = default; OutputIndexMapRef& operator=(const OutputIndexMapRef&) = default; StaticOrDynamicRank<InputRank> input_rank() const { return StaticRankCast<InputRank, unchecked>( static_cast<DimensionIndex>(rep_->input_rank)); } OutputIndexMethod method() const { return map_->method(); } Index offset() const { return map_->offset(); } Index stride() const { return map_->stride(); } DimensionIndex input_dimension() const { return map_->input_dimension(); } IndexArrayView index_array() const { return IndexArrayView(&map_->index_array_data(), rep_); } private: template <DimensionIndex, DimensionIndex, ContainerKind> friend class OutputIndexMapRange; template <DimensionIndex> friend class OutputIndexMapIterator; explicit OutputIndexMapRef(internal_index_space::OutputIndexMap* map, internal_index_space::TransformRep* rep) : map_(map), rep_(rep) {} internal_index_space::OutputIndexMap* map_ = nullptr; internal_index_space::TransformRep* rep_ = nullptr; }; template <DimensionIndex InputRank = dynamic_rank> class OutputIndexMapIterator { public: using value_type = OutputIndexMapRef<InputRank>; using reference = OutputIndexMapRef<InputRank>; using difference_type = DimensionIndex; using pointer = value_type*; using iterator_category = std::random_access_iterator_tag; OutputIndexMapIterator() = default; OutputIndexMapRef<InputRank> operator*() const { return ref_; } const OutputIndexMapRef<InputRank>* operator->() const { return &ref_; } OutputIndexMapRef<InputRank> operator[](DimensionIndex n) const { auto new_ref = ref_; new_ref.map_ += n; return new_ref; } OutputIndexMapIterator& operator+=(DimensionIndex n) { ref_.map_ += n; return *this; } OutputIndexMapIterator& operator-=(DimensionIndex n) { return *this += (-n); } OutputIndexMapIterator& operator++() { ++ref_.map_; return *this; } OutputIndexMapIterator& operator--() { --ref_.map_; return *this; } OutputIndexMapIterator operator++(int) { auto temp = *this; ++ref_.map_; return temp; } OutputIndexMapIterator operator--(int) { auto temp = *this; --ref_.map_; return temp; } friend DimensionIndex operator-(OutputIndexMapIterator a, OutputIndexMapIterator b) { return a.map() - b.map(); } friend OutputIndexMapIterator operator+(OutputIndexMapIterator it, DimensionIndex n) { it += n; return it; } friend OutputIndexMapIterator operator+(DimensionIndex n, OutputIndexMapIterator it) { it += n; return it; } friend OutputIndexMapIterator operator-(OutputIndexMapIterator it, DimensionIndex n) { it -= n; return it; } friend bool operator==(OutputIndexMapIterator a, OutputIndexMapIterator b) { return a.map() == b.map(); } friend bool operator!=(OutputIndexMapIterator a, OutputIndexMapIterator b) { return a.map() != b.map(); } friend bool operator<(OutputIndexMapIterator a, OutputIndexMapIterator b) { return a.map() < b.map(); } friend bool operator<=(OutputIndexMapIterator a, OutputIndexMapIterator b) { return a.map() <= b.map(); } friend bool operator>(OutputIndexMapIterator a, OutputIndexMapIterator b) { return a.map() > b.map(); } friend bool operator>=(OutputIndexMapIterator a, OutputIndexMapIterator b) { return a.map() >= b.map(); } private: internal_index_space::OutputIndexMap* map() const { return ref_.map_; } template <DimensionIndex, DimensionIndex, ContainerKind> friend class OutputIndexMapRange; OutputIndexMapRef<InputRank> ref_; explicit OutputIndexMapIterator(internal_index_space::OutputIndexMap* map, internal_index_space::TransformRep* rep) : ref_(map, rep) {} }; template <DimensionIndex InputRank = dynamic_rank, DimensionIndex OutputRank = dynamic_rank, ContainerKind CKind = view> class OutputIndexMapRange { public: using value_type = OutputIndexMapRef<InputRank>; using reference = value_type; using iterator = OutputIndexMapIterator<InputRank>; using difference_type = DimensionIndex; constexpr static DimensionIndex extent = OutputRank; OutputIndexMapRange() = default; explicit OutputIndexMapRange( IndexTransform<InputRank, OutputRank, CKind> transform) : transform_(std::move(transform)) {} template <DimensionIndex OtherInputRank, DimensionIndex OtherOutputRank, ContainerKind OtherCKind, typename = std::enable_if_t< (RankConstraint::Implies(OtherInputRank, InputRank) && RankConstraint::Implies(OtherOutputRank, OutputRank))>> OutputIndexMapRange( OutputIndexMapRange<OtherInputRank, OtherOutputRank, OtherCKind> other) : transform_(std::move(other.transform_)) {} StaticOrDynamicRank<OutputRank> size() const { return transform_.output_rank(); } bool empty() const { return size() == 0; } iterator begin() const { return iterator(rep()->output_index_maps().data(), rep()); } iterator end() const { return iterator(rep()->output_index_maps().data() + size(), rep()); } OutputIndexMapRef<InputRank> operator[](DimensionIndex output_dim) const { assert(output_dim >= 0 && output_dim < size()); return OutputIndexMapRef<InputRank>( rep()->output_index_maps().data() + output_dim, rep()); } StaticOrDynamicRank<InputRank> input_rank() const { return transform_.input_rank(); } private: template <DimensionIndex, DimensionIndex, ContainerKind> friend class OutputIndexMapRange; internal_index_space::TransformRep* rep() const { return internal_index_space::TransformAccess::rep(transform_); } IndexTransform<InputRank, OutputRank, CKind> transform_; }; } #endif
#include "tensorstore/index_space/output_index_map.h" #include <type_traits> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::dynamic_rank; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeOffsetArray; using ::tensorstore::offset_origin; using ::tensorstore::OutputIndexMapIterator; using ::tensorstore::OutputIndexMapRange; using ::tensorstore::OutputIndexMapRef; using ::tensorstore::OutputIndexMethod; using ::tensorstore::span; using ::tensorstore::StaticRank; using ::tensorstore::StridedLayout; TEST(OutputIndexMethodTest, Ostream) { EXPECT_EQ("constant", tensorstore::StrCat(OutputIndexMethod::constant)); EXPECT_EQ("single_input_dimension", tensorstore::StrCat(OutputIndexMethod::single_input_dimension)); EXPECT_EQ("array", tensorstore::StrCat(OutputIndexMethod::array)); EXPECT_EQ("<unknown>", tensorstore::StrCat(static_cast<OutputIndexMethod>(-1))); } TEST(OutputIndexMapTest, StaticRanks) { auto index_array = MakeOffsetArray<Index>({1, 2, 3}, {{{5}, {6}, {7}, {8}}}); auto t = IndexTransformBuilder<3, 4>() .input_origin({1, 2, 3}) .input_shape({4, 4, 3}) .output_constant(0, 10) .output_single_input_dimension(1, 20, 2, 2) .output_index_array(2, 30, 3, index_array, IndexInterval::Closed(3, 10)) .Finalize() .value(); auto range = t.output_index_maps(); static_assert(std::is_same_v<decltype(range), OutputIndexMapRange<3, 4>>); static_assert(std::is_same_v<StaticRank<4>, decltype(range.size())>); static_assert(std::is_same_v<StaticRank<3>, decltype(range.input_rank())>); EXPECT_EQ(4, range.size()); EXPECT_EQ(3, range.input_rank()); EXPECT_EQ(false, range.empty()); auto it = range.begin(); static_assert(std::is_same_v<OutputIndexMapIterator<3>, decltype(it)>); EXPECT_EQ(range.begin(), it); EXPECT_NE(range.end(), it); EXPECT_EQ(range.end(), range.end()); { auto output0 = *it; static_assert(std::is_same_v<OutputIndexMapRef<3>, decltype(output0)>); EXPECT_EQ(OutputIndexMethod::constant, output0.method()); EXPECT_EQ(10, output0.offset()); } { auto it0 = it; EXPECT_EQ(&++it0, &it0); EXPECT_EQ(20, it0->offset()); EXPECT_EQ(&--it0, &it0); EXPECT_EQ(10, it0->offset()); } { auto it0 = it + 1; EXPECT_EQ(20, it0->offset()); it0 = 2 + it; EXPECT_EQ(30, it0->offset()); it0 = it0 - 2; EXPECT_EQ(10, it0->offset()); } { auto it0 = it + 1; EXPECT_EQ(1, it0 - it); EXPECT_EQ(-1, it - it0); EXPECT_TRUE(it < it0); EXPECT_TRUE(it <= it0); EXPECT_TRUE(it != it0); EXPECT_FALSE(it == it0); EXPECT_FALSE(it >= it0); EXPECT_FALSE(it > it0); EXPECT_FALSE(it0 < it); EXPECT_FALSE(it0 <= it); EXPECT_TRUE(it0 != it); EXPECT_FALSE(it0 == it); EXPECT_TRUE(it0 >= it); EXPECT_TRUE(it0 > it); EXPECT_FALSE(it < it); EXPECT_TRUE(it <= it); EXPECT_FALSE(it != it); EXPECT_TRUE(it == it); EXPECT_TRUE(it >= it); EXPECT_FALSE(it > it); } { auto it0 = it; auto it1 = it0++; EXPECT_EQ(it1, it); EXPECT_EQ(it0, it + 1); EXPECT_EQ(10, it1->offset()); EXPECT_EQ(20, it0->offset()); auto it2 = it0--; EXPECT_EQ(it2, it + 1); EXPECT_EQ(it0, it); } ++it; { auto output1 = *it; EXPECT_EQ(OutputIndexMethod::single_input_dimension, output1.method()); EXPECT_EQ(2, output1.input_dimension()); EXPECT_EQ(20, output1.offset()); EXPECT_EQ(2, output1.stride()); } { auto output1a = range.begin()[1]; static_assert(std::is_same_v<OutputIndexMapRef<3>, decltype(output1a)>); EXPECT_EQ(OutputIndexMethod::single_input_dimension, output1a.method()); EXPECT_EQ(2, output1a.input_dimension()); EXPECT_EQ(20, output1a.offset()); EXPECT_EQ(2, output1a.stride()); } { auto output1b = range[1]; static_assert(std::is_same_v<OutputIndexMapRef<3>, decltype(output1b)>); EXPECT_EQ(OutputIndexMethod::single_input_dimension, output1b.method()); EXPECT_EQ(2, output1b.input_dimension()); EXPECT_EQ(20, output1b.offset()); EXPECT_EQ(2, output1b.stride()); } { auto output1c = t.output_index_map(1); static_assert(std::is_same_v<OutputIndexMapRef<3>, decltype(output1c)>); EXPECT_EQ(OutputIndexMethod::single_input_dimension, output1c.method()); EXPECT_EQ(2, output1c.input_dimension()); EXPECT_EQ(20, output1c.offset()); EXPECT_EQ(2, output1c.stride()); } ++it; { auto output2 = *it; EXPECT_EQ(OutputIndexMethod::array, output2.method()); EXPECT_EQ(30, output2.offset()); EXPECT_EQ(3, output2.stride()); auto index_array_ref = output2.index_array(); EXPECT_EQ(&index_array(1, 2, 3), &index_array_ref.array_ref()(1, 2, 3)); EXPECT_EQ(IndexInterval::UncheckedClosed(3, 10), index_array_ref.index_range()); static_assert( std::is_same_v<StaticRank<3>, decltype(index_array_ref.rank())>); const StridedLayout<3, offset_origin> expected_layout( {1, 2, 3}, {4, 4, 3}, {0, sizeof(Index), 0}); EXPECT_EQ(expected_layout, index_array_ref.layout()); EXPECT_EQ(&index_array(1, 2, 3), &index_array_ref.shared_array_ref()(1, 2, 3)); EXPECT_EQ(expected_layout, index_array_ref.shared_array_ref().layout()); EXPECT_EQ(expected_layout, index_array_ref.array_ref().layout()); EXPECT_THAT(index_array_ref.byte_strides(), testing::ElementsAreArray(expected_layout.byte_strides())); EXPECT_EQ(0, index_array_ref.byte_strides()[0]); EXPECT_EQ(sizeof(Index), index_array_ref.byte_strides()[1]); EXPECT_EQ(0, index_array_ref.byte_strides()[2]); } ++it; { auto output3 = *it; EXPECT_EQ(OutputIndexMethod::constant, output3.method()); EXPECT_EQ(0, output3.offset()); } ++it; EXPECT_EQ(range.end(), it); } TEST(OutputIndexMapTest, ZeroRank) { auto t = IndexTransformBuilder<3, 0>() .input_origin({1, 2, 3}) .input_shape({4, 4, 3}) .Finalize() .value(); auto range = t.output_index_maps(); EXPECT_EQ(0, range.size()); EXPECT_EQ(3, range.input_rank()); EXPECT_TRUE(range.empty()); } TEST(OutputIndexMapTest, DynamicRanks) { auto index_array = MakeOffsetArray<Index>({1, 2, 3}, {{{5}, {6}, {7}, {8}}}); auto t = IndexTransformBuilder<>(3, 4) .input_origin({1, 2, 3}) .input_shape({4, 4, 3}) .output_constant(0, 10) .output_single_input_dimension(1, 20, 2, 2) .output_index_array(2, 30, 3, index_array, IndexInterval::Closed(3, 10)) .Finalize() .value(); auto range = t.output_index_maps(); static_assert(std::is_same_v<decltype(range), OutputIndexMapRange<>>); EXPECT_EQ(4, range.size()); EXPECT_EQ(3, range.input_rank()); EXPECT_EQ(false, range.empty()); auto it = range.begin(); static_assert(std::is_same_v<OutputIndexMapIterator<>, decltype(it)>); { auto output0 = *it; static_assert(std::is_same_v<OutputIndexMapRef<>, decltype(output0)>); EXPECT_EQ(OutputIndexMethod::constant, output0.method()); EXPECT_EQ(10, output0.offset()); } { auto output2 = range[2]; static_assert(std::is_same_v<OutputIndexMapRef<>, decltype(output2)>); EXPECT_EQ(OutputIndexMethod::array, output2.method()); EXPECT_EQ(30, output2.offset()); EXPECT_EQ(3, output2.stride()); auto index_array_ref = output2.index_array(); EXPECT_EQ(&index_array(1, 2, 3), &index_array_ref.array_ref()(1, 2, 3)); EXPECT_EQ(IndexInterval::UncheckedClosed(3, 10), index_array_ref.index_range()); EXPECT_EQ(3, index_array.rank()); const StridedLayout<dynamic_rank, offset_origin> expected_layout( {1, 2, 3}, {4, 4, 3}, {0, sizeof(Index), 0}); EXPECT_EQ(expected_layout, index_array_ref.layout()); EXPECT_EQ(&index_array(1, 2, 3), &index_array_ref.shared_array_ref()(1, 2, 3)); EXPECT_EQ(expected_layout, index_array_ref.shared_array_ref().layout()); } } TEST(OutputIndexMapTest, Unbroadcast) { auto index_array = tensorstore::MakeArray<Index>({{{5}, {6}, {7}, {8}}}); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto t, IndexTransformBuilder(3, 4) .input_origin({1, 2, 3}) .input_shape({4, 4, 3}) .output_constant(0, 10) .output_single_input_dimension(1, 20, 2, 2) .output_index_array(2, 30, 3, index_array) .Finalize()); auto map = t.output_index_maps()[2]; EXPECT_THAT(map.index_array().array_ref(), MakeOffsetArray<Index>( {1, 2, 3}, { {{5, 5, 5}, {6, 6, 6}, {7, 7, 7}, {8, 8, 8}}, {{5, 5, 5}, {6, 6, 6}, {7, 7, 7}, {8, 8, 8}}, {{5, 5, 5}, {6, 6, 6}, {7, 7, 7}, {8, 8, 8}}, {{5, 5, 5}, {6, 6, 6}, {7, 7, 7}, {8, 8, 8}}, })); EXPECT_THAT(UnbroadcastArrayPreserveRank(map.index_array().array_ref()), index_array); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/output_index_map.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/index_space/output_index_map_test.cc
4f887a6430414cd6088e1743555015b10f116d50
55dc148d-bb3c-4c44-8572-b7c721de9c6b
cpp
tensorflow/tensorflow
update_api_def
tensorflow/core/api_def/update_api_def.cc
tensorflow/core/api_def/update_api_def_test.cc
#include "tensorflow/core/api_def/update_api_def.h" #include <ctype.h> #include <algorithm> #include <string> #include <vector> #include "tensorflow/core/api_def/excluded_ops.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace { constexpr char kApiDefFileFormat[] = "api_def_%s.pbtxt"; constexpr char kDocStart[] = ".Doc(R\"doc("; constexpr char kDocEnd[] = ")doc\")"; void FillBaseApiDef(ApiDef* api_def, const OpDef& op) { api_def->set_graph_op_name(op.name()); for (auto& input_arg : op.input_arg()) { if (!input_arg.description().empty()) { auto* api_def_in_arg = api_def->add_in_arg(); api_def_in_arg->set_name(input_arg.name()); api_def_in_arg->set_description(input_arg.description()); } } for (auto& output_arg : op.output_arg()) { if (!output_arg.description().empty()) { auto* api_def_out_arg = api_def->add_out_arg(); api_def_out_arg->set_name(output_arg.name()); api_def_out_arg->set_description(output_arg.description()); } } for (auto& attr : op.attr()) { if (!attr.description().empty()) { auto* api_def_attr = api_def->add_attr(); api_def_attr->set_name(attr.name()); api_def_attr->set_description(attr.description()); } } api_def->set_summary(op.summary()); api_def->set_description(op.description()); } bool OpHasDocs(const OpDef& op) { if (!op.summary().empty() || !op.description().empty()) { return true; } for (const auto& arg : op.input_arg()) { if (!arg.description().empty()) { return true; } } for (const auto& arg : op.output_arg()) { if (!arg.description().empty()) { return true; } } for (const auto& attr : op.attr()) { if (!attr.description().empty()) { return true; } } return false; } bool CheckDocsMatch(const OpDef& op1, const OpDef& op2) { if (op1.summary() != op2.summary() || op1.description() != op2.description() || op1.input_arg_size() != op2.input_arg_size() || op1.output_arg_size() != op2.output_arg_size() || op1.attr_size() != op2.attr_size()) { return false; } for (int i = 0; i < op1.input_arg_size(); ++i) { if (op1.input_arg(i).description() != op2.input_arg(i).description()) { return false; } } for (int i = 0; i < op1.output_arg_size(); ++i) { if (op1.output_arg(i).description() != op2.output_arg(i).description()) { return false; } } for (int i = 0; i < op1.attr_size(); ++i) { if (op1.attr(i).description() != op2.attr(i).description()) { return false; } } return true; } bool ValidateOpDocs(const OpDef& op, const string& doc) { OpDefBuilder b(op.name()); for (const auto& arg : op.input_arg()) { b.Input(arg.name() + ":string"); } for (const auto& arg : op.output_arg()) { b.Output(arg.name() + ":string"); } for (const auto& attr : op.attr()) { b.Attr(attr.name() + ":string"); } b.Doc(doc); OpRegistrationData op_reg_data; TF_CHECK_OK(b.Finalize(&op_reg_data)); return CheckDocsMatch(op, op_reg_data.op_def); } } string RemoveDoc(const OpDef& op, const string& file_contents, size_t start_location) { const auto doc_start_location = file_contents.find(kDocStart, start_location); const string format_error = strings::Printf( "Could not find %s doc for removal. Make sure the doc is defined with " "'%s' prefix and '%s' suffix or remove the doc manually.", op.name().c_str(), kDocStart, kDocEnd); if (doc_start_location == string::npos) { std::cerr << format_error << std::endl; LOG(ERROR) << "Didn't find doc start"; return file_contents; } const auto doc_end_location = file_contents.find(kDocEnd, doc_start_location); if (doc_end_location == string::npos) { LOG(ERROR) << "Didn't find doc start"; std::cerr << format_error << std::endl; return file_contents; } const auto doc_start_size = sizeof(kDocStart) - 1; string doc_text = file_contents.substr( doc_start_location + doc_start_size, doc_end_location - doc_start_location - doc_start_size); if (!ValidateOpDocs(op, doc_text)) { LOG(ERROR) << "Invalid doc: " << doc_text; std::cerr << format_error << std::endl; return file_contents; } auto before_doc = file_contents.substr(0, doc_start_location); absl::StripTrailingAsciiWhitespace(&before_doc); return before_doc + file_contents.substr(doc_end_location + sizeof(kDocEnd) - 1); } namespace { void RemoveDocs(const std::vector<const OpDef*>& ops, const std::vector<string>& op_files) { std::set<string> processed_ops; for (const auto& file : op_files) { string file_contents; bool file_contents_updated = false; TF_CHECK_OK(ReadFileToString(Env::Default(), file, &file_contents)); for (auto op : ops) { if (processed_ops.find(op->name()) != processed_ops.end()) { continue; } string register_call = strings::Printf("REGISTER_OP(\"%s\")", op->name().c_str()); const auto register_call_location = file_contents.find(register_call); if (register_call_location == string::npos) { continue; } std::cout << "Removing .Doc call for " << op->name() << " from " << file << "." << std::endl; file_contents = RemoveDoc(*op, file_contents, register_call_location); file_contents_updated = true; processed_ops.insert(op->name()); } if (file_contents_updated) { TF_CHECK_OK(WriteStringToFile(Env::Default(), file, file_contents)) << "Could not remove .Doc calls in " << file << ". Make sure the file is writable."; } } } } string CreateApiDef(const OpDef& op) { ApiDefs api_defs; FillBaseApiDef(api_defs.add_op(), op); const std::vector<string> multi_line_fields = {"description"}; std::string new_api_defs_str; ::tensorflow::protobuf::TextFormat::PrintToString(api_defs, &new_api_defs_str); return PBTxtToMultiline(new_api_defs_str, multi_line_fields); } void CreateApiDefs(const OpList& ops, const string& api_def_dir, const string& op_file_pattern) { auto* excluded_ops = GetExcludedOps(); std::vector<const OpDef*> new_ops_with_docs; for (const auto& op : ops.op()) { if (excluded_ops->find(op.name()) != excluded_ops->end()) { continue; } string file_path = io::JoinPath(tensorflow::string(api_def_dir), kApiDefFileFormat); file_path = strings::Printf(file_path.c_str(), op.name().c_str()); if (!Env::Default()->FileExists(file_path).ok()) { std::cout << "Creating ApiDef file " << file_path << std::endl; const auto& api_def_text = CreateApiDef(op); TF_CHECK_OK(WriteStringToFile(Env::Default(), file_path, api_def_text)); if (OpHasDocs(op)) { new_ops_with_docs.push_back(&op); } } } if (!op_file_pattern.empty()) { std::vector<string> op_files; TF_CHECK_OK(Env::Default()->GetMatchingPaths(op_file_pattern, &op_files)); RemoveDocs(new_ops_with_docs, op_files); } } }
#include "tensorflow/core/api_def/update_api_def.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(UpdateApiDefTest, TestRemoveDocSingleOp) { const string op_def_text = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Output("output: T") .Attr("b: type") .SetShapeFn(shape_inference::UnchangedShape); )opdef"; const string op_def_text_with_doc = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Output("output: T") .Attr("b: type") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op1. Description for Op1. b : Description for b. a: Description for a. output: Description for output. )doc"); )opdef"; const string op_text = R"( name: "Op1" input_arg { name: "a" description: "Description for a." } output_arg { name: "output" description: "Description for output." } attr { name: "b" description: "Description for b." } summary: "Summary for Op1." description: "Description\nfor Op1." )"; OpDef op; protobuf::TextFormat::ParseFromString(op_text, &op); EXPECT_EQ(op_def_text, RemoveDoc(op, op_def_text_with_doc, 0 )); } TEST(UpdateApiDefTest, TestRemoveDocMultipleOps) { const string op_def_text = R"opdef( REGISTER_OP("Op1") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op2") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op3") .Input("c: T") .SetShapeFn(shape_inference::UnchangedShape); )opdef"; const string op_def_text_with_doc = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Doc(R"doc( Summary for Op1. )doc") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op2") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op2. )doc"); REGISTER_OP("Op3") .Input("c: T") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op3. )doc"); )opdef"; const string op1_text = R"( name: "Op1" input_arg { name: "a" } summary: "Summary for Op1." )"; const string op2_text = R"( name: "Op2" input_arg { name: "a" } summary: "Summary for Op2." )"; const string op3_text = R"( name: "Op3" input_arg { name: "c" } summary: "Summary for Op3." )"; OpDef op1, op2, op3; protobuf::TextFormat::ParseFromString(op1_text, &op1); protobuf::TextFormat::ParseFromString(op2_text, &op2); protobuf::TextFormat::ParseFromString(op3_text, &op3); string updated_text = RemoveDoc(op2, op_def_text_with_doc, op_def_text_with_doc.find("Op2") ); EXPECT_EQ(string::npos, updated_text.find("Summary for Op2")); EXPECT_NE(string::npos, updated_text.find("Summary for Op1")); EXPECT_NE(string::npos, updated_text.find("Summary for Op3")); updated_text = RemoveDoc(op3, updated_text, updated_text.find("Op3") ); updated_text = RemoveDoc(op1, updated_text, updated_text.find("Op1") ); EXPECT_EQ(op_def_text, updated_text); } TEST(UpdateApiDefTest, TestCreateApiDef) { const string op_text = R"( name: "Op1" input_arg { name: "a" description: "Description for a." } output_arg { name: "output" description: "Description for output." } attr { name: "b" description: "Description for b." } summary: "Summary for Op1." description: "Description\nfor Op1." )"; OpDef op; protobuf::TextFormat::ParseFromString(op_text, &op); const string expected_api_def = R"(op { graph_op_name: "Op1" in_arg { name: "a" description: <<END Description for a. END } out_arg { name: "output" description: <<END Description for output. END } attr { name: "b" description: <<END Description for b. END } summary: "Summary for Op1." description: <<END Description for Op1. END } )"; EXPECT_EQ(expected_api_def, CreateApiDef(op)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/api_def/update_api_def.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/api_def/update_api_def_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
101f50fd-1f21-43e6-97f3-00b657bd3792
cpp
tensorflow/tensorflow
exp
tensorflow/lite/kernels/exp.cc
tensorflow/lite/kernels/exp_test.cc
#include <cmath> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/lut.h" #include "tensorflow/lite/kernels/internal/reference/reference_ops.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace exp { enum KernelType { kReference, }; struct ExpContext { ExpContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, 0); output = GetOutput(context, node, 0); } const TfLiteTensor* input; TfLiteTensor* output; }; struct OpData { union { int8_t lut_int8[LUTSize<int8_t>()]; int16_t lut_int16[LUTSize<int16_t>()]; }; }; void* Init(TfLiteContext* context, const char* buffer, size_t length) { return new OpData; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { OpData* data = static_cast<OpData*>(node->user_data); TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); ExpContext op_context(context, node); const TfLiteTensor* input = op_context.input; TfLiteTensor* output = op_context.output; TfLiteIntArray* output_dims = TfLiteIntArrayCopy(input->dims); output->type = input->type; if (input->type == kTfLiteInt8) { LUTPopulate<int8_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::exp(value); }, data->lut_int8); } else if (input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); LUTPopulate<int16_t>( input->params.scale, input->params.zero_point, output->params.scale, output->params.zero_point, [](float value) { return std::exp(value); }, data->lut_int16); } return context->ResizeTensor(context, op_context.output, output_dims); } template <KernelType kernel_type> TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { OpData* data = reinterpret_cast<OpData*>(node->user_data); ExpContext op_context(context, node); if (kernel_type == kReference) { switch (op_context.input->type) { case kTfLiteFloat32: reference_ops::Exp(GetTensorData<float>(op_context.input), NumElements(op_context.input), GetTensorData<float>(op_context.output)); break; case kTfLiteInt8: reference_integer_ops::LookupTable( GetTensorData<int8_t>(op_context.input), NumElements(op_context.input), data->lut_int8, GetTensorData<int8_t>(op_context.output)); break; case kTfLiteInt16: reference_integer_ops::LookupTable( GetTensorData<int16_t>(op_context.input), NumElements(op_context.input), data->lut_int16, GetTensorData<int16_t>(op_context.output)); break; default: TF_LITE_KERNEL_LOG(context, "Type %d is currently not supported by Exp.", op_context.input->type); return kTfLiteError; } } return kTfLiteOk; } } TfLiteRegistration* Register_EXP_REF() { static TfLiteRegistration r = {exp::Init, exp::Free, exp::Prepare, exp::Eval<exp::kReference>}; return &r; } TfLiteRegistration* Register_EXP() { return Register_EXP_REF(); } } } }
#include <math.h> #include <initializer_list> #include <limits> #include <type_traits> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class BaseExpOpModel : public SingleOpModel { public: BaseExpOpModel(const TensorData& input, const TensorData& output) { input_ = AddInput(input); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_EXP, BuiltinOptions_ExpOptions, CreateExpOptions(builder_).Union()); BuildInterpreter({GetShape(input_)}); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input_; int output_; }; class FloatExpOpModel : public BaseExpOpModel { public: using BaseExpOpModel::BaseExpOpModel; void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } }; class QuantizedExpOpModel : public BaseExpOpModel { public: using BaseExpOpModel::BaseExpOpModel; template <class T> void SetInput(std::initializer_list<float> data) { QuantizeAndPopulate<T>(input_, data); } template <typename integer_dtype> std::vector<float> GetDequantizedOutput() { return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_), GetScale(output_), GetZeroPoint(output_)); } }; template <typename T> inline float GetTolerance(float min, float max) { float kQuantizedTolerance = (max - min) / (std::numeric_limits<T>::max() - std::numeric_limits<T>::min()); if (std::is_same<T, int8_t>::value) { kQuantizedTolerance += (max - min) / 256.0f; } else if (std::is_same<T, int16_t>::value) { kQuantizedTolerance += (max - min) / 512.0f; } return kQuantizedTolerance; } TEST(ExpOpTest, ExpFloat) { std::initializer_list<float> data = {0.0f, 1.0f, -1.0f, 100.0f, -100.0f, 0.01f, -0.01f}; FloatExpOpModel m({TensorType_FLOAT32, {1, 1, 7}}, {TensorType_FLOAT32, {}}); m.SetInput(data); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 7})); EXPECT_THAT( m.GetOutput(), ElementsAreArray(ArrayFloatNear( {std::exp(0.0f), std::exp(1.0f), std::exp(-1.0f), std::exp(100.0f), std::exp(-100.0f), std::exp(0.01f), std::exp(-0.01f)}))); } template <TensorType tensor_type, typename integer_dtype> void QuantizedExpSymmetricTest() { const float kMin = -1; const float kMax = std::numeric_limits<integer_dtype>::max() / static_cast<float>(std::numeric_limits<integer_dtype>::max() + 1); const float kQuantizedTolerance = GetTolerance<integer_dtype>(-3.1, 3.1); QuantizedExpOpModel m({tensor_type, {1, 2, 2, 2}, 1.3f * kMin, 1.3f * kMax}, {tensor_type, {}, 3.01f * kMin, 3.01f * kMax}); m.SetInput<integer_dtype>({-1.3, -1.0, -0.3, 0, 0.1, 0.5, 1.0, 1.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 2})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(ArrayFloatNear( {0.2725, 0.3679, 0.7408, 1.0, 1.1052, 1.6487, 2.7183, 3.0042}, kQuantizedTolerance))); } TEST(ExpOpTest, ExpSymmetricInt8) { QuantizedExpSymmetricTest<TensorType_INT8, int8_t>(); } TEST(ExpOpTest, ExpSymmetricInt16) { QuantizedExpSymmetricTest<TensorType_INT16, int16_t>(); } template <TensorType tensor_type, typename integer_dtype> void QuantizedExpAsymmetricTest() { const float kQuantizedTolerance = GetTolerance<integer_dtype>(-1.3, 3.01); QuantizedExpOpModel m({tensor_type, {1, 2, 2, 2}, -1.3, 1.1}, {tensor_type, {}, 0.0, 3.01}); m.SetInput<integer_dtype>({-1.3, -1.0, -0.3, 0, 0.1, 0.5, 1.0, 1.1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 2, 2, 2})); EXPECT_THAT(m.GetDequantizedOutput<integer_dtype>(), ElementsAreArray(ArrayFloatNear( {0.2725, 0.3679, 0.7408, 1.0, 1.1052, 1.6487, 2.7183, 3.0042}, kQuantizedTolerance))); } TEST(ExpOpTest, ExpAsymmetricInt8) { QuantizedExpAsymmetricTest<TensorType_INT8, int8_t>(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/exp.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/exp_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eb44438c-84cc-487a-a607-7f89b0335637
cpp
tensorflow/tensorflow
mkl_util
tensorflow/core/util/mkl_util.h
tensorflow/core/util/mkl_util_test.cc
#ifndef TENSORFLOW_CORE_UTIL_MKL_UTIL_H_ #define TENSORFLOW_CORE_UTIL_MKL_UTIL_H_ #ifdef INTEL_MKL #include <list> #include <memory> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "dnnl.hpp" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/graph/mkl_graph_util.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/stringpiece.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/util/env_var.h" #include "tensorflow/core/util/onednn_env_vars.h" #include "tensorflow/core/util/padding.h" #include "tensorflow/core/util/tensor_format.h" #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) #include "tensorflow/core/platform/mutex.h" #endif #include "xla/tsl/util/onednn_threadpool.h" using dnnl::engine; using dnnl::memory; using dnnl::primitive; using dnnl::reorder; using dnnl::stream; using CPUDevice = Eigen::ThreadPoolDevice; using MemoryArgsMap = std::unordered_map<int, memory>; using ReorderPd = dnnl::reorder::primitive_desc; #ifdef _WIN32 typedef unsigned int uint; #endif namespace tensorflow { typedef enum { Dim_N = 0, Dim_C = 1, Dim_H = 2, Dim_W = 3, Dim_O = 0, Dim_I = 1 } MklDnnDims; typedef enum { Dim3d_N = 0, Dim3d_C = 1, Dim3d_D = 2, Dim3d_H = 3, Dim3d_W = 4, Dim3d_O = 0, Dim3d_I = 1 } MklDnnDims3D; typedef enum { TF_2DFILTER_DIM_H = 0, TF_2DFILTER_DIM_W = 1, TF_2DFILTER_DIM_I = 2, TF_2DFILTER_DIM_O = 3 } TFFilterDims2d; typedef enum { TF_3DFILTER_DIM_P = 0, TF_3DFILTER_DIM_H = 1, TF_3DFILTER_DIM_W = 2, TF_3DFILTER_DIM_I = 3, TF_3DFILTER_DIM_O = 4 } TFFilterDims3d; typedef enum { MKL_GROUP_FILTER_DIM_G = 0, MKL_GROUP_FILTER_DIM_O = 1, MKL_GROUP_FILTER_DIM_I = 2, MKL_GROUP_FILTER_DIM_H = 3, MKL_GROUP_FILTER_DIM_W = 4 } MklDnnFilterGroupDims; enum class MklQuantization { QUANTIZED_VERSION, FP_VERSION, }; static const int kSmallBatchSize = 32; enum class OneDNNMathModeSetting { kNone = 0, kBF16, }; inline OneDNNMathModeSetting SetFPMathMode() { static OneDNNMathModeSetting math_mode = [] { OneDNNMathModeSetting mode = OneDNNMathModeSetting::kNone; if (FPMathModeSetting() == "BF16") { if (dnnl::set_default_fpmath_mode(dnnl::fpmath_mode::bf16) == dnnl::status::success) { mode = OneDNNMathModeSetting::kBF16; } } return mode; }(); return math_mode; } inline void execute_primitives( std::vector<dnnl::primitive>& primitives, std::shared_ptr<stream> stream, std::vector<std::unordered_map<int, memory>>& net_args) { DCHECK_EQ(primitives.size(), net_args.size()); for (size_t i = 0; i < primitives.size(); ++i) { primitives.at(i).execute(*stream, net_args.at(i)); } } #ifndef ENABLE_ONEDNN_V3 #define ARE_MEMORY_DESCS_EQUAL(md1, md2) dnnl_memory_desc_equal(&md1, &md2) #define CREATE_MEMORY_DESC_USING_STRIDES dnnl_memory_desc_init_by_strides #define GET_DATA_TYPE data_type #define GET_DIMS dims #define GET_INNER_BLKS format_desc.blocking.inner_blks #define GET_INNER_DIMS(dims, dims_1) dims_1 #define GET_INNER_IDXS format_desc.blocking.inner_idxs #define GET_INNER_NBLKS format_desc.blocking.inner_nblks #define GET_MEMORY_DESC get_desc().data #define GET_MEMORY_DESC_FLAGS extra.flags #define GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR GetMklLayout().data #define GET_NDIMS ndims #define GET_STRIDES format_desc.blocking.strides #define GET_STRIDES_DIMS(dims, dims_outer_blocks) dims_outer_blocks #define INIT_DIMS_FROM_DESC(in_dims, md) in_dims(md.dims, &md.dims[md.ndims]) #define MEMORY_DESC dnnl_memory_desc_t #else #define ARE_MEMORY_DESCS_EQUAL(md1, md2) md1 == md2 #define CREATE_MEMORY_DESC_USING_STRIDES dnnl_memory_desc_create_with_strides #define GET_DATA_TYPE get_data_type() #define GET_DIMS get_dims() #define GET_INNER_BLKS get_inner_blks() #define GET_INNER_DIMS(dims, dims_1) dims #define GET_INNER_IDXS get_inner_idxs() #define GET_INNER_NBLKS get_inner_nblks() #define GET_MEMORY_DESC get_desc() #define GET_MEMORY_DESC_FLAGS get_size() #define GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR GetMklLayout() #define GET_NDIMS get_ndims() #define GET_STRIDES get_strides() #define GET_STRIDES_DIMS(dims, dims_outer_blocks) dims #define INIT_DIMS_FROM_DESC(in_dims, md) in_dims = md.get_dims() #define MEMORY_DESC memory::desc #endif enum class MklTensorFormat { FORMAT_NHWC = 0, FORMAT_NCHW = 1, FORMAT_NDHWC = 2, FORMAT_NCDHW = 3, FORMAT_X = 4, FORMAT_NC = 5, FORMAT_TNC = 6, FORMAT_BLOCKED = 7, FORMAT_INVALID = 8, }; memory::format_tag MklTensorFormatToMklDnnDataFormat(MklTensorFormat format); TensorFormat MklDnn3DDataFormatToTFDataFormat(MklTensorFormat format); TensorFormat MklDnnDataFormatToTFDataFormat(MklTensorFormat format); memory::dims CalculateTFStrides(const memory::dims& dims_tf_order); Status CreateBlockedMemDescHelper(const memory::dims& dim, const memory::dims& strides, memory::data_type dtype, dnnl_memory_desc_t* blocked_md); inline std::ostream& operator<<(std::ostream& os, const memory::format_tag& tag) { if (tag == memory::format_tag::undef) { os << "undef"; } else if (tag == memory::format_tag::any) { os << "any"; } else { os << "invalid"; } return os; } inline void operator<<(std::ostream& os, const MklTensorFormat& format) { if (format == MklTensorFormat::FORMAT_NHWC) { os << "FORMAT_NHWC"; } else if (format == MklTensorFormat::FORMAT_NCHW) { os << "FORMAT_NCHW"; } else if (format == MklTensorFormat::FORMAT_NDHWC) { os << "FORMAT_NDHWC"; } else if (format == MklTensorFormat::FORMAT_NCDHW) { os << "FORMAT_NCDHW"; } else if (format == MklTensorFormat::FORMAT_X) { os << "FORMAT_X"; } else if (format == MklTensorFormat::FORMAT_NC) { os << "FORMAT_NC"; } else if (format == MklTensorFormat::FORMAT_TNC) { os << "FORMAT_TNC"; } else if (format == MklTensorFormat::FORMAT_BLOCKED) { os << "FORMAT_BLOCKED"; } else { os << "INVALID FORMAT"; } } template <typename T> inline bool array_cmp(const T* a1, const T* a2, size_t size) { for (size_t i = 0; i < size; ++i) if (a1[i] != a2[i]) return false; return true; } inline dnnl::stream* CreateStream(tsl::OneDnnThreadPool* eigen_tp, const engine& engine) { #ifndef ENABLE_ONEDNN_OPENMP if (eigen_tp != nullptr) { stream* tp_stream = new stream(dnnl::threadpool_interop::make_stream(engine, eigen_tp)); return tp_stream; } else { stream* tp_stream = new stream(engine); return tp_stream; } #else stream* tp_stream = new stream(engine); return tp_stream; #endif } class MklDnnShape { private: struct MklShapeData { bool is_mkl_tensor_ = false; size_t dimension_ = 0; dnnl_dims_t sizes_; MklTensorFormat tf_data_format_ = MklTensorFormat::FORMAT_BLOCKED; memory::data_type T_ = memory::data_type::undef; MEMORY_DESC mkl_md_; dnnl_dims_t map_; }; MklShapeData data_; typedef std::remove_extent<dnnl_dims_t>::type dnnl_dim_t; #define INVALID_DIM_SIZE -1 public: MklDnnShape() : data_{} { for (size_t i = 0; i < sizeof(data_.sizes_) / sizeof(data_.sizes_[0]); ++i) { data_.sizes_[i] = -1; } for (size_t i = 0; i < sizeof(data_.map_) / sizeof(data_.map_[0]); ++i) { data_.map_[i] = -1; } } ~MklDnnShape() {} MklDnnShape(const MklDnnShape&) = delete; void operator=(const MklDnnShape&) = delete; inline bool operator==(const MklDnnShape& input_shape) const { if (this->IsMklTensor() != input_shape.IsMklTensor()) { return false; } if (this->IsMklTensor()) { auto const& cur_md = this->GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR; auto const& input_shape_md = input_shape.GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR; return (this->GetTfShape() == input_shape.GetTfShape()) && ARE_MEMORY_DESCS_EQUAL(cur_md, input_shape_md); } return true; } inline bool operator==(const TensorShape& input_shape) const { if (!this->IsMklTensor()) { return false; } return this->GetTfShape() == input_shape; } inline const bool IsMklTensor() const { return data_.is_mkl_tensor_; } inline void SetMklTensor(bool is_mkl_tensor) { data_.is_mkl_tensor_ = is_mkl_tensor; } inline void SetDimensions(const size_t dimension) { data_.dimension_ = dimension; } inline size_t GetDimension(char dimension) const { int index = GetMklDnnTensorDimIndex(dimension); CHECK(index >= 0 && index < this->GetDimension()) << "Invalid index from the dimension: " << index << ", " << dimension; return this->DimSize(index); } inline size_t GetDimension3D(char dimension) const { int index = GetMklDnnTensor3DDimIndex(dimension); CHECK(index >= 0 && index < this->GetDimension()) << "Invalid index from the dimension: " << index << ", " << dimension; return this->DimSize(index); } inline int32 GetMklDnnTensorDimIndex(char dimension) const { switch (dimension) { case 'N': return MklDnnDims::Dim_N; case 'C': return MklDnnDims::Dim_C; case 'H': return MklDnnDims::Dim_H; case 'W': return MklDnnDims::Dim_W; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } inline int32 GetMklDnnTensor3DDimIndex(char dimension) const { switch (dimension) { case 'N': return MklDnnDims3D::Dim3d_N; case 'C': return MklDnnDims3D::Dim3d_C; case 'D': return MklDnnDims3D::Dim3d_D; case 'H': return MklDnnDims3D::Dim3d_H; case 'W': return MklDnnDims3D::Dim3d_W; default: LOG(FATAL) << "Invalid dimension: " << dimension; return -1; } } inline size_t GetDimension() const { return data_.dimension_; } inline const int* GetSizes() const { return reinterpret_cast<const int*>(&data_.sizes_[0]); } inline memory::dims GetSizesAsMklDnnDims() const { memory::dims retVal; if (data_.is_mkl_tensor_) { size_t dimensions = sizeof(data_.sizes_) / sizeof(data_.sizes_[0]); for (size_t i = 0; i < dimensions; i++) { if (data_.sizes_[i] != INVALID_DIM_SIZE) retVal.push_back(data_.sizes_[i]); } } else { CHECK_EQ(data_.is_mkl_tensor_, true); } return retVal; } inline int64 DimSize(int index) const { CHECK_LT(index, sizeof(data_.sizes_) / sizeof(data_.sizes_[0])); return data_.sizes_[index]; } inline TensorShape GetTfShape() const { CHECK_EQ(data_.is_mkl_tensor_, true); std::vector<int32> shape(data_.dimension_, -1); if (data_.tf_data_format_ != MklTensorFormat::FORMAT_BLOCKED) { for (size_t idx = 0; idx < data_.dimension_; ++idx) { shape[idx] = data_.sizes_[TfDimIdx(idx)]; } } else { for (size_t idx = 0; idx < data_.dimension_; ++idx) { shape[idx] = data_.sizes_[idx]; } } TensorShape ts; bool ret = TensorShapeUtils::MakeShape(shape, &ts).ok(); CHECK_EQ(ret, true); return ts; } inline void SetElemType(memory::data_type dt) { data_.T_ = dt; } inline const memory::data_type GetElemType() { return data_.T_; } #ifndef ENABLE_ONEDNN_V3 inline void SetMklLayout(memory::desc* md) { CHECK_NOTNULL(md); data_.mkl_md_ = md->data; } #else inline void SetMklLayout(const memory::desc& md) { data_.mkl_md_ = md; } #endif inline const memory::desc GetMklLayout() const { return memory::desc(data_.mkl_md_); } inline MklTensorFormat GetTfDataFormat() const { return data_.tf_data_format_; } inline void SetTfLayout(size_t dims, const memory::dims& sizes, MklTensorFormat format) { DCHECK_EQ(dims, sizes.size()) << "SetTfLayout: Number of dimensions does not" "match with dimension array"; data_.dimension_ = dims; for (size_t ii = 0; ii < dims; ++ii) { data_.sizes_[ii] = sizes[ii]; } data_.tf_data_format_ = format; if (format != MklTensorFormat::FORMAT_BLOCKED) { if (dims == 2) { data_.map_[0] = MklDnnDims::Dim_N; data_.map_[1] = MklDnnDims::Dim_C; } else { SetTfDimOrder(dims, format); } } } inline const memory::desc GetTfLayout() const { memory::dims dims; for (size_t ii = 0; ii < data_.dimension_; ++ii) { dims.push_back(data_.sizes_[ii]); } if (data_.tf_data_format_ == MklTensorFormat::FORMAT_BLOCKED) { auto strides = CalculateTFStrides(dims); dnnl_memory_desc_t blocked_md; TF_CHECK_OK( CreateBlockedMemDescHelper(dims, strides, data_.T_, &blocked_md)); return memory::desc(blocked_md); } else { auto format_tag = MklTensorFormatToMklDnnDataFormat(data_.tf_data_format_); return memory::desc(dims, data_.T_, format_tag); } } inline const memory::desc GetCurLayout() const { return IsMklTensor() ? GetMklLayout() : GetTfLayout(); } inline void SetTfDimOrder(const size_t dimension, const dnnl_dims_t map) { CHECK(dimension == data_.dimension_); for (size_t ii = 0; ii < dimension; ii++) { data_.map_[ii] = map[ii]; } } inline void SetTfDimOrder(const size_t dimension, TensorFormat data_format) { if (dimension == 5) { CHECK(dimension == data_.dimension_); data_.map_[GetTensorDimIndex<3>(data_format, '0')] = MklDnnDims3D::Dim3d_D; data_.map_[GetTensorDimIndex<3>(data_format, '1')] = MklDnnDims3D::Dim3d_H; data_.map_[GetTensorDimIndex<3>(data_format, '2')] = MklDnnDims3D::Dim3d_W; data_.map_[GetTensorDimIndex<3>(data_format, 'C')] = MklDnnDims3D::Dim3d_C; data_.map_[GetTensorDimIndex<3>(data_format, 'N')] = MklDnnDims3D::Dim3d_N; } else { CHECK_EQ(dimension, 4); CHECK(dimension == data_.dimension_); data_.map_[GetTensorDimIndex<2>(data_format, 'W')] = MklDnnDims::Dim_W; data_.map_[GetTensorDimIndex<2>(data_format, 'H')] = MklDnnDims::Dim_H; data_.map_[GetTensorDimIndex<2>(data_format, 'C')] = MklDnnDims::Dim_C; data_.map_[GetTensorDimIndex<2>(data_format, 'N')] = MklDnnDims::Dim_N; } } inline void SetTfDimOrder(const size_t dimension, MklTensorFormat format) { TensorFormat data_format = MklDnnDataFormatToTFDataFormat(format); SetTfDimOrder(dimension, data_format); } inline const dnnl_dim_t* GetTfToMklDimMap() const { return &data_.map_[0]; } inline size_t TfDimIdx(int index) const { return data_.map_[index]; } inline int64 TfDimSize(int index) const { return data_.sizes_[TfDimIdx(index)]; } inline bool IsMklChannelDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_C; } inline bool IsMklBatchDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_N; } inline bool IsMklWidthDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_W; } inline bool IsMklHeightDim(int d) const { return TfDimIdx(d) == MklDnnDims::Dim_H; } inline bool IsTensorInNCHWFormat() const { TensorFormat data_format = FORMAT_NCHW; return (IsMklBatchDim(GetTensorDimIndex<2>(data_format, 'N')) && IsMklChannelDim(GetTensorDimIndex<2>(data_format, 'C')) && IsMklHeightDim(GetTensorDimIndex<2>(data_format, 'H')) && IsMklWidthDim(GetTensorDimIndex<2>(data_format, 'W'))); } inline bool IsTensorInNHWCFormat() const { TensorFormat data_format = FORMAT_NHWC; return (IsMklBatchDim(GetTensorDimIndex<2>(data_format, 'N')) && IsMklChannelDim(GetTensorDimIndex<2>(data_format, 'C')) && IsMklHeightDim(GetTensorDimIndex<2>(data_format, 'H')) && IsMklWidthDim(GetTensorDimIndex<2>(data_format, 'W'))); } inline size_t GetSerializeBufferSize() const { return sizeof(MklShapeData); } void SerializeMklDnnShape(unsigned char* buf, size_t buf_size) const { CHECK(buf_size >= GetSerializeBufferSize()) << "Buffer size is too small to SerializeMklDnnShape"; *reinterpret_cast<MklShapeData*>(buf) = data_; } void DeSerializeMklDnnShape(const unsigned char* buf, size_t buf_size) { CHECK(buf_size >= sizeof(data_.is_mkl_tensor_)) << "Buffer size is too small in DeSerializeMklDnnShape"; const bool is_mkl_tensor = *reinterpret_cast<const bool*>(buf); if (is_mkl_tensor) { CHECK(buf_size >= GetSerializeBufferSize()) << "Buffer size is too small in DeSerializeMklDnnShape"; data_ = *reinterpret_cast<const MklShapeData*>(buf); } } }; inline Eigen::ThreadPoolInterface* EigenThreadPoolFromTfContext( OpKernelContext* context) { return context->device() ->tensorflow_cpu_worker_threads() ->workers->AsEigenThreadPool(); } typedef std::vector<MklDnnShape> MklDnnShapeList; template <typename T> class MklDnnData; inline void ExecutePrimitive(const std::vector<primitive>& net, const std::vector<MemoryArgsMap>* net_args, const engine& cpu_engine, OpKernelContext* context = nullptr) { DCHECK(net_args); DCHECK_EQ(net.size(), net_args->size()); std::unique_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (context != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, cpu_engine)); } else { cpu_stream.reset(CreateStream(nullptr, cpu_engine)); } for (size_t i = 0; i < net.size(); ++i) { net.at(i).execute(*cpu_stream, net_args->at(i)); } cpu_stream->wait(); } template <typename T> inline Status ConvertMklToTF(OpKernelContext* context, const Tensor& input_mkl_tensor, const MklDnnShape& input_mkl_shape, Tensor* output_tf_tensor) { try { if (!input_mkl_shape.IsMklTensor()) { *output_tf_tensor = input_mkl_tensor; return OkStatus(); } TensorShape output_tf_shape = input_mkl_shape.GetTfShape(); TF_CHECK_OK(context->allocate_temp(DataTypeToEnum<T>::v(), output_tf_shape, output_tf_tensor)); engine cpu_engine(engine::kind::cpu, 0); MklDnnData<T> input(&cpu_engine); auto input_mkl_md = input_mkl_shape.GetMklLayout(); auto output_tf_md = input_mkl_shape.GetTfLayout(); input.SetUsrMem(input_mkl_md, &input_mkl_tensor); if (input.IsReorderNeeded(output_tf_md)) { std::vector<primitive> net; std::vector<MemoryArgsMap> net_args; bool status = input.CheckReorderToOpMem(output_tf_md, output_tf_tensor, net, net_args, cpu_engine); if (!status) { return absl::InternalError( "ConvertMklToTF(): Failed to create reorder for input"); } ExecutePrimitive(net, &net_args, cpu_engine, context); } else { bool status = output_tf_tensor->CopyFrom(input_mkl_tensor, output_tf_shape); if (!status) { return absl::InternalError( "ConvertMklToTF(): Failed to forward input tensor to output"); } } return OkStatus(); } catch (dnnl::error& e) { string error_msg = "Status: " + std::to_string(e.status) + ", message: " + string(e.message) + ", in file " + string(__FILE__) + ":" + std::to_string(__LINE__); LOG(FATAL) << "Operation received an exception: " << error_msg; } } inline void GetMklShape(OpKernelContext* ctext, int n, MklDnnShape* mklshape, bool eager_mode) { if (!eager_mode) { mklshape->DeSerializeMklDnnShape( ctext->input(GetTensorMetaDataIndex(n, ctext->num_inputs())) .flat<uint8>() .data(), ctext->input(GetTensorMetaDataIndex(n, ctext->num_inputs())) .flat<uint8>() .size() * sizeof(uint8)); } else { mklshape->SetMklTensor(false); } } inline void GetMklShape(OpKernelContext* ctext, int n, MklDnnShape* mklshape) { GetMklShape(ctext, n, mklshape, false); } inline const Tensor& MklGetInput(OpKernelContext* ctext, int n) { return ctext->input(GetTensorDataIndex(n, ctext->num_inputs())); } inline void GetMklInputList(OpKernelContext* ctext, StringPiece name, OpInputList* input_tensors) { CHECK_NOTNULL(input_tensors); TF_CHECK_OK(ctext->input_list(name, input_tensors)); } inline void GetMklShapeList(OpKernelContext* ctext, StringPiece name, MklDnnShapeList* mkl_shapes, bool native_format = false) { if (!native_format) { OpInputList input_mkl_tensors; GetMklInputList(ctext, strings::StrCat("mkl_", name), &input_mkl_tensors); for (int i = 0; i < input_mkl_tensors.size(); i++) { (*mkl_shapes)[i].DeSerializeMklDnnShape( input_mkl_tensors[i].flat<uint8>().data(), input_mkl_tensors[i].flat<uint8>().size() * sizeof(uint8)); } } else { for (int i = 0; i < mkl_shapes->size(); ++i) { (*mkl_shapes)[i].SetMklTensor(false); } } } inline TensorShape GetTfShape(OpKernelContext* context, size_t input_idx, bool eager_mode = false) { CHECK_NOTNULL(context); CHECK_LT(input_idx, context->num_inputs()); MklDnnShape input_mkl_shape; GetMklShape(context, input_idx, &input_mkl_shape, eager_mode); if (input_mkl_shape.IsMklTensor() && !eager_mode) { return input_mkl_shape.GetTfShape(); } else { const Tensor& t = MklGetInput(context, input_idx); return t.shape(); } } inline void AllocateOutputSetMklShape(OpKernelContext* ctext, int n, const MklDnnShape& mkl_shape) { Tensor* second_tensor = nullptr; TensorShape second_shape; second_shape.AddDim(mkl_shape.GetSerializeBufferSize()); OP_REQUIRES_OK(ctext, ctext->allocate_output( GetTensorMetaDataIndex(n, ctext->num_outputs()), second_shape, &second_tensor)); mkl_shape.SerializeMklDnnShape( second_tensor->flat<uint8>().data(), second_tensor->flat<uint8>().size() * sizeof(uint8)); } inline void AllocateOutputSetMklShape(OpKernelContext* ctext, int n, Tensor** output, const TensorShape& tf_shape, const MklDnnShape& mkl_shape, bool eager_mode = false) { OP_REQUIRES_OK( ctext, ctext->allocate_output(GetTensorDataIndex(n, ctext->num_outputs()), tf_shape, output)); if (!eager_mode) { Tensor* second_tensor = nullptr; TensorShape second_shape; second_shape.AddDim(mkl_shape.GetSerializeBufferSize()); OP_REQUIRES_OK(ctext, ctext->allocate_output( GetTensorMetaDataIndex(n, ctext->num_outputs()), second_shape, &second_tensor)); mkl_shape.SerializeMklDnnShape( second_tensor->flat<uint8>().data(), second_tensor->flat<uint8>().size() * sizeof(uint8)); } } template <typename T> inline void AllocTmpBuffer(OpKernelContext* context, Tensor* tensor_out, const memory::desc& pd, void** buf_out) { TensorShape tf_shape; tf_shape.AddDim(pd.get_size() / sizeof(T) + 1); OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), tf_shape, tensor_out)); *buf_out = static_cast<void*>(tensor_out->flat<T>().data()); } template <typename T> inline void AllocTmpBuffer(OpKernelContext* context, Tensor* tensor_out, TensorShape tf_shape) { OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::v(), tf_shape, tensor_out)); } template <typename T> struct UserScratchPad { template <typename MklPrim> inline void AllocateSPTensor(MklPrim* mkl_prim, OpKernelContext* context) { allocated_ = false; auto spad_md = mkl_prim->GetScratchPadDesc(); size_t spad_size = spad_md.get_size(); if (spad_size == 0) return; size_t allocate_size = (spad_size + sizeof(T) - 1) / sizeof(T); TensorShape tf_shape; tf_shape.AddDim(allocate_size); AllocTmpBuffer<T>(context, &scratch_pad_, tf_shape); allocated_ = true; } inline void* Get() { if (allocated_) { return static_cast<void*>(scratch_pad_.flat<T>().data()); } else { return nullptr; } } private: Tensor scratch_pad_; bool allocated_ = false; }; inline void GetStridesFromSizes(MklTensorFormat data_format, size_t* strides, const size_t* sizes) { DCHECK_NE(data_format, MklTensorFormat::FORMAT_INVALID); if (data_format == MklTensorFormat::FORMAT_NHWC) { strides[0] = sizes[2]; strides[1] = sizes[0] * sizes[2]; strides[2] = 1; strides[3] = sizes[0] * sizes[1] * sizes[2]; } else { strides[0] = 1; strides[1] = sizes[0]; strides[2] = sizes[0] * sizes[1]; strides[3] = sizes[0] * sizes[1] * sizes[2]; } } inline void CopyMklTensorInToOut(OpKernelContext* context, int idx_in, int idx_out) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_meta_in = GetTensorMetaDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); int idx_meta_out = GetTensorMetaDataIndex(idx_out, num_outputs); const Tensor& data = context->input(idx_data_in); const Tensor& meta = context->input(idx_meta_in); Tensor output(data.dtype()); Tensor meta_output(meta.dtype()); CHECK(output.CopyFrom(data, data.shape())); CHECK(meta_output.CopyFrom(meta, meta.shape())); context->set_output(idx_data_out, output); context->set_output(idx_meta_out, meta_output); } inline void CopyTfTensorInToOutWithShape(OpKernelContext* context, int idx_in, int idx_out, const TensorShape& shape) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); const Tensor& data = context->input(idx_data_in); MklDnnShape mkl_shape_output; mkl_shape_output.SetMklTensor(false); AllocateOutputSetMklShape(context, idx_out, mkl_shape_output); Tensor output(data.dtype()); CHECK(output.CopyFrom(data, shape)); context->set_output(idx_data_out, output); } inline void ForwardTfTensorInToOut(OpKernelContext* context, int idx_in, int idx_out) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); MklDnnShape dnn_shape_output; dnn_shape_output.SetMklTensor(false); AllocateOutputSetMklShape(context, idx_out, dnn_shape_output); if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_data_in, idx_data_out); } else { context->set_output(idx_data_out, context->input(idx_data_in)); } } inline void ForwardMklTensorInToOut(OpKernelContext* context, int idx_in, int idx_out) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_meta_in = GetTensorMetaDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); int idx_meta_out = GetTensorMetaDataIndex(idx_out, num_outputs); if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_data_in, idx_data_out); context->forward_ref_input_to_ref_output(idx_meta_in, idx_meta_out); } else { context->set_output(idx_data_out, context->input(idx_data_in)); context->set_output(idx_meta_out, context->input(idx_meta_in)); } } inline void SetDummyMklDnnShapeOutput(OpKernelContext* context, uint32 idx_data_out) { MklDnnShape mkl_shape_output; mkl_shape_output.SetMklTensor(false); AllocateOutputSetMklShape(context, idx_data_out, mkl_shape_output); } inline bool ForwardMklTensorInToOutWithMklShape(OpKernelContext* context, int idx_in, int idx_out, Tensor** output, const MklDnnShape& mkl_shape, bool always_forward = true) { int num_inputs = context->num_inputs(); int num_outputs = context->num_outputs(); int idx_data_in = GetTensorDataIndex(idx_in, num_inputs); int idx_data_out = GetTensorDataIndex(idx_out, num_outputs); bool is_forwarded = false; const Tensor& input_tensor = context->input(idx_data_in); const auto output_shape = input_tensor.shape(); if (always_forward) { if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_data_in, idx_data_out); } else { context->set_output(idx_data_out, input_tensor); } } else { is_forwarded = context->forward_input_to_output_with_shape( idx_data_in, idx_data_out, output_shape, output); } if (is_forwarded || always_forward) { AllocateOutputSetMklShape(context, idx_out, mkl_shape); return true; } return false; } inline void ForwardMklMetaDataInToOut(OpKernelContext* context, uint32 idx_data_in, uint32_t idx_data_out) { uint32 idx_meta_in = GetTensorMetaDataIndex(idx_data_in, context->num_inputs()); uint32 idx_meta_out = GetTensorMetaDataIndex(idx_data_out, context->num_outputs()); if (IsRefType(context->input_dtype(idx_data_in))) { context->forward_ref_input_to_ref_output(idx_meta_in, idx_meta_out); } else { context->set_output(idx_meta_out, context->input(idx_meta_in)); } } inline Tensor GetMklMetaTensor() { MklDnnShape non_mkl_shape; non_mkl_shape.SetMklTensor(false); auto size = static_cast<int64_t>(non_mkl_shape.GetSerializeBufferSize()); Tensor tensor(DT_UINT8, {size}); non_mkl_shape.SerializeMklDnnShape(tensor.flat<uint8>().data(), size * sizeof(uint8)); return tensor; } template <typename T> static memory::data_type MklDnnType(); template <> memory::data_type MklDnnType<float>() { return memory::data_type::f32; } template <> memory::data_type MklDnnType<quint8>() { return memory::data_type::u8; } template <> memory::data_type MklDnnType<uint8>() { return memory::data_type::u8; } template <> memory::data_type MklDnnType<qint8>() { return memory::data_type::s8; } template <> memory::data_type MklDnnType<qint32>() { return memory::data_type::s32; } template <> memory::data_type MklDnnType<bfloat16>() { return memory::data_type::bf16; } template <> memory::data_type MklDnnType<Eigen::half>() { return memory::data_type::f16; } inline memory::format_tag MklTensorFormatToMklDnnDataFormat( MklTensorFormat format) { if (format == MklTensorFormat::FORMAT_NHWC) return memory::format_tag::nhwc; if (format == MklTensorFormat::FORMAT_NCHW) return memory::format_tag::nchw; if (format == MklTensorFormat::FORMAT_NDHWC) return memory::format_tag::ndhwc; if (format == MklTensorFormat::FORMAT_NCDHW) return memory::format_tag::ncdhw; if (format == MklTensorFormat::FORMAT_X) return memory::format_tag::x; if (format == MklTensorFormat::FORMAT_NC) return memory::format_tag::nc; if (format == MklTensorFormat::FORMAT_TNC) return memory::format_tag::tnc; return memory::format_tag::undef; } inline MklTensorFormat TFDataFormatToMklDnn3DDataFormat(TensorFormat format) { if (format == FORMAT_NHWC) return MklTensorFormat::FORMAT_NDHWC; if (format == FORMAT_NCHW) return MklTensorFormat::FORMAT_NCDHW; TF_CHECK_OK(absl::InvalidArgumentError("Unsupported data format")); return MklTensorFormat::FORMAT_INVALID; } inline MklTensorFormat TFDataFormatToMklDnnDataFormat(TensorFormat format) { if (format == FORMAT_NHWC) return MklTensorFormat::FORMAT_NHWC; if (format == FORMAT_NCHW) return MklTensorFormat::FORMAT_NCHW; TF_CHECK_OK(absl::InvalidArgumentError("Unsupported data format")); return MklTensorFormat::FORMAT_INVALID; } inline TensorFormat MklDnnDataFormatToTFDataFormat(MklTensorFormat format) { if (format == MklTensorFormat::FORMAT_NHWC || format == MklTensorFormat::FORMAT_NDHWC) return FORMAT_NHWC; if (format == MklTensorFormat::FORMAT_NCHW || format == MklTensorFormat::FORMAT_NCDHW) return FORMAT_NCHW; TF_CHECK_OK(absl::InvalidArgumentError("Unsupported data format")); return FORMAT_NHWC; } inline memory::dims TFShapeToMklDnnDims(const TensorShape& shape) { memory::dims dims(shape.dims()); for (int d = 0; d < shape.dims(); ++d) { dims[d] = shape.dim_size(d); } return dims; } inline memory::dims TFShapeToMklDnnDimsInNCHW(const TensorShape& shape, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnnDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = shape.dim_size(GetTensorDimIndex(format, 'N')); int c = shape.dim_size(GetTensorDimIndex(format, 'C')); int h = shape.dim_size(GetTensorDimIndex(format, 'H')); int w = shape.dim_size(GetTensorDimIndex(format, 'W')); return memory::dims({n, c, h, w}); } inline memory::dims TFShapeToMklDnnDimsInNCDHW(const TensorShape& shape, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnn3DDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = shape.dim_size(GetTensorDimIndex<3>(format, 'N')); int c = shape.dim_size(GetTensorDimIndex<3>(format, 'C')); int d = shape.dim_size(GetTensorDimIndex<3>(format, '0')); int h = shape.dim_size(GetTensorDimIndex<3>(format, '1')); int w = shape.dim_size(GetTensorDimIndex<3>(format, '2')); return memory::dims({n, c, d, h, w}); } inline memory::dims MklDnnDimsInNCHW(const memory::dims& in_dims, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnnDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = in_dims[GetTensorDimIndex(format, 'N')]; int c = in_dims[GetTensorDimIndex(format, 'C')]; int h = in_dims[GetTensorDimIndex(format, 'H')]; int w = in_dims[GetTensorDimIndex(format, 'W')]; return memory::dims({n, c, h, w}); } inline memory::dims MklDnnDimsInNCDHW(const memory::dims& in_dims, TensorFormat format) { DCHECK_NE(TFDataFormatToMklDnnDataFormat(format), MklTensorFormat::FORMAT_INVALID); int n = in_dims[GetTensorDimIndex<3>(format, 'N')]; int c = in_dims[GetTensorDimIndex<3>(format, 'C')]; int d = in_dims[GetTensorDimIndex<3>(format, '0')]; int h = in_dims[GetTensorDimIndex<3>(format, '1')]; int w = in_dims[GetTensorDimIndex<3>(format, '2')]; return memory::dims({n, c, d, h, w}); } inline TensorShape MklDnnDimsToTFShape(const memory::dims& dims) { std::vector<int32> shape(dims.size(), -1); for (int d = 0; d < dims.size(); d++) { shape[d] = dims[d]; } TensorShape ret; CHECK_EQ(TensorShapeUtils::MakeShape(shape, &ret).ok(), true); return ret; } inline memory::dims CalculateTFStrides(const memory::dims& dims_tf_order) { CHECK_GT(dims_tf_order.size(), 0); memory::dims strides(dims_tf_order.size()); int last_dim_idx = dims_tf_order.size() - 1; strides[last_dim_idx] = 1; for (int d = last_dim_idx - 1; d >= 0; d--) { strides[d] = strides[d + 1] * dims_tf_order[d + 1]; } return strides; } inline Status CreateBlockedMemDescHelper(const memory::dims& dim, const memory::dims& strides, memory::data_type dtype, dnnl_memory_desc_t* blocked_md) { DCHECK_EQ(dim.size(), strides.size()); const int kNumDims = dim.size(); dnnl_dim_t* input_dims = new dnnl_dim_t[kNumDims]; dnnl_dim_t* input_strides = new dnnl_dim_t[kNumDims]; for (int i = 0; i < kNumDims; ++i) { input_dims[i] = dim[i]; input_strides[i] = strides[i]; } try { CREATE_MEMORY_DESC_USING_STRIDES(blocked_md, kNumDims, input_dims, memory::convert_to_c(dtype), input_strides); delete[] input_dims; delete[] input_strides; } catch (dnnl::error& e) { delete[] input_dims; delete[] input_strides; return absl::InternalError( absl::StrCat("Failed to create blocked memory descriptor.", "Status: ", e.status, ", message: ", e.message)); } return OkStatus(); } inline void CreateAndExecuteReorder(const ReorderPd& reorder_desc, const memory& src_mem, const memory& dst_mem, const engine& engine, OpKernelContext* ctx = nullptr, memory* scale_mem = nullptr) { std::vector<primitive> net; net.push_back(dnnl::reorder(reorder_desc)); std::vector<MemoryArgsMap> net_args; #ifndef ENABLE_ONEDNN_V3 net_args.push_back({{DNNL_ARG_FROM, src_mem}, {DNNL_ARG_TO, dst_mem}}); #else if (scale_mem != nullptr) { net_args.push_back({{DNNL_ARG_FROM, src_mem}, {DNNL_ARG_TO, dst_mem}, {DNNL_ARG_ATTR_SCALES | DNNL_ARG_DST, *scale_mem}}); } else { net_args.push_back({{DNNL_ARG_FROM, src_mem}, {DNNL_ARG_TO, dst_mem}}); } #endif ExecutePrimitive(net, &net_args, engine, ctx); } class MklReorderPrimitive; template <typename T> inline MklReorderPrimitive* FindOrCreateReorder(const memory* from, const memory* to); template <typename T> class MklDnnData { private: memory* user_memory_; memory* reorder_memory_; memory::desc* op_md_; bool bIs3D; void* allocated_buffer_; const engine* cpu_engine_; public: explicit MklDnnData(const engine* e) : user_memory_(nullptr), reorder_memory_(nullptr), op_md_(nullptr), bIs3D(false), allocated_buffer_(nullptr), cpu_engine_(e) {} MklDnnData(const MklDnnData&) = default; MklDnnData& operator=(const MklDnnData&) = delete; ~MklDnnData() { if (allocated_buffer_ != nullptr) { cpu_allocator()->DeallocateRaw(allocated_buffer_); } cpu_engine_ = nullptr; delete (user_memory_); delete (reorder_memory_); delete (op_md_); } inline void* GetTensorBuffer(const Tensor* tensor) const { CHECK_NOTNULL(tensor); return const_cast<void*>( static_cast<const void*>(tensor->flat<T>().data())); } void SetIs3DData(bool bIs3D_) { bIs3D = bIs3D_; } bool GetIs3D() { return bIs3D; } inline void SetUsrMem(const memory::dims& dim, memory::format_tag fm, void* data_buffer = nullptr) { auto md = memory::desc(dim, MklDnnType<T>(), fm); SetUsrMem(md, data_buffer); } inline void SetUsrMem(const memory::dims& dim, memory::format_tag fm, const Tensor* tensor) { DCHECK(tensor); SetUsrMem(dim, fm, GetTensorBuffer(tensor)); } static inline memory::desc CreateBlockedMemDesc(const memory::dims& dim, const memory::dims& strides) { dnnl_memory_desc_t blocked_md; TF_CHECK_OK( CreateBlockedMemDescHelper(dim, strides, MklDnnType<T>(), &blocked_md)); return memory::desc(blocked_md); } inline void SetUsrMem(const memory::dims& dim, const memory::dims& strides, void* data_buffer = nullptr) { CHECK_EQ(dim.size(), strides.size()); auto blocked_md = MklDnnData<T>::CreateBlockedMemDesc(dim, strides); SetUsrMem(blocked_md, data_buffer); } inline void SetUsrMem(const memory::dims& dim, const memory::dims& strides, const Tensor* tensor) { CHECK_NOTNULL(tensor); SetUsrMem(dim, strides, GetTensorBuffer(tensor)); } inline void SetUsrMem(const memory::desc& md, const Tensor* tensor) { CHECK_NOTNULL(tensor); SetUsrMem(md, GetTensorBuffer(tensor)); } inline void SetUsrMem(const memory::desc& pd, void* data_buffer = nullptr) { DCHECK(cpu_engine_); if (user_memory_) delete user_memory_; if (data_buffer) { user_memory_ = new memory(pd, *cpu_engine_, data_buffer); } else { user_memory_ = new memory(pd, *cpu_engine_); } } inline const memory* GetUsrMem() const { return user_memory_; } inline memory::desc GetUsrMemDesc() const { DCHECK(user_memory_); return user_memory_->get_desc(); } inline void* GetUsrMemDataHandle() const { CHECK_NOTNULL(user_memory_); return user_memory_->get_data_handle(); } inline void SetUsrMemDataHandle(void* data_buffer, std::shared_ptr<stream> t_stream = nullptr) { CHECK_NOTNULL(user_memory_); CHECK_NOTNULL(data_buffer); #if !defined(ENABLE_ONEDNN_OPENMP) && !defined(ENABLE_ONEDNN_V3) user_memory_->set_data_handle(data_buffer, *t_stream); #else user_memory_->set_data_handle(data_buffer); #endif } inline void SetUsrMemDataHandle(const Tensor* tensor, std::shared_ptr<stream> t_stream = nullptr) { SetUsrMemDataHandle(GetTensorBuffer(tensor), t_stream); } inline void AllocateBuffer(size_t size) { const int64 kMemoryAlignment = 64; allocated_buffer_ = cpu_allocator()->AllocateRaw(kMemoryAlignment, size); } inline void* GetAllocatedBuffer() { return allocated_buffer_; } inline const memory& GetOpMem() const { return reorder_memory_ ? *reorder_memory_ : *user_memory_; } inline void SetOpMemDesc(const memory::dims& dim, memory::format_tag fm) { op_md_ = new memory::desc(dim, MklDnnType<T>(), fm); } inline const memory::desc& GetOpMemDesc() const { return *op_md_; } inline bool IsReorderNeeded(const memory::desc& op_pd) const { DCHECK(user_memory_); return op_pd != user_memory_->get_desc(); } inline primitive CreateReorder(const memory* from, const memory* to) const { CHECK_NOTNULL(from); CHECK_NOTNULL(to); return reorder(*from, *to); } inline bool CheckReorderToOpMem(const memory::desc& op_md, std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args, const engine& engine) { DCHECK(user_memory_); DCHECK_EQ(net.size(), net_args.size()); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine); net.push_back(CreateReorder(user_memory_, reorder_memory_)); net_args.push_back(MemoryArgsMap{{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, const engine& engine, OpKernelContext* context = nullptr) { DCHECK(user_memory_); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine); auto* prim = FindOrCreateReorder<T>(user_memory_, reorder_memory_); std::shared_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (context != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, prim->GetEngine())); } else { cpu_stream.reset(CreateStream(nullptr, prim->GetEngine())); } std::vector<primitive> net; net.push_back(*(prim->GetPrimitive())); std::vector<MemoryArgsMap> net_args; net_args.push_back( {{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); execute_primitives(net, cpu_stream, net_args); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, void* reorder_data_handle, std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args, const engine& engine) { DCHECK(reorder_data_handle); DCHECK(user_memory_); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine, reorder_data_handle); net.push_back(CreateReorder(user_memory_, reorder_memory_)); net_args.push_back(MemoryArgsMap{{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, void* reorder_data_handle, const engine& engine, OpKernelContext* context = nullptr) { DCHECK(reorder_data_handle); DCHECK(user_memory_); if (IsReorderNeeded(op_md)) { reorder_memory_ = new memory(op_md, engine, reorder_data_handle); auto* prim = FindOrCreateReorder<T>(user_memory_, reorder_memory_); std::shared_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (context != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, prim->GetEngine())); } else { cpu_stream.reset(CreateStream(nullptr, prim->GetEngine())); } std::vector<primitive> net; net.push_back(*(prim->GetPrimitive())); std::vector<MemoryArgsMap> net_args; net_args.push_back( {{DNNL_ARG_FROM, *user_memory_}, {DNNL_ARG_TO, *reorder_memory_}}); execute_primitives(net, cpu_stream, net_args); return true; } return false; } inline bool CheckReorderToOpMem(const memory::desc& op_md, Tensor* reorder_tensor, std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args, const engine& engine) { DCHECK(reorder_tensor); return CheckReorderToOpMem(op_md, GetTensorBuffer(reorder_tensor), net, net_args, engine); } inline bool CheckReorderToOpMem(const memory::desc& op_pd, Tensor* reorder_tensor, OpKernelContext* ctx = nullptr) { DCHECK(reorder_tensor); return CheckReorderToOpMem(op_pd, GetTensorBuffer(reorder_tensor), *cpu_engine_, ctx); } inline bool PrepareReorderToUserMemIfReq(const memory::desc& op_pd) { DCHECK(user_memory_); if (IsReorderNeeded(op_pd)) { reorder_memory_ = new memory(op_pd, *cpu_engine_); return true; } return false; } inline void InsertReorderToUserMem(std::vector<primitive>& net, std::vector<MemoryArgsMap>& net_args) { DCHECK(user_memory_); DCHECK(reorder_memory_); net.push_back(CreateReorder(reorder_memory_, user_memory_)); net_args.push_back(MemoryArgsMap{{DNNL_ARG_FROM, *reorder_memory_}, {DNNL_ARG_TO, *user_memory_}}); } inline void InsertReorderToUserMem(OpKernelContext* ctx = nullptr) { DCHECK(user_memory_); DCHECK(reorder_memory_); DCHECK(cpu_engine_); std::vector<primitive> net; auto* prim = FindOrCreateReorder<T>(reorder_memory_, user_memory_); net.push_back(*(prim->GetPrimitive())); std::vector<MemoryArgsMap> net_args; net_args.push_back( {{DNNL_ARG_FROM, *reorder_memory_}, {DNNL_ARG_TO, *user_memory_}}); std::shared_ptr<stream> cpu_stream; tsl::OneDnnThreadPool eigen_tp; if (ctx != nullptr) { Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(ctx); eigen_tp = tsl::OneDnnThreadPool(eigen_interface, ThreadPoolUseCallerThread()); cpu_stream.reset(CreateStream(&eigen_tp, prim->GetEngine())); } else { cpu_stream.reset(CreateStream(nullptr, prim->GetEngine())); } execute_primitives(net, cpu_stream, net_args); } }; class MklPrimitive { public: virtual ~MklPrimitive() {} MklPrimitive() {} MklPrimitive(const engine& cpu_engine) { cpu_engine_ = cpu_engine; } unsigned char* DummyData = nullptr; engine cpu_engine_ = engine(engine::kind::cpu, 0); const engine& GetEngine() { return cpu_engine_; } }; const dnnl::memory::dims NONE_DIMS = {}; template <typename T> class LRUCache { public: explicit LRUCache(size_t capacity) { capacity_ = capacity; Clear(); } T* GetOp(const string& key) { #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex_lock lock(lru_mu_); #endif auto it = cache_.find(key); if (it == cache_.end()) { return nullptr; } lru_list_.erase(it->second.lru_iterator); lru_list_.push_front(it->first); it->second.lru_iterator = lru_list_.begin(); return it->second.op; } void SetOp(const string& key, T* op) { #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex_lock lock(lru_mu_); #endif if (lru_list_.size() >= capacity_) { Delete(); } lru_list_.push_front(key); Entry entry(op, lru_list_.begin()); cache_.emplace(std::make_pair(key, std::move(entry))); #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) FinishedAllocation(key); #endif } void Clear() { if (lru_list_.empty()) return; cache_.clear(); lru_list_.clear(); } #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) bool IsAllocating(const string& key) { mutex_lock lock(in_flight_mu_); return in_flight_.find(key) != in_flight_.end(); } void Allocate(const string& key) { mutex_lock lock(in_flight_mu_); in_flight_.insert(key); } void FinishedAllocation(const string& key) { mutex_lock lock(in_flight_mu_); in_flight_.erase(key); } #endif private: struct Entry { T* op; std::list<string>::iterator lru_iterator; Entry(T* op, std::list<string>::iterator it) { this->op = op; this->lru_iterator = it; } Entry(Entry&& source) noexcept : lru_iterator(std::move(source.lru_iterator)) { op = std::move(source.op); source.op = std::forward<T*>(nullptr); } ~Entry() { if (op != nullptr) delete op; } }; bool Delete() { if (lru_list_.empty()) return false; string key = lru_list_.back(); lru_list_.pop_back(); cache_.erase(key); return true; } size_t capacity_; std::unordered_map<string, Entry> cache_; std::list<string> lru_list_; #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex lru_mu_; std::set<string> in_flight_; TF_GUARDED_BY(in_flight_mu_) mutex in_flight_mu_; #endif }; template <typename T> class MklPrimitiveFactory { public: MklPrimitiveFactory() {} ~MklPrimitiveFactory() {} MklPrimitive* GetOp(const string& key) { #if !defined(DNNL_AARCH64_USE_ACL) || !defined(ENABLE_ONEDNN_OPENMP) auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); return lru_cache.GetOp(key); #else while (true) { mutex_lock lock(primitive_creation_mu_); auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); MklPrimitive* primitive = lru_cache.GetOp(key); if (primitive != nullptr) { return primitive; } if (!lru_cache.IsAllocating(key)) { lru_cache.Allocate(key); return nullptr; } primitive_creation_cv_.wait(lock); } #endif } void SetOp(const string& key, MklPrimitive* op) { #if !defined(DNNL_AARCH64_USE_ACL) || !defined(ENABLE_ONEDNN_OPENMP) auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); lru_cache.SetOp(key, op); #else { mutex_lock lock(primitive_creation_mu_); auto& lru_cache = MklPrimitiveFactory<T>::GetLRUCache(); lru_cache.SetOp(key, op); } primitive_creation_cv_.notify_all(); #endif } static inline bool IsLegacyPlatform() { #ifdef DNNL_AARCH64_USE_ACL return false; #else static const bool is_legacy_platform = (!port::TestCPUFeature(port::CPUFeature::AVX512F) && !port::TestCPUFeature(port::CPUFeature::AVX2)); return is_legacy_platform; #endif } static inline bool IsPrimitiveMemOptEnabled() { static const bool is_primitive_mem_opt_enabled = [] { bool value = true; TF_CHECK_OK( ReadBoolFromEnvVar("TF_MKL_OPTIMIZE_PRIMITIVE_MEMUSE", true, &value)); return value; }(); return is_primitive_mem_opt_enabled; } #ifdef DNNL_AARCH64_USE_ACL static int IncrementCounter() { static std::atomic_int counter{1}; return counter.fetch_add(1); } #endif private: static inline LRUCache<MklPrimitive>& GetLRUCache() { static const int kCapacity = 1024; #if !defined(DNNL_AARCH64_USE_ACL) || !defined(ENABLE_ONEDNN_OPENMP) static thread_local LRUCache<MklPrimitive> lru_cache_(kCapacity); #else static LRUCache<MklPrimitive> lru_cache_(kCapacity); #endif return lru_cache_; } #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex primitive_creation_mu_; condition_variable primitive_creation_cv_; #endif }; class FactoryKeyCreator { public: FactoryKeyCreator() { key_.reserve(kMaxKeyLength); } ~FactoryKeyCreator() {} void AddAsKey(const string& str) { Append(str); } void AddAsKey(const dnnl::memory::dims& dims) { for (unsigned int i = 0; i < dims.size(); i++) { AddAsKey<int>(dims[i]); } } template <typename T> void AddAsKey(const T data) { auto buffer = reinterpret_cast<const char*>(&data); Append(StringPiece(buffer, sizeof(T))); } void AddAsKey(const void* data) { auto buffer = reinterpret_cast<const char*>(&data); Append(StringPiece(buffer, sizeof(data))); } string GetKey() { return key_; } private: string key_; const char delimiter = 'x'; const int kMaxKeyLength = 256; void Append(StringPiece s) { key_.append(string(s)); key_.append(1, delimiter); } }; class MklReorderPrimitive : public MklPrimitive { public: explicit MklReorderPrimitive(const memory* from, const memory* to) : MklPrimitive(engine(engine::kind::cpu, 0)) { Setup(from, to); } ~MklReorderPrimitive() {} std::shared_ptr<primitive> GetPrimitive() { return context_.reorder_prim; } void SetMemory(const memory* from, const memory* to) { context_.src_mem->set_data_handle(from->get_data_handle()); context_.dst_mem->set_data_handle(to->get_data_handle()); } std::shared_ptr<dnnl::stream> GetStream() { return stream_; } private: struct ReorderContext { std::shared_ptr<dnnl::memory> src_mem; std::shared_ptr<dnnl::memory> dst_mem; std::shared_ptr<primitive> reorder_prim; ReorderContext() : src_mem(nullptr), dst_mem(nullptr), reorder_prim(nullptr) {} } context_; std::shared_ptr<dnnl::stream> stream_; void Setup(const memory* from, const memory* to) { context_.src_mem.reset( new memory(from->get_desc(), cpu_engine_, DummyData)); context_.dst_mem.reset(new memory(to->get_desc(), cpu_engine_, DummyData)); context_.reorder_prim = std::make_shared<dnnl::reorder>( reorder(*context_.src_mem, *context_.dst_mem)); stream_.reset(new stream(cpu_engine_)); } }; template <typename T> class MklReorderPrimitiveFactory : public MklPrimitiveFactory<T> { public: static MklReorderPrimitive* Get(const memory* from, const memory* to) { auto reorderPrim = static_cast<MklReorderPrimitive*>( MklReorderPrimitiveFactory<T>::GetInstance().GetReorder(from, to)); if (reorderPrim == nullptr) { reorderPrim = new MklReorderPrimitive(from, to); MklReorderPrimitiveFactory<T>::GetInstance().SetReorder(from, to, reorderPrim); } reorderPrim->SetMemory(from, to); return reorderPrim; } static MklReorderPrimitiveFactory& GetInstance() { static MklReorderPrimitiveFactory instance_; return instance_; } static string CreateKey(const memory* from, const memory* to) { string prefix = "reorder"; FactoryKeyCreator key_creator; auto const& from_desc = from->GET_MEMORY_DESC; auto const& to_desc = to->GET_MEMORY_DESC; memory::dims INIT_DIMS_FROM_DESC(from_dims, from_desc); memory::dims INIT_DIMS_FROM_DESC(to_dims, to_desc); auto from_strides = from_desc.GET_STRIDES; auto from_inner_nblks = from_desc.GET_INNER_NBLKS; auto from_inner_blks = from_desc.GET_INNER_BLKS; auto from_inner_idxs = from_desc.GET_INNER_IDXS; auto to_inner_nblks = to_desc.GET_INNER_NBLKS; auto to_inner_blks = to_desc.GET_INNER_BLKS; auto to_inner_idxs = to_desc.GET_INNER_IDXS; auto to_strides = to_desc.GET_STRIDES; #ifndef ENABLE_ONEDNN_V3 memory::dims from_inner_blks_1(from_inner_blks, &from_inner_blks[from_inner_nblks]); memory::dims from_inner_idxs_1(from_inner_idxs, &from_inner_idxs[from_inner_nblks]); memory::dims to_inner_blks_1(to_inner_blks, &to_inner_blks[to_inner_nblks]); memory::dims to_inner_idxs_1(to_inner_idxs, &to_inner_idxs[to_inner_nblks]); memory::dims from_strides_outer_blocks(from_strides, &from_strides[from_desc.ndims]); memory::dims to_strides_outer_blocks(to_strides, &to_strides[to_desc.ndims]); #endif key_creator.AddAsKey(prefix); #ifdef DNNL_AARCH64_USE_ACL key_creator.AddAsKey(std::this_thread::get_id()); #endif key_creator.AddAsKey(static_cast<int>(from_desc.GET_MEMORY_DESC_FLAGS)); key_creator.AddAsKey(static_cast<int>(from_inner_nblks)); key_creator.AddAsKey(GET_INNER_DIMS(from_inner_blks, from_inner_blks_1)); key_creator.AddAsKey(GET_INNER_DIMS(from_inner_idxs, from_inner_idxs_1)); key_creator.AddAsKey(static_cast<int>(from_desc.GET_DATA_TYPE)); key_creator.AddAsKey(from_dims); key_creator.AddAsKey( GET_STRIDES_DIMS(from_strides, from_strides_outer_blocks)); key_creator.AddAsKey(static_cast<int>(to_desc.GET_MEMORY_DESC_FLAGS)); key_creator.AddAsKey(static_cast<int>(to_inner_nblks)); key_creator.AddAsKey(GET_INNER_DIMS(to_inner_blks, to_inner_blks_1)); key_creator.AddAsKey(GET_INNER_DIMS(to_inner_idxs, to_inner_idxs_1)); key_creator.AddAsKey(static_cast<int>(to_desc.GET_DATA_TYPE)); key_creator.AddAsKey(to_dims); key_creator.AddAsKey(GET_STRIDES_DIMS(to_strides, to_strides_outer_blocks)); return key_creator.GetKey(); } private: MklReorderPrimitiveFactory() {} ~MklReorderPrimitiveFactory() {} MklPrimitive* GetReorder(const memory* from, const memory* to) { string key = CreateKey(from, to); return this->GetOp(key); } void SetReorder(const memory* from, const memory* to, MklPrimitive* op) { string key = CreateKey(from, to); this->SetOp(key, op); } }; template <typename T> inline MklReorderPrimitive* FindOrCreateReorder(const memory* from, const memory* to) { CHECK_NOTNULL(from); CHECK_NOTNULL(to); MklReorderPrimitive* reorder_prim = MklReorderPrimitiveFactory<T>::Get(from, to); return reorder_prim; } inline bool IsConv1x1StrideNot1(memory::dims filter_dims, memory::dims strides) { if (filter_dims.size() != 4 || strides.size() != 2) return false; return ((filter_dims[2] == 1) && (filter_dims[3] == 1) && ((strides[0] != 1) || (strides[1] != 1))); } #undef ARE_MEMORY_DESCS_EQUAL #undef CREATE_MEMORY_DESC_USING_STRIDES #undef GET_DATA_TYPE #undef GET_DIMS #undef GET_INNER_BLKS #undef GET_INNER_DIMS #undef GET_INNER_IDXS #undef GET_INNER_NBLKS #undef GET_MEMORY_DESC #undef GET_MEMORY_DESC_FLAGS #undef GET_MEMORY_DESC_USING_MKLDNN_SHAPE_PTR #undef GET_NDIMS #undef GET_STRIDES #undef GET_STRIDES_DIMS #undef INIT_DIMS_FROM_DESC #undef MEMORY_DESC } #define REGISTER_TEST_FLOAT32(TEST) REGISTER_TEST(TEST, DT_FLOAT, Float32Input); #define REGISTER_TEST_BFLOAT16(TEST) \ REGISTER_TEST(TEST, DT_BFLOAT16, BFloat16Input); #define REGISTER_TEST_ALL_TYPES(TEST) \ REGISTER_TEST_FLOAT32(TEST); \ REGISTER_TEST_BFLOAT16(TEST); #else #define REGISTER_TEST_ALL_TYPES(TEST) REGISTER_TEST_FLOAT32(TEST); #endif #endif
#ifdef INTEL_MKL #include "tensorflow/core/util/mkl_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(MklUtilTest, MklDnnTfShape) { auto cpu_engine = engine(engine::kind::cpu, 0); MklDnnData<float> a(&cpu_engine); const int N = 1, C = 2, H = 3, W = 4; memory::dims a_dims = {N, C, H, W}; MklDnnShape a_mkldnn_shape; a_mkldnn_shape.SetMklTensor(true); a_mkldnn_shape.SetTfLayout(a_dims.size(), a_dims, MklTensorFormat::FORMAT_NCHW); TensorShape a_tf_shape_nchw({N, C, H, W}); TensorShape a_tf_shape_nhwc({N, H, W, C}); TensorShape a_mkldnn_tf_shape = a_mkldnn_shape.GetTfShape(); EXPECT_EQ(a_tf_shape_nchw, a_mkldnn_tf_shape); EXPECT_NE(a_tf_shape_nhwc, a_mkldnn_tf_shape); memory::dims b_dims = {N, C, H, W}; MklDnnShape b_mkldnn_shape; b_mkldnn_shape.SetMklTensor(true); b_mkldnn_shape.SetTfLayout(b_dims.size(), b_dims, MklTensorFormat::FORMAT_NHWC); TensorShape b_tf_shape_nhwc({N, H, W, C}); TensorShape b_tf_shape_nchw({N, C, H, W}); TensorShape b_mkldnn_tf_shape = b_mkldnn_shape.GetTfShape(); EXPECT_EQ(b_tf_shape_nhwc, b_mkldnn_tf_shape); EXPECT_NE(b_tf_shape_nchw, b_mkldnn_tf_shape); } TEST(MklUtilTest, LRUCacheTest) { size_t capacity = 100; size_t num_objects = capacity + 10; LRUCache<int> lru_cache(capacity); for (int k = 0; k < num_objects; k++) { lru_cache.SetOp(std::to_string(k), new int(k)); } for (int k = 0; k < num_objects - capacity; ++k) { EXPECT_EQ(nullptr, lru_cache.GetOp(std::to_string(k))); } for (int k = num_objects - capacity; k < num_objects; ++k) { int* int_ptr = lru_cache.GetOp(std::to_string(k)); EXPECT_NE(nullptr, int_ptr); EXPECT_EQ(*int_ptr, k); } lru_cache.Clear(); for (int k = 0; k < num_objects; ++k) { EXPECT_EQ(nullptr, lru_cache.GetOp(std::to_string(k))); } } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/mkl_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/mkl_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8017d096-35ec-4ee1-9fbc-145ef10823f3
cpp
tensorflow/tensorflow
legalize_tf
tensorflow/compiler/mlir/tf2xla/api/v2/legalize_tf.cc
tensorflow/compiler/mlir/tf2xla/api/v2/legalize_tf_test.cc
#include "tensorflow/compiler/mlir/tf2xla/api/v2/legalize_tf.h" #include <memory> #include <string> #include <string_view> #include <variant> #include <vector> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/types/variant.h" #include "llvm/ADT/ScopeExit.h" #include "mlir/Pass/Pass.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_tf_graph.h" #include "tensorflow/compiler/mlir/tf2xla/internal/compilation_timer.h" #include "tensorflow/compiler/mlir/tf2xla/internal/legalize_tf_mlir.h" #include "tensorflow/compiler/mlir/tf2xla/internal/legalize_tf_to_hlo.h" #include "tensorflow/compiler/mlir/tf2xla/internal/reproducer.pb.h" #include "tensorflow/compiler/tf2xla/layout_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/tsl/lib/monitoring/sampler.h" #include "xla/xla.pb.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tpu/kernels/tpu_compile_op_support.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tensorflow/core/util/dump_graph.h" #include "tsl/platform/error_logging.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tf2xla { namespace v2 { using tpu::FunctionToHloArgs; using tpu::MlirToHloArgs; using tpu::ShardingAndIndex; auto* phase2_bridge_compilation_time = tsl::monitoring::Sampler<1>::New( {"/tensorflow/core/tf2xla/api/v2/phase2_compilation_time", "The wall-clock time spent on executing graphs in milliseconds.", "configuration"}, {tsl::monitoring::Buckets::Exponential(1, 1.5, 45)}); constexpr char kBridgeComponent[] = "TFXLABridge"; constexpr char kFullBridge[] = "full_bridge"; namespace { bool ShouldFallbackToGraphCompiler( const std::variant<MlirToHloArgs, FunctionToHloArgs>& computation) { if (computation.index() == 1) return true; return std::get<0>(computation).rollout_state == ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_DISABLED; } void DumpComputationInput( const tpu::TPUCompileMetadataProto& metadata, const std::vector<tensorflow::TensorShape>& arg_shapes, const std::variant<tpu::MlirToHloArgs, tpu::FunctionToHloArgs> computation) { if (!VLOG_IS_ON(2)) { return; } tensorflow::mlir::tf2xla::internal::LegalizeMlirToHloReproducer reproducer; *reproducer.mutable_compile_metadata() = metadata; for (const auto& shape : arg_shapes) { shape.AsProto(reproducer.add_input_shapes()); } switch (computation.index()) { case 0: reproducer.set_mlir_module( std::string(std::get<0>(computation).mlir_module)); break; case 1: { auto input = std::get<1>(computation); *reproducer.mutable_function_def_library() = input.flib_def->ToProto(); } break; default: VLOG(2) << "LegalizeMlirToHlo computation input: unknown"; break; } std::string string_reproducer; tensorflow::protobuf::TextFormat::PrintToString(reproducer, &string_reproducer); DumpRawStringToFile("legalize_tf_reproducer.textproto", string_reproducer); } Status DumpHloCompilationResult(std::string_view name, XlaCompilationResult* compilation_result) { if (!VLOG_IS_ON(2) && !DEBUG_DATA_DUMPER()->ShouldDump(std::string(name), kDebugGroupMain)) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN( auto hlo_module_config, xla::HloModule::CreateModuleConfigFromProto( compilation_result->computation->proto(), xla::DebugOptions())); TF_ASSIGN_OR_RETURN( std::unique_ptr<xla::HloModule> hlo_module, xla::HloModule::CreateFromProto(compilation_result->computation->proto(), hlo_module_config)); std::string all_computations; for (auto computation : hlo_module->computations()) { all_computations += computation->ToString() + "\n\n"; } tensorflow::DumpRawStringToFile(name, all_computations); return absl::OkStatus(); } } absl::StatusOr<tensorflow::XlaCompilationResult> LegalizeMlirToHlo( const std::variant<tpu::MlirToHloArgs, tpu::FunctionToHloArgs>& computation, const tpu::TPUCompileMetadataProto& metadata, bool use_tuple_args, llvm::StringRef device_type, std::vector<std::unique_ptr<::mlir::Pass>>& custom_legalization_passes, XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, const std::vector<tensorflow::TensorShape>& arg_shapes, std::vector<tpu::ShardingAndIndex>* arg_core_mapping, std::vector<std::vector<xla::Shape>>* per_core_arg_shapes, xla::CompileOnlyClient* client) { CompilationTimer timer; auto record_time = llvm::make_scope_exit([&timer] { phase2_bridge_compilation_time->GetCell(kFullBridge) ->Add(timer.ElapsedCyclesInMilliseconds()); }); auto compilation_result = std::make_unique<XlaCompilationResult>(); DumpComputationInput(metadata, arg_shapes, computation); if (ShouldFallbackToGraphCompiler(computation)) { TF_RETURN_IF_ERROR(tf2xla::v1::CompileTensorflowGraphToHlo( computation, metadata, use_tuple_args, shape_determination_fns, arg_shapes, arg_core_mapping, per_core_arg_shapes, client, compilation_result.get())); DumpHloCompilationResult("legalize_tf_fallback.hlo", compilation_result.get()) .IgnoreError(); return *compilation_result; } auto combined_bridge_status = internal::LegalizeTfToHlo( std::get<0>(computation), metadata, use_tuple_args, device_type, shape_determination_fns, arg_shapes, arg_core_mapping, per_core_arg_shapes, custom_legalization_passes, client, compilation_result.get()); if (combined_bridge_status.ok()) { VLOG(1) << "Successfully compiled MLIR computation to XLA HLO using " "Combined MLIR and XlaBuilder Bridge."; DumpHloCompilationResult("legalize_tf_combined_bridge.hlo", compilation_result.get()) .IgnoreError(); return *compilation_result; } return combined_bridge_status.status(); } }; }; };
#include "tensorflow/compiler/mlir/tf2xla/api/v2/legalize_tf.h" #include <cstdint> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_format.h" #include "tensorflow/compiler/mlir/tf2xla/internal/test_matchers.h" #include "tensorflow/compiler/mlir/tf2xla/internal/utils/test_metadata_config.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/client_library.h" #include "xla/stream_executor/platform_manager.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/lib/monitoring/test_utils.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/lib/monitoring/test_utils.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" #include "tensorflow/core/tpu/kernels/tpu_compile_op_support.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tf2xla { namespace v2 { using ::tensorflow::monitoring::testing::CellReader; using ::testing::Not; using ::testing::TestWithParam; using tpu::FunctionToHloArgs; using tpu::MlirToHloArgs; using tpu::ShardingAndIndex; using tpu::TPUCompileMetadataProto; static constexpr char kCompilationTimeStreamzName[] = "/tensorflow/core/tf2xla/api/v2/phase2_compilation_time"; static constexpr char kFullBridge[] = "full_bridge"; static constexpr char kCompilationStatusStreamzName[] = "/tensorflow/core/tf2xla/api/v2/phase2_compilation_status"; static const char kMlirWithFallbackModeSuccess[] = "kMlirWithFallbackModeSuccess"; static const char kMlirWithFallbackModeFailure[] = "kMlirWithFallbackModeFailure"; static const char kOldBridgeMlirFilteredFailure[] = "kOldBridgeMlirFilteredFailure"; static const char kOldBridgeWithFallbackModeFailure[] = "kOldBridgeWithFallbackModeFailure"; static const char kOldBridgeMlirFilteredSuccess[] = "kOldBridgeMlirFilteredSuccess"; static const char kOldBridgeWithFallbackModeSuccess[] = "kOldBridgeWithFallbackModeSuccess"; static const char kMlirCombinedMlirSuccess[] = "kMlirCombinedMlirSuccess"; static const char kMlirCombinedMlirFailure[] = "kMlirCombinedMlirFailure"; static const char kMlirCombinedOldSuccess[] = "kMlirCombinedOldSuccess"; static const char kMlirCombinedOldFailure[] = "kMlirCombinedOldFailure"; static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { func.return } })"; static constexpr char kBadMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { %0 = tf.Unknown() -> () func.return %0 } })"; static constexpr char kUnsupportedMlirBridgeModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> () { %cst0 = "tf.Const"(){ value = dense<0> : tensor<3x5xi1>} : () -> tensor<3x5xi1> %0 = "tf.Where"(%cst0) : (tensor<3x5xi1>) -> tensor<?x2xi64> func.return } })"; absl::StatusOr<XlaCompiler::CompilationResult> CompileMlirModule( const char* mlir_module_str, ConfigProto::Experimental::MlirBridgeRollout rollout_state) { MlirToHloArgs mlir_to_hlo_args; mlir_to_hlo_args.rollout_state = rollout_state; mlir_to_hlo_args.mlir_module = mlir_module_str; se::Platform* platform = se::PlatformManager::PlatformWithName("Host").value(); auto client = xla::ClientLibrary::GetOrCreateCompileOnlyClient(platform).value(); std::vector<TensorShape> arg_shapes; TPUCompileMetadataProto metadata_proto; tensorflow::tf2xla::internal::ConfigureMetadata(mlir_module_str, arg_shapes, metadata_proto) .IgnoreError(); bool use_tuple_args = true; std::vector<ShardingAndIndex> arg_core_mapping; std::vector<std::vector<xla::Shape>> per_core_arg_shapes; std::vector<std::unique_ptr<mlir::Pass>> custom_legalization_passes; return LegalizeMlirToHlo(mlir_to_hlo_args, metadata_proto, use_tuple_args, "XLA_TPU_JIT", custom_legalization_passes, {}, arg_shapes, &arg_core_mapping, &per_core_arg_shapes, client); } TEST(LegalizeTFTest, RecordsStreamzForSuccessfulLegalizeWithMlirBridge) { CellReader<int64_t> compilation_status(kCompilationStatusStreamzName); TF_ASSERT_OK_AND_ASSIGN( XlaCompiler::CompilationResult result, CompileMlirModule( kMlirModuleStr, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED)); EXPECT_EQ(compilation_status.Delta(kMlirWithFallbackModeFailure), 0); } TEST(LegalizeTFTest, MatMul) { static constexpr char kMatMulModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> (tensor<5x11xf32>) { %arg0 = "tf.Const"() {value = dense<-3.0> : tensor<5x7xf32>} : () -> tensor<5x7xf32> %arg1 = "tf.Const"() {value = dense<-3.0> : tensor<11x7xf32>} : () -> tensor<11x7xf32> %1 = "tf.MatMul"(%arg0, %arg1) {transpose_a = false, transpose_b = true} : (tensor<5x7xf32>, tensor<11x7xf32>) -> tensor<5x11xf32> func.return %1 : tensor<5x11xf32> } })"; TF_ASSERT_OK_AND_ASSIGN( XlaCompiler::CompilationResult result, CompileMlirModule( kMatMulModuleStr, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED)); } struct MatMulTestCase { std::string mat_mul_method; }; using BatchMatMulTest = TestWithParam<MatMulTestCase>; TEST_P(BatchMatMulTest, BatchMatMul) { const MatMulTestCase& test_case = GetParam(); static constexpr char kMatMulModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> (tensor<1x4x4xf32>) { %%arg0 = "tf.Const"() {value = dense<-3.0> : tensor<1x4x2xf32>} : () -> tensor<1x4x2xf32> %%arg1 = "tf.Const"() {value = dense<-3.0> : tensor<1x2x4xf32>} : () -> tensor<1x2x4xf32> %%1 = "tf.%s"(%%arg0, %%arg1) {T = f32, adj_x = false, adj_y = false, grad_x = false, grad_y = false, device = ""} : (tensor<1x4x2xf32>, tensor<1x2x4xf32>) -> tensor<1x4x4xf32> func.return %%1 : tensor<1x4x4xf32> } })"; std::string mat_mul_method = absl::StrFormat(kMatMulModuleStr, test_case.mat_mul_method); TF_ASSERT_OK_AND_ASSIGN( XlaCompiler::CompilationResult result, CompileMlirModule( mat_mul_method.c_str(), ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED)); } INSTANTIATE_TEST_SUITE_P( BatchMatMulTest, BatchMatMulTest, ::testing::ValuesIn<MatMulTestCase>({ {"BatchMatMul"}, {"BatchMatMulV2"}, {"BatchMatMulV3"}, }), [](const ::testing::TestParamInfo<BatchMatMulTest::ParamType>& info) { return info.param.mat_mul_method; }); TEST(LegalizeTFTest, DumpsProducedHLO) { Env* env = Env::Default(); std::string test_dir = testing::TmpDir(); setenv("TF_DUMP_GRAPH_PREFIX", test_dir.c_str(), 1); setenv("TF_DUMP_GRAPH_NAME_FILTER", "*", 1); DEBUG_DATA_DUMPER()->LoadEnvvars(); std::vector<std::string> files; TF_ASSERT_OK(env->GetChildren(test_dir, &files)); int original_files_size = files.size(); TF_ASSERT_OK_AND_ASSIGN( XlaCompiler::CompilationResult result, CompileMlirModule( kMlirModuleStr, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED)); TF_ASSERT_OK(env->GetChildren(test_dir, &files)); EXPECT_THAT(files.size(), ::testing::Gt(original_files_size)); setenv("TF_DUMP_GRAPH_PREFIX", test_dir.c_str(), 0); } TEST(LegalizeTFTest, RecordsStreamzForFailedLegalizeWithMlirBridge) { CellReader<int64_t> compilation_status(kCompilationStatusStreamzName); auto result = CompileMlirModule( kBadMlirModuleStr, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED); EXPECT_FALSE(result.ok()); EXPECT_EQ(compilation_status.Delta(kMlirCombinedMlirFailure), 1); } TEST(LegalizeTFTest, RecordsStreamzForSuccessWithCombinedBridge) { CellReader<int64_t> compilation_status(kCompilationStatusStreamzName); auto result = CompileMlirModule( kUnsupportedMlirBridgeModuleStr, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED); EXPECT_TRUE(result.ok()); EXPECT_EQ(compilation_status.Delta(kMlirCombinedMlirSuccess), 1); EXPECT_EQ(compilation_status.Delta(kMlirCombinedMlirFailure), 0); EXPECT_EQ(compilation_status.Delta(kMlirCombinedOldSuccess), 1); EXPECT_EQ(compilation_status.Delta(kMlirCombinedOldFailure), 0); EXPECT_EQ(compilation_status.Delta(kOldBridgeMlirFilteredFailure), 0); EXPECT_EQ(compilation_status.Delta(kOldBridgeWithFallbackModeFailure), 0); EXPECT_EQ(compilation_status.Delta(kOldBridgeMlirFilteredSuccess), 0); EXPECT_EQ(compilation_status.Delta(kOldBridgeWithFallbackModeSuccess), 0); } TEST(LegalizeTFTest, RecordsStreamzForNoMlirFallback) { FunctionDef my_func = tensorflow::FunctionDefHelper::Create("empty", {}, {}, {}, {}, {}); tensorflow::FunctionDefLibrary fdef; *(fdef.add_function()) = my_func; tensorflow::FunctionLibraryDefinition flib_def( tensorflow::OpRegistry::Global(), fdef); OpInputList guaranteed_constants; NameAttrList function; FunctionToHloArgs function_to_hlo_args{&function, &flib_def, 0, {&guaranteed_constants}}; se::Platform* cpu_platform = se::PlatformManager::PlatformWithName("Host").value(); auto client = xla::ClientLibrary::GetOrCreateCompileOnlyClient(cpu_platform).value(); std::vector<TensorShape> arg_shapes; TPUCompileMetadataProto metadata_proto; bool use_tuple_args = true; std::vector<ShardingAndIndex> arg_core_mapping; std::vector<std::vector<xla::Shape>> per_core_arg_shapes; std::vector<std::unique_ptr<mlir::Pass>> custom_legalization_passes; absl::StatusOr<XlaCompiler::CompilationResult> compile_result = LegalizeMlirToHlo(function_to_hlo_args, metadata_proto, use_tuple_args, "XLA_CPU_JIT", custom_legalization_passes, {}, arg_shapes, &arg_core_mapping, &per_core_arg_shapes, client); EXPECT_FALSE(compile_result.ok()); } TEST(LegalizeTFTest, RecordsCompilationTimeForSuccessfulCompilation) { CellReader<monitoring::testing::Histogram> compilation_time( kCompilationTimeStreamzName); TF_ASSERT_OK_AND_ASSIGN( XlaCompiler::CompilationResult result, CompileMlirModule( kMlirModuleStr, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_ENABLED)); EXPECT_GT(compilation_time.Delta(kFullBridge).num(), 0); } TEST(LegalizeTFTest, SuccessfullyCompilesModulesWithReturnValues) { static constexpr char kHasReturnValuesAndNoMetadataRetvals[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> (tensor<2xi32>) { %cst = "tf.Const"() {value = dense<[524170, 523952]> : tensor<2xi32>} : () -> tensor<2xi32> return %cst : tensor<2xi32> } })"; auto compilation_result = CompileMlirModule( kHasReturnValuesAndNoMetadataRetvals, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED); EXPECT_TRUE(compilation_result.ok()); EXPECT_THAT(compilation_result, ComputationProtoContains("opcode:.*constant")); } TEST(LegalizeTFTest, SkipsTensorListSetItemIfDimensionsTooLarge) { static constexpr char kTensorListSetItemDimensionTooLarge[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<!tf_type.variant<tensor<64x1xbf16>>> { %elem_shape = "tf.Const"() <{value = dense<-1> : tensor<i32>}> {device = "/job:localhost/replica:0/task:0/device:CPU:0"} : () -> tensor<i32> %num_elements = "tf.Const"() <{value = dense<0> : tensor<i32>}> {device = "/job:localhost/replica:0/task:0/device:CPU:0"} : () -> tensor<i32> %list = "tf.TensorListReserve"(%elem_shape, %num_elements) : (tensor<i32>, tensor<i32>) -> tensor<!tf_type.variant<tensor<64x1xbf16>>> %index = "tf.Const"() <{value = dense<0> : tensor<i32>}> {device = "/job:localhost/replica:0/task:0/device:CPU:0"} : () -> tensor<i32> %element = "tf.Const"() <{value = dense<0.0> : tensor<64x1xbf16>}> {device = "/job:localhost/replica:0/task:0/device:CPU:0"} : () -> tensor<64x1xbf16> %updated_list = "tf.TensorListSetItem"(%list, %index, %element) : (tensor<!tf_type.variant<tensor<64x1xbf16>>>, tensor<i32>, tensor<64x1xbf16>) -> tensor<!tf_type.variant<tensor<64x1xbf16>>> return %updated_list : tensor<!tf_type.variant<tensor<64x1xbf16>>> } })"; auto compilation_result = CompileMlirModule( kTensorListSetItemDimensionTooLarge, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED); ASSERT_TRUE(compilation_result.ok()); ASSERT_THAT(compilation_result, Not(ComputationProtoContains("%.*= \"tf.TensorListSetItem"))); ASSERT_THAT(compilation_result, Not(ComputationProtoContains("%.*=.*DynamicUpdateSlice"))); } TEST(LegalizeTFTest, LegalizesFunctionWithBoundedDynamicArg) { static constexpr char kMlirModuleWithBoundedDynamicArgStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main(%arg0: tensor<?xi32, #mhlo.type_extensions<bounds = [3]>> ) -> (tensor<?xi32, #mhlo.type_extensions<bounds = [3]>>) { func.return %arg0 : tensor<?xi32, #mhlo.type_extensions<bounds = [3]>> } })"; auto compilation_result = CompileMlirModule( kMlirModuleWithBoundedDynamicArgStr, ConfigProto::Experimental::MLIR_BRIDGE_ROLLOUT_UNSPECIFIED); ASSERT_TRUE(compilation_result.ok()); EXPECT_THAT(compilation_result, ComputationProtoContains("element_type:.S32\n.*dimensions: 3")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v2/legalize_tf.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tf2xla/api/v2/legalize_tf_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
34fb00dd-c8fd-49ca-aa3d-7b157bea692d
cpp
tensorflow/tensorflow
tfrt_session
tensorflow/core/tfrt/tfrt_session/tfrt_session.cc
tensorflow/core/tfrt/tfrt_session/tfrt_session_test.cc
#include "tensorflow/core/tfrt/tfrt_session/tfrt_session.h" #include <algorithm> #include <cassert> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/die_if_null.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "Eigen/ThreadPool" #include "llvm/ADT/STLExtras.h" #include "tensorflow/compiler/mlir/tfrt/translate/tfrt_compile_options.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/local_session_selection.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/session_factory.h" #include "tensorflow/core/framework/device_factory.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/threadpool.h" #include "tensorflow/core/platform/threadpool_interface.h" #include "tensorflow/core/platform/threadpool_options.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/kernel/batch_kernel.h" #include "tensorflow/core/tfrt/mlrt/kernel/kernel.h" #include "tensorflow/core/tfrt/run_handler_thread_pool/run_handler_concurrent_work_queue.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/runtime/tf_threadpool_concurrent_work_queue.h" #include "tensorflow/core/tfrt/runtime/work_queue_interface.h" #include "tensorflow/core/tfrt/utils/utils.h" #include "tensorflow/core/util/device_name_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/thread_annotations.h" #include "tfrt/core_runtime/core_runtime.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/resource_context.h" namespace tensorflow { namespace { class ThreadPoolInterfaceWrapper : public thread::ThreadPoolInterface { public: explicit ThreadPoolInterfaceWrapper(Eigen::ThreadPoolInterface* thread_pool) : thread_pool_{thread_pool} { DCHECK(thread_pool); } void Schedule(std::function<void()> fn) override { return thread_pool().Schedule(std::move(fn)); } void ScheduleWithHint(std::function<void()> fn, int start, int end) override { return thread_pool().ScheduleWithHint(std::move(fn), start, end); } void Cancel() override { thread_pool().Cancel(); } int NumThreads() const override { return thread_pool().NumThreads(); } int CurrentThreadId() const override { return thread_pool().CurrentThreadId(); } private: Eigen::ThreadPoolInterface& thread_pool() const { DCHECK(thread_pool_); return *thread_pool_; } Eigen::ThreadPoolInterface* thread_pool_ = nullptr; }; class TfrtSessionInterOpThreadPools { public: TfrtSessionInterOpThreadPools(int size, bool run_in_caller_thread) : thread_pools_(size), run_in_caller_thread_(run_in_caller_thread) {} void SetThreadPool(int index, ThreadPoolInterfaceWrapper* thread_pool) { thread_pools_.at(index) = thread_pool; } absl::StatusOr<ThreadPoolInterfaceWrapper*> GetThreadPool(int index) { if (index < 0 || index >= thread_pools_.size()) return errors::InvalidArgument("Invalid thread pool index ", index); return thread_pools_[index]; } bool run_in_caller_thread() const { return run_in_caller_thread_; } private: std::vector<ThreadPoolInterfaceWrapper*> thread_pools_; bool run_in_caller_thread_; }; class TfrtSession : public tensorflow::Session { public: explicit TfrtSession(const SessionOptions& options, tensorflow::tfrt_stub::Runtime* runtime, TfrtDeviceInfraTarget device_target, bool tpu_use_tpu_runner, bool use_gpu, TfrtSessionInterOpThreadPools inter_op_thread_pools, bool enable_mlrt, tensorflow::BackendCompiler* backend_compiler, std::unique_ptr<StaticDeviceMgr> device_manager) : runtime_{runtime}, device_target_{device_target}, tpu_use_tpu_runner_{tpu_use_tpu_runner}, use_gpu_{use_gpu}, inter_op_thread_pools_{std::move(inter_op_thread_pools)}, enable_mlrt_(enable_mlrt), options_{options}, backend_compiler_(backend_compiler), device_manager_(std::move(device_manager)) {} Status Create(const GraphDef& graph) override { return Create(GraphDef(graph)); } Status Create(GraphDef&& graph) override { absl::MutexLock lock(&session_state_lock_); return CreateLocked(std::move(graph)); } Status CreateLocked(GraphDef graph) TF_EXCLUSIVE_LOCKS_REQUIRED(session_state_lock_) { if (graph.node_size() == 0) { LOG(ERROR) << "Ignoring empty graph."; return absl::OkStatus(); } if (session_state_ == SessionState::kCreated) { return errors::AlreadyExists( "A Graph has already been created for this session."); } TF_RETURN_IF_ERROR(CheckNotClosedLocked()); auto options = GetGraphExecutionOptions(); tensorflow::tfrt_stub::UpdateTpuTargetByBridgeCompatibility(options, graph); auto* nodes = graph.mutable_node(); for (auto it = nodes->begin(), end = nodes->end(); it != end; ++it) { if (it->name() == "ConfigureDistributedTPU") { nodes->erase(it); break; } } auto session_options = tensorflow::tfrt_stub::CreateDefaultSessionOptions(options); session_options.config.mutable_experimental() ->set_optimize_for_static_graph( options_.config.experimental().optimize_for_static_graph()); session_options.config.mutable_experimental() ->set_disable_optimize_for_static_graph( options_.config.experimental().disable_optimize_for_static_graph()); LOG_FIRST_N(INFO, 10) << "SessionOptions: " << session_options.config.DebugString(); const auto& fdef_lib = graph.library(); TF_ASSIGN_OR_RETURN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::CreateWithDeviceMgr( session_options, fdef_lib, device_manager_.get())); auto kernel_registry = std::make_unique<mlrt::KernelRegistry>(); tensorflow::tf_mlrt::RegisterTfMlrtKernels(*kernel_registry); tensorflow::tf_mlrt::RegisterTfMlrtBatchKernels(*kernel_registry); auto resource_context = std::make_unique<tfrt::ResourceContext>(); tfrt_stub::ModelRuntimeContext model_context( &options, "unknown_export_dir", resource_context.get()); model_context.set_graph_def(&graph); model_context.set_device_mgr(&fallback_state->device_manager()); model_context.set_is_local_session( !options_.config.experimental().enable_multi_host() && !options_.config.experimental().tfrt_use_ifrt()); TF_RETURN_IF_ERROR(options.runtime->CreateRuntimeResources(model_context)); GraphOptimizationPassOptions optimization_options; optimization_options.session_options = &options_; FunctionLibraryDefinition flib_def = fallback_state->func_lib_def(); optimization_options.flib_def = &flib_def; std::unordered_map<string, std::unique_ptr<Graph>> partition_graphs; auto initial_graph = std::make_unique<tensorflow::Graph>(tensorflow::OpRegistry::Global()); tensorflow::GraphConstructorOptions opts; opts.allow_internal_ops = true; TF_RETURN_IF_ERROR( tensorflow::ConvertGraphDefToGraph(opts, graph, initial_graph.get())); partition_graphs["graph"] = std::move(initial_graph); optimization_options.partition_graphs = &partition_graphs; OptimizationPassRegistry::Global()->LogAllGroupings(1); TF_RETURN_IF_ERROR(OptimizationPassRegistry::Global()->RunGrouping( OptimizationPassRegistry::POST_PARTITIONING, optimization_options)); LOG_FIRST_N(INFO, 10) << "GraphExecutionOptions: " << options; TF_ASSIGN_OR_RETURN( graph_executor_, tensorflow::tfrt_stub::GraphExecutor::Create( options, std::move(fallback_state), std::move(resource_context), std::move(graph), std::move(kernel_registry))); session_state_ = SessionState::kCreated; return absl::OkStatus(); } Status Extend(const GraphDef& graph) override { return Extend(GraphDef(graph)); } Status Extend(GraphDef&& graph) override { absl::MutexLock lock(&session_state_lock_); return ExtendLocked(std::move(graph)); } Status ExtendLocked(GraphDef graph) TF_EXCLUSIVE_LOCKS_REQUIRED(session_state_lock_) { if (session_state_ == SessionState::kCreated) { return graph_executor_->Extend(graph); } return CreateLocked(std::move(graph)); } Status RunInternal(const RunOptions& run_options, const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_node_names, std::vector<Tensor>* outputs, const thread::ThreadPoolOptions& thread_pool_options) { { absl::MutexLock lock(&session_state_lock_); if (session_state_ == SessionState::kInitialized) { return errors::Unavailable("Session not created yet."); } TF_RETURN_IF_ERROR(CheckNotClosedLocked()); } DCHECK(outputs || output_tensor_names.empty()) << "No outputs in Run()"; tensorflow::tfrt_stub::GraphExecutionRunOptions graph_execution_run_options{}; if (run_options.timeout_in_ms() > 0) { graph_execution_run_options.deadline = absl::ToChronoTime( absl::Now() + absl::Milliseconds(run_options.timeout_in_ms())); } std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface> work_queue; auto* const intra_op_thread_pool = thread_pool_options.intra_op_threadpool; if (inter_op_thread_pools_.run_in_caller_thread() || run_options.inter_op_thread_pool() == -1) { work_queue = tfrt_stub::WrapDefaultWorkQueue( tfrt::CreateSingleThreadedWorkQueue(), intra_op_thread_pool); } else if (thread_pool_options.inter_op_threadpool != nullptr) { work_queue = std::make_unique<tensorflow::tfrt_stub::TfThreadPoolWorkQueue>( tfrt::GetUniqueInt(), intra_op_thread_pool, thread_pool_options.inter_op_threadpool); } else { TF_ASSIGN_OR_RETURN(auto* thread_pool, inter_op_thread_pools_.GetThreadPool( run_options.inter_op_thread_pool())); work_queue = std::make_unique<tensorflow::tfrt_stub::TfThreadPoolWorkQueue>( tfrt::GetUniqueInt(), intra_op_thread_pool, thread_pool); } graph_execution_run_options.work_queue = work_queue.get(); std::vector<Tensor> output_tensors; TF_RETURN_IF_ERROR(graph_executor_->Run( graph_execution_run_options, inputs, output_tensor_names, target_node_names, &output_tensors)); if (outputs) { DCHECK_EQ(output_tensors.size(), output_tensor_names.size()); outputs->swap(output_tensors); } else { DCHECK(output_tensor_names.empty()) << "No outputs in Run()"; } return absl::OkStatus(); } Status Run(const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_node_names, std::vector<Tensor>* outputs) override { return RunInternal(RunOptions{}, inputs, output_tensor_names, target_node_names, outputs, {}); } Status Run(const RunOptions& run_options, const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_node_names, std::vector<Tensor>* outputs, RunMetadata* run_metadata) override { return Run(run_options, inputs, output_tensor_names, target_node_names, outputs, run_metadata, {}); } Status Run(const RunOptions& run_options, const std::vector<std::pair<std::string, Tensor>>& inputs, const std::vector<std::string>& output_tensor_names, const std::vector<std::string>& target_tensor_names, std::vector<Tensor>* outputs, RunMetadata* run_metadata, const thread::ThreadPoolOptions& thread_pool_options) override { return RunInternal(run_options, inputs, output_tensor_names, target_tensor_names, outputs, thread_pool_options); } Status MakeCallable(const CallableOptions& callable_options, CallableHandle* out_handle) override { absl::MutexLock lock(&callables_lock_); *out_handle = next_callable_handle_++; assert(callables_.find(*out_handle) == callables_.end()); callables_[*out_handle] = {callable_options}; return absl::OkStatus(); } Status RunCallable(CallableHandle handle, const std::vector<Tensor>& feed_tensors, std::vector<Tensor>* fetch_tensors, RunMetadata* run_metadata) override { return RunCallable(handle, feed_tensors, fetch_tensors, run_metadata, {}); } Status RunCallable( CallableHandle handle, const std::vector<Tensor>& feed_tensors, std::vector<Tensor>* fetch_tensors, RunMetadata* run_metadata, const thread::ThreadPoolOptions& thread_pool_options) override { Callable callable; { absl::MutexLock lock(&callables_lock_); auto it = callables_.find(handle); if (it == callables_.end()) return errors::InvalidArgument("No such callable handle: ", handle); callable = it->second; } if (callable.callable_options.feed_size() != feed_tensors.size()) return errors::InvalidArgument("Invalid number of feed tensors"); std::vector<std::pair<std::string, Tensor>> inputs; for (const auto& it : llvm::zip(callable.callable_options.feed(), feed_tensors)) { inputs.emplace_back(std::make_pair(std::get<0>(it), std::get<1>(it))); } std::vector<std::string> output_tensor_names; for (const auto& tensor_name : callable.callable_options.fetch()) { output_tensor_names.emplace_back(tensor_name); } std::vector<std::string> target_node_names; for (const auto& node_name : callable.callable_options.target()) { target_node_names.emplace_back(node_name); } return Run(inputs, output_tensor_names, target_node_names, fetch_tensors); } Status ReleaseCallable(CallableHandle handle) override { absl::MutexLock lock(&callables_lock_); auto it = callables_.find(handle); if (it == callables_.end()) return errors::InvalidArgument("No such callable handle: ", handle); callables_.erase(it); return absl::OkStatus(); } Status Close() override { absl::MutexLock lock(&session_state_lock_); session_state_ = SessionState::kClosed; return absl::OkStatus(); } Status ListDevices(std::vector<DeviceAttributes>* response) override { return errors::Unimplemented("TfrtSession::ListDevices is Unimplemented."); } Status LocalDeviceManager(const DeviceMgr** output) override { *output = device_manager_.get(); return absl::OkStatus(); } Status Finalize() override { return absl::OkStatus(); } private: tfrt::HostContext* GetHostContext() { return runtime_->core_runtime()->GetHostContext(); } tensorflow::tfrt_stub::GraphExecutionOptions GetGraphExecutionOptions() const { ::tensorflow::tfrt_stub::GraphExecutionOptions options(runtime_); auto& compile_options = options.compile_options; compile_options.variable_device = DeviceNameUtils::FullName("localhost", 0, 0, "CPU", 0); compile_options.enable_grappler = true; compile_options.device_target = device_target_; compile_options.tpu_fuse_ops = tpu_use_tpu_runner_; compile_options.hoist_invariant_ops = true; compile_options.sink_in_invariant_ops = false; compile_options.cost_threshold = 1024; if (use_gpu_) { options.enable_tfrt_gpu = true; options.enable_grappler_function_optimizer = true; } compile_options.use_tpu_host_allocator_for_inputs = tpu_use_tpu_runner_; options.compile_options.backend_compiler = backend_compiler_; options.model_metadata = options_.config.experimental().session_metadata(); options.enable_mlrt = enable_mlrt_; return options; } Status CheckNotClosedLocked() const TF_EXCLUSIVE_LOCKS_REQUIRED(session_state_lock_) { if (session_state_ == SessionState::kClosed) { return errors::Cancelled("Session has been closed."); } return absl::OkStatus(); } struct Callable { CallableOptions callable_options; }; enum class SessionState { kInitialized, kCreated, kClosed, }; mutable absl::Mutex session_state_lock_; SessionState session_state_ TF_GUARDED_BY(session_state_lock_) = SessionState::kInitialized; std::unique_ptr<::tensorflow::tfrt_stub::GraphExecutor> graph_executor_; tensorflow::tfrt_stub::Runtime* runtime_ = nullptr; const TfrtDeviceInfraTarget device_target_; const bool tpu_use_tpu_runner_; const bool use_gpu_; TfrtSessionInterOpThreadPools inter_op_thread_pools_; mutable absl::Mutex callables_lock_; CallableHandle next_callable_handle_ TF_GUARDED_BY(callables_lock_) = 0; absl::flat_hash_map<CallableHandle, Callable> callables_ TF_GUARDED_BY(callables_lock_); bool enable_mlrt_ = false; SessionOptions options_ = SessionOptions(); tensorflow::BackendCompiler* backend_compiler_ = nullptr; std::unique_ptr<StaticDeviceMgr> device_manager_; }; std::unique_ptr<tensorflow::tfrt_stub::WorkQueueInterface> CreateRunHandlerWorkQueue(const TfrtThreadpoolOptions& session_options) { int num_complementary_threads = std::max(1, session_options.num_main_threads / 2); tfrt::tf::RunHandlerThreadWorkQueue::Options options; options.num_main_threads = session_options.num_main_threads; options.num_complementary_threads = num_complementary_threads; options.init_timeout_ms = absl::ToInt64Milliseconds(session_options.init_timeout); options.max_concurrent_handler = session_options.max_concurrent_handler; options.num_sub_thread_pool = session_options.num_sub_thread_pool; std::vector<int> num_threads; const int num_threads_per_pool = options.num_main_threads / options.num_sub_thread_pool; num_threads.resize(options.num_sub_thread_pool - 1, num_threads_per_pool); num_threads.push_back(options.num_main_threads - (options.num_sub_thread_pool - 1) * num_threads_per_pool); options.num_threads_in_sub_thread_pool = num_threads; options.sub_thread_request_percentage = {1.0}; options.use_adaptive_waiting_time = true; LOG_FIRST_N(INFO, 10) << "RunHandlerThreadWorkQueue Options: " << options; return std::make_unique<tfrt::tf::RunHandlerThreadWorkQueue>(options); } } class TfrtSessionFactory::ThreadPoolManager { public: absl::StatusOr<TfrtSessionInterOpThreadPools> UpdateAndGetInterOpThreadPools( const SessionOptions& options) { if (options.config.inter_op_parallelism_threads() > 0) { LOG(WARNING) << "TFRT session does not support positive " "inter_op_parallelism_threads for now"; } if (options.config.use_per_session_threads()) { return errors::InvalidArgument( "TFRT session does not yet support use_per_session_threads()"); } auto session_inter_op_thread_pool_size = options.config.session_inter_op_thread_pool_size(); if (session_inter_op_thread_pool_size > 0) { TfrtSessionInterOpThreadPools inter_op_thread_pools{ session_inter_op_thread_pool_size, false}; for (const auto& it : llvm::enumerate(options.config.session_inter_op_thread_pool())) { const ThreadPoolOptionProto& pool_options = it.value(); auto pool_index = it.index(); auto num_threads = pool_options.num_threads(); if (num_threads != 0) { TF_ASSIGN_OR_RETURN( auto* thread_pool, GetOrCreateThreadPool(options.env, pool_options, pool_index)); inter_op_thread_pools.SetThreadPool(pool_index, thread_pool); } else { inter_op_thread_pools.SetThreadPool(pool_index, GlobalThreadPool(options)); } } return inter_op_thread_pools; } else if (options.config.inter_op_parallelism_threads() < 0) { return TfrtSessionInterOpThreadPools{0, true}; } else if (session_inter_op_thread_pool_size == 0) { TfrtSessionInterOpThreadPools session_thread_pool_options{ 1, false}; session_thread_pool_options.SetThreadPool(0, GlobalThreadPool(options)); return session_thread_pool_options; } else { return errors::InvalidArgument( "session_inter_op_thread_pool_size must be >= 0"); } } private: class ThreadPoolWithNumThreads { public: ThreadPoolWithNumThreads(int num_thread, std::unique_ptr<thread::ThreadPool> thread_pool) : num_threads_(num_thread), thread_pool_(std::move(thread_pool)), thread_pool_interface_wrapper_( ABSL_DIE_IF_NULL(thread_pool_)->AsEigenThreadPool()) {} int num_threads() const { return num_threads_; } ThreadPoolInterfaceWrapper* thread_pool_interface_wrapper() { return &thread_pool_interface_wrapper_; } private: int num_threads_; std::unique_ptr<thread::ThreadPool> thread_pool_; ThreadPoolInterfaceWrapper thread_pool_interface_wrapper_; }; ThreadPoolInterfaceWrapper* GlobalThreadPool(const SessionOptions& options) { static thread::ThreadPool* const thread_pool = NewThreadPoolFromSessionOptions(options); static auto* const wrapper = new ThreadPoolInterfaceWrapper{thread_pool->AsEigenThreadPool()}; return wrapper; } absl::StatusOr<ThreadPoolInterfaceWrapper*> GetOrCreateThreadPool( Env* env, const ThreadPoolOptionProto& pool_options, int pool_index) { const int32_t num_threads = pool_options.num_threads(); CHECK_GT(num_threads, 0); const std::string& name = pool_options.global_name(); if (name.empty()) { return errors::InvalidArgument( "TFRT session does not yet support session local thread pool"); } absl::MutexLock lock(&mutex_); auto it = named_thread_pools_.find(name); if (it != named_thread_pools_.end()) { if (it->second->num_threads() != num_threads) { return errors::InvalidArgument( "TfrtSession thread pool ", name, " configured previously with num_threads=", it->second->num_threads(), "; cannot re-configure with num_threads=", num_threads); } return it->second->thread_pool_interface_wrapper(); } auto thread_pool = std::make_unique<thread::ThreadPool>( env, ThreadOptions(), absl::StrCat("TfrtSessionInter", pool_index), num_threads, false, nullptr); auto ret = named_thread_pools_.emplace( name, std::make_unique<ThreadPoolWithNumThreads>( num_threads, std::move(thread_pool))); CHECK(ret.second); return ret.first->second->thread_pool_interface_wrapper(); } mutable absl::Mutex mutex_; absl::flat_hash_map<std::string, std::unique_ptr<ThreadPoolWithNumThreads>> named_thread_pools_ ABSL_GUARDED_BY(mutex_); }; TfrtSessionFactory::TfrtSessionFactory() : thread_pool_manager_(std::make_unique<ThreadPoolManager>()) {} class InitializerRegistry { public: static InitializerRegistry& Get() { static auto* reg = new InitializerRegistry(); return *reg; } void Register(TfrtSessionFactory::RuntimeInitializer initializer) { DCHECK(initializer_ == nullptr); initializer_ = initializer; } absl::Status RunInitializer(tfrt_stub::Runtime* runtime) { LOG(INFO) << "Running Initializer within TfrtSessionFactory."; TF_RETURN_IF_ERROR(initializer_ ? initializer_(runtime) : absl::OkStatus()); return absl::OkStatus(); } private: TfrtSessionFactory::RuntimeInitializer initializer_; }; void TfrtSessionFactory::RegisterInitializer(RuntimeInitializer initializer) { InitializerRegistry::Get().Register(std::move(initializer)); } Status TfrtSessionFactory::InitializeLocked(const TfrtSessionOptions& options) { mutex_.AssertHeld(); if (options.use_tpu) { DCHECK(!options.backend_compiler); DCHECK(!options.use_gpu); device_target_ = TfrtDeviceInfraTarget::kTpurt; tpu_use_tpu_runner_ = true; } else if (options.use_gpu) { DCHECK(!options.backend_compiler); device_target_ = TfrtDeviceInfraTarget::kGpu; use_gpu_ = true; } else if (options.backend_compiler) { backend_compiler_ = options.backend_compiler; } LOG(INFO) << "Start initializing TfrtSession"; if (options.runtime != nullptr) { runtime_ = options.runtime; } else if (runtime_ == nullptr) { owned_runtime_ = tensorflow::tfrt_stub::Runtime::Create( CreateRunHandlerWorkQueue(options.threadpool_options)); runtime_ = owned_runtime_.get(); } enable_mlrt_ = options.enable_mlrt; return absl::OkStatus(); } bool TfrtSessionFactory::AcceptsOptions(const SessionOptions& options) { if (options.target == "tfrt_session") return true; if (options.target.empty()) { return options.config.experimental().use_tfrt() || GetDefaultLocalSessionImpl() == LocalSessionImpl::kTfrtSession; } return false; } Status TfrtSessionFactory::NewSession(const SessionOptions& options, Session** out_session) TF_LOCKS_EXCLUDED(mutex_) { if (options.config.intra_op_parallelism_threads() != 0) { LOG(WARNING) << "TFRT session ignores intra_op_parallelism_threads. " "Intra-op thread " "pool can only be configured by `Run()`"; } *out_session = nullptr; absl::MutexLock lock(&mutex_); std::vector<std::unique_ptr<Device>> devices; TF_RETURN_IF_ERROR(DeviceFactory::AddDevices( options, "/job:localhost/replica:0/task:0", &devices)); device_manager_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); if (!IsInitialized()) { TF_RETURN_IF_ERROR(InitializeLocked({})); TF_RETURN_IF_ERROR(InitializerRegistry::Get().RunInitializer(runtime_)); } TF_ASSIGN_OR_RETURN( auto inter_op_thread_pools, thread_pool_manager_->UpdateAndGetInterOpThreadPools(options)); auto* backend_compiler = (options.config.experimental().enable_multi_host() || options.config.experimental().tfrt_use_ifrt()) ? backend_compiler_ : nullptr; *out_session = new TfrtSession(options, runtime_, device_target_, tpu_use_tpu_runner_, use_gpu_, std::move(inter_op_thread_pools), enable_mlrt_, backend_compiler, std::move(device_manager_)); return absl::OkStatus(); } namespace { static TfrtSessionFactory* session_factory = nullptr; } tfrt_stub::Runtime* TfrtSessionFactory::GetRuntime() { DCHECK(session_factory != nullptr); absl::MutexLock lock(&session_factory->mutex_); return session_factory->runtime_; } Status InitializeTfrtSession(const TfrtSessionOptions& options) { DCHECK(session_factory != nullptr); absl::MutexLock lock(&session_factory->mutex_); DCHECK(!session_factory->IsInitialized()); return UpdateTfrtSessionOptionsLocked(options); } Status UpdateTfrtSessionOptionsLocked(const TfrtSessionOptions& options) { DCHECK(session_factory != nullptr); session_factory->mutex_.AssertHeld(); return session_factory->InitializeLocked(options); } static const bool kFactoryRgistration = [] { session_factory = new TfrtSessionFactory(); LOG(INFO) << "Registering TfrtSession"; SessionFactory::Register("tfrt_session", session_factory); return true; }(); }
#include "tensorflow/core/tfrt/tfrt_session/tfrt_session.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "absl/time/time.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/saved_model/reader.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/threadpool_options.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tensorflow/core/tfrt/utils/thread_pool.h" #include "tsl/platform/protobuf.h" namespace tensorflow { namespace { class TfrtSessionEnvironment : public ::testing::Environment { public: void SetUp() override { TfrtSessionOptions options{ .threadpool_options = tensorflow::TfrtThreadpoolOptions{ .num_main_threads = tensorflow::port::MaxParallelism(), .init_timeout = absl::Milliseconds(100), .max_concurrent_handler = 128, .num_sub_thread_pool = 1}}; TF_ASSERT_OK(InitializeTfrtSession(options)); } }; class TfrtSessionTest : public ::testing::Test { protected: void SetUp() override { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); auto* model_metadata = options.config.mutable_experimental()->mutable_session_metadata(); model_metadata->set_name("toy_v1"); model_metadata->set_version(0); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); TF_ASSERT_OK(session_->Run({}, {}, {"init"}, nullptr)); inputs_.push_back(std::make_pair( "input1", test::AsTensor<int32_t>({1, 1, 1}, TensorShape{1, 3}))); inputs_.push_back(std::make_pair( "input2", test::AsTensor<int32_t>({2, 2, 2}, TensorShape{1, 3}))); inputs_.push_back(std::make_pair( "input3", test::AsTensor<int32_t>({3, 3, 3}, TensorShape{1, 3}))); } std::unique_ptr<Session> session_; std::vector<std::pair<std::string, Tensor>> inputs_; std::vector<std::string> output_tensor_names_{"result1", "result21", "result31"}; std::vector<std::string> target_node_names_{"result22", "result32"}; }; TEST_F(TfrtSessionTest, NoTargetNodes) { std::vector<Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs_, output_tensor_names_, {}, &outputs)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); test::ExpectEqual(outputs[1], test::AsTensor<int32_t>({12}, TensorShape{1, 1})); test::ExpectEqual(outputs[2], test::AsTensor<int32_t>({18}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, RunOptions) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); auto* model_metadata = options.config.mutable_experimental()->mutable_session_metadata(); model_metadata->set_name("toy_v1"); model_metadata->set_version(0); auto session = absl::WrapUnique(NewSession(options)); ASSERT_TRUE(session != nullptr); tensorflow::GraphDef graph_def; ASSERT_TRUE(google::protobuf::TextFormat::ParseFromString( R"pb( node: { name: "input" op: "Placeholder" attr: { key: "dtype" value: { type: DT_INT32 } } } node: { name: "sleep_seconds" op: "Const" attr: { key: "dtype" value: { type: DT_INT32 } } attr: { key: "value" value: { tensor: { tensor_shape: {} dtype: DT_INT32 int_val: 2 } } } } node: { name: "sleep" op: "SleepIdentityOp" input: "sleep_seconds:0" input: "input:0" attr: { key: "T" value: { type: DT_INT32 } } })pb" , &graph_def)); TF_ASSERT_OK(session->Create(graph_def)); std::vector<Tensor> outputs; RunMetadata run_metadata; TF_ASSERT_OK(session->Run( RunOptions{}, {{"input", test::AsTensor<int32_t>({1}, TensorShape{1})}}, {"sleep"}, {}, &outputs, &run_metadata)); ASSERT_EQ(outputs.size(), 1); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({1}, TensorShape{1})); RunOptions run_options; run_options.set_timeout_in_ms(1); auto status = session->Run( run_options, {{"input", test::AsTensor<int32_t>({1}, TensorShape{1})}}, {"sleep"}, {}, &outputs, &run_metadata); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Deadline exceeded")); } TEST_F(TfrtSessionTest, ThreadPoolOptions) { std::vector<Tensor> outputs; RunMetadata run_metadata; tfrt_stub::TfThreadPool intra_op_thread_pool("tf_intra", 1); tfrt_stub::TfThreadPool inter_op_thread_pool( "tf_inter", 1); thread::ThreadPoolOptions thread_pool_options{ .inter_op_threadpool = &inter_op_thread_pool, .intra_op_threadpool = &intra_op_thread_pool}; TF_ASSERT_OK(session_->Run(RunOptions{}, inputs_, output_tensor_names_, {}, &outputs, &run_metadata, thread_pool_options)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, ThreadPoolOptions_OnlyInter) { std::vector<Tensor> outputs; RunMetadata run_metadata; tfrt_stub::TfThreadPool inter_op_thread_pool( "tf_inter", 1); thread::ThreadPoolOptions thread_pool_options{ .inter_op_threadpool = &inter_op_thread_pool, .intra_op_threadpool = nullptr}; TF_ASSERT_OK(session_->Run(RunOptions{}, inputs_, output_tensor_names_, {}, &outputs, &run_metadata, thread_pool_options)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, ThreadPoolOptions_OnlyIntra) { std::vector<Tensor> outputs; RunMetadata run_metadata; tfrt_stub::TfThreadPool intra_op_thread_pool("tf_intra", 1); thread::ThreadPoolOptions thread_pool_options{ .inter_op_threadpool = nullptr, .intra_op_threadpool = &intra_op_thread_pool}; TF_ASSERT_OK(session_->Run(RunOptions{}, inputs_, output_tensor_names_, {}, &outputs, &run_metadata, thread_pool_options)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, RunInCallerThreadSessionOptions) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.set_inter_op_parallelism_threads(-1); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); RunMetadata run_metadata; TF_ASSERT_OK(session_->Run( {}, {}, {}, {"init"}, nullptr, &run_metadata)); } TEST_F(TfrtSessionTest, RunInCallerThreadRunOptions) { std::vector<Tensor> outputs; RunOptions run_options; run_options.set_inter_op_thread_pool(-1); RunMetadata run_metadata; TF_ASSERT_OK(session_->Run(run_options, inputs_, output_tensor_names_, {}, &outputs, &run_metadata)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, DeviceManager) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.set_inter_op_parallelism_threads(-1); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); const DeviceMgr* device_manager; TF_ASSERT_OK(session_->LocalDeviceManager(&device_manager)); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); RunMetadata run_metadata; TF_ASSERT_OK(session_->Run( {}, {}, {}, {"init"}, nullptr, &run_metadata)); const DeviceMgr* device_manager_final; TF_ASSERT_OK(session_->LocalDeviceManager(&device_manager_final)); ASSERT_EQ(device_manager, device_manager_final); } TEST_F(TfrtSessionTest, IntraOpThreadPoolOptionWarning) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.set_intra_op_parallelism_threads(1); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); } TEST_F(TfrtSessionTest, Callable) { CallableOptions callable_options; std::vector<Tensor> feed_tensors; for (auto& input : inputs_) { callable_options.add_feed(input.first); feed_tensors.emplace_back(input.second); } for (auto& output : output_tensor_names_) { callable_options.add_fetch(output); } for (auto& target : target_node_names_) { callable_options.add_target(target); } Session::CallableHandle callable_handle; TF_ASSERT_OK(session_->MakeCallable(callable_options, &callable_handle)); std::vector<Tensor> outputs; RunMetadata run_metadata; TF_ASSERT_OK(session_->RunCallable(callable_handle, feed_tensors, &outputs, &run_metadata)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); TF_ASSERT_OK(session_->ReleaseCallable(callable_handle)); } TEST_F(TfrtSessionTest, Finalize) { TF_ASSERT_OK(session_->Finalize()); } TEST_F(TfrtSessionTest, WithTargetNodes) { std::vector<Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs_, output_tensor_names_, target_node_names_, &outputs)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); test::ExpectEqual(outputs[1], test::AsTensor<int32_t>({12}, TensorShape{1, 1})); test::ExpectEqual(outputs[2], test::AsTensor<int32_t>({18}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, CreateWithEmptyGraphIsNoop) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); TF_ASSERT_OK(session_->Create(GraphDef())); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Create(meta_graph_def.graph_def())); } TEST_F(TfrtSessionTest, CreateAgainError) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); auto status = session_->Create(meta_graph_def.graph_def()); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr( "A Graph has already been created for this session.")); } TEST_F(TfrtSessionTest, CreateAfterCloseError) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); TF_ASSERT_OK(session_->Close()); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); auto status = session_->Create(meta_graph_def.graph_def()); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Session has been closed.")); } TEST_F(TfrtSessionTest, ExtendWhenNotCreated) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); TF_ASSERT_OK(session_->Extend(meta_graph_def.graph_def())); TF_ASSERT_OK(session_->Run({}, {}, {"init"}, nullptr)); std::vector<Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs_, output_tensor_names_, {}, &outputs)); ASSERT_EQ(outputs.size(), 3); test::ExpectEqual(outputs[0], test::AsTensor<int32_t>({6}, TensorShape{1, 1})); test::ExpectEqual(outputs[1], test::AsTensor<int32_t>({12}, TensorShape{1, 1})); test::ExpectEqual(outputs[2], test::AsTensor<int32_t>({18}, TensorShape{1, 1})); } TEST_F(TfrtSessionTest, ExtendAfterCreate) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.mutable_experimental()->set_disable_optimize_for_static_graph( true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); GraphDef graph_def; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithControlDependencies(a).WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); } TF_ASSERT_OK(session_->Create(graph_def)); GraphDef extension; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); TF_ASSERT_OK(scope.ToGraphDef(&extension)); } TF_ASSERT_OK(session_->Extend(extension)); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", tensorflow::tfrt_stub::CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(session_->Run(inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(tensorflow::tfrt_stub::GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_F(TfrtSessionTest, ExtendAfterCreate_ErrorWithStaticGraphOptimization) { SessionOptions options; options.config.mutable_experimental()->set_use_tfrt(true); options.config.mutable_experimental()->set_optimize_for_static_graph(true); session_.reset(NewSession(options)); ASSERT_TRUE(session_ != nullptr); GraphDef graph_def; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithControlDependencies(a).WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); } TF_ASSERT_OK(session_->Create(graph_def)); GraphDef extension; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); TF_ASSERT_OK(scope.ToGraphDef(&extension)); } auto status = session_->Extend(extension); ASSERT_FALSE(status.ok()); EXPECT_THAT( status.ToString(), ::testing::HasSubstr("Extending the graph is not supported when")); } TEST_F(TfrtSessionTest, ExtendAfterCloseError) { TF_ASSERT_OK(session_->Close()); std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); auto status = session_->Extend(meta_graph_def.graph_def()); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Session has been closed.")); } TEST_F(TfrtSessionTest, RunAfterCloseError) { TF_ASSERT_OK(session_->Close()); std::vector<Tensor> outputs; auto status = session_->Run(inputs_, output_tensor_names_, {}, &outputs); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.ToString(), ::testing::HasSubstr("Session has been closed.")); } TEST_F(TfrtSessionTest, InitializeTwiceCrashes) { TfrtSessionOptions options; auto second_initialize = [](TfrtSessionOptions options) { auto status = InitializeTfrtSession(options); TF_ASSERT_OK(status); }; ASSERT_DEBUG_DEATH(second_initialize(options), ""); } TEST_F(TfrtSessionTest, GetRuntime) { auto runtime = TfrtSessionFactory::GetRuntime(); EXPECT_NE(runtime, nullptr); } TEST_F(TfrtSessionTest, RegisterTwiceCrashes) { TfrtSessionFactory::RegisterInitializer( [](tfrt_stub::Runtime*) { return absl::OkStatus(); }); ASSERT_DEBUG_DEATH(TfrtSessionFactory::RegisterInitializer( [](tfrt_stub::Runtime*) { return absl::OkStatus(); }), ""); } } } int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); testing::AddGlobalTestEnvironment(new tensorflow::TfrtSessionEnvironment()); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/tfrt_session/tfrt_session.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/tfrt_session/tfrt_session_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3ec14302-5a69-4a3f-b8cd-f1cb4b4633c8
cpp
abseil/abseil-cpp
usage
absl/flags/internal/usage.cc
absl/flags/internal/usage_test.cc
#include "absl/flags/internal/usage.h" #include <stdint.h> #include <algorithm> #include <cstdlib> #include <functional> #include <iterator> #include <map> #include <ostream> #include <string> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/const_init.h" #include "absl/base/thread_annotations.h" #include "absl/flags/commandlineflag.h" #include "absl/flags/flag.h" #include "absl/flags/internal/flag.h" #include "absl/flags/internal/path_util.h" #include "absl/flags/internal/private_handle_accessor.h" #include "absl/flags/internal/program_name.h" #include "absl/flags/internal/registry.h" #include "absl/flags/usage_config.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "absl/synchronization/mutex.h" bool FLAGS_help = false; bool FLAGS_helpfull = false; bool FLAGS_helpshort = false; bool FLAGS_helppackage = false; bool FLAGS_version = false; bool FLAGS_only_check_args = false; bool FLAGS_helpon = false; bool FLAGS_helpmatch = false; namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { namespace { using PerFlagFilter = std::function<bool(const absl::CommandLineFlag&)>; constexpr size_t kHrfMaxLineLength = 80; class XMLElement { public: XMLElement(absl::string_view tag, absl::string_view txt) : tag_(tag), txt_(txt) {} friend std::ostream& operator<<(std::ostream& out, const XMLElement& xml_elem) { out << "<" << xml_elem.tag_ << ">"; for (auto c : xml_elem.txt_) { switch (c) { case '"': out << "&quot;"; break; case '\'': out << "&apos;"; break; case '&': out << "&amp;"; break; case '<': out << "&lt;"; break; case '>': out << "&gt;"; break; case '\n': case '\v': case '\f': case '\t': out << " "; break; default: if (IsValidXmlCharacter(static_cast<unsigned char>(c))) { out << c; } break; } } return out << "</" << xml_elem.tag_ << ">"; } private: static bool IsValidXmlCharacter(unsigned char c) { return c >= 0x20; } absl::string_view tag_; absl::string_view txt_; }; class FlagHelpPrettyPrinter { public: FlagHelpPrettyPrinter(size_t max_line_len, size_t min_line_len, size_t wrapped_line_indent, std::ostream& out) : out_(out), max_line_len_(max_line_len), min_line_len_(min_line_len), wrapped_line_indent_(wrapped_line_indent), line_len_(0), first_line_(true) {} void Write(absl::string_view str, bool wrap_line = false) { if (str.empty()) return; std::vector<absl::string_view> tokens; if (wrap_line) { for (auto line : absl::StrSplit(str, absl::ByAnyChar("\n\r"))) { if (!tokens.empty()) { tokens.emplace_back("\n"); } for (auto token : absl::StrSplit(line, absl::ByAnyChar(" \t"), absl::SkipEmpty())) { tokens.push_back(token); } } } else { tokens.push_back(str); } for (auto token : tokens) { bool new_line = (line_len_ == 0); if (token == "\n") { EndLine(); continue; } if (!new_line && (line_len_ + token.size() >= max_line_len_)) { EndLine(); new_line = true; } if (new_line) { StartLine(); } else { out_ << ' '; ++line_len_; } out_ << token; line_len_ += token.size(); } } void StartLine() { if (first_line_) { line_len_ = min_line_len_; first_line_ = false; } else { line_len_ = min_line_len_ + wrapped_line_indent_; } out_ << std::string(line_len_, ' '); } void EndLine() { out_ << '\n'; line_len_ = 0; } private: std::ostream& out_; const size_t max_line_len_; const size_t min_line_len_; const size_t wrapped_line_indent_; size_t line_len_; bool first_line_; }; void FlagHelpHumanReadable(const CommandLineFlag& flag, std::ostream& out) { FlagHelpPrettyPrinter printer(kHrfMaxLineLength, 4, 2, out); printer.Write(absl::StrCat("--", flag.Name())); printer.Write(absl::StrCat("(", flag.Help(), ");"), true); std::string dflt_val = flag.DefaultValue(); std::string curr_val = flag.CurrentValue(); bool is_modified = curr_val != dflt_val; if (flag.IsOfType<std::string>()) { dflt_val = absl::StrCat("\"", dflt_val, "\""); } printer.Write(absl::StrCat("default: ", dflt_val, ";")); if (is_modified) { if (flag.IsOfType<std::string>()) { curr_val = absl::StrCat("\"", curr_val, "\""); } printer.Write(absl::StrCat("currently: ", curr_val, ";")); } printer.EndLine(); } void FlagsHelpImpl(std::ostream& out, PerFlagFilter filter_cb, HelpFormat format, absl::string_view program_usage_message) { if (format == HelpFormat::kHumanReadable) { out << flags_internal::ShortProgramInvocationName() << ": " << program_usage_message << "\n\n"; } else { out << "<?xml version=\"1.0\"?>\n" << "<!-- This output should be used with care. We do not report type " "names for flags with user defined types -->\n" << "<!-- Prefer flag only_check_args for validating flag inputs -->\n" << "<AllFlags>\n" << XMLElement("program", flags_internal::ShortProgramInvocationName()) << '\n' << XMLElement("usage", program_usage_message) << '\n'; } std::map<std::string, std::map<std::string, std::vector<const absl::CommandLineFlag*>>> matching_flags; flags_internal::ForEachFlag([&](absl::CommandLineFlag& flag) { if (flag.IsRetired()) return; if (flag.Help() == flags_internal::kStrippedFlagHelp) return; if (!filter_cb(flag)) return; std::string flag_filename = flag.Filename(); matching_flags[std::string(flags_internal::Package(flag_filename))] [flag_filename] .push_back(&flag); }); absl::string_view package_separator; absl::string_view file_separator; for (auto& package : matching_flags) { if (format == HelpFormat::kHumanReadable) { out << package_separator; package_separator = "\n\n"; } file_separator = ""; for (auto& flags_in_file : package.second) { if (format == HelpFormat::kHumanReadable) { out << file_separator << " Flags from " << flags_in_file.first << ":\n"; file_separator = "\n"; } std::sort(std::begin(flags_in_file.second), std::end(flags_in_file.second), [](const CommandLineFlag* lhs, const CommandLineFlag* rhs) { return lhs->Name() < rhs->Name(); }); for (const auto* flag : flags_in_file.second) { flags_internal::FlagHelp(out, *flag, format); } } } if (format == HelpFormat::kHumanReadable) { FlagHelpPrettyPrinter printer(kHrfMaxLineLength, 0, 0, out); if (filter_cb && matching_flags.empty()) { printer.Write("No flags matched.\n", true); } printer.EndLine(); printer.Write( "Try --helpfull to get a list of all flags or --help=substring " "shows help for flags which include specified substring in either " "in the name, or description or path.\n", true); } else { out << "</AllFlags>\n"; } } void FlagsHelpImpl(std::ostream& out, flags_internal::FlagKindFilter filename_filter_cb, HelpFormat format, absl::string_view program_usage_message) { FlagsHelpImpl( out, [&](const absl::CommandLineFlag& flag) { return filename_filter_cb && filename_filter_cb(flag.Filename()); }, format, program_usage_message); } } void FlagHelp(std::ostream& out, const CommandLineFlag& flag, HelpFormat format) { if (format == HelpFormat::kHumanReadable) flags_internal::FlagHelpHumanReadable(flag, out); } void FlagsHelp(std::ostream& out, absl::string_view filter, HelpFormat format, absl::string_view program_usage_message) { flags_internal::FlagKindFilter filter_cb = [&](absl::string_view filename) { return filter.empty() || absl::StrContains(filename, filter); }; flags_internal::FlagsHelpImpl(out, filter_cb, format, program_usage_message); } HelpMode HandleUsageFlags(std::ostream& out, absl::string_view program_usage_message) { switch (GetFlagsHelpMode()) { case HelpMode::kNone: break; case HelpMode::kImportant: flags_internal::FlagsHelpImpl( out, flags_internal::GetUsageConfig().contains_help_flags, GetFlagsHelpFormat(), program_usage_message); break; case HelpMode::kShort: flags_internal::FlagsHelpImpl( out, flags_internal::GetUsageConfig().contains_helpshort_flags, GetFlagsHelpFormat(), program_usage_message); break; case HelpMode::kFull: flags_internal::FlagsHelp(out, "", GetFlagsHelpFormat(), program_usage_message); break; case HelpMode::kPackage: flags_internal::FlagsHelpImpl( out, flags_internal::GetUsageConfig().contains_helppackage_flags, GetFlagsHelpFormat(), program_usage_message); break; case HelpMode::kMatch: { std::string substr = GetFlagsHelpMatchSubstr(); if (substr.empty()) { flags_internal::FlagsHelp(out, substr, GetFlagsHelpFormat(), program_usage_message); } else { auto filter_cb = [&substr](const absl::CommandLineFlag& flag) { if (absl::StrContains(flag.Name(), substr)) return true; if (absl::StrContains(flag.Filename(), substr)) return true; if (absl::StrContains(flag.Help(), substr)) return true; return false; }; flags_internal::FlagsHelpImpl( out, filter_cb, HelpFormat::kHumanReadable, program_usage_message); } break; } case HelpMode::kVersion: if (flags_internal::GetUsageConfig().version_string) out << flags_internal::GetUsageConfig().version_string(); break; case HelpMode::kOnlyCheckArgs: break; } return GetFlagsHelpMode(); } namespace { ABSL_CONST_INIT absl::Mutex help_attributes_guard(absl::kConstInit); ABSL_CONST_INIT std::string* match_substr ABSL_GUARDED_BY(help_attributes_guard) = nullptr; ABSL_CONST_INIT HelpMode help_mode ABSL_GUARDED_BY(help_attributes_guard) = HelpMode::kNone; ABSL_CONST_INIT HelpFormat help_format ABSL_GUARDED_BY(help_attributes_guard) = HelpFormat::kHumanReadable; } std::string GetFlagsHelpMatchSubstr() { absl::MutexLock l(&help_attributes_guard); if (match_substr == nullptr) return ""; return *match_substr; } void SetFlagsHelpMatchSubstr(absl::string_view substr) { absl::MutexLock l(&help_attributes_guard); if (match_substr == nullptr) match_substr = new std::string; match_substr->assign(substr.data(), substr.size()); } HelpMode GetFlagsHelpMode() { absl::MutexLock l(&help_attributes_guard); return help_mode; } void SetFlagsHelpMode(HelpMode mode) { absl::MutexLock l(&help_attributes_guard); help_mode = mode; } HelpFormat GetFlagsHelpFormat() { absl::MutexLock l(&help_attributes_guard); return help_format; } void SetFlagsHelpFormat(HelpFormat format) { absl::MutexLock l(&help_attributes_guard); help_format = format; } bool DeduceUsageFlags(absl::string_view name, absl::string_view value) { if (absl::ConsumePrefix(&name, "help")) { if (name.empty()) { if (value.empty()) { SetFlagsHelpMode(HelpMode::kImportant); } else { SetFlagsHelpMode(HelpMode::kMatch); SetFlagsHelpMatchSubstr(value); } return true; } if (name == "match") { SetFlagsHelpMode(HelpMode::kMatch); SetFlagsHelpMatchSubstr(value); return true; } if (name == "on") { SetFlagsHelpMode(HelpMode::kMatch); SetFlagsHelpMatchSubstr(absl::StrCat("/", value, ".")); return true; } if (name == "full") { SetFlagsHelpMode(HelpMode::kFull); return true; } if (name == "short") { SetFlagsHelpMode(HelpMode::kShort); return true; } if (name == "package") { SetFlagsHelpMode(HelpMode::kPackage); return true; } return false; } if (name == "version") { SetFlagsHelpMode(HelpMode::kVersion); return true; } if (name == "only_check_args") { SetFlagsHelpMode(HelpMode::kOnlyCheckArgs); return true; } return false; } void MaybeExit(HelpMode mode) { switch (mode) { case flags_internal::HelpMode::kNone: return; case flags_internal::HelpMode::kOnlyCheckArgs: case flags_internal::HelpMode::kVersion: std::exit(0); default: std::exit(1); } } } ABSL_NAMESPACE_END }
#include "absl/flags/internal/usage.h" #include <stdint.h> #include <sstream> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/flags/config.h" #include "absl/flags/flag.h" #include "absl/flags/internal/parse.h" #include "absl/flags/internal/program_name.h" #include "absl/flags/reflection.h" #include "absl/flags/usage.h" #include "absl/flags/usage_config.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" ABSL_FLAG(int, usage_reporting_test_flag_01, 101, "usage_reporting_test_flag_01 help message"); ABSL_FLAG(bool, usage_reporting_test_flag_02, false, "usage_reporting_test_flag_02 help message"); ABSL_FLAG(double, usage_reporting_test_flag_03, 1.03, "usage_reporting_test_flag_03 help message"); ABSL_FLAG(int64_t, usage_reporting_test_flag_04, 1000000000000004L, "usage_reporting_test_flag_04 help message"); ABSL_FLAG(std::string, usage_reporting_test_flag_07, "\r\n\f\v\a\b\t ", "usage_reporting_test_flag_07 help \r\n\f\v\a\b\t "); static const char kTestUsageMessage[] = "Custom usage message"; struct UDT { UDT() = default; UDT(const UDT&) = default; UDT& operator=(const UDT&) = default; }; static bool AbslParseFlag(absl::string_view, UDT*, std::string*) { return true; } static std::string AbslUnparseFlag(const UDT&) { return "UDT{}"; } ABSL_FLAG(UDT, usage_reporting_test_flag_05, {}, "usage_reporting_test_flag_05 help message"); ABSL_FLAG( std::string, usage_reporting_test_flag_06, {}, "usage_reporting_test_flag_06 help message.\n" "\n" "Some more help.\n" "Even more long long long long long long long long long long long long " "help message."); namespace { namespace flags = absl::flags_internal; static std::string NormalizeFileName(absl::string_view fname) { #ifdef _WIN32 std::string normalized(fname); std::replace(normalized.begin(), normalized.end(), '\\', '/'); fname = normalized; #endif auto absl_pos = fname.rfind("absl/"); if (absl_pos != absl::string_view::npos) { fname = fname.substr(absl_pos); } return std::string(fname); } class UsageReportingTest : public testing::Test { protected: UsageReportingTest() { absl::FlagsUsageConfig default_config; default_config.normalize_filename = &NormalizeFileName; absl::SetFlagsUsageConfig(default_config); } ~UsageReportingTest() override { flags::SetFlagsHelpMode(flags::HelpMode::kNone); flags::SetFlagsHelpMatchSubstr(""); flags::SetFlagsHelpFormat(flags::HelpFormat::kHumanReadable); } void SetUp() override { #if ABSL_FLAGS_STRIP_NAMES GTEST_SKIP() << "This test requires flag names to be present"; #endif } private: absl::FlagSaver flag_saver_; }; using UsageReportingDeathTest = UsageReportingTest; TEST_F(UsageReportingDeathTest, TestSetProgramUsageMessage) { #if !defined(GTEST_HAS_ABSL) || !GTEST_HAS_ABSL EXPECT_EQ(absl::ProgramUsageMessage(), kTestUsageMessage); #else EXPECT_THAT(absl::ProgramUsageMessage(), ::testing::HasSubstr( "This program contains tests written using Google Test")); #endif EXPECT_DEATH_IF_SUPPORTED( absl::SetProgramUsageMessage("custom usage message"), ::testing::HasSubstr("SetProgramUsageMessage() called twice")); } TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_01) { const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_01"); std::stringstream test_buf; flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable); EXPECT_EQ( test_buf.str(), R"( --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message); default: 101; )"); } TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_02) { const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_02"); std::stringstream test_buf; flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable); EXPECT_EQ( test_buf.str(), R"( --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message); default: false; )"); } TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_03) { const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_03"); std::stringstream test_buf; flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable); EXPECT_EQ( test_buf.str(), R"( --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message); default: 1.03; )"); } TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_04) { const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_04"); std::stringstream test_buf; flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable); EXPECT_EQ( test_buf.str(), R"( --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message); default: 1000000000000004; )"); } TEST_F(UsageReportingTest, TestFlagHelpHRF_on_flag_05) { const auto* flag = absl::FindCommandLineFlag("usage_reporting_test_flag_05"); std::stringstream test_buf; flags::FlagHelp(test_buf, *flag, flags::HelpFormat::kHumanReadable); EXPECT_EQ( test_buf.str(), R"( --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message); default: UDT{}; )"); } TEST_F(UsageReportingTest, TestFlagsHelpHRF) { std::string usage_test_flags_out = R"(usage_test: Custom usage message Flags from absl/flags/internal/usage_test.cc: --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message); default: 101; --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message); default: false; --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message); default: 1.03; --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message); default: 1000000000000004; --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message); default: UDT{}; --usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message. Some more help. Even more long long long long long long long long long long long long help message.); default: "";)" "\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 " "help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n" R"( Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"; std::stringstream test_buf_01; flags::FlagsHelp(test_buf_01, "usage_test.cc", flags::HelpFormat::kHumanReadable, kTestUsageMessage); EXPECT_EQ(test_buf_01.str(), usage_test_flags_out); std::stringstream test_buf_02; flags::FlagsHelp(test_buf_02, "flags/internal/usage_test.cc", flags::HelpFormat::kHumanReadable, kTestUsageMessage); EXPECT_EQ(test_buf_02.str(), usage_test_flags_out); std::stringstream test_buf_03; flags::FlagsHelp(test_buf_03, "usage_test", flags::HelpFormat::kHumanReadable, kTestUsageMessage); EXPECT_EQ(test_buf_03.str(), usage_test_flags_out); std::stringstream test_buf_04; flags::FlagsHelp(test_buf_04, "flags/invalid_file_name.cc", flags::HelpFormat::kHumanReadable, kTestUsageMessage); EXPECT_EQ(test_buf_04.str(), R"(usage_test: Custom usage message No flags matched. Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); std::stringstream test_buf_05; flags::FlagsHelp(test_buf_05, "", flags::HelpFormat::kHumanReadable, kTestUsageMessage); std::string test_out = test_buf_05.str(); absl::string_view test_out_str(test_out); EXPECT_TRUE( absl::StartsWith(test_out_str, "usage_test: Custom usage message")); EXPECT_TRUE(absl::StrContains( test_out_str, "Flags from absl/flags/internal/usage_test.cc:")); EXPECT_TRUE( absl::StrContains(test_out_str, "-usage_reporting_test_flag_01 ")); } TEST_F(UsageReportingTest, TestNoUsageFlags) { std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kNone); } TEST_F(UsageReportingTest, TestUsageFlag_helpshort) { flags::SetFlagsHelpMode(flags::HelpMode::kShort); std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kShort); EXPECT_EQ( test_buf.str(), R"(usage_test: Custom usage message Flags from absl/flags/internal/usage_test.cc: --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message); default: 101; --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message); default: false; --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message); default: 1.03; --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message); default: 1000000000000004; --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message); default: UDT{}; --usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message. Some more help. Even more long long long long long long long long long long long long help message.); default: "";)" "\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 " "help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n" R"( Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); } TEST_F(UsageReportingTest, TestUsageFlag_help_simple) { flags::SetFlagsHelpMode(flags::HelpMode::kImportant); std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kImportant); EXPECT_EQ( test_buf.str(), R"(usage_test: Custom usage message Flags from absl/flags/internal/usage_test.cc: --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message); default: 101; --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message); default: false; --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message); default: 1.03; --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message); default: 1000000000000004; --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message); default: UDT{}; --usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message. Some more help. Even more long long long long long long long long long long long long help message.); default: "";)" "\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 " "help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n" R"( Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); } TEST_F(UsageReportingTest, TestUsageFlag_help_one_flag) { flags::SetFlagsHelpMode(flags::HelpMode::kMatch); flags::SetFlagsHelpMatchSubstr("usage_reporting_test_flag_06"); std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kMatch); EXPECT_EQ(test_buf.str(), R"(usage_test: Custom usage message Flags from absl/flags/internal/usage_test.cc: --usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message. Some more help. Even more long long long long long long long long long long long long help message.); default: ""; Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); } TEST_F(UsageReportingTest, TestUsageFlag_help_multiple_flag) { flags::SetFlagsHelpMode(flags::HelpMode::kMatch); flags::SetFlagsHelpMatchSubstr("test_flag"); std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kMatch); EXPECT_EQ( test_buf.str(), R"(usage_test: Custom usage message Flags from absl/flags/internal/usage_test.cc: --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message); default: 101; --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message); default: false; --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message); default: 1.03; --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message); default: 1000000000000004; --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message); default: UDT{}; --usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message. Some more help. Even more long long long long long long long long long long long long help message.); default: "";)" "\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 " "help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n" R"( Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); } TEST_F(UsageReportingTest, TestUsageFlag_helppackage) { flags::SetFlagsHelpMode(flags::HelpMode::kPackage); std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kPackage); EXPECT_EQ( test_buf.str(), R"(usage_test: Custom usage message Flags from absl/flags/internal/usage_test.cc: --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message); default: 101; --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message); default: false; --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message); default: 1.03; --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message); default: 1000000000000004; --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message); default: UDT{}; --usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message. Some more help. Even more long long long long long long long long long long long long help message.); default: "";)" "\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 " "help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n" R"( Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); } TEST_F(UsageReportingTest, TestUsageFlag_version) { flags::SetFlagsHelpMode(flags::HelpMode::kVersion); std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kVersion); #ifndef NDEBUG EXPECT_EQ(test_buf.str(), "usage_test\nDebug build (NDEBUG not #defined)\n"); #else EXPECT_EQ(test_buf.str(), "usage_test\n"); #endif } TEST_F(UsageReportingTest, TestUsageFlag_only_check_args) { flags::SetFlagsHelpMode(flags::HelpMode::kOnlyCheckArgs); std::stringstream test_buf; EXPECT_EQ(flags::HandleUsageFlags(test_buf, kTestUsageMessage), flags::HelpMode::kOnlyCheckArgs); EXPECT_EQ(test_buf.str(), ""); } TEST_F(UsageReportingTest, TestUsageFlag_helpon) { flags::SetFlagsHelpMode(flags::HelpMode::kMatch); flags::SetFlagsHelpMatchSubstr("/bla-bla."); std::stringstream test_buf_01; EXPECT_EQ(flags::HandleUsageFlags(test_buf_01, kTestUsageMessage), flags::HelpMode::kMatch); EXPECT_EQ(test_buf_01.str(), R"(usage_test: Custom usage message No flags matched. Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); flags::SetFlagsHelpMatchSubstr("/usage_test."); std::stringstream test_buf_02; EXPECT_EQ(flags::HandleUsageFlags(test_buf_02, kTestUsageMessage), flags::HelpMode::kMatch); EXPECT_EQ( test_buf_02.str(), R"(usage_test: Custom usage message Flags from absl/flags/internal/usage_test.cc: --usage_reporting_test_flag_01 (usage_reporting_test_flag_01 help message); default: 101; --usage_reporting_test_flag_02 (usage_reporting_test_flag_02 help message); default: false; --usage_reporting_test_flag_03 (usage_reporting_test_flag_03 help message); default: 1.03; --usage_reporting_test_flag_04 (usage_reporting_test_flag_04 help message); default: 1000000000000004; --usage_reporting_test_flag_05 (usage_reporting_test_flag_05 help message); default: UDT{}; --usage_reporting_test_flag_06 (usage_reporting_test_flag_06 help message. Some more help. Even more long long long long long long long long long long long long help message.); default: "";)" "\n --usage_reporting_test_flag_07 (usage_reporting_test_flag_07 " "help\n\n \f\v\a\b ); default: \"\r\n\f\v\a\b\t \";\n" R"( Try --helpfull to get a list of all flags or --help=substring shows help for flags which include specified substring in either in the name, or description or path. )"); } } int main(int argc, char* argv[]) { (void)absl::GetFlag(FLAGS_undefok); flags::SetProgramInvocationName("usage_test"); #if !defined(GTEST_HAS_ABSL) || !GTEST_HAS_ABSL absl::SetProgramUsageMessage(kTestUsageMessage); #endif ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/internal/usage.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/flags/internal/usage_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
eacdd4d3-8136-4b25-b2d6-03ae16e8f6e5
cpp
tensorflow/tensorflow
conv_algorithm_picker
third_party/xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc
third_party/xla/xla/service/gpu/autotuning/conv_algorithm_picker_test.cc
#include "xla/service/gpu/autotuning/conv_algorithm_picker.h" #include <algorithm> #include <cmath> #include <cstddef> #include <cstdint> #include <limits> #include <memory> #include <optional> #include <string> #include <string_view> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/autotuning.pb.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/literal_util.h" #include "xla/service/gpu/autotuning/autotuner_compile_util.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/autotuning/gpu_autotuning.pb.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/cublas_cudnn.h" #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/hlo_algorithm_denylist.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/slow_operation_alarm.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/cuda/cuda_platform_id.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/lazy_op_runner.h" #include "xla/stream_executor/numeric_options.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/rocm/rocm_platform_id.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/util/env_var.h" #include "xla/tsl/util/proto/proto_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/numbers.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) #include "third_party/gpus/cudnn/cudnn.h" #include "third_party/gpus/cudnn/cudnn_version.h" #if CUDNN_VERSION >= 90000 #include "third_party/gpus/cudnn/cudnn_ops.h" #else #include "third_party/gpus/cudnn/cudnn_ops_infer.h" #endif #include "xla/service/gpu/buffer_comparator.h" #include "xla/stream_executor/gpu/redzone_allocator.h" #endif namespace xla { namespace gpu { namespace { using se::DeviceMemoryBase; using se::dnn::AlgorithmDesc; using std::optional; Shape MaybeTupleElementShape(Shape shape, int64_t tuple_idx) { if (shape.IsTuple()) { return shape.tuple_shapes(tuple_idx); } else { return shape; } } class ScratchAllocator : public se::ScratchAllocator { public: ScratchAllocator(int device_ordinal, se::DeviceMemoryAllocator* memory_allocator) : device_ordinal_(device_ordinal), memory_allocator_(memory_allocator) {} int64_t GetMemoryLimitInBytes() override { return ScratchAllocator::GetDefaultMemoryLimitInBytes(); } int64_t TotalAllocatedBytes() { return total_allocated_bytes_; } static int64_t GetDefaultMemoryLimitInBytes() { int64_t value; TF_CHECK_OK(tsl::ReadInt64FromEnvVar("TF_CUDNN_WORKSPACE_LIMIT_IN_MB", 1LL << 12, &value)); return value * (1LL << 20); } absl::StatusOr<se::DeviceMemory<uint8_t>> AllocateBytes( int64_t byte_size) override; template <typename T> absl::StatusOr<se::DeviceMemory<T>> Allocate(int64_t num_elements) { TF_ASSIGN_OR_RETURN(se::DeviceMemory<uint8_t> bytes, AllocateBytes(num_elements * sizeof(T))); return se::DeviceMemory<T>(bytes); } private: const int device_ordinal_; se::DeviceMemoryAllocator* memory_allocator_; std::vector<se::OwningDeviceMemory> allocated_buffers_; int64_t total_allocated_bytes_ = 0; }; absl::StatusOr<se::DeviceMemory<uint8_t>> ScratchAllocator::AllocateBytes( int64_t byte_size) { CHECK_GE(byte_size, 0) << "byte_size must be positive."; if (byte_size > GetMemoryLimitInBytes()) { return absl::ResourceExhaustedError(absl::StrFormat( "Allocating %d bytes exceeds the memory limit of %d bytes.", byte_size, GetMemoryLimitInBytes())); } TF_ASSIGN_OR_RETURN(se::OwningDeviceMemory allocated_buffer, memory_allocator_->Allocate(device_ordinal_, byte_size, false)); total_allocated_bytes_ += byte_size; se::DeviceMemoryBase buffer_addr = *allocated_buffer; allocated_buffers_.push_back(std::move(allocated_buffer)); return se::DeviceMemory<uint8_t>(buffer_addr); } absl::StatusOr<std::vector<GenericConvRunner>> GetAlgorithms( const GpuConvConfig& config, se::Stream* stream, bool use_cudnn_frontend, bool use_fallback, const se::NumericOptions& numeric_options) { TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType input_type, GetDNNDataTypeFromPrimitiveType(config.input_type)); TF_ASSIGN_OR_RETURN(se::dnn::DataType output_type, GetDNNDataTypeFromPrimitiveType(config.output_type)); se::StreamExecutor* stream_exec = stream->parent(); std::vector<GenericConvRunner> result; auto dnn = stream_exec->AsDnn(); if (dnn == nullptr) { return absl::InvalidArgumentError("No DNN in stream executor."); } switch (kind) { default: return Internal("Unknown ConvolutionKind %d", kind); case se::dnn::ConvolutionKind::FORWARD_BIAS_ACTIVATION: { if (!config.fusion) { return Internal( "GpuConvConfig had fusion ConvolutionKind but no FusionConfig."); } std::vector<std::unique_ptr<const se::dnn::FusedConvRunner>> runners; TF_RETURN_IF_ERROR(dnn->GetFusedConvolveRunners( use_cudnn_frontend, se::dnn::ConvolutionKind::FORWARD, input_type, BiasTypeForInputType(input_type), output_type, config.conv_result_scale, config.fusion->side_input_scale, config.fusion->leakyrelu_alpha, stream, config.input_descriptor, config.filter_descriptor, config.bias_descriptor, config.output_descriptor, config.conv_desc, use_fallback, config.fusion->mode, numeric_options, &runners)); for (auto& runner : runners) { TF_ASSIGN_OR_RETURN( auto runner_cache, se::dnn::LazyOpRunner<se::dnn::FusedConvOp>::FromOpRunner( std::move(runner))); result.emplace_back(std::move(runner_cache)); } break; } case se::dnn::ConvolutionKind::FORWARD_GRAPH: { std::vector<std::unique_ptr<const se::dnn::GraphConvRunner>> runners; TF_RETURN_IF_ERROR(dnn->GetGraphConvolveRunners( kind, input_type, output_type, stream, config.input_descriptor, config.filter_descriptor, config.output_descriptor, config.conv_desc, use_fallback, numeric_options, &runners, config.serialized_graph)); for (auto& runner : runners) { TF_ASSIGN_OR_RETURN( auto runner_cache, se::dnn::LazyOpRunner<se::dnn::GraphConvOp>::FromOpRunner( std::move(runner))); result.emplace_back(std::move(runner_cache)); } break; } case se::dnn::ConvolutionKind::FORWARD: case se::dnn::ConvolutionKind::BACKWARD_DATA: case se::dnn::ConvolutionKind::BACKWARD_FILTER: { std::vector<std::unique_ptr<const se::dnn::ConvRunner>> runners; TF_RETURN_IF_ERROR(dnn->GetConvolveRunners( use_cudnn_frontend, kind, input_type, output_type, stream, config.input_descriptor, DeviceMemoryBase(nullptr), config.filter_descriptor, DeviceMemoryBase(nullptr), config.output_descriptor, DeviceMemoryBase(nullptr), config.conv_desc, use_fallback, nullptr, numeric_options, &runners)); for (auto& runner : runners) { TF_ASSIGN_OR_RETURN( auto runner_cache, se::dnn::LazyOpRunner<se::dnn::ConvOp>::FromOpRunner( std::move(runner))); result.emplace_back(std::move(runner_cache)); } break; } } return result; } absl::StatusOr<std::vector<std::unique_ptr<const se::dnn::ConvRunner>>> GetMIOpenAlgorithms(const HloCustomCallInstruction* instr, absl::Span<se::DeviceMemoryBase> operand_buffers, absl::Span<se::DeviceMemoryBase> result_buffers, se::StreamExecutor* stream_exec, ScratchAllocator* scratch_allocator, se::Stream* stream, const se::NumericOptions& numeric_options) { TF_ASSIGN_OR_RETURN(GpuConvConfig config, GetGpuConvConfig(instr)); TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType dtype, GetDNNDataTypeFromPrimitiveType(config.output_type)); TF_ASSIGN_OR_RETURN( GpuConvParams params, GetGpuConvParams(config, operand_buffers, result_buffers)); std::vector<std::unique_ptr<const se::dnn::ConvRunner>> runners; auto dnn = stream_exec->AsDnn(); if (dnn == nullptr) { return absl::InvalidArgumentError("No DNN in stream executor."); } TF_RETURN_IF_ERROR(dnn->GetConvolveRunners( false, kind, dtype, dtype, stream, params.config->input_descriptor, params.input_buf, params.config->filter_descriptor, params.filter_buf, params.config->output_descriptor, params.output_buf, params.config->conv_desc, false, scratch_allocator, numeric_options, &runners)); return runners; } std::string NumBytesToString(int64_t bytes) { return absl::StrCat(tsl::strings::HumanReadableNumBytes(bytes), " (", bytes, "B)"); } CudnnVersion GetCudnnVersion(se::StreamExecutor* stream_executor) { se::dnn::VersionInfo version = GetDnnVersionInfoOrDefault(stream_executor); CudnnVersion cudnn_version; cudnn_version.set_major(version.major_version()); cudnn_version.set_minor(version.minor_version()); cudnn_version.set_patch(version.patch()); return cudnn_version; } ComputeCapability GetComputeCapability(se::StreamExecutor* stream_executor) { ComputeCapability cc; se::CudaComputeCapability se_cc = stream_executor->GetDeviceDescription().cuda_compute_capability(); cc.set_major(se_cc.major); cc.set_minor(se_cc.minor); return cc; } void PrintPlatformInfo(const se::Stream* stream) { auto* se = stream->parent(); const auto& desc = se->GetDeviceDescription(); LOG(ERROR) << "Device: " << desc.name(); LOG(ERROR) << "Platform: " << desc.platform_version(); LOG(ERROR) << "Driver: " << desc.driver_version(); LOG(ERROR) << "Runtime: " << desc.runtime_version(); auto dnn_version = GetDnnVersionInfo(se); if (dnn_version.ok()) { auto v = dnn_version.value(); LOG(ERROR) << "cudnn version: " << v.major_version() << "." << v.minor_version() << "." << v.patch(); } } absl::StatusOr<bool> CheckRedzones(const se::RedzoneAllocator& allocator, se::Stream* stream, absl::string_view name, std::string_view instr_str, AutotuneResult* result) { XLA_SCOPED_LOGGING_TIMER_LEVEL("CudnnConvAlgorithmPicker checking redzones", 2); using RedzoneCheckStatus = se::RedzoneAllocator::RedzoneCheckStatus; TF_ASSIGN_OR_RETURN(RedzoneCheckStatus redzone_check, allocator.CheckRedzones()); if (redzone_check.ok()) { return true; } auto* fail = result->mutable_failure(); fail->set_kind(AutotuneResult::REDZONE_MODIFIED); *fail->mutable_msg() = redzone_check.RedzoneFailureMsg(); fail->set_buffer_address( reinterpret_cast<uint64_t>(redzone_check.user_buffer_address)); LOG(ERROR) << absl::StreamFormat( "Detected cudnn out-of-bounds write in conv %s buffer! This is likely a " "cudnn bug. We will skip this algorithm in the future, but your GPU " "state may already be corrupted, leading to incorrect results. Within " "Google, no action is needed on your part. Outside of Google, please " "ensure you're running the latest version of cudnn. If that doesn't fix " "the problem, please file a bug with this full error message and we'll " "contact nvidia.", name); LOG(ERROR) << redzone_check.RedzoneFailureMsg(); LOG(ERROR) << "HloInstruction " << instr_str; PrintPlatformInfo(stream); return false; } } bool ShouldInitConvData(const HloModuleConfig& hlo_module_config) { const int32_t conv_autotune_level = hlo_module_config.debug_options().xla_gpu_autotune_level(); return conv_autotune_level >= 2; } bool ShouldCheckConv(const HloModuleConfig& hlo_module_config) { const int32_t conv_autotune_level = hlo_module_config.debug_options().xla_gpu_autotune_level(); return conv_autotune_level >= 4; } absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::PickBestAlgorithm( const HloCustomCallInstruction* instr) { return AutotunerUtil::Autotune( instr, config_, [&] { return PickBestAlgorithmNoCache(instr); }); } absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::PickBestAlgorithmNoCache( const HloCustomCallInstruction* instr) { if (config_.IsDeviceless()) { AutotuneResult result; result.mutable_algorithm()->set_algo_id(-1); return result; } se::StreamExecutor* stream_exec = config_.GetExecutor(); absl::MutexLock lock(&GetGpuMutex(stream_exec)); if (!stream_exec->SynchronizeAllActivity()) { return Internal( "Failed to synchronize GPU for autotuning conv instruction"); } absl::StatusOr<AutotuneResult> result_or(Internal("Unknown platform.")); se::Platform::Id platform_id = stream_exec->GetPlatform()->id(); if (platform_id == se::rocm::kROCmPlatformId) { result_or = PickBestAlgorithmNoCacheRocm(instr); } else if (platform_id == se::cuda::kCudaPlatformId) { #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) result_or = PickBestAlgorithmNoCacheCuda(instr); #endif } return result_or; } #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) absl::StatusOr<GpuConvAlgorithmPicker::AutotuneRuntimeArguments> GpuConvAlgorithmPicker::AutotuneRuntimeArguments::FromInstruction( const HloCustomCallInstruction* instr, const AutotuneConfig& config, const DebugOptions& debug_options) { TF_ASSIGN_OR_RETURN(auto rz_buffers, RedzoneBuffers::FromInstruction( *instr, config, debug_options, RedzoneBuffers::kAllInputsOutputsNoScratch)); std::string canonical_hlo( AutotuneCacheKey(config.GetExecutor()->GetDeviceDescription(), *instr) .GetHlo()); TF_ASSIGN_OR_RETURN(GpuConvConfig gpu_conv_config, GetGpuConvConfig(instr)); GpuConvAlgorithmPicker::AutotuneRuntimeArguments runtime_arguments = { instr->GetModule()->config(), std::move(rz_buffers), std::move(gpu_conv_config), {canonical_hlo}}; return runtime_arguments; } struct CudnnVersionRange { using TupleVersion = std::tuple<int, int, int>; TupleVersion begin; TupleVersion end; bool IsInRange(const CudnnVersion& other) const { TupleVersion other_version{other.major(), other.minor(), other.patch()}; return begin <= other_version && other_version < end; } CudnnVersionRange(const CudnnVersion& begin, const CudnnVersion& end) : begin(begin.major(), begin.minor(), begin.patch()), end(end.major(), end.minor(), end.patch()) {} CudnnVersionRange(const TupleVersion& begin, const TupleVersion& end) : begin(begin), end(end) {} }; struct ComputeCapabilityRange { using TupleComputeCapability = std::tuple<int, int>; TupleComputeCapability begin; TupleComputeCapability end; bool IsInRange(const ComputeCapability& other) const { TupleComputeCapability other_cc{other.major(), other.minor()}; return begin <= other_cc && other_cc < end; } }; struct DisabledAlgorithm { CudnnVersionRange cudnn_version_range; ComputeCapabilityRange compute_capability_range; int algo_id; }; static const DisabledAlgorithm kDisabledAlgorithms[] = { {{{9, 0, 0}, {10, 0, 0}}, {{6, 0}, {8, 0}}, 14}}; absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::AutotuneOneConvRunner( GenericConvRunner* const runner, std::optional<ReferenceResult>* reference_result, absl::Span<const AlgorithmDesc> disabled_algos, std::optional<AutotuneCacheKey> instruction_info, const AutotuneRuntimeArguments& runtime_arguments) { auto alg = runner->ToAlgorithmDesc(); se::StreamExecutor* stream_exec = config_.GetExecutor(); XLA_SCOPED_LOGGING_TIMER_LEVEL( absl::StrCat("CudnnConvAlgorithmPicker::PickBestAlgorithm algo ", alg.ToString()), 2); auto make_failure = [&alg](AutotuneResult::FailureKind kind, absl::string_view msg) { AutotuneResult result; *result.mutable_algorithm() = alg.ToProto(); result.mutable_failure()->set_kind(kind); result.mutable_failure()->set_msg( msg.data(), msg.size()); return result; }; AlgorithmDesc alg_key(alg.algo_id(), alg.tensor_ops_enabled(), std::nullopt); std::string instr_str = instruction_info.has_value() ? std::string(instruction_info->GetHlo()) : "<unknown>"; for (const auto& disabled_algo : kDisabledAlgorithms) { if (disabled_algo.cudnn_version_range.IsInRange( GetCudnnVersion(stream_exec)) && disabled_algo.compute_capability_range.IsInRange( GetComputeCapability(stream_exec)) && disabled_algo.algo_id == alg.algo_id()) { LOG(INFO) << "Omitted potentially buggy algorithm " << alg.ToString() << " for conv " << instr_str; return make_failure(AutotuneResult::DISQUALIFIED, "Disqualified for being known-buggy."); } } if (absl::c_linear_search(disabled_algos, alg_key)) { LOG(INFO) << "Omitted potentially buggy algorithm " << alg.ToString() << " for conv " << instr_str; return make_failure(AutotuneResult::DISQUALIFIED, "Disqualified for being known-buggy."); } GpuConvConfig config = runtime_arguments.gpu_conv_config; auto activation_mode = config.fusion ? config.fusion->mode : se::dnn::ActivationMode::kNone; if (!alg.is_cudnn_frontend() && config.kind == CudnnConvKind::kForwardActivation && activation_mode == se::dnn::ActivationMode::kNone && alg.algo_id() != CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM) { return make_failure(AutotuneResult::DISQUALIFIED, "Disqualified for implicit RELU."); } TF_ASSIGN_OR_RETURN( se::RedzoneAllocator scratch_allocator, AutotunerUtil::CreateRedzoneAllocator( config_, runtime_arguments.hlo_module_config.debug_options())); se::dnn::ProfileResult profile_result; VLOG(4) << "Trying algorithm " << alg.ToString() << " for " << instr_str; SlowOperationAlarm alarm(absl::Seconds(1), [&] { return absl::StrFormat( "Trying algorithm %s for conv %s is taking a while...", alg.ToString(), instr_str); }); std::optional<size_t> workspace_size = runner->ToAlgorithmDesc().workspace_size(); if (!workspace_size) { return make_failure(AutotuneResult::UNKNOWN, "Internal error: missing workspace size from " "OpRunner::ToAlgorithmDesc()"); } auto scratch_or = scratch_allocator.AllocateBytes(*workspace_size); if (!scratch_or.ok()) { return make_failure(AutotuneResult::DISQUALIFIED, absl::StrCat("Scratch allocation failed: ", scratch_or.status().ToString())); } se::DeviceMemoryBase scratch_memory = scratch_or.value(); RunConvOptions options; options.runner_cache = runner; float max_time = 0; float min_time = std::numeric_limits<float>::max(); absl::Status launch_status; std::vector<se::DeviceMemoryBase> operand_buffers = runtime_arguments.rz_buffers.input_buffers(); std::vector<se::DeviceMemoryBase> result_buffers = runtime_arguments.rz_buffers.output_buffers(); TF_ASSIGN_OR_RETURN(se::Stream* const stream, config_.GetStream()); launch_status = RunGpuConv(config, operand_buffers, result_buffers, scratch_memory, stream, options); options.profile_result = &profile_result; profile_result.set_warmup_run_executed(true); constexpr int kMaxIter = 10; int num_iters = 0; for (; num_iters < kMaxIter && launch_status.ok(); ++num_iters) { launch_status = RunGpuConv(config, operand_buffers, result_buffers, scratch_memory, stream, options); if (!profile_result.is_valid()) { break; } float old_min_time = min_time; min_time = std::min(min_time, profile_result.elapsed_time_in_ms()); max_time = std::max(max_time, profile_result.elapsed_time_in_ms()); constexpr float kThreshold = 0.05f; if (std::abs(profile_result.elapsed_time_in_ms() - old_min_time) / old_min_time < kThreshold) { break; } } if (!launch_status.ok()) { VLOG(5) << "Launch failed: " << launch_status; return make_failure( AutotuneResult::DISQUALIFIED, absl::StrCat("Profiling failure on cuDNN engine ", alg.ToString(), ": ", launch_status.ToString())); } if (!profile_result.is_valid()) { VLOG(5) << "Launch succeeded but profile result is invalid."; return make_failure( AutotuneResult::UNKNOWN, absl::StrCat("Launch succeeded but profile result is invalid, " "with cuDNN engine ", alg.ToString(), ": ", launch_status.ToString())); } VLOG(4) << "Best time: " << min_time << " ms. Worst time: " << max_time << " ms. Total iterations: " << num_iters; int64_t scratch_bytes_used = scratch_allocator.TotalAllocatedBytesExcludingRedzones(); AutotuneResult result; *result.mutable_algorithm() = alg.ToProto(); result.set_scratch_bytes(scratch_bytes_used); *result.mutable_run_time() = tsl::proto_utils::ToDurationProto(absl::Milliseconds(min_time)); if (!ShouldCheckConv(runtime_arguments.hlo_module_config)) { if (!reference_result->has_value()) { (*reference_result) = { alg, std::vector<DeviceMemoryBase>(result_buffers.size())}; } return result; } TF_ASSIGN_OR_RETURN( bool input_output_allocator_redzone_clear, CheckRedzones(runtime_arguments.rz_buffers.RedzoneAllocator(), stream, "input/output", instr_str, &result)); TF_ASSIGN_OR_RETURN( bool scratch_allocator_redzone_clear, CheckRedzones(scratch_allocator, stream, "scratch", instr_str, &result)); if (!input_output_allocator_redzone_clear || !scratch_allocator_redzone_clear) { if (runtime_arguments.canonical_hlo.has_value()) { std::string canonical_hlo = runtime_arguments.canonical_hlo.value(); std::string blas_version; if (auto* blas = stream_exec->AsBlas()) { (void)blas->GetVersion(&blas_version); } AlgorithmDenylist proto; auto entry = proto.add_entries(); entry->set_hlo(canonical_hlo); *entry->mutable_cc() = GetComputeCapability(stream_exec); *entry->mutable_cudnn_version() = GetCudnnVersion(stream_exec); entry->set_blas_version(blas_version); auto algo = entry->add_algos(); algo->set_id(alg.algo_id()); algo->set_tensor_ops(alg.tensor_ops_enabled()); LOG(ERROR) << "To denylist this algorithm for this convolution, " "copy-paste the following " "proto to the denylist file pointed by XLA_FLAGS " "--xla_gpu_algorithm_denylist_path=" << GetDebugOptionsFromFlags().xla_gpu_algorithm_denylist_path() << " : " << proto.ShortDebugString(); } return result; } if (reference_result->has_value()) { XLA_SCOPED_LOGGING_TIMER_LEVEL("BufferComparator::CompareEqual", 2); const DebugOptions& debug_options = runtime_arguments.hlo_module_config.debug_options(); for (int i = 0; i < result_buffers.size(); ++i) { Shape output_shape = MaybeTupleElementShape( runtime_arguments.rz_buffers.output_shape(), i); XLA_SCOPED_LOGGING_TIMER_LEVEL("BufferComparator::CompareEqual", 2); BufferComparator comparator(output_shape, debug_options.xla_gpu_autotune_gemm_rtol()); absl::StatusOr<bool> compare_result = comparator.CompareEqual( stream, (*reference_result)->buffers[i], result_buffers[i]); if (!compare_result.ok()) { LOG(ERROR) << "Unable to compare " << (*reference_result)->algorithm.ToString() << " against " << alg.ToString() << " for " << instr_str << ": " << compare_result.status(); if (compare_result.status().code() == absl::StatusCode::kResourceExhausted) { return compare_result.status(); } CHECK(!debug_options.xla_gpu_crash_on_verification_failures()); } else if (!compare_result.value()) { LOG(ERROR) << "Results mismatch between different convolution algorithms. " "This is likely a bug/unexpected loss of precision in cudnn.\n" << instr_str << " for " << (*reference_result)->algorithm.ToString() << " vs " << alg.ToString(); PrintPlatformInfo(stream); if (instruction_info.has_value()) { VLOG(2) << "Full module on failure: \n" << instruction_info->GetModelStr(); } auto* fail = result.mutable_failure(); fail->set_kind(AutotuneResult::WRONG_RESULT); fail->set_buffer_address( reinterpret_cast<uint64_t>(result_buffers[i].opaque())); *fail->mutable_reference_algorithm() = (*reference_result)->algorithm.ToProto(); } } } else { XLA_SCOPED_LOGGING_TIMER_LEVEL("Memcpy Reference Result", 2); std::vector<DeviceMemoryBase> reference_result_buffers( result_buffers.size()); for (int i = 0; i < result_buffers.size(); ++i) { TF_ASSIGN_OR_RETURN( reference_result_buffers[i], runtime_arguments.rz_buffers.RedzoneAllocator().AllocateBytes( result_buffers[i].size())); TF_RETURN_IF_ERROR(stream->Memcpy(&reference_result_buffers[i], result_buffers[i], result_buffers[i].size())); } (*reference_result) = {alg, reference_result_buffers}; } return result; } absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::PickBestAlgorithmNoCacheCuda( const HloCustomCallInstruction* instr) { AutotuneCacheKey instruction_info{config_.GetModelStr(), *instr}; std::string instr_str(instruction_info.GetHlo()); XLA_SCOPED_LOGGING_TIMER(absl::StrCat( "GpuConvAlgorithmPicker::PickBestAlgorithmImpl for ", instr_str)); const DebugOptions& debug_options = instr->GetModule()->config().debug_options(); const bool crash_on_checking_failure = debug_options.xla_gpu_crash_on_verification_failures(); std::string blas_version; se::StreamExecutor* stream_exec = config_.GetExecutor(); if (auto* blas = stream_exec->AsBlas()) { (void)blas->GetVersion(&blas_version); } std::vector<AlgorithmDesc> disabled_algos; TF_ASSIGN_OR_RETURN( AutotuneRuntimeArguments runtime_arguments, AutotuneRuntimeArguments::FromInstruction(instr, config_, debug_options)); if (runtime_arguments.canonical_hlo.has_value()) { disabled_algos = GetDisabledConvAlgorithms( GetComputeCapability(stream_exec), GetCudnnVersion(stream_exec), blas_version, runtime_arguments.canonical_hlo.value()); } const bool cudnn_frontend_enabled = debug_options.xla_gpu_enable_cudnn_frontend(); bool allow_tf32 = true; if (instr) { allow_tf32 = absl::c_all_of( instr->precision_config().operand_precision(), [](int precision) { return precision <= PrecisionConfig::HIGH; }); } const se::NumericOptions numeric_options{ RequireDeterminism(instr->GetModule()->config()), allow_tf32}; std::optional<ReferenceResult> reference_result; TF_ASSIGN_OR_RETURN(se::Stream* const stream, config_.GetStream()); TF_ASSIGN_OR_RETURN( std::vector<GenericConvRunner> runners, GetAlgorithms(runtime_arguments.gpu_conv_config, stream, cudnn_frontend_enabled, false, numeric_options)); std::vector<AutotuneResult> profile_results; for (auto& runner_cache : runners) { TF_ASSIGN_OR_RETURN( auto result, AutotuneOneConvRunner(&runner_cache, &reference_result, disabled_algos, instruction_info, runtime_arguments)); profile_results.emplace_back(std::move(result)); } if (!reference_result) { LOG(WARNING) << "None of the algorithms provided by cuDNN heuristics " "worked; trying fallback algorithms."; if (runtime_arguments.canonical_hlo.has_value()) { LOG(WARNING) << "Conv: " << runtime_arguments.canonical_hlo.value(); } TF_ASSIGN_OR_RETURN( std::vector<GenericConvRunner> fallback_runners, GetAlgorithms(runtime_arguments.gpu_conv_config, stream, cudnn_frontend_enabled, true, numeric_options)); for (auto& runner_cache : fallback_runners) { TF_ASSIGN_OR_RETURN( auto result, AutotuneOneConvRunner(&runner_cache, &reference_result, disabled_algos, instruction_info, runtime_arguments)); profile_results.emplace_back(std::move(result)); } } if (instr) { AutotuningLog log; { ConvInstructionLog instr_log; *instr_log.mutable_instruction() = instr->ToProto(); for (int i = 0; i < instr->operand_count(); i++) { *instr_log.add_operand_shapes() = instr->operand(i)->shape().ToProto(); instr_log.add_operand_addresses(reinterpret_cast<uint64_t>( runtime_arguments.rz_buffers.input_buffers()[i].opaque())); } for (se::DeviceMemoryBase result_buffer : runtime_arguments.rz_buffers.output_buffers()) { instr_log.add_result_addresses( reinterpret_cast<uint64_t>(result_buffer.opaque())); } log.mutable_instr()->PackFrom(instr_log); } for (const auto& profile : profile_results) { *log.add_results() = profile; } *log.mutable_compute_capability() = GetComputeCapability(stream_exec); *log.mutable_cudnn_version() = GetCudnnVersion(stream_exec); log.set_device_pci_bus_id(stream_exec->GetDeviceDescription().pci_bus_id()); log.set_blas_version(blas_version); VLOG(2) << "Autotuning result: " << log.ShortDebugString(); if (crash_on_checking_failure) { for (const auto& profile : profile_results) { if (profile.has_failure() && profile.failure().kind() != AutotuneResult::DISQUALIFIED) { LOG(FATAL) << "crash_on_checking_failure encountered errors:\n\n" << log.DebugString(); } } } } TF_ASSIGN_OR_RETURN(AutotuneResult selected_algorithm, PickBestResult(profile_results, instr_str, runtime_arguments.hlo_module_config)); return selected_algorithm; } #endif absl::StatusOr<AutotuneResult> GpuConvAlgorithmPicker::PickBestAlgorithmNoCacheRocm( const HloCustomCallInstruction* instr) { XLA_SCOPED_LOGGING_TIMER(absl::StrCat( "GpuConvAlgorithmPicker::PickBestAlgorithmImpl for ", instr->ToString())); const bool allow_tf32 = absl::c_all_of( instr->precision_config().operand_precision(), [](int precision) { return precision <= PrecisionConfig::HIGH; }); const se::NumericOptions numeric_options{ RequireDeterminism(instr->GetModule()->config()), allow_tf32}; se::StreamExecutor* stream_exec = config_.GetExecutor(); const auto device_ordinal = stream_exec->device_ordinal(); std::vector<se::DeviceMemoryBase> operand_buffers; se::DeviceMemoryAllocator* allocator = config_.GetAllocator(); ScratchAllocator input_output_allocator(device_ordinal, allocator); TF_ASSIGN_OR_RETURN(se::Stream* const stream, config_.GetStream()); const auto initialize_buffer = [stream](DeviceMemoryBase buffer) { return stream->MemZero(&buffer, buffer.size()); }; for (const auto* operand : instr->operands()) { TF_ASSIGN_OR_RETURN(auto buffer, input_output_allocator.AllocateBytes( ShapeUtil::ByteSizeOf(operand->shape()))); TF_RETURN_IF_ERROR(initialize_buffer(buffer)); operand_buffers.push_back(buffer); } std::vector<se::DeviceMemoryBase> result_buffers( instr->shape().tuple_shapes_size()); if (instr->shape().IsTuple()) { for (int i = 0; i < instr->shape().tuple_shapes_size(); ++i) { TF_ASSIGN_OR_RETURN( result_buffers[i], input_output_allocator.AllocateBytes( ShapeUtil::ByteSizeOf(instr->shape().tuple_shapes(i)))); TF_RETURN_IF_ERROR(initialize_buffer(result_buffers[i])); } } else { TF_ASSIGN_OR_RETURN( result_buffers[0], input_output_allocator.AllocateBytes( ShapeUtil::ByteSizeOf(instr->shape().tuple_shapes(0)))); TF_RETURN_IF_ERROR(initialize_buffer(result_buffers[0])); } ScratchAllocator scratch_allocator(device_ordinal, allocator); TF_ASSIGN_OR_RETURN( std::vector<std::unique_ptr<const se::dnn::ConvRunner>> runners, GetMIOpenAlgorithms(instr, absl::MakeSpan(operand_buffers), absl::MakeSpan(result_buffers), stream_exec, &scratch_allocator, stream, numeric_options)); std::vector<AutotuneResult> profile_results; if (runners.size() == 1) { TF_ASSIGN_OR_RETURN(auto alg, runners[0]->ToAlgorithmDesc()); auto algorithm_proto = alg.ToProto(); profile_results.emplace_back(); auto& result = profile_results.back(); *result.mutable_algorithm() = algorithm_proto; result.set_scratch_bytes(runners[0]->GetWorkspaceSize()); *result.mutable_run_time() = tsl::proto_utils::ToDurationProto(absl::Milliseconds(-1)); } else { TF_ASSIGN_OR_RETURN(GpuConvConfig config, GetGpuConvConfig(instr)); for (auto& runner : runners) { TF_ASSIGN_OR_RETURN(auto alg, runner->ToAlgorithmDesc()); XLA_SCOPED_LOGGING_TIMER_LEVEL( absl::StrCat("CudnnConvAlgorithmPicker::PickBestAlgorithm algo ", alg.ToString()), 2); se::dnn::ProfileResult profile_result; VLOG(4) << "Trying algorithm " << alg.ToString() << " for " << instr->ToString(); TF_ASSIGN_OR_RETURN( DeviceMemoryBase scratch_memory, scratch_allocator.AllocateBytes(runner->GetWorkspaceSize())); TF_ASSIGN_OR_RETURN(auto lazy_runner, se::dnn::LazyOpRunner<se::dnn::ConvOp>::FromOpRunner( std::move(runner))); GenericConvRunner runner_cache(std::move(lazy_runner)); RunConvOptions options; options.profile_result = &profile_result; options.runner_cache = &runner_cache; absl::Status launch_status = RunGpuConv(config, absl::MakeSpan(operand_buffers), result_buffers, scratch_memory, stream, options); if (!launch_status.ok()) { continue; } if (!profile_result.is_valid()) { continue; } profile_results.emplace_back(); AutotuneResult& result = profile_results.back(); *result.mutable_algorithm() = alg.ToProto(); int64_t scratch_bytes_used = scratch_allocator.TotalAllocatedBytes(); result.set_scratch_bytes(scratch_bytes_used); *result.mutable_run_time() = tsl::proto_utils::ToDurationProto( absl::Milliseconds(profile_result.elapsed_time_in_ms())); } } TF_ASSIGN_OR_RETURN(AutotuneResult selected_algorithm, PickBestResult(profile_results, instr->ToString(), instr->GetModule()->config())); return selected_algorithm; } absl::StatusOr<bool> GpuConvAlgorithmPicker::RunOnInstruction( HloInstruction* instr) { CHECK(IsCustomCallToDnnConvolution(*instr)); const bool strict = instr->parent() ->parent() ->config() .debug_options() .xla_gpu_strict_conv_algorithm_picker(); absl::StatusOr<AutotuneResult> best_algo_or = PickBestAlgorithm(Cast<HloCustomCallInstruction>(instr)); if (!best_algo_or.ok()) { auto msg = absl::StrFormat( "Failed to determine best cudnn convolution algorithm for:\n%s\n\n" "Original error: %s", instr->ToString(), best_algo_or.status().ToString()); if (strict) { return Unknown( "%s\n\nTo ignore this failure and try to use a fallback algorithm " "(which may have suboptimal performance), use " "XLA_FLAGS=--xla_gpu_strict_conv_algorithm_picker=false. Please " "also file a bug for the root cause of failing autotuning.", msg); } LOG(WARNING) << msg << "\n\nAs a result, convolution performance may be suboptimal."; return false; } auto best_algo = std::move(best_algo_or).value(); VLOG(3) << "Setting cudnn conv to use algorithm " << best_algo.conv().algorithm() << " and " << NumBytesToString(best_algo.scratch_bytes()) << " of scratch memory: " << instr->ToString() << " tensor_ops_enabled: " << best_algo.conv().tensor_ops_enabled(); HloComputation* computation = instr->parent(); std::vector<Shape> new_call_element_shapes; new_call_element_shapes.reserve(instr->shape().tuple_shapes_size() - 1); for (int i = 0; i < instr->shape().tuple_shapes_size() - 1; ++i) { new_call_element_shapes.emplace_back(instr->shape().tuple_shapes(i)); } new_call_element_shapes.emplace_back( ShapeUtil::MakeShape(U8, {best_algo.scratch_bytes()})); Shape new_call_shape = ShapeUtil::MakeTupleShape(new_call_element_shapes); TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_backend_config, instr->backend_config<GpuBackendConfig>()); CudnnConvBackendConfig& backend_config = *gpu_backend_config.mutable_cudnn_conv_backend_config(); *backend_config.mutable_algorithm() = best_algo.algorithm(); backend_config.mutable_algorithm()->mutable_workspace_size()->set_value( best_algo.scratch_bytes()); HloInstruction* new_call = computation->AddInstruction( instr->CloneWithNewOperands(new_call_shape, instr->operands())); new_call->SetAndSanitizeName(instr->name()); VLOG(3) << "Replacing convolution " << instr->ToString() << " with " << new_call->ToString(); TF_RETURN_IF_ERROR(new_call->set_backend_config(gpu_backend_config)); std::vector<HloInstruction*> new_tuple_elements; new_tuple_elements.reserve(new_call->shape().tuple_shapes_size() - 1); for (int i = 0; i < new_call->shape().tuple_shapes_size() - 1; ++i) { new_tuple_elements.emplace_back( computation->AddInstruction(HloInstruction::CreateGetTupleElement( new_call->shape().tuple_shapes(i), new_call, i))); } new_tuple_elements.emplace_back(computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<uint8_t>({})))); HloInstruction* new_tuple = computation->AddInstruction( HloInstruction::CreateTuple(new_tuple_elements)); TF_RETURN_IF_ERROR(instr->parent()->ReplaceInstruction(instr, new_tuple)); return true; } absl::StatusOr<bool> GpuConvAlgorithmPicker::RunOnComputation( HloComputation* computation) { std::vector<HloInstruction*> convs; for (HloInstruction* instr : computation->instructions()) { if (IsCandidate(instr)) { convs.push_back(instr); } } bool changed = false; for (HloInstruction* instr : convs) { TF_ASSIGN_OR_RETURN(bool result, RunOnInstruction(instr)); changed |= result; } return changed; } absl::StatusOr<bool> GpuConvAlgorithmPicker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_SCOPED_LOGGING_TIMER( absl::StrCat("GpuConvAlgorithmPicker for ", module->name())); if (!IsEnabled(module)) { VLOG(3) << "Convolution auto-tuning disabled, GpuConvAlgorithmPicker " "returning early."; return false; } bool changed = false; for (HloComputation* computation : module->MakeNonfusionComputations(execution_threads)) { TF_ASSIGN_OR_RETURN(bool result, RunOnComputation(computation)); changed |= result; } return changed; } } }
#include "xla/service/gpu/autotuning/conv_algorithm_picker.h" #include <cstdint> #include <variant> #include <vector> #include "absl/strings/string_view.h" #include "xla/autotune_results.pb.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/autotuning/autotuner_util.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/gpu/transforms/conv_rewriter.h" #include "xla/service/gpu/transforms/cudnn_fused_conv_rewriter.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/platform_util.h" #include "xla/service/tuple_simplifier.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/platform.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::gpu { namespace { namespace m = ::xla::match; class GpuConvAlgorithmPickerTest : public HloTestBase { public: se::CudaComputeCapability GetCudaComputeCapability() { return backend() .default_stream_executor() ->GetDeviceDescription() .cuda_compute_capability(); } stream_executor::dnn::VersionInfo GetDnnVersion() { return GetDnnVersionInfoOrDefault(backend().default_stream_executor()); } GpuConvAlgorithmPickerTest() { AutotunerUtil::ClearAutotuneResults(); } }; TEST_F(GpuConvAlgorithmPickerTest, SetAlgorithm) { constexpr absl::string_view kHlo = R"( HloModule module ENTRY main { %arg0 = f32[3,56,56,16]{2,1,0,3} parameter(0) %arg1 = f32[3,3,3,64]{2,1,0,3} parameter(1) ROOT %conv = f32[54,54,16,64]{1,0,3,2} convolution(%arg0, %arg1), window={size=3x3}, dim_labels=f01b_i01o->01bf })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kHlo)); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); ASSERT_GT(executors.size(), 0); se::StreamExecutor* stream_exec = executors[0]; const se::GpuComputeCapability& cc = backend() .default_stream_executor() ->GetDeviceDescription() .gpu_compute_capability(); bool changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(ConvRewriter(cc), m.get())); changed = false; DebugOptions opts = DefaultDebugOptionsIgnoringFlags(); AutotuneConfig cfg{DeviceConfig{stream_exec, nullptr}, opts}; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GpuConvAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); AutotuneResults results; TF_ASSERT_OK(AutotunerUtil::SerializeAutotuneResults(&results)); ASSERT_EQ(results.results_size(), 1); auto& result = *results.mutable_results(0)->mutable_result(); int64_t old_scratch_bytes = result.scratch_bytes(); int64_t new_scratch_bytes = old_scratch_bytes + 1; result.set_scratch_bytes(new_scratch_bytes); AutotunerUtil::ClearAutotuneResults(); TF_ASSERT_OK(AutotunerUtil::LoadAutotuneResults(results)); TF_ASSERT_OK_AND_ASSIGN(m, ParseAndReturnVerifiedModule(kHlo)); changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(ConvRewriter(cc), m.get())); changed = false; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GpuConvAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK(RunHloPass(TupleSimplifier(), m.get()).status()); SCOPED_TRACE(m->ToString()); HloInstruction* conv; ASSERT_THAT(m->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(&conv)))); EXPECT_THAT( conv->shape(), GmockMatch(m::Shape().WithSubshape( {1}, m::Shape().WithElementType(U8).WithDims({new_scratch_bytes})))); TF_ASSERT_OK_AND_ASSIGN(auto dnn_version, GetDnnVersionInfo(stream_exec)); if (dnn_version.major_version() >= 9 && dnn_version.major_version() < 10 && std::holds_alternative<stream_executor::CudaComputeCapability>(cc) && std::get<stream_executor::CudaComputeCapability>(cc).major == 7 && std::get<stream_executor::CudaComputeCapability>(cc).minor == 0) { EXPECT_TRUE(conv->backend_config<GpuBackendConfig>() ->has_cudnn_conv_backend_config() && conv->backend_config<GpuBackendConfig>() ->cudnn_conv_backend_config() .algorithm() .algo_id() != 14); } } TEST_F(GpuConvAlgorithmPickerTest, SetAlgorithmGraphConvF8) { if (!GetCudaComputeCapability().IsAtLeast( se::CudaComputeCapability::HOPPER)) { GTEST_SKIP() << "FP8 convolutions require Hopper or newer architecture."; } constexpr absl::string_view kHlo = R"( HloModule module apply { a = f32[] parameter(0) b = f32[] parameter(1) ROOT c = f32[] maximum(a, b) } ENTRY main { input = f8e4m3fn[1,6,6,128] parameter(0) filter = f8e4m3fn[16,3,3,128] parameter(1) input_scale = f32[] parameter(2) input_scale_bcast = f32[1,6,6,128] broadcast(input_scale), dimensions={} filter_scale = f32[] parameter(3) filter_scale_bcast = f32[16,3,3,128] broadcast(filter_scale), dimensions={} input_f32 = f32[1,6,6,128] convert(input) input_unscaled = f32[1,6,6,128] multiply(input_f32, input_scale_bcast) filter_f32 = f32[16,3,3,128] convert(filter) filter_unscaled = f32[16,3,3,128] multiply(filter_f32, filter_scale_bcast) conv_a = f32[1,6,6,16] convolution(input_unscaled, filter_unscaled), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_o01i->b01f, feature_group_count=1 z_scale = f32[] parameter(4) z_scale_bcast = f32[1,6,6,16] broadcast(z_scale), dimensions={} conv_a_scaled = f32[1,6,6,16] multiply(conv_a, z_scale_bcast) c1 = f32[] constant(-448.) c1_bcast = f32[1,6,6,16] broadcast(c1), dimensions={} c2 = f32[] constant(448.) c2_bcast = f32[1,6,6,16] broadcast(c2), dimensions={} conv_a_clamped = f32[1,6,6,16] clamp(c1_bcast, conv_a_scaled, c2_bcast) conv_a_clamped_f8 = f8e4m3fn[1,6,6,16] convert(conv_a_clamped) abs_conv_a = f32[1,6,6,16] abs(conv_a) c0 = f32[] constant(-inf) amax = f32[] reduce(abs_conv_a, c0), dimensions={0,1,2,3}, to_apply=apply ROOT conv_f8 = (f8e4m3fn[1,6,6,16], f32[]) tuple(conv_a_clamped_f8, amax) })"; TF_ASSERT_OK_AND_ASSIGN(auto m, ParseAndReturnVerifiedModule(kHlo)); se::Platform* platform = PlatformUtil::GetDefaultPlatform().value(); TF_ASSERT_OK_AND_ASSIGN(std::vector<se::StreamExecutor*> executors, PlatformUtil::GetStreamExecutors(platform)); ASSERT_GT(executors.size(), 0); se::StreamExecutor* stream_exec = executors[0]; const se::GpuComputeCapability& cc = GetCudaComputeCapability(); bool changed; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(ConvRewriter(cc), m.get())); ASSERT_TRUE(changed); TF_ASSERT_OK_AND_ASSIGN( changed, RunHloPass(CudnnFusedConvRewriter( GetCudaComputeCapability(), GetDnnVersion(), stream_exec->GetDeviceDescription().runtime_version()), m.get())); ASSERT_TRUE(changed); DebugOptions opts = DefaultDebugOptionsIgnoringFlags(); AutotuneConfig cfg{DeviceConfig{stream_exec, nullptr}, opts}; TF_ASSERT_OK_AND_ASSIGN(changed, RunHloPass(GpuConvAlgorithmPicker(cfg), m.get())); ASSERT_TRUE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/autotuning/conv_algorithm_picker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/autotuning/conv_algorithm_picker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
90e4c0d3-86b4-4bd3-b131-1140cb425e65
cpp
google/cel-cpp
optional_or_step
eval/eval/optional_or_step.cc
eval/eval/optional_or_step_test.cc
#include "eval/eval/optional_or_step.h" #include <cstdint> #include <memory> #include <utility> #include "absl/base/optimization.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "common/casting.h" #include "common/value.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "eval/eval/jump_step.h" #include "internal/status_macros.h" #include "runtime/internal/errors.h" namespace google::api::expr::runtime { namespace { using ::cel::As; using ::cel::ErrorValue; using ::cel::InstanceOf; using ::cel::OptionalValue; using ::cel::UnknownValue; using ::cel::Value; using ::cel::runtime_internal::CreateNoMatchingOverloadError; enum class OptionalOrKind { kOrOptional, kOrValue }; ErrorValue MakeNoOverloadError(OptionalOrKind kind) { switch (kind) { case OptionalOrKind::kOrOptional: return ErrorValue(CreateNoMatchingOverloadError("or")); case OptionalOrKind::kOrValue: return ErrorValue(CreateNoMatchingOverloadError("orValue")); } ABSL_UNREACHABLE(); } class OptionalHasValueJumpStep final : public JumpStepBase { public: OptionalHasValueJumpStep(int64_t expr_id, OptionalOrKind kind) : JumpStepBase({}, expr_id), kind_(kind) {} absl::Status Evaluate(ExecutionFrame* frame) const override { if (!frame->value_stack().HasEnough(1)) { return absl::Status(absl::StatusCode::kInternal, "Value stack underflow"); } const auto& value = frame->value_stack().Peek(); auto optional_value = As<OptionalValue>(value); const bool should_jump = (optional_value.has_value() && optional_value->HasValue()) || (!optional_value.has_value() && (cel::InstanceOf<ErrorValue>(value) || cel::InstanceOf<UnknownValue>(value))); if (should_jump) { if (kind_ == OptionalOrKind::kOrValue && optional_value.has_value()) { frame->value_stack().PopAndPush(optional_value->Value()); } return Jump(frame); } return absl::OkStatus(); } private: const OptionalOrKind kind_; }; class OptionalOrStep : public ExpressionStepBase { public: explicit OptionalOrStep(int64_t expr_id, OptionalOrKind kind) : ExpressionStepBase(expr_id), kind_(kind) {} absl::Status Evaluate(ExecutionFrame* frame) const override; private: const OptionalOrKind kind_; }; absl::Status EvalOptionalOr(OptionalOrKind kind, const Value& lhs, const Value& rhs, const AttributeTrail& lhs_attr, const AttributeTrail& rhs_attr, Value& result, AttributeTrail& result_attr) { if (InstanceOf<ErrorValue>(lhs) || InstanceOf<UnknownValue>(lhs)) { result = lhs; result_attr = lhs_attr; return absl::OkStatus(); } auto lhs_optional_value = As<OptionalValue>(lhs); if (!lhs_optional_value.has_value()) { result = MakeNoOverloadError(kind); result_attr = AttributeTrail(); return absl::OkStatus(); } if (lhs_optional_value->HasValue()) { if (kind == OptionalOrKind::kOrValue) { result = lhs_optional_value->Value(); } else { result = lhs; } result_attr = lhs_attr; return absl::OkStatus(); } if (kind == OptionalOrKind::kOrOptional && !InstanceOf<ErrorValue>(rhs) && !InstanceOf<UnknownValue>(rhs) && !InstanceOf<OptionalValue>(rhs)) { result = MakeNoOverloadError(kind); result_attr = AttributeTrail(); return absl::OkStatus(); } result = rhs; result_attr = rhs_attr; return absl::OkStatus(); } absl::Status OptionalOrStep::Evaluate(ExecutionFrame* frame) const { if (!frame->value_stack().HasEnough(2)) { return absl::InternalError("Value stack underflow"); } absl::Span<const Value> args = frame->value_stack().GetSpan(2); absl::Span<const AttributeTrail> args_attr = frame->value_stack().GetAttributeSpan(2); Value result; AttributeTrail result_attr; CEL_RETURN_IF_ERROR(EvalOptionalOr(kind_, args[0], args[1], args_attr[0], args_attr[1], result, result_attr)); frame->value_stack().PopAndPush(2, std::move(result), std::move(result_attr)); return absl::OkStatus(); } class ExhaustiveDirectOptionalOrStep : public DirectExpressionStep { public: ExhaustiveDirectOptionalOrStep( int64_t expr_id, std::unique_ptr<DirectExpressionStep> optional, std::unique_ptr<DirectExpressionStep> alternative, OptionalOrKind kind) : DirectExpressionStep(expr_id), kind_(kind), optional_(std::move(optional)), alternative_(std::move(alternative)) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const override; private: OptionalOrKind kind_; std::unique_ptr<DirectExpressionStep> optional_; std::unique_ptr<DirectExpressionStep> alternative_; }; absl::Status ExhaustiveDirectOptionalOrStep::Evaluate( ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const { CEL_RETURN_IF_ERROR(optional_->Evaluate(frame, result, attribute)); Value rhs; AttributeTrail rhs_attr; CEL_RETURN_IF_ERROR(alternative_->Evaluate(frame, rhs, rhs_attr)); CEL_RETURN_IF_ERROR(EvalOptionalOr(kind_, result, rhs, attribute, rhs_attr, result, attribute)); return absl::OkStatus(); } class DirectOptionalOrStep : public DirectExpressionStep { public: DirectOptionalOrStep(int64_t expr_id, std::unique_ptr<DirectExpressionStep> optional, std::unique_ptr<DirectExpressionStep> alternative, OptionalOrKind kind) : DirectExpressionStep(expr_id), kind_(kind), optional_(std::move(optional)), alternative_(std::move(alternative)) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const override; private: OptionalOrKind kind_; std::unique_ptr<DirectExpressionStep> optional_; std::unique_ptr<DirectExpressionStep> alternative_; }; absl::Status DirectOptionalOrStep::Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& attribute) const { CEL_RETURN_IF_ERROR(optional_->Evaluate(frame, result, attribute)); if (InstanceOf<UnknownValue>(result) || InstanceOf<ErrorValue>(result)) { return absl::OkStatus(); } auto optional_value = As<OptionalValue>(static_cast<const Value&>(result)); if (!optional_value.has_value()) { result = MakeNoOverloadError(kind_); return absl::OkStatus(); } if (optional_value->HasValue()) { if (kind_ == OptionalOrKind::kOrValue) { result = optional_value->Value(); } return absl::OkStatus(); } CEL_RETURN_IF_ERROR(alternative_->Evaluate(frame, result, attribute)); if (kind_ == OptionalOrKind::kOrOptional) { if (!InstanceOf<OptionalValue>(result) && !InstanceOf<ErrorValue>(result) && !InstanceOf<UnknownValue>(result)) { result = MakeNoOverloadError(kind_); } } return absl::OkStatus(); } } absl::StatusOr<std::unique_ptr<JumpStepBase>> CreateOptionalHasValueJumpStep( bool or_value, int64_t expr_id) { return std::make_unique<OptionalHasValueJumpStep>( expr_id, or_value ? OptionalOrKind::kOrValue : OptionalOrKind::kOrOptional); } std::unique_ptr<ExpressionStep> CreateOptionalOrStep(bool is_or_value, int64_t expr_id) { return std::make_unique<OptionalOrStep>( expr_id, is_or_value ? OptionalOrKind::kOrValue : OptionalOrKind::kOrOptional); } std::unique_ptr<DirectExpressionStep> CreateDirectOptionalOrStep( int64_t expr_id, std::unique_ptr<DirectExpressionStep> optional, std::unique_ptr<DirectExpressionStep> alternative, bool is_or_value, bool short_circuiting) { auto kind = is_or_value ? OptionalOrKind::kOrValue : OptionalOrKind::kOrOptional; if (short_circuiting) { return std::make_unique<DirectOptionalOrStep>(expr_id, std::move(optional), std::move(alternative), kind); } else { return std::make_unique<ExhaustiveDirectOptionalOrStep>( expr_id, std::move(optional), std::move(alternative), kind); } } }
#include "eval/eval/optional_or_step.h" #include <memory> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "common/casting.h" #include "common/memory.h" #include "common/type_reflector.h" #include "common/value.h" #include "common/value_kind.h" #include "common/value_testing.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/const_value_step.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "internal/testing.h" #include "runtime/activation.h" #include "runtime/internal/errors.h" #include "runtime/managed_value_factory.h" #include "runtime/runtime_options.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::StatusIs; using ::cel::Activation; using ::cel::As; using ::cel::ErrorValue; using ::cel::InstanceOf; using ::cel::IntValue; using ::cel::ManagedValueFactory; using ::cel::MemoryManagerRef; using ::cel::OptionalValue; using ::cel::RuntimeOptions; using ::cel::TypeReflector; using ::cel::UnknownValue; using ::cel::Value; using ::cel::ValueKind; using ::cel::test::ErrorValueIs; using ::cel::test::IntValueIs; using ::cel::test::OptionalValueIs; using ::cel::test::ValueKindIs; using ::testing::HasSubstr; using ::testing::NiceMock; class MockDirectStep : public DirectExpressionStep { public: MOCK_METHOD(absl::Status, Evaluate, (ExecutionFrameBase & frame, Value& result, AttributeTrail& scratch), (const, override)); }; std::unique_ptr<DirectExpressionStep> MockNeverCalledDirectStep() { auto* mock = new NiceMock<MockDirectStep>(); EXPECT_CALL(*mock, Evaluate).Times(0); return absl::WrapUnique(mock); } std::unique_ptr<DirectExpressionStep> MockExpectCallDirectStep() { auto* mock = new NiceMock<MockDirectStep>(); EXPECT_CALL(*mock, Evaluate) .Times(1) .WillRepeatedly( [](ExecutionFrameBase& frame, Value& result, AttributeTrail& attr) { result = ErrorValue(absl::InternalError("expected to be unused")); return absl::OkStatus(); }); return absl::WrapUnique(mock); } class OptionalOrTest : public testing::Test { public: OptionalOrTest() : value_factory_(TypeReflector::Builtin(), MemoryManagerRef::ReferenceCounting()) {} protected: ManagedValueFactory value_factory_; Activation empty_activation_; }; TEST_F(OptionalOrTest, OptionalOrLeftPresentShortcutRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(OptionalValue::Of( value_factory_.get().GetMemoryManager(), IntValue(42))), MockNeverCalledDirectStep(), false, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, OptionalValueIs(IntValueIs(42))); } TEST_F(OptionalOrTest, OptionalOrLeftErrorShortcutsRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(ErrorValue(absl::InternalError("error"))), MockNeverCalledDirectStep(), false, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ValueKindIs(ValueKind::kError)); } TEST_F(OptionalOrTest, OptionalOrLeftErrorExhaustiveRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(ErrorValue(absl::InternalError("error"))), MockExpectCallDirectStep(), false, false); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ValueKindIs(ValueKind::kError)); } TEST_F(OptionalOrTest, OptionalOrLeftUnknownShortcutsRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(UnknownValue()), MockNeverCalledDirectStep(), false, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ValueKindIs(ValueKind::kUnknown)); } TEST_F(OptionalOrTest, OptionalOrLeftUnknownExhaustiveRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(UnknownValue()), MockExpectCallDirectStep(), false, false); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ValueKindIs(ValueKind::kUnknown)); } TEST_F(OptionalOrTest, OptionalOrLeftAbsentReturnRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(OptionalValue::None()), CreateConstValueDirectStep(OptionalValue::Of( value_factory_.get().GetMemoryManager(), IntValue(42))), false, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, OptionalValueIs(IntValueIs(42))); } TEST_F(OptionalOrTest, OptionalOrLeftWrongType) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(IntValue(42)), MockNeverCalledDirectStep(), false, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ErrorValueIs(StatusIs( absl::StatusCode::kUnknown, HasSubstr(cel::runtime_internal::kErrNoMatchingOverload)))); } TEST_F(OptionalOrTest, OptionalOrRightWrongType) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(OptionalValue::None()), CreateConstValueDirectStep(IntValue(42)), false, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ErrorValueIs(StatusIs( absl::StatusCode::kUnknown, HasSubstr(cel::runtime_internal::kErrNoMatchingOverload)))); } TEST_F(OptionalOrTest, OptionalOrValueLeftPresentShortcutRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(OptionalValue::Of( value_factory_.get().GetMemoryManager(), IntValue(42))), MockNeverCalledDirectStep(), true, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, IntValueIs(42)); } TEST_F(OptionalOrTest, OptionalOrValueLeftPresentExhaustiveRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(OptionalValue::Of( value_factory_.get().GetMemoryManager(), IntValue(42))), MockExpectCallDirectStep(), true, false); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, IntValueIs(42)); } TEST_F(OptionalOrTest, OptionalOrValueLeftErrorShortcutsRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(ErrorValue(absl::InternalError("error"))), MockNeverCalledDirectStep(), true, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ValueKindIs(ValueKind::kError)); } TEST_F(OptionalOrTest, OptionalOrValueLeftUnknownShortcutsRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(UnknownValue()), MockNeverCalledDirectStep(), true, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ValueKindIs(ValueKind::kUnknown)); } TEST_F(OptionalOrTest, OptionalOrValueLeftAbsentReturnRight) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(OptionalValue::None()), CreateConstValueDirectStep(IntValue(42)), true, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, IntValueIs(42)); } TEST_F(OptionalOrTest, OptionalOrValueLeftWrongType) { RuntimeOptions options; ExecutionFrameBase frame(empty_activation_, options, value_factory_.get()); std::unique_ptr<DirectExpressionStep> step = CreateDirectOptionalOrStep( -1, CreateConstValueDirectStep(IntValue(42)), MockNeverCalledDirectStep(), true, true); Value result; AttributeTrail scratch; ASSERT_OK(step->Evaluate(frame, result, scratch)); EXPECT_THAT(result, ErrorValueIs(StatusIs( absl::StatusCode::kUnknown, HasSubstr(cel::runtime_internal::kErrNoMatchingOverload)))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/optional_or_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/optional_or_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
5e55870b-179b-4c43-afcc-e62f77d5156c
cpp
tensorflow/tensorflow
embedding_lookup_sparse
tensorflow/lite/kernels/embedding_lookup_sparse.cc
tensorflow/lite/kernels/embedding_lookup_sparse_test.cc
#include <stdint.h> #include <algorithm> #include <cmath> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/internal/tensor_utils.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace ops { namespace builtin { namespace { TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 5); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* ids; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &ids)); TF_LITE_ENSURE_EQ(context, NumDimensions(ids), 1); TF_LITE_ENSURE_EQ(context, ids->type, kTfLiteInt32); const TfLiteTensor* indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &indices)); TF_LITE_ENSURE_EQ(context, NumDimensions(indices), 2); TF_LITE_ENSURE_EQ(context, indices->type, kTfLiteInt32); const TfLiteTensor* shape; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &shape)); TF_LITE_ENSURE_EQ(context, NumDimensions(shape), 1); TF_LITE_ENSURE_EQ(context, shape->type, kTfLiteInt32); const TfLiteTensor* weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 3, &weights)); TF_LITE_ENSURE_EQ(context, NumDimensions(weights), 1); TF_LITE_ENSURE_EQ(context, weights->type, kTfLiteFloat32); TF_LITE_ENSURE_EQ(context, SizeOfDimension(indices, 0), SizeOfDimension(ids, 0)); TF_LITE_ENSURE_EQ(context, SizeOfDimension(indices, 0), SizeOfDimension(weights, 0)); const TfLiteTensor* value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 4, &value)); TF_LITE_ENSURE(context, NumDimensions(value) >= 2); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32); output->allocation_type = kTfLiteDynamic; return kTfLiteOk; } void FinalizeAggregation(TfLiteCombinerType combiner, int num_elements, float current_total_weight, float current_squares_weight, int embedding_size, float* output) { if (combiner != kTfLiteCombinerTypeSum && num_elements > 0) { float multiplier = 1.0; switch (combiner) { case kTfLiteCombinerTypeMean: multiplier = current_total_weight; break; case kTfLiteCombinerTypeSqrtn: multiplier = std::sqrt(current_squares_weight); break; default: break; } for (int k = 0; k < embedding_size; k++) { output[k] /= multiplier; } } } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteEmbeddingLookupSparseParams*>(node->builtin_data); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output)); const TfLiteTensor* ids; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &ids)); const TfLiteTensor* indices; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 1, &indices)); const TfLiteTensor* dense_shape; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 2, &dense_shape)); const TfLiteTensor* weights; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 3, &weights)); const TfLiteTensor* value; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 4, &value)); const size_t values_size = NumElements(value); const int lookup_rank = SizeOfDimension(indices, 1); const int embedding_rank = NumDimensions(value); const int num_lookups = SizeOfDimension(ids, 0); const int num_rows = SizeOfDimension(value, 0); const int output_rank = (lookup_rank - 1) + (embedding_rank - 1); TF_LITE_ENSURE_EQ(context, SizeOfDimension(dense_shape, 0), lookup_rank); TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_rank); TF_LITE_ENSURE(context, output_shape != nullptr); int k = 0; size_t embedding_size = 1; size_t lookup_size = 1; for (int i = 0; i < lookup_rank - 1; i++, k++) { const size_t dim = dense_shape->data.i32[i]; TF_LITE_ENSURE_MSG( context, MultiplyAndCheckOverflow(lookup_size, dim, &lookup_size) == kTfLiteOk, "Lookup size overflowed."); output_shape->data[k] = dim; } for (int i = 1; i < embedding_rank; i++, k++) { const size_t dim = SizeOfDimension(value, i); TF_LITE_ENSURE_MSG(context, MultiplyAndCheckOverflow(embedding_size, dim, &embedding_size) == kTfLiteOk, "Embedding size overflowed."); output_shape->data[k] = dim; } TF_LITE_ENSURE_STATUS(context->ResizeTensor(context, output, output_shape)); const size_t output_size = lookup_size * embedding_size; TfLiteTensorRealloc(output_size * sizeof(float), output); float* output_ptr = GetTensorData<float>(output); const float* weights_ptr = GetTensorData<float>(weights); const float* value_ptr = GetTensorData<float>(value); TF_LITE_ENSURE(context, output_ptr != nullptr); std::fill_n(output_ptr, output_size, 0.0f); int current_output_offset = 0; float current_total_weight = 0.0; float current_squares_weight = 0.0; int num_elements = 0; for (int i = 0; i < num_lookups; i++) { int idx = ids->data.i32[i]; if (idx >= num_rows || idx < 0) { TF_LITE_KERNEL_LOG(context, "Embedding Lookup Sparse: index out of bounds. " "Got %d, and bounds are [0, %d]", idx, num_rows - 1); return kTfLiteError; } const int example_indices_offset = i * lookup_rank; int output_bucket = 0; int stride = 1; for (int k = (lookup_rank - 1) - 1; k >= 0; k--) { output_bucket += indices->data.i32[example_indices_offset + k] * stride; stride *= dense_shape->data.i32[k]; } const int output_offset = output_bucket * embedding_size; if (output_offset != current_output_offset) { FinalizeAggregation(params->combiner, num_elements, current_total_weight, current_squares_weight, embedding_size, &output_ptr[current_output_offset]); num_elements = 0; current_total_weight = 0.0; current_squares_weight = 0.0; current_output_offset = output_offset; } ++num_elements; const int example_embedding_offset = idx * embedding_size; const float w = weights_ptr[i]; current_squares_weight += w * w; current_total_weight += w; for (int k = 0; k < embedding_size; k++) { if (current_output_offset + k < 0) continue; if (current_output_offset + k >= output_size) continue; if (example_embedding_offset + k < 0) continue; if (example_embedding_offset + k >= values_size) continue; output_ptr[current_output_offset + k] += value_ptr[example_embedding_offset + k] * w; } } FinalizeAggregation(params->combiner, num_elements, current_total_weight, current_squares_weight, embedding_size, &GetTensorData<float>(output)[current_output_offset]); return kTfLiteOk; } } TfLiteRegistration* Register_EMBEDDING_LOOKUP_SPARSE() { static TfLiteRegistration r = {nullptr, nullptr, Prepare, Eval}; return &r; } } } }
#include <cmath> #include <functional> #include <initializer_list> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class EmbeddingLookupSparseOpModel : public SingleOpModel { public: EmbeddingLookupSparseOpModel(CombinerType type, std::initializer_list<int> lookup_shape, std::initializer_list<int> indices_shape, std::initializer_list<int> dense_shape_shape, std::initializer_list<int> value_shape) { lookup_ = AddInput(TensorType_INT32); indices_ = AddInput(TensorType_INT32); dense_shape_ = AddInput(TensorType_INT32); weights_ = AddInput(TensorType_FLOAT32); value_ = AddInput(TensorType_FLOAT32); output_ = AddOutput(TensorType_FLOAT32); SetBuiltinOp(BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, BuiltinOptions_EmbeddingLookupSparseOptions, CreateEmbeddingLookupSparseOptions(builder_, type).Union()); BuildInterpreter({lookup_shape, indices_shape, dense_shape_shape, lookup_shape, value_shape}); } void SetInput(std::initializer_list<int> lookup_data, std::initializer_list<int> indices_data, std::initializer_list<int> dense_shape_data, std::initializer_list<float> weights_data) { PopulateTensor(lookup_, lookup_data); PopulateTensor(indices_, indices_data); PopulateTensor(dense_shape_, dense_shape_data); PopulateTensor(weights_, weights_data); } void Set3DWeightMatrix(const std::function<float(int, int, int)>& function) { TfLiteTensor* tensor = interpreter_->tensor(value_); int rows = tensor->dims->data[0]; int columns = tensor->dims->data[1]; int features = tensor->dims->data[2]; float* tensor_ptr = GetTensorData<float>(tensor); for (int i = 0; i < rows; i++) { for (int j = 0; j < columns; j++) { for (int k = 0; k < features; k++) { tensor_ptr[(i * columns + j) * features + k] = function(i, j, k); } } } } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } private: int lookup_; int weights_; int indices_; int dense_shape_; int value_; int output_; }; TEST(EmbeddingLookupSparseOpTest, SimpleTest) { EmbeddingLookupSparseOpModel m(CombinerType_SUM, {3}, {3, 2}, {2}, {4, 3, 2}); m.SetInput({1, 3, 0}, {0, 0, 2, 0, 2, 1}, {3, 2}, {1.0, 2.0, 4.0}); m.Set3DWeightMatrix( [](int i, int j, int k) { return i + j / 10.0f + k / 100.0f; }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({ 1.00, 1.01, 1.10, 1.11, 1.20, 1.21, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 6.00, 6.06, 6.60, 6.66, 7.20, 7.26, }))); } TEST(EmbeddingLookupSparseOpTest, SimpleTestMean) { EmbeddingLookupSparseOpModel m(CombinerType_MEAN, {3}, {3, 2}, {2}, {4, 3, 2}); m.SetInput({1, 3, 0}, {0, 0, 2, 0, 2, 1}, {3, 2}, {1.0, 2.0, 4.0}); m.Set3DWeightMatrix( [](int i, int j, int k) { return i + j / 10.0f + k / 100.0f; }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({ 1.00, 1.01, 1.10, 1.11, 1.20, 1.21, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 1.00, 1.01, 1.10, 1.11, 1.20, 1.21, }))); } TEST(EmbeddingLookupSparseOpTest, SimpleTestSqrtn) { EmbeddingLookupSparseOpModel m(CombinerType_SQRTN, {3}, {3, 2}, {2}, {4, 3, 2}); m.SetInput({1, 3, 0}, {0, 0, 2, 0, 2, 1}, {3, 2}, {1.0, 2.0, 4.0}); m.Set3DWeightMatrix( [](int i, int j, int k) { return i + j / 10.0f + k / 100.0f; }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({ 1.00, 1.01, 1.10, 1.11, 1.20, 1.21, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 6.00f / std::sqrt(20.0f), 6.06f / std::sqrt(20.0f), 6.60f / std::sqrt(20.0f), 6.66f / std::sqrt(20.0f), 7.20f / std::sqrt(20.0f), 7.26f / std::sqrt(20.0f), }))); } TEST(EmbeddingLookupSparseOpTest, Indices3DTest) { EmbeddingLookupSparseOpModel m(CombinerType_SUM, {3}, {3, 3}, {3}, {4, 3, 2}); m.SetInput({1, 3, 0}, {0, 0, 0, 2, 0, 0, 2, 0, 1}, {3, 2, 2}, {1.0, 2.0, 4.0}); m.Set3DWeightMatrix( [](int i, int j, int k) { return i + j / 10.0f + k / 100.0f; }); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({ 1.00, 1.01, 1.10, 1.11, 1.20, 1.21, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 6.00, 6.06, 6.60, 6.66, 7.20, 7.26, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, }))); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/embedding_lookup_sparse.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/embedding_lookup_sparse_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ebba9ecb-8621-453a-873b-c3414efb080a
cpp
google/arolla
input_loader
arolla/io/input_loader.cc
arolla/io/input_loader_test.cc
#include "arolla/io/input_loader.h" #include <algorithm> #include <cstddef> #include <set> #include <string> #include <vector> #include "absl/base/nullability.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/string.h" #include "arolla/util/status_macros_backport.h" namespace arolla { absl::Status ValidateDuplicatedNames(OutputTypesSpan output_types) { absl::flat_hash_map<std::string, size_t> names_count; std::vector<std::string> duplicated_names; for (const auto& [name, type] : output_types) { size_t& count = names_count[name]; if (count == 1) { duplicated_names.push_back(name); } ++count; } if (duplicated_names.empty()) { return absl::OkStatus(); } std::sort(duplicated_names.begin(), duplicated_names.end()); return absl::FailedPreconditionError( absl::StrCat("accessors have duplicated names: ", absl::StrJoin(duplicated_names, ", "))); } absl::StatusOr<absl::flat_hash_map<std::string, QTypePtr>> GetInputLoaderQTypes( const InputLoaderBase& input_loader, absl::Span<const std::string> names) { absl::flat_hash_map<std::string, QTypePtr> types; types.reserve(names.size()); std::set<absl::string_view> unknown_types; for (const auto& name : names) { if (auto qtype = input_loader.GetQTypeOf(name); qtype != nullptr) { types.emplace(name, qtype); } else { unknown_types.emplace(name); } } if (!unknown_types.empty()) { return absl::InvalidArgumentError(absl::StrFormat( "unknown inputs: %s (available: %s)", Truncate(absl::StrJoin(unknown_types, ", "), 200), Truncate(absl::StrJoin(input_loader.SuggestAvailableNames(), ", "), 200))); } return types; } absl::Status InputLoaderBase::ValidateSlotTypes( const absl::flat_hash_map<std::string, TypedSlot>& slots) const { std::vector<std::string> names; names.reserve(slots.size()); for (const auto& [name, _] : slots) { names.emplace_back(name); } ASSIGN_OR_RETURN(auto types, GetInputLoaderQTypes(*this, names)); return VerifySlotTypes(types, slots, true, false); } absl::flat_hash_map<std::string, TypedSlot> InputLoaderBase::ExtractSupportedSlots( absl::Nonnull<absl::flat_hash_map<std::string, TypedSlot>*> slots) const { absl::flat_hash_map<std::string, TypedSlot> partial_slots; for (const auto& [name, slot] : *slots) { if (GetQTypeOf(name) == nullptr) { continue; } partial_slots.emplace(name, slot); } for (const auto& [name, _] : partial_slots) { slots->erase(name); } return partial_slots; } }
#include "arolla/io/input_loader.h" #include <cstdint> #include <memory> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/types/span.h" #include "arolla/io/accessors_input_loader.h" #include "arolla/io/testing/matchers.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" namespace arolla { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::testing::InputLoaderSupports; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::IsNull; using ::testing::Pair; using ::testing::UnorderedElementsAre; struct TestStruct { int a; double b; }; TEST(InputLoaderTest, GetInputLoaderTypes) { ASSERT_OK_AND_ASSIGN(auto loader, CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; }, "b", [](const TestStruct& s) { return s.b; })); EXPECT_THAT(GetInputLoaderQTypes(*loader, {}), IsOkAndHolds(IsEmpty())); EXPECT_THAT( GetInputLoaderQTypes(*loader, {"a"}), IsOkAndHolds(UnorderedElementsAre(Pair("a", GetQType<int32_t>())))); EXPECT_THAT( GetInputLoaderQTypes(*loader, {"a", "b"}), IsOkAndHolds(UnorderedElementsAre(Pair("a", GetQType<int32_t>()), Pair("b", GetQType<double>())))); EXPECT_THAT(GetInputLoaderQTypes(*loader, {"a", "b", "c"}), StatusIs(absl::StatusCode::kInvalidArgument, "unknown inputs: c (available: a, b)")); } TEST(InputLoaderTest, ChainInputLoaderConflict) { ASSERT_OK_AND_ASSIGN(auto loader1, CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; }, "b", [](const TestStruct& s) { return s.b; })); ASSERT_OK_AND_ASSIGN(auto loader2, CreateAccessorsInputLoader<TestStruct>( "b", [](const TestStruct& s) { return 2 * s.b; }, "c", [](const TestStruct& s) { return s.b * s.b; })); ASSERT_OK_AND_ASSIGN(auto chain_loader, ChainInputLoader<TestStruct>::Build(std::move(loader1), std::move(loader2))); FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); auto b_slot = layout_builder.AddSlot<double>(); FrameLayout memory_layout = std::move(layout_builder).Build(); ASSERT_OK_AND_ASSIGN( BoundInputLoader<TestStruct> bound_input_loader, chain_loader->Bind({{"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}})); MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame())); EXPECT_EQ(alloc.frame().Get(b_slot), 3.5); } TEST(InputLoaderTest, MakeNotOwningInputLoader) { ASSERT_OK_AND_ASSIGN(std::unique_ptr<InputLoader<TestStruct>> wrapped_loader, CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; })); std::unique_ptr<InputLoader<TestStruct>> not_owning_loader = MakeNotOwningInputLoader(wrapped_loader.get()); EXPECT_THAT(not_owning_loader->GetQTypeOf("a"), Eq(GetQType<int32_t>())); EXPECT_THAT(not_owning_loader->GetQTypeOf("b"), IsNull()); FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); FrameLayout memory_layout = std::move(layout_builder).Build(); ASSERT_OK_AND_ASSIGN( BoundInputLoader<TestStruct> bound_input_loader, not_owning_loader->Bind({{"a", TypedSlot::FromSlot(a_slot)}})); MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame())); EXPECT_EQ(alloc.frame().Get(a_slot), 5); } TEST(InputLoaderTest, MakeSharedOwningInputLoader) { std::unique_ptr<InputLoader<TestStruct>> shared_owning_loader; { ASSERT_OK_AND_ASSIGN( std::shared_ptr<const InputLoader<TestStruct>> wrapped_loader, CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; })); shared_owning_loader = MakeSharedOwningInputLoader(wrapped_loader); } EXPECT_THAT(shared_owning_loader->GetQTypeOf("a"), Eq(GetQType<int32_t>())); EXPECT_THAT(shared_owning_loader->GetQTypeOf("b"), IsNull()); FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); FrameLayout memory_layout = std::move(layout_builder).Build(); ASSERT_OK_AND_ASSIGN( BoundInputLoader<TestStruct> bound_input_loader, shared_owning_loader->Bind({{"a", TypedSlot::FromSlot(a_slot)}})); MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame())); EXPECT_EQ(alloc.frame().Get(a_slot), 5); } TEST(InputLoaderTest, BindInputLoaderList) { FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); auto b_slot = layout_builder.AddSlot<double>(); auto c_slot = layout_builder.AddSlot<double>(); FrameLayout memory_layout = std::move(layout_builder).Build(); std::vector<std::unique_ptr<InputLoader<TestStruct>>> input_loaders; ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; })); ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "b", [](const TestStruct& s) { return s.b; })); ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "b", [](const TestStruct& s) { return int{0}; }, "c", [](const TestStruct& s) { return s.b * s.b; })); ASSERT_OK_AND_ASSIGN( std::vector<BoundInputLoader<TestStruct>> bound_input_loaders, BindInputLoaderList<TestStruct>(input_loaders, { {"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}, {"c", TypedSlot::FromSlot(c_slot)}, })); MemoryAllocation alloc(&memory_layout); TestStruct input{5, 3.5}; for (const auto& bound_input_loader : bound_input_loaders) { ASSERT_OK(bound_input_loader(input, alloc.frame())); } EXPECT_EQ(alloc.frame().Get(a_slot), 5); EXPECT_EQ(alloc.frame().Get(b_slot), 3.5); EXPECT_EQ(alloc.frame().Get(c_slot), 3.5 * 3.5); } TEST(InputLoaderTest, BindInputLoaderListErrors) { FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); auto b_slot = layout_builder.AddSlot<double>(); auto c_slot = layout_builder.AddSlot<double>(); FrameLayout memory_layout = std::move(layout_builder).Build(); std::vector<std::unique_ptr<InputLoader<TestStruct>>> input_loaders; ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; })); ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "b", [](const TestStruct& s) { return s.b; })); EXPECT_THAT( BindInputLoaderList<TestStruct>(input_loaders, { {"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}, {"c", TypedSlot::FromSlot(c_slot)}, }), StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("not all"))); } TEST(InputLoaderTest, FilteringInputLoader) { auto i32 = GetQType<int32_t>(); auto f64 = GetQType<double>(); ASSERT_OK_AND_ASSIGN(auto inner_loader, CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; }, "b", [](const TestStruct& s) { return s.b; })); EXPECT_THAT(inner_loader->GetQTypeOf("a"), Eq(i32)); EXPECT_THAT(inner_loader->GetQTypeOf("b"), Eq(f64)); auto filtered_loader = MakeFilteringInputLoader(std::move(inner_loader), {"a"}); EXPECT_THAT(filtered_loader->GetQTypeOf("a"), Eq(i32)); EXPECT_THAT(filtered_loader->GetQTypeOf("b"), IsNull()); FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); auto b_slot = layout_builder.AddSlot<double>(); FrameLayout memory_layout = std::move(layout_builder).Build(); EXPECT_THAT(filtered_loader->Bind({{"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}}), StatusIs(absl::StatusCode::kInvalidArgument, "unknown inputs: b (available: a)")); ASSERT_OK_AND_ASSIGN( BoundInputLoader<TestStruct> bound_input_loader, filtered_loader->Bind({{"a", TypedSlot::FromSlot(a_slot)}})); MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame())); EXPECT_EQ(alloc.frame().Get(a_slot), 5); } TEST(InputLoaderTest, ChainInputLoader) { auto i32 = GetQType<int32_t>(); auto f64 = GetQType<double>(); std::unique_ptr<InputLoader<TestStruct>> chain_input_loader; { ASSERT_OK_AND_ASSIGN(auto loader1, CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; })); ASSERT_OK_AND_ASSIGN(auto loader2, CreateAccessorsInputLoader<TestStruct>( "b", [](const TestStruct& s) { return s.b; })); ASSERT_OK_AND_ASSIGN( auto loader3, CreateAccessorsInputLoader<TestStruct>( "c", [](const TestStruct& s) { return s.b * s.b; })); ASSERT_OK_AND_ASSIGN( chain_input_loader, ChainInputLoader<TestStruct>::Build( std::move(loader1), std::move(loader2), std::move(loader3))); } FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); auto b_slot = layout_builder.AddSlot<double>(); auto c_slot = layout_builder.AddSlot<double>(); FrameLayout memory_layout = std::move(layout_builder).Build(); EXPECT_THAT(*chain_input_loader, InputLoaderSupports({{"a", i32}, {"b", f64}, {"c", f64}})); ASSERT_OK_AND_ASSIGN(BoundInputLoader<TestStruct> bound_input_loader, chain_input_loader->Bind({ {"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}, {"c", TypedSlot::FromSlot(c_slot)}, })); MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame())); EXPECT_EQ(alloc.frame().Get(a_slot), 5); EXPECT_EQ(alloc.frame().Get(b_slot), 3.5); EXPECT_EQ(alloc.frame().Get(c_slot), 3.5 * 3.5); } TEST(InputLoaderTest, ChainInputLoaderFactoryPropagated) { auto qbool = GetQType<bool>(); std::unique_ptr<InputLoader<TestStruct>> input_loader; UnsafeArenaBufferFactory global_factory1(1000); UnsafeArenaBufferFactory global_factory2(1000); { ASSERT_OK_AND_ASSIGN(auto loader1, CreateAccessorsInputLoader<TestStruct>( "a", [&](const TestStruct&, RawBufferFactory* factory) { return factory == &global_factory1; })); ASSERT_OK_AND_ASSIGN(auto loader2, CreateAccessorsInputLoader<TestStruct>( "b", [&](const TestStruct&, RawBufferFactory* factory) { return factory == &global_factory2; })); ASSERT_OK_AND_ASSIGN( input_loader, ChainInputLoader<TestStruct>::Build(std::move(loader1), std::move(loader2))); } FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<bool>(); auto b_slot = layout_builder.AddSlot<bool>(); FrameLayout memory_layout = std::move(layout_builder).Build(); EXPECT_THAT(input_loader, InputLoaderSupports({{"a", qbool}, {"b", qbool}})); ASSERT_OK_AND_ASSIGN(BoundInputLoader<TestStruct> bound_input_loader, input_loader->Bind({ {"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}, })); MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame(), &global_factory1)); EXPECT_TRUE(alloc.frame().Get(a_slot)); EXPECT_FALSE(alloc.frame().Get(b_slot)); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame(), &global_factory2)); EXPECT_FALSE(alloc.frame().Get(a_slot)); EXPECT_TRUE(alloc.frame().Get(b_slot)); } TEST(InputLoaderTest, ChainInputLoaderWithCustomInvoke) { auto i32 = GetQType<int32_t>(); auto f64 = GetQType<double>(); std::unique_ptr<InputLoader<TestStruct>> chain_input_loader; FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); auto b_slot = layout_builder.AddSlot<double>(); auto c_slot = layout_builder.AddSlot<double>(); FrameLayout memory_layout = std::move(layout_builder).Build(); int64_t number_of_loaders = -1; { std::vector<std::unique_ptr<InputLoader<TestStruct>>> input_loaders; ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; })); ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "b", [](const TestStruct& s) { return s.b; })); ASSERT_OK_AND_ASSIGN( input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "c", [](const TestStruct& s) { return s.b * s.b; })); ASSERT_OK_AND_ASSIGN( chain_input_loader, ChainInputLoader<TestStruct>::Build( std::move(input_loaders), [&number_of_loaders]( absl::Span<const BoundInputLoader<TestStruct>> loaders, const TestStruct& input, FramePtr frame, RawBufferFactory* factory) { number_of_loaders = loaders.size(); return ChainInputLoader<TestStruct>::InvokeBoundLoaders( loaders, input, frame, factory); })); EXPECT_THAT(*chain_input_loader, InputLoaderSupports({{"a", i32}, {"b", f64}, {"c", f64}})); } BoundInputLoader<TestStruct> bound_input_loader(nullptr); { ASSERT_OK_AND_ASSIGN(bound_input_loader, chain_input_loader->Bind({ {"a", TypedSlot::FromSlot(a_slot)}, {"b", TypedSlot::FromSlot(b_slot)}, {"c", TypedSlot::FromSlot(c_slot)}, })); } MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame())); EXPECT_EQ(number_of_loaders, 3); EXPECT_EQ(alloc.frame().Get(a_slot), 5); EXPECT_EQ(alloc.frame().Get(b_slot), 3.5); EXPECT_EQ(alloc.frame().Get(c_slot), 3.5 * 3.5); } TEST(InputLoaderTest, ChainInputLoaderWithCustomInvokeOptimized) { auto i32 = GetQType<int32_t>(); auto f64 = GetQType<double>(); std::unique_ptr<InputLoader<TestStruct>> chain_input_loader; FrameLayout::Builder layout_builder; auto a_slot = layout_builder.AddSlot<int>(); FrameLayout memory_layout = std::move(layout_builder).Build(); int64_t number_of_loaders = -1; { std::vector<std::unique_ptr<InputLoader<TestStruct>>> input_loaders; ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "a", [](const TestStruct& s) { return s.a; })); ASSERT_OK_AND_ASSIGN(input_loaders.emplace_back(), CreateAccessorsInputLoader<TestStruct>( "b", [](const TestStruct& s) { return s.b; })); ASSERT_OK_AND_ASSIGN( chain_input_loader, ChainInputLoader<TestStruct>::Build( std::move(input_loaders), [&number_of_loaders]( absl::Span<const BoundInputLoader<TestStruct>> loaders, const TestStruct& input, FramePtr frame, RawBufferFactory* factory) { number_of_loaders = loaders.size(); return ChainInputLoader<TestStruct>::InvokeBoundLoaders( loaders, input, frame, factory); })); EXPECT_THAT(*chain_input_loader, InputLoaderSupports({{"a", i32}, {"b", f64}})); } BoundInputLoader<TestStruct> bound_input_loader(nullptr); { ASSERT_OK_AND_ASSIGN(bound_input_loader, chain_input_loader->Bind({ {"a", TypedSlot::FromSlot(a_slot)}, })); } MemoryAllocation alloc(&memory_layout); ASSERT_OK(bound_input_loader({5, 3.5}, alloc.frame())); EXPECT_EQ(number_of_loaders, -1); EXPECT_EQ(alloc.frame().Get(a_slot), 5); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/input_loader.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/io/input_loader_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
deff4997-313c-46ca-95fa-0d88650e66ce
cpp
google/cel-cpp
validation_result
checker/validation_result.h
checker/validation_result_test.cc
#ifndef THIRD_PARTY_CEL_CPP_CHECKER_VALIDATION_RESULT_H_ #define THIRD_PARTY_CEL_CPP_CHECKER_VALIDATION_RESULT_H_ #include <memory> #include <utility> #include <vector> #include "absl/base/nullability.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "checker/type_check_issue.h" #include "common/ast.h" namespace cel { class ValidationResult { public: ValidationResult(std::unique_ptr<Ast> ast, std::vector<TypeCheckIssue> issues) : ast_(std::move(ast)), issues_(std::move(issues)) {} explicit ValidationResult(std::vector<TypeCheckIssue> issues) : ast_(nullptr), issues_(std::move(issues)) {} bool IsValid() const { return ast_ != nullptr; } absl::Nullable<const Ast*> GetAst() const { return ast_.get(); } absl::StatusOr<std::unique_ptr<Ast>> ReleaseAst() { if (ast_ == nullptr) { return absl::FailedPreconditionError( "ValidationResult is empty. Check for TypeCheckIssues."); } return std::move(ast_); } absl::Span<const TypeCheckIssue> GetIssues() const { return issues_; } private: absl::Nullable<std::unique_ptr<Ast>> ast_; std::vector<TypeCheckIssue> issues_; }; } #endif
#include "checker/validation_result.h" #include <memory> #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "base/ast_internal/ast_impl.h" #include "checker/type_check_issue.h" #include "internal/testing.h" namespace cel { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::cel::ast_internal::AstImpl; using ::testing::_; using ::testing::IsNull; using ::testing::NotNull; using ::testing::SizeIs; using Severity = TypeCheckIssue::Severity; TEST(ValidationResultTest, IsValidWithAst) { ValidationResult result(std::make_unique<AstImpl>(), {}); EXPECT_TRUE(result.IsValid()); EXPECT_THAT(result.GetAst(), NotNull()); EXPECT_THAT(result.ReleaseAst(), IsOkAndHolds(NotNull())); } TEST(ValidationResultTest, IsNotValidWithoutAst) { ValidationResult result({}); EXPECT_FALSE(result.IsValid()); EXPECT_THAT(result.GetAst(), IsNull()); EXPECT_THAT(result.ReleaseAst(), StatusIs(absl::StatusCode::kFailedPrecondition, _)); } TEST(ValidationResultTest, GetIssues) { ValidationResult result( {TypeCheckIssue::CreateError({-1, -1}, "Issue1"), TypeCheckIssue(Severity::kInformation, {-1, -1}, "Issue2")}); EXPECT_FALSE(result.IsValid()); ASSERT_THAT(result.GetIssues(), SizeIs(2)); EXPECT_THAT(result.GetIssues()[0].message(), "Issue1"); EXPECT_THAT(result.GetIssues()[0].severity(), Severity::kError); EXPECT_THAT(result.GetIssues()[1].message(), "Issue2"); EXPECT_THAT(result.GetIssues()[1].severity(), Severity::kInformation); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/validation_result.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/validation_result_test.cc
4552db5798fb0853b131b783d8875794334fae7f
8f4efb58-88af-470d-a5f6-790410917c2f
cpp
tensorflow/tensorflow
buf_rendezvous
tensorflow/core/common_runtime/buf_rendezvous.cc
tensorflow/core/common_runtime/buf_rendezvous_test.cc
#include "tensorflow/core/common_runtime/buf_rendezvous.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/notification.h" namespace tensorflow { namespace { void DeregisterCancellation(BufRendezvous::Hook* h) { if (h->cancellation_manager != nullptr) { h->cancellation_manager->DeregisterCallback(h->cancellation_token); h->cancellation_manager = nullptr; h->cancellation_token = CancellationManager::kInvalidToken; } } } BufRendezvous::~BufRendezvous() { mutex_lock l(mu_); if (!hook_table_.empty()) { PurgeTable(errors::Internal("Delete called on non-empty BufRendezvous"), &hook_table_); } } void BufRendezvous::StartAbort(const Status& s) { CHECK(!s.ok()); HookTable dummy_table; { mutex_lock l(mu_); status_.Update(StatusGroup::MakeDerived(s)); hook_table_.swap(dummy_table); } PurgeTable(s, &dummy_table); } void BufRendezvous::PurgeTable(const Status& s, HookTable* table) { for (auto& it : *table) { Hook* h = it.second; if (h->cancellation_manager != nullptr) { h->cancellation_manager->TryDeregisterCallback(h->cancellation_token); } if (h->cons_cb != nullptr) { h->cons_cb(s, nullptr); } if (h->prod_cb != nullptr) { h->prod_cb(s); } delete h; } table->clear(); } string BufRendezvous::Hook::DebugString() const { return absl::StrCat( "[dev:", (prod_dev ? prod_dev->name() : "none"), ", ctx:", reinterpret_cast<uint64>(prod_ctx), ", val:", reinterpret_cast<uint64>(prod_value), ", pcb:", prod_cb ? reinterpret_cast<uint64>(&prod_cb) : 0, ", ccb:", cons_cb ? reinterpret_cast<uint64>(&cons_cb) : 0, "]"); } void BufRendezvous::ProvideBuf(const string& key, Device* dev, DeviceContext* dev_ctx, const Tensor* v, const AllocatorAttributes& attr, const ProducerCallback& done, CancellationManager* cancellation_manager) { DVLOG(4) << "ProvideBuf: key = " << key; #ifndef NDEBUG if (VLOG_IS_ON(4)) { LogContents(); } #endif Hook* h = nullptr; Status providebuf_status; do { mutex_lock l(mu_); if (!status_.ok()) { providebuf_status = status_; break; } else { CancellationToken cancellation_token = CancellationManager::kInvalidToken; auto it = hook_table_.find(key); if (it == hook_table_.end()) { if (cancellation_manager != nullptr) { cancellation_token = cancellation_manager->get_cancellation_token(); } h = new Hook(cancellation_manager, cancellation_token); it = hook_table_.insert(std::make_pair(key, h)).first; } else { if (it->second->prod_cb != nullptr) { providebuf_status = errors::Internal( "BufRendezvous::ProvideBuf already called for key ", key); break; } h = it->second; } h->prod_dev = dev; h->prod_ctx = dev_ctx; h->prod_value = v; h->prod_attr = attr; h->prod_cb = done; if (h->cons_cb != nullptr) { hook_table_.erase(it); } else { if (cancellation_manager != nullptr && !cancellation_manager->RegisterCallback( cancellation_token, [this, key]() { CancelHook(key); })) { providebuf_status = errors::Cancelled( "Operation was cancelled for BufRendezvous key ", key); hook_table_.erase(it); delete h; } h = nullptr; } } } while (false); if (h) { DVLOG(4) << "ProvideBuf: key = " << key << ": calling cons_cb" << h->DebugString(); DeregisterCancellation(h); h->cons_cb(absl::OkStatus(), h); } if (!providebuf_status.ok()) { done(providebuf_status); } } void BufRendezvous::ConsumeBuf(const string& key, const string& device_name, const uint64 device_incarnation, const ConsumerCallback& done, CancellationManager* cancellation_manager) { DVLOG(4) << "ConsumeBuf: key = " << key << " device_name = " << device_name; #ifndef NDEBUG if (VLOG_IS_ON(4)) { LogContents(); } #endif Device* device; Status consumebuf_status = dev_mgr_->LookupDevice(device_name, &device); if (consumebuf_status.ok() && device->attributes().incarnation() != device_incarnation) { consumebuf_status = errors::FailedPrecondition( "RecvBuf expects a different device incarnation: ", device_incarnation, " vs. ", device->attributes().incarnation(), ". Your worker job that contains the device (\"", device_name, "\") was probably restarted. Check your " "worker job for the reason why it was restarted."); } if (!consumebuf_status.ok()) { done(consumebuf_status, nullptr); return; } Hook* existing_hook = nullptr; do { mutex_lock l(mu_); if (!status_.ok()) { consumebuf_status = status_; break; } auto it = hook_table_.find(key); if (it != hook_table_.end()) { if (it->second->cons_cb) { consumebuf_status = errors::Internal("Second consumer arrived for key ", key); break; } existing_hook = it->second; hook_table_.erase(it); existing_hook->cons_cb = done; } else { CancellationToken cancellation_token = CancellationManager::kInvalidToken; bool already_cancelled = false; if (cancellation_manager != nullptr) { cancellation_token = cancellation_manager->get_cancellation_token(); already_cancelled = !cancellation_manager->RegisterCallback( cancellation_token, [this, key]() { CancelHook(key); }); } if (already_cancelled) { consumebuf_status = errors::Cancelled( "Operation was cancelled for BufRendezvous key ", key); } else { Hook* h = new Hook(cancellation_manager, cancellation_token); h->cons_cb = done; it = hook_table_.insert(std::make_pair(key, h)).first; return; } } } while (false); if (existing_hook) { DVLOG(4) << "ConsumeBuf: key = " << key << ": calling cons_cb" << existing_hook->DebugString(); DeregisterCancellation(existing_hook); existing_hook->cons_cb(absl::OkStatus(), existing_hook); return; } if (!consumebuf_status.ok()) { done(consumebuf_status, nullptr); return; } } void BufRendezvous::CancelHook(const string& key) { Hook* h = nullptr; { mutex_lock l(mu_); auto it = hook_table_.find(key); if (it == hook_table_.end()) return; h = it->second; hook_table_.erase(it); } if (h != nullptr) { auto s = errors::Cancelled("Operation was cancelled for BufRendezvous key ", key); if (h->prod_cb != nullptr) { h->prod_cb(s); } if (h->cons_cb != nullptr) { h->cons_cb(s, nullptr); } delete h; } } void BufRendezvous::DoneWithHook(Hook* h) { h->prod_cb(absl::OkStatus()); delete h; } void BufRendezvous::LogContents() { mutex_lock l(mu_); LOG(INFO) << strings::StrCat("BufRendezvous ", strings::Hex(reinterpret_cast<uint64>(this)), " step_id=", step_id_, " current contents:"); for (const auto& it : hook_table_) { LOG(INFO) << it.first << ":" << it.second->DebugString(); } } }
#include "tensorflow/core/common_runtime/buf_rendezvous.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class BufRendezvousTest : public ::testing::Test { protected: static std::unique_ptr<Device> NewDevice(const string& name, const string& type, const uint64 incarnation) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attrs) : Device(nullptr, attrs) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return nullptr; } }; DeviceAttributes attrs; attrs.set_name(name); attrs.set_device_type(type); attrs.set_incarnation(incarnation); return std::make_unique<FakeDevice>(attrs); } void InitializeDevice(const string& device, const string& type, const uint64 incarnation) { std::vector<std::unique_ptr<Device>> devices; devices.push_back(NewDevice(device, type, incarnation)); dev_mgr_ = std::make_unique<StaticDeviceMgr>(std::move(devices)); br_ = std::make_unique<BufRendezvous>(123, dev_mgr_.get()); } BufRendezvousTest() : a_(Tensor(DT_FLOAT, TensorShape({24}))), b_(Tensor(DT_FLOAT, TensorShape({24}))), fake_device_context_(reinterpret_cast<DeviceContext*>(1024LLU)) { InitializeDevice(*kDefaultDeviceName, "CPU", kDefaultIncarnation); TF_CHECK_OK(dev_mgr_->LookupDevice(*kDefaultDeviceName, &default_device_)); } Tensor a_; Tensor b_; AllocatorAttributes aa_; Device* default_device_; DeviceContext* fake_device_context_; std::unique_ptr<DeviceMgr> dev_mgr_; std::unique_ptr<BufRendezvous> br_; CancellationManager cm_; static const string* const kDefaultKey; static const string* const kDefaultDeviceName; static const uint64 kDefaultIncarnation; }; const string* const BufRendezvousTest::kDefaultKey = new string("key0"); const string* const BufRendezvousTest::kDefaultDeviceName = new string("/device:CPU:0"); const uint64 BufRendezvousTest::kDefaultIncarnation = 12345; TEST_F(BufRendezvousTest, CorrectUseProducerFirst) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&note, &prod_status, &prod_callback_called](const Status& s) { prod_status = s; prod_callback_called = true; note.Notify(); }, &cm_); EXPECT_FALSE(prod_callback_called); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [this, &cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_callback_called = true; ASSERT_TRUE(h != nullptr); EXPECT_EQ(h->prod_dev, default_device_); EXPECT_EQ(h->prod_ctx, fake_device_context_); EXPECT_EQ(h->prod_value, &a_); br_->DoneWithHook(h); }, &cm_); EXPECT_TRUE(cons_callback_called); note.WaitForNotification(); EXPECT_TRUE(prod_callback_called); TF_EXPECT_OK(cons_status); TF_EXPECT_OK(prod_status); } TEST_F(BufRendezvousTest, CorrectUseConsumerFirst) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; Notification note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [this, &cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_callback_called = true; ASSERT_TRUE(h != nullptr); EXPECT_EQ(h->prod_dev, default_device_); EXPECT_EQ(h->prod_ctx, fake_device_context_); EXPECT_EQ(h->prod_value, &a_); br_->DoneWithHook(h); }, &cm_); EXPECT_FALSE(cons_callback_called); br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&note, &prod_status, &prod_callback_called](const Status& s) { prod_status = s; prod_callback_called = true; note.Notify(); }, &cm_); EXPECT_TRUE(cons_callback_called); note.WaitForNotification(); EXPECT_TRUE(prod_callback_called); TF_EXPECT_OK(cons_status); TF_EXPECT_OK(prod_status); } TEST_F(BufRendezvousTest, ErrorDuplicatePut) { bool prod_callback_called = false; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&prod_callback_called](const Status& s) { prod_callback_called = true; }, &cm_); Status bad_status; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&bad_status, &note](const Status& s) { bad_status = s; note.Notify(); }, &cm_); note.WaitForNotification(); EXPECT_FALSE(bad_status.ok()); EXPECT_EQ(absl::StrCat("BufRendezvous::ProvideBuf already called for key ", *kDefaultKey), bad_status.message()); EXPECT_FALSE(prod_callback_called); br_.reset(); } TEST_F(BufRendezvousTest, ErrorDeleteNonEmpty) { Status cons_status; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; EXPECT_EQ(h, nullptr); }, &cm_); EXPECT_TRUE(cons_status.ok()); br_.reset(); EXPECT_FALSE(cons_status.ok()); EXPECT_EQ("Delete called on non-empty BufRendezvous", cons_status.message()); } TEST_F(BufRendezvousTest, AbortNonEmpty) { Status cons_status; Status prod_status; Notification prod_note; Notification cons_note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_note, &cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_note.Notify(); }, &cm_); br_->ProvideBuf( "key1", default_device_, fake_device_context_, &a_, aa_, [&prod_note, &prod_status](const Status& s) { prod_status = s; prod_note.Notify(); }, &cm_); br_->StartAbort(errors::Internal("Falling sky detected")); prod_note.WaitForNotification(); cons_note.WaitForNotification(); EXPECT_FALSE(prod_status.ok()); EXPECT_EQ(prod_status.message(), "Falling sky detected"); EXPECT_FALSE(cons_status.ok()); EXPECT_EQ(cons_status.message(), "Falling sky detected"); } TEST_F(BufRendezvousTest, AbortEmpty) { br_->StartAbort(errors::Internal("Falling sky detected")); } TEST_F(BufRendezvousTest, UseAfterAbort) { br_->StartAbort(errors::Internal("Falling sky detected")); Status cons_status; Status prod_status; Notification prod_note; Notification cons_note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_note, &cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_note.Notify(); }, &cm_); br_->ProvideBuf( "key1", default_device_, fake_device_context_, &a_, aa_, [&prod_note, &prod_status](const Status& s) { prod_status = s; prod_note.Notify(); }, &cm_); prod_note.WaitForNotification(); cons_note.WaitForNotification(); EXPECT_FALSE(prod_status.ok()); EXPECT_NE(prod_status.message().find("Falling sky detected"), string::npos); EXPECT_FALSE(cons_status.ok()); EXPECT_NE(cons_status.message().find("Falling sky detected"), string::npos); } TEST_F(BufRendezvousTest, DeviceIncarnationMismatch) { Status cons_status; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [](const Status&) {}, nullptr); const uint64 incorrect_incarnation = 23456; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, incorrect_incarnation, [&note, &cons_status](const Status& s, BufRendezvous::Hook* h) { cons_status = s; note.Notify(); }, nullptr); note.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(cons_status)); } TEST_F(BufRendezvousTest, ProvideThenCancel) { Status status; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&status, &note](const Status& s) { status = s; note.Notify(); }, &cm_); cm_.StartCancel(); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, CancelThenProvide) { Status status; Notification note; cm_.StartCancel(); br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&status, &note](const Status& s) { status = s; note.Notify(); }, &cm_); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, ConsumeThenCancel) { Status status; Notification note; br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&status, &note](const Status& s, BufRendezvous::Hook* h) { status = s; note.Notify(); }, &cm_); cm_.StartCancel(); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, CancelThenConsume) { Status status; Notification note; cm_.StartCancel(); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&status, &note](const Status& s, BufRendezvous::Hook* h) { status = s; note.Notify(); }, &cm_); note.WaitForNotification(); EXPECT_TRUE(errors::IsCancelled(status)); EXPECT_NE( status.message().find(absl::StrCat( "Operation was cancelled for BufRendezvous key ", *kDefaultKey)), string::npos); } TEST_F(BufRendezvousTest, ProvideConsumeThenCancel) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; Notification note; br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&note, &prod_status, &prod_callback_called](const Status& s) { prod_status = s; prod_callback_called = true; note.Notify(); }, &cm_); EXPECT_FALSE(prod_callback_called); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [this, &cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; cons_callback_called = true; ASSERT_TRUE(h != nullptr); EXPECT_EQ(h->prod_dev, default_device_); EXPECT_EQ(h->prod_ctx, fake_device_context_); EXPECT_EQ(h->prod_value, &a_); br_->DoneWithHook(h); }, &cm_); note.WaitForNotification(); cm_.StartCancel(); EXPECT_TRUE(cons_callback_called); EXPECT_TRUE(prod_callback_called); TF_EXPECT_OK(cons_status); TF_EXPECT_OK(prod_status); } TEST_F(BufRendezvousTest, CancelThenProvideConsume) { Status prod_status; Status cons_status; bool prod_callback_called = false; bool cons_callback_called = false; cm_.StartCancel(); br_->ProvideBuf( *kDefaultKey, default_device_, fake_device_context_, &a_, aa_, [&prod_status, &prod_callback_called](const Status& s) { prod_status = s; EXPECT_TRUE(errors::IsCancelled(prod_status)); prod_callback_called = true; }, &cm_); EXPECT_TRUE(prod_callback_called); EXPECT_TRUE(errors::IsCancelled(prod_status)); br_->ConsumeBuf( *kDefaultKey, *kDefaultDeviceName, kDefaultIncarnation, [&cons_status, &cons_callback_called](const Status& s, BufRendezvous::Hook* h) { cons_status = s; EXPECT_TRUE(errors::IsCancelled(cons_status)); cons_callback_called = true; }, &cm_); EXPECT_TRUE(cons_callback_called); EXPECT_TRUE(errors::IsCancelled(cons_status)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/buf_rendezvous.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/buf_rendezvous_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
2478c4a4-5745-42fe-abaf-6b65cb3276c5
cpp
google/cel-cpp
list_type
common/types/list_type.cc
common/types/list_type_test.cc
#include <string> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/log/absl_check.h" #include "absl/strings/str_cat.h" #include "common/type.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" namespace cel { namespace common_internal { namespace { ABSL_CONST_INIT const ListTypeData kDynListTypeData; } absl::Nonnull<ListTypeData*> ListTypeData::Create( absl::Nonnull<google::protobuf::Arena*> arena, const Type& element) { return ::new (arena->AllocateAligned( sizeof(ListTypeData), alignof(ListTypeData))) ListTypeData(element); } ListTypeData::ListTypeData(const Type& element) : element(element) {} } ListType::ListType() : ListType(&common_internal::kDynListTypeData) {} ListType::ListType(absl::Nonnull<google::protobuf::Arena*> arena, const Type& element) : ListType(element.IsDyn() ? &common_internal::kDynListTypeData : common_internal::ListTypeData::Create(arena, element)) {} std::string ListType::DebugString() const { return absl::StrCat("list<", element().DebugString(), ">"); } TypeParameters ListType::GetParameters() const { return TypeParameters(GetElement()); } Type ListType::GetElement() const { ABSL_DCHECK_NE(data_, 0); if ((data_ & kBasicBit) == kBasicBit) { return reinterpret_cast<const common_internal::ListTypeData*>(data_ & kPointerMask) ->element; } if ((data_ & kProtoBit) == kProtoBit) { return common_internal::SingularMessageFieldType( reinterpret_cast<const google::protobuf::FieldDescriptor*>(data_ & kPointerMask)); } return Type(); } Type ListType::element() const { return GetElement(); } }
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" #include "google/protobuf/arena.h" namespace cel { namespace { TEST(ListType, Default) { ListType list_type; EXPECT_EQ(list_type.element(), DynType()); } TEST(ListType, Kind) { google::protobuf::Arena arena; EXPECT_EQ(ListType(&arena, BoolType()).kind(), ListType::kKind); EXPECT_EQ(Type(ListType(&arena, BoolType())).kind(), ListType::kKind); } TEST(ListType, Name) { google::protobuf::Arena arena; EXPECT_EQ(ListType(&arena, BoolType()).name(), ListType::kName); EXPECT_EQ(Type(ListType(&arena, BoolType())).name(), ListType::kName); } TEST(ListType, DebugString) { google::protobuf::Arena arena; { std::ostringstream out; out << ListType(&arena, BoolType()); EXPECT_EQ(out.str(), "list<bool>"); } { std::ostringstream out; out << Type(ListType(&arena, BoolType())); EXPECT_EQ(out.str(), "list<bool>"); } } TEST(ListType, Hash) { google::protobuf::Arena arena; EXPECT_EQ(absl::HashOf(ListType(&arena, BoolType())), absl::HashOf(ListType(&arena, BoolType()))); } TEST(ListType, Equal) { google::protobuf::Arena arena; EXPECT_EQ(ListType(&arena, BoolType()), ListType(&arena, BoolType())); EXPECT_EQ(Type(ListType(&arena, BoolType())), ListType(&arena, BoolType())); EXPECT_EQ(ListType(&arena, BoolType()), Type(ListType(&arena, BoolType()))); EXPECT_EQ(Type(ListType(&arena, BoolType())), Type(ListType(&arena, BoolType()))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/list_type.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/list_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
517e8f1b-746b-423f-b004-526620287e60
cpp
tensorflow/tensorflow
rgb_to_yuv
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv.cc
tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/algo/image_utils.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace rgb_to_yuv { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; constexpr float kRgb2YuvKernel[] = {0.299f, 0.587f, 0.114f, -0.14714119f, -0.28886916f, 0.43601035f, 0.61497538f, -0.51496512f, -0.10001026f}; constexpr int kRgb2YuvKernelSize = sizeof(kRgb2YuvKernel) / sizeof(kRgb2YuvKernel[0]); void ComputeRgbToYuv(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* input_data = reinterpret_cast<const float*>(img->Data()); const dim_t batches = img->Dims()[0]; const dim_t height = img->Dims()[1]; const dim_t width = img->Dims()[2]; const dim_t channels = img->Dims()[3]; TFLITE_DCHECK(channels == 3); MutableDataRef* output = outputs[0]; output->Resize({batches, height, width, channels}); float* output_data = reinterpret_cast<float*>(output->Data()); ConvertColorSpace(batches, height, width, input_data, output_data, &kRgb2YuvKernel[0], kRgb2YuvKernelSize); } } const Algo* Impl_RgbToYuv() { static const Algo rgb_to_yuv = {&ComputeRgbToYuv, nullptr}; return &rgb_to_yuv; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace rgb_to_yuv { namespace { struct Rgb2YuvTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; const std::vector<dim_t> expected_shape; }; class Rgb2YuvTest : public ::testing::TestWithParam<Rgb2YuvTestParams> {}; TEST_P(Rgb2YuvTest, FloatPixelType) { constexpr float kAbsError = 0.1f; const Rgb2YuvTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* rgb_to_yuv = Impl_RgbToYuv(); rgb_to_yuv->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), params.expected_shape); const float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( Rgb2YuvTests, Rgb2YuvTest, testing::ValuesIn({ Rgb2YuvTestParams{{1, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, { 92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f, }, {1, 3, 2, 3}}, Rgb2YuvTestParams{{2, 3, 2, 3}, {11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232, 11, 111, 211, 12, 112, 212, 21, 121, 221, 22, 122, 222, 31, 131, 231, 32, 132, 232}, {92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f, 92.5f, 58.3f, -71.5f, 93.5f, 58.3f, -71.5f, 102.5f, 58.3f, -71.5f, 103.5f, 58.3f, -71.5f, 112.5f, 58.3f, -71.5f, 113.5f, 58.3f, -71.5f}, {2, 3, 2, 3}}, })); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/algo/rgb_to_yuv_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a537f92-18a4-4555-9980-088c5e663ff9
cpp
tensorflow/tensorflow
dot_sparsity_rewriter
third_party/xla/xla/service/gpu/transforms/dot_sparsity_rewriter.cc
third_party/xla/xla/service/gpu/transforms/dot_sparsity_rewriter_test.cc
#include "xla/service/gpu/transforms/dot_sparsity_rewriter.h" #include <utility> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_creation_utils.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { class SparseDotRewriterImpl : public DfsHloRewriteVisitor { public: absl::Status HandleDot(HloInstruction* instr) override { HloDotInstruction* dot = Cast<HloDotInstruction>(instr); if (dot->sparse_operands() != 1 || dot->sparsity().front().index() != 1) { return absl::OkStatus(); } HloInstruction* lhs = dot->mutable_operand(0); HloInstruction* rhs = dot->mutable_operand(1); HloInstruction* meta = dot->mutable_operand(2); DotDimensionNumbers dnums = dot->dot_dimension_numbers(); std::swap(*dnums.mutable_lhs_batch_dimensions(), *dnums.mutable_rhs_batch_dimensions()); std::swap(*dnums.mutable_lhs_contracting_dimensions(), *dnums.mutable_rhs_contracting_dimensions()); PrecisionConfig precision_config = dot->precision_config(); std::swap(precision_config.mutable_operand_precision()->at(0), precision_config.mutable_operand_precision()->at(1)); SparsityDescriptor sparsity = dot->sparsity().front(); sparsity.set_index(0); TF_ASSIGN_OR_RETURN( HloInstruction * new_dot, MakeDotHlo(rhs, lhs, dnums, precision_config, dot->shape().element_type(), {std::move(sparsity)}, {meta})); dot->SetupDerivedInstruction(new_dot); int batch_dims = dnums.lhs_batch_dimensions().size(); int new_lhs_noncontracting = rhs->shape().rank() - batch_dims - dnums.lhs_contracting_dimensions().size(); int new_rhs_noncontracting = lhs->shape().rank() - batch_dims - dnums.rhs_contracting_dimensions().size(); int rank = dot->shape().rank(); DimensionVector dimensions(rank); for (int i = 0; i < batch_dims; ++i) { dimensions[i] = i; } for (int i = 0; i < new_lhs_noncontracting; ++i) { dimensions[i + batch_dims] = i + batch_dims + new_rhs_noncontracting; } for (int i = 0; i < new_rhs_noncontracting; ++i) { dimensions[i + batch_dims + new_lhs_noncontracting] = i + batch_dims; } TF_ASSIGN_OR_RETURN(HloInstruction * transpose, MakeTransposeHlo(new_dot, dimensions)); transpose->set_metadata(dot->metadata()); *transpose->mutable_shape()->mutable_layout() = dot->shape().layout(); return ReplaceInstruction(dot, transpose); } }; } absl::StatusOr<bool> DotSparsityRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return SparseDotRewriterImpl().RunOnModule(module, execution_threads); } } }
#include "xla/service/gpu/transforms/dot_sparsity_rewriter.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; class DotSparsityRewriterTest : public HloTestBase { public: DotSparsityRewriterTest() : HloTestBase(true) {} }; TEST_F(DotSparsityRewriterTest, SparseDotRhsToLhs) { const char* module_string = R"( HloModule m ENTRY e { lhs = f16[4,2,16,8,64] parameter(0) rhs = f16[2,4,8,32,128] parameter(1) meta = u16[2,4,8,4,128] parameter(2) ROOT dot = f16[4,2,16,128] dot(lhs, rhs, meta), lhs_contracting_dims={3,4}, rhs_contracting_dims={2,3}, lhs_batch_dims={0,1}, rhs_batch_dims={1,0}, sparsity=R.3@2:4 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(module_string)); TF_ASSERT_OK_AND_ASSIGN(bool modified, DotSparsityRewriter().Run(module.get())); EXPECT_TRUE(modified); const HloTransposeInstruction* transpose = DynCast<HloTransposeInstruction>( module->entry_computation()->root_instruction()); ASSERT_TRUE(transpose != nullptr); EXPECT_THAT(transpose->dimensions(), ElementsAre(0, 1, 3, 2)); const HloDotInstruction* dot = DynCast<HloDotInstruction>(transpose->operand(0)); ASSERT_TRUE(dot != nullptr); const DotDimensionNumbers& dnums = dot->dot_dimension_numbers(); EXPECT_EQ(dnums.lhs_contracting_dimensions(0), 2); EXPECT_EQ(dnums.lhs_contracting_dimensions(1), 3); EXPECT_EQ(dnums.rhs_contracting_dimensions(0), 3); EXPECT_EQ(dnums.rhs_contracting_dimensions(1), 4); EXPECT_EQ(dnums.lhs_batch_dimensions(0), 1); EXPECT_EQ(dnums.lhs_batch_dimensions(1), 0); EXPECT_EQ(dnums.rhs_batch_dimensions(0), 0); EXPECT_EQ(dnums.rhs_batch_dimensions(1), 1); EXPECT_EQ(dot->sparse_operands(), 1); EXPECT_EQ(dot->sparsity().front().index(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/dot_sparsity_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/dot_sparsity_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5c81ba67-e18a-46de-ad5f-6fb9b38323c9
cpp
tensorflow/tensorflow
ragged_tensor_to_variant_op
tensorflow/core/kernels/ragged_tensor_to_variant_op.cc
tensorflow/core/kernels/ragged_tensor_to_variant_op_test.cc
#include <cstdint> #include <utility> #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_encode_decode.h" #include "tensorflow/core/framework/variant_op_registry.h" #include "tensorflow/core/kernels/concat_lib.h" #include "tensorflow/core/kernels/ragged_tensor_variant.h" #include "tensorflow/core/kernels/ragged_utils.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/util/tensor_ops_util.h" namespace tensorflow { namespace { template <typename VALUE_TYPE> Status UnbatchDenseZerothDim( const RaggedTensorVariant& batched_ragged, std::vector<RaggedTensorVariant>* ragged_components) { Tensor batched_values = batched_ragged.values(); TensorShape values_shape = batched_values.shape(); if (values_shape.dims() < 1) { return errors::InvalidArgument("Can't unbatch rank-0 tensor."); } auto num_components = values_shape.dim_size(0); values_shape.RemoveDim(0); auto num_values = values_shape.num_elements(); ragged_components->resize(num_components); const auto& batched_flat = batched_values.flat<VALUE_TYPE>(); for (auto i = decltype(num_components){}; i < num_components; i++) { (*ragged_components)[i].set_values( Tensor(DataTypeToEnum<VALUE_TYPE>::value, values_shape)); auto ragged_component_values_flat = (*ragged_components)[i].mutable_values()->flat<VALUE_TYPE>(); for (auto j = decltype(num_values){}; j < num_values; j++) { ragged_component_values_flat(j) = batched_flat(j + i * num_values); } } return absl::OkStatus(); } template <typename VALUE_TYPE, typename SPLIT_TYPE> Status UnbatchRaggedZerothDim( const RaggedTensorVariant& batched_ragged, std::vector<RaggedTensorVariant>* ragged_components) { int ragged_rank = batched_ragged.ragged_rank(); if (ragged_rank == 0) { return UnbatchDenseZerothDim<VALUE_TYPE>(batched_ragged, ragged_components); } auto batched_splits_top_vec = batched_ragged.splits(0).vec<SPLIT_TYPE>(); auto num_components = batched_splits_top_vec.size() - 1; if (num_components < 0) { return errors::Internal("Invalid split argument."); } int num_splits = ragged_rank - 1; ragged_components->resize(num_components); for (RaggedTensorVariant& ragged_component : *ragged_components) { ragged_component.mutable_nested_splits()->reserve(num_splits); } const auto& batched_flat = batched_ragged.values().flat<VALUE_TYPE>(); auto num_inner_elems = batched_ragged.values().NumElements(); if (batched_ragged.values().dim_size(0) > 1) { num_inner_elems /= batched_ragged.values().dim_size(0); } TensorShape values_shape = batched_ragged.values().shape(); if (num_splits == 0) { for (auto i = decltype(num_components){}; i < num_components; i++) { auto start = batched_splits_top_vec(i); auto limit = batched_splits_top_vec(i + 1); auto num_values = limit - start; values_shape.set_dim(0, num_values); (*ragged_components)[i].set_values( Tensor(DataTypeToEnum<VALUE_TYPE>::value, values_shape)); auto ragged_component_values_flat = (*ragged_components)[i].mutable_values()->template flat<VALUE_TYPE>(); for (auto j = decltype(num_values * num_inner_elems){}; j < num_values * num_inner_elems; j++) { ragged_component_values_flat(j) = batched_flat(j + start * num_inner_elems); } } return absl::OkStatus(); } std::vector<typename TTypes<SPLIT_TYPE>::ConstVec> batched_splits_vec; batched_splits_vec.reserve(ragged_rank); for (int i = 0; i < ragged_rank; i++) { batched_splits_vec.push_back(batched_ragged.splits(i).vec<SPLIT_TYPE>()); } std::vector<SPLIT_TYPE> index(num_splits, 1); std::vector<SPLIT_TYPE> ragged_component_values_size(num_components, 0); for (auto i = decltype(num_components){}; i < num_components; i++) { std::vector<typename TTypes<SPLIT_TYPE>::Vec> ragged_component_splits_vec; ragged_component_splits_vec.reserve(num_splits); SPLIT_TYPE split_size = -1; for (int j = 0; j < num_splits; j++) { if (j == 0) { split_size = batched_splits_top_vec(i + 1) - batched_splits_top_vec(i) + 1; } else { SPLIT_TYPE last_index = ragged_component_splits_vec[j - 1].size() - 1; split_size = ragged_component_splits_vec[j - 1](last_index) + 1; } (*ragged_components)[i].append_splits( Tensor(DataTypeToEnum<SPLIT_TYPE>::value, TensorShape({split_size}))); ragged_component_splits_vec.push_back((*ragged_components)[i] .mutable_splits(j) ->template vec<SPLIT_TYPE>()); SPLIT_TYPE last_split_value = batched_splits_vec[j + 1](index[j] - 1); ragged_component_splits_vec[j](0) = 0; for (SPLIT_TYPE k = 1; k < split_size; k++, index[j]++) { ragged_component_splits_vec[j](k) = batched_splits_vec[j + 1](index[j]) - last_split_value; } } SPLIT_TYPE last_split_size = ragged_component_splits_vec[num_splits - 1].size(); ragged_component_values_size[i] = ragged_component_splits_vec[num_splits - 1](last_split_size - 1); } int64_t value_index = 0; for (auto i = decltype(num_components){}; i < num_components; i++) { SPLIT_TYPE num_values = ragged_component_values_size[i]; values_shape.set_dim(0, num_values); (*ragged_components)[i].set_values( Tensor(DataTypeToEnum<VALUE_TYPE>::value, values_shape)); auto ragged_component_values_flat = (*ragged_components)[i].mutable_values()->template flat<VALUE_TYPE>(); for (int64_t j = 0; j < num_values * num_inner_elems; j++, value_index++) { ragged_component_values_flat(j) = batched_flat(value_index); } } return absl::OkStatus(); } } template <typename VALUE_TYPE, typename SPLIT_TYPE> class RaggedTensorToVariantOp : public OpKernel { public: explicit RaggedTensorToVariantOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr("batched_input", &batched_input_)); } void Compute(OpKernelContext* context) override { OpInputList ragged_nested_splits_in; OP_REQUIRES_OK(context, context->input_list("rt_nested_splits", &ragged_nested_splits_in)); const int ragged_nested_splits_len = ragged_nested_splits_in.size(); RaggedTensorVariant batched_ragged_input; batched_ragged_input.set_values(context->input(ragged_nested_splits_len)); batched_ragged_input.mutable_nested_splits()->reserve( ragged_nested_splits_len); for (int i = ragged_nested_splits_len - 1; i >= 0; --i) { SPLIT_TYPE nvals; if (i == ragged_nested_splits_len - 1) { OP_REQUIRES(context, batched_ragged_input.values().dims() >= 1, errors::InvalidArgument( "Requires flat_values to have rank>=1 when " "nested_row_splits is not empty, but is 0.")); nvals = batched_ragged_input.values().dim_size(0); } else { nvals = ragged_nested_splits_in[i + 1].dim_size(0) - 1; } OP_REQUIRES_OK(context, RaggedTensorVerifySplits<SPLIT_TYPE>( ragged_nested_splits_in[i], true, nvals)); } for (int i = 0; i < ragged_nested_splits_len; i++) { batched_ragged_input.append_splits(ragged_nested_splits_in[i]); } if (!batched_input_) { Tensor* encoded_scalar; OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({}), &encoded_scalar)); encoded_scalar->scalar<Variant>()() = std::move(batched_ragged_input); return; } std::vector<RaggedTensorVariant> unbatched_ragged_input; OP_REQUIRES_OK(context, UnbatchRaggedZerothDim<VALUE_TYPE, SPLIT_TYPE>( batched_ragged_input, &unbatched_ragged_input)); Tensor* encoded_vector; int64_t output_size = unbatched_ragged_input.size(); OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({output_size}), &encoded_vector)); auto encoded_vector_t = encoded_vector->vec<Variant>(); for (auto i = decltype(output_size){}; i < output_size; i++) { encoded_vector_t(i) = unbatched_ragged_input[i]; } } private: bool batched_input_; }; template <typename VALUE_TYPE, typename SPLIT_TYPE> class RaggedTensorToVariantGradientOp : public OpKernel { public: using OpKernel::OpKernel; void Compute(OpKernelContext* context) override { Tensor encoded_variant = context->input(0); Tensor row_splits = context->input(1); auto flat_row_splits = row_splits.flat<SPLIT_TYPE>(); TensorShape dense_values_shape; OP_REQUIRES_OK(context, TensorShapeUtils::MakeShape(context->input(2).vec<int32>(), &dense_values_shape)); if (row_splits.dims()) { OP_REQUIRES_OK( context, RaggedTensorVerifySplits<SPLIT_TYPE>(row_splits, false, 0)); } const auto& flat_variants = encoded_variant.flat<Variant>(); std::vector<Tensor> values; for (int i = 0; i < flat_variants.size(); ++i) { if (const auto* encoded = flat_variants(i).get<RaggedTensorVariant>()) { values.push_back(encoded->values()); } else { const auto value_dtype = DataTypeToEnum<VALUE_TYPE>::v(); auto piece_size = flat_row_splits(i + 1) - flat_row_splits(i); TensorShape zeros_shape = dense_values_shape; zeros_shape.set_dim(0, piece_size); Tensor zero(value_dtype, zeros_shape); zero.flat<VALUE_TYPE>().setZero(); values.push_back(zero); } } if (values.size() == 1) { context->set_output(0, values[0]); } else { Tensor* out = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, dense_values_shape, &out)); if (dense_values_shape.num_elements() == 0) return; using Piece = typename TTypes<VALUE_TYPE, 2>::Matrix; using ConstPiece = typename TTypes<VALUE_TYPE, 2>::ConstMatrix; std::vector<std::unique_ptr<ConstPiece>> pieces; pieces.reserve(values.size()); for (const Tensor& t : values) { if (t.NumElements() == 0) continue; pieces.emplace_back( new ConstPiece(t.shaped<VALUE_TYPE, 2>({1, t.NumElements()}))); } Piece out_flat = out->shaped<VALUE_TYPE, 2>({1, dense_values_shape.num_elements()}); ConcatCPU<VALUE_TYPE>(context->device(), pieces, &out_flat); } } }; #define REGISTER_KERNELS_WITH_SPLIT_TYPE(value_type, split_type) \ REGISTER_KERNEL_BUILDER(Name("RaggedTensorToVariant") \ .Device(DEVICE_CPU) \ .TypeConstraint<value_type>("Tvalues") \ .TypeConstraint<split_type>("Tsplits"), \ RaggedTensorToVariantOp<value_type, split_type>); \ REGISTER_KERNEL_BUILDER( \ Name("RaggedTensorToVariantGradient") \ .Device(DEVICE_CPU) \ .TypeConstraint<value_type>("Tvalues") \ .TypeConstraint<split_type>("Tsplits"), \ RaggedTensorToVariantGradientOp<value_type, split_type>); #define REGISTER_KERNELS(value_type) \ REGISTER_KERNELS_WITH_SPLIT_TYPE(value_type, int32) \ REGISTER_KERNELS_WITH_SPLIT_TYPE(value_type, int64_t) TF_CALL_POD_TYPES(REGISTER_KERNELS); TF_CALL_tstring(REGISTER_KERNELS); TF_CALL_QUANTIZED_TYPES(REGISTER_KERNELS); TF_CALL_quint16(REGISTER_KERNELS); TF_CALL_qint16(REGISTER_KERNELS); #undef REGISTER_KERNELS #undef REGISTER_KERNELS_WITH_SPLIT_TYPE }
#include "tensorflow/core/kernels/ragged_tensor_to_variant_op_test.h" #include <vector> #include <gtest/gtest.h> #include "absl/strings/match.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/variant.h" #include "tensorflow/core/framework/variant_encode_decode.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ragged_tensor_variant.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace { TEST_F(RaggedTensorToVariantKernelTest, NoValuesInput) { const std::vector<int64_t> batched_splits_1 = {0, 2, 3, 3}; const std::vector<int64_t> batched_splits_2 = {0, 0, 0, 0}; BuildEncodeRaggedTensorGraph<int, int64_t>( {batched_splits_1, batched_splits_2}, TensorShape({0}), {}, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 3); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0, 0, 0}}, {}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0, 0}}, {}), *encoded_list(1).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0}}, {}), *encoded_list(2).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, 1DValuesRaggedRankOneInput) { const std::vector<int64_t> batched_splits = {0, 3, 3, 5, 6}; const std::vector<int> batched_values = {1, 2, 3, 4, 5, 6}; BuildEncodeRaggedTensorGraph<int, int64_t>({batched_splits}, TensorShape({6}), batched_values, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 4); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {1, 2, 3}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {}), *encoded_list(1).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {4, 5}), *encoded_list(2).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {6}), *encoded_list(3).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, 2DBatchedValuesRankOneInput) { const std::vector<int64_t> batched_splits = {0, 1, 2, 3}; const std::vector<int> batched_values = {1, 2, 4, 5, 6, 7}; BuildEncodeRaggedTensorGraph<int, int64_t>( {batched_splits}, TensorShape({3, 2}), batched_values, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 3); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {1, 2}, {1, 2}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {1, 2}, {4, 5}), *encoded_list(1).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {1, 2}, {6, 7}), *encoded_list(2).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, 2DBatchedValuesRankTwoInput) { const std::vector<int64_t> batched_splits_1 = {0, 1, 2}; const std::vector<int64_t> batched_splits_2 = {0, 2, 3}; const std::vector<int> batched_values = {1, 2, 4, 5, 6, 7}; BuildEncodeRaggedTensorGraph<int, int64_t>( {batched_splits_1, batched_splits_2}, TensorShape({3, 2}), batched_values, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 2); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0, 2}}, {2, 2}, {1, 2, 4, 5}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0, 1}}, {1, 2}, {6, 7}), *encoded_list(1).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, EmptyRowInBatchedInput) { const std::vector<int64_t> batched_splits_1 = {0, 3, 3, 5, 7}; const std::vector<int64_t> batched_splits_2 = {0, 1, 3, 3, 8, 11, 11, 15}; const std::vector<int> batched_values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; BuildEncodeRaggedTensorGraph<int, int64_t>( {batched_splits_1, batched_splits_2}, TensorShape({15}), batched_values, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 4); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0, 1, 3, 3}}, {1, 2, 3}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0}}, {}), *encoded_list(1).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0, 5, 8}}, {4, 5, 6, 7, 8, 9, 10, 11}), *encoded_list(2).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({{0, 0, 4}}, {12, 13, 14, 15}), *encoded_list(3).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, NonEmptyBatchedInput) { const std::vector<int64_t> batched_splits_1 = {0, 5, 10}; const std::vector<int64_t> batched_splits_2 = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11}; const std::vector<int64_t> batched_splits_3 = {0, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14}; const std::vector<int> batched_values = {0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9}; BuildEncodeRaggedTensorGraph<int, int64_t>( {batched_splits_1, batched_splits_2, batched_splits_3}, TensorShape({14}), batched_values, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 2); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>( {{0, 1, 3, 4, 5, 6}, {0, 2, 3, 4, 5, 6, 7}}, {0, 1, 1, 2, 2, 3, 4}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>( {{0, 1, 2, 3, 4, 5}, {0, 1, 2, 5, 6, 7}}, {5, 6, 7, 8, 9, 8, 9}), *encoded_list(1).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, NonEmptyBatchedInputInt32Splits) { const std::vector<int> batched_splits_1 = {0, 5, 10}; const std::vector<int> batched_splits_2 = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11}; const std::vector<int> batched_splits_3 = {0, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14}; const std::vector<int> batched_values = {0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9}; BuildEncodeRaggedTensorGraph<int, int32>( {batched_splits_1, batched_splits_2, batched_splits_3}, TensorShape({14}), batched_values, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 2); ExpectRaggedTensorVariantEqual<int, int32>( CreateVariantFromRagged<int, int32>( {{0, 1, 3, 4, 5, 6}, {0, 2, 3, 4, 5, 6, 7}}, {0, 1, 1, 2, 2, 3, 4}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int32>( CreateVariantFromRagged<int, int32>( {{0, 1, 2, 3, 4, 5}, {0, 1, 2, 5, 6, 7}}, {5, 6, 7, 8, 9, 8, 9}), *encoded_list(1).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, NonBatchInput) { const std::vector<int64_t> batched_splits_1 = {0, 3, 3, 5, 7}; const std::vector<int64_t> batched_splits_2 = {0, 1, 3, 3, 8, 11, 11, 15}; const std::vector<int> batched_values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; BuildEncodeRaggedTensorGraph<int, int64_t>( {batched_splits_1, batched_splits_2}, TensorShape({15}), batched_values, false); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_scalar = GetOutput(0)->scalar<Variant>()(); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>( {batched_splits_1, batched_splits_2}, batched_values), *encoded_scalar.get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, ShapeFnTestBatched) { ShapeInferenceTestOp op("RaggedTensorToVariant"); (*op.node_def.mutable_attr())["Tvalues"].set_type(DT_INT32); (*op.node_def.mutable_attr())["batched_input"].set_b(true); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(0); INFER_OK(op, "?", "[?]"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(1); INFER_OK(op, "?;?", "[?]"); INFER_OK(op, "?;[?]", "[?]"); INFER_OK(op, "?;[?,?]", "[?]"); INFER_OK(op, "[?];[5]", "[?]"); INFER_OK(op, "[?];[5,2]", "[?]"); INFER_OK(op, "[5];[5,2]", "[4]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[5,5];?"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "?;[]"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(2); INFER_OK(op, "?;?;?", "[?]"); INFER_OK(op, "?;?;[?]", "[?]"); INFER_OK(op, "?;?;[?,?]", "[?]"); INFER_OK(op, "[?];[?];[5]", "[?]"); INFER_OK(op, "[?];[?];[5,2]", "[?]"); INFER_OK(op, "[6];[?];[5,2]", "[5]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[5,5];?"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(3); INFER_OK(op, "?;?;?;?", "[?]"); INFER_OK(op, "?;?;?;[?]", "[?]"); INFER_OK(op, "?;?;?;[5]", "[?]"); INFER_OK(op, "[4];?;?;[5]", "[3]"); } TEST_F(RaggedTensorToVariantKernelTest, ShapeFnTestNotBatched) { ShapeInferenceTestOp op("RaggedTensorToVariant"); (*op.node_def.mutable_attr())["Tvalues"].set_type(DT_INT32); (*op.node_def.mutable_attr())["batched_input"].set_b(false); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(0); INFER_OK(op, "?", "[]"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(1); INFER_OK(op, "?;?", "[]"); INFER_OK(op, "?;[?]", "[]"); INFER_OK(op, "?;[?,?]", "[]"); INFER_OK(op, "[?];[5]", "[]"); INFER_OK(op, "[?];[5,2]", "[]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[5,5];?"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "?;[]"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(2); INFER_OK(op, "?;?;?", "[]"); INFER_OK(op, "?;?;[?]", "[]"); INFER_OK(op, "?;?;[?,?]", "[]"); INFER_OK(op, "[?];[?];[5]", "[]"); INFER_OK(op, "[?];[?];[5,2]", "[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[5,5];?"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(3); INFER_OK(op, "?;?;?;?", "[]"); INFER_OK(op, "?;?;?;[?]", "[]"); INFER_OK(op, "?;?;?;[5]", "[]"); } TEST_F(RaggedTensorToVariantKernelTest, NonRaggedInput) { const std::vector<int> values = {1, 2, 3, 4, 5, 6}; BuildEncodeRaggedTensorGraph<int, int64_t>({}, TensorShape({6}), values, false); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_scalar = GetOutput(0)->scalar<Variant>()(); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, values), *encoded_scalar.get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, NonRaggedBatchedInput) { TensorShape shape({2, 3, 2}); const std::vector<int> values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; BuildEncodeRaggedTensorGraph<int, int64_t>({}, shape, values, true); TF_ASSERT_OK(RunOpKernel()); const auto& encoded_list = GetOutput(0)->vec<Variant>(); EXPECT_EQ(encoded_list.size(), 2); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {3, 2}, {1, 2, 3, 4, 5, 6}), *encoded_list(0).get<RaggedTensorVariant>()); ExpectRaggedTensorVariantEqual<int, int64_t>( CreateVariantFromRagged<int, int64_t>({}, {3, 2}, {7, 8, 9, 10, 11, 12}), *encoded_list(1).get<RaggedTensorVariant>()); } TEST_F(RaggedTensorToVariantKernelTest, NestedRowSplitsFirstElementNotZeroError) { const std::vector<int64_t> splits = {1, 2}; BuildEncodeRaggedTensorGraph<int, int64_t>({splits}, TensorShape({0}), {}, true); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: first element of " "ragged splits must be 0 but is 1")); } TEST_F(RaggedTensorToVariantKernelTest, NestedRowSplitsIncreasingError) { const std::vector<int64_t> splits = {0, 2, -1}; BuildEncodeRaggedTensorGraph<int, int64_t>({splits}, TensorShape({0}), {}, true); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: ragged splits must be " "monotonically increasing, but " "ragged_splits[2]=-1 is smaller than " "row_splits[1]=2")); } TEST_F(RaggedTensorToVariantKernelTest, NestedRowSplitsSizeMismatchError) { const std::vector<int64_t> splits = {0, 2, 3}; BuildEncodeRaggedTensorGraph<int, int64_t>({splits}, TensorShape({5}), {0, 1, 2, 3, 4}, true); EXPECT_THAT( RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: last element of ragged splits " "must be the number of ragged values(5) but is 3")); } TEST_F(RaggedTensorToVariantKernelTest, NestedRowSplitsInnerDimensionSizeMismatchError) { const std::vector<int64_t> splits1 = {0, 2, 3}; const std::vector<int64_t> splits2 = {0, 3, 3, 4}; BuildEncodeRaggedTensorGraph<int, int64_t>( {splits1, splits2}, TensorShape({5}), {0, 1, 2, 3, 4}, true); EXPECT_THAT( RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: last element of ragged splits " "must be the number of ragged values(5) but is 4")); } TEST_F(RaggedTensorToVariantKernelTest, NestedRowSplitsSizeOfSplitsMismatchError) { const std::vector<int64_t> splits1 = {0, 2}; const std::vector<int64_t> splits2 = {0, 3, 3, 5}; BuildEncodeRaggedTensorGraph<int, int64_t>( {splits1, splits2}, TensorShape({5}), {0, 1, 2, 3, 4}, true); EXPECT_THAT( RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: last element of ragged splits " "must be the number of ragged values(3) but is 2")); } TEST_F(RaggedTensorToVariantKernelTest, NestedRowSplitsEmptySplitsError) { const std::vector<int64_t> splits = {}; BuildEncodeRaggedTensorGraph<int, int64_t>({splits}, TensorShape({5}), {0, 1, 2, 3, 4}, true); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: ragged splits must " "have at least one splits, but is empty")); } TEST_F(RaggedTensorToVariantKernelTest, NestedRowSplitsScalarValueError) { const std::vector<int64_t> splits = {0, 2}; BuildEncodeRaggedTensorGraph<int, int64_t>({splits}, TensorShape({}), 1, true); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Requires flat_values to have rank>=1 when " "nested_row_splits is not empty, but is 0.")); } TEST_F(RaggedTensorToVariantGradientKernelTest, RowSplitsMatch) { auto encoded_variant_grad_1 = CreateVariantFromRagged<int, int64_t>({}, {3}, {1, 2, 3}); auto encoded_variant_grad_2 = CreateVariantFromRagged<int, int64_t>({}, {0}, {}); auto encoded_variant_grad_3 = CreateVariantFromRagged<int, int64_t>({}, {2}, {4, 5}); auto encoded_variant_grad_4 = CreateVariantFromRagged<int, int64_t>({}, {1}, {6}); BuildEncodeRaggedTensorGradientGraph<int, int64_t>( {encoded_variant_grad_1, encoded_variant_grad_2, encoded_variant_grad_3, encoded_variant_grad_4}, {0, 3, 3, 5, 6}, {6}); TF_ASSERT_OK(RunOpKernel()); } TEST_F(RaggedTensorToVariantGradientKernelTest, RowSplitsFirstElementNotZeroError) { auto encoded_variant_grad_1 = CreateVariantFromRagged<int, int64_t>({}, {3}, {1, 2, 3}); auto encoded_variant_grad_2 = CreateVariantFromRagged<int, int64_t>({}, {0}, {}); auto encoded_variant_grad_3 = CreateVariantFromRagged<int, int64_t>({}, {2}, {4, 5}); auto encoded_variant_grad_4 = CreateVariantFromRagged<int, int64_t>({}, {1}, {6}); BuildEncodeRaggedTensorGradientGraph<int, int64_t>( {encoded_variant_grad_1, encoded_variant_grad_2, encoded_variant_grad_3, encoded_variant_grad_4}, {1, 3, 3, 5, 6}, {6}); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: first element of " "ragged splits must be 0 but is 1")); } TEST_F(RaggedTensorToVariantGradientKernelTest, RowSplitsIncreasingError) { auto encoded_variant_grad_1 = CreateVariantFromRagged<int, int64_t>({}, {3}, {1, 2, 3}); auto encoded_variant_grad_2 = CreateVariantFromRagged<int, int64_t>({}, {0}, {}); auto encoded_variant_grad_3 = CreateVariantFromRagged<int, int64_t>({}, {2}, {4, 5}); auto encoded_variant_grad_4 = CreateVariantFromRagged<int, int64_t>({}, {1}, {6}); BuildEncodeRaggedTensorGradientGraph<int, int64_t>( {encoded_variant_grad_1, encoded_variant_grad_2, encoded_variant_grad_3, encoded_variant_grad_4}, {0, 3, 2, 5, 6}, {6}); EXPECT_THAT(RunOpKernel(), testing::StatusIs(error::INVALID_ARGUMENT, "Invalid ragged splits: ragged splits must be " "monotonically increasing, but " "ragged_splits[2]=2 is smaller than " "row_splits[1]=3")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_tensor_to_variant_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_tensor_to_variant_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ead042dd-f68b-44ed-b69a-5679dbf2156e
cpp
tensorflow/tensorflow
execution_context
third_party/xla/xla/ffi/execution_context.cc
third_party/xla/xla/ffi/execution_context_test.cc
#include "xla/ffi/execution_context.h" #include <memory> #include <utility> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" namespace xla::ffi { ExecutionContext::UserData::UserData(void* data, Deleter<void> deleter) : data_(data), deleter_(std::move(deleter)) {} ExecutionContext::UserData::~UserData() { if (deleter_) deleter_(data_); } absl::Status ExecutionContext::Insert(TypeId type_id, void* data, Deleter<void> deleter) { return InsertUserData(type_id, std::make_unique<UserData>(data, std::move(deleter))); } absl::Status ExecutionContext::InsertUserData(TypeId type_id, std::unique_ptr<UserData> data) { if (!data) return absl::InvalidArgumentError("User data must be not null"); auto emplaced = user_data_.emplace(type_id, std::move(data)); if (!emplaced.second) { return absl::AlreadyExistsError( absl::StrCat("User data with type id ", type_id.value(), " already exists in execution context")); } return absl::OkStatus(); } absl::StatusOr<ExecutionContext::UserData*> ExecutionContext::LookupUserData( TypeId type_id) const { auto it = user_data_.find(type_id); if (it == user_data_.end()) { return absl::NotFoundError(absl::StrCat("User data with type id ", type_id.value(), " not found in execution context")); } return it->second.get(); } }
#include "xla/ffi/execution_context.h" #include <cstdint> #include <string> #include "absl/status/status.h" #include "xla/ffi/type_id_registry.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { struct I32UserData { explicit I32UserData(int32_t value) : value(value) {} int32_t value; }; struct StrUserData { explicit StrUserData(std::string value) : value(value) {} std::string value; }; TEST(ExecutionContextTest, EmplaceUserData) { ExecutionContext context; TF_ASSERT_OK(context.Emplace<I32UserData>(42)); TF_ASSERT_OK(context.Emplace<StrUserData>("hello")); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); TF_ASSERT_OK_AND_ASSIGN(auto* str_data, context.Lookup<StrUserData>()); ASSERT_NE(i32_data, nullptr); ASSERT_NE(str_data, nullptr); ASSERT_EQ(i32_data->value, 42); ASSERT_EQ(str_data->value, "hello"); } TEST(ExecutionContextTest, InsertUserOwned) { I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(&user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup<I32UserData>()); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, InsertUserOwnedWithTypeId) { TF_ASSERT_OK_AND_ASSIGN( TypeIdRegistry::TypeId type_id, TypeIdRegistry::RegisterExternalTypeId("I32UserData")); I32UserData user_data(42); ExecutionContext context; TF_ASSERT_OK(context.Insert(type_id, &user_data)); TF_ASSERT_OK_AND_ASSIGN(auto* i32_data, context.Lookup(type_id)); ASSERT_EQ(i32_data, &user_data); } TEST(ExecutionContextTest, UserDataNotFound) { ExecutionContext context; auto i32_data = context.Lookup<I32UserData>(); ASSERT_EQ(i32_data.status().code(), absl::StatusCode::kNotFound); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_context.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/execution_context_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0814523e-f546-4e68-82e3-41d15849af8a
cpp
abseil/abseil-cpp
errno_saver
absl/base/internal/errno_saver.h
absl/base/internal/errno_saver_test.cc
#ifndef ABSL_BASE_INTERNAL_ERRNO_SAVER_H_ #define ABSL_BASE_INTERNAL_ERRNO_SAVER_H_ #include <cerrno> #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { class ErrnoSaver { public: ErrnoSaver() : saved_errno_(errno) {} ~ErrnoSaver() { errno = saved_errno_; } int operator()() const { return saved_errno_; } private: const int saved_errno_; }; } ABSL_NAMESPACE_END } #endif
#include "absl/base/internal/errno_saver.h" #include <cerrno> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/strerror.h" namespace { using ::testing::Eq; struct ErrnoPrinter { int no; }; std::ostream &operator<<(std::ostream &os, ErrnoPrinter ep) { return os << absl::base_internal::StrError(ep.no) << " [" << ep.no << "]"; } bool operator==(ErrnoPrinter one, ErrnoPrinter two) { return one.no == two.no; } TEST(ErrnoSaverTest, Works) { errno = EDOM; { absl::base_internal::ErrnoSaver errno_saver; EXPECT_THAT(ErrnoPrinter{errno}, Eq(ErrnoPrinter{EDOM})); errno = ERANGE; EXPECT_THAT(ErrnoPrinter{errno}, Eq(ErrnoPrinter{ERANGE})); EXPECT_THAT(ErrnoPrinter{errno_saver()}, Eq(ErrnoPrinter{EDOM})); } EXPECT_THAT(ErrnoPrinter{errno}, Eq(ErrnoPrinter{EDOM})); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/errno_saver.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/errno_saver_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
77bb6f69-f3ad-456a-9ead-66283c2d0924
cpp
abseil/abseil-cpp
mutex
absl/synchronization/mutex.cc
absl/synchronization/mutex_test.cc
#include "absl/synchronization/mutex.h" #ifdef _WIN32 #include <windows.h> #ifdef ERROR #undef ERROR #endif #else #include <fcntl.h> #include <pthread.h> #include <sched.h> #include <sys/time.h> #endif #include <assert.h> #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <algorithm> #include <atomic> #include <cstddef> #include <cstdlib> #include <cstring> #include <thread> #include "absl/base/attributes.h" #include "absl/base/call_once.h" #include "absl/base/config.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/internal/atomic_hook.h" #include "absl/base/internal/cycleclock.h" #include "absl/base/internal/hide_ptr.h" #include "absl/base/internal/low_level_alloc.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/spinlock.h" #include "absl/base/internal/sysinfo.h" #include "absl/base/internal/thread_identity.h" #include "absl/base/internal/tsan_mutex_interface.h" #include "absl/base/optimization.h" #include "absl/debugging/stacktrace.h" #include "absl/debugging/symbolize.h" #include "absl/synchronization/internal/graphcycles.h" #include "absl/synchronization/internal/per_thread_sem.h" #include "absl/time/time.h" using absl::base_internal::CurrentThreadIdentityIfPresent; using absl::base_internal::CycleClock; using absl::base_internal::PerThreadSynch; using absl::base_internal::SchedulingGuard; using absl::base_internal::ThreadIdentity; using absl::synchronization_internal::GetOrCreateCurrentThreadIdentity; using absl::synchronization_internal::GraphCycles; using absl::synchronization_internal::GraphId; using absl::synchronization_internal::InvalidGraphId; using absl::synchronization_internal::KernelTimeout; using absl::synchronization_internal::PerThreadSem; extern "C" { ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)() { std::this_thread::yield(); } } namespace absl { ABSL_NAMESPACE_BEGIN namespace { #if defined(ABSL_HAVE_THREAD_SANITIZER) constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kIgnore; #else constexpr OnDeadlockCycle kDeadlockDetectionDefault = OnDeadlockCycle::kAbort; #endif ABSL_CONST_INIT std::atomic<OnDeadlockCycle> synch_deadlock_detection( kDeadlockDetectionDefault); ABSL_CONST_INIT std::atomic<bool> synch_check_invariants(false); ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(int64_t wait_cycles)> submit_profile_data; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)( const char* msg, const void* obj, int64_t wait_cycles)> mutex_tracer; ABSL_INTERNAL_ATOMIC_HOOK_ATTRIBUTES absl::base_internal::AtomicHook<void (*)(const char* msg, const void* cv)> cond_var_tracer; } static inline bool EvalConditionAnnotated(const Condition* cond, Mutex* mu, bool locking, bool trylock, bool read_lock); void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles)) { submit_profile_data.Store(fn); } void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj, int64_t wait_cycles)) { mutex_tracer.Store(fn); } void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv)) { cond_var_tracer.Store(fn); } namespace { enum DelayMode { AGGRESSIVE, GENTLE }; struct ABSL_CACHELINE_ALIGNED MutexGlobals { absl::once_flag once; std::atomic<int> spinloop_iterations{0}; int32_t mutex_sleep_spins[2] = {}; absl::Duration mutex_sleep_time; }; ABSL_CONST_INIT static MutexGlobals globals; absl::Duration MeasureTimeToYield() { absl::Time before = absl::Now(); ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)(); return absl::Now() - before; } const MutexGlobals& GetMutexGlobals() { absl::base_internal::LowLevelCallOnce(&globals.once, [&]() { if (absl::base_internal::NumCPUs() > 1) { globals.mutex_sleep_spins[AGGRESSIVE] = 5000; globals.mutex_sleep_spins[GENTLE] = 250; globals.mutex_sleep_time = absl::Microseconds(10); } else { globals.mutex_sleep_spins[AGGRESSIVE] = 0; globals.mutex_sleep_spins[GENTLE] = 0; globals.mutex_sleep_time = MeasureTimeToYield() * 5; globals.mutex_sleep_time = std::min(globals.mutex_sleep_time, absl::Milliseconds(1)); globals.mutex_sleep_time = std::max(globals.mutex_sleep_time, absl::Microseconds(10)); } }); return globals; } } namespace synchronization_internal { int MutexDelay(int32_t c, int mode) { const int32_t limit = GetMutexGlobals().mutex_sleep_spins[mode]; const absl::Duration sleep_time = GetMutexGlobals().mutex_sleep_time; if (c < limit) { c++; } else { SchedulingGuard::ScopedEnable enable_rescheduling; ABSL_TSAN_MUTEX_PRE_DIVERT(nullptr, 0); if (c == limit) { ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)(); c++; } else { absl::SleepFor(sleep_time); c = 0; } ABSL_TSAN_MUTEX_POST_DIVERT(nullptr, 0); } return c; } } static bool AtomicSetBits(std::atomic<intptr_t>* pv, intptr_t bits, intptr_t wait_until_clear) { for (;;) { intptr_t v = pv->load(std::memory_order_relaxed); if ((v & bits) == bits) { return false; } if ((v & wait_until_clear) != 0) { continue; } if (pv->compare_exchange_weak(v, v | bits, std::memory_order_release, std::memory_order_relaxed)) { return true; } } } ABSL_CONST_INIT static absl::base_internal::SpinLock deadlock_graph_mu( absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); ABSL_CONST_INIT static GraphCycles* deadlock_graph ABSL_GUARDED_BY(deadlock_graph_mu) ABSL_PT_GUARDED_BY(deadlock_graph_mu); namespace { enum { SYNCH_EV_TRYLOCK_SUCCESS, SYNCH_EV_TRYLOCK_FAILED, SYNCH_EV_READERTRYLOCK_SUCCESS, SYNCH_EV_READERTRYLOCK_FAILED, SYNCH_EV_LOCK, SYNCH_EV_LOCK_RETURNING, SYNCH_EV_READERLOCK, SYNCH_EV_READERLOCK_RETURNING, SYNCH_EV_UNLOCK, SYNCH_EV_READERUNLOCK, SYNCH_EV_WAIT, SYNCH_EV_WAIT_RETURNING, SYNCH_EV_SIGNAL, SYNCH_EV_SIGNALALL, }; enum { SYNCH_F_R = 0x01, SYNCH_F_LCK = 0x02, SYNCH_F_TRY = 0x04, SYNCH_F_UNLOCK = 0x08, SYNCH_F_LCK_W = SYNCH_F_LCK, SYNCH_F_LCK_R = SYNCH_F_LCK | SYNCH_F_R, }; } static const struct { int flags; const char* msg; } event_properties[] = { {SYNCH_F_LCK_W | SYNCH_F_TRY, "TryLock succeeded "}, {0, "TryLock failed "}, {SYNCH_F_LCK_R | SYNCH_F_TRY, "ReaderTryLock succeeded "}, {0, "ReaderTryLock failed "}, {0, "Lock blocking "}, {SYNCH_F_LCK_W, "Lock returning "}, {0, "ReaderLock blocking "}, {SYNCH_F_LCK_R, "ReaderLock returning "}, {SYNCH_F_LCK_W | SYNCH_F_UNLOCK, "Unlock "}, {SYNCH_F_LCK_R | SYNCH_F_UNLOCK, "ReaderUnlock "}, {0, "Wait on "}, {0, "Wait unblocked "}, {0, "Signal on "}, {0, "SignalAll on "}, }; ABSL_CONST_INIT static absl::base_internal::SpinLock synch_event_mu( absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); static constexpr uint32_t kNSynchEvent = 1031; static struct SynchEvent { int refcount ABSL_GUARDED_BY(synch_event_mu); SynchEvent* next ABSL_GUARDED_BY(synch_event_mu); uintptr_t masked_addr; void (*invariant)(void* arg); void* arg; bool log; char name[1]; }* synch_event[kNSynchEvent] ABSL_GUARDED_BY(synch_event_mu); static SynchEvent* EnsureSynchEvent(std::atomic<intptr_t>* addr, const char* name, intptr_t bits, intptr_t lockbit) { uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent; synch_event_mu.Lock(); constexpr size_t kMaxSynchEventCount = 100 << 10; static size_t synch_event_count ABSL_GUARDED_BY(synch_event_mu); if (++synch_event_count > kMaxSynchEventCount) { synch_event_count = 0; ABSL_RAW_LOG(ERROR, "Accumulated %zu Mutex debug objects. If you see this" " in production, it may mean that the production code" " accidentally calls " "Mutex/CondVar::EnableDebugLog/EnableInvariantDebugging.", kMaxSynchEventCount); for (auto*& head : synch_event) { for (auto* e = head; e != nullptr;) { SynchEvent* next = e->next; if (--(e->refcount) == 0) { base_internal::LowLevelAlloc::Free(e); } e = next; } head = nullptr; } } SynchEvent* e = nullptr; if (!AtomicSetBits(addr, bits, lockbit)) { for (e = synch_event[h]; e != nullptr && e->masked_addr != base_internal::HidePtr(addr); e = e->next) { } } if (e == nullptr) { if (name == nullptr) { name = ""; } size_t l = strlen(name); e = reinterpret_cast<SynchEvent*>( base_internal::LowLevelAlloc::Alloc(sizeof(*e) + l)); e->refcount = 2; e->masked_addr = base_internal::HidePtr(addr); e->invariant = nullptr; e->arg = nullptr; e->log = false; strcpy(e->name, name); e->next = synch_event[h]; synch_event[h] = e; } else { e->refcount++; } synch_event_mu.Unlock(); return e; } static void UnrefSynchEvent(SynchEvent* e) { if (e != nullptr) { synch_event_mu.Lock(); bool del = (--(e->refcount) == 0); synch_event_mu.Unlock(); if (del) { base_internal::LowLevelAlloc::Free(e); } } } static SynchEvent* GetSynchEvent(const void* addr) { uint32_t h = reinterpret_cast<uintptr_t>(addr) % kNSynchEvent; SynchEvent* e; synch_event_mu.Lock(); for (e = synch_event[h]; e != nullptr && e->masked_addr != base_internal::HidePtr(addr); e = e->next) { } if (e != nullptr) { e->refcount++; } synch_event_mu.Unlock(); return e; } static void PostSynchEvent(void* obj, int ev) { SynchEvent* e = GetSynchEvent(obj); if (e == nullptr || e->log) { void* pcs[40]; int n = absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 1); char buffer[ABSL_ARRAYSIZE(pcs) * 24]; int pos = snprintf(buffer, sizeof(buffer), " @"); for (int i = 0; i != n; i++) { int b = snprintf(&buffer[pos], sizeof(buffer) - static_cast<size_t>(pos), " %p", pcs[i]); if (b < 0 || static_cast<size_t>(b) >= sizeof(buffer) - static_cast<size_t>(pos)) { break; } pos += b; } ABSL_RAW_LOG(INFO, "%s%p %s %s", event_properties[ev].msg, obj, (e == nullptr ? "" : e->name), buffer); } const int flags = event_properties[ev].flags; if ((flags & SYNCH_F_LCK) != 0 && e != nullptr && e->invariant != nullptr) { struct local { static bool pred(SynchEvent* ev) { (*ev->invariant)(ev->arg); return false; } }; Condition cond(&local::pred, e); Mutex* mu = static_cast<Mutex*>(obj); const bool locking = (flags & SYNCH_F_UNLOCK) == 0; const bool trylock = (flags & SYNCH_F_TRY) != 0; const bool read_lock = (flags & SYNCH_F_R) != 0; EvalConditionAnnotated(&cond, mu, locking, trylock, read_lock); } UnrefSynchEvent(e); } struct SynchWaitParams { SynchWaitParams(Mutex::MuHow how_arg, const Condition* cond_arg, KernelTimeout timeout_arg, Mutex* cvmu_arg, PerThreadSynch* thread_arg, std::atomic<intptr_t>* cv_word_arg) : how(how_arg), cond(cond_arg), timeout(timeout_arg), cvmu(cvmu_arg), thread(thread_arg), cv_word(cv_word_arg), contention_start_cycles(CycleClock::Now()), should_submit_contention_data(false) {} const Mutex::MuHow how; const Condition* cond; KernelTimeout timeout; Mutex* const cvmu; PerThreadSynch* const thread; std::atomic<intptr_t>* cv_word; int64_t contention_start_cycles; bool should_submit_contention_data; }; struct SynchLocksHeld { int n; bool overflow; struct { Mutex* mu; int32_t count; GraphId id; } locks[40]; }; static PerThreadSynch* const kPerThreadSynchNull = reinterpret_cast<PerThreadSynch*>(1); static SynchLocksHeld* LocksHeldAlloc() { SynchLocksHeld* ret = reinterpret_cast<SynchLocksHeld*>( base_internal::LowLevelAlloc::Alloc(sizeof(SynchLocksHeld))); ret->n = 0; ret->overflow = false; return ret; } static PerThreadSynch* Synch_GetPerThread() { ThreadIdentity* identity = GetOrCreateCurrentThreadIdentity(); return &identity->per_thread_synch; } static PerThreadSynch* Synch_GetPerThreadAnnotated(Mutex* mu) { if (mu) { ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); } PerThreadSynch* w = Synch_GetPerThread(); if (mu) { ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); } return w; } static SynchLocksHeld* Synch_GetAllLocks() { PerThreadSynch* s = Synch_GetPerThread(); if (s->all_locks == nullptr) { s->all_locks = LocksHeldAlloc(); } return s->all_locks; } void Mutex::IncrementSynchSem(Mutex* mu, PerThreadSynch* w) { static_cast<void>(mu); ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); PerThreadSem::Post(w->thread_identity()); ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END(); ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); } bool Mutex::DecrementSynchSem(Mutex* mu, PerThreadSynch* w, KernelTimeout t) { static_cast<void>(mu); ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); assert(w == Synch_GetPerThread()); static_cast<void>(w); bool res = PerThreadSem::Wait(t); ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); return res; } void Mutex::InternalAttemptToUseMutexInFatalSignalHandler() { ThreadIdentity* identity = CurrentThreadIdentityIfPresent(); if (identity != nullptr) { identity->per_thread_synch.suppress_fatal_errors = true; } synch_deadlock_detection.store(OnDeadlockCycle::kIgnore, std::memory_order_release); } static const intptr_t kMuReader = 0x0001L; static const intptr_t kMuDesig = 0x0002L; static const intptr_t kMuWait = 0x0004L; static const intptr_t kMuWriter = 0x0008L; static const intptr_t kMuEvent = 0x0010L; static const intptr_t kMuWrWait = 0x0020L; static const intptr_t kMuSpin = 0x0040L; static const intptr_t kMuLow = 0x00ffL; static const intptr_t kMuHigh = ~kMuLow; static_assert((0xab & (kMuWriter | kMuReader)) == (kMuWriter | kMuReader), "The debug allocator's uninitialized pattern (0xab) must be an " "invalid mutex state"); static_assert((0xcd & (kMuWriter | kMuReader)) == (kMuWriter | kMuReader), "The debug allocator's freed pattern (0xcd) must be an invalid " "mutex state"); enum { kGdbMuSpin = kMuSpin, kGdbMuEvent = kMuEvent, kGdbMuWait = kMuWait, kGdbMuWriter = kMuWriter, kGdbMuDesig = kMuDesig, kGdbMuWrWait = kMuWrWait, kGdbMuReader = kMuReader, kGdbMuLow = kMuLow, }; static const intptr_t kMuOne = 0x0100; static const int kMuHasBlocked = 0x01; static const int kMuIsCond = 0x02; static const int kMuIsFer = 0x04; static_assert(PerThreadSynch::kAlignment > kMuLow, "PerThreadSynch::kAlignment must be greater than kMuLow"); struct MuHowS { intptr_t fast_need_zero; intptr_t fast_or; intptr_t fast_add; intptr_t slow_need_zero; intptr_t slow_inc_need_zero; }; static const MuHowS kSharedS = { kMuWriter | kMuWait | kMuEvent, kMuReader, kMuOne, kMuWriter | kMuWait, kMuSpin | kMuWriter | kMuWrWait, }; static const MuHowS kExclusiveS = { kMuWriter | kMuReader | kMuEvent, kMuWriter, 0, kMuWriter | kMuReader, ~static_cast<intptr_t>(0), }; static const Mutex::MuHow kShared = &kSharedS; static const Mutex::MuHow kExclusive = &kExclusiveS; #ifdef NDEBUG static constexpr bool kDebugMode = false; #else static constexpr bool kDebugMode = true; #endif #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE static unsigned TsanFlags(Mutex::MuHow how) { return how == kShared ? __tsan_mutex_read_lock : 0; } #endif #if defined(__APPLE__) || defined(ABSL_BUILD_DLL) Mutex::~Mutex() { Dtor(); } #endif #if !defined(NDEBUG) || defined(ABSL_HAVE_THREAD_SANITIZER) void Mutex::Dtor() { if (kDebugMode) { this->ForgetDeadlockInfo(); } ABSL_TSAN_MUTEX_DESTROY(this, __tsan_mutex_not_static); } #endif void Mutex::EnableDebugLog(const char* name) { ABSL_ANNOTATE_IGNORE_WRITES_BEGIN(); SynchEvent* e = EnsureSynchEvent(&this->mu_, name, kMuEvent, kMuSpin); e->log = true; UnrefSynchEvent(e); ABSL_ATTRIBUTE_UNUSED volatile auto dtor = &Mutex::Dtor; ABSL_ANNOTATE_IGNORE_WRITES_END(); } void EnableMutexInvariantDebugging(bool enabled) { synch_check_invariants.store(enabled, std::memory_order_release); } void Mutex::EnableInvariantDebugging(void (*invariant)(void*), void* arg) { ABSL_ANNOTATE_IGNORE_WRITES_BEGIN(); if (synch_check_invariants.load(std::memory_order_acquire) && invariant != nullptr) { SynchEvent* e = EnsureSynchEvent(&this->mu_, nullptr, kMuEvent, kMuSpin); e->invariant = invariant; e->arg = arg; UnrefSynchEvent(e); } ABSL_ANNOTATE_IGNORE_WRITES_END(); } void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode) { synch_deadlock_detection.store(mode, std::memory_order_release); } static bool MuEquivalentWaiter(PerThreadSynch* x, PerThreadSynch* y) { return x->waitp->how == y->waitp->how && x->priority == y->priority && Condition::GuaranteedEqual(x->waitp->cond, y->waitp->cond); } static inline PerThreadSynch* GetPerThreadSynch(intptr_t v) { return reinterpret_cast<PerThreadSynch*>(v & kMuHigh); } static PerThreadSynch* Skip(PerThreadSynch* x) { PerThreadSynch* x0 = nullptr; PerThreadSynch* x1 = x; PerThreadSynch* x2 = x->skip; if (x2 != nullptr) { while ((x0 = x1, x1 = x2, x2 = x2->skip) != nullptr) { x0->skip = x2; } x->skip = x1; } return x1; } static void FixSkip(PerThreadSynch* ancestor, PerThreadSynch* to_be_removed) { if (ancestor->skip == to_be_removed) { if (to_be_removed->skip != nullptr) { ancestor->skip = to_be_removed->skip; } else if (ancestor->next != to_be_removed) { ancestor->skip = ancestor->next; } else { ancestor->skip = nullptr; } } } static void CondVarEnqueue(SynchWaitParams* waitp); static PerThreadSynch* Enqueue(PerThreadSynch* head, SynchWaitParams* waitp, intptr_t mu, int flags) { if (waitp->cv_word != nullptr) { CondVarEnqueue(waitp); return head; } PerThreadSynch* s = waitp->thread; ABSL_RAW_CHECK( s->waitp == nullptr || s->waitp == waitp || s->suppress_fatal_errors, "detected illegal recursion into Mutex code"); s->waitp = waitp; s->skip = nullptr; s->may_skip = true; s->wake = false; s->cond_waiter = ((flags & kMuIsCond) != 0); #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM if ((flags & kMuIsFer) == 0) { assert(s == Synch_GetPerThread()); int64_t now_cycles = CycleClock::Now(); if (s->next_priority_read_cycles < now_cycles) { int policy; struct sched_param param; const int err = pthread_getschedparam(pthread_self(), &policy, &param); if (err != 0) { ABSL_RAW_LOG(ERROR, "pthread_getschedparam failed: %d", err); } else { s->priority = param.sched_priority; s->next_priority_read_cycles = now_cycles + static_cast<int64_t>(CycleClock::Frequency()); } } } #endif if (head == nullptr) { s->next = s; s->readers = mu; s->maybe_unlocking = false; head = s; } else { PerThreadSynch* enqueue_after = nullptr; #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM if (s->priority > head->priority) { if (!head->maybe_unlocking) { PerThreadSynch* advance_to = head; do { enqueue_after = advance_to; advance_to = Skip(enqueue_after->next); } while (s->priority <= advance_to->priority); } else if (waitp->how == kExclusive && waitp->cond == nullptr) { enqueue_after = head; } } #endif if (enqueue_after != nullptr) { s->next = enqueue_after->next; enqueue_after->next = s; ABSL_RAW_CHECK(enqueue_after->skip == nullptr || MuEquivalentWaiter(enqueue_after, s), "Mutex Enqueue failure"); if (enqueue_after != head && enqueue_after->may_skip && MuEquivalentWaiter(enqueue_after, enqueue_after->next)) { enqueue_after->skip = enqueue_after->next; } if (MuEquivalentWaiter(s, s->next)) { s->skip = s->next; } } else if ((flags & kMuHasBlocked) && (s->priority >= head->next->priority) && (!head->maybe_unlocking || (waitp->how == kExclusive && Condition::GuaranteedEqual(waitp->cond, nullptr)))) { s->next = head->next; head->next = s; if (MuEquivalentWaiter(s, s->next)) { s->skip = s->next; } } else { s->next = head->next; head->next = s; s->readers = head->readers; s->maybe_unlocking = head->maybe_unlocking; if (head->may_skip && MuEquivalentWaiter(head, s)) { head->skip = s; } head = s; } } s->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed); return head; } static PerThreadSynch* Dequeue(PerThreadSynch* head, PerThreadSynch* pw) { PerThreadSynch* w = pw->next; pw->next = w->next; if (head == w) { head = (pw == w) ? nullptr : pw; } else if (pw != head && MuEquivalentWaiter(pw, pw->next)) { if (pw->next->skip != nullptr) { pw->skip = pw->next->skip; } else { pw->skip = pw->next; } } return head; } static PerThreadSynch* DequeueAllWakeable(PerThreadSynch* head, PerThreadSynch* pw, PerThreadSynch** wake_tail) { PerThreadSynch* orig_h = head; PerThreadSynch* w = pw->next; bool skipped = false; do { if (w->wake) { ABSL_RAW_CHECK(pw->skip == nullptr, "bad skip in DequeueAllWakeable"); head = Dequeue(head, pw); w->next = *wake_tail; *wake_tail = w; wake_tail = &w->next; if (w->waitp->how == kExclusive) { break; } } else { pw = Skip(w); skipped = true; } w = pw->next; } while (orig_h == head && (pw != head || !skipped)); return head; } void Mutex::TryRemove(PerThreadSynch* s) { SchedulingGuard::ScopedDisable disable_rescheduling; intptr_t v = mu_.load(std::memory_order_relaxed); if ((v & (kMuWait | kMuSpin | kMuWriter | kMuReader)) == kMuWait && mu_.compare_exchange_strong(v, v | kMuSpin | kMuWriter, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch* h = GetPerThreadSynch(v); if (h != nullptr) { PerThreadSynch* pw = h; PerThreadSynch* w; if ((w = pw->next) != s) { do { if (!MuEquivalentWaiter(s, w)) { pw = Skip(w); } else { FixSkip(w, s); pw = w; } } while ((w = pw->next) != s && pw != h); } if (w == s) { h = Dequeue(h, pw); s->next = nullptr; s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); } } intptr_t nv; do { v = mu_.load(std::memory_order_relaxed); nv = v & (kMuDesig | kMuEvent); if (h != nullptr) { nv |= kMuWait | reinterpret_cast<intptr_t>(h); h->readers = 0; h->maybe_unlocking = false; } } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release, std::memory_order_relaxed)); } } void Mutex::Block(PerThreadSynch* s) { while (s->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) { if (!DecrementSynchSem(this, s, s->waitp->timeout)) { this->TryRemove(s); int c = 0; while (s->next != nullptr) { c = synchronization_internal::MutexDelay(c, GENTLE); this->TryRemove(s); } if (kDebugMode) { this->TryRemove(s); } s->waitp->timeout = KernelTimeout::Never(); s->waitp->cond = nullptr; } } ABSL_RAW_CHECK(s->waitp != nullptr || s->suppress_fatal_errors, "detected illegal recursion in Mutex code"); s->waitp = nullptr; } PerThreadSynch* Mutex::Wakeup(PerThreadSynch* w) { PerThreadSynch* next = w->next; w->next = nullptr; w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); IncrementSynchSem(this, w); return next; } static GraphId GetGraphIdLocked(Mutex* mu) ABSL_EXCLUSIVE_LOCKS_REQUIRED(deadlock_graph_mu) { if (!deadlock_graph) { deadlock_graph = new (base_internal::LowLevelAlloc::Alloc(sizeof(*deadlock_graph))) GraphCycles; } return deadlock_graph->GetId(mu); } static GraphId GetGraphId(Mutex* mu) ABSL_LOCKS_EXCLUDED(deadlock_graph_mu) { deadlock_graph_mu.Lock(); GraphId id = GetGraphIdLocked(mu); deadlock_graph_mu.Unlock(); return id; } static void LockEnter(Mutex* mu, GraphId id, SynchLocksHeld* held_locks) { int n = held_locks->n; int i = 0; while (i != n && held_locks->locks[i].id != id) { i++; } if (i == n) { if (n == ABSL_ARRAYSIZE(held_locks->locks)) { held_locks->overflow = true; } else { held_locks->locks[i].mu = mu; held_locks->locks[i].count = 1; held_locks->locks[i].id = id; held_locks->n = n + 1; } } else { held_locks->locks[i].count++; } } static void LockLeave(Mutex* mu, GraphId id, SynchLocksHeld* held_locks) { int n = held_locks->n; int i = 0; while (i != n && held_locks->locks[i].id != id) { i++; } if (i == n) { if (!held_locks->overflow) { i = 0; while (i != n && held_locks->locks[i].mu != mu) { i++; } if (i == n) { SynchEvent* mu_events = GetSynchEvent(mu); ABSL_RAW_LOG(FATAL, "thread releasing lock it does not hold: %p %s; " , static_cast<void*>(mu), mu_events == nullptr ? "" : mu_events->name); } } } else if (held_locks->locks[i].count == 1) { held_locks->n = n - 1; held_locks->locks[i] = held_locks->locks[n - 1]; held_locks->locks[n - 1].id = InvalidGraphId(); held_locks->locks[n - 1].mu = nullptr; } else { assert(held_locks->locks[i].count > 0); held_locks->locks[i].count--; } } static inline void DebugOnlyLockEnter(Mutex* mu) { if (kDebugMode) { if (synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { LockEnter(mu, GetGraphId(mu), Synch_GetAllLocks()); } } } static inline void DebugOnlyLockEnter(Mutex* mu, GraphId id) { if (kDebugMode) { if (synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { LockEnter(mu, id, Synch_GetAllLocks()); } } } static inline void DebugOnlyLockLeave(Mutex* mu) { if (kDebugMode) { if (synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { LockLeave(mu, GetGraphId(mu), Synch_GetAllLocks()); } } } static char* StackString(void** pcs, int n, char* buf, int maxlen, bool symbolize) { static constexpr int kSymLen = 200; char sym[kSymLen]; int len = 0; for (int i = 0; i != n; i++) { if (len >= maxlen) return buf; size_t count = static_cast<size_t>(maxlen - len); if (symbolize) { if (!absl::Symbolize(pcs[i], sym, kSymLen)) { sym[0] = '\0'; } snprintf(buf + len, count, "%s\t@ %p %s\n", (i == 0 ? "\n" : ""), pcs[i], sym); } else { snprintf(buf + len, count, " %p", pcs[i]); } len += strlen(&buf[len]); } return buf; } static char* CurrentStackString(char* buf, int maxlen, bool symbolize) { void* pcs[40]; return StackString(pcs, absl::GetStackTrace(pcs, ABSL_ARRAYSIZE(pcs), 2), buf, maxlen, symbolize); } namespace { enum { kMaxDeadlockPathLen = 10 }; struct DeadlockReportBuffers { char buf[6100]; GraphId path[kMaxDeadlockPathLen]; }; struct ScopedDeadlockReportBuffers { ScopedDeadlockReportBuffers() { b = reinterpret_cast<DeadlockReportBuffers*>( base_internal::LowLevelAlloc::Alloc(sizeof(*b))); } ~ScopedDeadlockReportBuffers() { base_internal::LowLevelAlloc::Free(b); } DeadlockReportBuffers* b; }; int GetStack(void** stack, int max_depth) { return absl::GetStackTrace(stack, max_depth, 3); } } static GraphId DeadlockCheck(Mutex* mu) { if (synch_deadlock_detection.load(std::memory_order_acquire) == OnDeadlockCycle::kIgnore) { return InvalidGraphId(); } SynchLocksHeld* all_locks = Synch_GetAllLocks(); absl::base_internal::SpinLockHolder lock(&deadlock_graph_mu); const GraphId mu_id = GetGraphIdLocked(mu); if (all_locks->n == 0) { return mu_id; } deadlock_graph->UpdateStackTrace(mu_id, all_locks->n + 1, GetStack); for (int i = 0; i != all_locks->n; i++) { const GraphId other_node_id = all_locks->locks[i].id; const Mutex* other = static_cast<const Mutex*>(deadlock_graph->Ptr(other_node_id)); if (other == nullptr) { continue; } if (!deadlock_graph->InsertEdge(other_node_id, mu_id)) { ScopedDeadlockReportBuffers scoped_buffers; DeadlockReportBuffers* b = scoped_buffers.b; static int number_of_reported_deadlocks = 0; number_of_reported_deadlocks++; bool symbolize = number_of_reported_deadlocks <= 2; ABSL_RAW_LOG(ERROR, "Potential Mutex deadlock: %s", CurrentStackString(b->buf, sizeof (b->buf), symbolize)); size_t len = 0; for (int j = 0; j != all_locks->n; j++) { void* pr = deadlock_graph->Ptr(all_locks->locks[j].id); if (pr != nullptr) { snprintf(b->buf + len, sizeof(b->buf) - len, " %p", pr); len += strlen(&b->buf[len]); } } ABSL_RAW_LOG(ERROR, "Acquiring absl::Mutex %p while holding %s; a cycle in the " "historical lock ordering graph has been observed", static_cast<void*>(mu), b->buf); ABSL_RAW_LOG(ERROR, "Cycle: "); int path_len = deadlock_graph->FindPath(mu_id, other_node_id, ABSL_ARRAYSIZE(b->path), b->path); for (int j = 0; j != path_len && j != ABSL_ARRAYSIZE(b->path); j++) { GraphId id = b->path[j]; Mutex* path_mu = static_cast<Mutex*>(deadlock_graph->Ptr(id)); if (path_mu == nullptr) continue; void** stack; int depth = deadlock_graph->GetStackTrace(id, &stack); snprintf(b->buf, sizeof(b->buf), "mutex@%p stack: ", static_cast<void*>(path_mu)); StackString(stack, depth, b->buf + strlen(b->buf), static_cast<int>(sizeof(b->buf) - strlen(b->buf)), symbolize); ABSL_RAW_LOG(ERROR, "%s", b->buf); } if (path_len > static_cast<int>(ABSL_ARRAYSIZE(b->path))) { ABSL_RAW_LOG(ERROR, "(long cycle; list truncated)"); } if (synch_deadlock_detection.load(std::memory_order_acquire) == OnDeadlockCycle::kAbort) { deadlock_graph_mu.Unlock(); ABSL_RAW_LOG(FATAL, "dying due to potential deadlock"); return mu_id; } break; } } return mu_id; } static inline GraphId DebugOnlyDeadlockCheck(Mutex* mu) { if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { return DeadlockCheck(mu); } else { return InvalidGraphId(); } } void Mutex::ForgetDeadlockInfo() { if (kDebugMode && synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { deadlock_graph_mu.Lock(); if (deadlock_graph != nullptr) { deadlock_graph->RemoveNode(this); } deadlock_graph_mu.Unlock(); } } void Mutex::AssertNotHeld() const { if (kDebugMode && (mu_.load(std::memory_order_relaxed) & (kMuWriter | kMuReader)) != 0 && synch_deadlock_detection.load(std::memory_order_acquire) != OnDeadlockCycle::kIgnore) { GraphId id = GetGraphId(const_cast<Mutex*>(this)); SynchLocksHeld* locks = Synch_GetAllLocks(); for (int i = 0; i != locks->n; i++) { if (locks->locks[i].id == id) { SynchEvent* mu_events = GetSynchEvent(this); ABSL_RAW_LOG(FATAL, "thread should not hold mutex %p %s", static_cast<const void*>(this), (mu_events == nullptr ? "" : mu_events->name)); } } } } static bool TryAcquireWithSpinning(std::atomic<intptr_t>* mu) { int c = globals.spinloop_iterations.load(std::memory_order_relaxed); do { intptr_t v = mu->load(std::memory_order_relaxed); if ((v & (kMuReader | kMuEvent)) != 0) { return false; } else if (((v & kMuWriter) == 0) && mu->compare_exchange_strong(v, kMuWriter | v, std::memory_order_acquire, std::memory_order_relaxed)) { return true; } } while (--c > 0); return false; } void Mutex::Lock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); GraphId id = DebugOnlyDeadlockCheck(this); intptr_t v = mu_.load(std::memory_order_relaxed); if (ABSL_PREDICT_FALSE((v & (kMuWriter | kMuReader | kMuEvent)) != 0) || ABSL_PREDICT_FALSE(!mu_.compare_exchange_strong( v, kMuWriter | v, std::memory_order_acquire, std::memory_order_relaxed))) { if (ABSL_PREDICT_FALSE(!TryAcquireWithSpinning(&this->mu_))) { this->LockSlow(kExclusive, nullptr, 0); } } DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); } void Mutex::ReaderLock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock); GraphId id = DebugOnlyDeadlockCheck(this); intptr_t v = mu_.load(std::memory_order_relaxed); for (;;) { if (ABSL_PREDICT_FALSE(v & (kMuWriter | kMuWait | kMuEvent)) != 0) { this->LockSlow(kShared, nullptr, 0); break; } if (ABSL_PREDICT_TRUE(mu_.compare_exchange_weak( v, (kMuReader | v) + kMuOne, std::memory_order_acquire, std::memory_order_relaxed))) { break; } } DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock, 0); } bool Mutex::LockWhenCommon(const Condition& cond, synchronization_internal::KernelTimeout t, bool write) { MuHow how = write ? kExclusive : kShared; ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how)); GraphId id = DebugOnlyDeadlockCheck(this); bool res = LockSlowWithDeadline(how, &cond, t, 0); DebugOnlyLockEnter(this, id); ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0); return res; } bool Mutex::AwaitCommon(const Condition& cond, KernelTimeout t) { if (kDebugMode) { this->AssertReaderHeld(); } if (cond.Eval()) { return true; } MuHow how = (mu_.load(std::memory_order_relaxed) & kMuWriter) ? kExclusive : kShared; ABSL_TSAN_MUTEX_PRE_UNLOCK(this, TsanFlags(how)); SynchWaitParams waitp(how, &cond, t, nullptr , Synch_GetPerThreadAnnotated(this), nullptr ); this->UnlockSlow(&waitp); this->Block(waitp.thread); ABSL_TSAN_MUTEX_POST_UNLOCK(this, TsanFlags(how)); ABSL_TSAN_MUTEX_PRE_LOCK(this, TsanFlags(how)); this->LockSlowLoop(&waitp, kMuHasBlocked | kMuIsCond); bool res = waitp.cond != nullptr || EvalConditionAnnotated(&cond, this, true, false, how == kShared); ABSL_TSAN_MUTEX_POST_LOCK(this, TsanFlags(how), 0); ABSL_RAW_CHECK(res || t.has_timeout(), "condition untrue on return from Await"); return res; } bool Mutex::TryLock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock); intptr_t v = mu_.load(std::memory_order_relaxed); if (ABSL_PREDICT_TRUE((v & (kMuWriter | kMuReader | kMuEvent)) == 0)) { if (ABSL_PREDICT_TRUE(mu_.compare_exchange_strong( v, kMuWriter | v, std::memory_order_acquire, std::memory_order_relaxed))) { DebugOnlyLockEnter(this); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); return true; } } else if (ABSL_PREDICT_FALSE((v & kMuEvent) != 0)) { return TryLockSlow(); } ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); return false; } ABSL_ATTRIBUTE_NOINLINE bool Mutex::TryLockSlow() { intptr_t v = mu_.load(std::memory_order_relaxed); if ((v & kExclusive->slow_need_zero) == 0 && mu_.compare_exchange_strong( v, (kExclusive->fast_or | v) + kExclusive->fast_add, std::memory_order_acquire, std::memory_order_relaxed)) { DebugOnlyLockEnter(this); PostSynchEvent(this, SYNCH_EV_TRYLOCK_SUCCESS); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_try_lock, 0); return true; } PostSynchEvent(this, SYNCH_EV_TRYLOCK_FAILED); ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); return false; } bool Mutex::ReaderTryLock() { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_read_lock | __tsan_mutex_try_lock); intptr_t v = mu_.load(std::memory_order_relaxed); #if defined(__clang__) #pragma nounroll #endif for (int loop_limit = 5; loop_limit != 0; loop_limit--) { if (ABSL_PREDICT_FALSE((v & (kMuWriter | kMuWait | kMuEvent)) != 0)) { break; } if (ABSL_PREDICT_TRUE(mu_.compare_exchange_strong( v, (kMuReader | v) + kMuOne, std::memory_order_acquire, std::memory_order_relaxed))) { DebugOnlyLockEnter(this); ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); return true; } } if (ABSL_PREDICT_TRUE((v & kMuEvent) == 0)) { ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock | __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); return false; } return ReaderTryLockSlow(); } ABSL_ATTRIBUTE_NOINLINE bool Mutex::ReaderTryLockSlow() { intptr_t v = mu_.load(std::memory_order_relaxed); #if defined(__clang__) #pragma nounroll #endif for (int loop_limit = 5; loop_limit != 0; loop_limit--) { if ((v & kShared->slow_need_zero) == 0 && mu_.compare_exchange_strong(v, (kMuReader | v) + kMuOne, std::memory_order_acquire, std::memory_order_relaxed)) { DebugOnlyLockEnter(this); PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_SUCCESS); ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_read_lock | __tsan_mutex_try_lock, 0); return true; } } PostSynchEvent(this, SYNCH_EV_READERTRYLOCK_FAILED); ABSL_TSAN_MUTEX_POST_LOCK(this, __tsan_mutex_read_lock | __tsan_mutex_try_lock | __tsan_mutex_try_lock_failed, 0); return false; } void Mutex::Unlock() { ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0); DebugOnlyLockLeave(this); intptr_t v = mu_.load(std::memory_order_relaxed); if (kDebugMode && ((v & (kMuWriter | kMuReader)) != kMuWriter)) { ABSL_RAW_LOG(FATAL, "Mutex unlocked when destroyed or not locked: v=0x%x", static_cast<unsigned>(v)); } bool should_try_cas = ((v & (kMuEvent | kMuWriter)) == kMuWriter && (v & (kMuWait | kMuDesig)) != kMuWait); static_assert(kMuEvent > kMuWait, "Needed for should_try_cas_fast"); static_assert(kMuEvent > kMuDesig, "Needed for should_try_cas_fast"); static_assert(kMuWriter > kMuWait, "Needed for should_try_cas_fast"); static_assert(kMuWriter > kMuDesig, "Needed for should_try_cas_fast"); bool should_try_cas_fast = ((v ^ (kMuWriter | kMuDesig)) & (kMuEvent | kMuWriter | kMuWait | kMuDesig)) < (kMuWait | kMuDesig); if (kDebugMode && should_try_cas != should_try_cas_fast) { ABSL_RAW_LOG(FATAL, "internal logic error %llx %llx %llx\n", static_cast<long long>(v), static_cast<long long>(should_try_cas), static_cast<long long>(should_try_cas_fast)); } if (should_try_cas_fast && mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), std::memory_order_release, std::memory_order_relaxed)) { } else { this->UnlockSlow(nullptr ); } ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0); } static bool ExactlyOneReader(intptr_t v) { assert((v & (kMuWriter | kMuReader)) == kMuReader); assert((v & kMuHigh) != 0); constexpr intptr_t kMuMultipleWaitersMask = kMuHigh ^ kMuOne; return (v & kMuMultipleWaitersMask) == 0; } void Mutex::ReaderUnlock() { ABSL_TSAN_MUTEX_PRE_UNLOCK(this, __tsan_mutex_read_lock); DebugOnlyLockLeave(this); intptr_t v = mu_.load(std::memory_order_relaxed); assert((v & (kMuWriter | kMuReader)) == kMuReader); for (;;) { if (ABSL_PREDICT_FALSE((v & (kMuReader | kMuWait | kMuEvent)) != kMuReader)) { this->UnlockSlow(nullptr ); break; } intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne; if (ABSL_PREDICT_TRUE( mu_.compare_exchange_strong(v, v - clear, std::memory_order_release, std::memory_order_relaxed))) { break; } } ABSL_TSAN_MUTEX_POST_UNLOCK(this, __tsan_mutex_read_lock); } static intptr_t ClearDesignatedWakerMask(int flag) { assert(flag >= 0); assert(flag <= 1); switch (flag) { case 0: return ~static_cast<intptr_t>(0); case 1: return ~static_cast<intptr_t>(kMuDesig); } ABSL_UNREACHABLE(); } static intptr_t IgnoreWaitingWritersMask(int flag) { assert(flag >= 0); assert(flag <= 1); switch (flag) { case 0: return ~static_cast<intptr_t>(0); case 1: return ~static_cast<intptr_t>(kMuWrWait); } ABSL_UNREACHABLE(); } ABSL_ATTRIBUTE_NOINLINE void Mutex::LockSlow(MuHow how, const Condition* cond, int flags) { if (ABSL_PREDICT_FALSE( globals.spinloop_iterations.load(std::memory_order_relaxed) == 0)) { if (absl::base_internal::NumCPUs() > 1) { globals.spinloop_iterations.store(1500, std::memory_order_relaxed); } else { globals.spinloop_iterations.store(-1, std::memory_order_relaxed); } } ABSL_RAW_CHECK( this->LockSlowWithDeadline(how, cond, KernelTimeout::Never(), flags), "condition untrue on return from LockSlow"); } static inline bool EvalConditionAnnotated(const Condition* cond, Mutex* mu, bool locking, bool trylock, bool read_lock) { bool res = false; #ifdef ABSL_INTERNAL_HAVE_TSAN_INTERFACE const uint32_t flags = read_lock ? __tsan_mutex_read_lock : 0; const uint32_t tryflags = flags | (trylock ? __tsan_mutex_try_lock : 0); #endif if (locking) { ABSL_TSAN_MUTEX_POST_LOCK(mu, tryflags, 0); res = cond->Eval(); ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); ABSL_TSAN_MUTEX_PRE_LOCK(mu, tryflags); } else { ABSL_TSAN_MUTEX_POST_UNLOCK(mu, flags); ABSL_TSAN_MUTEX_PRE_LOCK(mu, flags); ABSL_TSAN_MUTEX_POST_LOCK(mu, flags, 0); res = cond->Eval(); ABSL_TSAN_MUTEX_PRE_UNLOCK(mu, flags); } static_cast<void>(mu); static_cast<void>(trylock); static_cast<void>(read_lock); return res; } static inline bool EvalConditionIgnored(Mutex* mu, const Condition* cond) { ABSL_TSAN_MUTEX_PRE_DIVERT(mu, 0); ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); bool res = cond->Eval(); ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END(); ABSL_TSAN_MUTEX_POST_DIVERT(mu, 0); static_cast<void>(mu); return res; } bool Mutex::LockSlowWithDeadline(MuHow how, const Condition* cond, KernelTimeout t, int flags) { intptr_t v = mu_.load(std::memory_order_relaxed); bool unlock = false; if ((v & how->fast_need_zero) == 0 && mu_.compare_exchange_strong( v, (how->fast_or | (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) + how->fast_add, std::memory_order_acquire, std::memory_order_relaxed)) { if (cond == nullptr || EvalConditionAnnotated(cond, this, true, false, how == kShared)) { return true; } unlock = true; } SynchWaitParams waitp(how, cond, t, nullptr , Synch_GetPerThreadAnnotated(this), nullptr ); if (cond != nullptr) { flags |= kMuIsCond; } if (unlock) { this->UnlockSlow(&waitp); this->Block(waitp.thread); flags |= kMuHasBlocked; } this->LockSlowLoop(&waitp, flags); return waitp.cond != nullptr || cond == nullptr || EvalConditionAnnotated(cond, this, true, false, how == kShared); } #define RAW_CHECK_FMT(cond, ...) \ do { \ if (ABSL_PREDICT_FALSE(!(cond))) { \ ABSL_RAW_LOG(FATAL, "Check " #cond " failed: " __VA_ARGS__); \ } \ } while (0) static void CheckForMutexCorruption(intptr_t v, const char* label) { const uintptr_t w = static_cast<uintptr_t>(v ^ kMuWait); static_assert(kMuReader << 3 == kMuWriter, "must match"); static_assert(kMuWait << 3 == kMuWrWait, "must match"); if (ABSL_PREDICT_TRUE((w & (w << 3) & (kMuWriter | kMuWrWait)) == 0)) return; RAW_CHECK_FMT((v & (kMuWriter | kMuReader)) != (kMuWriter | kMuReader), "%s: Mutex corrupt: both reader and writer lock held: %p", label, reinterpret_cast<void*>(v)); RAW_CHECK_FMT((v & (kMuWait | kMuWrWait)) != kMuWrWait, "%s: Mutex corrupt: waiting writer with no waiters: %p", label, reinterpret_cast<void*>(v)); assert(false); } void Mutex::LockSlowLoop(SynchWaitParams* waitp, int flags) { SchedulingGuard::ScopedDisable disable_rescheduling; int c = 0; intptr_t v = mu_.load(std::memory_order_relaxed); if ((v & kMuEvent) != 0) { PostSynchEvent( this, waitp->how == kExclusive ? SYNCH_EV_LOCK : SYNCH_EV_READERLOCK); } ABSL_RAW_CHECK( waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); for (;;) { v = mu_.load(std::memory_order_relaxed); CheckForMutexCorruption(v, "Lock"); if ((v & waitp->how->slow_need_zero) == 0) { if (mu_.compare_exchange_strong( v, (waitp->how->fast_or | (v & ClearDesignatedWakerMask(flags & kMuHasBlocked))) + waitp->how->fast_add, std::memory_order_acquire, std::memory_order_relaxed)) { if (waitp->cond == nullptr || EvalConditionAnnotated(waitp->cond, this, true, false, waitp->how == kShared)) { break; } this->UnlockSlow(waitp); this->Block(waitp->thread); flags |= kMuHasBlocked; c = 0; } } else { bool dowait = false; if ((v & (kMuSpin | kMuWait)) == 0) { PerThreadSynch* new_h = Enqueue(nullptr, waitp, v, flags); intptr_t nv = (v & ClearDesignatedWakerMask(flags & kMuHasBlocked) & kMuLow) | kMuWait; ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to empty list failed"); if (waitp->how == kExclusive && (v & kMuReader) != 0) { nv |= kMuWrWait; } if (mu_.compare_exchange_strong( v, reinterpret_cast<intptr_t>(new_h) | nv, std::memory_order_release, std::memory_order_relaxed)) { dowait = true; } else { waitp->thread->waitp = nullptr; } } else if ((v & waitp->how->slow_inc_need_zero & IgnoreWaitingWritersMask(flags & kMuHasBlocked)) == 0) { if (mu_.compare_exchange_strong( v, (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) | kMuSpin | kMuReader, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch* h = GetPerThreadSynch(v); h->readers += kMuOne; do { v = mu_.load(std::memory_order_relaxed); } while (!mu_.compare_exchange_weak(v, (v & ~kMuSpin) | kMuReader, std::memory_order_release, std::memory_order_relaxed)); if (waitp->cond == nullptr || EvalConditionAnnotated(waitp->cond, this, true, false, waitp->how == kShared)) { break; } this->UnlockSlow(waitp); this->Block(waitp->thread); flags |= kMuHasBlocked; c = 0; } } else if ((v & kMuSpin) == 0 && mu_.compare_exchange_strong( v, (v & ClearDesignatedWakerMask(flags & kMuHasBlocked)) | kMuSpin | kMuWait, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch* h = GetPerThreadSynch(v); PerThreadSynch* new_h = Enqueue(h, waitp, v, flags); intptr_t wr_wait = 0; ABSL_RAW_CHECK(new_h != nullptr, "Enqueue to list failed"); if (waitp->how == kExclusive && (v & kMuReader) != 0) { wr_wait = kMuWrWait; } do { v = mu_.load(std::memory_order_relaxed); } while (!mu_.compare_exchange_weak( v, (v & (kMuLow & ~kMuSpin)) | kMuWait | wr_wait | reinterpret_cast<intptr_t>(new_h), std::memory_order_release, std::memory_order_relaxed)); dowait = true; } if (dowait) { this->Block(waitp->thread); flags |= kMuHasBlocked; c = 0; } } ABSL_RAW_CHECK( waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); c = synchronization_internal::MutexDelay(c, GENTLE); } ABSL_RAW_CHECK( waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); if ((v & kMuEvent) != 0) { PostSynchEvent(this, waitp->how == kExclusive ? SYNCH_EV_LOCK_RETURNING : SYNCH_EV_READERLOCK_RETURNING); } } ABSL_ATTRIBUTE_NOINLINE void Mutex::UnlockSlow(SynchWaitParams* waitp) { SchedulingGuard::ScopedDisable disable_rescheduling; intptr_t v = mu_.load(std::memory_order_relaxed); this->AssertReaderHeld(); CheckForMutexCorruption(v, "Unlock"); if ((v & kMuEvent) != 0) { PostSynchEvent( this, (v & kMuWriter) != 0 ? SYNCH_EV_UNLOCK : SYNCH_EV_READERUNLOCK); } int c = 0; PerThreadSynch* w = nullptr; PerThreadSynch* pw = nullptr; PerThreadSynch* old_h = nullptr; PerThreadSynch* wake_list = kPerThreadSynchNull; intptr_t wr_wait = 0; ABSL_RAW_CHECK(waitp == nullptr || waitp->thread->waitp == nullptr || waitp->thread->suppress_fatal_errors, "detected illegal recursion into Mutex code"); for (;;) { v = mu_.load(std::memory_order_relaxed); if ((v & kMuWriter) != 0 && (v & (kMuWait | kMuDesig)) != kMuWait && waitp == nullptr) { if (mu_.compare_exchange_strong(v, v & ~(kMuWrWait | kMuWriter), std::memory_order_release, std::memory_order_relaxed)) { return; } } else if ((v & (kMuReader | kMuWait)) == kMuReader && waitp == nullptr) { intptr_t clear = ExactlyOneReader(v) ? kMuReader | kMuOne : kMuOne; if (mu_.compare_exchange_strong(v, v - clear, std::memory_order_release, std::memory_order_relaxed)) { return; } } else if ((v & kMuSpin) == 0 && mu_.compare_exchange_strong(v, v | kMuSpin, std::memory_order_acquire, std::memory_order_relaxed)) { if ((v & kMuWait) == 0) { intptr_t nv; bool do_enqueue = true; ABSL_RAW_CHECK(waitp != nullptr, "UnlockSlow is confused"); do { v = mu_.load(std::memory_order_relaxed); intptr_t new_readers = (v >= kMuOne) ? v - kMuOne : v; PerThreadSynch* new_h = nullptr; if (do_enqueue) { do_enqueue = (waitp->cv_word == nullptr); new_h = Enqueue(nullptr, waitp, new_readers, kMuIsCond); } intptr_t clear = kMuWrWait | kMuWriter; if ((v & kMuWriter) == 0 && ExactlyOneReader(v)) { clear = kMuWrWait | kMuReader; } nv = (v & kMuLow & ~clear & ~kMuSpin); if (new_h != nullptr) { nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); } else { nv |= new_readers & kMuHigh; } } while (!mu_.compare_exchange_weak(v, nv, std::memory_order_release, std::memory_order_relaxed)); break; } PerThreadSynch* h = GetPerThreadSynch(v); if ((v & kMuReader) != 0 && (h->readers & kMuHigh) > kMuOne) { h->readers -= kMuOne; intptr_t nv = v; if (waitp != nullptr) { PerThreadSynch* new_h = Enqueue(h, waitp, v, kMuIsCond); ABSL_RAW_CHECK(new_h != nullptr, "waiters disappeared during Enqueue()!"); nv &= kMuLow; nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); } mu_.store(nv, std::memory_order_release); break; } ABSL_RAW_CHECK(old_h == nullptr || h->maybe_unlocking, "Mutex queue changed beneath us"); if (old_h != nullptr && !old_h->may_skip) { old_h->may_skip = true; ABSL_RAW_CHECK(old_h->skip == nullptr, "illegal skip from head"); if (h != old_h && MuEquivalentWaiter(old_h, old_h->next)) { old_h->skip = old_h->next; } } if (h->next->waitp->how == kExclusive && h->next->waitp->cond == nullptr) { pw = h; w = h->next; w->wake = true; wr_wait = kMuWrWait; } else if (w != nullptr && (w->waitp->how == kExclusive || h == old_h)) { if (pw == nullptr) { pw = h; } } else { if (old_h == h) { intptr_t nv = (v & ~(kMuReader | kMuWriter | kMuWrWait)); h->readers = 0; h->maybe_unlocking = false; if (waitp != nullptr) { PerThreadSynch* new_h = Enqueue(h, waitp, v, kMuIsCond); nv &= kMuLow; if (new_h != nullptr) { nv |= kMuWait | reinterpret_cast<intptr_t>(new_h); } } mu_.store(nv, std::memory_order_release); break; } PerThreadSynch* w_walk; PerThreadSynch* pw_walk; if (old_h != nullptr) { pw_walk = old_h; w_walk = old_h->next; } else { pw_walk = nullptr; w_walk = h->next; } h->may_skip = false; ABSL_RAW_CHECK(h->skip == nullptr, "illegal skip from head"); h->maybe_unlocking = true; mu_.store(v, std::memory_order_release); old_h = h; while (pw_walk != h) { w_walk->wake = false; if (w_walk->waitp->cond == nullptr || EvalConditionIgnored(this, w_walk->waitp->cond)) { if (w == nullptr) { w_walk->wake = true; w = w_walk; pw = pw_walk; if (w_walk->waitp->how == kExclusive) { wr_wait = kMuWrWait; break; } } else if (w_walk->waitp->how == kShared) { w_walk->wake = true; } else { wr_wait = kMuWrWait; } } if (w_walk->wake) { pw_walk = w_walk; } else { pw_walk = Skip(w_walk); } if (pw_walk != h) { w_walk = pw_walk->next; } } continue; } ABSL_RAW_CHECK(pw->next == w, "pw not w's predecessor"); h = DequeueAllWakeable(h, pw, &wake_list); intptr_t nv = (v & kMuEvent) | kMuDesig; if (waitp != nullptr) { h = Enqueue(h, waitp, v, kMuIsCond); } ABSL_RAW_CHECK(wake_list != kPerThreadSynchNull, "unexpected empty wake list"); if (h != nullptr) { h->readers = 0; h->maybe_unlocking = false; nv |= wr_wait | kMuWait | reinterpret_cast<intptr_t>(h); } mu_.store(nv, std::memory_order_release); break; } c = synchronization_internal::MutexDelay(c, AGGRESSIVE); } if (wake_list != kPerThreadSynchNull) { int64_t total_wait_cycles = 0; int64_t max_wait_cycles = 0; int64_t now = CycleClock::Now(); do { if (!wake_list->cond_waiter) { int64_t cycles_waited = (now - wake_list->waitp->contention_start_cycles); total_wait_cycles += cycles_waited; if (max_wait_cycles == 0) max_wait_cycles = cycles_waited; wake_list->waitp->contention_start_cycles = now; wake_list->waitp->should_submit_contention_data = true; } wake_list = Wakeup(wake_list); } while (wake_list != kPerThreadSynchNull); if (total_wait_cycles > 0) { mutex_tracer("slow release", this, total_wait_cycles); ABSL_TSAN_MUTEX_PRE_DIVERT(this, 0); submit_profile_data(total_wait_cycles); ABSL_TSAN_MUTEX_POST_DIVERT(this, 0); } } } void Mutex::Trans(MuHow how) { this->LockSlow(how, nullptr, kMuHasBlocked | kMuIsCond); } void Mutex::Fer(PerThreadSynch* w) { SchedulingGuard::ScopedDisable disable_rescheduling; int c = 0; ABSL_RAW_CHECK(w->waitp->cond == nullptr, "Mutex::Fer while waiting on Condition"); ABSL_RAW_CHECK(w->waitp->cv_word == nullptr, "Mutex::Fer with pending CondVar queueing"); w->waitp->timeout = {}; for (;;) { intptr_t v = mu_.load(std::memory_order_relaxed); const intptr_t conflicting = kMuWriter | (w->waitp->how == kShared ? 0 : kMuReader); if ((v & conflicting) == 0) { w->next = nullptr; w->state.store(PerThreadSynch::kAvailable, std::memory_order_release); IncrementSynchSem(this, w); return; } else { if ((v & (kMuSpin | kMuWait)) == 0) { PerThreadSynch* new_h = Enqueue(nullptr, w->waitp, v, kMuIsCond | kMuIsFer); ABSL_RAW_CHECK(new_h != nullptr, "Enqueue failed"); if (mu_.compare_exchange_strong( v, reinterpret_cast<intptr_t>(new_h) | (v & kMuLow) | kMuWait, std::memory_order_release, std::memory_order_relaxed)) { return; } } else if ((v & kMuSpin) == 0 && mu_.compare_exchange_strong(v, v | kMuSpin | kMuWait)) { PerThreadSynch* h = GetPerThreadSynch(v); PerThreadSynch* new_h = Enqueue(h, w->waitp, v, kMuIsCond | kMuIsFer); ABSL_RAW_CHECK(new_h != nullptr, "Enqueue failed"); do { v = mu_.load(std::memory_order_relaxed); } while (!mu_.compare_exchange_weak( v, (v & kMuLow & ~kMuSpin) | kMuWait | reinterpret_cast<intptr_t>(new_h), std::memory_order_release, std::memory_order_relaxed)); return; } } c = synchronization_internal::MutexDelay(c, GENTLE); } } void Mutex::AssertHeld() const { if ((mu_.load(std::memory_order_relaxed) & kMuWriter) == 0) { SynchEvent* e = GetSynchEvent(this); ABSL_RAW_LOG(FATAL, "thread should hold write lock on Mutex %p %s", static_cast<const void*>(this), (e == nullptr ? "" : e->name)); } } void Mutex::AssertReaderHeld() const { if ((mu_.load(std::memory_order_relaxed) & (kMuReader | kMuWriter)) == 0) { SynchEvent* e = GetSynchEvent(this); ABSL_RAW_LOG(FATAL, "thread should hold at least a read lock on Mutex %p %s", static_cast<const void*>(this), (e == nullptr ? "" : e->name)); } } static const intptr_t kCvSpin = 0x0001L; static const intptr_t kCvEvent = 0x0002L; static const intptr_t kCvLow = 0x0003L; enum { kGdbCvSpin = kCvSpin, kGdbCvEvent = kCvEvent, kGdbCvLow = kCvLow, }; static_assert(PerThreadSynch::kAlignment > kCvLow, "PerThreadSynch::kAlignment must be greater than kCvLow"); void CondVar::EnableDebugLog(const char* name) { SynchEvent* e = EnsureSynchEvent(&this->cv_, name, kCvEvent, kCvSpin); e->log = true; UnrefSynchEvent(e); } void CondVar::Remove(PerThreadSynch* s) { SchedulingGuard::ScopedDisable disable_rescheduling; intptr_t v; int c = 0; for (v = cv_.load(std::memory_order_relaxed);; v = cv_.load(std::memory_order_relaxed)) { if ((v & kCvSpin) == 0 && cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow); if (h != nullptr) { PerThreadSynch* w = h; while (w->next != s && w->next != h) { w = w->next; } if (w->next == s) { w->next = s->next; if (h == s) { h = (w == s) ? nullptr : w; } s->next = nullptr; s->state.store(PerThreadSynch::kAvailable, std::memory_order_release); } } cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), std::memory_order_release); return; } else { c = synchronization_internal::MutexDelay(c, GENTLE); } } } static void CondVarEnqueue(SynchWaitParams* waitp) { std::atomic<intptr_t>* cv_word = waitp->cv_word; waitp->cv_word = nullptr; intptr_t v = cv_word->load(std::memory_order_relaxed); int c = 0; while ((v & kCvSpin) != 0 || !cv_word->compare_exchange_weak(v, v | kCvSpin, std::memory_order_acquire, std::memory_order_relaxed)) { c = synchronization_internal::MutexDelay(c, GENTLE); v = cv_word->load(std::memory_order_relaxed); } ABSL_RAW_CHECK(waitp->thread->waitp == nullptr, "waiting when shouldn't be"); waitp->thread->waitp = waitp; PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow); if (h == nullptr) { waitp->thread->next = waitp->thread; } else { waitp->thread->next = h->next; h->next = waitp->thread; } waitp->thread->state.store(PerThreadSynch::kQueued, std::memory_order_relaxed); cv_word->store((v & kCvEvent) | reinterpret_cast<intptr_t>(waitp->thread), std::memory_order_release); } bool CondVar::WaitCommon(Mutex* mutex, KernelTimeout t) { bool rc = false; intptr_t mutex_v = mutex->mu_.load(std::memory_order_relaxed); Mutex::MuHow mutex_how = ((mutex_v & kMuWriter) != 0) ? kExclusive : kShared; ABSL_TSAN_MUTEX_PRE_UNLOCK(mutex, TsanFlags(mutex_how)); intptr_t v = cv_.load(std::memory_order_relaxed); cond_var_tracer("Wait", this); if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_WAIT); } SynchWaitParams waitp(mutex_how, nullptr, t, mutex, Synch_GetPerThreadAnnotated(mutex), &cv_); mutex->UnlockSlow(&waitp); while (waitp.thread->state.load(std::memory_order_acquire) == PerThreadSynch::kQueued) { if (!Mutex::DecrementSynchSem(mutex, waitp.thread, t)) { t = KernelTimeout::Never(); this->Remove(waitp.thread); rc = true; } } ABSL_RAW_CHECK(waitp.thread->waitp != nullptr, "not waiting when should be"); waitp.thread->waitp = nullptr; cond_var_tracer("Unwait", this); if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_WAIT_RETURNING); } ABSL_TSAN_MUTEX_POST_UNLOCK(mutex, TsanFlags(mutex_how)); ABSL_TSAN_MUTEX_PRE_LOCK(mutex, TsanFlags(mutex_how)); mutex->Trans(mutex_how); ABSL_TSAN_MUTEX_POST_LOCK(mutex, TsanFlags(mutex_how), 0); return rc; } void CondVar::Signal() { SchedulingGuard::ScopedDisable disable_rescheduling; ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); intptr_t v; int c = 0; for (v = cv_.load(std::memory_order_relaxed); v != 0; v = cv_.load(std::memory_order_relaxed)) { if ((v & kCvSpin) == 0 && cv_.compare_exchange_strong(v, v | kCvSpin, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow); PerThreadSynch* w = nullptr; if (h != nullptr) { w = h->next; if (w == h) { h = nullptr; } else { h->next = w->next; } } cv_.store((v & kCvEvent) | reinterpret_cast<intptr_t>(h), std::memory_order_release); if (w != nullptr) { w->waitp->cvmu->Fer(w); cond_var_tracer("Signal wakeup", this); } if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_SIGNAL); } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); return; } else { c = synchronization_internal::MutexDelay(c, GENTLE); } } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); } void CondVar::SignalAll() { ABSL_TSAN_MUTEX_PRE_SIGNAL(nullptr, 0); intptr_t v; int c = 0; for (v = cv_.load(std::memory_order_relaxed); v != 0; v = cv_.load(std::memory_order_relaxed)) { if ((v & kCvSpin) == 0 && cv_.compare_exchange_strong(v, v & kCvEvent, std::memory_order_acquire, std::memory_order_relaxed)) { PerThreadSynch* h = reinterpret_cast<PerThreadSynch*>(v & ~kCvLow); if (h != nullptr) { PerThreadSynch* w; PerThreadSynch* n = h->next; do { w = n; n = n->next; w->waitp->cvmu->Fer(w); } while (w != h); cond_var_tracer("SignalAll wakeup", this); } if ((v & kCvEvent) != 0) { PostSynchEvent(this, SYNCH_EV_SIGNALALL); } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); return; } else { c = synchronization_internal::MutexDelay(c, GENTLE); } } ABSL_TSAN_MUTEX_POST_SIGNAL(nullptr, 0); } void ReleasableMutexLock::Release() { ABSL_RAW_CHECK(this->mu_ != nullptr, "ReleasableMutexLock::Release may only be called once"); this->mu_->Unlock(); this->mu_ = nullptr; } #ifdef ABSL_HAVE_THREAD_SANITIZER extern "C" void __tsan_read1(void* addr); #else #define __tsan_read1(addr) #endif static bool Dereference(void* arg) { __tsan_read1(arg); return *(static_cast<bool*>(arg)); } ABSL_CONST_INIT const Condition Condition::kTrue; Condition::Condition(bool (*func)(void*), void* arg) : eval_(&CallVoidPtrFunction), arg_(arg) { static_assert(sizeof(&func) <= sizeof(callback_), "An overlarge function pointer passed to Condition."); StoreCallback(func); } bool Condition::CallVoidPtrFunction(const Condition* c) { using FunctionPointer = bool (*)(void*); FunctionPointer function_pointer; std::memcpy(&function_pointer, c->callback_, sizeof(function_pointer)); return (*function_pointer)(c->arg_); } Condition::Condition(const bool* cond) : eval_(CallVoidPtrFunction), arg_(const_cast<bool*>(cond)) { using FunctionPointer = bool (*)(void*); const FunctionPointer dereference = Dereference; StoreCallback(dereference); } bool Condition::Eval() const { return (*this->eval_)(this); } bool Condition::GuaranteedEqual(const Condition* a, const Condition* b) { if (a == nullptr || b == nullptr) { return a == b; } return a->eval_ == b->eval_ && a->arg_ == b->arg_ && !memcmp(a->callback_, b->callback_, sizeof(a->callback_)); } ABSL_NAMESPACE_END }
#include "absl/synchronization/mutex.h" #ifdef _WIN32 #include <windows.h> #endif #include <algorithm> #include <atomic> #include <cstdlib> #include <functional> #include <memory> #include <random> #include <string> #include <thread> #include <type_traits> #include <vector> #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/sysinfo.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/synchronization/internal/create_thread_identity.h" #include "absl/synchronization/internal/thread_pool.h" #include "absl/time/clock.h" #include "absl/time/time.h" #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM #include <pthread.h> #include <string.h> #endif namespace { static constexpr bool kExtendedTest = false; std::unique_ptr<absl::synchronization_internal::ThreadPool> CreatePool( int threads) { return absl::make_unique<absl::synchronization_internal::ThreadPool>(threads); } std::unique_ptr<absl::synchronization_internal::ThreadPool> CreateDefaultPool() { return CreatePool(kExtendedTest ? 32 : 10); } static void ScheduleAfter(absl::synchronization_internal::ThreadPool *tp, absl::Duration after, const std::function<void()> &func) { tp->Schedule([func, after] { absl::SleepFor(after); func(); }); } struct ScopedInvariantDebugging { ScopedInvariantDebugging() { absl::EnableMutexInvariantDebugging(true); } ~ScopedInvariantDebugging() { absl::EnableMutexInvariantDebugging(false); } }; struct TestContext { int iterations; int threads; int g0; int g1; absl::Mutex mu; absl::CondVar cv; }; static std::atomic<bool> invariant_checked; static bool GetInvariantChecked() { return invariant_checked.load(std::memory_order_relaxed); } static void SetInvariantChecked(bool new_value) { invariant_checked.store(new_value, std::memory_order_relaxed); } static void CheckSumG0G1(void *v) { TestContext *cxt = static_cast<TestContext *>(v); CHECK_EQ(cxt->g0, -cxt->g1) << "Error in CheckSumG0G1"; SetInvariantChecked(true); } static void TestMu(TestContext *cxt, int c) { for (int i = 0; i != cxt->iterations; i++) { absl::MutexLock l(&cxt->mu); int a = cxt->g0 + 1; cxt->g0 = a; cxt->g1--; } } static void TestTry(TestContext *cxt, int c) { for (int i = 0; i != cxt->iterations; i++) { do { std::this_thread::yield(); } while (!cxt->mu.TryLock()); int a = cxt->g0 + 1; cxt->g0 = a; cxt->g1--; cxt->mu.Unlock(); } } static void TestR20ms(TestContext *cxt, int c) { for (int i = 0; i != cxt->iterations; i++) { absl::ReaderMutexLock l(&cxt->mu); absl::SleepFor(absl::Milliseconds(20)); cxt->mu.AssertReaderHeld(); } } static void TestRW(TestContext *cxt, int c) { if ((c & 1) == 0) { for (int i = 0; i != cxt->iterations; i++) { absl::WriterMutexLock l(&cxt->mu); cxt->g0++; cxt->g1--; cxt->mu.AssertHeld(); cxt->mu.AssertReaderHeld(); } } else { for (int i = 0; i != cxt->iterations; i++) { absl::ReaderMutexLock l(&cxt->mu); CHECK_EQ(cxt->g0, -cxt->g1) << "Error in TestRW"; cxt->mu.AssertReaderHeld(); } } } struct MyContext { int target; TestContext *cxt; bool MyTurn(); }; bool MyContext::MyTurn() { TestContext *cxt = this->cxt; return cxt->g0 == this->target || cxt->g0 == cxt->iterations; } static void TestAwait(TestContext *cxt, int c) { MyContext mc; mc.target = c; mc.cxt = cxt; absl::MutexLock l(&cxt->mu); cxt->mu.AssertHeld(); while (cxt->g0 < cxt->iterations) { cxt->mu.Await(absl::Condition(&mc, &MyContext::MyTurn)); CHECK(mc.MyTurn()) << "Error in TestAwait"; cxt->mu.AssertHeld(); if (cxt->g0 < cxt->iterations) { int a = cxt->g0 + 1; cxt->g0 = a; mc.target += cxt->threads; } } } static void TestSignalAll(TestContext *cxt, int c) { int target = c; absl::MutexLock l(&cxt->mu); cxt->mu.AssertHeld(); while (cxt->g0 < cxt->iterations) { while (cxt->g0 != target && cxt->g0 != cxt->iterations) { cxt->cv.Wait(&cxt->mu); } if (cxt->g0 < cxt->iterations) { int a = cxt->g0 + 1; cxt->g0 = a; cxt->cv.SignalAll(); target += cxt->threads; } } } static void TestSignal(TestContext *cxt, int c) { CHECK_EQ(cxt->threads, 2) << "TestSignal should use 2 threads"; int target = c; absl::MutexLock l(&cxt->mu); cxt->mu.AssertHeld(); while (cxt->g0 < cxt->iterations) { while (cxt->g0 != target && cxt->g0 != cxt->iterations) { cxt->cv.Wait(&cxt->mu); } if (cxt->g0 < cxt->iterations) { int a = cxt->g0 + 1; cxt->g0 = a; cxt->cv.Signal(); target += cxt->threads; } } } static void TestCVTimeout(TestContext *cxt, int c) { int target = c; absl::MutexLock l(&cxt->mu); cxt->mu.AssertHeld(); while (cxt->g0 < cxt->iterations) { while (cxt->g0 != target && cxt->g0 != cxt->iterations) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100)); } if (cxt->g0 < cxt->iterations) { int a = cxt->g0 + 1; cxt->g0 = a; cxt->cv.SignalAll(); target += cxt->threads; } } } static bool G0GE2(TestContext *cxt) { return cxt->g0 >= 2; } static void TestTime(TestContext *cxt, int c, bool use_cv) { CHECK_EQ(cxt->iterations, 1) << "TestTime should only use 1 iteration"; CHECK_GT(cxt->threads, 2) << "TestTime should use more than 2 threads"; const bool kFalse = false; absl::Condition false_cond(&kFalse); absl::Condition g0ge2(G0GE2, cxt); if (c == 0) { absl::MutexLock l(&cxt->mu); absl::Time start = absl::Now(); if (use_cv) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); } else { CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1))) << "TestTime failed"; } absl::Duration elapsed = absl::Now() - start; CHECK(absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0)) << "TestTime failed"; CHECK_EQ(cxt->g0, 1) << "TestTime failed"; start = absl::Now(); if (use_cv) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); } else { CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1))) << "TestTime failed"; } elapsed = absl::Now() - start; CHECK(absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0)) << "TestTime failed"; cxt->g0++; if (use_cv) { cxt->cv.Signal(); } start = absl::Now(); if (use_cv) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(4)); } else { CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(4))) << "TestTime failed"; } elapsed = absl::Now() - start; CHECK(absl::Seconds(3.9) <= elapsed && elapsed <= absl::Seconds(6.0)) << "TestTime failed"; CHECK_GE(cxt->g0, 3) << "TestTime failed"; start = absl::Now(); if (use_cv) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); } else { CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1))) << "TestTime failed"; } elapsed = absl::Now() - start; CHECK(absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0)) << "TestTime failed"; if (use_cv) { cxt->cv.SignalAll(); } start = absl::Now(); if (use_cv) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(1)); } else { CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Seconds(1))) << "TestTime failed"; } elapsed = absl::Now() - start; CHECK(absl::Seconds(0.9) <= elapsed && elapsed <= absl::Seconds(2.0)) << "TestTime failed"; CHECK_EQ(cxt->g0, cxt->threads) << "TestTime failed"; } else if (c == 1) { absl::MutexLock l(&cxt->mu); const absl::Time start = absl::Now(); if (use_cv) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Milliseconds(500)); } else { CHECK(!cxt->mu.AwaitWithTimeout(false_cond, absl::Milliseconds(500))) << "TestTime failed"; } const absl::Duration elapsed = absl::Now() - start; CHECK(absl::Seconds(0.4) <= elapsed && elapsed <= absl::Seconds(0.9)) << "TestTime failed"; cxt->g0++; } else if (c == 2) { absl::MutexLock l(&cxt->mu); if (use_cv) { while (cxt->g0 < 2) { cxt->cv.WaitWithTimeout(&cxt->mu, absl::Seconds(100)); } } else { CHECK(cxt->mu.AwaitWithTimeout(g0ge2, absl::Seconds(100))) << "TestTime failed"; } cxt->g0++; } else { absl::MutexLock l(&cxt->mu); if (use_cv) { while (cxt->g0 < 2) { cxt->cv.Wait(&cxt->mu); } } else { cxt->mu.Await(g0ge2); } cxt->g0++; } } static void TestMuTime(TestContext *cxt, int c) { TestTime(cxt, c, false); } static void TestCVTime(TestContext *cxt, int c) { TestTime(cxt, c, true); } static void EndTest(int *c0, int *c1, absl::Mutex *mu, absl::CondVar *cv, const std::function<void(int)> &cb) { mu->Lock(); int c = (*c0)++; mu->Unlock(); cb(c); absl::MutexLock l(mu); (*c1)++; cv->Signal(); } static int RunTestCommon(TestContext *cxt, void (*test)(TestContext *cxt, int), int threads, int iterations, int operations) { absl::Mutex mu2; absl::CondVar cv2; int c0 = 0; int c1 = 0; cxt->g0 = 0; cxt->g1 = 0; cxt->iterations = iterations; cxt->threads = threads; absl::synchronization_internal::ThreadPool tp(threads); for (int i = 0; i != threads; i++) { tp.Schedule(std::bind( &EndTest, &c0, &c1, &mu2, &cv2, std::function<void(int)>(std::bind(test, cxt, std::placeholders::_1)))); } mu2.Lock(); while (c1 != threads) { cv2.Wait(&mu2); } mu2.Unlock(); return cxt->g0; } static int RunTest(void (*test)(TestContext *cxt, int), int threads, int iterations, int operations) { TestContext cxt; return RunTestCommon(&cxt, test, threads, iterations, operations); } #if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) static int RunTestWithInvariantDebugging(void (*test)(TestContext *cxt, int), int threads, int iterations, int operations, void (*invariant)(void *)) { ScopedInvariantDebugging scoped_debugging; SetInvariantChecked(false); TestContext cxt; cxt.mu.EnableInvariantDebugging(invariant, &cxt); int ret = RunTestCommon(&cxt, test, threads, iterations, operations); CHECK(GetInvariantChecked()) << "Invariant not checked"; return ret; } #endif struct TimeoutBugStruct { absl::Mutex mu; bool a; int a_waiter_count; }; static void WaitForA(TimeoutBugStruct *x) { x->mu.LockWhen(absl::Condition(&x->a)); x->a_waiter_count--; x->mu.Unlock(); } static bool NoAWaiters(TimeoutBugStruct *x) { return x->a_waiter_count == 0; } TEST(Mutex, CondVarWaitSignalsAwait) { struct { absl::Mutex barrier_mu; bool barrier ABSL_GUARDED_BY(barrier_mu) = false; absl::Mutex release_mu; bool release ABSL_GUARDED_BY(release_mu) = false; absl::CondVar released_cv; } state; auto pool = CreateDefaultPool(); pool->Schedule([&state] { state.release_mu.Lock(); state.barrier_mu.Lock(); state.barrier = true; state.barrier_mu.Unlock(); state.release_mu.Await(absl::Condition(&state.release)); state.released_cv.Signal(); state.release_mu.Unlock(); }); state.barrier_mu.LockWhen(absl::Condition(&state.barrier)); state.barrier_mu.Unlock(); state.release_mu.Lock(); state.release = true; state.released_cv.Wait(&state.release_mu); state.release_mu.Unlock(); } TEST(Mutex, CondVarWaitWithTimeoutSignalsAwait) { struct { absl::Mutex barrier_mu; bool barrier ABSL_GUARDED_BY(barrier_mu) = false; absl::Mutex release_mu; bool release ABSL_GUARDED_BY(release_mu) = false; absl::CondVar released_cv; } state; auto pool = CreateDefaultPool(); pool->Schedule([&state] { state.release_mu.Lock(); state.barrier_mu.Lock(); state.barrier = true; state.barrier_mu.Unlock(); state.release_mu.Await(absl::Condition(&state.release)); state.released_cv.Signal(); state.release_mu.Unlock(); }); state.barrier_mu.LockWhen(absl::Condition(&state.barrier)); state.barrier_mu.Unlock(); state.release_mu.Lock(); state.release = true; EXPECT_TRUE( !state.released_cv.WaitWithTimeout(&state.release_mu, absl::Seconds(10))) << "; Unrecoverable test failure: CondVar::WaitWithTimeout did not " "unblock the absl::Mutex::Await call in another thread."; state.release_mu.Unlock(); } TEST(Mutex, MutexTimeoutBug) { auto tp = CreateDefaultPool(); TimeoutBugStruct x; x.a = false; x.a_waiter_count = 2; tp->Schedule(std::bind(&WaitForA, &x)); tp->Schedule(std::bind(&WaitForA, &x)); absl::SleepFor(absl::Seconds(1)); bool always_false = false; x.mu.LockWhenWithTimeout(absl::Condition(&always_false), absl::Milliseconds(500)); x.a = true; x.mu.Await(absl::Condition(&NoAWaiters, &x)); x.mu.Unlock(); } struct CondVarWaitDeadlock : testing::TestWithParam<int> { absl::Mutex mu; absl::CondVar cv; bool cond1 = false; bool cond2 = false; bool read_lock1; bool read_lock2; bool signal_unlocked; CondVarWaitDeadlock() { read_lock1 = GetParam() & (1 << 0); read_lock2 = GetParam() & (1 << 1); signal_unlocked = GetParam() & (1 << 2); } void Waiter1() { if (read_lock1) { mu.ReaderLock(); while (!cond1) { cv.Wait(&mu); } mu.ReaderUnlock(); } else { mu.Lock(); while (!cond1) { cv.Wait(&mu); } mu.Unlock(); } } void Waiter2() { if (read_lock2) { mu.ReaderLockWhen(absl::Condition(&cond2)); mu.ReaderUnlock(); } else { mu.LockWhen(absl::Condition(&cond2)); mu.Unlock(); } } }; TEST_P(CondVarWaitDeadlock, Test) { auto waiter1 = CreatePool(1); auto waiter2 = CreatePool(1); waiter1->Schedule([this] { this->Waiter1(); }); waiter2->Schedule([this] { this->Waiter2(); }); absl::SleepFor(absl::Milliseconds(100)); mu.Lock(); cond1 = true; if (signal_unlocked) { mu.Unlock(); cv.Signal(); } else { cv.Signal(); mu.Unlock(); } waiter1.reset(); mu.Lock(); cond2 = true; mu.Unlock(); waiter2.reset(); } INSTANTIATE_TEST_SUITE_P(CondVarWaitDeadlockTest, CondVarWaitDeadlock, ::testing::Range(0, 8), ::testing::PrintToStringParamName()); struct DequeueAllWakeableBugStruct { absl::Mutex mu; absl::Mutex mu2; int unfinished_count; bool done1; int finished_count; bool done2; }; static void AcquireAsReader(DequeueAllWakeableBugStruct *x) { x->mu.ReaderLock(); x->mu2.Lock(); x->unfinished_count--; x->done1 = (x->unfinished_count == 0); x->mu2.Unlock(); absl::SleepFor(absl::Seconds(2)); x->mu.ReaderUnlock(); x->mu2.Lock(); x->finished_count--; x->done2 = (x->finished_count == 0); x->mu2.Unlock(); } TEST(Mutex, MutexReaderWakeupBug) { auto tp = CreateDefaultPool(); DequeueAllWakeableBugStruct x; x.unfinished_count = 2; x.done1 = false; x.finished_count = 2; x.done2 = false; x.mu.Lock(); tp->Schedule(std::bind(&AcquireAsReader, &x)); tp->Schedule(std::bind(&AcquireAsReader, &x)); absl::SleepFor(absl::Seconds(1)); x.mu.Unlock(); EXPECT_TRUE( x.mu2.LockWhenWithTimeout(absl::Condition(&x.done1), absl::Seconds(10))); x.mu2.Unlock(); EXPECT_TRUE( x.mu2.LockWhenWithTimeout(absl::Condition(&x.done2), absl::Seconds(10))); x.mu2.Unlock(); } struct LockWhenTestStruct { absl::Mutex mu1; bool cond = false; absl::Mutex mu2; bool waiting = false; }; static bool LockWhenTestIsCond(LockWhenTestStruct *s) { s->mu2.Lock(); s->waiting = true; s->mu2.Unlock(); return s->cond; } static void LockWhenTestWaitForIsCond(LockWhenTestStruct *s) { s->mu1.LockWhen(absl::Condition(&LockWhenTestIsCond, s)); s->mu1.Unlock(); } TEST(Mutex, LockWhen) { LockWhenTestStruct s; std::thread t(LockWhenTestWaitForIsCond, &s); s.mu2.LockWhen(absl::Condition(&s.waiting)); s.mu2.Unlock(); s.mu1.Lock(); s.cond = true; s.mu1.Unlock(); t.join(); } TEST(Mutex, LockWhenGuard) { absl::Mutex mu; int n = 30; bool done = false; bool (*cond_eq_10)(int *) = [](int *p) { return *p == 10; }; bool (*cond_lt_10)(int *) = [](int *p) { return *p < 10; }; std::thread t1([&mu, &n, &done, cond_eq_10]() { absl::ReaderMutexLock lock(&mu, absl::Condition(cond_eq_10, &n)); done = true; }); std::thread t2[10]; for (std::thread &t : t2) { t = std::thread([&mu, &n, cond_lt_10]() { absl::WriterMutexLock lock(&mu, absl::Condition(cond_lt_10, &n)); ++n; }); } { absl::MutexLock lock(&mu); n = 0; } for (std::thread &t : t2) t.join(); t1.join(); EXPECT_TRUE(done); EXPECT_EQ(n, 10); } #if !defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE) struct ReaderDecrementBugStruct { bool cond; int done; absl::Mutex mu; bool waiting_on_cond; bool have_reader_lock; bool complete; absl::Mutex mu2; }; static bool IsCond(void *v) { ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v); x->mu2.Lock(); x->waiting_on_cond = true; x->mu2.Unlock(); return x->cond; } static bool AllDone(void *v) { ReaderDecrementBugStruct *x = reinterpret_cast<ReaderDecrementBugStruct *>(v); return x->done == 0; } static void WaitForCond(ReaderDecrementBugStruct *x) { absl::Mutex dummy; absl::MutexLock l(&dummy); x->mu.LockWhen(absl::Condition(&IsCond, x)); x->done--; x->mu.Unlock(); } static void GetReadLock(ReaderDecrementBugStruct *x) { x->mu.ReaderLock(); x->mu2.Lock(); x->have_reader_lock = true; x->mu2.Await(absl::Condition(&x->complete)); x->mu2.Unlock(); x->mu.ReaderUnlock(); x->mu.Lock(); x->done--; x->mu.Unlock(); } TEST(Mutex, MutexReaderDecrementBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { ReaderDecrementBugStruct x; x.cond = false; x.waiting_on_cond = false; x.have_reader_lock = false; x.complete = false; x.done = 2; std::thread thread1(WaitForCond, &x); x.mu2.LockWhen(absl::Condition(&x.waiting_on_cond)); x.mu2.Unlock(); std::thread thread2(GetReadLock, &x); x.mu2.LockWhen(absl::Condition(&x.have_reader_lock)); x.mu2.Unlock(); x.mu.ReaderLock(); x.mu.ReaderUnlock(); x.mu.AssertReaderHeld(); x.mu2.Lock(); x.complete = true; x.mu2.Unlock(); x.mu.Lock(); x.cond = true; x.mu.Await(absl::Condition(&AllDone, &x)); x.mu.Unlock(); thread1.join(); thread2.join(); } #endif #ifdef ABSL_HAVE_THREAD_SANITIZER TEST(Mutex, DISABLED_LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { #else TEST(Mutex, LockedMutexDestructionBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { #endif for (int i = 0; i != 10; i++) { const int kNumLocks = 10; auto mu = absl::make_unique<absl::Mutex[]>(kNumLocks); for (int j = 0; j != kNumLocks; j++) { if ((j % 2) == 0) { mu[j].WriterLock(); } else { mu[j].ReaderLock(); } } } } bool Equals42(int *p) { return *p == 42; } bool Equals43(int *p) { return *p == 43; } bool ConstEquals42(const int *p) { return *p == 42; } bool ConstEquals43(const int *p) { return *p == 43; } template <typename T> bool TemplateEquals42(T *p) { return *p == 42; } template <typename T> bool TemplateEquals43(T *p) { return *p == 43; } TEST(Mutex, FunctionPointerCondition) { int x = 42; const int const_x = 42; EXPECT_TRUE(absl::Condition(Equals42, &x).Eval()); EXPECT_FALSE(absl::Condition(Equals43, &x).Eval()); EXPECT_TRUE(absl::Condition(ConstEquals42, &x).Eval()); EXPECT_FALSE(absl::Condition(ConstEquals43, &x).Eval()); EXPECT_TRUE(absl::Condition(ConstEquals42, &const_x).Eval()); EXPECT_FALSE(absl::Condition(ConstEquals43, &const_x).Eval()); EXPECT_TRUE(absl::Condition(TemplateEquals42, &x).Eval()); EXPECT_FALSE(absl::Condition(TemplateEquals43, &x).Eval()); EXPECT_TRUE(absl::Condition(TemplateEquals42, &const_x).Eval()); EXPECT_FALSE(absl::Condition(TemplateEquals43, &const_x).Eval()); EXPECT_FALSE((std::is_constructible<absl::Condition, decltype(Equals42), decltype(&const_x)>::value)); EXPECT_TRUE((std::is_constructible<absl::Condition, decltype(ConstEquals42), decltype(&const_x)>::value)); } struct Base { explicit Base(int v) : value(v) {} int value; }; struct Derived : Base { explicit Derived(int v) : Base(v) {} }; bool BaseEquals42(Base *p) { return p->value == 42; } bool BaseEquals43(Base *p) { return p->value == 43; } bool ConstBaseEquals42(const Base *p) { return p->value == 42; } bool ConstBaseEquals43(const Base *p) { return p->value == 43; } TEST(Mutex, FunctionPointerConditionWithDerivedToBaseConversion) { Derived derived(42); const Derived const_derived(42); EXPECT_TRUE(absl::Condition(BaseEquals42, &derived).Eval()); EXPECT_FALSE(absl::Condition(BaseEquals43, &derived).Eval()); EXPECT_TRUE(absl::Condition(ConstBaseEquals42, &derived).Eval()); EXPECT_FALSE(absl::Condition(ConstBaseEquals43, &derived).Eval()); EXPECT_TRUE(absl::Condition(ConstBaseEquals42, &const_derived).Eval()); EXPECT_FALSE(absl::Condition(ConstBaseEquals43, &const_derived).Eval()); EXPECT_TRUE(absl::Condition(ConstBaseEquals42, &const_derived).Eval()); EXPECT_FALSE(absl::Condition(ConstBaseEquals43, &const_derived).Eval()); bool (*derived_pred)(const Derived *) = [](const Derived *) { return true; }; EXPECT_FALSE((std::is_constructible<absl::Condition, decltype(derived_pred), Base *>::value)); EXPECT_FALSE((std::is_constructible<absl::Condition, decltype(derived_pred), const Base *>::value)); EXPECT_TRUE((std::is_constructible<absl::Condition, decltype(derived_pred), Derived *>::value)); EXPECT_TRUE((std::is_constructible<absl::Condition, decltype(derived_pred), const Derived *>::value)); } struct Constable { bool WotsAllThisThen() const { return true; } }; TEST(Mutex, FunctionPointerConditionWithConstMethod) { const Constable chapman; EXPECT_TRUE(absl::Condition(&chapman, &Constable::WotsAllThisThen).Eval()); } struct True { template <class... Args> bool operator()(Args...) const { return true; } }; struct DerivedTrue : True {}; TEST(Mutex, FunctorCondition) { { True f; EXPECT_TRUE(absl::Condition(&f).Eval()); } { DerivedTrue g; EXPECT_TRUE(absl::Condition(&g).Eval()); } { int value = 3; auto is_zero = [&value] { return value == 0; }; absl::Condition c(&is_zero); EXPECT_FALSE(c.Eval()); value = 0; EXPECT_TRUE(c.Eval()); } { int value = 0; auto is_positive = std::bind(std::less<int>(), 0, std::cref(value)); absl::Condition c(&is_positive); EXPECT_FALSE(c.Eval()); value = 1; EXPECT_TRUE(c.Eval()); } { int value = 3; std::function<bool()> is_zero = [&value] { return value == 0; }; absl::Condition c(&is_zero); EXPECT_FALSE(c.Eval()); value = 0; EXPECT_TRUE(c.Eval()); } } TEST(Mutex, ConditionSwap) { bool b1 = true; absl::Condition c1(&b1); bool b2 = false; absl::Condition c2(&b2); EXPECT_TRUE(c1.Eval()); EXPECT_FALSE(c2.Eval()); std::swap(c1, c2); EXPECT_FALSE(c1.Eval()); EXPECT_TRUE(c2.Eval()); } static void ReaderForReaderOnCondVar(absl::Mutex *mu, absl::CondVar *cv, int *running) { std::random_device dev; std::mt19937 gen(dev()); std::uniform_int_distribution<int> random_millis(0, 15); mu->ReaderLock(); while (*running == 3) { absl::SleepFor(absl::Milliseconds(random_millis(gen))); cv->WaitWithTimeout(mu, absl::Milliseconds(random_millis(gen))); } mu->ReaderUnlock(); mu->Lock(); (*running)--; mu->Unlock(); } static bool IntIsZero(int *x) { return *x == 0; } TEST(Mutex, TestReaderOnCondVar) { auto tp = CreateDefaultPool(); absl::Mutex mu; absl::CondVar cv; int running = 3; tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running)); tp->Schedule(std::bind(&ReaderForReaderOnCondVar, &mu, &cv, &running)); absl::SleepFor(absl::Seconds(2)); mu.Lock(); running--; mu.Await(absl::Condition(&IntIsZero, &running)); mu.Unlock(); } struct AcquireFromConditionStruct { absl::Mutex mu0; int value; bool done; absl::Mutex mu1; absl::CondVar cv; }; static bool ConditionWithAcquire(AcquireFromConditionStruct *x) { x->value++; if (x->value == 2 || x->value == 3) { bool always_false = false; x->mu1.LockWhenWithTimeout(absl::Condition(&always_false), absl::Milliseconds(100)); x->mu1.Unlock(); } CHECK_LT(x->value, 4) << "should not be invoked a fourth time"; return x->value == 2 || x->value == 3; } static void WaitForCond2(AcquireFromConditionStruct *x) { x->mu0.LockWhen(absl::Condition(&ConditionWithAcquire, x)); x->done = true; x->mu0.Unlock(); } TEST(Mutex, AcquireFromCondition) { auto tp = CreateDefaultPool(); AcquireFromConditionStruct x; x.value = 0; x.done = false; tp->Schedule( std::bind(&WaitForCond2, &x)); absl::SleepFor(absl::Milliseconds(500)); x.mu0.Lock(); x.cv.WaitWithTimeout(&x.mu0, absl::Milliseconds(500)); x.mu0.Unlock(); x.mu0.LockWhen(absl::Condition(&x.done)); x.mu0.Unlock(); } TEST(Mutex, DeadlockDetector) { absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); absl::Mutex m1; absl::Mutex m2; absl::Mutex m3; absl::Mutex m4; m1.Lock(); m2.Lock(); m3.Lock(); m3.Unlock(); m2.Unlock(); m1.ForgetDeadlockInfo(); m2.Lock(); m3.Lock(); m4.Lock(); m3.Unlock(); m2.Unlock(); m4.Unlock(); m1.Unlock(); } class ScopedDisableBazelTestWarnings { public: ScopedDisableBazelTestWarnings() { #ifdef _WIN32 char file[MAX_PATH]; if (GetEnvironmentVariableA(kVarName, file, sizeof(file)) < sizeof(file)) { warnings_output_file_ = file; SetEnvironmentVariableA(kVarName, nullptr); } #else const char *file = getenv(kVarName); if (file != nullptr) { warnings_output_file_ = file; unsetenv(kVarName); } #endif } ~ScopedDisableBazelTestWarnings() { if (!warnings_output_file_.empty()) { #ifdef _WIN32 SetEnvironmentVariableA(kVarName, warnings_output_file_.c_str()); #else setenv(kVarName, warnings_output_file_.c_str(), 0); #endif } } private: static const char kVarName[]; std::string warnings_output_file_; }; const char ScopedDisableBazelTestWarnings::kVarName[] = "TEST_WARNINGS_OUTPUT_FILE"; #ifdef ABSL_HAVE_THREAD_SANITIZER TEST(Mutex, DISABLED_DeadlockDetectorBazelWarning) { #else TEST(Mutex, DeadlockDetectorBazelWarning) { #endif absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kReport); ScopedDisableBazelTestWarnings disable_bazel_test_warnings; absl::Mutex mu0; absl::Mutex mu1; bool got_mu0 = mu0.TryLock(); mu1.Lock(); if (got_mu0) { mu0.Unlock(); } if (mu0.TryLock()) { mu0.Unlock(); } mu0.Lock(); mu0.Unlock(); mu1.Unlock(); absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); } TEST(Mutex, DeadlockDetectorLongCycle) { absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kReport); ScopedDisableBazelTestWarnings disable_bazel_test_warnings; std::vector<absl::Mutex> mutex(100); for (size_t i = 0; i != mutex.size(); i++) { mutex[i].Lock(); mutex[(i + 1) % mutex.size()].Lock(); mutex[i].Unlock(); mutex[(i + 1) % mutex.size()].Unlock(); } absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); } TEST(Mutex, DeadlockDetectorStressTest) ABSL_NO_THREAD_SAFETY_ANALYSIS { const int n_locks = 1 << 17; auto array_of_locks = absl::make_unique<absl::Mutex[]>(n_locks); for (int i = 0; i < n_locks; i++) { int end = std::min(n_locks, i + 5); for (int j = i; j < end; j++) { array_of_locks[j].Lock(); } for (int j = i; j < end; j++) { array_of_locks[j].Unlock(); } } } #ifdef ABSL_HAVE_THREAD_SANITIZER TEST(Mutex, DISABLED_DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { #else TEST(Mutex, DeadlockIdBug) ABSL_NO_THREAD_SAFETY_ANALYSIS { #endif absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); absl::Mutex *a = new absl::Mutex; absl::Mutex b, c; a->Lock(); b.Lock(); b.Unlock(); absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kIgnore); delete a; absl::SetMutexDeadlockDetectionMode(absl::OnDeadlockCycle::kAbort); c.Lock(); c.Unlock(); } static absl::Duration TimeoutTestAllowedSchedulingDelay() { return absl::Milliseconds(150); } ABSL_MUST_USE_RESULT static bool DelayIsWithinBounds(absl::Duration expected_delay, absl::Duration actual_delay) { bool pass = true; if (actual_delay < expected_delay) { LOG(WARNING) << "Actual delay " << actual_delay << " was too short, expected " << expected_delay << " (difference " << actual_delay - expected_delay << ")"; pass = false; } absl::Duration tolerance = expected_delay <= absl::ZeroDuration() ? absl::Milliseconds(10) : TimeoutTestAllowedSchedulingDelay(); if (actual_delay > expected_delay + tolerance) { LOG(WARNING) << "Actual delay " << actual_delay << " was too long, expected " << expected_delay << " (difference " << actual_delay - expected_delay << ")"; pass = false; } return pass; } struct TimeoutTestParam { const char *from_file; int from_line; bool use_absolute_deadline; absl::Duration wait_timeout; absl::Duration satisfy_condition_delay; bool expected_result; absl::Duration expected_delay; }; std::ostream &operator<<(std::ostream &os, const TimeoutTestParam &param) { return os << "from: " << param.from_file << ":" << param.from_line << " use_absolute_deadline: " << (param.use_absolute_deadline ? "true" : "false") << " wait_timeout: " << param.wait_timeout << " satisfy_condition_delay: " << param.satisfy_condition_delay << " expected_result: " << (param.expected_result ? "true" : "false") << " expected_delay: " << param.expected_delay; } static void RunAfterDelay(absl::Duration delay, absl::synchronization_internal::ThreadPool *pool, const std::function<void()> &callback) { if (delay <= absl::ZeroDuration()) { callback(); } else if (delay != absl::InfiniteDuration()) { ScheduleAfter(pool, delay, callback); } } class TimeoutTest : public ::testing::Test, public ::testing::WithParamInterface<TimeoutTestParam> {}; std::vector<TimeoutTestParam> MakeTimeoutTestParamValues() { const absl::Duration finite = 3 * TimeoutTestAllowedSchedulingDelay(); const absl::Duration never = absl::InfiniteDuration(); const absl::Duration negative = -absl::InfiniteDuration(); const absl::Duration immediate = absl::ZeroDuration(); std::vector<TimeoutTestParam> values; for (bool use_absolute_deadline : {false, true}) { values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, negative, immediate, true, immediate, }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, negative, finite, false, immediate }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, negative, never, false, immediate }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, never, immediate, true, immediate }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, never, finite, true, finite, }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, never, immediate, true, immediate }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, finite * 2, finite, true, finite }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, finite, finite * 2, false, finite }); values.push_back(TimeoutTestParam{ __FILE__, __LINE__, use_absolute_deadline, finite, never, false, finite }); } return values; } INSTANTIATE_TEST_SUITE_P(All, TimeoutTest, testing::ValuesIn(MakeTimeoutTestParamValues())); TEST_P(TimeoutTest, Await) { const TimeoutTestParam params = GetParam(); LOG(INFO) << "Params: " << params; for (int attempt = 1;; ++attempt) { LOG(INFO) << "Attempt " << attempt; absl::Mutex mu; bool value = false; std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = CreateDefaultPool(); RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { absl::MutexLock l(&mu); value = true; }); absl::MutexLock lock(&mu); absl::Time start_time = absl::Now(); absl::Condition cond(&value); bool result = params.use_absolute_deadline ? mu.AwaitWithDeadline(cond, start_time + params.wait_timeout) : mu.AwaitWithTimeout(cond, params.wait_timeout); if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { EXPECT_EQ(params.expected_result, result); break; } } } TEST_P(TimeoutTest, LockWhen) { const TimeoutTestParam params = GetParam(); LOG(INFO) << "Params: " << params; for (int attempt = 1;; ++attempt) { LOG(INFO) << "Attempt " << attempt; absl::Mutex mu; bool value = false; std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = CreateDefaultPool(); RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { absl::MutexLock l(&mu); value = true; }); absl::Time start_time = absl::Now(); absl::Condition cond(&value); bool result = params.use_absolute_deadline ? mu.LockWhenWithDeadline(cond, start_time + params.wait_timeout) : mu.LockWhenWithTimeout(cond, params.wait_timeout); mu.Unlock(); if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { EXPECT_EQ(params.expected_result, result); break; } } } TEST_P(TimeoutTest, ReaderLockWhen) { const TimeoutTestParam params = GetParam(); LOG(INFO) << "Params: " << params; for (int attempt = 0;; ++attempt) { LOG(INFO) << "Attempt " << attempt; absl::Mutex mu; bool value = false; std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = CreateDefaultPool(); RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { absl::MutexLock l(&mu); value = true; }); absl::Time start_time = absl::Now(); bool result = params.use_absolute_deadline ? mu.ReaderLockWhenWithDeadline(absl::Condition(&value), start_time + params.wait_timeout) : mu.ReaderLockWhenWithTimeout(absl::Condition(&value), params.wait_timeout); mu.ReaderUnlock(); if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { EXPECT_EQ(params.expected_result, result); break; } } } TEST_P(TimeoutTest, Wait) { const TimeoutTestParam params = GetParam(); LOG(INFO) << "Params: " << params; for (int attempt = 0;; ++attempt) { LOG(INFO) << "Attempt " << attempt; absl::Mutex mu; bool value = false; absl::CondVar cv; std::unique_ptr<absl::synchronization_internal::ThreadPool> pool = CreateDefaultPool(); RunAfterDelay(params.satisfy_condition_delay, pool.get(), [&] { absl::MutexLock l(&mu); value = true; cv.Signal(); }); absl::MutexLock lock(&mu); absl::Time start_time = absl::Now(); absl::Duration timeout = params.wait_timeout; absl::Time deadline = start_time + timeout; while (!value) { if (params.use_absolute_deadline ? cv.WaitWithDeadline(&mu, deadline) : cv.WaitWithTimeout(&mu, timeout)) { break; } timeout = deadline - absl::Now(); } bool result = value; if (DelayIsWithinBounds(params.expected_delay, absl::Now() - start_time)) { EXPECT_EQ(params.expected_result, result); break; } } } TEST(Mutex, Logging) { absl::Mutex logged_mutex; logged_mutex.EnableDebugLog("fido_mutex"); absl::CondVar logged_cv; logged_cv.EnableDebugLog("rover_cv"); logged_mutex.Lock(); logged_cv.WaitWithTimeout(&logged_mutex, absl::Milliseconds(20)); logged_mutex.Unlock(); logged_mutex.ReaderLock(); logged_mutex.ReaderUnlock(); logged_mutex.Lock(); logged_mutex.Unlock(); logged_cv.Signal(); logged_cv.SignalAll(); } TEST(Mutex, LoggingAddressReuse) { ScopedInvariantDebugging scoped_debugging; alignas(absl::Mutex) char storage[sizeof(absl::Mutex)]; auto invariant = +[](void *alive) { EXPECT_TRUE(*static_cast<bool *>(alive)); }; constexpr size_t kIters = 10; bool alive[kIters] = {}; for (size_t i = 0; i < kIters; ++i) { absl::Mutex *mu = new (storage) absl::Mutex; alive[i] = true; mu->EnableDebugLog("Mutex"); mu->EnableInvariantDebugging(invariant, &alive[i]); mu->Lock(); mu->Unlock(); mu->~Mutex(); alive[i] = false; } } TEST(Mutex, LoggingBankrupcy) { ScopedInvariantDebugging scoped_debugging; std::vector<absl::Mutex> mus(1 << 20); for (auto &mu : mus) { mu.EnableDebugLog("Mutex"); } } TEST(Mutex, SynchEventRace) { ScopedInvariantDebugging scoped_debugging; std::vector<std::thread> threads; for (size_t i = 0; i < 5; i++) { threads.emplace_back([&] { for (size_t j = 0; j < (1 << 17); j++) { { absl::Mutex mu; mu.EnableInvariantDebugging([](void *) {}, nullptr); mu.Lock(); mu.Unlock(); } { absl::Mutex mu; mu.EnableDebugLog("Mutex"); } } }); } for (auto &thread : threads) { thread.join(); } } static std::vector<int> AllThreadCountValues() { if (kExtendedTest) { return {2, 4, 8, 10, 16, 20, 24, 30, 32}; } return {2, 4, 10}; } class MutexVariableThreadCountTest : public ::testing::TestWithParam<int> {}; INSTANTIATE_TEST_SUITE_P(ThreadCounts, MutexVariableThreadCountTest, ::testing::ValuesIn(AllThreadCountValues()), ::testing::PrintToStringParamName()); static int ScaleIterations(int x) { #if defined(ABSL_MUTEX_READER_LOCK_IS_EXCLUSIVE) return x / 10; #else return x; #endif } TEST_P(MutexVariableThreadCountTest, Mutex) { int threads = GetParam(); int iterations = ScaleIterations(10000000) / threads; int operations = threads * iterations; EXPECT_EQ(RunTest(&TestMu, threads, iterations, operations), operations); #if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) iterations = std::min(iterations, 10); operations = threads * iterations; EXPECT_EQ(RunTestWithInvariantDebugging(&TestMu, threads, iterations, operations, CheckSumG0G1), operations); #endif } TEST_P(MutexVariableThreadCountTest, Try) { int threads = GetParam(); int iterations = 1000000 / threads; int operations = iterations * threads; EXPECT_EQ(RunTest(&TestTry, threads, iterations, operations), operations); #if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) iterations = std::min(iterations, 10); operations = threads * iterations; EXPECT_EQ(RunTestWithInvariantDebugging(&TestTry, threads, iterations, operations, CheckSumG0G1), operations); #endif } TEST_P(MutexVariableThreadCountTest, R20ms) { int threads = GetParam(); int iterations = 100; int operations = iterations * threads; EXPECT_EQ(RunTest(&TestR20ms, threads, iterations, operations), 0); } TEST_P(MutexVariableThreadCountTest, RW) { int threads = GetParam(); int iterations = ScaleIterations(20000000) / threads; int operations = iterations * threads; EXPECT_EQ(RunTest(&TestRW, threads, iterations, operations), operations / 2); #if !defined(ABSL_MUTEX_ENABLE_INVARIANT_DEBUGGING_NOT_IMPLEMENTED) iterations = std::min(iterations, 10); operations = threads * iterations; EXPECT_EQ(RunTestWithInvariantDebugging(&TestRW, threads, iterations, operations, CheckSumG0G1), operations / 2); #endif } TEST_P(MutexVariableThreadCountTest, Await) { int threads = GetParam(); int iterations = ScaleIterations(500000); int operations = iterations; EXPECT_EQ(RunTest(&TestAwait, threads, iterations, operations), operations); } TEST_P(MutexVariableThreadCountTest, SignalAll) { int threads = GetParam(); int iterations = 200000 / threads; int operations = iterations; EXPECT_EQ(RunTest(&TestSignalAll, threads, iterations, operations), operations); } TEST(Mutex, Signal) { int threads = 2; int iterations = 200000; int operations = iterations; EXPECT_EQ(RunTest(&TestSignal, threads, iterations, operations), operations); } TEST(Mutex, Timed) { int threads = 10; int iterations = 1000; int operations = iterations; EXPECT_EQ(RunTest(&TestCVTimeout, threads, iterations, operations), operations); } TEST(Mutex, CVTime) { int threads = 10; int iterations = 1; EXPECT_EQ(RunTest(&TestCVTime, threads, iterations, 1), threads * iterations); } TEST(Mutex, MuTime) { int threads = 10; int iterations = 1; EXPECT_EQ(RunTest(&TestMuTime, threads, iterations, 1), threads * iterations); } TEST(Mutex, SignalExitedThread) { #if defined(__wasm__) || defined(__asmjs__) constexpr int kThreads = 1; #else constexpr int kThreads = 100; #endif std::vector<std::thread> top; for (unsigned i = 0; i < 2 * std::thread::hardware_concurrency(); i++) { top.emplace_back([&]() { for (int i = 0; i < kThreads; i++) { absl::Mutex mu; std::thread t([&]() { mu.Lock(); mu.Unlock(); }); mu.Lock(); mu.Unlock(); t.join(); } }); } for (auto &th : top) th.join(); } TEST(Mutex, WriterPriority) { absl::Mutex mu; bool wrote = false; std::atomic<bool> saw_wrote{false}; auto readfunc = [&]() { for (size_t i = 0; i < 10; ++i) { absl::ReaderMutexLock lock(&mu); if (wrote) { saw_wrote = true; break; } absl::SleepFor(absl::Seconds(1)); } }; std::thread t1(readfunc); absl::SleepFor(absl::Milliseconds(500)); std::thread t2(readfunc); std::thread t3([&]() { absl::MutexLock lock(&mu); wrote = true; }); t1.join(); t2.join(); t3.join(); EXPECT_TRUE(saw_wrote.load()); } #ifdef ABSL_HAVE_PTHREAD_GETSCHEDPARAM TEST(Mutex, CondVarPriority) { int err = 0; sched_param param; param.sched_priority = 7; std::thread test([&]() { err = pthread_setschedparam(pthread_self(), SCHED_FIFO, &param); }); test.join(); if (err) { GTEST_SKIP() << "failed to set priority: " << strerror(err); } absl::Mutex mu; absl::CondVar cv; bool locked = false; bool notified = false; bool waiting = false; bool morph = false; std::thread th([&]() { EXPECT_EQ(0, pthread_setschedparam(pthread_self(), SCHED_FIFO, &param)); mu.Lock(); locked = true; mu.Await(absl::Condition(&notified)); mu.Unlock(); EXPECT_EQ(absl::synchronization_internal::GetOrCreateCurrentThreadIdentity() ->per_thread_synch.priority, param.sched_priority); mu.Lock(); mu.Await(absl::Condition(&waiting)); morph = true; absl::SleepFor(absl::Seconds(1)); cv.Signal(); mu.Unlock(); }); mu.Lock(); mu.Await(absl::Condition(&locked)); notified = true; mu.Unlock(); mu.Lock(); waiting = true; while (!morph) { cv.Wait(&mu); } mu.Unlock(); th.join(); EXPECT_NE(absl::synchronization_internal::GetOrCreateCurrentThreadIdentity() ->per_thread_synch.priority, param.sched_priority); } #endif TEST(Mutex, LockWhenWithTimeoutResult) { absl::Mutex mu; const bool kAlwaysTrue = true, kAlwaysFalse = false; const absl::Condition kTrueCond(&kAlwaysTrue), kFalseCond(&kAlwaysFalse); EXPECT_TRUE(mu.LockWhenWithTimeout(kTrueCond, absl::Milliseconds(1))); mu.Unlock(); EXPECT_FALSE(mu.LockWhenWithTimeout(kFalseCond, absl::Milliseconds(1))); EXPECT_TRUE(mu.AwaitWithTimeout(kTrueCond, absl::Milliseconds(1))); EXPECT_FALSE(mu.AwaitWithTimeout(kFalseCond, absl::Milliseconds(1))); std::thread th1([&]() { EXPECT_TRUE(mu.LockWhenWithTimeout(kTrueCond, absl::Milliseconds(1))); mu.Unlock(); }); std::thread th2([&]() { EXPECT_FALSE(mu.LockWhenWithTimeout(kFalseCond, absl::Milliseconds(1))); mu.Unlock(); }); absl::SleepFor(absl::Milliseconds(100)); mu.Unlock(); th1.join(); th2.join(); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/mutex.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/synchronization/mutex_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
f23edeb0-accf-4935-9f5b-21406e911acd
cpp
google/quiche
balsa_headers_sequence
quiche/balsa/balsa_headers_sequence.cc
quiche/balsa/balsa_headers_sequence_test.cc
#include "quiche/balsa/balsa_headers_sequence.h" #include <memory> #include <utility> #include "quiche/balsa/balsa_headers.h" namespace quiche { void BalsaHeadersSequence::Append(std::unique_ptr<BalsaHeaders> headers) { sequence_.push_back(std::move(headers)); } bool BalsaHeadersSequence::HasNext() const { return next_ < sequence_.size(); } BalsaHeaders* BalsaHeadersSequence::PeekNext() { if (!HasNext()) { return nullptr; } return sequence_[next_].get(); } BalsaHeaders* BalsaHeadersSequence::Next() { if (!HasNext()) { return nullptr; } return sequence_[next_++].get(); } void BalsaHeadersSequence::Clear() { sequence_.clear(); next_ = 0; } }
#include "quiche/balsa/balsa_headers_sequence.h" #include <memory> #include <utility> #include "quiche/balsa/balsa_headers.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace test { namespace { TEST(BalsaHeadersSequenceTest, Initial) { BalsaHeadersSequence sequence; EXPECT_FALSE(sequence.HasNext()); EXPECT_EQ(sequence.Next(), nullptr); EXPECT_TRUE(sequence.IsEmpty()); } TEST(BalsaHeadersSequenceTest, Basic) { BalsaHeadersSequence sequence; auto headers_one = std::make_unique<BalsaHeaders>(); headers_one->AppendHeader("one", "fish"); sequence.Append(std::move(headers_one)); EXPECT_TRUE(sequence.HasNext()); EXPECT_FALSE(sequence.IsEmpty()); auto headers_two = std::make_unique<BalsaHeaders>(); headers_two->AppendHeader("two", "fish"); sequence.Append(std::move(headers_two)); EXPECT_TRUE(sequence.HasNext()); EXPECT_FALSE(sequence.IsEmpty()); const BalsaHeaders* headers = sequence.Next(); ASSERT_NE(headers, nullptr); EXPECT_TRUE(headers->HasHeader("one")); EXPECT_TRUE(sequence.HasNext()); EXPECT_FALSE(sequence.IsEmpty()); headers = sequence.Next(); ASSERT_NE(headers, nullptr); EXPECT_TRUE(headers->HasHeader("two")); EXPECT_FALSE(sequence.HasNext()); EXPECT_FALSE(sequence.IsEmpty()); EXPECT_EQ(sequence.Next(), nullptr); } TEST(BalsaHeadersSequenceTest, Clear) { BalsaHeadersSequence sequence; auto headers_one = std::make_unique<BalsaHeaders>(); headers_one->AppendHeader("one", "fish"); sequence.Append(std::move(headers_one)); EXPECT_TRUE(sequence.HasNext()); EXPECT_FALSE(sequence.IsEmpty()); auto headers_two = std::make_unique<BalsaHeaders>(); headers_two->AppendHeader("two", "fish"); sequence.Append(std::move(headers_two)); EXPECT_TRUE(sequence.HasNext()); EXPECT_FALSE(sequence.IsEmpty()); sequence.Clear(); EXPECT_FALSE(sequence.HasNext()); EXPECT_EQ(sequence.Next(), nullptr); EXPECT_TRUE(sequence.IsEmpty()); } TEST(BalsaHeadersSequenceTest, PeekNext) { BalsaHeadersSequence sequence; EXPECT_EQ(sequence.PeekNext(), nullptr); auto headers_one = std::make_unique<BalsaHeaders>(); headers_one->AppendHeader("one", "fish"); sequence.Append(std::move(headers_one)); EXPECT_TRUE(sequence.HasNext()); const BalsaHeaders* headers = sequence.PeekNext(); ASSERT_NE(headers, nullptr); EXPECT_TRUE(headers->HasHeader("one")); EXPECT_TRUE(sequence.HasNext()); EXPECT_EQ(sequence.PeekNext(), headers); auto headers_two = std::make_unique<BalsaHeaders>(); headers_two->AppendHeader("two", "fish"); sequence.Append(std::move(headers_two)); EXPECT_TRUE(sequence.HasNext()); EXPECT_EQ(sequence.PeekNext(), headers); headers = sequence.Next(); ASSERT_NE(headers, nullptr); EXPECT_TRUE(headers->HasHeader("one")); EXPECT_TRUE(sequence.HasNext()); headers = sequence.PeekNext(); ASSERT_NE(headers, nullptr); EXPECT_TRUE(headers->HasHeader("two")); EXPECT_TRUE(sequence.HasNext()); headers = sequence.Next(); ASSERT_NE(headers, nullptr); EXPECT_TRUE(headers->HasHeader("two")); EXPECT_FALSE(sequence.HasNext()); EXPECT_EQ(sequence.PeekNext(), nullptr); } TEST(BalsaHeadersSequenceTest, CanRetainValidReference) { BalsaHeadersSequence sequence; auto headers = std::make_unique<BalsaHeaders>(); headers->AppendHeader("one", "fish"); BalsaHeaders* headers_ptr = headers.get(); sequence.Append(std::move(headers)); ASSERT_TRUE(sequence.HasNext()); EXPECT_EQ(sequence.Next(), headers_ptr); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/balsa/balsa_headers_sequence.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/balsa/balsa_headers_sequence_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
5c3a7bc1-a537-48b5-8488-5855798de70c
cpp
tensorflow/tensorflow
serialize_utils
tensorflow/core/tfrt/saved_model/utils/serialize_utils.cc
tensorflow/core/tfrt/saved_model/utils/serialize_utils_test.cc
#include "tensorflow/core/tfrt/saved_model/utils/serialize_utils.h" #include <cstring> #include <memory> #include <string> #include "absl/status/status.h" #include "llvm/Support/ToolOutputFile.h" #include "mlir/Support/FileUtilities.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tsl/platform/env.h" #include "tfrt/bef/bef_buffer.h" namespace tensorflow { namespace tfrt_stub { absl::Status SerializeBEF(const tfrt::BefBuffer &bef, const std::string &filepath) { std::string errorMessage; auto output = mlir::openOutputFile(filepath, &errorMessage); (output->os()).write(reinterpret_cast<const char *>(bef.data()), bef.size()); output->keep(); LOG(INFO) << "Completed serializing BEF to: " << filepath; return absl::OkStatus(); } absl::StatusOr<tfrt::BefBuffer> DeserializeBEFBuffer( const std::string &filepath) { std::string data; TF_CHECK_OK(ReadFileToString(tsl::Env::Default(), filepath, &data)); tfrt::BefBuffer bef(data.begin(), data.end()); LOG(INFO) << "Successfully loaded serialized BEF from: " << filepath; return bef; } absl::Status SerializeMLRTBytecode(const mlrt::bc::Buffer &bytecode, const std::string &filepath) { std::string errorMessage; auto output = mlir::openOutputFile(filepath, &errorMessage); (output->os()) .write(reinterpret_cast<const char *>(bytecode.data()), bytecode.size()); output->keep(); LOG(INFO) << "Completed serializing MLRTBytecode to: " << filepath; return absl::OkStatus(); } absl::StatusOr<mlrt::bc::Buffer> DeserializeMlrtBytecodeBuffer( const std::string &filepath) { std::string bytecode_data; TF_CHECK_OK(ReadFileToString(tsl::Env::Default(), filepath, &bytecode_data)); mlrt::bc::Buffer buffer; mlrt::bc::Allocator allocator(&buffer); allocator.Allocate(bytecode_data.length(), alignof(char)); memcpy(buffer.data(), bytecode_data.data(), bytecode_data.length()); LOG(INFO) << "Successfully loaded serialized MLRTBytecode from: " << filepath; return buffer; } } }
#include "tensorflow/core/tfrt/saved_model/utils/serialize_utils.h" #include <cstdlib> #include <memory> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tfrt/transforms/mlrt/import_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/import_model.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tensorflow/core/tfrt/saved_model/saved_model_util.h" #include "tensorflow/core/tfrt/utils/utils.h" #include "tsl/platform/env.h" #include "tfrt/bef/bef_buffer.h" namespace tensorflow { namespace tfrt_stub { namespace { TEST(SerializeBEFTest, HandlesCompleteProcess) { tfrt::BefBuffer old_bef; const std::string saved_model_mlir_path = "third_party/tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/" "test.mlir"; mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); std::unique_ptr<Runtime> runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); tfrt::ResourceContext resource_context; tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); TF_ASSERT_OK(ConvertTfMlirToBef(options.compile_options, module.get(), &old_bef, model_context)); const std::string filepath = io::JoinPath(getenv("TEST_UNDECLARED_OUTPUTS_DIR"), std::string("serialized_bef.mlir.bef")); TF_ASSERT_OK(tensorflow::tfrt_stub::SerializeBEF(old_bef, filepath)); ASSERT_NE(old_bef.size(), 0); TF_ASSERT_OK_AND_ASSIGN(const tfrt::BefBuffer bef, DeserializeBEFBuffer(filepath)); ASSERT_TRUE(old_bef.size() == bef.size()); std::unique_ptr<Runtime> default_runtime = DefaultTfrtRuntime(1); SavedModel::Options default_options = DefaultSavedModelOptions(default_runtime.get()); TF_EXPECT_OK(tfrt::CreateBefFileFromBefBuffer( *default_options.graph_execution_options.runtime, bef) .status()); } TEST(SerializeMLRTTest, HandlesSerializeAndDeserializeProcess) { mlrt::bc::Buffer old_bytecode; const std::string saved_model_mlir_path = "third_party/tensorflow/compiler/mlir/tfrt/tests/saved_model/testdata/" "test.mlir"; mlir::DialectRegistry registry; mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); auto module = mlir::parseSourceFile<mlir::ModuleOp>(saved_model_mlir_path, &context); ASSERT_TRUE(module); mlir::OwningOpRef<mlir::ModuleOp> module_with_op_keys; std::unique_ptr<Runtime> runtime = tensorflow::tfrt_stub::Runtime::Create(1); tfrt_stub::GraphExecutionOptions options(runtime.get()); options.enable_mlrt = true; tfrt::ResourceContext resource_context; TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<tfrt_stub::FallbackState> fallback_state, tfrt_stub::FallbackState::Create(SessionOptions(), FunctionDefLibrary())); tfrt_stub::ModelRuntimeContext model_context( &options, options.compile_options.saved_model_dir, &resource_context); TF_ASSERT_OK_AND_ASSIGN( old_bytecode, mlrt_compiler::ConvertTfMlirToBytecode( options.compile_options, *fallback_state, module.get(), model_context, &module_with_op_keys)); const std::string aot_package_path = GetAotPackagePath(getenv("TEST_UNDECLARED_OUTPUTS_DIR")); tsl::Env* env = tsl::Env::Default(); TF_ASSERT_OK(env->RecursivelyCreateDir(aot_package_path)); const std::string filepath = io::JoinPath(aot_package_path, std::string("serialized_mlrt.mlir.mlrt")); TF_ASSERT_OK( tensorflow::tfrt_stub::SerializeMLRTBytecode(old_bytecode, filepath)); ASSERT_NE(old_bytecode.size(), 0); mlrt::bc::Buffer bytecode; TF_ASSERT_OK_AND_ASSIGN(bytecode, DeserializeMlrtBytecodeBuffer(filepath)); ASSERT_TRUE(old_bytecode.size() == bytecode.size()); EXPECT_STREQ(old_bytecode.data(), bytecode.data()); TF_ASSERT_OK_AND_ASSIGN( bytecode, LoadMlrtAndMlir(options.compile_options, module_with_op_keys.get(), getenv("TEST_UNDECLARED_OUTPUTS_DIR"), fallback_state.get())); ASSERT_TRUE(old_bytecode.size() == bytecode.size()); EXPECT_STREQ(old_bytecode.data(), bytecode.data()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/saved_model/utils/serialize_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/saved_model/utils/serialize_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7d80d504-3b5e-493a-9924-c14be6ac9cb3
cpp
tensorflow/tensorflow
gcs_file_system
third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_file_system.cc
third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_file_system_test.cc
#include "tsl/platform/cloud/gcs_file_system.h" #include <stdio.h> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #ifndef _WIN32 #include <unistd.h> #endif #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <fstream> #include <functional> #include <string> #include <utility> #include <vector> #include "tsl/platform/file_statistics.h" #include "tsl/platform/strcat.h" #ifdef _WIN32 #include <io.h> #endif #include "absl/base/macros.h" #include "json/json.h" #include "tsl/platform/cloud/curl_http_request.h" #include "tsl/platform/cloud/file_block_cache.h" #include "tsl/platform/cloud/google_auth_provider.h" #include "tsl/platform/cloud/ram_file_block_cache.h" #include "tsl/platform/cloud/time_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/mutex.h" #include "tsl/platform/numbers.h" #include "tsl/platform/path.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/str_util.h" #include "tsl/platform/stringprintf.h" #include "tsl/platform/thread_annotations.h" #include "tsl/profiler/lib/traceme.h" #ifdef _WIN32 #ifdef DeleteFile #undef DeleteFile #endif #endif namespace tsl { namespace { constexpr char kGcsUriBase[] = "https: constexpr char kGcsUploadUriBase[] = "https: constexpr char kStorageHost[] = "storage.googleapis.com"; constexpr char kBucketMetadataLocationKey[] = "location"; constexpr size_t kReadAppendableFileBufferSize = 1024 * 1024; constexpr int kGetChildrenDefaultPageSize = 1000; constexpr uint64 HTTP_CODE_RESUME_INCOMPLETE = 308; constexpr uint64 HTTP_CODE_PRECONDITION_FAILED = 412; ABSL_DEPRECATED("Use GCS_READ_CACHE_BLOCK_SIZE_MB instead.") constexpr char kReadaheadBufferSize[] = "GCS_READAHEAD_BUFFER_SIZE_BYTES"; constexpr char kStatCacheMaxAge[] = "GCS_STAT_CACHE_MAX_AGE"; constexpr uint64 kStatCacheDefaultMaxAge = 5; constexpr char kStatCacheMaxEntries[] = "GCS_STAT_CACHE_MAX_ENTRIES"; constexpr size_t kStatCacheDefaultMaxEntries = 1024; constexpr char kMatchingPathsCacheMaxAge[] = "GCS_MATCHING_PATHS_CACHE_MAX_AGE"; constexpr uint64 kMatchingPathsCacheDefaultMaxAge = 0; constexpr char kMatchingPathsCacheMaxEntries[] = "GCS_MATCHING_PATHS_CACHE_MAX_ENTRIES"; constexpr size_t kMatchingPathsCacheDefaultMaxEntries = 1024; constexpr size_t kBucketLocationCacheMaxEntries = 10; constexpr size_t kCacheNeverExpire = std::numeric_limits<uint64>::max(); const FileStatistics DIRECTORY_STAT(0, 0, true); constexpr char kResolveCacheSecs[] = "GCS_RESOLVE_REFRESH_SECS"; constexpr char kRequestConnectionTimeout[] = "GCS_REQUEST_CONNECTION_TIMEOUT_SECS"; constexpr char kRequestIdleTimeout[] = "GCS_REQUEST_IDLE_TIMEOUT_SECS"; constexpr char kMetadataRequestTimeout[] = "GCS_METADATA_REQUEST_TIMEOUT_SECS"; constexpr char kReadRequestTimeout[] = "GCS_READ_REQUEST_TIMEOUT_SECS"; constexpr char kWriteRequestTimeout[] = "GCS_WRITE_REQUEST_TIMEOUT_SECS"; constexpr char kAdditionalRequestHeader[] = "GCS_ADDITIONAL_REQUEST_HEADER"; constexpr char kThrottleRate[] = "GCS_THROTTLE_TOKEN_RATE"; constexpr char kThrottleBucket[] = "GCS_THROTTLE_BUCKET_SIZE"; constexpr char kTokensPerRequest[] = "GCS_TOKENS_PER_REQUEST"; constexpr char kInitialTokens[] = "GCS_INITIAL_TOKENS"; constexpr char kRetryConfigInitialDelayTimeUs[] = "GCS_RETRY_CONFIG_INIT_DELAY_TIME_US"; constexpr char kRetryConfigMaxDelayTimeUs[] = "GCS_RETRY_CONFIG_MAX_DELAY_TIME_US"; constexpr char kRetryConfigMaxRetries[] = "GCS_RETRY_CONFIG_MAX_RETRIES"; constexpr char kAllowedBucketLocations[] = "GCS_ALLOWED_BUCKET_LOCATIONS"; constexpr char kDetectZoneSentinelValue[] = "auto"; constexpr char kAppendMode[] = "GCS_APPEND_MODE"; constexpr char kComposeAppend[] = "compose"; absl::Status GetTmpFilename(string* filename) { *filename = io::GetTempFilename(""); return absl::OkStatus(); } string MaybeAppendSlash(const string& name) { if (name.empty()) { return "/"; } if (name.back() != '/') { return strings::StrCat(name, "/"); } return name; } string JoinGcsPath(const string& path, const string& subpath) { return strings::StrCat(MaybeAppendSlash(path), subpath); } std::set<string> AddAllSubpaths(const std::vector<string>& paths) { std::set<string> result; result.insert(paths.begin(), paths.end()); for (const string& path : paths) { absl::string_view subpath = io::Dirname(path); while (!(subpath.empty() || subpath == "/")) { result.emplace(string(subpath)); subpath = io::Dirname(subpath); } } return result; } absl::Status ParseJson(absl::string_view json, Json::Value* result) { Json::Reader reader; if (!reader.parse(json.data(), json.data() + json.size(), *result)) { return errors::Internal("Couldn't parse JSON response from GCS."); } return absl::OkStatus(); } absl::Status ParseJson(const std::vector<char>& json, Json::Value* result) { return ParseJson(absl::string_view{json.data(), json.size()}, result); } absl::Status GetValue(const Json::Value& parent, const char* name, Json::Value* result) { *result = parent.get(name, Json::Value::null); if (result->isNull()) { return errors::Internal("The field '", name, "' was expected in the JSON response."); } return absl::OkStatus(); } absl::Status GetStringValue(const Json::Value& parent, const char* name, string* result) { Json::Value result_value; TF_RETURN_IF_ERROR(GetValue(parent, name, &result_value)); if (!result_value.isString()) { return errors::Internal( "The field '", name, "' in the JSON response was expected to be a string."); } *result = result_value.asString(); return absl::OkStatus(); } absl::Status GetInt64Value(const Json::Value& parent, const char* name, int64_t* result) { Json::Value result_value; TF_RETURN_IF_ERROR(GetValue(parent, name, &result_value)); if (result_value.isNumeric()) { *result = result_value.asInt64(); return absl::OkStatus(); } if (result_value.isString() && strings::safe_strto64(result_value.asCString(), result)) { return absl::OkStatus(); } return errors::Internal( "The field '", name, "' in the JSON response was expected to be a number."); } absl::Status GetBoolValue(const Json::Value& parent, const char* name, bool* result) { Json::Value result_value; TF_RETURN_IF_ERROR(GetValue(parent, name, &result_value)); if (!result_value.isBool()) { return errors::Internal( "The field '", name, "' in the JSON response was expected to be a boolean."); } *result = result_value.asBool(); return absl::OkStatus(); } RetryConfig GetGcsRetryConfig() { RetryConfig retryConfig( 1000 * 1000, 32 * 1000 * 1000, 10); uint64 init_delay_time_us; if (GetEnvVar(kRetryConfigInitialDelayTimeUs, strings::safe_strtou64, &init_delay_time_us)) { retryConfig.init_delay_time_us = init_delay_time_us; } uint64 max_delay_time_us; if (GetEnvVar(kRetryConfigMaxDelayTimeUs, strings::safe_strtou64, &max_delay_time_us)) { retryConfig.max_delay_time_us = max_delay_time_us; } uint32 max_retries; if (GetEnvVar(kRetryConfigMaxRetries, strings::safe_strtou32, &max_retries)) { retryConfig.max_retries = max_retries; } VLOG(1) << "GCS RetryConfig: " << "init_delay_time_us = " << retryConfig.init_delay_time_us << " ; " << "max_delay_time_us = " << retryConfig.max_delay_time_us << " ; " << "max_retries = " << retryConfig.max_retries; return retryConfig; } class GcsRandomAccessFile : public RandomAccessFile { public: using ReadFn = std::function<absl::Status( const string& filename, uint64 offset, size_t n, absl::string_view* result, char* scratch)>; GcsRandomAccessFile(const string& filename, ReadFn read_fn) : filename_(filename), read_fn_(std::move(read_fn)) {} absl::Status Name(absl::string_view* result) const override { *result = filename_; return absl::OkStatus(); } absl::Status Read(uint64 offset, size_t n, absl::string_view* result, char* scratch) const override { return read_fn_(filename_, offset, n, result, scratch); } private: const string filename_; const ReadFn read_fn_; }; class BufferedGcsRandomAccessFile : public RandomAccessFile { public: using ReadFn = std::function<absl::Status( const string& filename, uint64 offset, size_t n, absl::string_view* result, char* scratch)>; BufferedGcsRandomAccessFile(const string& filename, uint64 buffer_size, ReadFn read_fn) : filename_(filename), read_fn_(std::move(read_fn)), buffer_size_(buffer_size), buffer_start_(0), buffer_end_is_past_eof_(false) {} absl::Status Name(absl::string_view* result) const override { *result = filename_; return absl::OkStatus(); } absl::Status Read(uint64 offset, size_t n, absl::string_view* result, char* scratch) const override { if (n > buffer_size_) { return read_fn_(filename_, offset, n, result, scratch); } { mutex_lock l(buffer_mutex_); size_t buffer_end = buffer_start_ + buffer_.size(); size_t copy_size = 0; if (offset < buffer_end && offset >= buffer_start_) { copy_size = std::min(n, static_cast<size_t>(buffer_end - offset)); memcpy(scratch, buffer_.data() + (offset - buffer_start_), copy_size); *result = absl::string_view(scratch, copy_size); } bool consumed_buffer_to_eof = offset + copy_size >= buffer_end && buffer_end_is_past_eof_; if (copy_size < n && !consumed_buffer_to_eof) { absl::Status status = FillBuffer(offset + copy_size); if (!status.ok() && !absl::IsOutOfRange(status)) { buffer_.resize(0); return status; } size_t remaining_copy = std::min(n - copy_size, buffer_.size()); memcpy(scratch + copy_size, buffer_.data(), remaining_copy); copy_size += remaining_copy; *result = absl::string_view(scratch, copy_size); } if (copy_size < n) { buffer_end_is_past_eof_ = false; return errors::OutOfRange("EOF reached. Requested to read ", n, " bytes from ", offset, "."); } } return absl::OkStatus(); } private: absl::Status FillBuffer(uint64 start) const TF_EXCLUSIVE_LOCKS_REQUIRED(buffer_mutex_) { buffer_start_ = start; buffer_.resize(buffer_size_); absl::string_view str_piece; absl::Status status = read_fn_(filename_, buffer_start_, buffer_size_, &str_piece, &(buffer_[0])); buffer_end_is_past_eof_ = absl::IsOutOfRange(status); buffer_.resize(str_piece.size()); return status; } const string filename_; const ReadFn read_fn_; const uint64 buffer_size_; mutable mutex buffer_mutex_; mutable uint64 buffer_start_ TF_GUARDED_BY(buffer_mutex_); mutable bool buffer_end_is_past_eof_ TF_GUARDED_BY(buffer_mutex_); mutable string buffer_ TF_GUARDED_BY(buffer_mutex_); }; typedef std::function<absl::Status( uint64 start_offset, const std::string& object_to_upload, const std::string& bucket, uint64 file_size, const std::string& gcs_path, UploadSessionHandle* session_handle)> SessionCreator; typedef std::function<absl::Status( const std::string& session_uri, uint64 start_offset, uint64 already_uploaded, const std::string& tmp_content_filename, uint64 file_size, const std::string& file_path)> ObjectUploader; typedef std::function<absl::Status(const string& session_uri, uint64 file_size, const std::string& gcs_path, bool* completed, uint64* uploaded)> StatusPoller; typedef std::function<absl::Status(const string& fname, const string& bucket, const string& object, int64_t* generation)> GenerationGetter; class GcsWritableFile : public WritableFile { public: GcsWritableFile(const string& bucket, const string& object, GcsFileSystem* filesystem, GcsFileSystem::TimeoutConfig* timeouts, std::function<void()> file_cache_erase, RetryConfig retry_config, bool compose_append, SessionCreator session_creator, ObjectUploader object_uploader, StatusPoller status_poller, GenerationGetter generation_getter) : bucket_(bucket), object_(object), filesystem_(filesystem), timeouts_(timeouts), file_cache_erase_(std::move(file_cache_erase)), sync_needed_(true), retry_config_(retry_config), compose_append_(compose_append), start_offset_(0), session_creator_(std::move(session_creator)), object_uploader_(std::move(object_uploader)), status_poller_(std::move(status_poller)), generation_getter_(std::move(generation_getter)) { VLOG(3) << "GcsWritableFile: " << GetGcsPath(); if (GetTmpFilename(&tmp_content_filename_).ok()) { outfile_.open(tmp_content_filename_, std::ofstream::binary | std::ofstream::app); } } GcsWritableFile(const string& bucket, const string& object, GcsFileSystem* filesystem, const string& tmp_content_filename, GcsFileSystem::TimeoutConfig* timeouts, std::function<void()> file_cache_erase, RetryConfig retry_config, bool compose_append, SessionCreator session_creator, ObjectUploader object_uploader, StatusPoller status_poller, GenerationGetter generation_getter) : bucket_(bucket), object_(object), filesystem_(filesystem), timeouts_(timeouts), file_cache_erase_(std::move(file_cache_erase)), sync_needed_(true), retry_config_(retry_config), compose_append_(compose_append), start_offset_(0), session_creator_(std::move(session_creator)), object_uploader_(std::move(object_uploader)), status_poller_(std::move(status_poller)), generation_getter_(std::move(generation_getter)) { VLOG(3) << "GcsWritableFile: " << GetGcsPath() << "with existing file " << tmp_content_filename; tmp_content_filename_ = tmp_content_filename; outfile_.open(tmp_content_filename_, std::ofstream::binary | std::ofstream::app); } ~GcsWritableFile() override { Close().IgnoreError(); std::remove(tmp_content_filename_.c_str()); } absl::Status Append(absl::string_view data) override { TF_RETURN_IF_ERROR(CheckWritable()); VLOG(3) << "Append: " << GetGcsPath() << " size " << data.length(); sync_needed_ = true; outfile_ << data; if (!outfile_.good()) { return errors::Internal( "Could not append to the internal temporary file."); } return absl::OkStatus(); } absl::Status Close() override { VLOG(3) << "Close:" << GetGcsPath(); if (outfile_.is_open()) { absl::Status sync_status = Sync(); if (sync_status.ok()) { outfile_.close(); } return sync_status; } return absl::OkStatus(); } absl::Status Flush() override { VLOG(3) << "Flush:" << GetGcsPath(); return Sync(); } absl::Status Name(absl::string_view* result) const override { *result = object_; return absl::OkStatus(); } absl::Status Sync() override { VLOG(3) << "Sync started:" << GetGcsPath(); TF_RETURN_IF_ERROR(CheckWritable()); if (!sync_needed_) { return absl::OkStatus(); } absl::Status status = SyncImpl(); VLOG(3) << "Sync finished " << GetGcsPath(); if (status.ok()) { sync_needed_ = false; } return status; } absl::Status Tell(int64_t* position) override { *position = outfile_.tellp(); if (*position == -1) { return errors::Internal("tellp on the internal temporary file failed"); } return absl::OkStatus(); } private: absl::Status SyncImpl() { outfile_.flush(); if (!outfile_.good()) { return errors::Internal( "Could not write to the internal temporary file."); } UploadSessionHandle session_handle; uint64 start_offset = 0; string object_to_upload = object_; bool should_compose = false; if (compose_append_) { start_offset = start_offset_; should_compose = start_offset > 0; if (should_compose) { object_to_upload = strings::StrCat(io::Dirname(object_), "/.tmpcompose/", io::Basename(object_), ".", start_offset_); } } TF_RETURN_IF_ERROR(CreateNewUploadSession(start_offset, object_to_upload, &session_handle)); uint64 already_uploaded = 0; bool first_attempt = true; const absl::Status upload_status = RetryingUtils::CallWithRetries( [&first_attempt, &already_uploaded, &session_handle, &start_offset, this]() { if (session_handle.resumable && !first_attempt) { bool completed; TF_RETURN_IF_ERROR(RequestUploadSessionStatus( session_handle.session_uri, &completed, &already_uploaded)); LOG(INFO) << "### RequestUploadSessionStatus: completed = " << completed << ", already_uploaded = " << already_uploaded << ", file = " << GetGcsPath(); if (completed) { file_cache_erase_(); return absl::OkStatus(); } } first_attempt = false; return UploadToSession(session_handle.session_uri, start_offset, already_uploaded); }, retry_config_); if (absl::IsNotFound(upload_status)) { return errors::Unavailable( strings::StrCat("Upload to gs: " failed, caused by: ", upload_status.message())); } if (upload_status.ok()) { if (should_compose) { TF_RETURN_IF_ERROR(AppendObject(object_to_upload)); } TF_RETURN_IF_ERROR(GetCurrentFileSize(&start_offset_)); } return upload_status; } absl::Status CheckWritable() const { if (!outfile_.is_open()) { return errors::FailedPrecondition( "The internal temporary file is not writable."); } return absl::OkStatus(); } absl::Status GetCurrentFileSize(uint64* size) { const auto tellp = outfile_.tellp(); if (tellp == static_cast<std::streampos>(-1)) { return errors::Internal( "Could not get the size of the internal temporary file."); } *size = tellp; return absl::OkStatus(); } absl::Status CreateNewUploadSession(uint64 start_offset, std::string object_to_upload, UploadSessionHandle* session_handle) { uint64 file_size; TF_RETURN_IF_ERROR(GetCurrentFileSize(&file_size)); return session_creator_(start_offset, object_to_upload, bucket_, file_size, GetGcsPath(), session_handle); } absl::Status AppendObject(string append_object) { const string append_object_path = GetGcsPathWithObject(append_object); VLOG(3) << "AppendObject: " << append_object_path << " to " << GetGcsPath(); int64_t generation = 0; TF_RETURN_IF_ERROR( generation_getter_(GetGcsPath(), bucket_, object_, &generation)); TF_RETURN_IF_ERROR(RetryingUtils::CallWithRetries( [&append_object, &generation, this]() { std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(filesystem_->CreateHttpRequest(&request)); request->SetUri(strings::StrCat(kGcsUriBase, "b/", bucket_, "/o/", request->EscapeString(object_), "/compose")); const string request_body = strings::StrCat( "{'sourceObjects': [{'name': '", object_, "','objectPrecondition':{'ifGenerationMatch':", generation, "}},{'name': '", append_object, "'}]}"); request->SetTimeouts(timeouts_->connect, timeouts_->idle, timeouts_->metadata); request->AddHeader("content-type", "application/json"); request->SetPostFromBuffer(request_body.c_str(), request_body.size()); TF_RETURN_WITH_CONTEXT_IF_ERROR(request->Send(), " when composing to ", GetGcsPath()); return absl::OkStatus(); }, retry_config_)); return RetryingUtils::DeleteWithRetries( [&append_object_path, this]() { return filesystem_->DeleteFile(append_object_path, nullptr); }, retry_config_); } absl::Status RequestUploadSessionStatus(const string& session_uri, bool* completed, uint64* uploaded) { uint64 file_size; TF_RETURN_IF_ERROR(GetCurrentFileSize(&file_size)); return status_poller_(session_uri, file_size, GetGcsPath(), completed, uploaded); } absl::Status UploadToSession(const string& session_uri, uint64 start_offset, uint64 already_uploaded) { uint64 file_size; TF_RETURN_IF_ERROR(GetCurrentFileSize(&file_size)); absl::Status status = object_uploader_(session_uri, start_offset, already_uploaded, tmp_content_filename_, file_size, GetGcsPath()); if (status.ok()) { file_cache_erase_(); } return status; } string GetGcsPathWithObject(string object) const { return strings::StrCat("gs: } string GetGcsPath() const { return GetGcsPathWithObject(object_); } string bucket_; string object_; GcsFileSystem* const filesystem_; string tmp_content_filename_; std::ofstream outfile_; GcsFileSystem::TimeoutConfig* timeouts_; std::function<void()> file_cache_erase_; bool sync_needed_; RetryConfig retry_config_ = GetGcsRetryConfig(); bool compose_append_; uint64 start_offset_; const SessionCreator session_creator_; const ObjectUploader object_uploader_; const StatusPoller status_poller_; const GenerationGetter generation_getter_; }; class GcsReadOnlyMemoryRegion : public ReadOnlyMemoryRegion { public: GcsReadOnlyMemoryRegion(std::unique_ptr<char[]> data, uint64 length) : data_(std::move(data)), length_(length) {} const void* data() override { return reinterpret_cast<void*>(data_.get()); } uint64 length() override { return length_; } private: std::unique_ptr<char[]> data_; uint64 length_; }; bool StringPieceIdentity(absl::string_view str, absl::string_view* value) { *value = str; return true; } bool SplitByCommaToLowercaseSet(absl::string_view list, std::unordered_set<string>* set) { std::vector<string> vector = absl::StrSplit(absl::AsciiStrToLower(list), ','); *set = std::unordered_set<string>(vector.begin(), vector.end()); return true; } string ZoneToRegion(string* zone) { return zone->substr(0, zone->find_last_of('-')); } } GcsFileSystem::GcsFileSystem(bool make_default_cache) { uint64 value; block_size_ = kDefaultBlockSize; size_t max_bytes = kDefaultMaxCacheSize; uint64 max_staleness = kDefaultMaxStaleness; http_request_factory_ = std::make_shared<CurlHttpRequest::Factory>(); compute_engine_metadata_client_ = std::make_shared<ComputeEngineMetadataClient>(http_request_factory_); auth_provider_ = std::unique_ptr<AuthProvider>( new GoogleAuthProvider(compute_engine_metadata_client_)); zone_provider_ = std::unique_ptr<ZoneProvider>( new ComputeEngineZoneProvider(compute_engine_metadata_client_)); if (GetEnvVar(kReadaheadBufferSize, strings::safe_strtou64, &value)) { block_size_ = value; } if (GetEnvVar(kBlockSize, strings::safe_strtou64, &value)) { block_size_ = value * 1024 * 1024; } if (GetEnvVar(kMaxCacheSize, strings::safe_strtou64, &value)) { max_bytes = value * 1024 * 1024; } if (GetEnvVar(kMaxStaleness, strings::safe_strtou64, &value)) { max_staleness = value; } if (!make_default_cache) { max_bytes = 0; } VLOG(1) << "GCS cache max size = " << max_bytes << " ; " << "block size = " << block_size_ << " ; " << "max staleness = " << max_staleness; file_block_cache_ = MakeFileBlockCache(block_size_, max_bytes, max_staleness); uint64 stat_cache_max_age = kStatCacheDefaultMaxAge; size_t stat_cache_max_entries = kStatCacheDefaultMaxEntries; if (GetEnvVar(kStatCacheMaxAge, strings::safe_strtou64, &value)) { stat_cache_max_age = value; } if (GetEnvVar(kStatCacheMaxEntries, strings::safe_strtou64, &value)) { stat_cache_max_entries = value; } stat_cache_.reset(new ExpiringLRUCache<GcsFileStat>(stat_cache_max_age, stat_cache_max_entries)); uint64 matching_paths_cache_max_age = kMatchingPathsCacheDefaultMaxAge; size_t matching_paths_cache_max_entries = kMatchingPathsCacheDefaultMaxEntries; if (GetEnvVar(kMatchingPathsCacheMaxAge, strings::safe_strtou64, &value)) { matching_paths_cache_max_age = value; } if (GetEnvVar(kMatchingPathsCacheMaxEntries, strings::safe_strtou64, &value)) { matching_paths_cache_max_entries = value; } matching_paths_cache_.reset(new ExpiringLRUCache<std::vector<string>>( matching_paths_cache_max_age, matching_paths_cache_max_entries)); bucket_location_cache_.reset(new ExpiringLRUCache<string>( kCacheNeverExpire, kBucketLocationCacheMaxEntries)); int64_t resolve_frequency_secs; if (GetEnvVar(kResolveCacheSecs, strings::safe_strto64, &resolve_frequency_secs)) { dns_cache_.reset(new GcsDnsCache(resolve_frequency_secs)); VLOG(1) << "GCS DNS cache is enabled. " << kResolveCacheSecs << " = " << resolve_frequency_secs; } else { VLOG(1) << "GCS DNS cache is disabled, because " << kResolveCacheSecs << " = 0 (or is not set)"; } absl::string_view add_header_contents; if (GetEnvVar(kAdditionalRequestHeader, StringPieceIdentity, &add_header_contents)) { size_t split = add_header_contents.find(':', 0); if (split != absl::string_view::npos) { absl::string_view header_name = add_header_contents.substr(0, split); absl::string_view header_value = add_header_contents.substr(split + 1); if (!header_name.empty() && !header_value.empty()) { additional_header_.reset(new std::pair<const string, const string>( string(header_name), string(header_value))); VLOG(1) << "GCS additional header ENABLED. " << "Name: " << additional_header_->first << ", " << "Value: " << additional_header_->second; } else { LOG(ERROR) << "GCS additional header DISABLED. Invalid contents: " << add_header_contents; } } else { LOG(ERROR) << "GCS additional header DISABLED. Invalid contents: " << add_header_contents; } } else { VLOG(1) << "GCS additional header DISABLED. No environment variable set."; } uint32 timeout_value; if (GetEnvVar(kRequestConnectionTimeout, strings::safe_strtou32, &timeout_value)) { timeouts_.connect = timeout_value; } if (GetEnvVar(kRequestIdleTimeout, strings::safe_strtou32, &timeout_value)) { timeouts_.idle = timeout_value; } if (GetEnvVar(kMetadataRequestTimeout, strings::safe_strtou32, &timeout_value)) { timeouts_.metadata = timeout_value; } if (GetEnvVar(kReadRequestTimeout, strings::safe_strtou32, &timeout_value)) { timeouts_.read = timeout_value; } if (GetEnvVar(kWriteRequestTimeout, strings::safe_strtou32, &timeout_value)) { timeouts_.write = timeout_value; } int64_t token_value; if (GetEnvVar(kThrottleRate, strings::safe_strto64, &token_value)) { GcsThrottleConfig config; config.enabled = true; config.token_rate = token_value; if (GetEnvVar(kThrottleBucket, strings::safe_strto64, &token_value)) { config.bucket_size = token_value; } if (GetEnvVar(kTokensPerRequest, strings::safe_strto64, &token_value)) { config.tokens_per_request = token_value; } if (GetEnvVar(kInitialTokens, strings::safe_strto64, &token_value)) { config.initial_tokens = token_value; } throttle_.SetConfig(config); } GetEnvVar(kAllowedBucketLocations, SplitByCommaToLowercaseSet, &allowed_locations_); absl::string_view append_mode; GetEnvVar(kAppendMode, StringPieceIdentity, &append_mode); if (append_mode == kComposeAppend) { compose_append_ = true; } else { compose_append_ = false; } retry_config_ = GetGcsRetryConfig(); } GcsFileSystem::GcsFileSystem( std::unique_ptr<AuthProvider> auth_provider, std::unique_ptr<HttpRequest::Factory> http_request_factory, std::unique_ptr<ZoneProvider> zone_provider, size_t block_size, size_t max_bytes, uint64 max_staleness, uint64 stat_cache_max_age, size_t stat_cache_max_entries, uint64 matching_paths_cache_max_age, size_t matching_paths_cache_max_entries, RetryConfig retry_config, TimeoutConfig timeouts, const std::unordered_set<string>& allowed_locations, std::pair<const string, const string>* additional_header, bool compose_append) : timeouts_(timeouts), retry_config_(retry_config), auth_provider_(std::move(auth_provider)), http_request_factory_(std::move(http_request_factory)), zone_provider_(std::move(zone_provider)), block_size_(block_size), file_block_cache_( MakeFileBlockCache(block_size, max_bytes, max_staleness)), stat_cache_(new StatCache(stat_cache_max_age, stat_cache_max_entries)), matching_paths_cache_(new MatchingPathsCache( matching_paths_cache_max_age, matching_paths_cache_max_entries)), bucket_location_cache_(new BucketLocationCache( kCacheNeverExpire, kBucketLocationCacheMaxEntries)), allowed_locations_(allowed_locations), compose_append_(compose_append), additional_header_(additional_header) {} absl::Status GcsFileSystem::NewRandomAccessFile( const string& fname, TransactionToken* token, std::unique_ptr<RandomAccessFile>* result) { string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, false, &bucket, &object)); TF_RETURN_IF_ERROR(CheckBucketLocationConstraint(bucket)); if (cache_enabled_) { result->reset(new GcsRandomAccessFile(fname, [this, bucket, object]( const string& fname, uint64 offset, size_t n, absl::string_view* result, char* scratch) { tf_shared_lock l(block_cache_lock_); GcsFileStat stat; TF_RETURN_IF_ERROR(stat_cache_->LookupOrCompute( fname, &stat, [this, bucket, object](const string& fname, GcsFileStat* stat) { return UncachedStatForObject(fname, bucket, object, stat); })); if (!file_block_cache_->ValidateAndUpdateFileSignature( fname, stat.generation_number)) { VLOG(1) << "File signature has been changed. Refreshing the cache. Path: " << fname; } *result = absl::string_view(); size_t bytes_transferred; TF_RETURN_IF_ERROR(file_block_cache_->Read(fname, offset, n, scratch, &bytes_transferred)); *result = absl::string_view(scratch, bytes_transferred); if (bytes_transferred < n) { return errors::OutOfRange("EOF reached, ", result->size(), " bytes were read out of ", n, " bytes requested."); } return absl::OkStatus(); })); } else { result->reset(new BufferedGcsRandomAccessFile( fname, block_size_, [this, bucket, object](const string& fname, uint64 offset, size_t n, absl::string_view* result, char* scratch) { *result = absl::string_view(); size_t bytes_transferred; TF_RETURN_IF_ERROR( LoadBufferFromGCS(fname, offset, n, scratch, &bytes_transferred)); *result = absl::string_view(scratch, bytes_transferred); if (bytes_transferred < n) { return errors::OutOfRange("EOF reached, ", result->size(), " bytes were read out of ", n, " bytes requested."); } return absl::OkStatus(); })); } return absl::OkStatus(); } void GcsFileSystem::ResetFileBlockCache(size_t block_size_bytes, size_t max_bytes, uint64 max_staleness_secs) { mutex_lock l(block_cache_lock_); file_block_cache_ = MakeFileBlockCache(block_size_bytes, max_bytes, max_staleness_secs); if (stats_ != nullptr) { stats_->Configure(this, &throttle_, file_block_cache_.get()); } } std::unique_ptr<FileBlockCache> GcsFileSystem::MakeFileBlockCache( size_t block_size, size_t max_bytes, uint64 max_staleness) { std::unique_ptr<FileBlockCache> file_block_cache(new RamFileBlockCache( block_size, max_bytes, max_staleness, [this](const string& filename, size_t offset, size_t n, char* buffer, size_t* bytes_transferred) { return LoadBufferFromGCS(filename, offset, n, buffer, bytes_transferred); })); cache_enabled_ = file_block_cache->IsCacheEnabled(); return file_block_cache; } absl::Status GcsFileSystem::LoadBufferFromGCS(const string& fname, size_t offset, size_t n, char* buffer, size_t* bytes_transferred) { *bytes_transferred = 0; string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, false, &bucket, &object)); profiler::TraceMe activity( [fname]() { return absl::StrCat("LoadBufferFromGCS ", fname); }); std::unique_ptr<HttpRequest> request; TF_RETURN_WITH_CONTEXT_IF_ERROR(CreateHttpRequest(&request), "when reading gs: request->SetUri(strings::StrCat("https: request->EscapeString(object))); request->SetRange(offset, offset + n - 1); request->SetResultBufferDirect(buffer, n); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.read); if (stats_ != nullptr) { stats_->RecordBlockLoadRequest(fname, offset); } TF_RETURN_WITH_CONTEXT_IF_ERROR(request->Send(), " when reading gs: bucket, "/", object); size_t bytes_read = request->GetResultBufferDirectBytesTransferred(); *bytes_transferred = bytes_read; VLOG(1) << "Successful read of gs: << offset << " of size: " << bytes_read; activity.AppendMetadata([bytes_read]() { return profiler::TraceMeEncode({{"block_size", bytes_read}}); }); if (stats_ != nullptr) { stats_->RecordBlockRetrieved(fname, offset, bytes_read); } throttle_.RecordResponse(bytes_read); if (bytes_read < n) { GcsFileStat stat; if (stat_cache_->Lookup(fname, &stat)) { if (offset + bytes_read < stat.base.length) { return errors::Internal(strings::Printf( "File contents are inconsistent for file: %s @ %lu.", fname.c_str(), offset)); } VLOG(2) << "Successful integrity check for: gs: << object << " @ " << offset; } } return absl::OkStatus(); } absl::Status GcsFileSystem::CreateNewUploadSession( uint64 start_offset, const std::string& object_to_upload, const std::string& bucket, uint64 file_size, const std::string& gcs_path, UploadSessionHandle* session_handle) { std::vector<char> output_buffer; std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); std::string uri = strings::StrCat( kGcsUploadUriBase, "b/", bucket, "/o?uploadType=resumable&name=", request->EscapeString(object_to_upload)); request->SetUri(uri); request->AddHeader("X-Upload-Content-Length", absl::StrCat(file_size - start_offset)); request->SetPostEmptyBody(); request->SetResultBuffer(&output_buffer); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); TF_RETURN_WITH_CONTEXT_IF_ERROR(request->Send(), " when initiating an upload to ", gcs_path); if (session_handle != nullptr) { session_handle->resumable = true; session_handle->session_uri = request->GetResponseHeader("Location"); if (session_handle->session_uri.empty()) { return errors::Internal("Unexpected response from GCS when writing to ", gcs_path, ": 'Location' header not returned."); } } return absl::OkStatus(); } absl::Status GcsFileSystem::UploadToSession( const std::string& session_uri, uint64 start_offset, uint64 already_uploaded, const std::string& tmp_content_filename, uint64 file_size, const std::string& file_path) { std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); request->SetUri(session_uri); if (file_size > 0) { request->AddHeader("Content-Range", strings::StrCat("bytes ", already_uploaded, "-", file_size - start_offset - 1, "/", file_size - start_offset)); } request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.write); TF_RETURN_IF_ERROR(request->SetPutFromFile(tmp_content_filename, start_offset + already_uploaded)); TF_RETURN_WITH_CONTEXT_IF_ERROR(request->Send(), " when uploading ", file_path); return absl::OkStatus(); } absl::Status GcsFileSystem::RequestUploadSessionStatus( const string& session_uri, uint64 file_size, const std::string& gcs_path, bool* completed, uint64* uploaded) { CHECK(completed != nullptr) << "RequestUploadSessionStatus() called with out " "param 'completed' == nullptr."; CHECK(uploaded != nullptr) << "RequestUploadSessionStatus() called with out " "param 'uploaded' == nullptr."; std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); request->SetUri(session_uri); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); request->AddHeader("Content-Range", strings::StrCat("bytes */", file_size)); request->SetPutEmptyBody(); absl::Status status = request->Send(); if (status.ok()) { *completed = true; return absl::OkStatus(); } *completed = false; if (request->GetResponseCode() != HTTP_CODE_RESUME_INCOMPLETE) { TF_RETURN_WITH_CONTEXT_IF_ERROR(status, " when resuming upload ", gcs_path); } const std::string received_range = request->GetResponseHeader("Range"); if (received_range.empty()) { *uploaded = 0; } else { absl::string_view range_piece(received_range); absl::ConsumePrefix(&range_piece, "bytes="); auto return_error = [](const std::string& gcs_path, const std::string& error_message) { return errors::Internal("Unexpected response from GCS when writing ", gcs_path, ": ", error_message); }; std::vector<string> range_strs = str_util::Split(range_piece, '-'); if (range_strs.size() != 2) { return return_error(gcs_path, "Range header '" + received_range + "' could not be parsed."); } std::vector<int64_t> range_parts; for (const std::string& range_str : range_strs) { int64_t tmp; if (strings::safe_strto64(range_str, &tmp)) { range_parts.push_back(tmp); } else { return return_error(gcs_path, "Range header '" + received_range + "' could not be parsed."); } } if (range_parts[0] != 0) { return return_error(gcs_path, "The returned range '" + received_range + "' does not start at zero."); } *uploaded = range_parts[1] + 1; } return absl::OkStatus(); } absl::Status GcsFileSystem::ParseGcsPathForScheme(absl::string_view fname, string scheme, bool empty_object_ok, string* bucket, string* object) { absl::string_view parsed_scheme, bucketp, objectp; io::ParseURI(fname, &parsed_scheme, &bucketp, &objectp); if (parsed_scheme != scheme) { return errors::InvalidArgument("GCS path doesn't start with 'gs: fname); } *bucket = string(bucketp); if (bucket->empty() || *bucket == ".") { return errors::InvalidArgument("GCS path doesn't contain a bucket name: ", fname); } absl::ConsumePrefix(&objectp, "/"); *object = string(objectp); if (!empty_object_ok && object->empty()) { return errors::InvalidArgument("GCS path doesn't contain an object name: ", fname); } return absl::OkStatus(); } absl::Status GcsFileSystem::ParseGcsPath(absl::string_view fname, bool empty_object_ok, string* bucket, string* object) { return ParseGcsPathForScheme(fname, "gs", empty_object_ok, bucket, object); } void GcsFileSystem::ClearFileCaches(const string& fname) { tf_shared_lock l(block_cache_lock_); file_block_cache_->RemoveFile(fname); stat_cache_->Delete(fname); } absl::Status GcsFileSystem::NewWritableFile( const string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, false, &bucket, &object)); auto session_creator = [this](uint64 start_offset, const std::string& object_to_upload, const std::string& bucket, uint64 file_size, const std::string& gcs_path, UploadSessionHandle* session_handle) { return CreateNewUploadSession(start_offset, object_to_upload, bucket, file_size, gcs_path, session_handle); }; auto object_uploader = [this](const std::string& session_uri, uint64 start_offset, uint64 already_uploaded, const std::string& tmp_content_filename, uint64 file_size, const std::string& file_path) { return UploadToSession(session_uri, start_offset, already_uploaded, tmp_content_filename, file_size, file_path); }; auto status_poller = [this](const string& session_uri, uint64 file_size, const std::string& gcs_path, bool* completed, uint64* uploaded) { return RequestUploadSessionStatus(session_uri, file_size, gcs_path, completed, uploaded); }; auto generation_getter = [this](const string& fname, const string& bucket, const string& object, int64* generation) { GcsFileStat stat; TF_RETURN_IF_ERROR(RetryingUtils::CallWithRetries( [&fname, &bucket, &object, &stat, this]() { return UncachedStatForObject(fname, bucket, object, &stat); }, retry_config_)); *generation = stat.generation_number; return absl::OkStatus(); }; result->reset(new GcsWritableFile( bucket, object, this, &timeouts_, [this, fname]() { ClearFileCaches(fname); }, retry_config_, compose_append_, session_creator, object_uploader, status_poller, generation_getter)); return absl::OkStatus(); } absl::Status GcsFileSystem::NewAppendableFile( const string& fname, TransactionToken* token, std::unique_ptr<WritableFile>* result) { std::unique_ptr<RandomAccessFile> reader; TF_RETURN_IF_ERROR(NewRandomAccessFile(fname, token, &reader)); std::unique_ptr<char[]> buffer(new char[kReadAppendableFileBufferSize]); absl::Status status; uint64 offset = 0; absl::string_view read_chunk; string old_content_filename; TF_RETURN_IF_ERROR(GetTmpFilename(&old_content_filename)); std::ofstream old_content(old_content_filename, std::ofstream::binary); while (true) { status = reader->Read(offset, kReadAppendableFileBufferSize, &read_chunk, buffer.get()); if (status.ok()) { old_content << read_chunk; offset += kReadAppendableFileBufferSize; } else if (status.code() == absl::StatusCode::kNotFound) { break; } else if (status.code() == absl::StatusCode::kOutOfRange) { old_content << read_chunk; break; } else { return status; } } old_content.close(); auto session_creator = [this](uint64 start_offset, const std::string& object_to_upload, const std::string& bucket, uint64 file_size, const std::string& gcs_path, UploadSessionHandle* session_handle) { return CreateNewUploadSession(start_offset, object_to_upload, bucket, file_size, gcs_path, session_handle); }; auto object_uploader = [this](const std::string& session_uri, uint64 start_offset, uint64 already_uploaded, const std::string& tmp_content_filename, uint64 file_size, const std::string& file_path) { return UploadToSession(session_uri, start_offset, already_uploaded, tmp_content_filename, file_size, file_path); }; auto status_poller = [this](const string& session_uri, uint64 file_size, const std::string& gcs_path, bool* completed, uint64* uploaded) { return RequestUploadSessionStatus(session_uri, file_size, gcs_path, completed, uploaded); }; auto generation_getter = [this](const string& fname, const string& bucket, const string& object, int64* generation) { GcsFileStat stat; TF_RETURN_IF_ERROR(RetryingUtils::CallWithRetries( [&fname, &bucket, &object, &stat, this]() { return UncachedStatForObject(fname, bucket, object, &stat); }, retry_config_)); *generation = stat.generation_number; return absl::OkStatus(); }; string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, false, &bucket, &object)); result->reset(new GcsWritableFile( bucket, object, this, old_content_filename, &timeouts_, [this, fname]() { ClearFileCaches(fname); }, retry_config_, compose_append_, session_creator, object_uploader, status_poller, generation_getter)); return absl::OkStatus(); } absl::Status GcsFileSystem::NewReadOnlyMemoryRegionFromFile( const string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) { uint64 size; TF_RETURN_IF_ERROR(GetFileSize(fname, token, &size)); std::unique_ptr<char[]> data(new char[size]); std::unique_ptr<RandomAccessFile> file; TF_RETURN_IF_ERROR(NewRandomAccessFile(fname, token, &file)); absl::string_view piece; TF_RETURN_IF_ERROR(file->Read(0, size, &piece, data.get())); result->reset(new GcsReadOnlyMemoryRegion(std::move(data), size)); return absl::OkStatus(); } absl::Status GcsFileSystem::FileExists(const string& fname, TransactionToken* token) { string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, true, &bucket, &object)); if (object.empty()) { bool result; TF_RETURN_IF_ERROR(BucketExists(bucket, &result)); if (result) { return absl::OkStatus(); } else { return absl::NotFoundError( absl::StrCat("The specified bucket ", fname, " was not found.")); } } GcsFileStat stat; const absl::Status status = StatForObject(fname, bucket, object, &stat); if (!absl::IsNotFound(status)) { return status; } bool result; TF_RETURN_IF_ERROR(FolderExists(fname, &result)); if (result) { return absl::OkStatus(); } return errors::NotFound("The specified path ", fname, " was not found."); } absl::Status GcsFileSystem::ObjectExists(const string& fname, const string& bucket, const string& object, bool* result) { GcsFileStat stat; const absl::Status status = StatForObject(fname, bucket, object, &stat); switch (static_cast<int>(status.code())) { case static_cast<int>(error::Code::OK): *result = !stat.base.is_directory; return absl::OkStatus(); case static_cast<int>(error::Code::NOT_FOUND): *result = false; return absl::OkStatus(); default: return status; } } absl::Status GcsFileSystem::UncachedStatForObject(const string& fname, const string& bucket, const string& object, GcsFileStat* stat) { std::vector<char> output_buffer; std::unique_ptr<HttpRequest> request; TF_RETURN_WITH_CONTEXT_IF_ERROR(CreateHttpRequest(&request), " when reading metadata of gs: "/", object); request->SetUri(strings::StrCat(kGcsUriBase, "b/", bucket, "/o/", request->EscapeString(object), "?fields=size%2Cgeneration%2Cupdated")); request->SetResultBuffer(&output_buffer); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); if (stats_ != nullptr) { stats_->RecordStatObjectRequest(); } TF_RETURN_WITH_CONTEXT_IF_ERROR( request->Send(), " when reading metadata of gs: Json::Value root; TF_RETURN_IF_ERROR(ParseJson(output_buffer, &root)); TF_RETURN_IF_ERROR(GetInt64Value(root, "size", &stat->base.length)); TF_RETURN_IF_ERROR( GetInt64Value(root, "generation", &stat->generation_number)); string updated; TF_RETURN_IF_ERROR(GetStringValue(root, "updated", &updated)); TF_RETURN_IF_ERROR(ParseRfc3339Time(updated, &(stat->base.mtime_nsec))); VLOG(1) << "Stat of: gs: << " length: " << stat->base.length << " generation: " << stat->generation_number << "; mtime_nsec: " << stat->base.mtime_nsec << "; updated: " << updated; if (absl::EndsWith(fname, "/")) { stat->base.is_directory = true; } else { stat->base.is_directory = false; } return absl::OkStatus(); } absl::Status GcsFileSystem::StatForObject(const string& fname, const string& bucket, const string& object, GcsFileStat* stat) { if (object.empty()) { return errors::InvalidArgument(strings::Printf( "'object' must be a non-empty string. (File: %s)", fname.c_str())); } TF_RETURN_IF_ERROR(stat_cache_->LookupOrCompute( fname, stat, [this, &bucket, &object](const string& fname, GcsFileStat* stat) { return UncachedStatForObject(fname, bucket, object, stat); })); return absl::OkStatus(); } absl::Status GcsFileSystem::BucketExists(const string& bucket, bool* result) { const absl::Status status = GetBucketMetadata(bucket, nullptr); switch (static_cast<absl::StatusCode>(status.code())) { case absl::StatusCode::kOk: *result = true; return absl::OkStatus(); case absl::StatusCode::kNotFound: *result = false; return absl::OkStatus(); default: return status; } } absl::Status GcsFileSystem::CheckBucketLocationConstraint( const string& bucket) { if (allowed_locations_.empty()) { return absl::OkStatus(); } if (allowed_locations_.erase(kDetectZoneSentinelValue) == 1) { string zone; TF_RETURN_IF_ERROR(zone_provider_->GetZone(&zone)); allowed_locations_.insert(ZoneToRegion(&zone)); } string location; TF_RETURN_IF_ERROR(GetBucketLocation(bucket, &location)); if (allowed_locations_.find(location) != allowed_locations_.end()) { return absl::OkStatus(); } return errors::FailedPrecondition(strings::Printf( "Bucket '%s' is in '%s' location, allowed locations are: (%s).", bucket.c_str(), location.c_str(), absl::StrJoin(allowed_locations_, ", ").c_str())); } absl::Status GcsFileSystem::GetBucketLocation(const string& bucket, string* location) { auto compute_func = [this](const string& bucket, string* location) { std::vector<char> result_buffer; absl::Status status = GetBucketMetadata(bucket, &result_buffer); Json::Value result; TF_RETURN_IF_ERROR(ParseJson(result_buffer, &result)); string bucket_location; TF_RETURN_IF_ERROR( GetStringValue(result, kBucketMetadataLocationKey, &bucket_location)); *location = absl::AsciiStrToLower(bucket_location); return absl::OkStatus(); }; TF_RETURN_IF_ERROR( bucket_location_cache_->LookupOrCompute(bucket, location, compute_func)); return absl::OkStatus(); } absl::Status GcsFileSystem::GetBucketMetadata( const string& bucket, std::vector<char>* result_buffer) { std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); request->SetUri(strings::StrCat(kGcsUriBase, "b/", bucket)); if (result_buffer != nullptr) { request->SetResultBuffer(result_buffer); } request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); return request->Send(); } absl::Status GcsFileSystem::FolderExists(const string& dirname, bool* result) { StatCache::ComputeFunc compute_func = [this](const string& dirname, GcsFileStat* stat) { std::vector<string> children; TF_RETURN_IF_ERROR( GetChildrenBounded(dirname, 1, &children, true , true )); if (!children.empty()) { stat->base = DIRECTORY_STAT; return absl::OkStatus(); } else { return errors::InvalidArgument("Not a directory!"); } }; GcsFileStat stat; absl::Status s = stat_cache_->LookupOrCompute(MaybeAppendSlash(dirname), &stat, compute_func); if (s.ok()) { *result = stat.base.is_directory; return absl::OkStatus(); } if (absl::IsInvalidArgument(s)) { *result = false; return absl::OkStatus(); } return s; } absl::Status GcsFileSystem::GetChildren(const string& dirname, TransactionToken* token, std::vector<string>* result) { return GetChildrenBounded(dirname, UINT64_MAX, result, false , false ); } absl::Status GcsFileSystem::GetMatchingPaths(const string& pattern, TransactionToken* token, std::vector<string>* results) { MatchingPathsCache::ComputeFunc compute_func = [this](const string& pattern, std::vector<string>* results) { results->clear(); const string& fixed_prefix = pattern.substr(0, pattern.find_first_of("*?[\\")); const string dir(this->Dirname(fixed_prefix)); if (dir.empty()) { return errors::InvalidArgument( "A GCS pattern doesn't have a bucket name: ", pattern); } std::vector<string> all_files; TF_RETURN_IF_ERROR(GetChildrenBounded( dir, UINT64_MAX, &all_files, true , false )); const auto& files_and_folders = AddAllSubpaths(all_files); const absl::string_view dir_no_slash = absl::StripSuffix(dir, "/"); for (const auto& path : files_and_folders) { const string full_path = strings::StrCat(dir_no_slash, "/", path); if (this->Match(full_path, pattern)) { results->push_back(full_path); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR( matching_paths_cache_->LookupOrCompute(pattern, results, compute_func)); return absl::OkStatus(); } absl::Status GcsFileSystem::GetChildrenBounded( const string& dirname, uint64 max_results, std::vector<string>* result, bool recursive, bool include_self_directory_marker) { if (!result) { return errors::InvalidArgument("'result' cannot be null"); } string bucket, object_prefix; TF_RETURN_IF_ERROR( ParseGcsPath(MaybeAppendSlash(dirname), true, &bucket, &object_prefix)); string nextPageToken; uint64 retrieved_results = 0; while (true) { std::vector<char> output_buffer; std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); auto uri = strings::StrCat(kGcsUriBase, "b/", bucket, "/o"); if (recursive) { uri = strings::StrCat(uri, "?fields=items%2Fname%2CnextPageToken"); } else { uri = strings::StrCat(uri, "?fields=items%2Fname%2Cprefixes%2CnextPageToken"); uri = strings::StrCat(uri, "&delimiter=%2F"); } if (!object_prefix.empty()) { uri = strings::StrCat(uri, "&prefix=", request->EscapeString(object_prefix)); } if (!nextPageToken.empty()) { uri = strings::StrCat( uri, "&pageToken=", request->EscapeString(nextPageToken)); } if (max_results - retrieved_results < kGetChildrenDefaultPageSize) { uri = strings::StrCat(uri, "&maxResults=", max_results - retrieved_results); } request->SetUri(uri); request->SetResultBuffer(&output_buffer); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); TF_RETURN_WITH_CONTEXT_IF_ERROR(request->Send(), " when reading ", dirname); Json::Value root; TF_RETURN_IF_ERROR(ParseJson(output_buffer, &root)); const auto items = root.get("items", Json::Value::null); if (!items.isNull()) { if (!items.isArray()) { return errors::Internal( "Expected an array 'items' in the GCS response."); } for (size_t i = 0; i < items.size(); i++) { const auto item = items.get(i, Json::Value::null); if (!item.isObject()) { return errors::Internal( "Unexpected JSON format: 'items' should be a list of objects."); } string name; TF_RETURN_IF_ERROR(GetStringValue(item, "name", &name)); absl::string_view relative_path(name); if (!absl::ConsumePrefix(&relative_path, object_prefix)) { return errors::Internal(strings::StrCat( "Unexpected response: the returned file name ", name, " doesn't match the prefix ", object_prefix)); } if (!relative_path.empty() || include_self_directory_marker) { result->emplace_back(relative_path); } if (++retrieved_results >= max_results) { return absl::OkStatus(); } } } const auto prefixes = root.get("prefixes", Json::Value::null); if (!prefixes.isNull()) { if (!prefixes.isArray()) { return errors::Internal( "'prefixes' was expected to be an array in the GCS response."); } for (size_t i = 0; i < prefixes.size(); i++) { const auto prefix = prefixes.get(i, Json::Value::null); if (prefix.isNull() || !prefix.isString()) { return errors::Internal( "'prefixes' was expected to be an array of strings in the GCS " "response."); } const string& prefix_str = prefix.asString(); absl::string_view relative_path(prefix_str); if (!absl::ConsumePrefix(&relative_path, object_prefix)) { return errors::Internal( "Unexpected response: the returned folder name ", prefix_str, " doesn't match the prefix ", object_prefix); } result->emplace_back(relative_path); if (++retrieved_results >= max_results) { return absl::OkStatus(); } } } const auto token = root.get("nextPageToken", Json::Value::null); if (token.isNull()) { return absl::OkStatus(); } if (!token.isString()) { return errors::Internal( "Unexpected response: nextPageToken is not a string"); } nextPageToken = token.asString(); } } absl::Status GcsFileSystem::Stat(const string& fname, TransactionToken* token, FileStatistics* stat) { if (!stat) { return errors::Internal("'stat' cannot be nullptr."); } string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, true, &bucket, &object)); if (object.empty()) { bool is_bucket; TF_RETURN_IF_ERROR(BucketExists(bucket, &is_bucket)); if (is_bucket) { *stat = DIRECTORY_STAT; return absl::OkStatus(); } return errors::NotFound("The specified bucket ", fname, " was not found."); } GcsFileStat gcs_stat; const absl::Status status = StatForObject(fname, bucket, object, &gcs_stat); if (status.ok()) { *stat = gcs_stat.base; return absl::OkStatus(); } if (!absl::IsNotFound(status)) { return status; } bool is_folder; TF_RETURN_IF_ERROR(FolderExists(fname, &is_folder)); if (is_folder) { *stat = DIRECTORY_STAT; return absl::OkStatus(); } return errors::NotFound("The specified path ", fname, " was not found."); } absl::Status GcsFileSystem::DeleteFile(const string& fname, TransactionToken* token) { string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, false, &bucket, &object)); std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); request->SetUri(strings::StrCat(kGcsUriBase, "b/", bucket, "/o/", request->EscapeString(object))); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); request->SetDeleteRequest(); TF_RETURN_WITH_CONTEXT_IF_ERROR(request->Send(), " when deleting ", fname); ClearFileCaches(fname); return absl::OkStatus(); } absl::Status GcsFileSystem::CreateDir(const string& dirname, TransactionToken* token) { string dirname_with_slash = MaybeAppendSlash(dirname); VLOG(3) << "CreateDir: creating directory with dirname: " << dirname << " and dirname_with_slash: " << dirname_with_slash; string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(dirname_with_slash, true, &bucket, &object)); if (object.empty()) { bool is_bucket; TF_RETURN_IF_ERROR(BucketExists(bucket, &is_bucket)); return is_bucket ? absl::OkStatus() : errors::NotFound("The specified bucket ", dirname_with_slash, " was not found."); } if (FileExists(dirname_with_slash, token).ok()) { VLOG(3) << "CreateDir: directory already exists, not uploading " << dirname; return errors::AlreadyExists(dirname); } std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); request->SetUri(strings::StrCat( kGcsUploadUriBase, "b/", bucket, "/o?uploadType=media&name=", request->EscapeString(object), "&ifGenerationMatch=0")); request->SetPostEmptyBody(); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); const absl::Status& status = request->Send(); if (status.ok()) { VLOG(3) << "CreateDir: finished uploading directory " << dirname; return absl::OkStatus(); } if (request->GetResponseCode() != HTTP_CODE_PRECONDITION_FAILED) { TF_RETURN_WITH_CONTEXT_IF_ERROR(status, " when uploading ", dirname_with_slash); } VLOG(3) << "Ignoring directory already exists on object " << dirname_with_slash; return errors::AlreadyExists(dirname); } absl::Status GcsFileSystem::DeleteDir(const string& dirname, TransactionToken* token) { std::vector<string> children; TF_RETURN_IF_ERROR( GetChildrenBounded(dirname, 2, &children, true , true )); if (children.size() > 1 || (children.size() == 1 && !children[0].empty())) { return errors::FailedPrecondition("Cannot delete a non-empty directory."); } if (children.size() == 1 && children[0].empty()) { return DeleteFile(MaybeAppendSlash(dirname), token); } return absl::OkStatus(); } absl::Status GcsFileSystem::GetFileSize(const string& fname, TransactionToken* token, uint64* file_size) { if (!file_size) { return errors::Internal("'file_size' cannot be nullptr."); } string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, false, &bucket, &object)); FileStatistics stat; TF_RETURN_IF_ERROR(Stat(fname, token, &stat)); *file_size = stat.length; return absl::OkStatus(); } absl::Status GcsFileSystem::RenameFile(const string& src, const string& target, TransactionToken* token) { if (!IsDirectory(src, token).ok()) { return RenameObject(src, target); } std::vector<string> children; TF_RETURN_IF_ERROR( GetChildrenBounded(src, UINT64_MAX, &children, true , true )); for (const string& subpath : children) { TF_RETURN_IF_ERROR( RenameObject(JoinGcsPath(src, subpath), JoinGcsPath(target, subpath))); } return absl::OkStatus(); } absl::Status GcsFileSystem::RenameObject(const string& src, const string& target) { VLOG(3) << "RenameObject: started gs: string src_bucket, src_object, target_bucket, target_object; TF_RETURN_IF_ERROR(ParseGcsPath(src, false, &src_bucket, &src_object)); TF_RETURN_IF_ERROR( ParseGcsPath(target, false, &target_bucket, &target_object)); std::unique_ptr<HttpRequest> request; TF_RETURN_IF_ERROR(CreateHttpRequest(&request)); request->SetUri(strings::StrCat(kGcsUriBase, "b/", src_bucket, "/o/", request->EscapeString(src_object), "/rewriteTo/b/", target_bucket, "/o/", request->EscapeString(target_object))); request->SetPostEmptyBody(); request->SetTimeouts(timeouts_.connect, timeouts_.idle, timeouts_.metadata); std::vector<char> output_buffer; request->SetResultBuffer(&output_buffer); TF_RETURN_WITH_CONTEXT_IF_ERROR(request->Send(), " when renaming ", src, " to ", target); ClearFileCaches(target); Json::Value root; TF_RETURN_IF_ERROR(ParseJson(output_buffer, &root)); bool done; TF_RETURN_IF_ERROR(GetBoolValue(root, "done", &done)); if (!done) { return errors::Unimplemented( "Couldn't rename ", src, " to ", target, ": moving large files between buckets with different " "locations or storage classes is not supported."); } VLOG(3) << "RenameObject: finished from: gs: return RetryingUtils::DeleteWithRetries( [this, &src]() { return DeleteFile(src, nullptr); }, retry_config_); } absl::Status GcsFileSystem::IsDirectory(const string& fname, TransactionToken* token) { string bucket, object; TF_RETURN_IF_ERROR(ParseGcsPath(fname, true, &bucket, &object)); if (object.empty()) { bool is_bucket; TF_RETURN_IF_ERROR(BucketExists(bucket, &is_bucket)); if (is_bucket) { return absl::OkStatus(); } return errors::NotFound("The specified bucket gs: " was not found."); } bool is_folder; TF_RETURN_IF_ERROR(FolderExists(fname, &is_folder)); if (is_folder) { return absl::OkStatus(); } bool is_object; TF_RETURN_IF_ERROR(ObjectExists(fname, bucket, object, &is_object)); if (is_object) { return errors::FailedPrecondition("The specified path ", fname, " is not a directory."); } return errors::NotFound("The specified path ", fname, " was not found."); } absl::Status GcsFileSystem::DeleteRecursively(const string& dirname, TransactionToken* token, int64_t* undeleted_files, int64_t* undeleted_dirs) { if (!undeleted_files || !undeleted_dirs) { return errors::Internal( "'undeleted_files' and 'undeleted_dirs' cannot be nullptr."); } *undeleted_files = 0; *undeleted_dirs = 0; if (!IsDirectory(dirname, token).ok()) { *undeleted_dirs = 1; return absl::Status( absl::StatusCode::kNotFound, strings::StrCat(dirname, " doesn't exist or not a directory.")); } std::vector<string> all_objects; TF_RETURN_IF_ERROR(GetChildrenBounded( dirname, UINT64_MAX, &all_objects, true , true )); for (const string& object : all_objects) { const string& full_path = JoinGcsPath(dirname, object); const auto& delete_file_status = RetryingUtils::DeleteWithRetries( [this, &full_path, token]() { return DeleteFile(full_path, token); }, retry_config_); if (!delete_file_status.ok()) { if (IsDirectory(full_path, token).ok()) { (*undeleted_dirs)++; } else { (*undeleted_files)++; } } } return absl::OkStatus(); } void GcsFileSystem::FlushCaches(TransactionToken* token) { tf_shared_lock l(block_cache_lock_); file_block_cache_->Flush(); stat_cache_->Clear(); matching_paths_cache_->Clear(); bucket_location_cache_->Clear(); } void GcsFileSystem::SetStats(GcsStatsInterface* stats) { CHECK(stats_ == nullptr) << "SetStats() has already been called."; CHECK(stats != nullptr); mutex_lock l(block_cache_lock_); stats_ = stats; stats_->Configure(this, &throttle_, file_block_cache_.get()); } void GcsFileSystem::SetCacheStats(FileBlockCacheStatsInterface* cache_stats) { tf_shared_lock l(block_cache_lock_); if (file_block_cache_ == nullptr) { LOG(ERROR) << "Tried to set cache stats of non-initialized file block " "cache object. This may result in not exporting the intended " "monitoring data"; return; } file_block_cache_->SetStats(cache_stats); } void GcsFileSystem::SetAuthProvider( std::unique_ptr<AuthProvider> auth_provider) { mutex_lock l(mu_); auth_provider_ = std::move(auth_provider); } absl::Status GcsFileSystem::CreateHttpRequest( std::unique_ptr<HttpRequest>* request) { std::unique_ptr<HttpRequest> new_request{http_request_factory_->Create()}; if (dns_cache_) { dns_cache_->AnnotateRequest(new_request.get()); } string auth_token; { tf_shared_lock l(mu_); TF_RETURN_IF_ERROR( AuthProvider::GetToken(auth_provider_.get(), &auth_token)); } new_request->AddAuthBearerHeader(auth_token); if (additional_header_) { new_request->AddHeader(additional_header_->first, additional_header_->second); } if (stats_ != nullptr) { new_request->SetRequestStats(stats_->HttpStats()); } if (!throttle_.AdmitRequest()) { return errors::Unavailable("Request throttled"); } *request = std::move(new_request); return absl::OkStatus(); } RetryingGcsFileSystem::RetryingGcsFileSystem() : RetryingFileSystem(std::make_unique<GcsFileSystem>(), RetryConfig(GetGcsRetryConfig())) {} } REGISTER_LEGACY_FILE_SYSTEM("gs", ::tsl::RetryingGcsFileSystem);
#include "tsl/platform/cloud/gcs_file_system.h" #include <fstream> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/errors.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" #ifdef PLATFORM_WINDOWS #undef DeleteFile #endif namespace tsl { namespace { static GcsFileSystem::TimeoutConfig kTestTimeoutConfig(5, 1, 10, 20, 30); static RetryConfig kTestRetryConfig(0 ); static std::unordered_set<string>* kAllowedLocationsDefault = new std::unordered_set<string>(); static std::unordered_set<string>* kAllowedLocationsAuto = new std::unordered_set<string>({"auto"}); class FakeAuthProvider : public AuthProvider { public: absl::Status GetToken(string* token) override { *token = "fake_token"; return absl::OkStatus(); } }; class FakeZoneProvider : public ZoneProvider { public: absl::Status GetZone(string* zone) override { *zone = "us-east1-b"; return absl::OkStatus(); } }; TEST(GcsFileSystemTest, NewRandomAccessFile_NoBlockCache) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-5\n" "Timeouts: 5 1 20\n", "012345"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 6-11\n" "Timeouts: 5 1 20\n", "6789")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[6]; absl::string_view result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("012345", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("6789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered) { std::vector<HttpRequest*> requests({ new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "0123456789"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 10-19\n" "Timeouts: 5 1 20\n", ""), }); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[6]; absl::string_view result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("012345", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("6789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_Errors) { std::vector<HttpRequest*> requests({ new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "Server Not", errors::Unavailable("important HTTP error 308"), nullptr, {}, 308), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 6-15\n" "Timeouts: 5 1 20\n", "123"), }); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[6]; absl::string_view result; EXPECT_TRUE( errors::IsUnavailable(file->Read(0, sizeof(scratch), &result, scratch))); EXPECT_EQ("", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("123", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_ReadAtEOF) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "0123456789"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 10-19\n" "Timeouts: 5 1 20\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[10]; absl::string_view result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("0123456789", result); EXPECT_TRUE(errors::IsOutOfRange( file->Read(sizeof(scratch), sizeof(scratch), &result, scratch))); EXPECT_EQ("", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_CachedOutOfRange) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "012345678")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[5]; absl::string_view result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("01234", result); TF_EXPECT_OK(file->Read(4, sizeof(scratch), &result, scratch)); EXPECT_EQ("45678", result); EXPECT_TRUE( errors::IsOutOfRange(file->Read(5, sizeof(scratch), &result, scratch))); EXPECT_EQ("5678", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_CachedNotSequential) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 1-10\n" "Timeouts: 5 1 20\n", "12345678"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "012345678")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[5]; absl::string_view result; TF_EXPECT_OK(file->Read(1, sizeof(scratch), &result, scratch)); EXPECT_EQ("12345", result); TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("01234", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_Growing) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "012345678"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 9-18\n" "Timeouts: 5 1 20\n", "9")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[10]; absl::string_view result; EXPECT_TRUE( errors::IsOutOfRange(file->Read(0, sizeof(scratch), &result, scratch))); EXPECT_EQ("012345678", result); TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("0123456789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_Buffered_ReadBackwards) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 5-14\n" "Timeouts: 5 1 20\n", "56789"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-9\n" "Timeouts: 5 1 20\n", "0123456789")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 10 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: absl::string_view filename; TF_EXPECT_OK(file->Name(&filename)); EXPECT_EQ(filename, "gs: char scratch[10]; absl::string_view result; EXPECT_TRUE( errors::IsOutOfRange(file->Read(5, sizeof(scratch), &result, scratch))); EXPECT_EQ("56789", result); TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("0123456789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithLocationConstraintInSameLocation) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsAuto, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: } TEST(GcsFileSystemTest, NewRandomAccessFile_WithLocationConstraintCaching) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"US-EAST1" })")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsAuto, nullptr , false ); std::unique_ptr<RandomAccessFile> file; string bucket = "gs: string another_bucket = "gs: TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(another_bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); TF_EXPECT_OK(fs.NewRandomAccessFile(another_bucket, nullptr, &file)); fs.FlushCaches(nullptr); TF_EXPECT_OK(fs.NewRandomAccessFile(bucket, nullptr, &file)); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithLocationConstraintInDifferentLocation) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", R"( { "location":"BARFOO" })")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsAuto, nullptr , false ); std::unique_ptr<RandomAccessFile> file; EXPECT_EQ( errors::FailedPrecondition( "Bucket 'bucket' is in 'barfoo' location, allowed locations " "are: (us-east1)."), fs.NewRandomAccessFile("gs: } TEST(GcsFileSystemTest, NewRandomAccessFile_NoBlockCache_DifferentN) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-2\n" "Timeouts: 5 1 20\n", "012"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 3-12\n" "Timeouts: 5 1 20\n", "3456789")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: char small_scratch[3]; absl::string_view result; TF_EXPECT_OK(file->Read(0, sizeof(small_scratch), &result, small_scratch)); EXPECT_EQ("012", result); char large_scratch[10]; EXPECT_TRUE(errors::IsOutOfRange(file->Read( sizeof(small_scratch), sizeof(large_scratch), &result, large_scratch))); EXPECT_EQ("3456789", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"15\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "012345678"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 9-17\n" "Timeouts: 5 1 20\n", "9abcde"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 18-26\n" "Timeouts: 5 1 20\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 9 , 18 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; absl::string_view result; { std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK(fs.NewRandomAccessFile("gs: nullptr, &file)); scratch[5] = 'x'; TF_EXPECT_OK(file->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); EXPECT_EQ(scratch[5], 'x'); TF_EXPECT_OK(file->Read(4, 4, &result, scratch)); EXPECT_EQ("4567", result); TF_EXPECT_OK(file->Read(6, 5, &result, scratch)); EXPECT_EQ("6789a", result); EXPECT_TRUE(errors::IsOutOfRange(file->Read(6, 10, &result, scratch))); EXPECT_EQ("6789abcde", result); EXPECT_TRUE(errors::IsOutOfRange(file->Read(20, 10, &result, scratch))); EXPECT_TRUE(result.empty()); TF_EXPECT_OK(file->Read(0, 4, &result, scratch)); } EXPECT_EQ("0123", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache_Flush) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"15\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "012345678"), new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"15\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "012345678")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 9 , 18 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; absl::string_view result; std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: scratch[5] = 'x'; TF_EXPECT_OK(file->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); EXPECT_EQ(scratch[5], 'x'); fs.FlushCaches(nullptr); TF_EXPECT_OK(file->Read(4, 4, &result, scratch)); EXPECT_EQ("4567", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache_MaxStaleness) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "object?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"16\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Range: 0-7\n" "Timeouts: 5 1 20\n", "01234567"), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Range: 8-15\n" "Timeouts: 5 1 20\n", "89abcdef")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 8 , 16 , 3600 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; absl::string_view result; for (int i = 0; i < 10; i++) { std::unique_ptr<RandomAccessFile> file1; std::unique_ptr<RandomAccessFile> file2; TF_EXPECT_OK(fs.NewRandomAccessFile("gs: TF_EXPECT_OK(fs.NewRandomAccessFile("gs: TF_EXPECT_OK(file1->Read(0, 8, &result, scratch)); EXPECT_EQ("01234567", result); TF_EXPECT_OK(file2->Read(0, 8, &result, scratch)); EXPECT_EQ("01234567", result); TF_EXPECT_OK(file2->Read(8, 8, &result, scratch)); EXPECT_EQ("89abcdef", result); TF_EXPECT_OK(file1->Read(8, 8, &result, scratch)); EXPECT_EQ("89abcdef", result); } } TEST(GcsFileSystemTest, NewRandomAccessFile_WithBlockCache_FileSignatureChanges) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"5\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "01234"), new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"5\",\"generation\": \"2\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-8\n" "Timeouts: 5 1 20\n", "43210")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 9 , 18 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: char scratch[5]; absl::string_view result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("01234", result); TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("43210", result); } TEST(GcsFileSystemTest, NewRandomAccessFile_NoObjectName) { std::vector<HttpRequest*> requests; GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> file; EXPECT_TRUE(errors::IsInvalidArgument( fs.NewRandomAccessFile("gs: } TEST(GcsFileSystemTest, NewRandomAccessFile_InconsistentRead) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "random_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"6\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-5\n" "Timeouts: 5 1 20\n", "012")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 1e3 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat; TF_ASSERT_OK(fs.Stat("gs: std::unique_ptr<RandomAccessFile> file; TF_ASSERT_OK( fs.NewRandomAccessFile("gs: char scratch[6]; absl::string_view result; EXPECT_TRUE( errors::IsInternal(file->Read(0, sizeof(scratch), &result, scratch))); } TEST(GcsFileSystemTest, NewWritableFile) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Fwriteable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"16\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-7\n" "Timeouts: 5 1 20\n", "01234567"), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fwriteable\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", ""), new FakeHttpRequest( "Uri: https: "path%2Fwriteable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"33\",\"generation\": \"2\"," "\"updated\": \"2016-04-29T23:15:34.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-7\n" "Timeouts: 5 1 20\n", "01234567")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 8 , 8 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> rfile; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: char scratch[100]; absl::string_view result; TF_EXPECT_OK(rfile->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); std::unique_ptr<WritableFile> wfile; TF_EXPECT_OK( fs.NewWritableFile("gs: TF_EXPECT_OK(wfile->Append("content1,")); int64_t pos; TF_EXPECT_OK(wfile->Tell(&pos)); EXPECT_EQ(9, pos); TF_EXPECT_OK(wfile->Append("content2")); TF_EXPECT_OK(wfile->Flush()); TF_EXPECT_OK(rfile->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); TF_EXPECT_OK(wfile->Flush()); TF_EXPECT_OK(wfile->Sync()); TF_EXPECT_OK(wfile->Close()); } TEST(GcsFileSystemTest, NewWritableFile_ResumeUploadSucceeds) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fwriteable.txt\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Header Content-Range: bytes */17\n" "Put: yes\n", "", errors::Unavailable("308"), nullptr, {{"Range", "0-10"}}, 308), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 11-16/17\n" "Timeouts: 5 1 30\n" "Put body: ntent2\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Header Content-Range: bytes */17\n" "Put: yes\n", "", errors::Unavailable("308"), nullptr, {{"Range", "bytes=0-12"}}, 308), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 13-16/17\n" "Timeouts: 5 1 30\n" "Put body: ent2\n", "", errors::Unavailable("308"), 308), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Header Content-Range: bytes */17\n" "Put: yes\n", "", errors::Unavailable("308"), nullptr, {{"Range", "bytes=0-14"}}, 308), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 15-16/17\n" "Timeouts: 5 1 30\n" "Put body: t2\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<WritableFile> file; TF_EXPECT_OK( fs.NewWritableFile("gs: TF_EXPECT_OK(file->Append("content1,")); TF_EXPECT_OK(file->Append("content2")); TF_EXPECT_OK(file->Close()); } TEST(GcsFileSystemTest, NewWritableFile_ResumeUploadSucceedsOnGetStatus) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Fwriteable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"16\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-7\n" "Timeouts: 5 1 20\n", "01234567"), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fwriteable\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Header Content-Range: bytes */17\n" "Put: yes\n", "", absl::OkStatus(), nullptr, {}, 201), new FakeHttpRequest( "Uri: https: "path%2Fwriteable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"33\",\"generation\": \"2\"," "\"updated\": \"2016-04-29T23:19:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-7\n" "Timeouts: 5 1 20\n", "01234567")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 8 , 8 , 3600 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<RandomAccessFile> rfile; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: char scratch[100]; absl::string_view result; TF_EXPECT_OK(rfile->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); std::unique_ptr<WritableFile> wfile; TF_EXPECT_OK( fs.NewWritableFile("gs: TF_EXPECT_OK(wfile->Append("content1,")); TF_EXPECT_OK(wfile->Append("content2")); TF_EXPECT_OK(rfile->Read(4, 4, &result, scratch)); EXPECT_EQ("4567", result); TF_EXPECT_OK(wfile->Close()); TF_EXPECT_OK(rfile->Read(0, 8, &result, scratch)); EXPECT_EQ("01234567", result); } TEST(GcsFileSystemTest, NewWritableFile_ResumeUploadAllAttemptsFail) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fwriteable.txt\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", "", errors::Unavailable("503"), 503)}); for (int i = 0; i < 10; i++) { requests.emplace_back( new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Header Content-Range: bytes */17\n" "Put: yes\n", "", errors::Unavailable("important HTTP error 308"), nullptr, {{"Range", "0-10"}}, 308)); requests.emplace_back(new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 11-16/17\n" "Timeouts: 5 1 30\n" "Put body: ntent2\n", "", errors::Unavailable("important HTTP error 503"), 503)); } requests.emplace_back(new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fwriteable.txt\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: requests.emplace_back( new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", "")); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , RetryConfig(2 ), kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<WritableFile> file; TF_EXPECT_OK( fs.NewWritableFile("gs: TF_EXPECT_OK(file->Append("content1,")); TF_EXPECT_OK(file->Append("content2")); const auto& status = file->Close(); EXPECT_TRUE(errors::IsAborted(status)); EXPECT_TRUE( absl::StrContains(status.message(), "All 10 retry attempts failed. The last failure: " "important HTTP error 503")) << status; } TEST(GcsFileSystemTest, NewWritableFile_UploadReturns410) { std::vector<string> results; TF_EXPECT_OK( Env::Default()->GetMatchingPaths("/tmp/tmp_file_tensorflow*", &results)); const int64_t tmp_files_before = results.size(); std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fwriteable.txt\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", "", errors::NotFound("important HTTP error 410"), 410), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fwriteable.txt\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); { std::unique_ptr<WritableFile> file; TF_EXPECT_OK( fs.NewWritableFile("gs: TF_EXPECT_OK(file->Append("content1,")); TF_EXPECT_OK(file->Append("content2")); const auto& status = file->Close(); EXPECT_TRUE(errors::IsUnavailable(status)); EXPECT_TRUE( absl::StrContains(status.message(), "Upload to gs: "caused by: important HTTP error 410")) << status; EXPECT_TRUE(absl::StrContains( status.message(), "when uploading gs: << status; } results.clear(); TF_EXPECT_OK( Env::Default()->GetMatchingPaths("/tmp/tmp_file_tensorflow*", &results)); EXPECT_EQ(tmp_files_before, results.size()); } TEST(GcsFileSystemTest, NewWritableFile_NoObjectName) { std::vector<HttpRequest*> requests; GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<WritableFile> file; EXPECT_TRUE(errors::IsInvalidArgument( fs.NewWritableFile("gs: } TEST(GcsFileSystemTest, NewAppendableFile) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Fappendable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-1048575\n" "Timeouts: 5 1 20\n", "content1,"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-31\n" "Timeouts: 5 1 20\n", "content1,"), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fappendable\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 17\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-16/17\n" "Timeouts: 5 1 30\n" "Put body: content1,content2\n", ""), new FakeHttpRequest( "Uri: https: "path%2Fappendable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"2\"," "\"updated\": \"2016-04-29T23:25:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-31\n" "Timeouts: 5 1 20\n", "01234567")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 32 , 32 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<WritableFile> wfile; TF_EXPECT_OK( fs.NewAppendableFile("gs: TF_EXPECT_OK(wfile->Append("content2")); std::unique_ptr<RandomAccessFile> rfile; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: char scratch[100]; absl::string_view result; TF_EXPECT_OK(rfile->Read(0, 8, &result, scratch)); EXPECT_EQ("content1", result); TF_EXPECT_OK(wfile->Close()); TF_EXPECT_OK(rfile->Read(0, 4, &result, scratch)); EXPECT_EQ("0123", result); } TEST(GcsFileSystemTest, NewAppendableFile_NoObjectName) { std::vector<HttpRequest*> requests; GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<WritableFile> file; EXPECT_TRUE(errors::IsInvalidArgument( fs.NewAppendableFile("gs: } TEST(GcsFileSystemTest, NewAppendableFile_ObjectDoesNotExist) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-1048575\n" "Timeouts: 5 1 20\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "?uploadType=resumable&name=filename\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 0\n" "Post: yes\n" "Timeouts: 5 1 10\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<WritableFile> file; TF_EXPECT_OK(fs.NewAppendableFile("gs: } TEST(GcsFileSystemTest, NewReadOnlyMemoryRegionFromFile) { const string content = "file content"; std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Frandom_access.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"", content.size(), "\"", ", \"generation\": \"1\"", ", \"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( strings::StrCat("Uri: https: "path%2Frandom_access.txt\n" "Auth Token: fake_token\n" "Range: 0-", content.size() - 1, "\n", "Timeouts: 5 1 20\n"), content)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<ReadOnlyMemoryRegion> region; TF_EXPECT_OK(fs.NewReadOnlyMemoryRegionFromFile( "gs: EXPECT_EQ(content, absl::string_view(reinterpret_cast<const char*>(region->data()), region->length())); } TEST(GcsFileSystemTest, NewReadOnlyMemoryRegionFromFile_NoObjectName) { std::vector<HttpRequest*> requests; GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<ReadOnlyMemoryRegion> region; EXPECT_TRUE(errors::IsInvalidArgument( fs.NewReadOnlyMemoryRegionFromFile("gs: } TEST(GcsFileSystemTest, FileExists_YesAsObject) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "path%2Ffile1.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.FileExists("gs: } TEST(GcsFileSystemTest, FileExists_YesAsFolder) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Fsubfolder?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsubfolder%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/subfolder/\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.FileExists("gs: } TEST(GcsFileSystemTest, FileExists_YesAsBucket) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"size\": \"100\"}"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"size\": \"100\"}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.FileExists("gs: TF_EXPECT_OK(fs.FileExists("gs: } TEST(GcsFileSystemTest, FileExists_NotAsObjectOrFolder) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Ffile1.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Ffile1.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": []}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_TRUE( errors::IsNotFound(fs.FileExists("gs: } TEST(GcsFileSystemTest, FileExists_NotAsBucket) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_TRUE(absl::IsNotFound(fs.FileExists("gs: EXPECT_TRUE(absl::IsNotFound(fs.FileExists("gs: } TEST(GcsFileSystemTest, FileExists_StatCache) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Ffile1.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "path%2Fsubfolder%2F?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsubfolder%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/subfolder/\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); for (int i = 0; i < 10; i++) { TF_EXPECT_OK(fs.FileExists("gs: TF_EXPECT_OK(fs.FileExists("gs: } } TEST(GcsFileSystemTest, FileExists_DirectoryMark) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "dir%2F?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"5\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.FileExists("gs: TF_EXPECT_OK(fs.IsDirectory("gs: } TEST(GcsFileSystemTest, GetChildren_NoItems) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F&prefix=" "path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"prefixes\": [\"path/subpath/\"]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> children; TF_EXPECT_OK(fs.GetChildren("gs: EXPECT_EQ(std::vector<string>({"subpath/"}), children); } TEST(GcsFileSystemTest, GetChildren_ThreeFiles) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F&prefix=" "path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file1.txt\" }," " { \"name\": \"path/file3.txt\" }]," "\"prefixes\": [\"path/subpath/\"]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> children; TF_EXPECT_OK(fs.GetChildren("gs: EXPECT_EQ(std::vector<string>({"file1.txt", "file3.txt", "subpath/"}), children); } TEST(GcsFileSystemTest, GetChildren_SelfDirectoryMarker) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F&prefix=" "path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/\" }," " { \"name\": \"path/file3.txt\" }]," "\"prefixes\": [\"path/subpath/\"]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> children; TF_EXPECT_OK(fs.GetChildren("gs: EXPECT_EQ(std::vector<string>({"file3.txt", "subpath/"}), children); } TEST(GcsFileSystemTest, GetChildren_ThreeFiles_NoSlash) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F&prefix=" "path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file1.txt\" }," " { \"name\": \"path/file3.txt\" }]," "\"prefixes\": [\"path/subpath/\"]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> children; TF_EXPECT_OK(fs.GetChildren("gs: EXPECT_EQ(std::vector<string>({"file1.txt", "file3.txt", "subpath/"}), children); } TEST(GcsFileSystemTest, GetChildren_Root) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> children; TF_EXPECT_OK(fs.GetChildren("gs: EXPECT_EQ(0, children.size()); } TEST(GcsFileSystemTest, GetChildren_Empty) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F&prefix=" "path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> children; TF_EXPECT_OK(fs.GetChildren("gs: EXPECT_EQ(0, children.size()); } TEST(GcsFileSystemTest, GetChildren_Pagination) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F&" "prefix=path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"nextPageToken\": \"ABCD==\", " "\"items\": [ " " { \"name\": \"path/file1.txt\" }," " { \"name\": \"path/file3.txt\" }]," "\"prefixes\": [\"path/subpath/\"]}"), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2Cprefixes%2CnextPageToken&delimiter=%2F&" "prefix=path%2F" "&pageToken=ABCD==\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file4.txt\" }," " { \"name\": \"path/file5.txt\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> children; TF_EXPECT_OK(fs.GetChildren("gs: EXPECT_EQ(std::vector<string>({"file1.txt", "file3.txt", "subpath/", "file4.txt", "file5.txt"}), children); } TEST(GcsFileSystemTest, GetMatchingPaths_NoWildcard) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsubpath%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/subpath/file2.txt\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: nullptr, &result)); EXPECT_EQ(std::vector<string>({"gs: result); } TEST(GcsFileSystemTest, GetMatchingPaths_BucketAndWildcard) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file1.txt\" }," " { \"name\": \"path/subpath/file2.txt\" }," " { \"name\": \"path/file3.txt\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; TF_EXPECT_OK( fs.GetMatchingPaths("gs: 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; TF_EXPECT_OK( fs.GetMatchingPaths("gs: 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::vector<string> result; EXPECT_TRUE(errors::IsInvalidArgument( fs.GetMatchingPaths("gs:/, 0 , 0 , 0 , 0 , 3600 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); for (int i = 0; i < 10; i++) { std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: nullptr, &result)); EXPECT_EQ(std::vector<string>({"gs: result); TF_EXPECT_OK(fs.GetMatchingPaths("gs: 0 , 0 , 0 , 0 , 3600 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); for (int i = 0; i < 10; i++) { std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: nullptr, &result)); EXPECT_EQ(std::vector<string>({"gs: result); } fs.FlushCaches(nullptr); for (int i = 0; i < 10; i++) { std::vector<string> result; TF_EXPECT_OK(fs.GetMatchingPaths("gs: nullptr, &result)); EXPECT_EQ(std::vector<string>({"gs: result); } } TEST(GcsFileSystemTest, DeleteFile) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Ffile1.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-15\n" "Timeouts: 5 1 20\n", "01234567"), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Ffile1.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest( "Uri: https: "path%2Ffile1.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"2\"," "\"updated\": \"2016-04-29T23:19:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-15\n" "Timeouts: 5 1 20\n", "76543210")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 16 , 16 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; absl::string_view result; std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: TF_EXPECT_OK(file->Read(0, 8, &result, scratch)); EXPECT_EQ("01234567", result); TF_EXPECT_OK(fs.DeleteFile("gs: TF_EXPECT_OK(file->Read(0, 8, &result, scratch)); EXPECT_EQ("76543210", result); } TEST(GcsFileSystemTest, DeleteFile_NoObjectName) { std::vector<HttpRequest*> requests; GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_TRUE( errors::IsInvalidArgument(fs.DeleteFile("gs: } TEST(GcsFileSystemTest, DeleteFile_StatCacheRemoved) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest("Uri: https: "/bucket/o/file.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=file.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 16 , 16 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat_before_deletion; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(1010, stat_before_deletion.length); TF_EXPECT_OK(fs.DeleteFile("gs: FileStatistics stat_after_deletion; EXPECT_EQ( error::Code::NOT_FOUND, fs.Stat("gs: } TEST(GcsFileSystemTest, DeleteDir_Empty) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F&maxResults=2\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.DeleteDir("gs: } TEST(GcsFileSystemTest, DeleteDir_OnlyDirMarkerLeft) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F&maxResults=2\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/\" }]}"), new FakeHttpRequest("Uri: https: "/bucket/o/path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.DeleteDir("gs: } TEST(GcsFileSystemTest, DeleteDir_BucketOnly) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "name%2CnextPageToken&maxResults=2\nAuth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.DeleteDir("gs: } TEST(GcsFileSystemTest, DeleteDir_NonEmpty) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F&maxResults=2\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file1.txt\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_EQ(error::Code::FAILED_PRECONDITION, fs.DeleteDir("gs: } TEST(GcsFileSystemTest, GetFileSize) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); uint64 size; TF_EXPECT_OK(fs.GetFileSize("gs: EXPECT_EQ(1010, size); } TEST(GcsFileSystemTest, GetFileSize_NoObjectName) { std::vector<HttpRequest*> requests; GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); uint64 size; EXPECT_TRUE(errors::IsInvalidArgument( fs.GetFileSize("gs: } TEST(GcsFileSystemTest, RenameFile_Folder) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path1%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path1/subfolder/file1.txt\" }]}"), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path1%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path1/\" }," " { \"name\": \"path1/subfolder/file1.txt\" }," " { \"name\": \"path1/file2.txt\" }]}"), new FakeHttpRequest( "Uri: https: "path1%2F/rewriteTo/b/bucket/o/path2%2F\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "{\"done\": true}"), new FakeHttpRequest( "Uri: https: "path1%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest( "Uri: https: "path1%2Fsubfolder%2Ffile1.txt/rewriteTo/b/bucket/o/" "path2%2Fsubfolder%2Ffile1.txt\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "{\"done\": true}"), new FakeHttpRequest( "Uri: https: "path1%2Fsubfolder%2Ffile1.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest( "Uri: https: "path1%2Ffile2.txt/rewriteTo/b/bucket/o/path2%2Ffile2.txt\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "{\"done\": true}"), new FakeHttpRequest( "Uri: https: "path1%2Ffile2.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK( fs.RenameFile("gs: } TEST(GcsFileSystemTest, RenameFile_Object) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-15\n" "Timeouts: 5 1 20\n", "01234567"), new FakeHttpRequest( "Uri: https: "path%2Fdst.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-15\n" "Timeouts: 5 1 20\n", "76543210"), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsrc.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt/rewriteTo/b/bucket/o/path%2Fdst.txt\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "{\"done\": true}"), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"2\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-15\n" "Timeouts: 5 1 20\n", "89abcdef"), new FakeHttpRequest( "Uri: https: "path%2Fdst.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"2\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-15\n" "Timeouts: 5 1 20\n", "fedcba98")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 16 , 64 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); char scratch[100]; absl::string_view result; std::unique_ptr<RandomAccessFile> src; std::unique_ptr<RandomAccessFile> dst; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: TF_EXPECT_OK(src->Read(0, 8, &result, scratch)); EXPECT_EQ("01234567", result); TF_EXPECT_OK( fs.NewRandomAccessFile("gs: TF_EXPECT_OK(dst->Read(0, 8, &result, scratch)); EXPECT_EQ("76543210", result); TF_EXPECT_OK(fs.RenameFile("gs: "gs: TF_EXPECT_OK(src->Read(0, 8, &result, scratch)); EXPECT_EQ("89abcdef", result); TF_EXPECT_OK(dst->Read(0, 8, &result, scratch)); EXPECT_EQ("fedcba98", result); } TEST(GcsFileSystemTest, RenameFile_Object_FlushTargetStatCache) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "path%2Fdst.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1000\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsrc.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt/rewriteTo/b/bucket/o/path%2Fdst.txt\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "{\"done\": true}"), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest( "Uri: https: "path%2Fdst.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat_before_renaming; TF_EXPECT_OK( fs.Stat("gs: EXPECT_EQ(1000, stat_before_renaming.length); TF_EXPECT_OK(fs.RenameFile("gs: "gs: FileStatistics stat_after_renaming; TF_EXPECT_OK( fs.Stat("gs: EXPECT_EQ(1010, stat_after_renaming.length); } TEST(GcsFileSystemTest, RenameFile_Object_DeletionRetried) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsrc.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt/rewriteTo/b/bucket/o/path%2Fdst.txt\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "{\"done\": true}"), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "", errors::NotFound("404"), 404)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.RenameFile("gs: "gs: } TEST(GcsFileSystemTest, RenameFile_Object_Incomplete) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsrc.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "path%2Fsrc.txt/rewriteTo/b/bucket/o/path%2Fdst.txt\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "{\"done\": false}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_TRUE(errors::IsUnimplemented(fs.RenameFile( "gs: } TEST(GcsFileSystemTest, Stat_Object) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(1010, stat.length); EXPECT_NEAR(1461971724896, stat.mtime_nsec / 1000 / 1000, 1); EXPECT_FALSE(stat.is_directory); } TEST(GcsFileSystemTest, Stat_Folder) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "subfolder?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=subfolder%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"subfolder/\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(0, stat.length); EXPECT_EQ(0, stat.mtime_nsec); EXPECT_TRUE(stat.is_directory); } TEST(GcsFileSystemTest, Stat_ObjectOrFolderNotFound) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "path?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat; EXPECT_EQ(error::Code::NOT_FOUND, fs.Stat("gs: } TEST(GcsFileSystemTest, Stat_Bucket) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(0, stat.length); EXPECT_EQ(0, stat.mtime_nsec); EXPECT_TRUE(stat.is_directory); } TEST(GcsFileSystemTest, Stat_BucketNotFound) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat; EXPECT_EQ(error::Code::NOT_FOUND, fs.Stat("gs: } TEST(GcsFileSystemTest, Stat_Cache) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "subfolder%2F?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=subfolder%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"subfolder/\" }]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); for (int i = 0; i < 10; i++) { FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(1010, stat.length); EXPECT_NEAR(1461971724896, stat.mtime_nsec / 1000 / 1000, 1); EXPECT_FALSE(stat.is_directory); TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(0, stat.length); EXPECT_EQ(0, stat.mtime_nsec); EXPECT_TRUE(stat.is_directory); } } TEST(GcsFileSystemTest, Stat_Cache_Flush) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); for (int i = 0; i < 10; i++) { FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(1010, stat.length); EXPECT_NEAR(1461971724896, stat.mtime_nsec / 1000 / 1000, 1); EXPECT_FALSE(stat.is_directory); } fs.FlushCaches(nullptr); for (int i = 0; i < 10; i++) { FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(1010, stat.length); EXPECT_NEAR(1461971724896, stat.mtime_nsec / 1000 / 1000, 1); EXPECT_FALSE(stat.is_directory); } } TEST(GcsFileSystemTest, Stat_FilenameEndingWithSlash) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "dir%2F?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"5\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(5, stat.length); EXPECT_TRUE(stat.is_directory); } TEST(GcsFileSystemTest, IsDirectory_NotFound) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=file.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_EQ(error::Code::NOT_FOUND, fs.IsDirectory("gs: } TEST(GcsFileSystemTest, IsDirectory_NotDirectoryButObject) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=file.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_EQ(error::Code::FAILED_PRECONDITION, fs.IsDirectory("gs: } TEST(GcsFileSystemTest, IsDirectory_Yes) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=subfolder%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [{\"name\": \"subfolder/\"}]}"), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=subfolder%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [{\"name\": \"subfolder/\"}]}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.IsDirectory("gs: TF_EXPECT_OK(fs.IsDirectory("gs: } TEST(GcsFileSystemTest, IsDirectory_Bucket) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.IsDirectory("gs: TF_EXPECT_OK(fs.IsDirectory("gs: } TEST(GcsFileSystemTest, IsDirectory_BucketNotFound) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); EXPECT_EQ(error::Code::NOT_FOUND, fs.IsDirectory("gs: } TEST(GcsFileSystemTest, CreateDir_Folder) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "subpath%2F?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "uploadType=media&name=subpath%2F&ifGenerationMatch=0\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", ""), new FakeHttpRequest( "Uri: https: "subpath%2F?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "subpath%2F?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "uploadType=media&name=subpath%2F&ifGenerationMatch=0\n" "Auth Token: fake_token\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", errors::FailedPrecondition("412"), 412), }); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.CreateDir("gs: EXPECT_EQ(errors::AlreadyExists("gs: fs.CreateDir("gs: EXPECT_EQ(errors::AlreadyExists("gs: fs.CreateDir("gs: } TEST(GcsFileSystemTest, CreateDir_Bucket) { std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", ""), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TF_EXPECT_OK(fs.CreateDir("gs: TF_EXPECT_OK(fs.CreateDir("gs: } TEST(GcsFileSystemTest, DeleteRecursively_Ok) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file1.txt\" }]}"), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/\" }," " { \"name\": \"path/file1.txt\" }," " { \"name\": \"path/subpath/file2.txt\" }," " { \"name\": \"path/file3.txt\" }]}"), new FakeHttpRequest("Uri: https: "/bucket/o/path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Ffile1.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "", errors::Unavailable("500"), 500), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Ffile1.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Fsubpath%2Ffile2.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Ffile3.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); int64_t undeleted_files, undeleted_dirs; TF_EXPECT_OK(fs.DeleteRecursively("gs: &undeleted_files, &undeleted_dirs)); EXPECT_EQ(0, undeleted_files); EXPECT_EQ(0, undeleted_dirs); } TEST(GcsFileSystemTest, DeleteRecursively_DeletionErrors) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file1.txt\" }]}"), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{\"items\": [ " " { \"name\": \"path/file1.txt\" }," " { \"name\": \"path/subpath/\" }," " { \"name\": \"path/subpath/file2.txt\" }," " { \"name\": \"path/file3.txt\" }]}"), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Ffile1.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Fsubpath%2F\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Fsubpath%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"items\": [ " " { \"name\": \"path/subpath/\" }]}")), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Fsubpath%2Ffile2.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest("Uri: https: "/bucket/o/path%2Ffile3.txt\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", "", errors::NotFound("404"), 404), new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2Ffile3.txt%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "path%2Ffile3.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); int64_t undeleted_files, undeleted_dirs; TF_EXPECT_OK(fs.DeleteRecursively("gs: &undeleted_files, &undeleted_dirs)); EXPECT_EQ(1, undeleted_files); EXPECT_EQ(1, undeleted_dirs); } TEST(GcsFileSystemTest, DeleteRecursively_NotAFolder) { std::vector<HttpRequest*> requests( { new FakeHttpRequest( "Uri: https: "fields=items%2Fname%2CnextPageToken&prefix=path%2F" "&maxResults=1\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "{}"), new FakeHttpRequest( "Uri: https: "path?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", "", errors::NotFound("404"), 404)}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); int64_t undeleted_files, undeleted_dirs; EXPECT_EQ(error::Code::NOT_FOUND, fs.DeleteRecursively("gs: &undeleted_dirs) .code()); EXPECT_EQ(0, undeleted_files); EXPECT_EQ(1, undeleted_dirs); } TEST(GcsFileSystemTest, NoConstraintsEnvironmentVariableTest) { unsetenv("GCS_ALLOWED_BUCKET_LOCATIONS"); GcsFileSystem fs1; EXPECT_EQ(*kAllowedLocationsDefault, fs1.allowed_locations()); fs1.FlushCaches(nullptr); } TEST(GcsFileSystemTest, BucketLocationConstraintEnvironmentVariableTest) { unsetenv("GCS_ALLOWED_BUCKET_LOCATIONS"); setenv("GCS_ALLOWED_BUCKET_LOCATIONS", "auto", 1); GcsFileSystem fs1; EXPECT_EQ(*kAllowedLocationsAuto, fs1.allowed_locations()); setenv("GCS_ALLOWED_BUCKET_LOCATIONS", "CUSTOM,list", 1); GcsFileSystem fs2; EXPECT_EQ(std::unordered_set<string>({"custom", "list"}), fs2.allowed_locations()); } TEST(GcsFileSystemTest, AdditionalRequestHeaderTest) { GcsFileSystem fs1; EXPECT_EQ("", fs1.additional_header_name()); EXPECT_EQ("", fs1.additional_header_value()); setenv("GCS_ADDITIONAL_REQUEST_HEADER", "X-Add-Header:My Additional Header Value", 1); GcsFileSystem fs2; EXPECT_EQ("X-Add-Header", fs2.additional_header_name()); EXPECT_EQ("My Additional Header Value", fs2.additional_header_value()); setenv("GCS_ADDITIONAL_REQUEST_HEADER", "Someinvalidheadervalue", 1); GcsFileSystem fs3; EXPECT_EQ("", fs3.additional_header_name()); EXPECT_EQ("", fs3.additional_header_value()); setenv("GCS_ADDITIONAL_REQUEST_HEADER", ":thisisinvalid", 1); GcsFileSystem fs4; EXPECT_EQ("", fs4.additional_header_name()); EXPECT_EQ("", fs4.additional_header_value()); setenv("GCS_ADDITIONAL_REQUEST_HEADER", "soisthis:", 1); GcsFileSystem fs5; EXPECT_EQ("", fs5.additional_header_name()); EXPECT_EQ("", fs5.additional_header_value()); setenv("GCS_ADDITIONAL_REQUEST_HEADER", "a:b", 1); GcsFileSystem fs6; EXPECT_EQ("a", fs6.additional_header_name()); EXPECT_EQ("b", fs6.additional_header_value()); auto* add_header = new std::pair<const string, const string>( "mynewheader", "newheadercontents"); std::vector<HttpRequest*> requests( { new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header mynewheader: newheadercontents\n" "Header Hello: world\n", "{}")}); GcsFileSystem fs7( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, add_header , false ); std::unique_ptr<HttpRequest> request; TF_EXPECT_OK(fs7.CreateHttpRequest(&request)); request->SetUri("https: request->AddHeader("Hello", "world"); TF_EXPECT_OK(request->Send()); } TEST(GcsFileSystemTest, OverrideCacheParameters) { setenv("GCS_READ_CACHE_BLOCK_SIZE_MB", "16", 1); setenv("GCS_READ_CACHE_MAX_SIZE_MB", "128", 1); GcsFileSystem fs1; EXPECT_EQ(16 * 1024 * 1024, fs1.block_size()); EXPECT_EQ(128 * 1024 * 1024, fs1.max_bytes()); EXPECT_EQ(0, fs1.max_staleness()); EXPECT_EQ(120, fs1.timeouts().connect); EXPECT_EQ(60, fs1.timeouts().idle); EXPECT_EQ(3600, fs1.timeouts().metadata); EXPECT_EQ(3600, fs1.timeouts().read); EXPECT_EQ(3600, fs1.timeouts().write); unsetenv("GCS_READ_CACHE_BLOCK_SIZE_MB"); setenv("GCS_READAHEAD_BUFFER_SIZE_BYTES", "123456789", 1); GcsFileSystem fs2; EXPECT_EQ(123456789L, fs2.block_size()); setenv("GCS_READ_CACHE_BLOCK_SIZE_MB", "1", 1); setenv("GCS_READ_CACHE_MAX_SIZE_MB", "16", 1); setenv("GCS_READ_CACHE_MAX_STALENESS", "60", 1); GcsFileSystem fs3; EXPECT_EQ(1048576L, fs3.block_size()); EXPECT_EQ(16 * 1024 * 1024, fs3.max_bytes()); EXPECT_EQ(60, fs3.max_staleness()); setenv("GCS_STAT_CACHE_MAX_AGE", "60", 1); setenv("GCS_STAT_CACHE_MAX_ENTRIES", "32", 1); setenv("GCS_MATCHING_PATHS_CACHE_MAX_AGE", "30", 1); setenv("GCS_MATCHING_PATHS_CACHE_MAX_ENTRIES", "64", 1); GcsFileSystem fs4; EXPECT_EQ(60, fs4.stat_cache_max_age()); EXPECT_EQ(32, fs4.stat_cache_max_entries()); EXPECT_EQ(30, fs4.matching_paths_cache_max_age()); EXPECT_EQ(64, fs4.matching_paths_cache_max_entries()); setenv("GCS_REQUEST_CONNECTION_TIMEOUT_SECS", "10", 1); setenv("GCS_REQUEST_IDLE_TIMEOUT_SECS", "5", 1); setenv("GCS_METADATA_REQUEST_TIMEOUT_SECS", "20", 1); setenv("GCS_READ_REQUEST_TIMEOUT_SECS", "30", 1); setenv("GCS_WRITE_REQUEST_TIMEOUT_SECS", "40", 1); GcsFileSystem fs5; EXPECT_EQ(10, fs5.timeouts().connect); EXPECT_EQ(5, fs5.timeouts().idle); EXPECT_EQ(20, fs5.timeouts().metadata); EXPECT_EQ(30, fs5.timeouts().read); EXPECT_EQ(40, fs5.timeouts().write); } TEST(GcsFileSystemTest, CreateHttpRequest) { std::vector<HttpRequest*> requests( { new FakeHttpRequest("Uri: https: "Auth Token: fake_token\n" "Header Hello: world\n", "{}")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<HttpRequest> request; TF_EXPECT_OK(fs.CreateHttpRequest(&request)); request->SetUri("https: request->AddHeader("Hello", "world"); TF_EXPECT_OK(request->Send()); } class TestGcsStats : public GcsStatsInterface { public: void Configure(GcsFileSystem* fs, GcsThrottle* throttle, const FileBlockCache* block_cache) override { CHECK(fs_ == nullptr); CHECK(throttle_ == nullptr); CHECK(block_cache_ == nullptr); fs_ = fs; throttle_ = throttle; block_cache_ = block_cache; } void RecordBlockLoadRequest(const string& file, size_t offset) override { block_load_request_file_ = file; } void RecordBlockRetrieved(const string& file, size_t offset, size_t bytes_transferred) override { block_retrieved_file_ = file; block_retrieved_bytes_transferred_ = bytes_transferred; } void RecordStatObjectRequest() override { stat_object_request_count_++; } HttpRequest::RequestStats* HttpStats() override { return nullptr; } GcsFileSystem* fs_ = nullptr; GcsThrottle* throttle_ = nullptr; const FileBlockCache* block_cache_ = nullptr; string block_load_request_file_; string block_retrieved_file_; size_t block_retrieved_bytes_transferred_ = 0; int stat_object_request_count_ = 0; }; TEST(GcsFileSystemTest, Stat_StatsRecording) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "file.txt?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"1010\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}"))}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TestGcsStats stats; fs.SetStats(&stats); EXPECT_EQ(stats.fs_, &fs); FileStatistics stat; TF_EXPECT_OK(fs.Stat("gs: EXPECT_EQ(1, stats.stat_object_request_count_); } TEST(GcsFileSystemTest, NewRandomAccessFile_StatsRecording) { std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-5\n" "Timeouts: 5 1 20\n", "012345")}); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 0 , 0 , 0 , 0 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); TestGcsStats stats; fs.SetStats(&stats); EXPECT_EQ(stats.fs_, &fs); std::unique_ptr<RandomAccessFile> file; TF_EXPECT_OK( fs.NewRandomAccessFile("gs: char scratch[6]; absl::string_view result; TF_EXPECT_OK(file->Read(0, sizeof(scratch), &result, scratch)); EXPECT_EQ("012345", result); EXPECT_EQ("gs: EXPECT_EQ("gs: EXPECT_EQ(6, stats.block_retrieved_bytes_transferred_); } TEST(GcsFileSystemTest, NewAppendableFile_MultipleFlushesWithCompose) { std::vector<string> contents( {"content0,", "content1,", "content2,", "content3,"}); std::vector<HttpRequest*> requests({ new FakeHttpRequest( "Uri: " "https: "some%2Fpath%2Fappendable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: " "https: "Auth Token: fake_token\n" "Range: 0-1048575\n" "Timeouts: 5 1 20\n", contents[0]), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=some%2Fpath%2Fappendable\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 18\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest( strings::StrCat("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-17/18\n" "Timeouts: 5 1 30\n" "Put body: ", contents[0], contents[1], "\n"), ""), new FakeHttpRequest( "Uri: " "https: "o?uploadType=resumable&name=some%2Fpath%2F.tmpcompose%2Fappendable." "18\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 9\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: "location"}}), new FakeHttpRequest( strings::StrCat("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-8/9\n" "Timeouts: 5 1 30\n" "Put body: ", contents[2], "\n"), ""), new FakeHttpRequest( "Uri: " "https: "some%2Fpath%2Fappendable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"1234\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest("Uri: " "https: "some%2Fpath%2Fappendable/compose\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Header content-type: application/json\n" "Post body: {'sourceObjects': [{'name': " "'some/path/" "appendable','objectPrecondition':{'" "ifGenerationMatch':1234}},{'name': " "'some/path/.tmpcompose/appendable.18'}]}\n", ""), new FakeHttpRequest("Uri: " "https: "some%2Fpath%2F.tmpcompose%2Fappendable.18\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=some%2Fpath%2F.tmpcompose%2Fappendable." "27\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 9\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest( strings::StrCat("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-8/9\n" "Timeouts: 5 1 30\n" "Put body: ", contents[3], "\n"), ""), new FakeHttpRequest( "Uri: " "https: "some%2Fpath%2Fappendable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"4567\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest("Uri: " "https: "some%2Fpath%2Fappendable/compose\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Header content-type: application/json\n" "Post body: {'sourceObjects': [{'name': " "'some/path/" "appendable','objectPrecondition':{'" "ifGenerationMatch':4567}},{'name': " "'some/path/.tmpcompose/appendable.27'}]}\n", ""), new FakeHttpRequest("Uri: " "https: "some%2Fpath%2F.tmpcompose%2Fappendable." "27\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n" "Delete: yes\n", ""), }); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 32 , 32 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , true ); std::unique_ptr<WritableFile> wfile; TF_EXPECT_OK(fs.NewAppendableFile("gs: &wfile)); TF_EXPECT_OK(wfile->Append(contents[1])); TF_EXPECT_OK(wfile->Flush()); TF_EXPECT_OK(wfile->Append(contents[2])); TF_EXPECT_OK(wfile->Flush()); TF_EXPECT_OK(wfile->Append(contents[3])); TF_EXPECT_OK(wfile->Close()); } TEST(GcsFileSystemTest, NewAppendableFile_MultipleFlushesWithoutCompose) { std::vector<string> contents( {"content0,", "content1,", "content2,", "content3,"}); std::vector<HttpRequest*> requests({ new FakeHttpRequest( "Uri: https: "path%2Fappendable?fields=size%2Cgeneration%2Cupdated\n" "Auth Token: fake_token\n" "Timeouts: 5 1 10\n", strings::StrCat("{\"size\": \"8\",\"generation\": \"1\"," "\"updated\": \"2016-04-29T23:15:24.896Z\"}")), new FakeHttpRequest( "Uri: https: "Auth Token: fake_token\n" "Range: 0-1048575\n" "Timeouts: 5 1 20\n", contents[0]), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fappendable\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 18\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest( strings::StrCat("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-17/18\n" "Timeouts: 5 1 30\n" "Put body: ", contents[0], contents[1], "\n"), ""), new FakeHttpRequest("Uri: " "https: "bucket/o?" "uploadType=resumable&name=path%2Fappendable\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 27\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: "location"}}), new FakeHttpRequest( strings::StrCat("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-26/27\n" "Timeouts: 5 1 30\n" "Put body: ", contents[0], contents[1], contents[2], "\n"), ""), new FakeHttpRequest( "Uri: https: "uploadType=resumable&name=path%2Fappendable\n" "Auth Token: fake_token\n" "Header X-Upload-Content-Length: 36\n" "Post: yes\n" "Timeouts: 5 1 10\n", "", {{"Location", "https: new FakeHttpRequest( strings::StrCat("Uri: https: "Auth Token: fake_token\n" "Header Content-Range: bytes 0-35/36\n" "Timeouts: 5 1 30\n" "Put body: ", contents[0], contents[1], contents[2], contents[3], "\n"), ""), }); GcsFileSystem fs( std::unique_ptr<AuthProvider>(new FakeAuthProvider), std::unique_ptr<HttpRequest::Factory>( new FakeHttpRequestFactory(&requests)), std::unique_ptr<ZoneProvider>(new FakeZoneProvider), 32 , 32 , 0 , 3600 , 0 , 0 , 0 , kTestRetryConfig, kTestTimeoutConfig, *kAllowedLocationsDefault, nullptr , false ); std::unique_ptr<WritableFile> wfile; TF_EXPECT_OK( fs.NewAppendableFile("gs: TF_EXPECT_OK(wfile->Append(contents[1])); TF_EXPECT_OK(wfile->Flush()); TF_EXPECT_OK(wfile->Append(contents[2])); TF_EXPECT_OK(wfile->Flush()); TF_EXPECT_OK(wfile->Append(contents[3])); TF_EXPECT_OK(wfile->Close()); } TEST(GcsFileSystemTest, AppendModeCompose) { unsetenv("GCS_APPEND_MODE"); setenv("GCS_APPEND_MODE", "compose", 1); GcsFileSystem fs1; EXPECT_EQ(true, fs1.compose_append()); } TEST(GcsFileSystemTest, AppendModeDefault) { unsetenv("GCS_APPEND_MODE"); GcsFileSystem fs1; EXPECT_EQ(false, fs1.compose_append()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_file_system.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/cloud/gcs_file_system_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b8d8fa37-7a95-4e06-b3a1-4b2054b61d5c
cpp
google/tensorstore
box_difference
tensorstore/internal/box_difference.cc
tensorstore/internal/box_difference_test.cc
#include "tensorstore/internal/box_difference.h" #include <cassert> #include <limits> #include "tensorstore/box.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/internal/integer_overflow.h" namespace tensorstore { namespace internal { namespace { Index GetNumSubtractionSubBoxes(BoxView<> outer, BoxView<> inner) { assert(outer.rank() == inner.rank()); const DimensionIndex rank = outer.rank(); Index total_count = 1; for (DimensionIndex i = 0; i < rank; ++i) { IndexInterval outer_interval = outer[i]; IndexInterval inner_interval = inner[i]; Index num_parts = 1; if (Intersect(outer_interval, inner_interval).empty()) { return 1; } if (outer_interval.inclusive_min() < inner_interval.inclusive_min()) { ++num_parts; } if (outer_interval.inclusive_max() > inner_interval.inclusive_max()) { ++num_parts; } total_count *= num_parts; } return total_count - 1; } } BoxDifference::BoxDifference(BoxView<> outer, BoxView<> inner) : outer_(outer), inner_(inner), num_sub_boxes_(GetNumSubtractionSubBoxes(outer, inner)) {} void BoxDifference::GetSubBox(Index sub_box_index, MutableBoxView<> out) const { const DimensionIndex rank = out.rank(); assert(rank == outer_.rank()); assert(sub_box_index >= 0 && sub_box_index < num_sub_boxes_); ++sub_box_index; for (DimensionIndex i = 0; i < rank; ++i) { IndexInterval outer_interval = outer_[i]; IndexInterval inner_interval = inner_[i]; Index num_parts = 1; IndexInterval intersection = Intersect(outer_interval, inner_interval); if (intersection.empty()) { out.DeepAssign(outer_); return; } const bool has_before = outer_interval.inclusive_min() < inner_interval.inclusive_min(); const bool has_after = outer_interval.inclusive_max() > inner_interval.inclusive_max(); if (has_before) ++num_parts; if (has_after) ++num_parts; const Index part_i = sub_box_index % num_parts; switch (part_i) { case 0: out[i] = intersection; break; case 1: if (has_before) { out[i] = IndexInterval::UncheckedHalfOpen( outer_interval.inclusive_min(), inner_interval.inclusive_min()); break; } [[fallthrough]]; case 2: out[i] = IndexInterval::UncheckedHalfOpen( inner_interval.exclusive_max(), outer_interval.exclusive_max()); break; } sub_box_index /= num_parts; } } } }
#include "tensorstore/internal/box_difference.h" #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/box.h" #include "tensorstore/index.h" namespace { using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::Index; using ::tensorstore::internal::BoxDifference; std::vector<Box<>> Subtract(BoxView<> outer, BoxView<> inner) { BoxDifference difference(outer, inner); Index count = difference.num_sub_boxes(); std::vector<Box<>> boxes(count); for (Index i = 0; i < count; ++i) { auto& out = boxes[i]; out.set_rank(outer.rank()); difference.GetSubBox(i, out); } return boxes; } TEST(BoxDifferenceTest, RankZero) { EXPECT_THAT(Subtract(BoxView<>(), BoxView<>()), ::testing::UnorderedElementsAre()); } TEST(BoxDifferenceTest, RankOneEmptyResult) { EXPECT_THAT(Subtract(BoxView({1}, {5}), BoxView({1}, {5})), ::testing::UnorderedElementsAre()); } TEST(BoxDifferenceTest, RankOneFullResult) { EXPECT_THAT(Subtract(BoxView({1}, {5}), BoxView({6}, {5})), ::testing::UnorderedElementsAre(BoxView({1}, {5}))); } TEST(BoxDifferenceTest, RankOneBeforeOnly) { EXPECT_THAT(Subtract(BoxView({1}, {5}), BoxView({3}, {4})), ::testing::UnorderedElementsAre(BoxView({1}, {2}))); } TEST(BoxDifferenceTest, RankOneAfterOnly) { EXPECT_THAT(Subtract(BoxView({1}, {5}), BoxView({0}, {3})), ::testing::UnorderedElementsAre(BoxView({3}, {3}))); } TEST(BoxDifferenceTest, RankOneBeforeAndAfter) { EXPECT_THAT( Subtract(BoxView({1}, {5}), BoxView({2}, {2})), ::testing::UnorderedElementsAre(BoxView({1}, {1}), BoxView({4}, {2}))); } TEST(BoxDifferenceTest, RankTwoDim0EmptyDim1Empty) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({1, 2}, {5, 7})), ::testing::UnorderedElementsAre()); } TEST(BoxDifferenceTest, RankTwoDim0FullDim1Empty) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({6, 2}, {5, 7})), ::testing::UnorderedElementsAre(BoxView({1, 2}, {5, 7}))); } TEST(BoxDifferenceTest, RankTwoDim0EmptyDim1Full) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({1, 10}, {5, 7})), ::testing::UnorderedElementsAre(BoxView({1, 2}, {5, 7}))); } TEST(BoxDifferenceTest, RankTwoDim0BeforeDim1Empty) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({4, 2}, {3, 7})), ::testing::UnorderedElementsAre(BoxView({1, 2}, {3, 7}))); } TEST(BoxDifferenceTest, RankTwoDim0AfterDim1Empty) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({-1, 2}, {3, 7})), ::testing::UnorderedElementsAre(BoxView({2, 2}, {4, 7}))); } TEST(BoxDifferenceTest, RankTwoDim0BeforeAfterDim1Empty) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({2, 2}, {3, 7})), ::testing::UnorderedElementsAre(BoxView({1, 2}, {1, 7}), BoxView({5, 2}, {1, 7}))); } TEST(BoxDifferenceTest, RankTwoDim0EmptyDim1Before) { EXPECT_THAT(Subtract(BoxView({2, 1}, {7, 5}), BoxView({2, 4}, {7, 3})), ::testing::UnorderedElementsAre(BoxView({2, 1}, {7, 3}))); } TEST(BoxDifferenceTest, RankTwoDim0EmptyDim1After) { EXPECT_THAT(Subtract(BoxView({2, 1}, {7, 5}), BoxView({2, -1}, {7, 3})), ::testing::UnorderedElementsAre(BoxView({2, 2}, {7, 4}))); } TEST(BoxDifferenceTest, RankTwoDim0EmptyDim1BeforeAfter) { EXPECT_THAT(Subtract(BoxView({2, 1}, {7, 5}), BoxView({2, 2}, {7, 3})), ::testing::UnorderedElementsAre(BoxView({2, 1}, {7, 1}), BoxView({2, 5}, {7, 1}))); } TEST(BoxDifferenceTest, RankTwoDim0BeforeDim1Before) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({4, 4}, {3, 7})), ::testing::UnorderedElementsAre(BoxView({1, 4}, {3, 5}), BoxView({4, 2}, {2, 2}), BoxView({1, 2}, {3, 2}))); } TEST(BoxDifferenceTest, RankTwoDim0AfterDim1Before) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({-1, 4}, {3, 7})), ::testing::UnorderedElementsAre(BoxView({2, 4}, {4, 5}), BoxView({1, 2}, {1, 2}), BoxView({2, 2}, {4, 2}))); } TEST(BoxDifferenceTest, RankTwoDim0BeforeAfterDim1Before) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({2, 4}, {3, 7})), ::testing::UnorderedElementsAre( BoxView({1, 4}, {1, 5}), BoxView({5, 4}, {1, 5}), BoxView({2, 2}, {3, 2}), BoxView({1, 2}, {1, 2}), BoxView({5, 2}, {1, 2}))); } TEST(BoxDifferenceTest, RankTwoDim0BeforeDim1After) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({4, 2}, {3, 1})), ::testing::UnorderedElementsAre(BoxView({1, 2}, {3, 1}), BoxView({4, 3}, {2, 6}), BoxView({1, 3}, {3, 6}))); } TEST(BoxDifferenceTest, RankTwoDim0AfterDim1After) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({-1, 2}, {3, 1})), ::testing::UnorderedElementsAre(BoxView({2, 2}, {4, 1}), BoxView({1, 3}, {1, 6}), BoxView({2, 3}, {4, 6}))); } TEST(BoxDifferenceTest, RankTwoDim0BeforeAfterDim1After) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({2, 2}, {3, 1})), ::testing::UnorderedElementsAre( BoxView({1, 2}, {1, 1}), BoxView({5, 2}, {1, 1}), BoxView({2, 3}, {3, 6}), BoxView({1, 3}, {1, 6}), BoxView({5, 3}, {1, 6}))); } TEST(BoxDifferenceTest, RankTwoDim0BeforeAfterDim1BeforeAfter) { EXPECT_THAT(Subtract(BoxView({1, 2}, {5, 7}), BoxView({2, 3}, {3, 1})), ::testing::UnorderedElementsAre( BoxView({1, 3}, {1, 1}), BoxView({5, 3}, {1, 1}), BoxView({2, 2}, {3, 1}), BoxView({1, 2}, {1, 1}), BoxView({5, 2}, {1, 1}), BoxView({2, 4}, {3, 5}), BoxView({1, 4}, {1, 5}), BoxView({5, 4}, {1, 5}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/box_difference.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/box_difference_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f02a4423-d7f6-48a3-99fa-ecbd4b421227
cpp
tensorflow/tensorflow
cwise_ops
tensorflow/compiler/tf2xla/kernels/cwise_ops.cc
tensorflow/core/kernels/cwise_ops_test.cc
#include "tensorflow/compiler/tf2xla/kernels/cwise_ops.h" #include <algorithm> #include <cstdint> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/compiler/tf2xla/lib/broadcast.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/util/bcast.h" namespace tensorflow { void XlaBinaryOp::Compile(XlaOpKernelContext* ctx) { TensorShape lhs_shape = ctx->InputShape(0); TensorShape rhs_shape = ctx->InputShape(1); xla::Shape lhs_xla_shape = ctx->InputXlaShape(0).value(); xla::Shape rhs_xla_shape = ctx->InputXlaShape(1).value(); auto lhs_handle = ctx->Input(0); auto rhs_handle = ctx->Input(1); if (lhs_shape.dims() == rhs_shape.dims()) { auto reconcile_tensor_mismatched_dims = [ctx]( xla::XlaOp lhs, xla::XlaOp rhs, const xla::Shape& lhs_xla_shape, const xla::Shape& rhs_xla_shape, TensorShape* lhs_tensor_shape) { for (int64_t i = 0; i < lhs_xla_shape.rank(); ++i) { if (lhs_xla_shape.is_dynamic_dimension(i)) { if (!rhs_xla_shape.is_dynamic_dimension(i) && lhs_xla_shape.dimensions(i) > rhs_xla_shape.dimensions(i) && rhs_xla_shape.dimensions(i) != 1) { auto size = xla::GetDimensionSize(lhs, i); lhs = xla::SliceInDim(lhs, 0, rhs_xla_shape.dimensions(i), 1, i); lhs_tensor_shape->set_dim(i, rhs_xla_shape.dimensions(i)); lhs = xla::SetDimensionSize(lhs, size, i); } if (rhs_xla_shape.is_dynamic_dimension(i) && lhs_xla_shape.dimensions(i) < rhs_xla_shape.dimensions(i) && rhs_xla_shape.dimensions(i) != 1 && lhs_xla_shape.dimensions(i) != 1) { auto size = xla::GetDimensionSize(lhs, i); int64_t diff = rhs_xla_shape.dimensions(i) - lhs_xla_shape.dimensions(i); lhs = xla::PadInDim( lhs, xla::Zero(ctx->builder(), lhs_xla_shape.element_type()), i, 0, diff); lhs_tensor_shape->set_dim(i, rhs_xla_shape.dimensions(i)); lhs = xla::SetDimensionSize(lhs, size, i); } if (lhs_xla_shape.dimensions(i) == 1 && rhs_xla_shape.dimensions(i) != 1) { auto size = xla::GetDimensionSize(lhs, i); lhs = xla::RemoveDynamicDimension(lhs, i); std::vector<int64_t> dimensions(lhs_xla_shape.dimensions().begin(), lhs_xla_shape.dimensions().end()); dimensions[i] = rhs_xla_shape.dimensions(i); std::vector<int64_t> broadcast_dimensions(lhs_xla_shape.rank()); absl::c_iota(broadcast_dimensions, 0); lhs = xla::BroadcastInDim(lhs, dimensions, broadcast_dimensions); xla::XlaOp rhs_size; if (rhs_xla_shape.is_dynamic_dimension(i)) { rhs_size = xla::GetDimensionSize(rhs, i); } else { rhs_size = xla::ConstantR0<int32_t>(lhs.builder(), rhs_xla_shape.dimensions(i)); } size = xla::Mul(size, rhs_size); lhs = xla::SetDimensionSize(lhs, size, i); lhs_tensor_shape->set_dim(i, rhs_xla_shape.dimensions(i)); } } } return lhs; }; lhs_handle = reconcile_tensor_mismatched_dims( lhs_handle, rhs_handle, lhs_xla_shape, rhs_xla_shape, &lhs_shape); rhs_handle = reconcile_tensor_mismatched_dims( rhs_handle, lhs_handle, rhs_xla_shape, lhs_xla_shape, &rhs_shape); } BCast bcast(BCast::FromShape(lhs_shape), BCast::FromShape(rhs_shape), false); if (!bcast.IsValid()) { ctx->SetStatus(absl::InvalidArgumentError( absl::StrCat("Incompatible shapes: ", lhs_shape.DebugString(), " vs. ", rhs_shape.DebugString()))); return; } std::vector<int64_t> extend_dimension; int max_rank = std::max(lhs_shape.dims(), rhs_shape.dims()); int min_rank = std::min(lhs_shape.dims(), rhs_shape.dims()); if (min_rank != max_rank) { for (int i = 0; i < min_rank; ++i) { extend_dimension.push_back(max_rank - min_rank + i); } } xla::XlaOp output = Computation(ctx, lhs_handle, lhs_shape.dim_sizes(), rhs_handle, rhs_shape.dim_sizes(), bcast, extend_dimension); ctx->SetOutput(0, output); } std::pair<xla::XlaOp, xla::XlaOp> XlaBinaryOp::Broadcast( xla::XlaOp lhs, xla::XlaOp rhs, const BCast& broadcast_helper) { auto lhs_output = BroadcastTo(lhs, broadcast_helper.output_shape()); if (!lhs_output.ok()) { xla::XlaOp error = lhs.builder()->ReportError(lhs_output.status()); return {error, error}; } auto rhs_output = BroadcastTo(rhs, broadcast_helper.output_shape()); if (!rhs_output.ok()) { xla::XlaOp error = rhs.builder()->ReportError(rhs_output.status()); return {error, error}; } return {lhs_output.value(), rhs_output.value()}; } }
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/util/tensor_format.h" namespace tensorflow { namespace { template <typename T> static Graph* Unary(const string& func, int num, DataType dtype) { Graph* g = new Graph(OpRegistry::Global()); Tensor data(dtype, TensorShape({64, 64, num / (64 * 64)})); CHECK_GT(data.NumElements(), 0); data.flat<T>().setRandom(); test::graph::Unary(g, func, test::graph::Constant(g, data), 0); return g; } const int kRows = 100000; int RowsAndColsArg(int r, int c) { return r * kRows + c; } int RowsFromArg(int arg) { return (arg / kRows); } int ColsFromArg(int arg) { return (arg % kRows); } #define BM_UNARY(DEVICE, FUNC, T, TYPE) \ void BM_##DEVICE##_##FUNC##_##TYPE(::testing::benchmark::State& state) { \ const int num = state.range(0); \ test::Benchmark(#DEVICE, Unary<T>(#FUNC, num, TYPE), \ false) \ .Run(state); \ const int64_t tot = static_cast<int64_t>(state.iterations()) * num; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(T)); \ } \ BENCHMARK(BM_##DEVICE##_##FUNC##_##TYPE) \ ->UseRealTime() \ ->Range(4 << 10, 1 << 20); BM_UNARY(cpu, LeakyRelu, float, DT_FLOAT); BM_UNARY(cpu, LeakyRelu, bfloat16, DT_BFLOAT16); BM_UNARY(cpu, Floor, float, DT_FLOAT); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Floor, float, DT_FLOAT); #endif BM_UNARY(cpu, Floor, double, DT_DOUBLE); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Floor, double, DT_DOUBLE); #endif BM_UNARY(cpu, Conj, std::complex<float>, DT_COMPLEX64); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Conj, std::complex<float>, DT_COMPLEX64); #endif BM_UNARY(cpu, Conj, std::complex<double>, DT_COMPLEX128); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Conj, std::complex<double>, DT_COMPLEX128); #endif BM_UNARY(cpu, Rint, double, DT_DOUBLE); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Rint, double, DT_DOUBLE); #endif BM_UNARY(cpu, Rint, float, DT_FLOAT); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Rint, float, DT_FLOAT); #endif BM_UNARY(cpu, Round, double, DT_DOUBLE); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Round, double, DT_DOUBLE); #endif BM_UNARY(cpu, Round, float, DT_FLOAT); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_UNARY(gpu, Round, float, DT_FLOAT); #endif Graph* BinaryScalar(int num, const string& func) { Graph* g = new Graph(OpRegistry::Global()); Tensor lhs(DT_FLOAT, TensorShape({64, 64, num / (64 * 64)})); lhs.flat<float>().setRandom(); Tensor rhs(DT_FLOAT, TensorShape({})); rhs.flat<float>().setRandom(); test::graph::Binary(g, func, test::graph::Constant(g, lhs), test::graph::Constant(g, rhs)); return g; } #define BM_BINARY_SCALAR(DEVICE, FUNC) \ void BM_##DEVICE##_##FUNC##_scalar(::testing::benchmark::State& state) { \ const int num = state.range(0); \ \ test::Benchmark(#DEVICE, BinaryScalar(num, #FUNC), \ false) \ .Run(state); \ const int64_t tot = static_cast<int64_t>(state.iterations()) * num; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_##FUNC##_scalar) \ ->Arg(1 << 12) \ ->Arg(1 << 13) \ ->Arg(1 << 14) \ ->Arg((1 << 15) - (1 << 13)) \ ->Arg(1 << 15) \ ->Arg((1 << 15) + (1 << 14)) \ ->Arg(1 << 16) \ ->Arg((1 << 17) - (1 << 15)) \ ->Arg(1 << 17) \ ->Arg((1 << 17) + (1 << 16)) \ ->Arg(1 << 18) \ ->Arg(1 << 19) \ ->Arg(1 << 20); BM_BINARY_SCALAR(cpu, Less); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BINARY_SCALAR(gpu, Less); #endif BM_BINARY_SCALAR(cpu, Add); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BINARY_SCALAR(gpu, Add); #endif BM_BINARY_SCALAR(cpu, DivNoNan); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BINARY_SCALAR(gpu, DivNoNan); #endif #undef BM_BINARY_SCALAR Graph* CubeWithPow3(int num) { Graph* g = new Graph(OpRegistry::Global()); Tensor lhs(DT_FLOAT, TensorShape({64, 64, num / (64 * 64)})); lhs.flat<float>().setRandom(); Tensor rhs(DT_FLOAT, TensorShape({})); rhs.flat<float>().setConstant(3); test::graph::Binary(g, "Pow", test::graph::Constant(g, lhs), test::graph::Constant(g, rhs)); return g; } Graph* CubeWithTwoMuls(int num) { Graph* g = new Graph(OpRegistry::Global()); Tensor lhs(DT_FLOAT, TensorShape({64, 64, num / (64 * 64)})); lhs.flat<float>().setRandom(); auto* x = test::graph::Constant(g, lhs); auto* inner = test::graph::Binary(g, "Mul", x, x); test::graph::Binary(g, "Mul", x, inner); return g; } Graph* CubeWithMulSquare(int num) { Graph* g = new Graph(OpRegistry::Global()); Tensor lhs(DT_FLOAT, TensorShape({64, 64, num / (64 * 64)})); lhs.flat<float>().setRandom(); auto* x = test::graph::Constant(g, lhs); auto* inner = test::graph::Unary(g, "Square", x); test::graph::Binary(g, "Mul", test::graph::Constant(g, lhs), inner); return g; } #define BM_CUBE(DEVICE, Impl) \ void BM_##DEVICE##_Cube_##Impl(::testing::benchmark::State& state) { \ const int num = state.range(0); \ \ test::Benchmark(#DEVICE, Impl(num), false) \ .Run(state); \ const int64_t tot = static_cast<int64_t>(state.iterations()) * num; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_Cube_##Impl) \ ->UseRealTime() \ ->Arg(1 << 12) \ ->Arg(1 << 16) \ ->Arg(1 << 20); BM_CUBE(cpu, CubeWithPow3); BM_CUBE(cpu, CubeWithTwoMuls); BM_CUBE(cpu, CubeWithMulSquare); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_CUBE(gpu, CubeWithPow3); BM_CUBE(gpu, CubeWithTwoMuls); BM_CUBE(gpu, CubeWithMulSquare); #endif #undef BM_CUBE template <class T> Graph* BiasAdd(int rows, int cols, DataType type) { Graph* g = new Graph(OpRegistry::Global()); Tensor lhs(type, TensorShape({rows, cols})); lhs.template flat<T>().setRandom(); TensorShape rhs_shape; rhs_shape = TensorShape({cols}); Tensor rhs(type, rhs_shape); rhs.template flat<T>().setRandom(); test::graph::Binary(g, "BiasAdd", test::graph::Constant(g, lhs), test::graph::Constant(g, rhs)); return g; } #define BM_BIAS_ADD(DEVICE, C_TYPE, TF_TYPE, R, C) \ void BM_##DEVICE##_##C_TYPE##_BiasAdd_R##R##_C##C( \ ::testing::benchmark::State& state) { \ const int arg = state.range(0); \ const int rows = RowsFromArg(arg); \ const int cols = ColsFromArg(arg); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * rows * cols; \ test::Benchmark(#DEVICE, BiasAdd<C_TYPE>(rows, cols, TF_TYPE), \ false) \ .Run(state); \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(C_TYPE)); \ } \ BENCHMARK(BM_##DEVICE##_##C_TYPE##_BiasAdd_R##R##_C##C) \ ->UseRealTime() \ ->Arg(RowsAndColsArg(R, C)); #define BM_BIAS_ADD_ALL(DEVICE, C_TYPE, TF_TYPE) \ BM_BIAS_ADD(DEVICE, C_TYPE, TF_TYPE, 512, 2048); \ BM_BIAS_ADD(DEVICE, C_TYPE, TF_TYPE, 512, 4096); \ BM_BIAS_ADD(DEVICE, C_TYPE, TF_TYPE, 2048, 512); \ BM_BIAS_ADD(DEVICE, C_TYPE, TF_TYPE, 4096, 512); using Eigen::half; BM_BIAS_ADD_ALL(cpu, float, DT_FLOAT); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BIAS_ADD_ALL(gpu, float, DT_FLOAT); #endif BM_BIAS_ADD_ALL(cpu, half, DT_HALF); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BIAS_ADD_ALL(gpu, half, DT_HALF); #endif #undef BM_BIAS_ADD_ALL #undef BM_BIAS_ADD template <class T> Graph* BiasAddGrad(int rows, int cols, int channels, DataType type, TensorFormat format) { Graph* g = new Graph(OpRegistry::Global()); TensorShape lhs_shape; if (format == FORMAT_NCHW) { lhs_shape = TensorShape({channels, rows, cols}); } else { lhs_shape = TensorShape({rows, cols, channels}); } Tensor lhs(type, lhs_shape); lhs.template flat<T>().setRandom(); Node* n; TF_CHECK_OK(NodeBuilder(g->NewName("n"), "BiasAddGrad") .Attr("data_format", ToString(format)) .Input(test::graph::Constant(g, lhs), 0) .Finalize(g, &n)); return g; } #define BM_BIAS_ADD_GRAD(DEVICE, FMT, C_TYPE, TF_TYPE, R, C, CH) \ void BM_##DEVICE##_##FMT##_##C_TYPE##_BiasAddGrad_R##R##_C##C##_CH##CH( \ ::testing::benchmark::State& state) { \ const int arg = state.range(0); \ const int channels = state.range(1); \ \ const int rows = RowsFromArg(arg); \ const int cols = ColsFromArg(arg); \ test::Benchmark( \ #DEVICE, \ BiasAddGrad<C_TYPE>(rows, cols, channels, TF_TYPE, FORMAT_##FMT), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * rows * cols * channels; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(C_TYPE)); \ } \ BENCHMARK(BM_##DEVICE##_##FMT##_##C_TYPE##_BiasAddGrad_R##R##_C##C##_CH##CH) \ ->ArgPair(RowsAndColsArg(R, C), CH); #define BM_BIAS_ADD_GRAD_ALL(DEVICE, FORMAT, C_TYPE, TF_TYPE) \ BM_BIAS_ADD_GRAD(DEVICE, FORMAT, C_TYPE, TF_TYPE, 64, 64, 64); \ BM_BIAS_ADD_GRAD(DEVICE, FORMAT, C_TYPE, TF_TYPE, 512, 512, 4); \ BM_BIAS_ADD_GRAD(DEVICE, FORMAT, C_TYPE, TF_TYPE, 512, 512, 1); \ BM_BIAS_ADD_GRAD(DEVICE, FORMAT, C_TYPE, TF_TYPE, 4096, 4096, 4); \ BM_BIAS_ADD_GRAD(DEVICE, FORMAT, C_TYPE, TF_TYPE, 4096, 4096, 1); using Eigen::half; #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BIAS_ADD_GRAD_ALL(gpu, NCHW, float, DT_FLOAT); BM_BIAS_ADD_GRAD_ALL(gpu, NCHW, half, DT_HALF); #endif BM_BIAS_ADD_GRAD_ALL(cpu, NHWC, float, DT_FLOAT); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BIAS_ADD_GRAD_ALL(gpu, NHWC, float, DT_FLOAT); #endif BM_BIAS_ADD_GRAD_ALL(cpu, NHWC, half, DT_HALF); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BIAS_ADD_GRAD_ALL(gpu, NHWC, half, DT_HALF); #endif #undef BM_BIAS_ADD_GRAD_ALL #undef BM_BIAS_ADD_GRAD Graph* BcastAdd(int rows, int cols, int dim) { Graph* g = new Graph(OpRegistry::Global()); TensorShape lhs_shape, rhs_shape; if (dim == 0) { lhs_shape = TensorShape({rows, cols}); rhs_shape = TensorShape({rows, 1}); } else if (dim == 1) { lhs_shape = TensorShape({rows, cols}); rhs_shape = TensorShape({cols}); } else if (dim == 2) { lhs_shape = TensorShape({rows, 1}); rhs_shape = TensorShape({1, cols}); } else { lhs_shape = TensorShape({1, cols}); rhs_shape = TensorShape({rows, 1}); } Tensor lhs(DT_FLOAT, lhs_shape); lhs.flat<float>().setRandom(); Tensor rhs(DT_FLOAT, rhs_shape); rhs.flat<float>().setRandom(); test::graph::Binary(g, "Add", test::graph::Constant(g, lhs), test::graph::Constant(g, rhs)); return g; } #define BM_BCAST_ADD_ROW(DEVICE, R, C) \ void BM_##DEVICE##_BcastAddRow_R##R##_C##C( \ ::testing::benchmark::State& state) { \ const int arg = state.range(0); \ \ const int rows = RowsFromArg(arg); \ const int cols = ColsFromArg(arg); \ test::Benchmark(#DEVICE, BcastAdd(rows, cols, 0), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * rows * cols; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_BcastAddRow_R##R##_C##C)->Arg(RowsAndColsArg(R, C)); #define BM_BCAST_ADD_ROW_ALL(DEVICE) \ BM_BCAST_ADD_ROW(DEVICE, 512, 2048); \ BM_BCAST_ADD_ROW(DEVICE, 512, 4096); \ BM_BCAST_ADD_ROW(DEVICE, 2048, 512); \ BM_BCAST_ADD_ROW(DEVICE, 4096, 512); BM_BCAST_ADD_ROW_ALL(cpu); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BCAST_ADD_ROW_ALL(gpu); #endif #undef BM_BCAST_ADD_ROW_ALL #undef BM_BCAST_ADD_ROW #define BM_BCAST_ADD_COL(DEVICE, R, C) \ void BM_##DEVICE##_BcastAddCol_R##R##_C##C( \ ::testing::benchmark::State& state) { \ const int arg = state.range(0); \ \ const int rows = RowsFromArg(arg); \ const int cols = ColsFromArg(arg); \ test::Benchmark(#DEVICE, BcastAdd(rows, cols, 1), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * rows * cols; \ \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_BcastAddCol_R##R##_C##C) \ ->UseRealTime() \ ->Arg(RowsAndColsArg(R, C)); #define BM_BCAST_ADD_COL_ALL(DEVICE) \ BM_BCAST_ADD_COL(DEVICE, 512, 2048); \ BM_BCAST_ADD_COL(DEVICE, 512, 4096); \ BM_BCAST_ADD_COL(DEVICE, 2048, 512); \ BM_BCAST_ADD_COL(DEVICE, 4096, 512); BM_BCAST_ADD_COL_ALL(cpu); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BCAST_ADD_COL_ALL(gpu); #endif #undef BM_BCAST_ADD_COL_ALL #undef BM_BCAST_ADD_COL #define BM_BCAST_ADD_CROSS_RC(DEVICE, R, C) \ void BM_##DEVICE##_BcastAddCrossRC_R##R##_C##C( \ ::testing::benchmark::State& state) { \ const int arg = state.range(0); \ \ const int rows = RowsFromArg(arg); \ const int cols = ColsFromArg(arg); \ test::Benchmark(#DEVICE, BcastAdd(rows, cols, 2), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * rows * cols; \ \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_BcastAddCrossRC_R##R##_C##C) \ ->UseRealTime() \ ->Arg(RowsAndColsArg(R, C)); #define BM_BCAST_ADD_CROSS_RC_ALL(DEVICE) \ BM_BCAST_ADD_CROSS_RC(DEVICE, 512, 2048); \ BM_BCAST_ADD_CROSS_RC(DEVICE, 512, 4096); \ BM_BCAST_ADD_CROSS_RC(DEVICE, 2048, 512); \ BM_BCAST_ADD_CROSS_RC(DEVICE, 4096, 512); BM_BCAST_ADD_CROSS_RC_ALL(cpu); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BCAST_ADD_CROSS_RC_ALL(gpu); #endif #undef BM_BCAST_ADD_CROSS_RC_ALL #undef BM_BCAST_ADD_CROSS_RC #define BM_BCAST_ADD_CROSS_CR(DEVICE, R, C) \ void BM_##DEVICE##_BcastAddCrossCR_R##R##_C##C( \ ::testing::benchmark::State& state) { \ const int arg = state.range(0); \ \ const int rows = RowsFromArg(arg); \ const int cols = ColsFromArg(arg); \ test::Benchmark(#DEVICE, BcastAdd(rows, cols, 3), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * rows * cols; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(float)); \ } \ BENCHMARK(BM_##DEVICE##_BcastAddCrossCR_R##R##_C##C) \ ->UseRealTime() \ ->Arg(RowsAndColsArg(R, C)); #define BM_BCAST_ADD_CROSS_CR_ALL(DEVICE) \ BM_BCAST_ADD_CROSS_CR(DEVICE, 512, 2048); \ BM_BCAST_ADD_CROSS_CR(DEVICE, 512, 4096); \ BM_BCAST_ADD_CROSS_CR(DEVICE, 2048, 512); \ BM_BCAST_ADD_CROSS_CR(DEVICE, 4096, 512); BM_BCAST_ADD_CROSS_CR_ALL(cpu); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_BCAST_ADD_CROSS_CR_ALL(gpu); #endif #undef BM_BCAST_ADD_CROSS_CR_ALL #undef BM_BCAST_ADD_CROSS_CR } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/cwise_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/cwise_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eb05537e-6e3d-43eb-98f5-278684d16219
cpp
tensorflow/tensorflow
literal
third_party/xla/xla/literal.cc
third_party/xla/xla/literal_test.cc
#include "xla/literal.h" #include <algorithm> #include <complex> #include <cstdint> #include <cstring> #include <functional> #include <limits> #include <memory> #include <optional> #include <ostream> #include <string> #include <type_traits> #include <utility> #include <variant> #include <vector> #include "absl/base/casts.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/printer.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/core/bitmap.h" #include "xla/tsl/util/byte_swap_array.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/mem.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using absl::StrCat; using primitive_util::NativeTypeOf; constexpr bool kLittleEndian = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__; void ConvertEndianShort(std::string* bytes) { CHECK_EQ(bytes->size() % 2, 0); for (int64_t i = 0, end = bytes->size(); i < end; i += 2) { std::swap((*bytes)[i], (*bytes)[i + 1]); } } void ConvertEndianShort(char* bytes, int64_t size) { CHECK_EQ(size % 2, 0); for (int64_t i = 0; i < size; i += 2) { std::swap(bytes[i], bytes[i + 1]); } } bool LiteralProtoHasValues(const LiteralProto& proto) { return !proto.s2s().empty() || !proto.s4s().empty() || !proto.s8s().empty() || !proto.s16s().empty() || proto.s32s_size() || proto.s64s_size() || !proto.u2s().empty() || !proto.u4s().empty() || !proto.u8s().empty() || !proto.u16s().empty() || proto.u32s_size() || proto.u64s_size() || !proto.f8e5m2s().empty() || !proto.f8e4m3s().empty() || !proto.f8e4m3fns().empty() || !proto.f8e4m3b11fnuzs().empty() || !proto.f8e5m2fnuzs().empty() || !proto.f8e4m3fnuzs().empty() || !proto.f8e3m4s().empty() || !proto.f16s().empty() || !proto.bf16s().empty() || proto.f32s_size() || proto.f64s_size() || proto.c64s_size() || proto.c128s_size() || proto.preds_size() || proto.tuple_literals_size(); } template <PrimitiveType kType> const Shape& ScalarShapeImpl() { static_assert(primitive_util::IsArrayType(kType), "Not a valid type for a scalar."); static const Shape* shape = [] { auto shape = new Shape(kType, {}, {}, {}); shape->mutable_layout(); return shape; }(); return *shape; } const Shape& ScalarShape(PrimitiveType type) { return primitive_util::ArrayTypeSwitch<const Shape&>( [&](auto primitive_type_constant) -> const Shape& { return ScalarShapeImpl<primitive_type_constant>(); }, type); } const Shape& NilShape() { static const Shape* shape = new Shape(TUPLE, {}, {}, {}); return *shape; } const Shape* TryInternShape(const Shape& shape) { if (shape.IsTuple() && shape.tuple_shapes_size() == 0) { return &NilShape(); } if (shape.IsArray() && shape.dimensions_size() == 0 && shape.is_static() && shape.layout().tiles_size() == 0 && shape.layout().memory_space() == 0) { return &ScalarShape(shape.element_type()); } return nullptr; } struct StrideConfig { StrideConfig(const Shape& source_shape, const Shape& dest_shape, absl::Span<const int64_t> dimensions); absl::Span<const int64_t> dimensions; DimensionVector base; DimensionVector step; int64_t minor_dimension = 0; int64_t dest_stride = 1; int64_t source_stride = 1; int64_t minor_loop_size = 1; }; StrideConfig::StrideConfig(const Shape& source_shape, const Shape& dest_shape, absl::Span<const int64_t> dimensions) : dimensions(dimensions), base(dimensions.size(), 0), step(dimensions.size(), 1) { if (!dimensions.empty()) { if (dimensions[LayoutUtil::Minor(source_shape.layout(), 0)] >= dimensions[LayoutUtil::Minor(dest_shape.layout(), 0)]) { minor_dimension = LayoutUtil::Minor(source_shape.layout(), 0); dest_stride = IndexUtil::GetDimensionStride(dest_shape, minor_dimension); } else { minor_dimension = LayoutUtil::Minor(dest_shape.layout(), 0); source_stride = IndexUtil::GetDimensionStride(source_shape, minor_dimension); } minor_loop_size = dimensions[minor_dimension]; step[minor_dimension] = minor_loop_size; } } } LiteralBase::~LiteralBase() = default; const Shape& LiteralBase::shape() const { return root_piece().subshape(); } const char* LiteralBase::Piece::buffer() const { if (auto* r = std::get_if<DenseRep>(&rep_)) { return r->data; } if (auto* r = std::get_if<DenseInlinedRep>(&rep_)) { return r->data; } DCHECK(std::holds_alternative<TupleRep>(rep_) || std::holds_alternative<Uninitialized>(rep_)); return nullptr; } const LiteralBase::Piece& LiteralBase::piece( const ShapeIndex& shape_index) const { const Piece* piece = &root_piece(); for (const auto i : shape_index) { DCHECK_GE(i, 0); DCHECK_LT(i, piece->children_size()); piece = &piece->child(i); } return *piece; } std::ostream& operator<<(std::ostream& out, const Literal& literal) { out << literal.ToString(); return out; } Shape* MutableLiteralBase::mutable_shape_do_not_use() { const Shape* const_shape = shape_.get(); if (!shape_.OwnsPtr()) { shape_ = MaybeOwningShapePtr(std::make_unique<Shape>(*shape_)); } Shape* shape = shape_.get_mutable(); if (shape != const_shape) { std::function<void(const Shape&, Piece*)> set_piece_shapes = [&set_piece_shapes](const Shape& shape, Piece* piece) { piece->set_subshape(&shape); if (shape.IsTuple()) { for (int i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { const Shape& subshape = shape.tuple_shapes(i); set_piece_shapes(subshape, &piece->child(i)); } } }; set_piece_shapes(*shape, &mutable_root_piece()); } return shape; } Literal::Literal() : Literal(NilShape()) {} Literal::Literal(const Shape& shape) : Literal(shape, true) {} void Literal::SetShape(const Shape& shape) { Shape shape_storage; const Shape* shape_ptr = &shape; if (shape.IsArray() && LayoutUtil::HasCustomElementSizeInBits(shape)) { shape_storage = shape; shape_storage.mutable_layout()->set_element_size_in_bits(0); shape_ptr = &shape_storage; } if (const Shape* intered_shape_ptr = TryInternShape(*shape_ptr)) { shape_ = intered_shape_ptr; } else { shape_ = std::make_unique<Shape>(*shape_ptr); } } void Literal::SetPiece(const Shape& shape, Piece* piece, bool allocate_arrays, ArrayValueState leaf_array_value_state) { if (shape.IsTuple()) { for (const Shape& subshape : shape.tuple_shapes()) { Piece child_piece; child_piece.set_subshape(&subshape); SetPiece(subshape, &child_piece, allocate_arrays, leaf_array_value_state); piece->emplace_back(std::move(child_piece)); } } else if (shape.IsArray()) { DCHECK(LayoutUtil::IsDenseArray(shape)) << "literal array storage is currently only supported for dense " "arrays: " << shape; piece->set_array_value_state(leaf_array_value_state); if (leaf_array_value_state == LiteralBase::ArrayValueState::kKnown && allocate_arrays) { piece->AllocateBuffers(); } } } Literal::Literal(const Shape& shape, bool allocate_arrays, ArrayValueState leaf_array_value_state) : MutableLiteralBase() { SetShape(shape); CHECK(leaf_array_value_state != ArrayValueState::kKnown || LayoutUtil::HasLayout(*shape_)); root_piece_.set_subshape(shape_.get()); CHECK(&root_piece_.subshape() == shape_.get()); SetPiece(*shape_, &root_piece_, allocate_arrays, leaf_array_value_state); } Literal::~Literal() { DeallocateBuffers(); } void Literal::DeallocateBuffers() { root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { piece->DeallocateBuffers(); }); } Literal::Literal(Literal&& other) : MutableLiteralBase() { *this = std::move(other); } Literal& Literal::operator=(Literal&& other) { DCHECK(&other.root_piece_.subshape() == other.shape_.get()); using std::swap; swap(shape_, other.shape_); swap(root_piece_, other.root_piece_); DCHECK(&root_piece_.subshape() == shape_.get()); return *this; } Literal LiteralBase::CreateFromShape(const Shape& shape) { Literal literal(shape); literal.root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { if (piece->subshape().IsArray()) { memset(piece->untyped_data(), 0, piece->size_bytes_dense()); } }); return literal; } Literal LiteralBase::CreateFromShapeWithUnknownLeafArrays(const Shape& shape) { Literal literal(shape, false, ArrayValueState::kUnknown); return literal; } Literal LiteralBase::CreateFromShapeWithUndeterminedLeafArrays( const Shape& shape) { Literal literal(shape, false, ArrayValueState::kUndetermined); return literal; } int32_t LiteralBase::GetDynamicSize(int64_t dim_index) const { return GetDynamicSize(dim_index, {}); } int32_t LiteralBase::GetDynamicSize(int64_t dim_index, const ShapeIndex& shape_index) const { return piece(shape_index).GetDynamicSize(dim_index); } std::optional<int64_t> LiteralBase::GetFirstInteger() const { if (!primitive_util::IsIntegralType(shape().element_type())) { return std::nullopt; } return primitive_util::IntegralTypeSwitch<std::optional<int64_t>>( [&](auto primitive_type_constant) -> std::optional<int64_t> { using NativeT = NativeTypeOf<primitive_type_constant>; auto first_element = GetFirstElement<NativeT>(); if constexpr (std::is_same_v<NativeT, uint64_t>) { int64_t v = static_cast<int64_t>(first_element); if (v < 0) { return std::nullopt; } } return first_element; }, shape().element_type()); } void LiteralBase::BuildPieceSubtree(const Shape& shape, Piece* piece) { CHECK(shape.IsTuple()); for (int i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { const Shape& subshape = shape.tuple_shapes(i); Piece child_piece; child_piece.set_subshape(&subshape); if (subshape.IsTuple()) { BuildPieceSubtree(subshape, &child_piece); } piece->emplace_back(std::move(child_piece)); } } absl::Status LiteralBase::SerializeToString(std::string* output) const { ShapeProto shape_proto = shape().ToProto(); TF_ASSIGN_OR_RETURN(int64_t size, ShapeUtil::SerializedSizeWithProto(shape(), shape_proto)); output->resize(size); return SerializeWithShapeProto(shape_proto, output->data()); } absl::StatusOr<std::string> LiteralBase::SerializeAsString() const { std::string result; TF_RETURN_IF_ERROR(SerializeToString(&result)); return std::move(result); } template <typename NativeT> absl::Status MutableLiteralBase::CopySliceFromInternal( const LiteralBase& src_literal, absl::Span<const int64_t> src_base, absl::Span<const int64_t> dest_base, absl::Span<const int64_t> copy_size) { auto linear_index = [](const Shape& shape, absl::Span<const int64_t> multi_index) { return IndexUtil::MultidimensionalIndexToLinearIndex(shape, multi_index); }; NativeT* dest_data = this->data<NativeT>().data(); const NativeT* src_data = src_literal.data<NativeT>().data(); if (src_literal.shape().rank() == 0 || shape().rank() == 0) { TF_RET_CHECK(copy_size.empty()); dest_data[linear_index(shape(), dest_base)] = src_data[linear_index(src_literal.shape(), src_base)]; } else if (!ShapeUtil::IsZeroElementArray(shape()) && !ShapeUtil::IsZeroElementArray(src_literal.shape()) && absl::c_none_of(copy_size, [](auto d) { return d == 0; })) { TF_RET_CHECK(src_base.size() == dest_base.size()); TF_RET_CHECK(src_base.size() == copy_size.size()); DimensionVector src_indexes(src_base.size(), 0); DimensionVector dest_indexes(dest_base.size(), 0); StrideConfig stride_config(src_literal.shape(), shape(), copy_size); auto copy_proc = [&](absl::Span<const int64_t> indexes) { std::transform(indexes.begin(), indexes.end(), src_base.begin(), src_indexes.begin(), std::plus<int64_t>()); std::transform(indexes.begin(), indexes.end(), dest_base.begin(), dest_indexes.begin(), std::plus<int64_t>()); int64_t src_index = linear_index(src_literal.shape(), src_indexes); int64_t dest_index = linear_index(shape(), dest_indexes); StridedCopy(dest_data + dest_index, stride_config.dest_stride, src_data + src_index, stride_config.source_stride, stride_config.minor_loop_size); return true; }; ShapeUtil::ForEachIndex(src_literal.shape(), stride_config.base, stride_config.dimensions, stride_config.step, copy_proc); } return absl::OkStatus(); } void MutableLiteralBase::CopyElementFrom(const LiteralSlice& src_literal, absl::Span<const int64_t> src_index, absl::Span<const int64_t> dest_index) { DCHECK(LayoutUtil::IsDenseArray(shape())); DCHECK_EQ(shape().element_type(), src_literal.shape().element_type()); const int64_t src_linear_index = IndexUtil::MultidimensionalIndexToLinearIndex(src_literal.shape(), src_index); const int64_t dest_linear_index = IndexUtil::MultidimensionalIndexToLinearIndex(shape(), dest_index); const int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType(shape().element_type()); char* dest_address = static_cast<char*>(untyped_data()) + dest_linear_index * primitive_size; const char* source_address = static_cast<const char*>(src_literal.untyped_data()) + src_linear_index * primitive_size; if (dest_address != source_address) { memcpy(dest_address, source_address, primitive_size); } } absl::StatusOr<Literal> MutableLiteralBase::CreateFromProto( const LiteralProto& proto, bool prohibit_empty_literal) { if (!proto.has_shape()) { return InvalidArgument("LiteralProto has no shape"); } Shape shape(proto.shape()); if (ShapeUtil::HasPrimitiveType(shape, OPAQUE_TYPE)) { return InvalidArgument( "Literal shape cannot include OPAQUE_TYPE sub-shape"); } if (!LayoutUtil::HasLayout(shape)) { return InvalidArgument("LiteralProto has no layout"); } if (LayoutUtil::IsSparseArray(shape)) { return Unimplemented("Sparse literals are not supported"); } TF_RETURN_IF_ERROR(ShapeUtil::ValidateShapeWithOptionalLayout(shape)); Literal literal(shape); TF_RETURN_IF_ERROR(literal.root_piece_.ForEachMutableSubpieceWithStatus( [&](const ShapeIndex& index, Piece* piece) -> absl::Status { const LiteralProto* proto_element = &proto; for (int64_t i : index) { CHECK(i < proto_element->tuple_literals_size()); proto_element = &proto_element->tuple_literals(i); } if (piece->subshape().IsTuple()) { if (proto_element->tuple_literals_size() != ShapeUtil::TupleElementCount(piece->subshape())) { return InvalidArgument( "Expected %d tuple elements in LiteralProto, has %d", ShapeUtil::TupleElementCount(piece->subshape()), proto_element->tuple_literals_size()); } return absl::OkStatus(); } if (piece->subshape().element_type() == TOKEN) { return absl::OkStatus(); } CHECK(piece->subshape().IsArray()); if (prohibit_empty_literal || LiteralProtoHasValues(*proto_element)) { TF_RETURN_IF_ERROR(piece->CopyFromProto(*proto_element)); } return absl::OkStatus(); })); return std::move(literal); } Literal Literal::SubLiteral(ShapeIndexView shape_index) { if (!shape_index.empty()) { auto decomposed = this->DecomposeTuple(); return decomposed.at(shape_index.front()) .SubLiteral(shape_index.subspan(1)); } else { return std::move(*this); } } std::vector<Literal> Literal::DecomposeTuple() { CHECK(shape().IsTuple()); std::vector<Literal> elements; const auto tuple_element_count = ShapeUtil::TupleElementCount(shape()); elements.reserve(tuple_element_count); for (int i = 0; i < tuple_element_count; ++i) { elements.push_back(Literal(ShapeUtil::GetSubshape(shape(), {i}), false)); Literal& element = elements.back(); element.root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* dest_piece) { if (dest_piece->subshape().IsTuple()) { return; } ShapeIndex src_index = {i}; for (int64_t j : index) { src_index.push_back(j); } Piece& src_piece = piece(src_index); dest_piece->MoveDataFrom(src_piece); }); } *this = Literal(); return elements; } namespace { template <typename NativeT> void CopyElementsBetween(absl::Span<NativeT> dest, absl::Span<const NativeT> src, const Shape& dest_shape, const Shape& src_shape) { DCHECK(LayoutUtil::IsDenseArray(dest_shape)); DCHECK(LayoutUtil::IsDenseArray(src_shape)); DCHECK(ShapeUtil::Compatible(dest_shape, src_shape)); if (ShapeUtil::IsZeroElementArray(dest_shape)) { return; } std::vector<int64_t> index(dest_shape.rank()); do { dest[IndexUtil::MultidimensionalIndexToLinearIndex(dest_shape, index)] = src[IndexUtil::MultidimensionalIndexToLinearIndex(src_shape, index)]; } while (IndexUtil::BumpIndices(dest_shape, absl::MakeSpan(index))); } } int32_t LiteralBase::Piece::GetDynamicSize(int64_t dim_index) const { CHECK(LayoutUtil::IsDenseArray(subshape())); if (!subshape_->is_dynamic_dimension(dim_index)) { return subshape_->dimensions(dim_index); } return dynamic_size_buffer()[dim_index]; } void LiteralBase::Piece::SetDynamicSize(int64_t dim_index, int32_t size) { CHECK(LayoutUtil::IsDenseArray(subshape())); CHECK(subshape_->is_dynamic_dimension(dim_index)); dynamic_size_buffer()[dim_index] = size; } void LiteralBase::Piece::AllocateBuffers() { const int64_t bytes = total_bytes_dense(); if (bytes > kMaxInlinedBytes) { CHECK_EQ(buffer(), nullptr); rep_.emplace<DenseRep>(); set_buffer( static_cast<char*>(tsl::port::AlignedMalloc(bytes, kMinimumAlignment))); } else { rep_.emplace<DenseInlinedRep>(); } } void LiteralBase::Piece::DeallocateBuffers() { if (auto* array_rep = GetDenseRep()) { tsl::port::AlignedFree(array_rep->data); rep_.emplace<Uninitialized>(); } } template <typename NativeT> void LiteralBase::Piece::CopyElementsWithDynamicBound( const LiteralBase::Piece& src) { auto& dest_shape = subshape(); auto& src_shape = src.subshape(); CHECK(dest_shape.is_static() || src_shape.is_static()); auto& bound_shape = dest_shape.is_static() ? src_shape : dest_shape; if (ShapeUtil::IsZeroElementArray(dest_shape)) { return; } if (dest_shape.rank() == 1) { int64_t count = std::min(GetDynamicSize(0), src.GetDynamicSize(0)); std::copy_n(src.data<NativeT>().begin(), count, data<NativeT>().begin()); return; } std::vector<int64_t> index(dest_shape.rank()); do { bool out_of_bound = false; for (int64_t i = 0; i < index.size(); ++i) { if (index[i] >= GetDynamicSize(i) || index[i] >= src.GetDynamicSize(i)) { out_of_bound = true; } } if (out_of_bound) { continue; } data<NativeT>()[IndexUtil::MultidimensionalIndexToLinearIndex(dest_shape, index)] = src.data<NativeT>()[IndexUtil::MultidimensionalIndexToLinearIndex( src_shape, index)]; } while (IndexUtil::BumpIndices(bound_shape, absl::MakeSpan(index))); } absl::Status LiteralBase::Piece::CopyFrom(const LiteralBase::Piece& src, bool only_dynamic_bound) { CHECK(subshape_ != nullptr); CHECK(src.subshape_ != nullptr); CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK(LayoutUtil::IsDenseArray(src.subshape())) << __func__ << " is only supported for dense arrays: " << src.subshape(); if (!only_dynamic_bound) { CHECK(ShapeUtil::Compatible(subshape(), src.subshape())); } if (src.array_value_state_ == ArrayValueState::kUnknown || src.array_value_state_ == ArrayValueState::kUndetermined) { if (array_value_state_ == ArrayValueState::kKnown) { DeallocateBuffers(); } array_value_state_ = src.array_value_state_; return absl::OkStatus(); } else { CHECK(src.array_value_state_ == ArrayValueState::kKnown); if (array_value_state_ == ArrayValueState::kUndetermined || array_value_state_ == ArrayValueState::kUnknown) { AllocateBuffers(); } array_value_state_ = src.array_value_state_; } if (ShapeUtil::Equal(subshape(), src.subshape())) { memcpy(buffer(), src.buffer(), src.size_bytes_dense()); } else { std::vector<int64_t> origin(subshape().rank(), 0); primitive_util::ArrayTypeSwitch<void>( [&](auto primitive_type_constant) { using NativeT = NativeTypeOf<primitive_type_constant>; if (only_dynamic_bound) { CopyElementsWithDynamicBound<NativeT>(src); } else { CopyElementsBetween<NativeT>(this->data<NativeT>(), src.data<NativeT>(), subshape(), src.subshape()); } }, subshape().element_type()); } DCHECK_EQ(dynamic_size_buffer_bytes(), src.dynamic_size_buffer_bytes()); if (subshape().is_dynamic() && src.subshape().is_dynamic()) { memcpy(dynamic_size_buffer(), src.dynamic_size_buffer(), src.dynamic_size_buffer_bytes()); } return absl::OkStatus(); } void MutableLiteralBase::SetDynamicSize(int64_t dim_index, int32_t size) { return SetDynamicSize(dim_index, {}, size); } void MutableLiteralBase::SetDynamicSize(int64_t dim_index, const ShapeIndex& shape_index, int32_t size) { Shape* subshape = ShapeUtil::GetMutableSubshape(mutable_shape_do_not_use(), shape_index); CHECK(LayoutUtil::IsDenseArray(*subshape)) << __func__ << " is only supported for dense arrays: " << *subshape; CHECK_GE(subshape->dimensions(dim_index), size); subshape->set_dynamic_dimension(dim_index, true); CHECK_EQ(&piece(shape_index).subshape(), subshape); piece(shape_index).SetDynamicSize(dim_index, size); } absl::Status MutableLiteralBase::CopyFrom(const LiteralSlice& src_literal, const ShapeIndex& dest_shape_index, const ShapeIndex& src_shape_index, bool only_dynamic_bound) { const Shape& dest_subshape = ShapeUtil::GetSubshape(shape(), dest_shape_index); const Shape& src_subshape = ShapeUtil::GetSubshape(src_literal.shape(), src_shape_index); if (only_dynamic_bound) { auto& bound_shape = dest_subshape.is_static() ? src_subshape : dest_subshape; auto& compact_shape = dest_subshape.is_static() ? dest_subshape : src_subshape; CHECK(ShapeUtil::DynamicShapeIsCompatible(compact_shape, bound_shape)) << compact_shape.ToString() << " vs " << bound_shape.ToString(); } else { if (!ShapeUtil::Compatible(dest_subshape, src_subshape)) { return InvalidArgument( "Destination subshape incompatible with source subshape: %s vs %s", ShapeUtil::HumanString(dest_subshape), ShapeUtil::HumanString(src_subshape)); } } return mutable_root_piece().ForEachMutableSubpieceWithStatus( [&](const ShapeIndex& index, Piece* piece) { if (!piece->subshape().IsArray()) { return absl::OkStatus(); } bool in_subtree_to_copy = true; for (int i = 0; i < dest_shape_index.size(); ++i) { if (index[i] != dest_shape_index[i]) { in_subtree_to_copy = false; break; } } if (!in_subtree_to_copy) { return absl::OkStatus(); } ShapeIndex src_piece_index = src_shape_index; for (int64_t i = dest_shape_index.size(), end = index.size(); i < end; ++i) { src_piece_index.push_back(index[i]); } TF_RETURN_IF_ERROR( piece->CopyFrom(src_literal.piece(src_piece_index), only_dynamic_bound)); return absl::OkStatus(); }); } absl::Status Literal::MoveFrom(Literal&& src_literal, const ShapeIndex& dest_shape_index) { const Shape& dest_subshape = ShapeUtil::GetSubshape(shape(), dest_shape_index); if (!ShapeUtil::Equal(dest_subshape, src_literal.shape())) { return InvalidArgument( "Destination subshape not equal to source shape: %s vs %s", ShapeUtil::HumanString(dest_subshape), ShapeUtil::HumanString(src_literal.shape())); } src_literal.root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& src_index, Piece* src_piece) { if (!src_piece->subshape().IsArray()) { return; } ShapeIndex dest_index = dest_shape_index; for (int64_t i : src_index) { dest_index.push_back(i); } Piece& dest_piece = piece(dest_index); dest_piece.DeallocateBuffers(); dest_piece.MoveDataFrom(*src_piece); }); src_literal.shape_ = MaybeOwningShapePtr(&NilShape()); src_literal.root_piece_ = Piece(); src_literal.root_piece_.set_subshape(src_literal.shape_.get()); return absl::OkStatus(); } absl::Status MutableLiteralBase::CopySliceFrom( const LiteralSlice& src_literal, absl::Span<const int64_t> src_base, absl::Span<const int64_t> dest_base, absl::Span<const int64_t> copy_size) { TF_RET_CHECK(LayoutUtil::IsDenseArray(shape())) << shape(); TF_RET_CHECK(LayoutUtil::IsDenseArray(src_literal.shape())) << src_literal.shape(); TF_RET_CHECK(ShapeUtil::SameElementType(src_literal.shape(), shape())); TF_RET_CHECK(src_literal.shape().rank() == src_base.size()); TF_RET_CHECK(shape().rank() == dest_base.size()); return primitive_util::ArrayTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { using NativeT = NativeTypeOf<primitive_type_constant>; return CopySliceFromInternal<NativeT>(src_literal, src_base, dest_base, copy_size); }, shape().element_type()); } void MutableLiteralBase::PopulateR1(const tsl::core::Bitmap& values) { CHECK(shape().IsArray()); CHECK_EQ(shape().rank(), 1); CHECK_EQ(element_count(), values.bits()); CHECK_EQ(shape().element_type(), PRED); for (int64_t i = 0; i < static_cast<int64_t>(values.bits()); ++i) { Set({i}, values.get(i)); } } void MutableLiteralBase::PopulateInplaceInternal( absl::FunctionRef<void(void*, absl::Span<const int64_t>, int)> populator, bool parallel) { const Shape& this_shape = shape(); const int64_t rank = this_shape.rank(); DCHECK(LayoutUtil::IsDenseArray(this_shape)); char* const dest_base = static_cast<char*>(untyped_data()); if (rank > 0) { StrideConfig stride_config(this_shape, this_shape, this_shape.dimensions()); const int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType(shape().element_type()); const int64_t num_elements = ShapeUtil::ElementsIn(shape()); if (parallel && this_shape.rank() == 1) { const int64_t thread_count = ShapeUtil::GetForEachIndexParallelThreadCount(); stride_config.dest_stride = stride_config.minor_loop_size = num_elements > 32 ? std::max<int64_t>(num_elements / thread_count, 1) : num_elements; stride_config.step = {stride_config.minor_loop_size}; } auto init_function = [&](absl::Span<const int64_t> indexes, int thread_id) -> absl::StatusOr<bool> { const int64_t index = IndexUtil::MultidimensionalIndexToLinearIndex(shape(), indexes); DimensionVector minor_scan_indexes(rank, 0); std::copy(indexes.begin(), indexes.end(), minor_scan_indexes.begin()); char* dest_ptr = dest_base + index * primitive_size; char* const dest_end = dest_base + std::min(index + stride_config.minor_loop_size, num_elements) * primitive_size; while (dest_ptr < dest_end) { populator(dest_ptr, minor_scan_indexes, thread_id); ++minor_scan_indexes[stride_config.minor_dimension]; dest_ptr += primitive_size; } return true; }; if (parallel) { ShapeUtil::ForEachIndexParallel(this_shape, stride_config.base, stride_config.dimensions, stride_config.step, init_function); } else { ShapeUtil::ForEachIndex( this_shape, stride_config.base, stride_config.dimensions, stride_config.step, [&init_function]( absl::Span<const int64_t> indexes) -> absl::StatusOr<bool> { auto result_ignored = init_function(indexes, -1); return true; }); } } else { populator(dest_base, {}, -1); } } absl::Status MutableLiteralBase::PopulateInplace( absl::FunctionRef<void(void*, absl::Span<const int64_t>)> populator) { TF_RET_CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); PopulateInplaceInternal( [&](void* dest, absl::Span<const int64_t> indexes, int ) { return populator(dest, indexes); }, false); return absl::OkStatus(); } absl::Status MutableLiteralBase::PopulateInplaceParallel( absl::FunctionRef<void(void*, absl::Span<const int64_t>, int)> populator) { TF_RET_CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); PopulateInplaceInternal(populator, element_count() > 32); return absl::OkStatus(); } Literal LiteralBase::Relayout(const Layout& new_layout, const ShapeIndex& shape_index) const { Shape new_shape = shape(); Shape* subshape = ShapeUtil::GetMutableSubshape(&new_shape, shape_index); TF_CHECK_OK(LayoutUtil::ValidateLayoutForShape(new_layout, *subshape)); *subshape->mutable_layout() = new_layout; if (subshape->layout().element_size_in_bits() == 4) { subshape->mutable_layout()->set_element_size_in_bits(0); } Literal result(new_shape); TF_CHECK_OK(result.CopyFrom(*this)); return result; } Literal LiteralBase::Relayout(const Shape& shape_with_layout) const { CHECK(ShapeUtil::Compatible(shape_with_layout, shape())) << "Given shape_with_layout " << ShapeUtil::HumanString(shape_with_layout) << " not compatible with literal shape " << ShapeUtil::HumanString(shape()); Literal result = CreateFromShape(shape_with_layout); ShapeUtil::ForEachSubshape( result.shape(), [this, &result](const Shape& subshape, const ShapeIndex& index) { if (subshape.IsArray()) { TF_CHECK_OK(result.CopyFrom(*this, index, index)); } }); return result; } Literal LiteralBase::ToBoundedDynamic(const Shape& bounded_shape) const { CHECK(bounded_shape.is_dynamic()); Literal result(bounded_shape); ShapeUtil::ForEachSubshape( shape(), [&](const Shape& subshape, const ShapeIndex& index) { if (!subshape.IsArray()) { return; } for (int64_t i = 0; i < subshape.rank(); ++i) { if (bounded_shape.is_dynamic_dimension(i)) { result.SetDynamicSize(i, subshape.dimensions(i)); } } }); TF_CHECK_OK(result.CopyFrom(*this, {}, {}, true)); return result; } Literal LiteralBase::ToStatic() const { Shape new_shape = shape(); ShapeUtil::ForEachMutableSubshape( &new_shape, [this](Shape* subshape, const ShapeIndex& index) { if (!subshape->IsArray()) { return; } for (int64_t i = 0; i < subshape->rank(); ++i) { if (!subshape->is_dynamic_dimension(i)) continue; subshape->set_dynamic_dimension(i, false); subshape->set_dimensions(i, GetDynamicSize(i, index)); } }); Literal result(new_shape); TF_CHECK_OK(result.CopyFrom(*this, {}, {}, true)); return result; } namespace { template <int64_t PRIMITIVE_SIZE> absl::StatusOr<Literal> BroadcastHelper(const LiteralBase& src, const Shape& src_shape, const Shape& result_shape, absl::Span<const int64_t> dimensions) { for (int64_t i = 0, end = dimensions.size(); i < end; i++) { TF_RET_CHECK(src_shape.dimensions(i) == result_shape.dimensions(dimensions[i])); } TF_RET_CHECK(result_shape.element_type() == src_shape.element_type()); Literal result(result_shape); if (src_shape.is_dynamic()) { for (int64_t i = 0; i < dimensions.size(); ++i) { if (src_shape.is_dynamic_dimension(i)) { int64_t dynamic_size = src.GetDynamicSize(i); result.SetDynamicSize(dimensions[i], dynamic_size); } } } int src_shape_dims = src_shape.dimensions_size(); std::vector<int64_t> scratch_source_index(src_shape_dims); absl::Span<int64_t> scratch_source_span(scratch_source_index); int64_t* scratch_source_array = scratch_source_span.data(); const char* source_data = static_cast<const char*>(src.untyped_data()); char* dest_data = static_cast<char*>(result.untyped_data()); auto src_minor_to_major = LayoutUtil::MinorToMajor(src_shape); auto result_minor_to_major = LayoutUtil::MinorToMajor(result_shape); ShapeUtil::ForEachIndexNoStatus( result_shape, [&](absl::Span<const int64_t> output_index) { int64_t dest_index = IndexUtil::MultidimensionalIndexToLinearIndex( result_shape, result_minor_to_major, output_index); int64_t source_index; for (int64_t i = 0, end = dimensions.size(); i < end; ++i) { scratch_source_array[i] = output_index[dimensions[i]]; } if (src_shape_dims == 1) { source_index = scratch_source_array[0]; DCHECK_EQ(source_index, IndexUtil::MultidimensionalIndexToLinearIndex( src_shape, src_minor_to_major, scratch_source_span)); } else { source_index = IndexUtil::MultidimensionalIndexToLinearIndex( src_shape, src_minor_to_major, scratch_source_span); } memcpy(dest_data + PRIMITIVE_SIZE * dest_index, source_data + PRIMITIVE_SIZE * source_index, PRIMITIVE_SIZE); return true; }); return std::move(result); } } absl::StatusOr<Literal> LiteralBase::Broadcast( const Shape& result_shape, absl::Span<const int64_t> dimensions) const { const LiteralBase& src = *this; const Shape& src_shape = shape(); if (!src_shape.IsArray()) { return InvalidArgument("Broadcast only supports arrays."); } const int64_t primitive_size = ShapeUtil::ByteSizeOfPrimitiveType(src_shape.element_type()); switch (primitive_size) { case 0: return BroadcastHelper<0>(src, src_shape, result_shape, dimensions); case 1: return BroadcastHelper<1>(src, src_shape, result_shape, dimensions); case 2: return BroadcastHelper<2>(src, src_shape, result_shape, dimensions); case 4: return BroadcastHelper<4>(src, src_shape, result_shape, dimensions); case 8: return BroadcastHelper<8>(src, src_shape, result_shape, dimensions); case 16: return BroadcastHelper<16>(src, src_shape, result_shape, dimensions); default: LOG(FATAL) << "Unhandled primitive size " << primitive_size; return InvalidArgument("Unhandled primitive size"); break; } } absl::StatusOr<Literal> LiteralBase::Reshape( absl::Span<const int64_t> dimensions) const { if (!LayoutUtil::IsDenseArray(shape())) { return InvalidArgument("Reshape is only supported for dense arrays."); } if (shape().is_dynamic()) { return Unimplemented("Dynamic reshape is not implemented."); } Literal output; if (!LayoutUtil::IsMonotonicWithDim0Major(shape().layout())) { output = Relayout(LayoutUtil::GetDefaultLayoutForRank(shape().rank())); } else { output = Clone(); } *output.mutable_shape_do_not_use() = ShapeUtil::MakeShape(shape().element_type(), dimensions); int64_t elements_before = ShapeUtil::ElementsIn(shape()); int64_t elements_after = ShapeUtil::ElementsIn(output.shape()); if (elements_before != elements_after) { return InvalidArgument( "Shapes before and after Literal::Reshape have different numbers " "of elements: %s vs %s.", ShapeUtil::HumanString(shape()), ShapeUtil::HumanString(output.shape())); } return std::move(output); } Literal LiteralBase::Transpose(absl::Span<const int64_t> permutation) const { CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); CHECK(shape().rank() == permutation.size() && IsPermutation(permutation)) << "Given permutation is not a permutation of dimension numbers"; Shape permuted_shape = ShapeUtil::PermuteDimensions(permutation, shape()); std::vector<int64_t> inverse_permutation = InversePermutation(permutation); CHECK(LayoutUtil::IsDenseArray(permuted_shape)); Layout* layout = permuted_shape.mutable_layout(); layout->clear_minor_to_major(); for (auto index : LayoutUtil::MinorToMajor(shape())) { layout->add_minor_to_major(inverse_permutation[index]); } Literal new_literal(permuted_shape); if (shape().is_dynamic()) { for (int64_t i = 0; i < shape().rank(); i++) { if (shape().is_dynamic_dimension(i)) { new_literal.SetDynamicSize(inverse_permutation[i], GetDynamicSize(i)); } } } DCHECK_EQ(ShapeUtil::ByteSizeOf(new_literal.shape()), ShapeUtil::ByteSizeOf(shape())); std::memcpy(new_literal.untyped_data(), untyped_data(), size_bytes()); return new_literal; } namespace { template <typename NativeT> void SliceInternal(const LiteralBase& src_literal, absl::Span<const int64_t> start_indices, Literal& result_literal) { const Shape& result_shape = result_literal.shape(); DimensionVector new_indices(result_shape.rank()); TF_CHECK_OK( result_literal.Populate<NativeT>([&](absl::Span<const int64_t> indices) { for (int64_t i = 0; i < result_shape.rank(); ++i) { new_indices[i] = indices[i] + start_indices[i]; } return src_literal.Get<NativeT>(new_indices); })); for (int64_t dnum = 0; dnum < src_literal.shape().rank(); ++dnum) { if (src_literal.shape().is_dynamic_dimension(dnum)) { int64_t dynamic_size = src_literal.GetDynamicSize(dnum) - start_indices[dnum]; CHECK_GE(dynamic_size, 0) << src_literal.GetDynamicSize(dnum); dynamic_size = std::min(dynamic_size, result_shape.dimensions(dnum)); result_literal.SetDynamicSize(dnum, dynamic_size); } } } } Literal LiteralBase::Slice(absl::Span<const int64_t> start_indices, absl::Span<const int64_t> limit_indices) const { CHECK(shape().IsArray()) << "tuple is not supported for slice"; DimensionVector result_dimensions; for (int64_t dnum = 0; dnum < shape().rank(); ++dnum) { CHECK_GE(start_indices[dnum], 0); CHECK_LE(limit_indices[dnum], shape().dimensions(dnum)) << "dnum = " << dnum; int64_t dimension = limit_indices[dnum] - start_indices[dnum]; CHECK_GE(dimension, 0) << "dnum = " << dnum; result_dimensions.push_back(dimension); } auto result_shape = ShapeUtil::MakeShapeWithDenseLayout( shape().element_type(), result_dimensions, LayoutUtil::MinorToMajor(shape())); ShapeUtil::CopyDynamicDimensions(&result_shape, shape()); Literal result_literal(result_shape); primitive_util::ArrayTypeSwitch<void>( [&](auto primitive_type_constant) -> void { using NativeT = NativeTypeOf<primitive_type_constant>; return SliceInternal<NativeT>(*this, start_indices, result_literal); }, result_shape.element_type()); return result_literal; } Literal LiteralBase::Clone() const { Literal result(shape()); TF_CHECK_OK(result.CopyFrom(*this)); return result; } std::unique_ptr<Literal> LiteralBase::CloneToUnique() const { auto result = std::make_unique<Literal>(shape()); TF_CHECK_OK(result->CopyFrom(*this)); return result; } bool LiteralBase::IsDetermined(const ShapeIndex& shape_index) const { return piece(shape_index).IsDetermined(); } bool LiteralBase::IsKnown(const ShapeIndex& shape_index) const { return piece(shape_index).IsKnown(); } std::string LiteralBase::GetAsString(absl::Span<const int64_t> multi_index, const ShapeIndex& shape_index) const { const Shape& subshape = ShapeUtil::GetSubshape(shape(), shape_index); CHECK(LayoutUtil::IsDenseArray(subshape)); return primitive_util::ArrayTypeSwitch<std::string>( [&](auto primitive_type_constant) -> std::string { using NativeT = NativeTypeOf<primitive_type_constant>; if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { return StrCat(Get<NativeT>(multi_index, shape_index)); } if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { return RoundTripFpToString(Get<NativeT>(multi_index, shape_index)); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { NativeT c = Get<NativeT>(multi_index, shape_index); return StrCat("(", RoundTripFpToString(c.real()), ", ", RoundTripFpToString(c.imag()), ")"); } if constexpr (primitive_type_constant == PRED) { return Get<bool>(multi_index, shape_index) ? "true" : "false"; } LOG(FATAL) << PrimitiveType_Name(subshape.element_type()); }, subshape.element_type()); } std::optional<int64_t> LiteralBase::GetIntegralAsS64( absl::Span<const int64_t> multi_index) const { CHECK(LayoutUtil::IsDenseArray(shape())); return primitive_util::PrimitiveTypeSwitch<std::optional<int64_t>>( [&](auto primitive_type_constant) -> std::optional<int64_t> { if constexpr (primitive_util::IsIntegralType(primitive_type_constant) || primitive_type_constant == PRED) { using NativeT = NativeTypeOf<primitive_type_constant>; return Get<NativeT>(multi_index); } return std::nullopt; }, shape().element_type()); } std::optional<double> LiteralBase::GetAsDouble( absl::Span<const int64_t> multi_index) const { const Shape& s = shape(); CHECK(LayoutUtil::IsDenseArray(s)); return primitive_util::PrimitiveTypeSwitch<std::optional<double>>( [&](auto primitive_type_constant) -> std::optional<double> { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = NativeTypeOf<primitive_type_constant>; return static_cast<double>(Get<NativeT>(multi_index)); } return std::nullopt; }, s.element_type()); } std::optional<double> LiteralBase::GetSumAsDouble( absl::Span<const int64_t> linear_indices) const { const Shape& s = shape(); CHECK(LayoutUtil::IsDenseArray(s)); if (!primitive_util::IsFloatingPointType(s.element_type())) { return std::nullopt; } return primitive_util::FloatingPointTypeSwitch<double>( [&](auto primitive_type_constant) -> double { using NativeT = NativeTypeOf<primitive_type_constant>; double sum = 0.0; auto d = root_piece().data<NativeT>(); for (const int64_t idx : linear_indices) { sum += static_cast<double>(d[idx]); } return sum; }, s.element_type()); } std::optional<complex128> LiteralBase::GetAsComplex128( absl::Span<const int64_t> multi_index) const { return primitive_util::PrimitiveTypeSwitch<std::optional<complex128>>( [&](auto primitive_type_constant) -> std::optional<complex128> { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { using NativeT = NativeTypeOf<primitive_type_constant>; if constexpr (primitive_util::IsComplexType( primitive_type_constant)) { return {Get<NativeT>(multi_index)}; } if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { return {{static_cast<double>(Get<NativeT>(multi_index)), 0}}; } if constexpr (primitive_util::IsIntegralType( primitive_type_constant) && primitive_type_constant != S64 && primitive_type_constant != U64) { return {{static_cast<double>(Get<NativeT>(multi_index)), 0}}; } } return std::nullopt; }, shape().element_type()); } absl::Status MutableLiteralBase::SetIntegralAsS64( absl::Span<const int64_t> multi_index, int64_t value) { CHECK(LayoutUtil::IsDenseArray(shape())); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsIntegralType(primitive_type_constant) || primitive_type_constant == PRED) { using NativeT = NativeTypeOf<primitive_type_constant>; Set<NativeT>(multi_index, static_cast<NativeT>(value)); return absl::OkStatus(); } return FailedPrecondition("Array element type is not integral: %s", PrimitiveType_Name(shape().element_type())); }, shape().element_type()); } absl::Status MutableLiteralBase::SetFromDouble( absl::Span<const int64_t> multi_index, double value) { CHECK(LayoutUtil::IsDenseArray(shape())); if (!primitive_util::IsFloatingPointType(shape().element_type())) { return FailedPrecondition("Array element type is not integral: %s", PrimitiveType_Name(shape().element_type())); } primitive_util::FloatingPointTypeSwitch<void>( [&](auto primitive_type_constant) -> void { using NativeT = NativeTypeOf<primitive_type_constant>; Set<NativeT>(multi_index, static_cast<NativeT>(value)); }, shape().element_type()); return absl::OkStatus(); } namespace { void PrintShape(bool print_layout, const Shape& shape, Printer* printer) { if (print_layout) { ShapeUtil::PrintHumanStringWithLayout(printer, shape); } else { ShapeUtil::PrintHumanString(printer, shape); } } void PrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer); void TuplePrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer) { const Shape& subshape = ShapeUtil::GetSubshape(literal.shape(), shape_index); printer->Append(oneline ? "( " : "(\n"); for (int i = 0; i < ShapeUtil::TupleElementCount(subshape); ++i) { ShapeIndex element_index = shape_index; element_index.push_back(i); if (i > 0) printer->Append(oneline ? ", " : ",\n"); PrintHelper(literal, element_index, print_shape, print_layout, oneline, printer); } printer->Append(oneline ? " )" : "\n)"); } void DenseArrayPrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer) { const Shape& subshape = ShapeUtil::GetSubshape(literal.shape(), shape_index); int64_t rank = subshape.rank(); const absl::string_view linebreak = oneline ? " " : "\n"; std::function<void(absl::Span<const int64_t> dimensions, std::vector<int64_t>*)> print_recursive = [&](absl::Span<const int64_t> dimensions, std::vector<int64_t>* accum_indices) { CHECK_EQ(rank, dimensions.size() + accum_indices->size()); auto brace_to_string = [&](std::string brace) -> std::string { if (rank == 1) { return brace; } if (dimensions.size() == 1 && brace == "{") { return StrCat(oneline ? "" : " ", brace, dimensions[0] <= 1 ? "" : " "); } if (dimensions.size() == 1 && brace == "}") { return StrCat(dimensions[0] <= 1 ? "" : " ", brace); } if (brace == "{") { const int64_t accum_indices_size = accum_indices->size(); if (rank > 3 && !accum_indices->empty() && accum_indices_size < rank) { int index = accum_indices->size() - 1; int value = accum_indices->back(); int size = dimensions.front(); return StrCat(brace, " ", size > 0 ? linebreak : ""); } return StrCat(brace, linebreak); } return StrCat(linebreak, brace); }; if (dimensions.empty()) { std::string elem; if (subshape.element_type() == PRED && rank > 0) { elem = literal.Get<bool>(*accum_indices, shape_index) ? "1" : "0"; } else { elem = literal.GetAsString(*accum_indices, shape_index); } printer->Append(elem); } else { printer->Append(brace_to_string("{")); for (int i = 0; i < dimensions[0]; ++i) { accum_indices->push_back(i); print_recursive(dimensions.subspan(1), accum_indices); accum_indices->pop_back(); if (i < dimensions[0] - 1) { printer->Append(","); printer->Append(dimensions.size() > 1 ? linebreak : " "); } } printer->Append(brace_to_string("}")); } }; if (print_shape) { PrintShape(print_layout, subshape, printer); if (subshape.is_dynamic()) { printer->Append("("); for (int64_t i = 0; i < subshape.dimensions_size(); ++i) { printer->Append(literal.GetDynamicSize(i, shape_index)); if (i < subshape.dimensions_size() - 1) { printer->Append(","); } } printer->Append(")"); } printer->Append(" "); } std::vector<int64_t> indices = {}; std::vector<int64_t> dimensions; dimensions.reserve(subshape.rank()); for (int64_t i = 0; i < subshape.rank(); ++i) { dimensions.push_back(literal.GetDynamicSize(i, shape_index)); } print_recursive(dimensions, &indices); } void PrintHelper(const LiteralBase& literal, const ShapeIndex& shape_index, bool print_shape, bool print_layout, bool oneline, Printer* printer) { const Shape& subshape = ShapeUtil::GetSubshape(literal.shape(), shape_index); CHECK(LayoutUtil::HasLayout(literal.shape())); CHECK(LayoutUtil::HasLayout(subshape)); if (subshape.IsTuple()) { TuplePrintHelper(literal, shape_index, print_shape, print_layout, oneline, printer); } else if (subshape.IsToken()) { printer->Append("token"); } else { CHECK(LayoutUtil::IsDenseArray(subshape)); if (literal.IsKnown(shape_index)) { DenseArrayPrintHelper(literal, shape_index, print_shape, print_layout, oneline, printer); } else { PrintShape(print_layout, subshape, printer); printer->Append(" "); if (literal.IsDetermined(shape_index)) { printer->Append("unknown"); } else { printer->Append("undetermined"); } } } } } void LiteralBase::Print(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, false, false, printer); } void LiteralBase::PrintOneline(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, false, true, printer); } void LiteralBase::PrintWithoutShape(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, false, false, false, printer); } void LiteralBase::PrintWithoutShapeOneline(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, false, false, true, printer); } void LiteralBase::PrintWithLayout(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, true, false, printer); } void LiteralBase::PrintWithLayoutOneline(Printer* printer) const { CHECK(LayoutUtil::HasLayout(this->shape())); PrintHelper(*this, {}, true, true, true, printer); } std::string LiteralBase::ToString() const { StringPrinter printer; Print(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringOneline() const { StringPrinter printer; PrintOneline(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithoutShape() const { StringPrinter printer; PrintWithoutShape(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithoutShapeOneline() const { StringPrinter printer; PrintWithoutShapeOneline(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithLayout() const { StringPrinter printer; PrintWithLayout(&printer); return std::move(printer).ToString(); } std::string LiteralBase::ToStringWithLayoutOneline() const { StringPrinter printer; PrintWithLayoutOneline(&printer); return std::move(printer).ToString(); } void LiteralBase::EachCellAsString( absl::FunctionRef<void(absl::Span<const int64_t> indices, const std::string& value)> per_cell) const { if (ShapeUtil::IsZeroElementArray(shape())) { return; } auto indices = IndexUtil::LinearIndexToMultidimensionalIndex( shape(), 0); do { per_cell(indices, GetAsString(indices)); } while (IndexUtil::BumpIndices(shape(), absl::MakeSpan(indices))); } namespace { template <typename NativeSrcT, typename NativeDestT> void ConvertBetweenNativeTypes(absl::Span<const NativeSrcT> src_data, void* dst_base) { static_assert(!std::is_same_v<NativeSrcT, NativeDestT>); auto converter = [](NativeSrcT src) -> NativeDestT { if constexpr (!std::is_same_v<NativeDestT, bool> && !std::numeric_limits<NativeSrcT>::is_integer && std::numeric_limits<NativeDestT>::is_integer) { if (src != src) { return NativeDestT{0}; } if (src >= static_cast<NativeSrcT>(std::numeric_limits<NativeDestT>::max())) { return std::numeric_limits<NativeDestT>::max(); } if (src <= static_cast<NativeSrcT>(std::numeric_limits<NativeDestT>::lowest())) { return std::numeric_limits<NativeDestT>::lowest(); } } if constexpr (sizeof(src) == 1 && std::is_same_v<NativeDestT, tsl::float8_e3m4>) { return static_cast<NativeDestT>(static_cast<half>(src)); } else { return static_cast<NativeDestT>(src); } }; NativeDestT* dest_data = static_cast<NativeDestT*>(dst_base); for (const NativeSrcT& src : src_data) { *(dest_data++) = converter(src); } } template <PrimitiveType kSrcType> absl::Status ConvertIfDestTypeMatches(const LiteralBase& src_literal, MutableLiteralBase& dst_literal) { DCHECK(dst_literal.shape().IsArray()); using NativeSrcT = NativeTypeOf<kSrcType>; auto src_data = src_literal.data<NativeSrcT>(); void* dst_base = dst_literal.untyped_data(); DCHECK_EQ(src_data.size(), dst_literal.element_count()); return primitive_util::ArrayTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsComplexType(kSrcType) && !primitive_util::IsComplexType(primitive_type_constant)) { return Unimplemented("%s from type %s to type %s is not implemented.", "Converting", PrimitiveType_Name(kSrcType), PrimitiveType_Name(primitive_type_constant())); } else if constexpr (kSrcType != primitive_type_constant) { using NativeDestT = NativeTypeOf<primitive_type_constant>; ConvertBetweenNativeTypes<NativeSrcT, NativeDestT>(src_data, dst_base); } return absl::OkStatus(); }, dst_literal.shape().element_type()); } absl::StatusOr<Literal> ConvertSwitch(const LiteralBase& literal, PrimitiveType primitive_dest_type) { TF_RET_CHECK(LayoutUtil::IsDenseArray(literal.shape())); if (literal.shape().element_type() == primitive_dest_type) { return literal.Clone(); } if (!primitive_util::IsArrayType(primitive_dest_type) || !primitive_util::IsArrayType(literal.shape().element_type())) { return Unimplemented("%s from type %s to type %s is not implemented.", "Converting", PrimitiveType_Name(literal.shape().element_type()), PrimitiveType_Name(primitive_dest_type)); } Literal result( ShapeUtil::ChangeElementType(literal.shape(), primitive_dest_type)); TF_RETURN_IF_ERROR(primitive_util::ArrayTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { return ConvertIfDestTypeMatches<primitive_type_constant>(literal, result); }, literal.shape().element_type())); return result; } } absl::StatusOr<Literal> LiteralBase::Convert( PrimitiveType primitive_dest_type) const { return ConvertSwitch(*this, primitive_dest_type); } absl::StatusOr<Literal> LiteralBase::BitcastConvert( const Shape& dest_shape) const { if (ShapeUtil::ByteSizeOf(dest_shape) != ShapeUtil::ByteSizeOf(shape())) { return InvalidArgument( "Can not bitcast-convert from shape %s to a shape of different size %s", shape().ToString(), dest_shape.ToString()); } if (dest_shape.IsTuple() || shape().IsTuple()) { return InvalidArgument( "bitcast-convert is not valid for tuple shapes %s->%s", shape().ToString(), dest_shape.ToString()); } if (shape().is_dynamic() || dest_shape.is_dynamic()) { return InvalidArgument( "bitcast-convert is not valid for dynamic shape %s->%s", shape().ToString(), dest_shape.ToString()); } Literal out(dest_shape); std::memcpy(out.root_piece_.buffer(), root_piece().buffer(), root_piece().size_bytes_dense()); if constexpr (!kLittleEndian) { size_t input_elem_size = ShapeUtil::ByteSizeOfPrimitiveType(shape().element_type()); TF_RETURN_IF_ERROR(tsl::ByteSwapArray( const_cast<char*>(out.root_piece().buffer()), input_elem_size, out.root_piece().size_bytes_dense() / input_elem_size)); size_t output_elem_size = ShapeUtil::ByteSizeOfPrimitiveType(dest_shape.element_type()); TF_RETURN_IF_ERROR(tsl::ByteSwapArray( const_cast<char*>(out.root_piece().buffer()), output_elem_size, out.root_piece().size_bytes_dense() / output_elem_size)); } return out; } absl::StatusOr<Literal> LiteralBase::ConvertToShape( const Shape& dest_shape) const { if (!dest_shape.IsTuple()) { return Convert(dest_shape.element_type()); } std::vector<Literal> elements; const auto tuple_element_count = ShapeUtil::TupleElementCount(shape()); elements.reserve(tuple_element_count); for (int i = 0; i < tuple_element_count; ++i) { auto element = LiteralSlice(*this, {i}); TF_ASSIGN_OR_RETURN( auto new_element, element.ConvertToShape(ShapeUtil::GetSubshape(dest_shape, {i}))); elements.push_back(std::move(new_element)); } return MutableLiteralBase::MoveIntoTuple(absl::MakeSpan(elements)); } Literal MutableLiteralBase::MoveIntoTuple( absl::Span<Literal> elements) { std::vector<const Shape*> element_shapes; element_shapes.reserve(elements.size()); for (const Literal& element : elements) { element_shapes.push_back(&element.shape()); } Literal literal(ShapeUtil::MakeTupleShapeWithPtrs(element_shapes), false); for (int i = 0, end = elements.size(); i < end; ++i) { TF_CHECK_OK( literal.MoveFrom(std::move(elements[i]), {i})); } return literal; } template <typename NativeT> bool LiteralBase::Piece::EqualElementsInternal( const LiteralBase::Piece& other, std::vector<int64_t>* multi_index) const { if (multi_index->size() == subshape().rank()) { return (Get<NativeT>(*multi_index) == other.Get<NativeT>(*multi_index)); } for (int64_t i = 0; i < GetDynamicSize(multi_index->size()); ++i) { multi_index->push_back(i); if (!EqualElementsInternal<NativeT>(other, multi_index)) { return false; } multi_index->pop_back(); } return true; } bool LiteralBase::Piece::EqualDynamicSize( const LiteralBase::Piece& other) const { DCHECK(ShapeUtil::Compatible(subshape(), other.subshape())); if (subshape().is_static()) { return true; } for (int64_t i = 0; i < subshape().rank(); ++i) { if (GetDynamicSize(i) != other.GetDynamicSize(i)) { return false; } } return true; } bool LiteralBase::Piece::EqualElements(const LiteralBase::Piece& other) const { if (subshape().is_static() && ShapeUtil::Equal(subshape(), other.subshape()) && subshape().IsArray()) { CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK_EQ(size_bytes_dense(), other.size_bytes_dense()); if (primitive_util::IsSubByteNonPredType(subshape().element_type())) { CHECK(!primitive_util::IsFloatingPointType(subshape().element_type())); auto one_array = buffer(); auto two_array = other.buffer(); const int bits_per_element = primitive_util::BitWidth(subshape().element_type()); const uint8_t mask = LsbMask<uint8_t>(bits_per_element); for (int64_t i = 0; i < size_bytes_dense(); ++i) { if ((one_array[i] & mask) != (two_array[i] & mask)) return false; } return true; } return memcmp(buffer(), other.buffer(), size_bytes_dense()) == 0; } std::vector<int64_t> multi_index; return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeSrcT = NativeTypeOf<primitive_type_constant>; return EqualElementsInternal<NativeSrcT>(other, &multi_index); }, subshape().element_type()); } bool LiteralBase::Equal(const LiteralBase& other, bool layout_sensitive) const { if (!ShapeUtil::EqualStructure(shape(), other.shape())) { return false; } return root_piece().ForEachSubpieceWithBool([&](const ShapeIndex& index, const Piece& piece) { const Piece& other_piece = other.piece(index); const Shape& subshape = piece.subshape(); const Shape& other_subshape = other_piece.subshape(); if (subshape.element_type() != other_subshape.element_type()) { return false; } if (!piece.subshape().IsArray()) { return true; } if (subshape.rank() != other_subshape.rank()) { return false; } if (layout_sensitive && (subshape.layout() != other_subshape.layout())) { return false; } for (int64_t i = 0; i < subshape.rank(); ++i) { if (piece.GetDynamicSize(i) != other_piece.GetDynamicSize(i)) { return false; } } if (!piece.EqualElements(other_piece)) { return false; } return true; }); } template <typename NativeT> static bool EqualIncludingNan(NativeT a, NativeT b) { if constexpr (std::numeric_limits<NativeT>::has_quiet_NaN || std::numeric_limits<NativeT>::has_signaling_NaN) { if (Eigen::numext::isnan(a) && Eigen::numext::isnan(b)) { return true; } } return a == b; } template <typename T> static bool EqualIncludingNan(std::complex<T> a, std::complex<T> b) { return EqualIncludingNan(a.real(), b.real()) && EqualIncludingNan(a.imag(), b.imag()); } template <typename NativeT> static bool AllElementsEqualValue(absl::Span<const NativeT> data, NativeT value) { for (int64_t i = 0; i < data.size(); ++i) { if (memcmp(&data[i], &value, sizeof value)) { return false; } } return true; } bool Literal::Piece::IsAll(const Literal& scalar) const { CHECK(ShapeUtil::IsScalar(scalar.shape())) << scalar.shape().ToString(); if (!subshape().IsArray()) { return false; } CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK_EQ(subshape().element_type(), scalar.shape().element_type()); return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; return AllElementsEqualValue(this->data<NativeT>(), scalar.GetFirstElement<NativeT>()); }, subshape().element_type()); } int64_t Literal::Piece::CountAll(const Literal& scalar) const { CHECK(ShapeUtil::IsScalar(scalar.shape())) << scalar.shape().ToString(); if (!subshape().IsArray()) { return 0; } CHECK(LayoutUtil::IsDenseArray(subshape())) << __func__ << " is only supported for dense arrays: " << subshape(); CHECK_EQ(subshape().element_type(), scalar.shape().element_type()); return primitive_util::ArrayTypeSwitch<int64_t>( [&](auto primitive_type_constant) -> int64_t { using NativeT = NativeTypeOf<primitive_type_constant>; return absl::c_count_if( this->data<NativeT>(), [&](NativeT elem) -> bool { return EqualIncludingNan(elem, scalar.GetFirstElement<NativeT>()); }); }, subshape().element_type()); } bool LiteralBase::IsAll(const Literal& scalar) const { return root_piece().IsAll(scalar); } bool LiteralBase::IsAll(int8_t value) const { if (!shape().IsArray()) { return false; } PrimitiveType ty = shape().element_type(); if (primitive_util::IsFloatingPointType(ty)) { return IsAllFloatImpl(value, false); } if (primitive_util::IsUnsignedIntegralType(ty) && value < 0) { return false; } Literal scalar(ShapeUtil::MakeScalarShape(ty)); return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; NativeT converted(value); if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { if (!Eigen::numext::isfinite(converted)) { return false; } } if constexpr (!primitive_util::IsComplexType(primitive_type_constant)) { if (static_cast<int8_t>(converted) != value) { return false; } } scalar.Set<NativeT>({}, converted); return root_piece().IsAll(scalar); }, ty); } bool LiteralBase::IsAllFloat(float value) const { return IsAllFloatImpl(value, true); } bool LiteralBase::IsAllFloatImpl(float value, bool round_value) const { PrimitiveType ty = shape().element_type(); if (!primitive_util::IsFloatingPointType(ty)) { return false; } Literal scalar(ShapeUtil::MakeScalarShape(ty)); return primitive_util::FloatingPointTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; scalar.Set<NativeT>({}, static_cast<NativeT>(value)); if (!round_value && scalar.GetAsDouble({}) != value) { return false; } return root_piece().IsAll(scalar); }, ty); } bool LiteralBase::IsAllComplex(complex64 value) const { PrimitiveType ty = shape().element_type(); if (!primitive_util::IsComplexType(ty)) { return false; } Literal scalar(ShapeUtil::MakeScalarShape(ty)); return primitive_util::ComplexTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; scalar.Set<NativeT>({}, static_cast<NativeT>(value)); return root_piece().IsAll(scalar); }, ty); } bool LiteralBase::IsAllFirst() const { if (!shape().IsArray()) { return false; } if (ShapeUtil::IsZeroElementArray(shape())) { return false; } absl::InlinedVector<int64_t, 4> start_indices(shape().rank(), 0); absl::InlinedVector<int64_t, 4> end_indices(shape().rank(), 1); Literal first = Slice(start_indices, end_indices); return IsAll(first.Reshape({}).value()); } bool LiteralBase::IsR1Iota() const { if (!shape().IsArray()) { return false; } CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); if (shape().rank() != 1) { return false; } return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; const int64_t elements = ShapeUtil::ElementsIn(shape()); for (int64_t idx = 0; idx < elements; ++idx) { if constexpr (primitive_util::IsIntegralType( primitive_type_constant)) { if (static_cast<int64_t>(Get<NativeT>({idx})) != idx) { return false; } } else if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { if (Get<NativeT>({idx}) != static_cast<NativeT>(idx)) { return false; } } else if constexpr (primitive_util::IsComplexType( primitive_type_constant)) { if (Get<NativeT>({idx}) != NativeT(idx, 0.0f)) { return false; } } else { return false; } } return true; }, shape().element_type()); } std::optional<int64_t> LiteralBase::IsR1StridedIota() const { if (!shape().IsArray() || shape().rank() != 1) { return std::nullopt; } CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); const int64_t elements = ShapeUtil::ElementsIn(shape()); const PrimitiveType type = shape().element_type(); if (elements <= 1 || !primitive_util::IsIntegralType(type)) { return std::nullopt; } return primitive_util::IntegralTypeSwitch<std::optional<int64_t>>( [&](auto primitive_type_constant) -> std::optional<int64_t> { using NativeT = NativeTypeOf<primitive_type_constant>; const int64_t stride = static_cast<int64_t>(Get<NativeT>({1})); if (stride == 0) { return std::nullopt; } for (int64_t idx = 0; idx < elements; ++idx) { if (static_cast<int64_t>(Get<NativeT>({idx})) != idx * stride) { return std::nullopt; } } return stride; }, shape().element_type()); } bool LiteralBase::IsZero(absl::Span<const int64_t> indices) const { CHECK(LayoutUtil::IsDenseArray(shape())) << __func__ << " is only supported for dense arrays: " << shape(); return primitive_util::ArrayTypeSwitch<bool>( [&](auto primitive_type_constant) -> bool { using NativeT = NativeTypeOf<primitive_type_constant>; return Get<NativeT>(indices) == NativeT{0}; }, shape().element_type()); } namespace { template <typename RepeatedFieldT, typename NativeT> void CopyToRepeatedField(RepeatedFieldT* dest, const absl::Span<const NativeT> src) { *dest = RepeatedFieldT(src.begin(), src.end()); } } void LiteralBase::Piece::set_array_value_state(ArrayValueState state) { array_value_state_ = state; } LiteralBase::ArrayValueState LiteralBase::Piece::get_array_value_state() const { return array_value_state_; } void LiteralBase::Piece::WriteToProto(LiteralProto* proto) const { *proto->mutable_shape() = subshape().ToProto(); switch (subshape().element_type()) { case PRED: CopyToRepeatedField(proto->mutable_preds(), data<bool>()); break; case U2: *proto->mutable_u2s() = std::string( reinterpret_cast<const char*>(data<u2>().data()), size_bytes_dense()); break; case U4: *proto->mutable_u4s() = std::string( reinterpret_cast<const char*>(data<u4>().data()), size_bytes_dense()); break; case U8: proto->set_u8s(static_cast<const unsigned char*>(data<uint8_t>().data()), element_count()); break; case U16: *proto->mutable_u16s() = std::string(reinterpret_cast<const char*>(data<uint16_t>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_u16s()); } break; case U32: CopyToRepeatedField(proto->mutable_u32s(), data<uint32_t>()); break; case U64: CopyToRepeatedField(proto->mutable_u64s(), data<uint64_t>()); break; case S2: *proto->mutable_s2s() = std::string( reinterpret_cast<const char*>(data<s2>().data()), size_bytes_dense()); break; case S4: *proto->mutable_s4s() = std::string( reinterpret_cast<const char*>(data<s4>().data()), size_bytes_dense()); break; case S8: proto->set_s8s(static_cast<const signed char*>(data<int8_t>().data()), element_count()); break; case S16: *proto->mutable_s16s() = std::string(reinterpret_cast<const char*>(data<int16_t>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_s16s()); } break; case S32: CopyToRepeatedField(proto->mutable_s32s(), data<int32_t>()); break; case S64: CopyToRepeatedField(proto->mutable_s64s(), data<int64_t>()); break; case F8E5M2: *proto->mutable_f8e5m2s() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e5m2>().data()), size_bytes_dense()); break; case F8E4M3: *proto->mutable_f8e4m3s() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3>().data()), size_bytes_dense()); break; case F8E4M3FN: *proto->mutable_f8e4m3fns() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3fn>().data()), size_bytes_dense()); break; case F8E4M3B11FNUZ: *proto->mutable_f8e4m3b11fnuzs() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3b11fnuz>().data()), size_bytes_dense()); break; case F8E5M2FNUZ: *proto->mutable_f8e5m2fnuzs() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e5m2fnuz>().data()), size_bytes_dense()); break; case F8E4M3FNUZ: *proto->mutable_f8e4m3fnuzs() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e4m3fnuz>().data()), size_bytes_dense()); break; case F8E3M4: *proto->mutable_f8e3m4s() = std::string( reinterpret_cast<const char*>(data<tsl::float8_e3m4>().data()), size_bytes_dense()); break; case F16: *proto->mutable_f16s() = std::string(reinterpret_cast<const char*>(data<half>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_f16s()); } break; case BF16: *proto->mutable_bf16s() = std::string(reinterpret_cast<const char*>(data<bfloat16>().data()), size_bytes_dense()); if (!kLittleEndian) { ConvertEndianShort(proto->mutable_bf16s()); } break; case F32: CopyToRepeatedField(proto->mutable_f32s(), data<float>()); break; case F64: CopyToRepeatedField(proto->mutable_f64s(), data<double>()); break; case C64: for (complex64 value : data<complex64>()) { proto->add_c64s(value.real()); proto->add_c64s(value.imag()); } break; case C128: for (complex128 value : data<complex128>()) { proto->add_c128s(value.real()); proto->add_c128s(value.imag()); } break; case TUPLE: case TOKEN: return; default: LOG(FATAL) << "Unhandled primitive type " << PrimitiveType_Name(subshape().element_type()); } } const void* LiteralBase::Piece::untyped_data() const { DCHECK(LayoutUtil::IsDenseArray(subshape())) << ShapeUtil::HumanString(subshape()); return buffer(); } void* LiteralBase::Piece::untyped_data() { DCHECK(LayoutUtil::IsDenseArray(subshape())) << ShapeUtil::HumanString(subshape()); return buffer(); } namespace { template <typename RepeatedFieldT, typename NativeT> absl::Status CopyFromRepeatedField(absl::Span<NativeT> dest, const RepeatedFieldT& src) { if (dest.size() != src.size()) { return InvalidArgument( "Expected %lu elements in LiteralProto repeated field, has %d", dest.size(), src.size()); } std::copy(src.begin(), src.end(), dest.begin()); return absl::OkStatus(); } } absl::Status LiteralBase::Piece::CopyFromProto(const LiteralProto& proto) { TF_RET_CHECK(proto.has_shape()); Shape shape(proto.shape()); TF_RET_CHECK(LayoutUtil::HasLayout(shape)); TF_RET_CHECK(ShapeUtil::Equal(shape, subshape())); switch (subshape().element_type()) { case PRED: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<bool>(), proto.preds())); break; case S2: { const std::string& s(proto.s2s()); TF_RET_CHECK(data<s2>().size() * sizeof(s2) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case S4: { const std::string& s(proto.s4s()); TF_RET_CHECK(data<s4>().size() * sizeof(s4) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case S8: { auto s8_data = data<int8_t>(); TF_RET_CHECK(proto.s8s().size() == s8_data.size()); std::copy(proto.s8s().begin(), proto.s8s().end(), s8_data.begin()); break; } case S16: { const std::string& s(proto.s16s()); TF_RET_CHECK(data<int16_t>().size() * sizeof(int16_t) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case S32: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<int32_t>(), proto.s32s())); break; case S64: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<int64_t>(), proto.s64s())); break; case U2: { const std::string& s(proto.u2s()); TF_RET_CHECK(data<u2>().size() * sizeof(u2) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case U4: { const std::string& s(proto.u4s()); TF_RET_CHECK(data<u4>().size() * sizeof(u4) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case U8: { auto u8_data = data<uint8_t>(); TF_RET_CHECK(proto.u8s().size() == u8_data.size()); std::copy(proto.u8s().begin(), proto.u8s().end(), u8_data.begin()); break; } case U16: { const std::string& s(proto.u16s()); TF_RET_CHECK(data<uint16_t>().size() * sizeof(uint16_t) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case U32: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<uint32_t>(), proto.u32s())); break; case U64: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<uint64_t>(), proto.u64s())); break; case F8E5M2: { const std::string& s(proto.f8e5m2s()); TF_RET_CHECK(data<tsl::float8_e5m2>().size() * sizeof(tsl::float8_e5m2) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3: { const std::string& s(proto.f8e4m3s()); TF_RET_CHECK(data<tsl::float8_e4m3>().size() * sizeof(tsl::float8_e4m3) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3FN: { const std::string& s(proto.f8e4m3fns()); TF_RET_CHECK(data<tsl::float8_e4m3fn>().size() * sizeof(tsl::float8_e4m3fn) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3B11FNUZ: { const std::string& s(proto.f8e4m3b11fnuzs()); TF_RET_CHECK(data<tsl::float8_e4m3b11fnuz>().size() * sizeof(tsl::float8_e4m3b11fnuz) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E5M2FNUZ: { const std::string& s(proto.f8e5m2fnuzs()); TF_RET_CHECK(data<tsl::float8_e5m2fnuz>().size() * sizeof(tsl::float8_e5m2fnuz) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E4M3FNUZ: { const std::string& s(proto.f8e4m3fnuzs()); TF_RET_CHECK(data<tsl::float8_e4m3fnuz>().size() * sizeof(tsl::float8_e4m3fnuz) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F8E3M4: { const std::string& s(proto.f8e3m4s()); TF_RET_CHECK(data<tsl::float8_e3m4>().size() * sizeof(tsl::float8_e3m4) == s.size()); memcpy(untyped_data(), s.data(), s.size()); break; } case F16: { const std::string& s(proto.f16s()); TF_RET_CHECK(data<half>().size() * sizeof(half) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case BF16: { const std::string& s(proto.bf16s()); TF_RET_CHECK(data<bfloat16>().size() * sizeof(bfloat16) == s.size()); memcpy(untyped_data(), s.data(), s.size()); if (!kLittleEndian) { ConvertEndianShort(reinterpret_cast<char*>(untyped_data()), s.size()); } break; } case F32: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<float>(), proto.f32s())); break; case F64: TF_RETURN_IF_ERROR(CopyFromRepeatedField(data<double>(), proto.f64s())); break; case C64: { auto complex_data = data<complex64>(); TF_RET_CHECK(proto.c64s_size() == complex_data.size() * 2); for (int64_t i = 0; i < complex_data.size(); ++i) { complex_data[i] = complex64{proto.c64s(i * 2), proto.c64s(i * 2 + 1)}; } break; } case C128: { auto complex_data = data<complex128>(); const int64_t complex_data_size_doubled = complex_data.size() * 2; TF_RET_CHECK(proto.c128s_size() == complex_data_size_doubled); for (int64_t i = 0, end = complex_data.size(); i < end; ++i) { complex_data[i] = complex128{proto.c128s(i * 2), proto.c128s(i * 2 + 1)}; } break; } case TUPLE: return InvalidArgument("Should not be called on tuple shapes: %s", ShapeUtil::HumanString(subshape())); default: return InvalidArgument("Is called on unsupported shape: %s", ShapeUtil::HumanString(subshape())); } return absl::OkStatus(); } bool LiteralBase::Piece::IsKnown() const { if (array_value_state_ != ArrayValueState::kKnown) { return false; } if (subshape().IsTuple()) { bool are_all_leaf_arrays_known = true; ForEachSubpiece([&are_all_leaf_arrays_known](const ShapeIndex& index, const Piece& piece) { if (!piece.subshape().IsArray()) { return; } are_all_leaf_arrays_known &= piece.IsKnown(); }); return are_all_leaf_arrays_known; } return true; } bool LiteralBase::Piece::IsDetermined() const { if (array_value_state_ == ArrayValueState::kUndetermined) { return false; } if (subshape().IsTuple()) { bool are_all_leaf_arrays_determined = true; ForEachSubpiece([&are_all_leaf_arrays_determined](const ShapeIndex& index, const Piece& piece) { if (!piece.subshape().IsArray()) { return; } are_all_leaf_arrays_determined &= piece.IsDetermined(); }); return are_all_leaf_arrays_determined; } return true; } LiteralProto LiteralBase::ToProto() const { LiteralProto proto; root_piece().ForEachSubpiece( [&](const ShapeIndex& index, const Piece& piece) { LiteralProto* proto_piece = &proto; for (int64_t i : index) { while (proto_piece->tuple_literals_size() <= i) { proto_piece->add_tuple_literals(); } proto_piece = proto_piece->mutable_tuple_literals(i); } piece.WriteToProto(proto_piece); }); return proto; } const void* LiteralBase::untyped_data(const ShapeIndex& shape_index) const { return piece(shape_index).untyped_data(); } void* MutableLiteralBase::untyped_data(const ShapeIndex& shape_index) { return piece(shape_index).untyped_data(); } int64_t LiteralBase::size_bytes(const ShapeIndex& shape_index) const { return piece(shape_index).size_bytes_dense(); } std::string LiteralBase::GetR1U8AsString() const { CHECK(shape().IsArray()); CHECK_EQ(shape().rank(), 1); CHECK_EQ(shape().element_type(), U8); return std::string(absl::bit_cast<const char*>(data<uint8_t>().data()), ShapeUtil::ElementsIn(shape())); } void MutableBorrowingLiteral::CopyPieceSubtree(const Shape& shape, const Piece* src_piece, Piece* dest_piece) { DCHECK(ShapeUtil::Equal(src_piece->subshape(), dest_piece->subshape())) << "src_piece has shape: " << ShapeUtil::HumanString(src_piece->subshape()) << "dest_piece has shape: " << ShapeUtil::HumanString(dest_piece->subshape()); dest_piece->set_array_value_state(src_piece->get_array_value_state()); if (shape.IsTuple()) { for (int i = 0; i < ShapeUtil::TupleElementCount(shape); ++i) { const Shape& subshape = shape.tuple_shapes(i); Piece child_piece; child_piece.set_subshape(&subshape); CopyPieceSubtree(subshape, &src_piece->child(i), &child_piece); dest_piece->emplace_back(std::move(child_piece)); } } else if (shape.IsArray()) { dest_piece->set_buffer(const_cast<char*>(src_piece->buffer())); } } MutableLiteralBase::~MutableLiteralBase() = default; MutableBorrowingLiteral::MutableBorrowingLiteral( const MutableBorrowingLiteral& literal) : MutableLiteralBase() { shape_ = literal.shape_.Clone(); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal.root_piece(), root_piece_); } MutableBorrowingLiteral& MutableBorrowingLiteral::operator=( const MutableBorrowingLiteral& literal) { shape_ = literal.shape_.Clone(); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal.root_piece(), root_piece_); return *this; } MutableBorrowingLiteral::MutableBorrowingLiteral(MutableLiteralBase* literal) : MutableLiteralBase() { shape_ = literal->shape_.Clone(); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal->root_piece(), root_piece_); } MutableBorrowingLiteral::MutableBorrowingLiteral( MutableBorrowingLiteral literal, const ShapeIndex& view_root) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(literal.piece(view_root).subshape()); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); CopyPieceSubtree(*shape_, &literal.piece(view_root), root_piece_); } MutableBorrowingLiteral::MutableBorrowingLiteral(const char* src_buf_ptr, const Shape& shape) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(shape); CHECK(LayoutUtil::HasLayout(*shape_)); CHECK(!shape_->IsTuple()); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); root_piece_->set_buffer(const_cast<char*>(src_buf_ptr)); } MutableBorrowingLiteral::MutableBorrowingLiteral(absl::Span<char*> src_buf_ptrs, const Shape& shape) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(shape); if (!shape_->IsTuple()) { CHECK_EQ(src_buf_ptrs.size(), 1); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); root_piece_->set_buffer(const_cast<char*>(src_buf_ptrs[0])); } else { CHECK(!ShapeUtil::IsNestedTuple(*shape_)); CHECK_EQ(src_buf_ptrs.size(), ShapeUtil::TupleElementCount(*shape_)); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); for (int i = 0; i < src_buf_ptrs.size(); ++i) { Piece child_piece; const auto& src_shape = shape_->tuple_shapes(i); CHECK(src_shape.IsArray()); child_piece.set_subshape(&src_shape); child_piece.set_buffer(src_buf_ptrs[i]); root_piece_->emplace_back(std::move(child_piece)); } } } MutableBorrowingLiteral::MutableBorrowingLiteral(ShapeTree<char*> src_buf_ptrs) : MutableLiteralBase() { shape_ = std::make_unique<Shape>(src_buf_ptrs.shape()); root_piece_ = new Piece(); root_piece_->set_subshape(shape_.get()); BuildPieceSubtree(*shape_, root_piece_); root_piece_->ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { if (ShapeUtil::GetSubshape(*shape_, index).IsTuple()) { DCHECK_EQ(src_buf_ptrs.element(index), nullptr) << "Tuples should not have buffer pointers"; return; } piece->set_buffer(const_cast<char*>(src_buf_ptrs.element(index))); }); } MutableBorrowingLiteral::~MutableBorrowingLiteral() { if (root_piece_ != nullptr) { delete root_piece_; } } LiteralSlice::LiteralSlice(const LiteralBase& literal) : LiteralBase(), root_piece_(&literal.root_piece()) {} LiteralSlice::LiteralSlice(const LiteralBase& literal, const ShapeIndex& view_root) : LiteralBase(), root_piece_(&literal.piece(view_root)) {} BorrowingLiteral::BorrowingLiteral(const char* src_buf_ptr, const Shape& shape) : LiteralBase(), shape_(std::make_unique<Shape>(shape)) { CHECK(shape_->IsArray()); CHECK(LayoutUtil::HasLayout(*shape_)); root_piece_ = Piece(); root_piece_.set_subshape(shape_.get()); root_piece_.set_buffer(const_cast<char*>(src_buf_ptr)); } BorrowingLiteral::BorrowingLiteral(absl::Span<const char* const> src_buf_ptrs, const Shape& shape) : LiteralBase(), shape_(std::make_unique<Shape>(shape)) { CHECK(shape_->IsTuple()); CHECK(!ShapeUtil::IsNestedTuple(*shape_)); CHECK_EQ(src_buf_ptrs.size(), ShapeUtil::TupleElementCount(*shape_)); root_piece_ = Piece(); root_piece_.set_subshape(shape_.get()); BuildPieceSubtree(*shape_, &root_piece_); for (int i = 0, end = src_buf_ptrs.size(); i < end; ++i) { const auto& src_shape = shape_->tuple_shapes(i); CHECK(src_shape.IsArray()); root_piece_.child(i).set_buffer(const_cast<char*>(src_buf_ptrs[i])); } } BorrowingLiteral::BorrowingLiteral(ShapeTree<const char*> src_buf_ptrs) : LiteralBase(), shape_(std::make_unique<Shape>(src_buf_ptrs.shape())) { root_piece_ = Piece(); root_piece_.set_subshape(shape_.get()); BuildPieceSubtree(*shape_, &root_piece_); root_piece_.ForEachMutableSubpiece( [&](const ShapeIndex& index, Piece* piece) { if (ShapeUtil::GetSubshape(*shape_, index).IsTuple()) { DCHECK_EQ(src_buf_ptrs.element(index), nullptr) << "Tuples should not have buffer pointers"; return; } piece->set_buffer(const_cast<char*>(src_buf_ptrs.element(index))); }); } }
#include "xla/literal.h" #include <algorithm> #include <cmath> #include <complex> #include <cstdint> #include <functional> #include <limits> #include <random> #include <string> #include <tuple> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/base/casts.h" #include "absl/hash/hash.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/types/span.h" #include "xla/array.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/shape.h" #include "xla/shape_tree.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; class LiteralUtilTest : public ::testing::Test { protected: LiteralUtilTest() { Array4D<float> arr4d({ { { {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, }, { {11, 12, 13}, {14, 15, 16}, {17, 18, 19}, }, }, { { {101, 102, 103}, {104, 105, 106}, {107, 108, 109}, }, { {201, 202, 203}, {204, 205, 206}, {207, 208, 209}, }, }, }); layout_r2_dim0major_ = LayoutUtil::MakeLayout({1, 0}); layout_r2_dim0minor_ = LayoutUtil::MakeLayout({0, 1}); layout_r3_dim0major_ = LayoutUtil::MakeLayout({2, 1, 0}); layout_r3_dim0minor_ = LayoutUtil::MakeLayout({0, 1, 2}); layout_r4_dim0major_ = LayoutUtil::MakeLayout({3, 2, 1, 0}); layout_r4_dim0minor_ = LayoutUtil::MakeLayout({0, 1, 2, 3}); literal_r4_2x2x3x3_dim0major_ = LiteralUtil::CreateR4FromArray4DWithLayout<float>(arr4d, layout_r4_dim0major_); literal_r4_2x2x3x3_dim0minor_ = LiteralUtil::CreateR4FromArray4DWithLayout<float>(arr4d, layout_r4_dim0minor_); } Layout layout_r2_dim0major_; Layout layout_r2_dim0minor_; Layout layout_r3_dim0major_; Layout layout_r3_dim0minor_; Layout layout_r4_dim0major_; Layout layout_r4_dim0minor_; Literal literal_r4_2x2x3x3_dim0major_; Literal literal_r4_2x2x3x3_dim0minor_; }; template <typename T> class LiteralUtilFloatTest : public LiteralUtilTest {}; using FloatTypes = ::testing::Types<float, half, bfloat16, tsl::float8_e3m4, tsl::float8_e4m3, tsl::float8_e4m3fn, tsl::float8_e4m3fnuz, tsl::float8_e4m3b11fnuz, tsl::float8_e5m2, tsl::float8_e5m2fnuz>; TYPED_TEST_SUITE(LiteralUtilFloatTest, FloatTypes); TEST_F(LiteralUtilTest, LiteralScalarToString) { auto true_lit = LiteralUtil::CreateR0<bool>(true); EXPECT_EQ("pred[] true", true_lit.ToString()); auto false_lit = LiteralUtil::CreateR0<bool>(false); EXPECT_EQ("pred[] false", false_lit.ToString()); auto u4_lit = LiteralUtil::CreateR0<u4>(u4(5)); EXPECT_EQ("u4[] 5", u4_lit.ToString()); auto u32_lit = LiteralUtil::CreateR0<uint32_t>(42); EXPECT_EQ("u32[] 42", u32_lit.ToString()); auto s4_lit = LiteralUtil::CreateR0<s4>(s4(-3)); EXPECT_EQ("s4[] -3", s4_lit.ToString()); auto s32_lit = LiteralUtil::CreateR0<int32_t>(-999); EXPECT_EQ("s32[] -999", s32_lit.ToString()); auto f32_lit = LiteralUtil::CreateR0<float>(3.14f); EXPECT_EQ("f32[] 3.14", f32_lit.ToString()); auto f16_lit = LiteralUtil::CreateR0<half>(static_cast<half>(0.5f)); EXPECT_EQ("f16[] 0.5", f16_lit.ToString()); auto c64_lit = LiteralUtil::CreateR0<complex64>({3.14f, 2.78f}); EXPECT_EQ("c64[] (3.14, 2.78)", c64_lit.ToString()); auto c128_lit = LiteralUtil::CreateR0<complex128>({3.14, 2.78}); EXPECT_EQ("c128[] (3.14, 2.78)", c128_lit.ToString()); auto bf16_lit = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(0.5f)); EXPECT_EQ("bf16[] 0.5", bf16_lit.ToString()); auto bf16_lit_truncated = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(3.14f)); ASSERT_EQ("bf16[] 3.141", bf16_lit_truncated.ToString()); auto bf16_lit_truncated2 = LiteralUtil::CreateR0<bfloat16>(static_cast<bfloat16>(9.001f)); EXPECT_EQ("bf16[] 9", bf16_lit_truncated2.ToString()); auto f8e5m2_lit = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2(0.5)); EXPECT_EQ("f8e5m2[] 0.5", f8e5m2_lit.ToString()); auto f8e5m2_lit_truncated = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2(3.141)); EXPECT_EQ("f8e5m2[] 3", f8e5m2_lit_truncated.ToString()); auto f8e4m3_lit = LiteralUtil::CreateR0<tsl::float8_e4m3>(tsl::float8_e4m3(0.5)); EXPECT_EQ("f8e4m3[] 0.5", f8e4m3_lit.ToString()); auto f8e4m3fn_lit = LiteralUtil::CreateR0<tsl::float8_e4m3fn>(tsl::float8_e4m3fn(0.5)); EXPECT_EQ("f8e4m3fn[] 0.5", f8e4m3fn_lit.ToString()); auto f8e4m3b11fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e4m3b11fnuz>( tsl::float8_e4m3b11fnuz(0.5)); EXPECT_EQ("f8e4m3b11fnuz[] 0.5", f8e4m3b11fnuz_lit.ToString()); auto f8e4m3fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e4m3fnuz>(tsl::float8_e4m3fnuz(0.5)); EXPECT_EQ("f8e4m3fnuz[] 0.5", f8e4m3fnuz_lit.ToString()); auto f8e5m2fnuz_lit = LiteralUtil::CreateR0<tsl::float8_e5m2fnuz>(tsl::float8_e5m2fnuz(0.5)); EXPECT_EQ("f8e5m2fnuz[] 0.5", f8e5m2fnuz_lit.ToString()); auto f8e3m4_lit = LiteralUtil::CreateR0<tsl::float8_e3m4>(tsl::float8_e3m4(0.5)); EXPECT_EQ("f8e3m4[] 0.5", f8e3m4_lit.ToString()); } TEST_F(LiteralUtilTest, LiteralVectorToString) { auto pred_vec = LiteralUtil::CreateR1<bool>({true, false, true}); EXPECT_EQ("pred[3] {1, 0, 1}", pred_vec.ToString()); } TEST_F(LiteralUtilTest, R2ToString) { const auto literal = LiteralUtil::CreateR2({{1, 2}, {3, 4}, {5, 6}}); const std::string expected = R"(s32[3,2] { { 1, 2 }, { 3, 4 }, { 5, 6 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R2DynamicToString) { auto literal = LiteralUtil::CreateR2({{1, 2}, {3, 4}, {5, 6}}); literal.SetDynamicSize(0, {}, 2); const std::string expected = R"(s32[<=3,2](2,2) { { 1, 2 }, { 3, 4 } })"; EXPECT_EQ(expected, literal.ToString()); auto literal2 = LiteralUtil::CreateR2({{1, 2, 3}, {4, 5, 6}}); literal2.SetDynamicSize(1, {}, 2); const std::string expected2 = R"(s32[2,<=3](2,2) { { 1, 2 }, { 4, 5 } })"; EXPECT_EQ(expected2, literal2.ToString()); } TEST_F(LiteralUtilTest, R2BoolDynamicToString) { auto literal = LiteralUtil::CreateR2<bool>( {{true, true, true}, {true, true, true}, {true, true, true}}); literal.SetDynamicSize(0, {}, 2); const std::string expected = R"(pred[<=3,3](2,3) { { 1, 1, 1 }, { 1, 1, 1 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R3ToString) { const auto literal = LiteralUtil::CreateR3({{{1}, {2}}, {{3}, {4}}, {{5}, {6}}}); const std::string expected = R"(s32[3,2,1] { { {1}, {2} }, { {3}, {4} }, { {5}, {6} } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, R6ToString) { const auto literal = LiteralUtil::CreateFromDimensions(S32, {2, 2, 1, 1, 1, 2}); const std::string expected = R"(s32[2,2,1,1,1,2] { { { { { { 0, 0 } } } }, { { { { 0, 0 } } } } }, { { { { { 0, 0 } } } }, { { { { 0, 0 } } } } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, TupleToString) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); const std::string expected = R"(( f32[] 1, f32[2,2] { { 1, 2 }, { 3, 4 } } ))"; EXPECT_EQ(expected, tuple.ToString()); } TEST_F(LiteralUtilTest, CreateR3FromArray3d) { Array3D<float> array_3d({ {{1.0f, 2.0f}, {3.0f, 4.0f}, {5.0f, 6.0f}}, {{7.0f, 8.0f}, {9.0f, 10.0f}, {11.0f, 12.0f}}, }); auto literal = LiteralUtil::CreateR3FromArray3D(array_3d); EXPECT_THAT(literal.shape().dimensions(), ElementsAre(2, 3, 2)); std::string result = literal.ToString(); const std::string expected = R"(f32[2,3,2] { { { 1, 2 }, { 3, 4 }, { 5, 6 } }, { { 7, 8 }, { 9, 10 }, { 11, 12 } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, LiteralR4F32ProjectedStringifies) { auto literal = LiteralUtil::CreateR4Projected<float>({ {1, 2}, {1001, 1002}, {2001, 2002}, }, 1, 2); EXPECT_THAT(literal.shape().dimensions(), ElementsAre(1, 2, 3, 2)); std::string result = literal.ToString(); const std::string expected = R"(f32[1,2,3,2] { { { { 1, 2 }, { 1001, 1002 }, { 2001, 2002 } }, { { 1, 2 }, { 1001, 1002 }, { 2001, 2002 } } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, LiteralR4F32Stringifies) { EXPECT_THAT(literal_r4_2x2x3x3_dim0major_.shape().dimensions(), ElementsAre(2, 2, 3, 3)); std::string result = literal_r4_2x2x3x3_dim0major_.ToString(); const std::string expected = R"(f32[2,2,3,3] { { { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }, { { 11, 12, 13 }, { 14, 15, 16 }, { 17, 18, 19 } } }, { { { 101, 102, 103 }, { 104, 105, 106 }, { 107, 108, 109 } }, { { 201, 202, 203 }, { 204, 205, 206 }, { 207, 208, 209 } } } })"; EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, EachCellR2F32) { auto literal = LiteralUtil::CreateR2<float>({ {3.1f, 4.2f}, {9.3f, 12.4f}, }); std::vector<std::tuple<int64_t, int64_t, std::string>> seen; literal.EachCellAsString( [&seen](absl::Span<const int64_t> indices, const std::string& value) { seen.emplace_back(indices[0], indices[1], value); }); using Elem = std::tuple<int64_t, int64_t, std::string>; std::vector<Elem> expected = {Elem(0, 0, "3.1"), Elem(0, 1, "4.2"), Elem(1, 0, "9.3"), Elem(1, 1, "12.4")}; EXPECT_EQ(expected, seen); } TEST_F(LiteralUtilTest, ScalarEquality) { auto f32_42 = LiteralUtil::CreateR0<float>(42.0); auto f32_42_clone = LiteralUtil::CreateR0<float>(42.0); EXPECT_EQ(f32_42, f32_42); EXPECT_EQ(f32_42, f32_42_clone); auto f32_123 = LiteralUtil::CreateR0<float>(123.0); EXPECT_NE(f32_42, f32_123); auto f64_42 = LiteralUtil::CreateR0<double>(42.0); EXPECT_NE(f32_42, f64_42); } TEST_F(LiteralUtilTest, NonScalarEquality) { auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_clone = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_different = LiteralUtil::CreateR2<float>({{4.0, 3.0}, {1.0, 2.0}}); auto vector_literal = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0}); auto scalar = LiteralUtil::CreateR0<float>(1.0); Literal nil(ShapeUtil::MakeNil()); EXPECT_EQ(matrix, matrix); EXPECT_EQ(matrix, matrix_clone); EXPECT_NE(matrix, matrix_different); EXPECT_NE(matrix, vector_literal); EXPECT_NE(matrix, scalar); EXPECT_NE(matrix, nil); EXPECT_EQ(nil, nil); } TEST_F(LiteralUtilTest, TokenEquality) { auto token0 = LiteralUtil::CreateToken(); auto token1 = LiteralUtil::CreateToken(); auto scalar = LiteralUtil::CreateR0<float>(1.0); EXPECT_EQ(token0, token1); EXPECT_NE(token0, scalar); EXPECT_EQ(LiteralUtil::MakeTuple({&token0}), LiteralUtil::MakeTuple({&token0})); EXPECT_EQ(LiteralUtil::MakeTuple({&token0, &scalar}), LiteralUtil::MakeTuple({&token1, &scalar})); EXPECT_NE(LiteralUtil::MakeTuple({&token0, &scalar}), LiteralUtil::MakeTuple({&scalar, &token1})); } TEST_F(LiteralUtilTest, DifferentLayoutEquality) { Literal colmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1})); colmajor.Set<float>({0, 0}, 1.0); colmajor.Set<float>({0, 1}, 2.0); colmajor.Set<float>({1, 0}, 3.0); colmajor.Set<float>({1, 1}, 4.0); Literal rowmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0})); rowmajor.Set<float>({0, 0}, 1.0); rowmajor.Set<float>({0, 1}, 2.0); rowmajor.Set<float>({1, 0}, 3.0); rowmajor.Set<float>({1, 1}, 4.0); EXPECT_EQ(rowmajor, colmajor); } TEST_F(LiteralUtilTest, DifferentLayoutInEquality) { Literal colmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {0, 1})); colmajor.Set<float>({0, 0}, 1.0); colmajor.Set<float>({0, 1}, 2.0); colmajor.Set<float>({1, 0}, 3.0); colmajor.Set<float>({1, 1}, 4.0); Literal rowmajor(ShapeUtil::MakeShapeWithDenseLayout(F32, {2, 2}, {1, 0})); rowmajor.Set<float>({0, 0}, 1.0); rowmajor.Set<float>({0, 1}, 2.0); rowmajor.Set<float>({1, 0}, 3.0); rowmajor.Set<float>({1, 1}, 4.0); EXPECT_FALSE(rowmajor.Equal(colmajor, true)); EXPECT_FALSE(colmajor.Equal(rowmajor, true)); } TEST_F(LiteralUtilTest, TupleEquality) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple1 = LiteralUtil::MakeTuple({&scalar, &matrix}); auto scalar_clone = LiteralUtil::CreateR0<float>(1.0); auto tuple2 = LiteralUtil::MakeTuple({&scalar_clone, &matrix}); EXPECT_EQ(tuple1, tuple2); auto reversed_tuple = LiteralUtil::MakeTuple({&matrix, &scalar}); EXPECT_NE(tuple1, reversed_tuple); auto scalar_42 = LiteralUtil::CreateR0<float>(42.0); auto different_tuple = LiteralUtil::MakeTuple({&scalar_42, &matrix}); EXPECT_NE(tuple1, different_tuple); } TEST_F(LiteralUtilTest, DynamicShapeEquality) { auto r1 = LiteralUtil::CreateR1<float>({1.0, 2.0}); r1.SetDynamicSize(0, {}, 1); auto r2 = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); r2.SetDynamicSize(0, {}, 1); auto tuple1 = LiteralUtil::MakeTuple({&r1, &r2}); auto r1_clone = LiteralUtil::CreateR1<float>({1.0, 3.0}); r1_clone.SetDynamicSize(0, {}, 1); auto tuple2 = LiteralUtil::MakeTuple({&r1_clone, &r2}); EXPECT_EQ(tuple1, tuple2); auto r2_clone = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); r2_clone.SetDynamicSize(0, {}, 2); auto tuple_3 = LiteralUtil::MakeTuple({&r1_clone, &r2_clone}); EXPECT_NE(tuple1, tuple_3); } TEST_F(LiteralUtilTest, C64Equality) { auto vector = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_clone = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(vector, vector_clone); auto vector_reversed = LiteralUtil::CreateR1<complex64>({{3.0, 4.0}, {1.0, 2.0}}); EXPECT_NE(vector, vector_reversed); } TEST_F(LiteralUtilTest, C128Equality) { auto vector = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_clone = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(vector, vector_clone); auto vector_reversed = LiteralUtil::CreateR1<complex128>({{3.0, 4.0}, {1.0, 2.0}}); EXPECT_NE(vector, vector_reversed); } TEST_F(LiteralUtilTest, IsAllTuple) { auto element1 = LiteralUtil::CreateR0<float>(0.0); auto element2 = LiteralUtil::CreateR2<float>({{0.0, 0.0}, {0.0, 0.0}}); auto tuple = LiteralUtil::MakeTuple({&element1, &element1}); EXPECT_FALSE(tuple.IsAll(0)); EXPECT_FALSE(tuple.IsAll(1)); } TEST_F(LiteralUtilTest, CreateFromShapeTuple) { auto scalar = LiteralUtil::CreateR0<float>(0.0); auto matrix = LiteralUtil::CreateR2<int32_t>({{0, 0}, {0, 0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto x = Literal::CreateFromShape(tuple.shape()); EXPECT_EQ(tuple, x); } TEST_F(LiteralUtilTest, IsAll) { EXPECT_TRUE(LiteralUtil::CreateR0<bool>(false).IsAll(0)); EXPECT_TRUE(LiteralUtil::CreateR0<bool>(true).IsAll(1)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAll(1)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAll(2)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(0)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(2)); EXPECT_FALSE(LiteralUtil::CreateR0<bool>(true).IsAll(-1)); auto int8_min = std::numeric_limits<int8_t>::min(); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(255).IsAll(int8_min)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(42.0).IsAll(42)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(42.0001).IsAll(42)); EXPECT_TRUE(LiteralUtil::CreateR1<int>({100, 100, 100}).IsAll(100)); EXPECT_FALSE(LiteralUtil::CreateR1<double>({100, 100, 100.001}).IsAll(100)); EXPECT_TRUE(LiteralUtil::CreateR2<uint64_t>({{8, 8}, {8, 8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>({{8, 8}, {8, 9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>({{9, 8}, {8, 8}}).IsAll(8)); half h8(8.0f); half h9(9.0f); EXPECT_TRUE(LiteralUtil::CreateR2<half>({{h8}, {h8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<half>({{h8}, {h9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<half>({{h9}, {h8}}).IsAll(8)); bfloat16 b8(8.0f); bfloat16 b9(9.0f); EXPECT_TRUE(LiteralUtil::CreateR2<bfloat16>({{b8}, {b8}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<bfloat16>({{b8}, {b9}}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR2<bfloat16>({{b9}, {b8}}).IsAll(8)); bfloat16 b91(9.001f); bfloat16 b90(9.00f); EXPECT_TRUE(LiteralUtil::CreateR2<bfloat16>({{b91}, {b90}}).IsAll(9.0)); tsl::float8_e5m2 p16(8); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e5m2>({p16}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e5m2>({p16}).IsAll(9)); tsl::float8_e4m3 q16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3>({q16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3>({q16}).IsAll(9)); tsl::float8_e4m3fn r16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3fn>({r16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3fn>({r16}).IsAll(9)); tsl::float8_e4m3b11fnuz s16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3b11fnuz>({s16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3b11fnuz>({s16}).IsAll(9)); tsl::float8_e4m3fnuz t16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e4m3fnuz>({t16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e4m3fnuz>({t16}).IsAll(9)); tsl::float8_e5m2fnuz u16(8); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e5m2fnuz>({u16}).IsAll(8)); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e5m2fnuz>({u16}).IsAll(9)); tsl::float8_e3m4 v16(9); EXPECT_FALSE(LiteralUtil::CreateR1<tsl::float8_e3m4>({v16}).IsAll(8)); EXPECT_TRUE(LiteralUtil::CreateR1<tsl::float8_e3m4>({v16}).IsAll(9)); complex64 c8_9 = {8, 9}; EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}).IsAll(8)); auto uint64_max = std::numeric_limits<uint64_t>::max(); EXPECT_FALSE(LiteralUtil::CreateR2<uint64_t>( {{uint64_max, uint64_max}, {uint64_max, uint64_max}}) .IsAll(-1)); } TEST_F(LiteralUtilTest, IsAllFloat) { EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int8_t>(0).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(0).IsAllFloat(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(.5).IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<float>(-.5).IsAllFloat(-.5)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(-.5).IsAllFloat(-.49)); EXPECT_FALSE( LiteralUtil::CreateR2<float>({{0, 0, 0}, {0, .1, 0}}).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR2<float>({{.5, .5, .5}, {.5, .5, .5}}) .IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(0).IsAllFloat(0)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(.5).IsAllFloat(.5)); EXPECT_TRUE(LiteralUtil::CreateR0<double>(-.5).IsAllFloat(-.5)); EXPECT_FALSE(LiteralUtil::CreateR0<double>(-.5).IsAllFloat(-.49)); EXPECT_FALSE( LiteralUtil::CreateR2<double>({{0, 0, 0}, {0, .1, 0}}).IsAllFloat(0)); EXPECT_TRUE( LiteralUtil::CreateR0<bfloat16>(bfloat16(128.)).IsAllFloat(128.5)); } TEST_F(LiteralUtilTest, IsAllComplex) { EXPECT_FALSE(LiteralUtil::CreateR0<bool>(false).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int8_t>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<uint8_t>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<int>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<float>(0).IsAllComplex(0)); EXPECT_FALSE(LiteralUtil::CreateR0<double>(0).IsAllComplex(0)); complex64 c8_9 = {8, 9}; complex64 c7_9 = {7, 9}; EXPECT_TRUE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}) .IsAllComplex({8.0f, 9.0f})); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c7_9}, {c8_9}}) .IsAllComplex({8.0f, 9.0f})); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c7_9}}) .IsAllComplex({8.0f, 9.0f})); } TEST_F(LiteralUtilTest, IsAllFirst) { EXPECT_FALSE(LiteralUtil::CreateR1<bool>({false, true}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<bool>({false, false}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<int8_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<int8_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<uint8_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<int32_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<int32_t>({1, 1, 2}).IsAllFirst()); EXPECT_TRUE(LiteralUtil::CreateR1<uint32_t>({5, 5, 5, 5}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR1<uint32_t>({1, 1, 2}).IsAllFirst()); complex64 c8_9 = {8, 9}; complex64 c7_9 = {7, 9}; EXPECT_TRUE(LiteralUtil::CreateR2<complex64>({{c8_9}, {c8_9}}).IsAllFirst()); EXPECT_FALSE(LiteralUtil::CreateR2<complex64>({{c7_9}, {c8_9}}).IsAllFirst()); #if defined(__x86_64__) && defined(_MM_DENORMALS_ZERO_ON) int old_csr = _mm_getcsr(); _mm_setcsr(old_csr | _MM_DENORMALS_ZERO_ON); #endif bool eq0 = LiteralUtil::CreateR1<float>({0.0, 1.401298e-45}).IsAllFirst(); bool eq1 = LiteralUtil::CreateR1<float>({0.0, 2.802597e-45}).IsAllFirst(); bool eq2 = LiteralUtil::CreateR1<float>({4.203895e-45, 7.006492e-45}).IsAllFirst(); #if defined(__x86_64__) && defined(_MM_DENORMALS_ZERO_ON) _mm_setcsr(old_csr); #endif EXPECT_FALSE(eq0); EXPECT_FALSE(eq1); EXPECT_FALSE(eq2); } TEST_F(LiteralUtilTest, CountEqualInt) { EXPECT_EQ(LiteralUtil::CreateR1<int8_t>({}).CountEqual<int8_t>(1), 0); EXPECT_EQ( LiteralUtil::CreateR1<int8_t>({1, 2, 3, 4, 5, 100}).CountEqual<int8_t>(2), 1); EXPECT_EQ(LiteralUtil::CreateR1<int8_t>({0, 3, 6, 0, 9, 18, 0}) .CountEqual<int8_t>(0), 3); EXPECT_EQ(LiteralUtil::CreateR1<int32_t>({234, 345, 4, 45, 5467, 5467, 5467}) .CountEqual<int32_t>(5467), 3); } TEST_F(LiteralUtilTest, CountEqualFloat) { EXPECT_EQ(LiteralUtil::CreateR1<float>({}).CountEqual<float>(0), 0); EXPECT_EQ(LiteralUtil::CreateR1<float>({1.1, 2.2, 3.3, 4.4, 5.5, 100.6}) .CountEqual<float>(3.3), 1); EXPECT_EQ(LiteralUtil::CreateR1<float>({7.62, 3, 7.75, 7.62, 7.3, 2, 7.62}) .CountEqual<float>(7.62), 3); EXPECT_EQ(LiteralUtil::CreateR1<float>( {NAN, 0, 6.8, NAN, NAN, NAN, 63.12, 24.6, NAN}) .CountEqual<float>(NAN), 5); } TEST_F(LiteralUtilTest, CountEqualBool) { EXPECT_EQ(LiteralUtil::CreateR1<bool>({false, true}).CountEqual<bool>(false), 1); } TEST_F(LiteralUtilTest, CountEqualComplex) { EXPECT_EQ(LiteralUtil::CreateR1<std::complex<double>>( {std::complex<float>(1, 2), std::complex<float>(3, 4), std::complex<float>(5, 6), std::complex<float>(6, 7)}) .CountEqual<float>(std::complex<float>(5, 6)), 1); } TEST_F(LiteralUtilTest, CountEqualMismatched) { EXPECT_EQ(LiteralUtil::CreateR1<float>({13, 10.5, 15.6, 22.7}) .CountEqual<int8_t>(13), 1); EXPECT_EQ( LiteralUtil::CreateR1<float>({10.5, 15.6, 22.7}).CountEqual<int8_t>(1), 0); EXPECT_EQ(LiteralUtil::CreateR1<std::complex<float>>( {std::complex<float>(1, 2), std::complex<float>(3, 4), std::complex<float>(5, 6), std::complex<float>(6, 7)}) .CountEqual<float>(1), 0); } TEST_F(LiteralUtilTest, IsZero) { auto scalar_zero = LiteralUtil::CreateR0<float>(0.0f); auto scalar_one = LiteralUtil::CreateR0<float>(1.0f); EXPECT_TRUE(scalar_zero.IsZero({})); EXPECT_FALSE(scalar_one.IsZero({})); auto array = LiteralUtil::CreateR2<uint32_t>({{1, 2, 0, 3}, {1, 0, 1, 2}}); EXPECT_FALSE(array.IsZero({0, 1})); EXPECT_TRUE(array.IsZero({0, 2})); EXPECT_TRUE(array.IsZero({1, 1})); EXPECT_FALSE(array.IsZero({1, 2})); auto complex_zero = LiteralUtil::CreateR0<complex64>(0.0f); auto complex_nonzero = LiteralUtil::CreateR0<complex64>(0.5f); EXPECT_TRUE(complex_zero.IsZero({})); EXPECT_FALSE(complex_nonzero.IsZero({})); } template <typename T> class LiteralUtilTestTemplated : public ::testing::Test {}; using TestedTypes = ::testing::Types<float, int32_t, uint32_t, complex64>; class TestNamer { public: template <typename TypeParam> static std::string GetName(int) { return ::testing::internal::GetTypeName<TypeParam>(); } }; TYPED_TEST_SUITE(LiteralUtilTestTemplated, TestedTypes, TestNamer); TYPED_TEST(LiteralUtilTestTemplated, Relayout2x2) { TypeParam half = TypeParam(1) / TypeParam(2); auto data = LiteralUtil::CreateR2<TypeParam>({{half, 2}, {3, 4}}); const Layout layout01 = LayoutUtil::MakeLayout({0, 1}); const Layout layout10 = LayoutUtil::MakeLayout({1, 0}); auto data01 = data.Relayout(layout01); EXPECT_TRUE(LayoutUtil::Equal(data01.shape().layout(), layout01)); EXPECT_EQ(data, data01); auto data10 = data.Relayout(layout10); EXPECT_TRUE(LayoutUtil::Equal(data10.shape().layout(), layout10)); EXPECT_EQ(data, data10); } TEST_F(LiteralUtilTest, ReshapeR0) { auto original = LiteralUtil::CreateR0<float>(1.7f); auto reshape = original.Reshape({}).value(); EXPECT_EQ(original, reshape); } TEST_F(LiteralUtilTest, ReshapeR4) { auto original = LiteralUtil::CreateR4WithLayout<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0major_); auto expected = LiteralUtil::CreateR3WithLayout<float>({ {{10, 11}, {12, 13}, {14, 15}, {16, 17}}, {{18, 19}, {20, 21}, {22, 23}, {24, 25}}, {{26, 27}, {28, 29}, {30, 31}, {32, 33}}, }, layout_r3_dim0major_); auto reshape = original.Reshape({3, 4, 2}).value(); EXPECT_EQ(expected, reshape); } TEST_F(LiteralUtilTest, ReshapeR4Dim0Minor) { auto original = LiteralUtil::CreateR4WithLayout<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0minor_); auto expected = LiteralUtil::CreateR3WithLayout<float>({ {{10, 11}, {12, 13}, {14, 15}, {16, 17}}, {{18, 19}, {20, 21}, {22, 23}, {24, 25}}, {{26, 27}, {28, 29}, {30, 31}, {32, 33}}, }, layout_r3_dim0major_); auto reshape = original.Reshape({3, 4, 2}).value(); EXPECT_EQ(expected, reshape); } TEST_F(LiteralUtilTest, TransposeR0) { auto original = LiteralUtil::CreateR0<float>(1.7f); auto reshape = original.Transpose({}); EXPECT_EQ(original, reshape); } TEST_F(LiteralUtilTest, TransposeR4) { auto original = LiteralUtil::CreateR4<float>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}); auto reshape = original.Transpose({2, 3, 0, 1}); reshape.EachCell<float>([&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>( {indices[2], indices[3], indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, TransposeDynamicR2) { auto original = LiteralUtil::CreateR2<float>({{1, 2, 3}, {4, 5, 6}}); original.SetDynamicSize(1, 1); auto reshape = original.Transpose({1, 0}); reshape.EachCell<float>([&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[1], indices[0]})); }); } TEST_F(LiteralUtilTest, ToStaticR2) { auto original = LiteralUtil::CreateR2<float>({{1, 2, 3}, {4, 5, 6}}); original.SetDynamicSize(1, 1); auto static_literal = original.ToStatic(); EXPECT_EQ(static_literal.shape(), ShapeUtil::MakeShape(F32, {2, 1})); EXPECT_TRUE(static_literal.shape().is_static()); static_literal.EachCell<float>( [&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, ToBoundedDynamicR2) { auto original = LiteralUtil::CreateR2<float>({{1}, {4}}); auto dynamic_shape = ShapeUtil::MakeShape(F32, {2, 3}, {false, true}); auto dynamic_literal = original.ToBoundedDynamic(dynamic_shape); EXPECT_EQ(dynamic_literal.shape(), dynamic_shape); dynamic_literal.EachCell<float>( [&](absl::Span<const int64_t> indices, float value) { EXPECT_EQ(value, original.Get<float>({indices[0], indices[1]})); }); } TEST_F(LiteralUtilTest, TestR4RelayoutEquivalence) { auto dim0minor_relaid_to_dim0major = literal_r4_2x2x3x3_dim0minor_.Relayout(layout_r4_dim0major_); EXPECT_EQ(literal_r4_2x2x3x3_dim0major_, dim0minor_relaid_to_dim0major); auto dim0major_relaid_to_dim0minor = literal_r4_2x2x3x3_dim0major_.Relayout(layout_r4_dim0minor_); EXPECT_EQ(literal_r4_2x2x3x3_dim0minor_, dim0major_relaid_to_dim0minor); } template <bool kIsLayoutSensitive> struct HashTester { template <typename H> friend H AbslHashValue(H h, const HashTester& key) { return Literal::Hash<H, kIsLayoutSensitive, 64>( std::move(h), *key.literal); } const Literal* literal; }; TEST_F(LiteralUtilTest, TestR2LinearLayout) { auto mat_dim0minor = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2, 3}, {4, 5, 6}}, layout_r2_dim0minor_); EXPECT_EQ(mat_dim0minor.element_count(), 6); EXPECT_THAT(mat_dim0minor.data<int32_t>(), ElementsAre(1, 4, 2, 5, 3, 6)); auto relaid_mat_to_dim0major = mat_dim0minor.Relayout(layout_r2_dim0major_); EXPECT_THAT(relaid_mat_to_dim0major.data<int32_t>(), ElementsAre(1, 2, 3, 4, 5, 6)); EXPECT_EQ(absl::HashOf(HashTester<false>{&mat_dim0minor}), absl::HashOf(HashTester<false>{&relaid_mat_to_dim0major})); auto mat_dim0major = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2, 3}, {4, 5, 6}}, layout_r2_dim0major_); EXPECT_EQ(mat_dim0major.element_count(), 6); EXPECT_THAT(mat_dim0major.data<int32_t>(), ElementsAre(1, 2, 3, 4, 5, 6)); auto relaid_mat_to_dim0minor = mat_dim0major.Relayout(layout_r2_dim0minor_); EXPECT_THAT(relaid_mat_to_dim0minor.data<int32_t>(), ElementsAre(1, 4, 2, 5, 3, 6)); EXPECT_EQ(absl::HashOf(HashTester<false>{&mat_dim0major}), absl::HashOf(HashTester<false>{&relaid_mat_to_dim0minor})); EXPECT_EQ(absl::HashOf(HashTester<true>{&mat_dim0minor}), absl::HashOf(HashTester<true>{&relaid_mat_to_dim0minor})); EXPECT_EQ(absl::HashOf(HashTester<true>{&mat_dim0major}), absl::HashOf(HashTester<true>{&relaid_mat_to_dim0major})); } TEST_F(LiteralUtilTest, TestR3LinearLayout) { Array3D<int> arr3d( { { {1, 2, 3}, {4, 5, 6}, }, { {7, 8, 9}, {10, 11, 12}, }, }); auto lit_dim0minor = LiteralUtil::CreateR3FromArray3DWithLayout<int>( arr3d, layout_r3_dim0minor_); EXPECT_EQ(lit_dim0minor.element_count(), 12); std::vector<int> expected_dim0minor{1, 7, 4, 10, 2, 8, 5, 11, 3, 9, 6, 12}; EXPECT_THAT(lit_dim0minor.data<int32_t>(), testing::ElementsAreArray(expected_dim0minor)); auto relaid_lit_to_dim0major = lit_dim0minor.Relayout(layout_r3_dim0major_); std::vector<int> expected_dim0major{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; EXPECT_THAT(relaid_lit_to_dim0major.data<int32_t>(), testing::ElementsAreArray(expected_dim0major)); auto lit_dim0major = LiteralUtil::CreateR3FromArray3DWithLayout<int>( arr3d, layout_r3_dim0major_); EXPECT_EQ(lit_dim0major.element_count(), 12); EXPECT_THAT(lit_dim0major.data<int32_t>(), testing::ElementsAreArray(expected_dim0major)); auto relaid_lit_to_dim0minor = lit_dim0major.Relayout(layout_r3_dim0minor_); EXPECT_THAT(relaid_lit_to_dim0minor.data<int32_t>(), testing::ElementsAreArray(expected_dim0minor)); } TEST_F(LiteralUtilTest, SliceR0S32) { auto input = LiteralUtil::CreateR0<int32_t>(1); auto result = input.Slice({}, {}); EXPECT_EQ(input, result); } TEST_F(LiteralUtilTest, SliceR1F32) { auto input = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0, 5.0}); auto result = input.Slice({3}, {4}); auto expected = LiteralUtil::CreateR1<float>({4.0}); EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, SliceR2U32) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); auto result = input_3x4.Slice({0, 2}, {2, 4}); auto expected = LiteralUtil::CreateR2<uint32_t>({{3, 4}, {7, 8}}); EXPECT_EQ(expected, result); } TEST_F(LiteralUtilTest, SliceR3U32Full) { auto input_2x3x2 = LiteralUtil::CreateR3<uint32_t>( {{{1, 2}, {3, 4}, {5, 6}}, {{7, 8}, {9, 10}, {11, 12}}}); auto result = input_2x3x2.Slice({0, 0, 0}, {2, 3, 2}); EXPECT_EQ(input_2x3x2, result); } TEST_F(LiteralUtilTest, SliceR2Dynamic) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); input_3x4.SetDynamicSize(1, 3); auto result = input_3x4.Slice({0, 1}, {2, 2}); auto expected = LiteralUtil::CreateR2<uint32_t>({{2}, {6}}); EXPECT_EQ(expected, result); EXPECT_EQ(result.GetDynamicSize(1), 1); } TEST_F(LiteralUtilTest, SliceR2DynamicInBound) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); input_3x4.SetDynamicSize(1, 1); auto result = input_3x4.Slice({0, 0}, {2, 2}); auto expected = LiteralUtil::CreateR2<uint32_t>({{1}, {5}}); EXPECT_EQ(expected, result); EXPECT_EQ(result.GetDynamicSize(1), 1); } TEST_F(LiteralUtilTest, SliceR2DynamicOutOfBound) { auto input_3x4 = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); input_3x4.SetDynamicSize(1, 1); auto result = input_3x4.Slice({0, 1}, {2, 3}); auto expected = LiteralUtil::CreateR2<uint32_t>({{}, {}}); EXPECT_EQ(expected, result); EXPECT_EQ(result.GetDynamicSize(1), 0); } TEST_F(LiteralUtilTest, PopulateR1S64) { Literal output(ShapeUtil::MakeShape(S64, {1})); output.PopulateR1<int64_t>({77}); auto expected = LiteralUtil::CreateR1<int64_t>({77}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR1U64) { Literal output(ShapeUtil::MakeShape(U64, {2})); output.PopulateR1<uint64_t>({{77, 88}}); auto expected = LiteralUtil::CreateR1<uint64_t>({{77, 88}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR1C64) { Literal output(ShapeUtil::MakeShape(C64, {1})); output.PopulateR1<complex64>({{77, 88}}); auto expected = LiteralUtil::CreateR1<complex64>({{77, 88}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR1C128) { Literal output(ShapeUtil::MakeShape(C128, {1})); output.PopulateR1<complex128>({{77, 88}}); auto expected = LiteralUtil::CreateR1<complex128>({{77, 88}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateR2C64) { Literal output(ShapeUtil::MakeShape(C64, {2, 2})); output.PopulateR2<complex64>({{{7, 8}, {9, 10}}, {{1, 2}, {3, 4}}}); auto expected = LiteralUtil::CreateR2<complex64>({{{7, 8}, {9, 10}}, {{1, 2}, {3, 4}}}); EXPECT_EQ(output, expected); } TYPED_TEST(LiteralUtilFloatTest, PopulateWithValueR0Float) { Literal output(ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<TypeParam>(), {})); TypeParam h(0.25f); output.PopulateWithValue<TypeParam>(h); auto expected = LiteralUtil::CreateR0<TypeParam>(h); EXPECT_EQ(output, expected); } TYPED_TEST(LiteralUtilFloatTest, PopulateWithValueR1Float) { Literal output(ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<TypeParam>(), {3})); TypeParam h(0.5f); output.PopulateWithValue<TypeParam>(h); auto expected = LiteralUtil::CreateR1<TypeParam>({h, h, h}); EXPECT_EQ(output, expected); } TYPED_TEST(LiteralUtilFloatTest, PopulateWithValueR2Float) { Literal output(ShapeUtil::MakeShape( primitive_util::NativeToPrimitiveType<TypeParam>(), {2, 2})); TypeParam h(2.0f); output.PopulateWithValue<TypeParam>(h); auto expected = LiteralUtil::CreateR2<TypeParam>({{h, h}, {h, h}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR1S64) { Literal output(ShapeUtil::MakeShape(S64, {3})); output.PopulateWithValue<int64_t>(-7); auto expected = LiteralUtil::CreateR1<int64_t>({-7, -7, -7}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR2U64) { Literal output(ShapeUtil::MakeShape(U64, {2, 2})); output.PopulateWithValue<uint64_t>(42); auto expected = LiteralUtil::CreateR2<uint64_t>({{42, 42}, {42, 42}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR2C64) { Literal output(ShapeUtil::MakeShape(C64, {2, 2})); output.PopulateWithValue<complex64>({4, 2}); auto expected = LiteralUtil::CreateR2<complex64>({{{4, 2}, {4, 2}}, {{4, 2}, {4, 2}}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, PopulateWithValueR2C128) { Literal output(ShapeUtil::MakeShape(C128, {2, 2})); output.PopulateWithValue<complex128>({4, 2}); auto expected = LiteralUtil::CreateR2<complex128>({{{4, 2}, {4, 2}}, {{4, 2}, {4, 2}}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, ReplicateR2U32) { auto input = LiteralUtil::CreateR2<uint32_t>( {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}); auto output = input.Replicate<uint32_t>(3); auto expected = LiteralUtil::CreateR3<uint32_t>( {{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}, {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}}); EXPECT_EQ(output, expected); } TEST_F(LiteralUtilTest, CopySliceFrom) { const int64_t dimensions[] = {17, 15, 34, 21}; const int64_t layouts[][4] = { {3, 2, 1, 0}, {0, 2, 1, 3}, {0, 1, 2, 3}, {2, 0, 3, 1}, {1, 3, 0, 2}}; for (const auto& layout : layouts) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout( primitive_util::NativeToPrimitiveType<uint32_t>(), dimensions, layout); auto source = Literal::CreateFromShape(shape); const int64_t zero_base[] = {0, 0, 0, 0}; const int64_t step[] = {1, 1, 1, 1}; uint32_t seqnr = 0; auto init_proc = [&](absl::Span<const int64_t> indexes) { source.Set(indexes, ++seqnr); return true; }; ShapeUtil::ForEachIndex(source.shape(), zero_base, dimensions, step, init_proc); auto blank = Literal::CreateFromShape(shape); const int64_t src_base[] = {3, 1, 5, 7}; const int64_t dest_base[] = {6, 4, 12, 2}; const int64_t copy_size[] = {7, 8, 11, 9}; TF_EXPECT_OK(blank.CopySliceFrom(source, src_base, dest_base, copy_size)); std::vector<int64_t> source_indexes(TF_ARRAYSIZE(dimensions), 0); std::vector<int64_t> blank_indexes(TF_ARRAYSIZE(dimensions), 0); bool matched = true; auto check_proc = [&](absl::Span<const int64_t> indexes) { std::copy(indexes.begin(), indexes.end(), source_indexes.begin()); std::transform(source_indexes.begin(), source_indexes.end(), src_base, source_indexes.begin(), std::plus<int64_t>()); std::copy(indexes.begin(), indexes.end(), blank_indexes.begin()); std::transform(blank_indexes.begin(), blank_indexes.end(), dest_base, blank_indexes.begin(), std::plus<int64_t>()); auto bval = blank.Get<uint32_t>(blank_indexes); matched = (bval != 0 && bval == source.Get<uint32_t>(source_indexes)); return matched; }; ShapeUtil::ForEachIndex(source.shape(), zero_base, copy_size, step, check_proc); EXPECT_TRUE(matched); } } TEST_F(LiteralUtilTest, CopyFromScalars) { auto zero = LiteralUtil::CreateR0<uint32_t>(0); auto nine = LiteralUtil::CreateR0<uint32_t>(9); TF_EXPECT_OK(zero.CopyFrom(nine)); EXPECT_EQ(zero, nine); auto vect = LiteralUtil::CreateR1<uint32_t>({3, 4, 9, 12, 5, 17, 21}); TF_EXPECT_OK(zero.CopySliceFrom(vect, {5}, {}, {})); EXPECT_EQ(zero.Get<uint32_t>({}), 17); TF_EXPECT_OK(vect.CopySliceFrom(zero, {}, {4}, {})); EXPECT_EQ(vect.Get<uint32_t>({4}), 17); } TEST_F(LiteralUtilTest, CopyFromAndToZeroElement) { const Shape empty_r1_shape = ShapeUtil::MakeShape(F32, {0}); const auto const_nine = LiteralUtil::CreateR1<float>({9}); const auto const_empty = Literal::CreateFromShape(empty_r1_shape); { const auto empty = Literal::CreateFromShape(empty_r1_shape); auto nine = LiteralUtil::CreateR1<float>({9}); TF_EXPECT_OK(nine.CopySliceFrom(empty, {0}, {0}, {0})); EXPECT_EQ(nine, const_nine); } { auto empty = Literal::CreateFromShape(empty_r1_shape); auto nine = LiteralUtil::CreateR1<float>({9}); TF_EXPECT_OK(empty.CopySliceFrom(nine, {0}, {0}, {0})); EXPECT_EQ(empty, const_empty); } } TEST_F(LiteralUtilTest, CopyFromNilShape) { Literal nil_literal0(ShapeUtil::MakeNil()); Literal nil_literal1(ShapeUtil::MakeNil()); TF_ASSERT_OK(nil_literal0.CopyFrom(nil_literal1)); } TEST_F(LiteralUtilTest, CopyFromArrays) { auto scalar_42 = LiteralUtil::CreateR0<float>(42.0); auto scalar_123 = LiteralUtil::CreateR0<float>(123.0); EXPECT_NE(scalar_42, scalar_123); TF_ASSERT_OK(scalar_42.CopyFrom(scalar_123, {}, {})); EXPECT_EQ(scalar_42, scalar_123); EXPECT_EQ(scalar_42.Get<float>({}), 123.0f); auto matrix_1234 = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto matrix_5678 = LiteralUtil::CreateR2<float>({{5.0, 6.0}, {7.0, 8.0}}); EXPECT_NE(matrix_1234, matrix_5678); EXPECT_EQ(matrix_1234.Get<float>({0, 0}), 1.0f); TF_ASSERT_OK(matrix_1234.CopyFrom(matrix_5678, {}, {})); EXPECT_EQ(matrix_1234, matrix_5678); EXPECT_EQ(matrix_1234.Get<float>({0, 0}), 5.0f); } TEST_F(LiteralUtilTest, CopyFromTuples) { auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); Literal nil_literal(ShapeUtil::MakeNil()); Literal inner_elements[] = {LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR1<double>({23.0, 44.0})}; Literal inner_tuple = LiteralUtil::MakeTuple( {&inner_elements[0], &inner_elements[1], &nil_literal}); Literal nested_tuple = LiteralUtil::MakeTuple({&matrix, &inner_tuple}); Literal int32_minus5 = LiteralUtil::CreateR0<int32_t>(-5); Literal double_2_4 = LiteralUtil::CreateR1<double>({2.0, 4.0}); Literal tuple = LiteralUtil::MakeTuple({&int32_minus5, &double_2_4, &nil_literal}); EXPECT_EQ(matrix, LiteralSlice(nested_tuple, {0})); EXPECT_EQ(nested_tuple.Get<int32_t>({}, {1, 0}), 42); EXPECT_EQ(nested_tuple.Get<double>({0}, {1, 1}), 23.0); EXPECT_EQ(nested_tuple.Get<double>({1}, {1, 1}), 44.0); TF_ASSERT_OK(nested_tuple.CopyFrom(tuple, {1}, {})); EXPECT_EQ(matrix, LiteralSlice(nested_tuple, {0})); EXPECT_EQ(nested_tuple.Get<int32_t>({}, {1, 0}), -5); EXPECT_EQ(nested_tuple.Get<double>({0}, {1, 1}), 2.0); EXPECT_EQ(nested_tuple.Get<double>({1}, {1, 1}), 4.0); } TEST_F(LiteralUtilTest, CopyBetweenSameTuple) { Literal elements[] = {LiteralUtil::CreateR0<int32_t>(-2), LiteralUtil::CreateR0<int32_t>(4)}; Literal tuple = LiteralUtil::MakeTuple({&elements[0], &elements[1]}); EXPECT_EQ(tuple.Get<int32_t>({}, {0}), -2); EXPECT_EQ(tuple.Get<int32_t>({}, {1}), 4); TF_ASSERT_OK(tuple.CopyFrom(tuple, {1}, {0})); EXPECT_EQ(tuple.Get<int32_t>({}, {0}), -2); EXPECT_EQ(tuple.Get<int32_t>({}, {1}), -2); } TEST_F(LiteralUtilTest, CopyFromDifferentShapes) { auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto vector = LiteralUtil::CreateR1<float>({5.0, 7.0}); absl::Status status = matrix.CopyFrom(vector); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Destination subshape incompatible")); } TEST_F(LiteralUtilTest, F16) { Literal m1 = Literal::CreateFromShape(ShapeUtil::MakeShape(F16, {2, 2})); const char* d1 = reinterpret_cast<const char*>(m1.data<half>().data()); EXPECT_EQ(d1[0], 0); EXPECT_EQ(d1[1], 0); EXPECT_EQ(d1[2], 0); EXPECT_EQ(d1[3], 0); EXPECT_EQ(d1[4], 0); EXPECT_EQ(d1[5], 0); EXPECT_EQ(d1[6], 0); EXPECT_EQ(d1[7], 0); half h1(1.0f); half h2(2.0f); auto m2 = LiteralUtil::CreateR2<half>({{h1, h2}, {h2, h1}}); const uint16_t* d2 = reinterpret_cast<const uint16_t*>(m2.data<half>().data()); EXPECT_EQ(d2[0], 0x3C00); EXPECT_EQ(d2[1], 0x4000); EXPECT_EQ(d2[2], 0x4000); EXPECT_EQ(d2[3], 0x3C00); } TEST_F(LiteralUtilTest, Populate) { struct PopulateData { std::vector<int64_t> dimensions; std::vector<int64_t> layout; } populate_data[] = { {{}, {}}, {{0}, {0}}, {{16}, {0}}, {{2, 0}, {1, 0}}, {{4, 16}, {1, 0}}, {{21, 12}, {0, 1}}, {{6, 11, 17}, {2, 0, 1}}, {{6, 11, 5, 17}, {3, 2, 0, 1}}, }; for (const auto& data : populate_data) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout( primitive_util::NativeToPrimitiveType<uint32_t>(), data.dimensions, data.layout); Literal literal(shape); auto generator = [&](absl::Span<const int64_t> indexes) -> uint32_t { return IndexUtil::MultidimensionalIndexToLinearIndex(literal.shape(), indexes) + 17; }; TF_EXPECT_OK(literal.Populate<uint32_t>(generator)); std::vector<int64_t> zero_base(data.dimensions.size(), 0); std::vector<int64_t> step(data.dimensions.size(), 1); bool matched = true; auto check_function = [&](absl::Span<const int64_t> indexes) { auto value = literal.Get<uint32_t>(indexes); matched = matched && (value == generator(indexes)); return matched; }; ShapeUtil::ForEachIndex(literal.shape(), zero_base, data.dimensions, step, check_function); EXPECT_TRUE(matched); } } TEST_F(LiteralUtilTest, PopulateParallel) { struct PopulateData { std::vector<int64_t> dimensions; std::vector<int64_t> layout; } populate_data[] = { {{}, {}}, {{0}, {0}}, {{16}, {0}}, {{2, 0}, {1, 0}}, {{4, 16}, {1, 0}}, {{21, 12}, {0, 1}}, {{6, 11, 17}, {2, 0, 1}}, {{6, 11, 5, 17}, {3, 2, 0, 1}}, }; for (const auto& data : populate_data) { Shape shape = ShapeUtil::MakeShapeWithDenseLayout( primitive_util::NativeToPrimitiveType<uint32_t>(), data.dimensions, data.layout); Literal literal(shape); auto generator = [&](absl::Span<const int64_t> indexes, int ) -> uint32_t { return IndexUtil::MultidimensionalIndexToLinearIndex(literal.shape(), indexes) + 17; }; TF_EXPECT_OK(literal.PopulateParallel<uint32_t>(generator)); std::vector<int64_t> zero_base(data.dimensions.size(), 0); std::vector<int64_t> step(data.dimensions.size(), 1); bool matched = true; auto check_function = [&](absl::Span<const int64_t> indexes) { auto value = literal.Get<uint32_t>(indexes); matched = matched && (value == generator(indexes, -1)); return matched; }; ShapeUtil::ForEachIndex(literal.shape(), zero_base, data.dimensions, step, check_function); EXPECT_TRUE(matched); } } TEST_F(LiteralUtilTest, ConvertR4) { auto original = LiteralUtil::CreateR4WithLayout<int8_t>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0major_); auto expected = LiteralUtil::CreateR4WithLayout<uint32_t>({{ {{10, 11, 12, 13}, {14, 15, 16, 17}}, {{18, 19, 20, 21}, {22, 23, 24, 25}}, {{26, 27, 28, 29}, {30, 31, 32, 33}}, }}, layout_r4_dim0major_); TF_ASSERT_OK_AND_ASSIGN(Literal converted, original.Convert(U32)); EXPECT_EQ(expected, converted); } TEST_F(LiteralUtilTest, ConvertIfTypesMatch) { auto s8 = LiteralUtil::CreateR4WithLayout<int8_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto s16 = LiteralUtil::CreateR4WithLayout<int16_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto s32 = LiteralUtil::CreateR4WithLayout<int32_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto u16 = LiteralUtil::CreateR4WithLayout<uint16_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto u32 = LiteralUtil::CreateR4WithLayout<uint32_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto s64 = LiteralUtil::CreateR4WithLayout<int64_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto u64 = LiteralUtil::CreateR4WithLayout<uint64_t>({{ {{10, 0, 12, 0}, {0, 15, 0, 17}}, {{0, 19, 0, 21}, {22, 0, 24, 0}}, {{26, 0, 28, 0}, {0, 31, 0, 33}}, }}, layout_r4_dim0major_); auto pred = LiteralUtil::CreateR4WithLayout<bool>({{ {{true, false, true, false}, {false, true, false, true}}, {{false, true, false, true}, {true, false, true, false}}, {{true, false, true, false}, {false, true, false, true}}, }}, layout_r4_dim0major_); auto int32_pred = LiteralUtil::CreateR4WithLayout<int32_t>({{ {{1, 0, 1, 0}, {0, 1, 0, 1}}, {{0, 1, 0, 1}, {1, 0, 1, 0}}, {{1, 0, 1, 0}, {0, 1, 0, 1}}, }}, layout_r4_dim0major_); auto s4nums = LiteralUtil::CreateR4WithLayout<s4>({{ {{s4(1), s4(0), s4(2), s4(0)}, {s4(0), s4(5), s4(0), s4(7)}}, {{s4(0), s4(1), s4(0), s4(1)}, {s4(2), s4(0), s4(4), s4(0)}}, {{s4(2), s4(0), s4(2), s4(0)}, {s4(0), s4(3), s4(0), s4(3)}}, }}, layout_r4_dim0major_); auto int32_s4nums = LiteralUtil::CreateR4WithLayout<int32_t>({{ {{1, 0, 2, 0}, {0, 5, 0, 7}}, {{0, 1, 0, 1}, {2, 0, 4, 0}}, {{2, 0, 2, 0}, {0, 3, 0, 3}}, }}, layout_r4_dim0major_); auto f16 = LiteralUtil::CreateR4WithLayout<half>({{ {{half(10.0), half(0.0), half(12.0), half(0.0)}, {half(0.0), half(15.0), half(0.0), half(17.0)}}, {{half(0.0), half(19.0), half(0.0), half(21.0)}, {half(22.0), half(0.0), half(24.0), half(0.0)}}, {{half(26.0), half(0.0), half(28.0), half(0.0)}, {half(0.0), half(31.0), half(0.0), half(33.0)}}, }}, layout_r4_dim0major_); auto bf16 = LiteralUtil::CreateR4WithLayout<bfloat16>({{ {{bfloat16(10.0), bfloat16(0.0), bfloat16(12.0), bfloat16(0.0)}, {bfloat16(0.0), bfloat16(15.0), bfloat16(0.0), bfloat16(17.0)}}, {{bfloat16(0.0), bfloat16(19.0), bfloat16(0.0), bfloat16(21.0)}, {bfloat16(22.0), bfloat16(0.0), bfloat16(24.0), bfloat16(0.0)}}, {{bfloat16(26.0), bfloat16(0.0), bfloat16(28.0), bfloat16(0.0)}, {bfloat16(0.0), bfloat16(31.0), bfloat16(0.0), bfloat16(33.0)}}, }}, layout_r4_dim0major_); auto f32 = LiteralUtil::CreateR4WithLayout<float>({{ {{10.0f, 0.0f, 12.0f, 0.0f}, {0.0f, 15.0f, 0.0f, 17.0f}}, {{0.0f, 19.0f, 0.0f, 21.0f}, {22.0f, 0.0f, 24.0f, 0.0f}}, {{26.0f, 0.0f, 28.0f, 0.0f}, {0.0f, 31.0f, 0.0f, 33.0f}}, }}, layout_r4_dim0major_); auto f64 = LiteralUtil::CreateR4WithLayout<double>({{ {{10.0, 0.0, 12.0, 0.0}, {0.0, 15.0, 0.0, 17.0}}, {{0.0, 19.0, 0.0, 21.0}, {22.0, 0.0, 24.0, 0.0}}, {{26.0, 0.0, 28.0, 0.0}, {0.0, 31.0, 0.0, 33.0}}, }}, layout_r4_dim0major_); auto c64 = LiteralUtil::CreateR4WithLayout<complex64>({{ {{10.0f, 0.0f, 12.0f, 0.0f}, {0.0f, 15.0f, 0.0f, 17.0f}}, {{0.0f, 19.0f, 0.0f, 21.0f}, {22.0f, 0.0f, 24.0f, 0.0f}}, {{26.0f, 0.0f, 28.0f, 0.0f}, {0.0f, 31.0f, 0.0f, 33.0f}}, }}, layout_r4_dim0major_); auto c128 = LiteralUtil::CreateR4WithLayout<complex128>({{ {{10.0, 0.0, 12.0, 0.0}, {0.0, 15.0, 0.0, 17.0}}, {{0.0, 19.0, 0.0, 21.0}, {22.0, 0.0, 24.0, 0.0}}, {{26.0, 0.0, 28.0, 0.0}, {0.0, 31.0, 0.0, 33.0}}, }}, layout_r4_dim0major_); Literal conv; conv = s8.Convert(U16).value(); EXPECT_EQ(conv, u16); conv = s8.Convert(S16).value(); EXPECT_EQ(conv, s16); conv = s8.Convert(U32).value(); EXPECT_EQ(conv, u32); conv = s8.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = s8.Convert(U64).value(); EXPECT_EQ(conv, u64); conv = s8.Convert(S64).value(); EXPECT_EQ(conv, s64); conv = s8.Convert(PRED).value(); EXPECT_EQ(conv, pred); conv = bf16.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = bf16.Convert(F32).value(); EXPECT_EQ(conv, f32); conv = pred.Convert(S32).value(); EXPECT_EQ(conv, int32_pred); conv = s4nums.Convert(S32).value(); EXPECT_EQ(conv, int32_s4nums); conv = f32.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = f64.Convert(S32).value(); EXPECT_EQ(conv, s32); conv = s32.Convert(F32).value(); EXPECT_EQ(conv, f32); conv = f32.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = f64.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = s32.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = u32.Convert(F16).value(); EXPECT_EQ(conv, f16); conv = s32.Convert(C64).value(); EXPECT_EQ(conv, c64); conv = f16.Convert(C64).value(); EXPECT_EQ(conv, c64); conv = s32.Convert(S16).value(); EXPECT_EQ(conv, s16); conv = s32.Convert(U16).value(); EXPECT_EQ(conv, u16); conv = s32.Convert(C128).value(); EXPECT_EQ(conv, c128); conv = f16.Convert(C128).value(); EXPECT_EQ(conv, c128); EXPECT_EQ(s32.Convert(TUPLE).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c64.Convert(F32).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c64.Convert(S32).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c128.Convert(F32).status().code(), tsl::error::UNIMPLEMENTED); EXPECT_EQ(c128.Convert(S32).status().code(), tsl::error::UNIMPLEMENTED); } TYPED_TEST(LiteralUtilFloatTest, ConvertIfTypesMatchF8) { constexpr auto ptype = primitive_util::NativeToPrimitiveType<TypeParam>(); if (!primitive_util::IsF8Type(ptype)) { GTEST_SKIP() << "Skipping test for non F8 types"; } auto s8 = LiteralUtil::CreateR2WithLayout<int8_t>( {{0, 1}, {2, 3}}, LiteralUtilTest::layout_r2_dim0major_); auto bf16 = LiteralUtil::CreateR2WithLayout<bfloat16>( {{bfloat16(0.), bfloat16(1.)}, {bfloat16(2.), bfloat16(3.)}}, LiteralUtilTest::layout_r2_dim0major_); auto f32 = LiteralUtil::CreateR2WithLayout<float>( {{0., 1.}, {2., 3.}}, LiteralUtilTest::layout_r2_dim0major_); auto c128 = LiteralUtil::CreateR2WithLayout<complex128>( {{0., 1.}, {2., 3.}}, LiteralUtilTest::layout_r2_dim0major_); using f8e5m2_t = tsl::float8_e5m2; auto f8e5m2 = LiteralUtil::CreateR2WithLayout<f8e5m2_t>( {{f8e5m2_t{0.}, f8e5m2_t{1.}}, {f8e5m2_t{2.}, f8e5m2_t{3.}}}, LiteralUtilTest::layout_r2_dim0major_); using e4m3fn_t = tsl::float8_e4m3fn; auto f8e4m3fn = LiteralUtil::CreateR2WithLayout<e4m3fn_t>( {{e4m3fn_t{0.}, e4m3fn_t{1.}}, {e4m3fn_t{2.}, e4m3fn_t{3.}}}, LiteralUtilTest::layout_r2_dim0major_); auto f8 = LiteralUtil::CreateR2WithLayout<TypeParam>( {{TypeParam{0.}, TypeParam{1.}}, {TypeParam{2.}, TypeParam{3.}}}, LiteralUtilTest::layout_r2_dim0major_); Literal conv; conv = s8.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = bf16.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f32.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f8e5m2.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f8e4m3fn.Convert(ptype).value(); EXPECT_EQ(conv, f8); conv = f8.Convert(S8).value(); EXPECT_EQ(conv, s8); conv = f8.Convert(BF16).value(); EXPECT_EQ(conv, bf16); conv = f8.Convert(F32).value(); EXPECT_EQ(conv, f32); conv = f8.Convert(C128).value(); EXPECT_EQ(conv, c128); conv = f8.Convert(F8E5M2).value(); EXPECT_EQ(conv, f8e5m2); conv = f8.Convert(F8E4M3FN).value(); EXPECT_EQ(conv, f8e4m3fn); } TEST_F(LiteralUtilTest, BitcastConvert) { Literal original = LiteralUtil::CreateR1<uint32_t>( {absl::bit_cast<uint32_t>(2.5f), absl::bit_cast<uint32_t>(-42.25f), absl::bit_cast<uint32_t>(100.f), 0xbeef}); Literal expected = LiteralUtil::CreateR1<float>( {2.5f, -42.25f, 100.0f, absl::bit_cast<float>(0xbeef)}); TF_ASSERT_OK_AND_ASSIGN(Literal converted, original.BitcastConvert(ShapeUtil::ChangeElementType( original.shape(), F32))); } TEST_F(LiteralUtilTest, BitcastConvertBetweenInvalidTypes) { Literal literal = LiteralUtil::CreateR0<uint32_t>(1234); absl::Status status = literal.BitcastConvert(ShapeUtil::ChangeElementType(literal.shape(), F64)) .status(); EXPECT_NE(absl::OkStatus(), status); EXPECT_TRUE( absl::StrContains(status.message(), "to a shape of different size")); } void SetDefaultLayoutOnProto(ShapeProto* shape_proto) { CHECK(ShapeUtil::IsArrayPrimitiveType(shape_proto->element_type())); auto* minor_to_major = shape_proto->mutable_layout()->mutable_minor_to_major(); minor_to_major->Resize(shape_proto->dimensions_size(), 0); const int64_t size = minor_to_major->size(); for (int64_t i = 0; i < size; ++i) { minor_to_major->Set(i, size - 1 - i); } } TEST_F(LiteralUtilTest, CopyFromProto_Bool) { LiteralProto p; p.mutable_shape()->set_element_type(PRED); for (int len = 0; len < 25; ++len) { p.mutable_shape()->clear_dimensions(); p.mutable_shape()->add_dimensions(len); SetDefaultLayoutOnProto(p.mutable_shape()); p.clear_preds(); for (int i = 0; i < len; ++i) { p.add_preds((i % 2) == (len % 2)); } TF_ASSERT_OK_AND_ASSIGN(Literal literal, Literal::CreateFromProto(p)); ASSERT_EQ(len, literal.data<bool>().size()); int i = 0; for (bool value : literal.data<bool>()) { EXPECT_EQ((i % 2) == (len % 2), value); ++i; } } } TEST_F(LiteralUtilTest, ToProto_f16) { half h1(1.0f); half h2(2.0f); auto m = LiteralUtil::CreateR2<half>({{h1, h2}, {h2, h1}}); EXPECT_EQ(4, ShapeUtil::ElementsIn(m.shape())); EXPECT_EQ(4, m.data<half>().size()); LiteralProto p = m.ToProto(); EXPECT_EQ(4, ShapeUtil::ElementsIn(Shape(p.shape()))); EXPECT_EQ(8, p.f16s().size()); const char* d = p.f16s().data(); EXPECT_EQ(d[0], 0); EXPECT_EQ(d[1], 0x3C); EXPECT_EQ(d[2], 0); EXPECT_EQ(d[3], 0x40); EXPECT_EQ(d[4], 0); EXPECT_EQ(d[5], 0x40); EXPECT_EQ(d[6], 0); EXPECT_EQ(d[7], 0x3C); } TEST_F(LiteralUtilTest, CopyFromProto_f16) { half h1(1.0f); half h2(2.0f); const char half_vals[8] = {0x00, 0x3C, 0x00, 0x40, 0x00, 0x40, 0x00, 0x3C}; LiteralProto p; p.mutable_shape()->set_element_type(F16); p.mutable_shape()->clear_dimensions(); p.mutable_shape()->add_dimensions(4); SetDefaultLayoutOnProto(p.mutable_shape()); p.clear_f16s(); p.set_f16s(half_vals, 8); TF_ASSERT_OK_AND_ASSIGN(Literal literal, Literal::CreateFromProto(p)); auto r = literal.data<half>(); ASSERT_EQ(4, r.size()); EXPECT_EQ(h1, r[0]); EXPECT_EQ(h2, r[1]); EXPECT_EQ(h2, r[2]); EXPECT_EQ(h1, r[3]); } TEST_F(LiteralUtilTest, CopyFromProto_u16) { uint16_t u1(0xabcd); uint16_t u2(0x1234); const unsigned char uint16_vals[8] = {0xcd, 0xab, 0x34, 0x12, 0x34, 0x12, 0xcd, 0xab}; LiteralProto p; p.mutable_shape()->set_element_type(U16); p.mutable_shape()->clear_dimensions(); p.mutable_shape()->add_dimensions(4); SetDefaultLayoutOnProto(p.mutable_shape()); p.clear_u16s(); p.set_u16s(uint16_vals, 8); TF_ASSERT_OK_AND_ASSIGN(Literal literal, Literal::CreateFromProto(p)); auto r = literal.data<uint16_t>(); ASSERT_EQ(4, r.size()); EXPECT_EQ(u1, r[0]); EXPECT_EQ(u2, r[1]); EXPECT_EQ(u2, r[2]); EXPECT_EQ(u1, r[3]); } TEST_F(LiteralUtilTest, LiteralDynamicSliceTest) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &scalar}); Literal nil(ShapeUtil::MakeNil()); EXPECT_EQ(LiteralSlice(scalar, {}), scalar); EXPECT_EQ(LiteralSlice(matrix, {}), matrix); EXPECT_EQ(LiteralSlice(tuple, {}), tuple); EXPECT_EQ(LiteralSlice(nested_tuple, {}), nested_tuple); EXPECT_EQ(LiteralSlice(nil, {}), nil); EXPECT_EQ(LiteralSlice(tuple, {0}), scalar); EXPECT_EQ(LiteralSlice(tuple, {1}), matrix); EXPECT_EQ(LiteralSlice(nested_tuple, {0}), tuple); EXPECT_EQ(LiteralSlice(nested_tuple, {0, 0}), scalar); EXPECT_EQ(LiteralSlice(nested_tuple, {0, 1}), matrix); EXPECT_EQ(LiteralSlice(nested_tuple, {1}), scalar); } TEST_F(LiteralUtilTest, MutatingLiteralSlice) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &scalar}); const auto nested_tuple_view = LiteralSlice(nested_tuple); EXPECT_EQ(nested_tuple.Get<float>({}, {0, 0}), 1.0f); EXPECT_EQ(nested_tuple_view.Get<float>({}, {0, 0}), 1.0f); nested_tuple.Set<float>({}, {0, 0}, 555.0f); EXPECT_EQ(nested_tuple.Get<float>({}, {0, 0}), 555.0f); EXPECT_EQ(nested_tuple_view.Get<float>({}, {0, 0}), 555.0f); } TEST_F(LiteralUtilTest, LiteralSliceOfALiteralSlice) { auto scalar = LiteralUtil::CreateR0<float>(1.0); auto matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); auto tuple = LiteralUtil::MakeTuple({&scalar, &matrix}); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &scalar}); const auto nested_tuple_view = LiteralSlice(nested_tuple); const auto tuple_view = LiteralSlice(nested_tuple_view, {0}); const auto matrix_view = LiteralSlice(tuple_view, {1}); EXPECT_EQ(matrix_view, LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}})); } TEST_F(LiteralUtilTest, BorrowingLiteralFromOneBufferPtr) { std::vector<int64_t> int64_values = {1, 2, 3}; const Shape literal_shape = ShapeUtil::MakeShape(S64, {3}); BorrowingLiteral literal(reinterpret_cast<const char*>(int64_values.data()), literal_shape); EXPECT_EQ(literal.Get<int64_t>({0}), 1); EXPECT_EQ(literal.Get<int64_t>({1}), 2); EXPECT_EQ(literal.Get<int64_t>({2}), 3); } TEST_F(LiteralUtilTest, BorrowingLiteralFromMultipleBufferPtrs) { std::vector<int64_t> one_two_three = {1, 2, 3}; const Shape one_two_three_shape = ShapeUtil::MakeShape(S64, {3}); std::vector<int64_t> hundred = {100}; const Shape hundred_shape = ShapeUtil::MakeShape(S64, {1}); std::vector<const char*> src_buf_ptrs; src_buf_ptrs.emplace_back( reinterpret_cast<const char*>(one_two_three.data())); src_buf_ptrs.emplace_back(reinterpret_cast<const char*>(hundred.data())); auto literal_tuple = BorrowingLiteral( src_buf_ptrs, ShapeUtil::MakeTupleShape({one_two_three_shape, hundred_shape})); EXPECT_EQ( literal_tuple.Get<int64_t>({0}, {0}), 1); EXPECT_EQ( literal_tuple.Get<int64_t>({0}, {1}), 100); EXPECT_EQ( literal_tuple.Get<int64_t>({1}, {0}), 2); EXPECT_EQ( literal_tuple.Get<int64_t>({2}, {0}), 3); } TEST_F(LiteralUtilTest, BorrowingLiteralFromShapeTree) { std::vector<float> data = {1.0, 2.0, 3.0}; Shape shape = ShapeUtil::MakeShape(PrimitiveType::F32, {3}); Shape tuple = ShapeUtil::MakeTupleShape({shape, shape}); Shape nested_tuple = ShapeUtil::MakeTupleShape({tuple, shape}); ShapeTree<const char*> ptr_tree(nested_tuple); *ptr_tree.mutable_element({0, 0}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({0, 1}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({1}) = reinterpret_cast<char*>(data.data()); BorrowingLiteral literal(ptr_tree); EXPECT_THAT(literal.data<float>({0, 0}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({0, 1}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({1}), ElementsAre(1.0, 2.0, 3.0)); } TEST_F(LiteralUtilTest, MutableBorrowingLiteralFromShapeTree) { std::vector<float> data = {1.0, 2.0, 3.0}; Shape shape = ShapeUtil::MakeShape(PrimitiveType::F32, {3}); Shape tuple = ShapeUtil::MakeTupleShape({shape, shape}); Shape nested_tuple = ShapeUtil::MakeTupleShape({tuple, shape}); ShapeTree<char*> ptr_tree(nested_tuple); *ptr_tree.mutable_element({0, 0}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({0, 1}) = reinterpret_cast<char*>(data.data()); *ptr_tree.mutable_element({1}) = reinterpret_cast<char*>(data.data()); MutableBorrowingLiteral literal(ptr_tree); EXPECT_THAT(literal.data<float>({0, 0}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({0, 1}), ElementsAre(1.0, 2.0, 3.0)); EXPECT_THAT(literal.data<float>({1}), ElementsAre(1.0, 2.0, 3.0)); } TEST_F(LiteralUtilTest, LiteralMove) { Literal matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); Literal literal(std::move(matrix)); EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {2, 2}), literal.shape())); EXPECT_EQ(literal.Get<float>({0, 0}), 1.0); EXPECT_EQ(literal.Get<float>({0, 1}), 2.0); EXPECT_EQ(literal.Get<float>({1, 0}), 3.0); EXPECT_EQ(literal.Get<float>({1, 1}), 4.0); } TEST_F(LiteralUtilTest, DecomposeTuple) { Literal nil_literal(ShapeUtil::MakeNil()); Literal inner_elements[] = { LiteralUtil::CreateR0<int32_t>(42), LiteralUtil::CreateR1<double>({23.0, 44.0}), }; Literal tuple_elements[] = { LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}}), LiteralUtil::MakeTuple( {&inner_elements[0], &inner_elements[1], &nil_literal}), }; Literal nested_tuple = LiteralUtil::MakeTuple( {&tuple_elements[0], &tuple_elements[1], &nil_literal}); EXPECT_FALSE(ShapeUtil::IsEmptyTuple(nested_tuple.shape())); std::vector<Literal> elements = nested_tuple.DecomposeTuple(); EXPECT_TRUE(ShapeUtil::IsEmptyTuple(nested_tuple.shape())); ASSERT_EQ(elements.size(), 3); EXPECT_TRUE(ShapeUtil::Compatible(elements[0].shape(), ShapeUtil::MakeShape(S32, {2, 2}))); EXPECT_EQ(elements[0].Get<int32_t>({0, 0}), 1); EXPECT_EQ(elements[0].Get<int32_t>({0, 1}), 2); EXPECT_EQ(elements[0].Get<int32_t>({1, 0}), 3); EXPECT_EQ(elements[0].Get<int32_t>({1, 1}), 4); EXPECT_TRUE(ShapeUtil::Compatible( elements[1].shape(), ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(S32, {}), ShapeUtil::MakeShape(F64, {2}), ShapeUtil::MakeNil()}))); EXPECT_EQ(elements[1].Get<int32_t>({}, {0}), 42); EXPECT_EQ(elements[1].Get<double>({0}, {1}), 23.0); EXPECT_EQ(elements[1].Get<double>({1}, {1}), 44.0); EXPECT_TRUE(ShapeUtil::Compatible(elements[2].shape(), ShapeUtil::MakeNil())); } TEST_F(LiteralUtilTest, DecomposeEmptyTuple) { Literal nil_literal(ShapeUtil::MakeNil()); std::vector<Literal> elements = nil_literal.DecomposeTuple(); EXPECT_EQ(elements.size(), 0); } TEST_F(LiteralUtilTest, MoveIntoTuple) { std::vector<Literal> elements; elements.push_back(LiteralUtil::CreateR0<float>(1.0)); elements.push_back(LiteralUtil::CreateR1<int32_t>({4, 8})); std::vector<Literal> inner_elements; inner_elements.push_back(LiteralUtil::CreateR0<int32_t>(42)); inner_elements.push_back(LiteralUtil::CreateR1<double>({23.0, 44.0})); elements.push_back( LiteralUtil::MakeTuple({&inner_elements[0], &inner_elements[1]})); Literal literal = Literal::MoveIntoTuple(absl::MakeSpan(elements)); ASSERT_TRUE(literal.shape().IsTuple()); ASSERT_EQ(ShapeUtil::TupleElementCount(literal.shape()), 3); EXPECT_EQ(literal.Get<float>({}, {0}), 1.0); EXPECT_EQ(literal.Get<int32_t>({0}, {1}), 4); EXPECT_EQ(literal.Get<int32_t>({1}, {1}), 8); EXPECT_EQ(literal.Get<int32_t>({}, {2, 0}), 42); EXPECT_EQ(literal.Get<double>({0}, {2, 1}), 23.0); EXPECT_EQ(literal.Get<double>({1}, {2, 1}), 44.0); for (const Literal& element : elements) { EXPECT_TRUE(ShapeUtil::IsEmptyTuple(element.shape())); } } TEST_F(LiteralUtilTest, MoveIntoEmptyTuple) { Literal literal = Literal::MoveIntoTuple({}); ASSERT_TRUE(literal.shape().IsTuple()); EXPECT_EQ(ShapeUtil::TupleElementCount(literal.shape()), 0); } TEST_F(LiteralUtilTest, LiteralMoveAssignment) { Literal literal; EXPECT_TRUE(ShapeUtil::Equal(ShapeUtil::MakeNil(), literal.shape())); Literal matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); literal = std::move(matrix); EXPECT_TRUE( ShapeUtil::Equal(ShapeUtil::MakeShape(F32, {2, 2}), literal.shape())); EXPECT_EQ(literal.Get<float>({0, 0}), 1.0); EXPECT_EQ(literal.Get<float>({0, 1}), 2.0); EXPECT_EQ(literal.Get<float>({1, 0}), 3.0); EXPECT_EQ(literal.Get<float>({1, 1}), 4.0); } TEST_F(LiteralUtilTest, LiteralSliceCopy) { Literal matrix = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); const auto matrix_view = LiteralSlice(matrix); LiteralSlice matrix_view_copy(matrix_view); EXPECT_EQ(matrix_view_copy.Get<float>({0, 0}), 1.0); EXPECT_EQ(matrix_view_copy.Get<float>({0, 1}), 2.0); EXPECT_EQ(matrix_view_copy.Get<float>({1, 0}), 3.0); EXPECT_EQ(matrix_view_copy.Get<float>({1, 1}), 4.0); } TEST_F(LiteralUtilTest, GetSetTuple) { Literal elements[] = { LiteralUtil::CreateR0<float>(42.0), LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}), }; auto tuple = LiteralUtil::MakeTuple({&elements[0], &elements[1]}); EXPECT_EQ(tuple.Get<float>({}, {0}), 42.0); tuple.Set<float>({}, {0}, -5.0); EXPECT_EQ(tuple.Get<float>({}, {0}), -5.0); EXPECT_EQ(tuple.Get<float>({1, 0}, {1}), 3.0); tuple.Set<float>({1, 0}, {1}, -4.0); EXPECT_EQ(tuple.Get<float>({1, 0}, {1}), -4.0); } TEST_F(LiteralUtilTest, CreateFromShapeZeroInitialized) { Literal scalar_f32 = Literal::CreateFromShape(ShapeUtil::MakeShape(F32, {})); EXPECT_EQ(scalar_f32.Get<float>({}), 0.0); EXPECT_TRUE(scalar_f32.IsAll(0)); Literal vector_s32 = Literal::CreateFromShape(ShapeUtil::MakeShape(S32, {3})); EXPECT_EQ(vector_s32.Get<int32_t>({0}), 0); EXPECT_EQ(vector_s32.Get<int32_t>({1}), 0); EXPECT_EQ(vector_s32.Get<int32_t>({2}), 0); EXPECT_TRUE(vector_s32.IsAll(0)); Literal tuple = Literal::CreateFromShape(ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(F64, {}), ShapeUtil::MakeShape(PRED, {2}), ShapeUtil::MakeShape(U64, {2, 1}), ShapeUtil::MakeShape(C64, {}), ShapeUtil::MakeShape(C128, {})})); EXPECT_EQ(tuple.Get<double>({}, {0}), 0.0); EXPECT_EQ(tuple.Get<bool>({0}, {1}), false); EXPECT_EQ(tuple.Get<bool>({1}, {1}), false); EXPECT_EQ(tuple.Get<uint64_t>({0, 0}, {2}), 0); EXPECT_EQ(tuple.Get<uint64_t>({1, 0}, {2}), 0); EXPECT_EQ(tuple.Get<complex64>({}, {3}), complex64(0.0f, 0.0f)); EXPECT_EQ(tuple.Get<complex128>({}, {4}), complex128(0.0, 0.0)); } TEST_F(LiteralUtilTest, ProtoRoundTrip) { auto one_f32 = LiteralUtil::CreateR0<float>(1.0); auto two_f32 = LiteralUtil::CreateR0<float>(2.0); auto vector_int8 = LiteralUtil::CreateR1<int8_t>({-128, 0, 2, 4, 7, 56, 127}); auto vector_uint8 = LiteralUtil::CreateR1<uint8_t>({128, 0, 2, 56, 127, 255}); auto vector_c64 = LiteralUtil::CreateR1<complex64>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_c128 = LiteralUtil::CreateR1<complex128>({{1.0, 2.0}, {3.0, 4.0}}); auto vector_bfloat16 = LiteralUtil::CreateR1<bfloat16>( {bfloat16{-1.0}, bfloat16{2.0}, bfloat16{-3.0}}); auto vector_half = LiteralUtil::CreateR1<half>({half{10.0}, half{20.0}, half{-30.0}}); using e5 = tsl::float8_e5m2; auto vector_f8e5m2 = LiteralUtil::CreateR1<e5>({e5{10.0}, e5{20.0}, e5{-32.0}}); using e4 = tsl::float8_e4m3; auto vector_f8e4m3 = LiteralUtil::CreateR1<e4>({e4{10.0}, e4{20.0}, e4{-32.0}}); using e4fn = tsl::float8_e4m3fn; auto vector_f8e4m3fn = LiteralUtil::CreateR1<e4fn>({e4fn{10.0}, e4fn{20.0}, e4fn{-32.0}}); using b11 = tsl::float8_e4m3b11fnuz; auto vector_f8e4m3b11 = LiteralUtil::CreateR1<b11>({b11{10.0}, b11{20.0}, b11{-30.0}}); using e5f = tsl::float8_e5m2fnuz; auto vector_f8e5m2fnuz = LiteralUtil::CreateR1<e5f>({e5f{10.0}, e5f{20.0}, e5f{-30.0}}); using e4f = tsl::float8_e4m3fnuz; auto vector_f8e4m3fnuz = LiteralUtil::CreateR1<e4f>({e4f{10.0}, e4f{20.0}, e4f{-30.0}}); using e3 = tsl::float8_e3m4; auto vector_f8e3m4 = LiteralUtil::CreateR1<e3>({e3{2.5}, e3{5.0}, e3{-8.0}}); auto matrix_pred = LiteralUtil::CreateR2<bool>({{true, false, true}, {false, false, true}}); auto vector_s4 = LiteralUtil::CreateR1<s4>({s4{-1}, s4{3}, s4{7}}); auto vector_u4 = LiteralUtil::CreateR1<u4>({u4{1}, u4{3}, u4{15}}); auto tuple = LiteralUtil::MakeTuple( {&one_f32, &vector_half, &matrix_pred, &matrix_pred}); Literal nil_literal(ShapeUtil::MakeNil()); auto nested_tuple = LiteralUtil::MakeTuple({&tuple, &vector_bfloat16, &tuple, &nil_literal}); auto to_from_proto = [](const Literal& literal) -> Literal { return Literal::CreateFromProto(literal.ToProto()).value(); }; EXPECT_EQ(one_f32, to_from_proto(one_f32)); EXPECT_EQ(vector_int8, to_from_proto(vector_int8)); EXPECT_EQ(vector_uint8, to_from_proto(vector_uint8)); EXPECT_EQ(vector_c64, to_from_proto(vector_c64)); EXPECT_EQ(vector_c128, to_from_proto(vector_c128)); EXPECT_EQ(vector_bfloat16, to_from_proto(vector_bfloat16)); EXPECT_EQ(vector_f8e5m2, to_from_proto(vector_f8e5m2)); EXPECT_EQ(vector_f8e4m3, to_from_proto(vector_f8e4m3)); EXPECT_EQ(vector_f8e4m3fn, to_from_proto(vector_f8e4m3fn)); EXPECT_EQ(vector_f8e4m3b11, to_from_proto(vector_f8e4m3b11)); EXPECT_EQ(vector_f8e5m2fnuz, to_from_proto(vector_f8e5m2fnuz)); EXPECT_EQ(vector_f8e4m3fnuz, to_from_proto(vector_f8e4m3fnuz)); EXPECT_EQ(vector_f8e3m4, to_from_proto(vector_f8e3m4)); EXPECT_EQ(matrix_pred, to_from_proto(matrix_pred)); EXPECT_EQ(vector_s4, to_from_proto(vector_s4)); EXPECT_EQ(vector_u4, to_from_proto(vector_u4)); EXPECT_EQ(tuple, to_from_proto(tuple)); EXPECT_EQ(nested_tuple, to_from_proto(nested_tuple)); EXPECT_EQ(nil_literal, to_from_proto(nil_literal)); EXPECT_NE(one_f32, two_f32); EXPECT_NE(one_f32, to_from_proto(two_f32)); } TEST_F(LiteralUtilTest, InvalidProtoNoValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {3}).ToProto(); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 3 elements in LiteralProto")); } TEST_F(LiteralUtilTest, ValidProtoNoValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {3}).ToProto(); absl::Status status = Literal::CreateFromProto(proto, false) .status(); EXPECT_TRUE(status.ok()); } TEST_F(LiteralUtilTest, ValidProtoWithClearedValues) { auto literal = LiteralUtil::CreateR1<bool>({true, false, true}); LiteralProto proto = literal.ToProto(); EXPECT_EQ(proto.preds_size(), 3); proto.clear_preds(); EXPECT_EQ(proto.preds_size(), 0); absl::Status status = Literal::CreateFromProto(proto, false) .status(); EXPECT_TRUE(status.ok()); } TEST_F(LiteralUtilTest, InvalidProtoNoShape) { LiteralProto proto; proto.add_preds(false); proto.add_preds(true); proto.add_preds(false); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("LiteralProto has no shape")); } TEST_F(LiteralUtilTest, InvalidProtoWrongContainer) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {3}).ToProto(); proto.add_preds(false); proto.add_preds(true); proto.add_preds(false); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 3 elements in LiteralProto")); } TEST_F(LiteralUtilTest, InvalidProtoTooFewValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(F32, {42, 2}).ToProto(); proto.add_f32s(1.0); proto.add_f32s(2.0); proto.add_f32s(3.0); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 84 elements in LiteralProto")); } TEST_F(LiteralUtilTest, InvalidProtoTooManyValues) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(S32, {2}).ToProto(); proto.add_s32s(42); proto.add_s32s(-10); proto.add_s32s(100); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 2 elements in LiteralProto")); } TEST_F(LiteralUtilTest, InvalidProtoMissingLayout) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeShape(PRED, {2, 2}).ToProto(); proto.mutable_shape()->clear_layout(); proto.add_preds(true); proto.add_preds(false); proto.add_preds(true); proto.add_preds(false); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("LiteralProto has no layout")); } TEST_F(LiteralUtilTest, InvalidProtoTooFewTupleElements) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {2}), ShapeUtil::MakeShape(F32, {})}) .ToProto(); LiteralProto* element0 = proto.add_tuple_literals(); *element0->mutable_shape() = ShapeUtil::GetTupleElementShape(Shape(proto.shape()), 0).ToProto(); element0->add_preds(false); element0->add_preds(true); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 2 tuple elements")); } TEST_F(LiteralUtilTest, InvalidProtoTooManyTupleElements) { LiteralProto proto; *proto.mutable_shape() = ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(PRED, {2}), ShapeUtil::MakeShape(F32, {})}) .ToProto(); LiteralProto* element0 = proto.add_tuple_literals(); *element0->mutable_shape() = ShapeUtil::GetTupleElementShape(Shape(proto.shape()), 0).ToProto(); element0->add_preds(false); element0->add_preds(true); LiteralProto* element1 = proto.add_tuple_literals(); *element1->mutable_shape() = ShapeUtil::GetTupleElementShape(Shape(proto.shape()), 1).ToProto(); element1->add_f32s(42.0); LiteralProto* element2 = proto.add_tuple_literals(); *element2->mutable_shape() = ShapeUtil::MakeShape(F32, {}).ToProto(); element2->add_f32s(123.0); absl::Status status = Literal::CreateFromProto(proto).status(); ASSERT_FALSE(status.ok()); EXPECT_THAT(status.message(), HasSubstr("Expected 2 tuple elements")); } TEST_F(LiteralUtilTest, BroadcastVectorToMatrix0) { Literal literal = LiteralUtil::CreateR1<int64_t>({1, 2}); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {2, 2}), {0})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int64_t>({{1, 1}, {2, 2}})); } TEST_F(LiteralUtilTest, BroadcastVectorToMatrix1) { Literal literal = LiteralUtil::CreateR1<int64_t>({1, 2}); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {2, 2}), {1})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int64_t>({{1, 2}, {1, 2}})); } TEST_F(LiteralUtilTest, BroadcastScalarToMatrix) { Literal literal = LiteralUtil::CreateR0<int32_t>(9); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S32, {2, 2}), {})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int32_t>({{9, 9}, {9, 9}})); } TEST_F(LiteralUtilTest, DynamicBroadcast) { Literal literal = LiteralUtil::CreateR1<int64_t>({1, 2}); literal.SetDynamicSize(0, 1); TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {2, 2}), {1})); EXPECT_EQ(broadcasted_literal, LiteralUtil::CreateR2<int64_t>({{1}, {1}})); EXPECT_EQ(broadcasted_literal.GetDynamicSize(1), 1); } TEST_F(LiteralUtilTest, GetAsScalarInt64) { auto scalar1 = LiteralUtil::CreateR0<int32_t>(12); EXPECT_EQ(LiteralUtil::LiteralAsScalarInt64(scalar1).value(), (int64_t)12); auto scalar2 = LiteralUtil::CreateR0<int8_t>(12); EXPECT_EQ(LiteralUtil::LiteralAsScalarInt64(scalar2).value(), (int64_t)12); auto non_scalar1 = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}}); EXPECT_FALSE(LiteralUtil::LiteralAsScalarInt64(non_scalar1).has_value()); auto non_scalar2 = LiteralUtil::CreateR1<int32_t>({{1, 2}}); EXPECT_FALSE(LiteralUtil::LiteralAsScalarInt64(non_scalar2).has_value()); } TEST_F(LiteralUtilTest, GetAsDouble) { auto m = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(*m.GetAsDouble({0, 0}), 1.0); EXPECT_EQ(*m.GetAsDouble({1, 0}), 3.0); } TEST_F(LiteralUtilTest, GetSumAsDouble) { auto m = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(*m.GetSumAsDouble({0, 3}), 1.0 + 4.0); EXPECT_EQ(*m.GetSumAsDouble({0, 1, 2, 3}), 1.0 + 2.0 + 3.0 + 4.0); auto md = LiteralUtil::CreateR2<double>({{1.0, 2.0}, {3.0, 4.0}}); EXPECT_EQ(*md.GetSumAsDouble({0, 3}), 1.0 + 4.0); EXPECT_EQ(*md.GetSumAsDouble({0, 1, 2, 3}), 1.0 + 2.0 + 3.0 + 4.0); std::vector<float> vals(1024, 1.0); auto v = LiteralUtil::CreateR1<float>(vals); std::vector<int64_t> indices; for (int i = 0; i < 1024; i += 2) { indices.push_back(i); EXPECT_EQ(*v.GetSumAsDouble(indices), (i + 2) / 2.0); } } TEST_F(LiteralUtilTest, GetAsComplex128) { complex128 value = {1, 0}; Literal c1 = LiteralUtil::CreateR0<complex128>(value); EXPECT_EQ(*c1.GetAsComplex128({}), value); Literal c2 = LiteralUtil::CreateR0<double>(1); EXPECT_EQ(*c2.GetAsComplex128({}), value); complex64 float_value = {1, 0}; Literal c4 = LiteralUtil::CreateR0<complex64>(float_value); EXPECT_EQ(*c4.GetAsComplex128({}), value); complex128 other_value = {1, 2}; Literal c5 = LiteralUtil::CreateR0<complex128>(other_value); EXPECT_EQ(*c5.GetAsComplex128({}), other_value); Literal c6 = LiteralUtil::CreateR0<int64_t>(1); EXPECT_FALSE(c6.GetAsComplex128({}).has_value()); } TEST_F(LiteralUtilTest, SliceOnBool) { Literal c1 = LiteralUtil::CreateR1<bool>({true, true, false}); EXPECT_EQ(c1, c1.Slice({0}, {3})); } TEST_F(LiteralUtilTest, IsEqualAt) { double val_double = 10.0; int val_integral = 10; Literal c1 = LiteralUtil::CreateR0<int>(10); EXPECT_TRUE(c1.IsEqualAt({}, val_double)); EXPECT_TRUE(c1.IsEqualAt({}, val_integral)); Literal c2 = LiteralUtil::CreateR0<double>(10); EXPECT_TRUE(c2.IsEqualAt({}, val_double)); EXPECT_TRUE(c2.IsEqualAt({}, val_integral)); Literal c3 = LiteralUtil::CreateR0<tsl::float8_e5m2>(tsl::float8_e5m2{val_double}); EXPECT_TRUE(c3.IsEqualAt({}, val_double)); EXPECT_TRUE(c3.IsEqualAt({}, val_integral)); complex128 val_complex = {10, 0}; EXPECT_TRUE(c1.IsEqualAt({}, val_complex)); EXPECT_TRUE(c2.IsEqualAt({}, val_complex)); EXPECT_TRUE(c3.IsEqualAt({}, val_complex)); Literal c4 = LiteralUtil::CreateR0<complex128>(val_complex); EXPECT_TRUE(c4.IsEqualAt({}, val_double)); EXPECT_TRUE(c4.IsEqualAt({}, val_integral)); EXPECT_TRUE(c4.IsEqualAt({}, val_complex)); EXPECT_FALSE(c4.IsEqualAt({}, std::numeric_limits<double>::infinity())); complex128 val_true_complex = {10, 3}; complex64 val_smaller_complex = {10, 3}; Literal c5 = LiteralUtil::CreateR0<complex128>(val_true_complex); EXPECT_TRUE(c5.IsEqualAt({}, val_true_complex)); EXPECT_TRUE(c5.IsEqualAt({}, val_smaller_complex)); Literal c6 = LiteralUtil::CreateR0<tsl::float8_e5m2fnuz>( tsl::float8_e5m2fnuz{val_double}); EXPECT_TRUE(c6.IsEqualAt({}, val_double)); EXPECT_TRUE(c6.IsEqualAt({}, val_integral)); Literal c7 = LiteralUtil::CreateR0<tsl::float8_e4m3fnuz>( tsl::float8_e4m3fnuz{val_double}); EXPECT_TRUE(c6.IsEqualAt({}, val_double)); EXPECT_TRUE(c6.IsEqualAt({}, val_integral)); Literal c8 = LiteralUtil::CreateR0<tsl::float8_e4m3>(tsl::float8_e4m3{val_double}); EXPECT_TRUE(c8.IsEqualAt({}, val_double)); EXPECT_TRUE(c8.IsEqualAt({}, val_integral)); Literal c9 = LiteralUtil::CreateR0<tsl::float8_e4m3fn>(tsl::float8_e4m3fn{val_double}); EXPECT_TRUE(c9.IsEqualAt({}, val_double)); EXPECT_TRUE(c9.IsEqualAt({}, val_integral)); Literal c10 = LiteralUtil::CreateR0<tsl::float8_e3m4>(tsl::float8_e3m4{val_double}); EXPECT_TRUE(c10.IsEqualAt({}, val_double)); EXPECT_TRUE(c10.IsEqualAt({}, val_integral)); } TEST_F(LiteralUtilTest, CreateFromShapeWithUnknownLeafArrays) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeShape(F32, {4, 4})); EXPECT_FALSE(c1.IsKnown()); } TEST_F(LiteralUtilTest, CreateFromShapeWithUnknownLeafArraysS4Tuple) { auto inner_shape = ShapeUtil::MakeShape(S4, {4, 4}); inner_shape.mutable_layout()->set_element_size_in_bits(4); Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeTupleShape({inner_shape})); EXPECT_FALSE(c1.IsKnown()); } TEST_F(LiteralUtilTest, CreatePartiallyKnownTuple) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeShape(F32, {4, 4})); Literal c2 = LiteralUtil::CreateR0<int>(10); Literal c3 = LiteralUtil::MakeTuple({&c1, &c2}); Literal c4 = LiteralUtil::CreateR0<int>(100); Literal c5 = LiteralUtil::MakeTuple({&c4, &c3}); EXPECT_FALSE(c5.IsKnown()); } TEST_F(LiteralUtilTest, CopyFromPartiallyKnownTuple) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeShape(F32, {4, 4})); Literal c2 = LiteralUtil::CreateR0<int>(10); Literal c3 = LiteralUtil::MakeTuple({&c1, &c2}); Literal c4 = LiteralUtil::CreateR0<int>(100); Literal c5 = LiteralUtil::MakeTuple({&c4, &c3}); Literal c6 = Literal::CreateFromShape(c5.shape()); TF_ASSERT_OK( c6.CopyFrom(c5, {1}, {1})); EXPECT_FALSE(c6.IsKnown()); } TEST_F(LiteralUtilTest, CopyFromPartiallyKnownTupleUnknownTupleElement) { Literal c1 = Literal::CreateFromShapeWithUnknownLeafArrays( ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(F32, {4, 4}), ShapeUtil::MakeShape(F32, {4, 4})})); Literal c2 = LiteralUtil::CreateR0<int>(10); Literal c3 = LiteralUtil::MakeTuple({&c1, &c2}); Literal c4 = LiteralUtil::CreateR0<int>(100); Literal c5 = LiteralUtil::MakeTuple({&c4, &c3}); Literal c6 = Literal::CreateFromShape(c5.shape()); Literal c1_copy = Literal::CreateFromShape(c1.shape()); Literal c2_copy = Literal::CreateFromShape(c2.shape()); TF_ASSERT_OK( c6.CopyFrom(c5, {1}, {1})); TF_ASSERT_OK(c1_copy.CopyFrom(c6, {}, {1, 0})); TF_ASSERT_OK(c2_copy.CopyFrom(c6, {}, {1, 1})); EXPECT_FALSE(c6.IsKnown()); EXPECT_FALSE(c1_copy.IsKnown()); EXPECT_TRUE(c2_copy.IsKnown()); } TEST_F(LiteralUtilTest, PopulateR1Dynamic) { auto literal = Literal(ShapeUtil::MakeShape(U32, {20})); literal.SetDynamicSize(0, 10); literal.PopulateR1<uint32_t>({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}); std::string expected = "u32[<=20](10) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2DynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(U32, {5, 2})); literal.SetDynamicSize(0, 3); literal.PopulateR2<uint32_t>({{1, 2}, {3, 4}, {5, 6}}); std::string expected = R"(u32[<=5,2](3,2) { { 1, 2 }, { 3, 4 }, { 5, 6 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2DynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(U32, {2, 5})); literal.SetDynamicSize(1, 3); literal.PopulateR2<uint32_t>({{1, 2, 3}, {4, 5, 6}}); std::string expected = R"(u32[2,<=5](2,3) { { 1, 2, 3 }, { 4, 5, 6 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateFrom1DArray) { auto literal = Literal(ShapeUtil::MakeShape(F32, {20})); literal.SetDynamicSize(0, 10); xla::Array<float> array({10}); for (int i = 0; i < 10; i++) { array(i) = static_cast<float>(i); } literal.PopulateFromArray(array); std::string expected = "f32[<=20](10) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateFromArrayDynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 3; const uint32_t cols = 5; literal.SetDynamicSize(0, rows); xla::Array<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateFromArray(array); std::string expected = R"(f32[<=5,5](3,5) { { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateFromArrayDynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 5; const uint32_t cols = 3; literal.SetDynamicSize(1, cols); xla::Array<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateFromArray(array); std::string expected = R"(f32[5,<=5](5,3) { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2FromArray2DDynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 3; const uint32_t cols = 5; literal.SetDynamicSize(0, rows); xla::Array2D<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateR2FromArray2D(array); std::string expected = R"(f32[<=5,5](3,5) { { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 }, { 0, 1, 2, 3, 4 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2FromArray2DDynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 5; const uint32_t cols = 3; literal.SetDynamicSize(1, cols); xla::Array2D<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateR2FromArray2D(array); std::string expected = R"(f32[5,<=5](5,3) { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR2FromArray2DDynamicDim0Dim1) { auto literal = Literal(ShapeUtil::MakeShape(F32, {5, 5})); const uint32_t rows = 3; const uint32_t cols = 2; literal.SetDynamicSize(0, rows); literal.SetDynamicSize(1, cols); xla::Array2D<float> array({rows, cols}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { array(i, j) = static_cast<float>(j); } } literal.PopulateR2FromArray2D(array); std::string expected = R"(f32[<=5,<=5](3,2) { { 0, 1 }, { 0, 1 }, { 0, 1 } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR3FromArray3DDynamicDim0) { auto literal = Literal(ShapeUtil::MakeShape(S32, {3, 3, 3})); const uint32_t rows = 2; const uint32_t cols = 3; const uint32_t depth = 3; literal.SetDynamicSize(0, rows); xla::Array3D<int32_t> array({rows, cols, depth}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { for (int k = 0; k < depth; k++) { array(i, j, k) = static_cast<int32_t>(k); } } } literal.PopulateR3FromArray3D(array); std::string expected = R"(s32[<=3,3,3](2,3,3) { { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } }, { { 0, 1, 2 }, { 0, 1, 2 }, { 0, 1, 2 } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR3FromArray3DDynamicDim1) { auto literal = Literal(ShapeUtil::MakeShape(S32, {3, 3, 3})); const uint32_t rows = 3; const uint32_t cols = 2; const uint32_t depth = 3; literal.SetDynamicSize(1, cols); xla::Array3D<int32_t> array({rows, cols, depth}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { for (int k = 0; k < depth; k++) { array(i, j, k) = static_cast<int32_t>(k); } } } literal.PopulateR3FromArray3D(array); std::string expected = R"(s32[3,<=3,3](3,2,3) { { { 0, 1, 2 }, { 0, 1, 2 } }, { { 0, 1, 2 }, { 0, 1, 2 } }, { { 0, 1, 2 }, { 0, 1, 2 } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, PopulateR3FromArray3DDynamicDim2) { auto literal = Literal(ShapeUtil::MakeShape(S32, {3, 3, 3})); const uint32_t rows = 3; const uint32_t cols = 3; const uint32_t depth = 2; literal.SetDynamicSize(2, depth); xla::Array3D<int32_t> array({rows, cols, depth}); for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { for (int k = 0; k < depth; k++) { array(i, j, k) = static_cast<int32_t>(k); } } } literal.PopulateR3FromArray3D(array); std::string expected = R"(s32[3,3,<=3](3,3,2) { { { 0, 1 }, { 0, 1 }, { 0, 1 } }, { { 0, 1 }, { 0, 1 }, { 0, 1 } }, { { 0, 1 }, { 0, 1 }, { 0, 1 } } })"; EXPECT_EQ(expected, literal.ToString()); } TEST_F(LiteralUtilTest, Compare4BitType) { Literal literal1 = Literal(ShapeUtil::MakeShape(S4, {})); Literal literal2 = Literal(ShapeUtil::MakeShape(S4, {})); void* p = literal1.untyped_data(); void* q = literal2.untyped_data(); *((uint8_t*)p) = 0x44; *((uint8_t*)q) = 0xc4; std::string expected = R"(s4[] 4)"; EXPECT_EQ(expected, literal1.ToString()); EXPECT_EQ(literal1.ToString(), literal2.ToString()); EXPECT_EQ(literal1, literal2); } class LiteralSerializationTest : public ::testing::Test, public ::testing::WithParamInterface<Shape> { public: static std::vector<Shape> GenerateSimpleParams() { std::vector<Shape> params; for (PrimitiveType element_type : {PRED, S4, U4, S8, U8, S16, U16, S32, U32, S64, U64, F16, F32, F64, BF16, F8E5M2, F8E4M3, F8E4M3FN, F8E4M3B11FNUZ, F8E5M2FNUZ, F8E4M3FNUZ, F8E3M4, C64, C128}) { for (const DimensionVector& dimensions : { DimensionVector{}, DimensionVector{0}, DimensionVector{1}, DimensionVector{7}, DimensionVector{8}, DimensionVector{9}, DimensionVector{0, 8}, DimensionVector{8, 9}, }) { params.push_back(ShapeUtil::MakeShape(element_type, dimensions)); } } return params; } static std::vector<Shape> GenerateTupleParams() { std::vector<Shape> params; const Shape tuple_elements[] = { ShapeUtil::MakeShape(PRED, {}), ShapeUtil::MakeShape(U4, {3}), ShapeUtil::MakeShape(U32, {0}), ShapeUtil::MakeShape(F32, {7}), ShapeUtil::MakeTupleShape({ ShapeUtil::MakeShape(BF16, {3}), ShapeUtil::MakeShape(C64, {7}), }), }; for (const Shape& lhs : tuple_elements) { for (const Shape& rhs : tuple_elements) { params.push_back(ShapeUtil::MakeTupleShape({lhs, rhs})); } } return params; } }; TEST_P(LiteralSerializationTest, Test) { const Shape& shape = GetParam(); LOG(INFO) << "shape: " << shape.ToString(); absl::InsecureBitGen bitgen(std::seed_seq({42})); Literal literal(shape); ASSERT_NO_FATAL_FAILURE(ShapeUtil::ForEachSubshape( shape, [&](const Shape& subshape, const ShapeIndex& shape_index) { if (subshape.IsTuple()) { return; } ASSERT_TRUE(subshape.IsArray()); primitive_util::ArrayTypeSwitch<void>( [&](auto primitive_type) { using NativeT = primitive_util::NativeTypeOf<primitive_type>; for (auto& element : literal.data<NativeT>(shape_index)) { if constexpr (std::is_same_v<NativeT, bool>) { element = absl::Uniform<int>(bitgen, 0, 2); } else if constexpr (primitive_util::IsComplexType( primitive_type)) { element = NativeT(absl::Uniform<double>(bitgen, -1.0, 1.0), absl::Uniform<double>(bitgen, -1.0, 1.0)); } else if constexpr (primitive_util::IsFloatingPointType( primitive_type)) { element = static_cast<NativeT>( absl::Uniform<double>(bitgen, -1.0, 1.0)); } else { element = static_cast<NativeT>(absl::Uniform<uint64_t>(bitgen)); } } }, subshape.element_type()); })); TF_ASSERT_OK_AND_ASSIGN(std::string serialized, literal.SerializeAsString()); TF_ASSERT_OK_AND_ASSIGN(Literal deserialized, Literal::DeserializeFromString(serialized)); EXPECT_EQ(literal, deserialized); } INSTANTIATE_TEST_SUITE_P( Simple, LiteralSerializationTest, ::testing::ValuesIn(LiteralSerializationTest::GenerateSimpleParams())); INSTANTIATE_TEST_SUITE_P( Tuples, LiteralSerializationTest, ::testing::ValuesIn(LiteralSerializationTest::GenerateTupleParams())); void BM_BroadcastVectorToMatrix(::testing::benchmark::State& state) { const int d0 = state.range(0); const int d1 = state.range(1); std::vector<int64_t> v(d0); for (int i = 0; i < d0; i++) { v[i] = i; } Literal literal = LiteralUtil::CreateR1<int64_t>(v); int count = 0; for (auto s : state) { TF_ASSERT_OK_AND_ASSIGN( Literal broadcasted_literal, literal.Broadcast(ShapeUtil::MakeShape(S64, {d0, d1}), {0})); if (count == 0) { state.SetLabel(literal.shape().ToString() + " to " + broadcasted_literal.shape().ToString()); } count++; } } BENCHMARK(BM_BroadcastVectorToMatrix) ->ArgPair(16, 16) ->ArgPair(16, 1024) ->ArgPair(1024, 1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/literal.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/literal_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ca36bd5b-bb69-404b-a7e1-93b19435d268
cpp
abseil/abseil-cpp
sysinfo
absl/base/internal/sysinfo.cc
absl/base/internal/sysinfo_test.cc
#include "absl/base/internal/sysinfo.h" #include "absl/base/attributes.h" #ifdef _WIN32 #include <windows.h> #else #include <fcntl.h> #include <pthread.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #endif #ifdef __linux__ #include <sys/syscall.h> #endif #if defined(__APPLE__) || defined(__FreeBSD__) #include <sys/sysctl.h> #endif #ifdef __FreeBSD__ #include <pthread_np.h> #endif #ifdef __NetBSD__ #include <lwp.h> #endif #if defined(__myriad2__) #include <rtems.h> #endif #if defined(__Fuchsia__) #include <zircon/process.h> #endif #include <string.h> #include <cassert> #include <cerrno> #include <cstdint> #include <cstdio> #include <cstdlib> #include <ctime> #include <limits> #include <thread> #include <utility> #include <vector> #include "absl/base/call_once.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/spinlock.h" #include "absl/base/internal/unscaledcycleclock.h" #include "absl/base/thread_annotations.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { #if defined(_WIN32) DWORD Win32CountSetBits(ULONG_PTR bitMask) { for (DWORD bitSetCount = 0; ; ++bitSetCount) { if (bitMask == 0) return bitSetCount; bitMask &= bitMask - 1; } } int Win32NumCPUs() { #pragma comment(lib, "kernel32.lib") using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION; DWORD info_size = sizeof(Info); Info* info(static_cast<Info*>(malloc(info_size))); if (info == nullptr) return 0; bool success = GetLogicalProcessorInformation(info, &info_size); if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) { free(info); info = static_cast<Info*>(malloc(info_size)); if (info == nullptr) return 0; success = GetLogicalProcessorInformation(info, &info_size); } DWORD logicalProcessorCount = 0; if (success) { Info* ptr = info; DWORD byteOffset = 0; while (byteOffset + sizeof(Info) <= info_size) { switch (ptr->Relationship) { case RelationProcessorCore: logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask); break; case RelationNumaNode: case RelationCache: case RelationProcessorPackage: break; default: break; } byteOffset += sizeof(Info); ptr++; } } free(info); return static_cast<int>(logicalProcessorCount); } #endif } static int GetNumCPUs() { #if defined(__myriad2__) return 1; #elif defined(_WIN32) const int hardware_concurrency = Win32NumCPUs(); return hardware_concurrency ? hardware_concurrency : 1; #elif defined(_AIX) return sysconf(_SC_NPROCESSORS_ONLN); #else return static_cast<int>(std::thread::hardware_concurrency()); #endif } #if defined(_WIN32) static double GetNominalCPUFrequency() { #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \ !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) return 1.0; #else #pragma comment(lib, "advapi32.lib") HKEY key; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE, "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0, KEY_READ, &key) == ERROR_SUCCESS) { DWORD type = 0; DWORD data = 0; DWORD data_size = sizeof(data); auto result = RegQueryValueExA(key, "~MHz", nullptr, &type, reinterpret_cast<LPBYTE>(&data), &data_size); RegCloseKey(key); if (result == ERROR_SUCCESS && type == REG_DWORD && data_size == sizeof(data)) { return data * 1e6; } } return 1.0; #endif } #elif defined(CTL_HW) && defined(HW_CPU_FREQ) static double GetNominalCPUFrequency() { unsigned freq; size_t size = sizeof(freq); int mib[2] = {CTL_HW, HW_CPU_FREQ}; if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) { return static_cast<double>(freq); } return 1.0; } #else static bool ReadLongFromFile(const char *file, long *value) { bool ret = false; #if defined(_POSIX_C_SOURCE) const int file_mode = (O_RDONLY | O_CLOEXEC); #else const int file_mode = O_RDONLY; #endif int fd = open(file, file_mode); if (fd != -1) { char line[1024]; char *err; memset(line, '\0', sizeof(line)); ssize_t len; do { len = read(fd, line, sizeof(line) - 1); } while (len < 0 && errno == EINTR); if (len <= 0) { ret = false; } else { const long temp_value = strtol(line, &err, 10); if (line[0] != '\0' && (*err == '\n' || *err == '\0')) { *value = temp_value; ret = true; } } close(fd); } return ret; } #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) static int64_t ReadMonotonicClockNanos() { struct timespec t; #ifdef CLOCK_MONOTONIC_RAW int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t); #else int rc = clock_gettime(CLOCK_MONOTONIC, &t); #endif if (rc != 0) { ABSL_INTERNAL_LOG( FATAL, "clock_gettime() failed: (" + std::to_string(errno) + ")"); } return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec; } class UnscaledCycleClockWrapperForInitializeFrequency { public: static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } }; struct TimeTscPair { int64_t time; int64_t tsc; }; static TimeTscPair GetTimeTscPair() { int64_t best_latency = std::numeric_limits<int64_t>::max(); TimeTscPair best; for (int i = 0; i < 10; ++i) { int64_t t0 = ReadMonotonicClockNanos(); int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now(); int64_t t1 = ReadMonotonicClockNanos(); int64_t latency = t1 - t0; if (latency < best_latency) { best_latency = latency; best.time = t0; best.tsc = tsc; } } return best; } static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) { auto t0 = GetTimeTscPair(); struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = sleep_nanoseconds; while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {} auto t1 = GetTimeTscPair(); double elapsed_ticks = t1.tsc - t0.tsc; double elapsed_time = (t1.time - t0.time) * 1e-9; return elapsed_ticks / elapsed_time; } static double MeasureTscFrequency() { double last_measurement = -1.0; int sleep_nanoseconds = 1000000; for (int i = 0; i < 8; ++i) { double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds); if (measurement * 0.99 < last_measurement && last_measurement < measurement * 1.01) { return measurement; } last_measurement = measurement; sleep_nanoseconds *= 2; } return last_measurement; } #endif static double GetNominalCPUFrequency() { long freq = 0; if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) { return freq * 1e3; } #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) return MeasureTscFrequency(); #else if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", &freq)) { return freq * 1e3; } return 1.0; #endif } #endif ABSL_CONST_INIT static once_flag init_num_cpus_once; ABSL_CONST_INIT static int num_cpus = 0; int NumCPUs() { base_internal::LowLevelCallOnce( &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); }); return num_cpus; } ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once; ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0; double NominalCPUFrequency() { base_internal::LowLevelCallOnce( &init_nominal_cpu_frequency_once, []() { nominal_cpu_frequency = GetNominalCPUFrequency(); }); return nominal_cpu_frequency; } #if defined(_WIN32) pid_t GetTID() { return pid_t{GetCurrentThreadId()}; } #elif defined(__linux__) #ifndef SYS_gettid #define SYS_gettid __NR_gettid #endif pid_t GetTID() { return static_cast<pid_t>(syscall(SYS_gettid)); } #elif defined(__akaros__) pid_t GetTID() { if (in_vcore_context()) return 0; return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id; } #elif defined(__myriad2__) pid_t GetTID() { uint32_t tid; rtems_task_ident(RTEMS_SELF, 0, &tid); return tid; } #elif defined(__APPLE__) pid_t GetTID() { uint64_t tid; pthread_threadid_np(nullptr, &tid); return static_cast<pid_t>(tid); } #elif defined(__FreeBSD__) pid_t GetTID() { return static_cast<pid_t>(pthread_getthreadid_np()); } #elif defined(__OpenBSD__) pid_t GetTID() { return getthrid(); } #elif defined(__NetBSD__) pid_t GetTID() { return static_cast<pid_t>(_lwp_self()); } #elif defined(__native_client__) pid_t GetTID() { auto* thread = pthread_self(); static_assert(sizeof(pid_t) == sizeof(thread), "In NaCL int expected to be the same size as a pointer"); return reinterpret_cast<pid_t>(thread); } #elif defined(__Fuchsia__) pid_t GetTID() { return static_cast<pid_t>(zx_thread_self()); } #else pid_t GetTID() { return static_cast<pid_t>(pthread_self()); } #endif pid_t GetCachedTID() { #ifdef ABSL_HAVE_THREAD_LOCAL static thread_local pid_t thread_id = GetTID(); return thread_id; #else return GetTID(); #endif } } ABSL_NAMESPACE_END }
#include "absl/base/internal/sysinfo.h" #ifndef _WIN32 #include <sys/types.h> #include <unistd.h> #endif #include <thread> #include <unordered_set> #include <vector> #include "gtest/gtest.h" #include "absl/synchronization/barrier.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { TEST(SysinfoTest, NumCPUs) { EXPECT_NE(NumCPUs(), 0) << "NumCPUs() should not have the default value of 0"; } TEST(SysinfoTest, GetTID) { EXPECT_EQ(GetTID(), GetTID()); #ifdef __native_client__ return; #endif for (int i = 0; i < 10; ++i) { constexpr int kNumThreads = 10; Barrier all_threads_done(kNumThreads); std::vector<std::thread> threads; Mutex mutex; std::unordered_set<pid_t> tids; for (int j = 0; j < kNumThreads; ++j) { threads.push_back(std::thread([&]() { pid_t id = GetTID(); { MutexLock lock(&mutex); ASSERT_TRUE(tids.find(id) == tids.end()); tids.insert(id); } all_threads_done.Block(); })); } for (auto& thread : threads) { thread.join(); } } } #ifdef __linux__ TEST(SysinfoTest, LinuxGetTID) { EXPECT_EQ(GetTID(), getpid()); } #endif } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/sysinfo.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/base/internal/sysinfo_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
f7c5503c-3601-4d95-bf3c-810508313e4c
cpp
tensorflow/tensorflow
tfr_decompose_ctx
tensorflow/compiler/mlir/tfr/integration/tfr_decompose_ctx.cc
tensorflow/compiler/mlir/tfr/integration/tfr_decompose_ctx_test.cc
#include "tensorflow/compiler/mlir/tfr/integration/tfr_decompose_ctx.h" #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/LogicalResult.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/SourceMgr.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/Extensions/AllExtensions.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/Shape/IR/Shape.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/IR/Types.h" #include "mlir/IR/Verifier.h" #include "mlir/Parser/Parser.h" #include "mlir/Pass/PassManager.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_executor.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_attr.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/tf_executor_to_graph.h" #include "tensorflow/compiler/mlir/tfr/ir/tfr_ops.h" #include "tensorflow/compiler/mlir/tfr/passes/passes.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/env_var.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tfr { const char* const kTFRLibEnv = "TF_MLIR_TFR_LIB_DIR"; absl::StatusOr<std::unique_ptr<TFRDecomposeContext>> TFRDecomposeContext::Get( mlir::MLIRContext* mlir_ctx) { Env* env = Env::Default(); std::string tfr_lib_dir; TF_RETURN_IF_ERROR(ReadStringFromEnvVar( kTFRLibEnv, "tensorflow/compiler/mlir/tfr/resources", &tfr_lib_dir)); string composite_mlir_dir = io::JoinPath(env->GetRunfilesDir(), tfr_lib_dir); std::vector<string> files; TF_RETURN_IF_ERROR(env->GetChildren(composite_mlir_dir, &files)); if (files.empty()) { return errors::Internal(absl::StrCat( "Failed to find the decomposition lib from path ", composite_mlir_dir)); } std::string tfr_raw_text; for (const auto& file : files) { string fullpath = io::JoinPath(composite_mlir_dir, file); if (env->MatchPath(fullpath, io::JoinPath(composite_mlir_dir, "*.mlir"))) { std::string text; TF_RETURN_IF_ERROR(ReadFileToString(env, fullpath, &text)); tfr_raw_text.append(text); } } auto ctx = TFRDecomposeContext::GetFromText(tfr_raw_text, mlir_ctx); if (!ctx) { return errors::Internal(absl::StrCat( "Failed to load the imported decomposition lib: ", tfr_raw_text)); } return ctx; } std::unique_ptr<TFRDecomposeContext> TFRDecomposeContext::GetFromText( StringPiece tfr_raw_text, mlir::MLIRContext* mlir_ctx) { mlir_ctx->allowUnregisteredDialects(true); mlir::DialectRegistry registry; registry.insert<mlir::arith::ArithDialect, mlir::func::FuncDialect, mlir::scf::SCFDialect, mlir::shape::ShapeDialect, mlir::TF::TensorFlowDialect, mlir::tf_device::TensorFlowDeviceDialect, mlir::tf_executor::TensorFlowExecutorDialect, mlir::TFR::TFRDialect>(); mlir::func::registerAllExtensions(registry); mlir_ctx->appendDialectRegistry(registry); mlir_ctx->loadAllAvailableDialects(); auto memory_buffer = llvm::MemoryBuffer::getMemBuffer( llvm::StringRef(tfr_raw_text.data(), tfr_raw_text.size())); llvm::SourceMgr source_mgr; source_mgr.AddNewSourceBuffer(std::move(memory_buffer), llvm::SMLoc()); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceFile<mlir::ModuleOp>(source_mgr, mlir_ctx); auto module_op = module.release(); return std::make_unique<TFRDecomposeContext>(module_op); } absl::StatusOr<FunctionDef> TFRDecomposeContext::ExpandNode( const NodeDef& node_def, StringPiece func_name) { const OpDef* op_def; TF_RETURN_IF_ERROR(OpRegistry::Global()->LookUpOpDef(node_def.op(), &op_def)); DataTypeVector input_dtys, output_dtys; TF_RETURN_IF_ERROR(InputTypesForNode(node_def, *op_def, &input_dtys)); TF_RETURN_IF_ERROR(OutputTypesForNode(node_def, *op_def, &output_dtys)); mlir::MLIRContext* context = tfr_module_.getContext(); llvm::SmallVector<mlir::Type, 4> input_tys, output_tys; mlir::Builder builder(context); for (auto ty : input_dtys) { mlir::Type elt_ty; TF_RETURN_IF_ERROR(ConvertDataType(ty, builder, &elt_ty)); mlir::TensorType mlir_ty = mlir::UnrankedTensorType::get(elt_ty); input_tys.push_back(mlir_ty); } for (auto ty : output_dtys) { mlir::Type elt_ty; TF_RETURN_IF_ERROR(ConvertDataType(ty, builder, &elt_ty)); mlir::TensorType mlir_ty = mlir::UnrankedTensorType::get(elt_ty); output_tys.push_back(mlir_ty); } llvm::SmallVector<mlir::NamedAttribute, 4> attrs; for (const auto& attr : node_def.attr()) { TF_ASSIGN_OR_RETURN(auto mlir_attr, ConvertAttributeValue(attr.second, &builder)); attrs.push_back({mlir::StringAttr::get(context, attr.first), mlir_attr}); } mlir::Location loc = mlir::UnknownLoc::get(context); mlir::ModuleOp module = mlir::ModuleOp::create(loc); mlir::FunctionType func_type = mlir::FunctionType::get(context, input_tys, output_tys); llvm::StringRef func_name_str(func_name.data(), func_name.size()); auto func = mlir::func::FuncOp::create(loc, func_name_str, func_type, {}); module.push_back(func); func.addEntryBlock(); mlir::OpBuilder op_builder(func.getBody()); const std::string tf_op_full_name = absl::StrCat("tf.", node_def.op()); mlir::OperationState op_state(loc, tf_op_full_name); op_state.addOperands(func.getArguments()); op_state.addTypes(output_tys); op_state.addAttributes(attrs); mlir::Operation* tf_op = op_builder.create(op_state); op_builder.create<mlir::func::ReturnOp>(loc, tf_op->getResults()); TF_RETURN_IF_ERROR(DecomposeGraph(module)); FunctionDef func_def; TF_RETURN_IF_ERROR( tensorflow::tf2xla::v2::ConvertMlirFunctionToFunctionLibraryDef( func, export_confs_, &func_def)); module.erase(); return func_def; } Status TFRDecomposeContext::DecomposeGraph(mlir::ModuleOp user_module) { if (failed(pm_.run(user_module))) { return errors::Internal("Failed to run the decompose passes."); } return absl::OkStatus(); } TFRDecomposeContext::TFRDecomposeContext(mlir::ModuleOp tfr_module) : tfr_module_(tfr_module), pm_(tfr_module_.getContext()) { mlir::OpPassManager& func_pm = pm_.nest<mlir::func::FuncOp>(); func_pm.addPass(mlir::CreateExecutorDialectToFunctionalConversionPass()); func_pm.addPass(mlir::TFR::CreateDecomposeTFOpsPass(tfr_module_)); func_pm.addPass(mlir::TFR::CreateRaiseToTFOpsPass( tfr_module_, true)); func_pm.addPass(mlir::CreateFunctionalToExecutorDialectConversionPass()); pm_.addPass(mlir::CreateBreakUpIslandsPass()); } void TFRDecomposeContext::Destroy() { tfr_module_.erase(); } absl::StatusOr<FunctionDef> ExpandNode(const NodeDef& node_def, StringPiece func_name) { mlir::MLIRContext mlir_ctx; TF_ASSIGN_OR_RETURN(auto ctx, TFRDecomposeContext::Get(&mlir_ctx)); return ctx->ExpandNode(node_def, func_name); } Status DecomposeGraph(mlir::ModuleOp user_module) { mlir::MLIRContext* mlir_ctx = user_module.getContext(); TF_ASSIGN_OR_RETURN(auto ctx, TFRDecomposeContext::Get(mlir_ctx)); return ctx->DecomposeGraph(user_module); } } }
#include "tensorflow/compiler/mlir/tfr/integration/tfr_decompose_ctx.h" #include <string> #include <vector> #include "absl/types/span.h" #include "mlir/IR/MLIRContext.h" #include "xla/test.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/test.h" using testing::ElementsAreArray; using testing::Test; using NodeAndType = std::pair<std::string, tensorflow::DataType>; namespace tensorflow { namespace { REGISTER_OP("MyAddN") .Input("inputs: N * T") .Output("sum: T") .Attr("N: int >= 1") .Attr("T: {numbertype, variant}") .SetIsCommutative() .SetIsAggregate() .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("RiscAddDummy") .Input("x: T") .Input("y: T") .Output("z: T") .Attr( "T: {bfloat16, half, float, double, uint8, int8, int16, int32, int64, " "complex64, complex128, string}") .SetShapeFn(shape_inference::UnchangedShape); constexpr char tfr_raw_text[] = R"( tfr.func @tf__my_add_n(%values: !tfr.tensor_list, %n: i64 {tfr.name="N"}) -> !tfr.tensor { %index = arith.constant 0 : index %cst = arith.constant 1 : i64 %eq = arith.cmpi "eq", %n, %cst : i64 %v1 = tfr.get_element %values[%index] : (!tfr.tensor_list, index) -> !tfr.tensor %res = scf.if %eq -> !tfr.tensor { scf.yield %v1 : !tfr.tensor } else { %step = arith.index_cast %cst : i64 to index %end = arith.index_cast %n : i64 to index %reduce = scf.for %i = %step to %end step %step iter_args(%reduce_iter=%v1) -> !tfr.tensor { %v = tfr.get_element %values[%i] : (!tfr.tensor_list, index) -> !tfr.tensor %reduce_next = tfr.call @tf__risc_add_dummy(%reduce_iter, %v) : (!tfr.tensor, !tfr.tensor) -> !tfr.tensor scf.yield %reduce_next : !tfr.tensor } scf.yield %reduce : !tfr.tensor } tfr.return %res : !tfr.tensor } tfr.func @tf__my_add_n_(!tfr.tensor_list<N,T>, i64 {tfr.name="N"}) -> !tfr.tensor attributes{N,T} tfr.func @tf__risc_add_dummy_(!tfr.tensor<T>, !tfr.tensor<T>) -> !tfr.tensor<T> attributes{T} )"; class TFRDecomposeContextTest : public Test { protected: void SetUp() override { test_ctx_ = tfr::TFRDecomposeContext::GetFromText(tfr_raw_text, &ctx_); } void TearDown() override { test_ctx_->Destroy(); } mlir::MLIRContext ctx_; std::unique_ptr<tfr::TFRDecomposeContext> test_ctx_; }; std::vector<NodeAndType> NodesSequenceOf(const FunctionDef& graph) { std::vector<NodeAndType> nodes; for (auto& node : graph.node_def()) { nodes.push_back({node.op(), node.attr().at("T").type()}); } return nodes; } TEST_F(TFRDecomposeContextTest, FLOAT_1_ins) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.emplace_back("input", 0, DT_FLOAT); NodeDef test_node; auto status = NodeDefBuilder("float_add", "MyAddN") .Input(src_list) .Finalize(&test_node); EXPECT_TRUE(status.ok()); auto decomposed = test_ctx_->ExpandNode(test_node, "test"); EXPECT_TRUE(decomposed.ok()); std::vector<NodeAndType> expected_results{{"Identity", DT_FLOAT}}; EXPECT_THAT(NodesSequenceOf(decomposed.value()), ElementsAreArray(expected_results)); } TEST_F(TFRDecomposeContextTest, FLOAT_3_ins) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.emplace_back("in0", 0, DT_FLOAT); src_list.emplace_back("in1", 0, DT_FLOAT); src_list.emplace_back("in2", 0, DT_FLOAT); NodeDef test_node; auto status = NodeDefBuilder("float_add_3", "MyAddN") .Input(src_list) .Finalize(&test_node); EXPECT_TRUE(status.ok()); auto decomposed = test_ctx_->ExpandNode(test_node, "test"); EXPECT_TRUE(decomposed.ok()); std::vector<NodeAndType> expected_results{{"RiscAddDummy", DT_FLOAT}, {"RiscAddDummy", DT_FLOAT}}; EXPECT_THAT(NodesSequenceOf(decomposed.value()), ElementsAreArray(expected_results)); } TEST_F(TFRDecomposeContextTest, INT32_3_ins) { std::vector<NodeDefBuilder::NodeOut> src_list; src_list.emplace_back("in0", 0, DT_INT32); src_list.emplace_back("in1", 0, DT_INT32); src_list.emplace_back("in2", 0, DT_INT32); NodeDef test_node; auto status = NodeDefBuilder("int_add", "MyAddN").Input(src_list).Finalize(&test_node); EXPECT_TRUE(status.ok()); auto decomposed = test_ctx_->ExpandNode(test_node, "test"); EXPECT_TRUE(decomposed.ok()); std::vector<NodeAndType> expected_results{{"RiscAddDummy", DT_INT32}, {"RiscAddDummy", DT_INT32}}; EXPECT_THAT(NodesSequenceOf(decomposed.value()), ElementsAreArray(expected_results)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfr/integration/tfr_decompose_ctx.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/tfr/integration/tfr_decompose_ctx_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1e1b571f-877a-4ea3-8859-49202fc0709f
cpp
tensorflow/tensorflow
resampler
tensorflow/lite/delegates/gpu/gl/kernels/resampler.cc
tensorflow/lite/delegates/gpu/cl/kernels/resampler_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/resampler.h" #include <algorithm> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace gl { namespace { class Resampler : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::vector<Variable> parameters = { {"src_height", static_cast<int>(ctx.input_shapes[0][1])}, {"src_width", static_cast<int>(ctx.input_shapes[0][2])}, }; std::string source = R"( highp int X = int(gid.x); highp int Y = int(gid.y); highp int S = int(gid.z); highp vec2 f_coords = ($input_data_1[X, Y, 0]$).xy; highp vec2 f_coords_floor = floor(f_coords); highp ivec4 st; st.xy = ivec2(f_coords_floor.x, f_coords_floor.y); st.zw = st.xy + ivec2(1, 1); highp vec2 t = f_coords - f_coords_floor; bool stx_in = st.x >= 0 && st.x < $src_width$; bool stz_in = st.z >= 0 && st.z < $src_width$; bool sty_in = st.y >= 0 && st.y < $src_height$; bool stw_in = st.w >= 0 && st.w < $src_height$; vec4 src0 = (stx_in && sty_in) ? $input_data_0[st.x, st.y, S]$ : vec4(0.0); vec4 src1 = (stz_in && sty_in) ? $input_data_0[st.z, st.y, S]$ : vec4(0.0); vec4 src2 = (stx_in && stw_in) ? $input_data_0[st.x, st.w, S]$ : vec4(0.0); vec4 src3 = (stz_in && stw_in) ? $input_data_0[st.z, st.w, S]$ : vec4(0.0); value_0 = mix(mix(src0, src1, t.x), mix(src2, src3, t.x), t.y); )"; *generated_code = { std::move(parameters), {}, {}, uint3(), uint3(), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewResamplerNodeShader() { return std::make_unique<Resampler>(); } } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/resampler_test_util.h" namespace tflite { namespace gpu { namespace cl { TEST_F(OpenCLOperationTest, ResamplerIdentity) { auto status = ResamplerIdentityTest(BHWC(1, 2, 2, 1), &exec_env_); ASSERT_TRUE(status.ok()) << status.message(); status = ResamplerIdentityTest(BHWC(1, 3, 5, 3), &exec_env_); ASSERT_TRUE(status.ok()) << status.message(); status = ResamplerIdentityTest(BHWC(1, 6, 1, 7), &exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/resampler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/resampler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
017b88cb-d4f6-4058-982e-183d7d3cc96e
cpp
google/quiche
simulator
quiche/quic/test_tools/simulator/simulator.cc
quiche/quic/test_tools/simulator/simulator_test.cc
#include "quiche/quic/test_tools/simulator/simulator.h" #include <utility> #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace simulator { Simulator::Simulator() : Simulator(nullptr) {} Simulator::Simulator(QuicRandom* random_generator) : random_generator_(random_generator), alarm_factory_(this, "Default Alarm Manager"), run_for_should_stop_(false), enable_random_delays_(false) { run_for_alarm_.reset( alarm_factory_.CreateAlarm(new RunForDelegate(&run_for_should_stop_))); } Simulator::~Simulator() { run_for_alarm_.reset(); } Simulator::Clock::Clock() : now_(kStartTime) {} QuicTime Simulator::Clock::ApproximateNow() const { return now_; } QuicTime Simulator::Clock::Now() const { return now_; } QuicWallTime Simulator::Clock::WallNow() const { return QuicWallTime::FromUNIXMicroseconds( (now_ - QuicTime::Zero()).ToMicroseconds()); } void Simulator::AddActor(Actor* actor) { auto emplace_times_result = scheduled_times_.insert(std::make_pair(actor, QuicTime::Infinite())); auto emplace_names_result = actor_names_.insert(actor->name()); QUICHE_DCHECK(emplace_times_result.second); QUICHE_DCHECK(emplace_names_result.second); } void Simulator::RemoveActor(Actor* actor) { auto scheduled_time_it = scheduled_times_.find(actor); auto actor_names_it = actor_names_.find(actor->name()); QUICHE_DCHECK(scheduled_time_it != scheduled_times_.end()); QUICHE_DCHECK(actor_names_it != actor_names_.end()); QuicTime scheduled_time = scheduled_time_it->second; if (scheduled_time != QuicTime::Infinite()) { Unschedule(actor); } scheduled_times_.erase(scheduled_time_it); actor_names_.erase(actor_names_it); } void Simulator::Schedule(Actor* actor, QuicTime new_time) { auto scheduled_time_it = scheduled_times_.find(actor); QUICHE_DCHECK(scheduled_time_it != scheduled_times_.end()); QuicTime scheduled_time = scheduled_time_it->second; if (scheduled_time <= new_time) { return; } if (scheduled_time != QuicTime::Infinite()) { Unschedule(actor); } scheduled_time_it->second = new_time; schedule_.insert(std::make_pair(new_time, actor)); } void Simulator::Unschedule(Actor* actor) { auto scheduled_time_it = scheduled_times_.find(actor); QUICHE_DCHECK(scheduled_time_it != scheduled_times_.end()); QuicTime scheduled_time = scheduled_time_it->second; QUICHE_DCHECK(scheduled_time != QuicTime::Infinite()); auto range = schedule_.equal_range(scheduled_time); for (auto it = range.first; it != range.second; ++it) { if (it->second == actor) { schedule_.erase(it); scheduled_time_it->second = QuicTime::Infinite(); return; } } QUICHE_DCHECK(false); } const QuicClock* Simulator::GetClock() const { return &clock_; } QuicRandom* Simulator::GetRandomGenerator() { if (random_generator_ == nullptr) { random_generator_ = QuicRandom::GetInstance(); } return random_generator_; } quiche::QuicheBufferAllocator* Simulator::GetStreamSendBufferAllocator() { return &buffer_allocator_; } QuicAlarmFactory* Simulator::GetAlarmFactory() { return &alarm_factory_; } Simulator::RunForDelegate::RunForDelegate(bool* run_for_should_stop) : run_for_should_stop_(run_for_should_stop) {} void Simulator::RunForDelegate::OnAlarm() { *run_for_should_stop_ = true; } void Simulator::RunFor(QuicTime::Delta time_span) { QUICHE_DCHECK(!run_for_alarm_->IsSet()); const QuicTime end_time = clock_.Now() + time_span; run_for_alarm_->Set(end_time); run_for_should_stop_ = false; bool simulation_result = RunUntil([this]() { return run_for_should_stop_; }); QUICHE_DCHECK(simulation_result); QUICHE_DCHECK(clock_.Now() == end_time); } void Simulator::HandleNextScheduledActor() { const auto current_event_it = schedule_.begin(); QuicTime event_time = current_event_it->first; Actor* actor = current_event_it->second; QUIC_DVLOG(3) << "At t = " << event_time.ToDebuggingValue() << ", calling " << actor->name(); Unschedule(actor); if (clock_.Now() > event_time) { QUIC_BUG(quic_bug_10150_1) << "Error: event registered by [" << actor->name() << "] requires travelling back in time. Current time: " << clock_.Now().ToDebuggingValue() << ", scheduled time: " << event_time.ToDebuggingValue(); } clock_.now_ = event_time; actor->Act(); } } }
#include "quiche/quic/test_tools/simulator/simulator.h" #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/node_hash_map.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simulator/alarm_factory.h" #include "quiche/quic/test_tools/simulator/link.h" #include "quiche/quic/test_tools/simulator/packet_filter.h" #include "quiche/quic/test_tools/simulator/queue.h" #include "quiche/quic/test_tools/simulator/switch.h" #include "quiche/quic/test_tools/simulator/traffic_policer.h" using testing::_; using testing::Return; using testing::StrictMock; namespace quic { namespace simulator { class Counter : public Actor { public: Counter(Simulator* simulator, std::string name, QuicTime::Delta period) : Actor(simulator, name), value_(-1), period_(period) { Schedule(clock_->Now()); } ~Counter() override {} inline int get_value() const { return value_; } void Act() override { ++value_; QUIC_DVLOG(1) << name_ << " has value " << value_ << " at time " << clock_->Now().ToDebuggingValue(); Schedule(clock_->Now() + period_); } private: int value_; QuicTime::Delta period_; }; class SimulatorTest : public quic::test::QuicTest {}; TEST_F(SimulatorTest, Counters) { Simulator simulator; for (int i = 0; i < 2; ++i) { Counter fast_counter(&simulator, "fast_counter", QuicTime::Delta::FromSeconds(3)); Counter slow_counter(&simulator, "slow_counter", QuicTime::Delta::FromSeconds(10)); simulator.RunUntil( [&slow_counter]() { return slow_counter.get_value() >= 10; }); EXPECT_EQ(10, slow_counter.get_value()); EXPECT_EQ(10 * 10 / 3, fast_counter.get_value()); } } class CounterPort : public UnconstrainedPortInterface { public: CounterPort() { Reset(); } ~CounterPort() override {} inline QuicByteCount bytes() const { return bytes_; } inline QuicPacketCount packets() const { return packets_; } void AcceptPacket(std::unique_ptr<Packet> packet) override { bytes_ += packet->size; packets_ += 1; per_destination_packet_counter_[packet->destination] += 1; } void Reset() { bytes_ = 0; packets_ = 0; per_destination_packet_counter_.clear(); } QuicPacketCount CountPacketsForDestination(std::string destination) const { auto result_it = per_destination_packet_counter_.find(destination); if (result_it == per_destination_packet_counter_.cend()) { return 0; } return result_it->second; } private: QuicByteCount bytes_; QuicPacketCount packets_; absl::node_hash_map<std::string, QuicPacketCount> per_destination_packet_counter_; }; class LinkSaturator : public Endpoint { public: LinkSaturator(Simulator* simulator, std::string name, QuicByteCount packet_size, std::string destination) : Endpoint(simulator, name), packet_size_(packet_size), destination_(std::move(destination)), bytes_transmitted_(0), packets_transmitted_(0) { Schedule(clock_->Now()); } void Act() override { if (tx_port_->TimeUntilAvailable().IsZero()) { auto packet = std::make_unique<Packet>(); packet->source = name_; packet->destination = destination_; packet->tx_timestamp = clock_->Now(); packet->size = packet_size_; tx_port_->AcceptPacket(std::move(packet)); bytes_transmitted_ += packet_size_; packets_transmitted_ += 1; } Schedule(clock_->Now() + tx_port_->TimeUntilAvailable()); } UnconstrainedPortInterface* GetRxPort() override { return static_cast<UnconstrainedPortInterface*>(&rx_port_); } void SetTxPort(ConstrainedPortInterface* port) override { tx_port_ = port; } CounterPort* counter() { return &rx_port_; } inline QuicByteCount bytes_transmitted() const { return bytes_transmitted_; } inline QuicPacketCount packets_transmitted() const { return packets_transmitted_; } void Pause() { Unschedule(); } void Resume() { Schedule(clock_->Now()); } private: QuicByteCount packet_size_; std::string destination_; ConstrainedPortInterface* tx_port_; CounterPort rx_port_; QuicByteCount bytes_transmitted_; QuicPacketCount packets_transmitted_; }; TEST_F(SimulatorTest, DirectLinkSaturation) { Simulator simulator; LinkSaturator saturator_a(&simulator, "Saturator A", 1000, "Saturator B"); LinkSaturator saturator_b(&simulator, "Saturator B", 100, "Saturator A"); SymmetricLink link(&saturator_a, &saturator_b, QuicBandwidth::FromKBytesPerSecond(1000), QuicTime::Delta::FromMilliseconds(100) + QuicTime::Delta::FromMicroseconds(1)); const QuicTime start_time = simulator.GetClock()->Now(); const QuicTime after_first_50_ms = start_time + QuicTime::Delta::FromMilliseconds(50); simulator.RunUntil([&simulator, after_first_50_ms]() { return simulator.GetClock()->Now() >= after_first_50_ms; }); EXPECT_LE(1000u * 50u, saturator_a.bytes_transmitted()); EXPECT_GE(1000u * 51u, saturator_a.bytes_transmitted()); EXPECT_LE(1000u * 50u, saturator_b.bytes_transmitted()); EXPECT_GE(1000u * 51u, saturator_b.bytes_transmitted()); EXPECT_LE(50u, saturator_a.packets_transmitted()); EXPECT_GE(51u, saturator_a.packets_transmitted()); EXPECT_LE(500u, saturator_b.packets_transmitted()); EXPECT_GE(501u, saturator_b.packets_transmitted()); EXPECT_EQ(0u, saturator_a.counter()->bytes()); EXPECT_EQ(0u, saturator_b.counter()->bytes()); simulator.RunUntil([&saturator_a, &saturator_b]() { if (saturator_a.counter()->packets() > 1000 || saturator_b.counter()->packets() > 100) { ADD_FAILURE() << "The simulation did not arrive at the expected " "termination contidition. Saturator A counter: " << saturator_a.counter()->packets() << ", saturator B counter: " << saturator_b.counter()->packets(); return true; } return saturator_a.counter()->packets() == 1000 && saturator_b.counter()->packets() == 100; }); EXPECT_EQ(201u, saturator_a.packets_transmitted()); EXPECT_EQ(2001u, saturator_b.packets_transmitted()); EXPECT_EQ(201u * 1000, saturator_a.bytes_transmitted()); EXPECT_EQ(2001u * 100, saturator_b.bytes_transmitted()); EXPECT_EQ(1000u, saturator_a.counter()->CountPacketsForDestination("Saturator A")); EXPECT_EQ(100u, saturator_b.counter()->CountPacketsForDestination("Saturator B")); EXPECT_EQ(0u, saturator_a.counter()->CountPacketsForDestination("Saturator B")); EXPECT_EQ(0u, saturator_b.counter()->CountPacketsForDestination("Saturator A")); const QuicTime end_time = simulator.GetClock()->Now(); const QuicBandwidth observed_bandwidth = QuicBandwidth::FromBytesAndTimeDelta( saturator_a.bytes_transmitted(), end_time - start_time); EXPECT_APPROX_EQ(link.bandwidth(), observed_bandwidth, 0.01f); } class PacketAcceptor : public ConstrainedPortInterface { public: void AcceptPacket(std::unique_ptr<Packet> packet) override { packets_.emplace_back(std::move(packet)); } QuicTime::Delta TimeUntilAvailable() override { return QuicTime::Delta::Zero(); } std::vector<std::unique_ptr<Packet>>* packets() { return &packets_; } private: std::vector<std::unique_ptr<Packet>> packets_; }; TEST_F(SimulatorTest, Queue) { Simulator simulator; Queue queue(&simulator, "Queue", 1000); PacketAcceptor acceptor; queue.set_tx_port(&acceptor); EXPECT_EQ(0u, queue.bytes_queued()); EXPECT_EQ(0u, queue.packets_queued()); EXPECT_EQ(0u, acceptor.packets()->size()); auto first_packet = std::make_unique<Packet>(); first_packet->size = 600; queue.AcceptPacket(std::move(first_packet)); EXPECT_EQ(600u, queue.bytes_queued()); EXPECT_EQ(1u, queue.packets_queued()); EXPECT_EQ(0u, acceptor.packets()->size()); auto second_packet = std::make_unique<Packet>(); second_packet->size = 500; queue.AcceptPacket(std::move(second_packet)); EXPECT_EQ(600u, queue.bytes_queued()); EXPECT_EQ(1u, queue.packets_queued()); EXPECT_EQ(0u, acceptor.packets()->size()); auto third_packet = std::make_unique<Packet>(); third_packet->size = 400; queue.AcceptPacket(std::move(third_packet)); EXPECT_EQ(1000u, queue.bytes_queued()); EXPECT_EQ(2u, queue.packets_queued()); EXPECT_EQ(0u, acceptor.packets()->size()); simulator.RunUntil([]() { return false; }); EXPECT_EQ(0u, queue.bytes_queued()); EXPECT_EQ(0u, queue.packets_queued()); ASSERT_EQ(2u, acceptor.packets()->size()); EXPECT_EQ(600u, acceptor.packets()->at(0)->size); EXPECT_EQ(400u, acceptor.packets()->at(1)->size); } TEST_F(SimulatorTest, QueueBottleneck) { const QuicBandwidth local_bandwidth = QuicBandwidth::FromKBytesPerSecond(1000); const QuicBandwidth bottleneck_bandwidth = 0.1f * local_bandwidth; const QuicTime::Delta local_propagation_delay = QuicTime::Delta::FromMilliseconds(1); const QuicTime::Delta bottleneck_propagation_delay = QuicTime::Delta::FromMilliseconds(20); const QuicByteCount bdp = bottleneck_bandwidth * (local_propagation_delay + bottleneck_propagation_delay); Simulator simulator; LinkSaturator saturator(&simulator, "Saturator", 1000, "Counter"); ASSERT_GE(bdp, 1000u); Queue queue(&simulator, "Queue", bdp); CounterPort counter; OneWayLink local_link(&simulator, "Local link", &queue, local_bandwidth, local_propagation_delay); OneWayLink bottleneck_link(&simulator, "Bottleneck link", &counter, bottleneck_bandwidth, bottleneck_propagation_delay); saturator.SetTxPort(&local_link); queue.set_tx_port(&bottleneck_link); static const QuicPacketCount packets_received = 1000; simulator.RunUntil( [&counter]() { return counter.packets() == packets_received; }); const double loss_ratio = 1 - static_cast<double>(packets_received) / saturator.packets_transmitted(); EXPECT_NEAR(loss_ratio, 0.9, 0.001); } TEST_F(SimulatorTest, OnePacketQueue) { const QuicBandwidth local_bandwidth = QuicBandwidth::FromKBytesPerSecond(1000); const QuicBandwidth bottleneck_bandwidth = 0.1f * local_bandwidth; const QuicTime::Delta local_propagation_delay = QuicTime::Delta::FromMilliseconds(1); const QuicTime::Delta bottleneck_propagation_delay = QuicTime::Delta::FromMilliseconds(20); Simulator simulator; LinkSaturator saturator(&simulator, "Saturator", 1000, "Counter"); Queue queue(&simulator, "Queue", 1000); CounterPort counter; OneWayLink local_link(&simulator, "Local link", &queue, local_bandwidth, local_propagation_delay); OneWayLink bottleneck_link(&simulator, "Bottleneck link", &counter, bottleneck_bandwidth, bottleneck_propagation_delay); saturator.SetTxPort(&local_link); queue.set_tx_port(&bottleneck_link); static const QuicPacketCount packets_received = 10; const QuicTime deadline = simulator.GetClock()->Now() + QuicTime::Delta::FromSeconds(10); simulator.RunUntil([&simulator, &counter, deadline]() { return counter.packets() == packets_received || simulator.GetClock()->Now() > deadline; }); ASSERT_EQ(packets_received, counter.packets()); } TEST_F(SimulatorTest, SwitchedNetwork) { const QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(10000); const QuicTime::Delta base_propagation_delay = QuicTime::Delta::FromMilliseconds(50); Simulator simulator; LinkSaturator saturator1(&simulator, "Saturator 1", 1000, "Saturator 2"); LinkSaturator saturator2(&simulator, "Saturator 2", 1000, "Saturator 3"); LinkSaturator saturator3(&simulator, "Saturator 3", 1000, "Saturator 1"); Switch network_switch(&simulator, "Switch", 8, bandwidth * base_propagation_delay * 10); SymmetricLink link1(&saturator1, network_switch.port(1), bandwidth, base_propagation_delay); SymmetricLink link2(&saturator2, network_switch.port(2), bandwidth, base_propagation_delay * 2); SymmetricLink link3(&saturator3, network_switch.port(3), bandwidth, base_propagation_delay * 3); const QuicTime start_time = simulator.GetClock()->Now(); static const QuicPacketCount bytes_received = 64 * 1000; simulator.RunUntil([&saturator1]() { return saturator1.counter()->bytes() >= bytes_received; }); const QuicTime end_time = simulator.GetClock()->Now(); const QuicBandwidth observed_bandwidth = QuicBandwidth::FromBytesAndTimeDelta( bytes_received, end_time - start_time); const double bandwidth_ratio = static_cast<double>(observed_bandwidth.ToBitsPerSecond()) / bandwidth.ToBitsPerSecond(); EXPECT_NEAR(1, bandwidth_ratio, 0.1); const double normalized_received_packets_for_saturator_2 = static_cast<double>(saturator2.counter()->packets()) / saturator1.counter()->packets(); const double normalized_received_packets_for_saturator_3 = static_cast<double>(saturator3.counter()->packets()) / saturator1.counter()->packets(); EXPECT_NEAR(1, normalized_received_packets_for_saturator_2, 0.1); EXPECT_NEAR(1, normalized_received_packets_for_saturator_3, 0.1); EXPECT_EQ(0u, saturator2.counter()->CountPacketsForDestination("Saturator 1")); EXPECT_EQ(0u, saturator3.counter()->CountPacketsForDestination("Saturator 1")); EXPECT_EQ(1u, saturator1.counter()->CountPacketsForDestination("Saturator 2")); EXPECT_EQ(1u, saturator3.counter()->CountPacketsForDestination("Saturator 2")); EXPECT_EQ(1u, saturator1.counter()->CountPacketsForDestination("Saturator 3")); EXPECT_EQ(1u, saturator2.counter()->CountPacketsForDestination("Saturator 3")); } class AlarmToggler : public Actor { public: AlarmToggler(Simulator* simulator, std::string name, QuicAlarm* alarm, QuicTime::Delta interval) : Actor(simulator, name), alarm_(alarm), interval_(interval), deadline_(alarm->deadline()), times_set_(0), times_cancelled_(0) { EXPECT_TRUE(alarm->IsSet()); EXPECT_GE(alarm->deadline(), clock_->Now()); Schedule(clock_->Now()); } void Act() override { if (deadline_ <= clock_->Now()) { return; } if (alarm_->IsSet()) { alarm_->Cancel(); times_cancelled_++; } else { alarm_->Set(deadline_); times_set_++; } Schedule(clock_->Now() + interval_); } inline int times_set() { return times_set_; } inline int times_cancelled() { return times_cancelled_; } private: QuicAlarm* alarm_; QuicTime::Delta interval_; QuicTime deadline_; int times_set_; int times_cancelled_; }; class CounterDelegate : public QuicAlarm::DelegateWithoutContext { public: explicit CounterDelegate(size_t* counter) : counter_(counter) {} void OnAlarm() override { *counter_ += 1; } private: size_t* counter_; }; TEST_F(SimulatorTest, Alarms) { Simulator simulator; QuicAlarmFactory* alarm_factory = simulator.GetAlarmFactory(); size_t fast_alarm_counter = 0; size_t slow_alarm_counter = 0; std::unique_ptr<QuicAlarm> alarm_fast( alarm_factory->CreateAlarm(new CounterDelegate(&fast_alarm_counter))); std::unique_ptr<QuicAlarm> alarm_slow( alarm_factory->CreateAlarm(new CounterDelegate(&slow_alarm_counter))); const QuicTime start_time = simulator.GetClock()->Now(); alarm_fast->Set(start_time + QuicTime::Delta::FromMilliseconds(100)); alarm_slow->Set(start_time + QuicTime::Delta::FromMilliseconds(750)); AlarmToggler toggler(&simulator, "Toggler", alarm_slow.get(), QuicTime::Delta::FromMilliseconds(100)); const QuicTime end_time = start_time + QuicTime::Delta::FromMilliseconds(1000); EXPECT_FALSE(simulator.RunUntil([&simulator, end_time]() { return simulator.GetClock()->Now() >= end_time; })); EXPECT_EQ(1u, slow_alarm_counter); EXPECT_EQ(1u, fast_alarm_counter); EXPECT_EQ(4, toggler.times_set()); EXPECT_EQ(4, toggler.times_cancelled()); } TEST_F(SimulatorTest, AlarmCancelling) { Simulator simulator; QuicAlarmFactory* alarm_factory = simulator.GetAlarmFactory(); size_t alarm_counter = 0; std::unique_ptr<QuicAlarm> alarm( alarm_factory->CreateAlarm(new CounterDelegate(&alarm_counter))); const QuicTime start_time = simulator.GetClock()->Now(); const QuicTime alarm_at = start_time + QuicTime::Delta::FromMilliseconds(300); const QuicTime end_time = start_time + QuicTime::Delta::FromMilliseconds(400); alarm->Set(alarm_at); alarm->Cancel(); EXPECT_FALSE(alarm->IsSet()); EXPECT_FALSE(simulator.RunUntil([&simulator, end_time]() { return simulator.GetClock()->Now() >= end_time; })); EXPECT_FALSE(alarm->IsSet()); EXPECT_EQ(0u, alarm_counter); } TEST_F(SimulatorTest, AlarmInPast) { Simulator simulator; QuicAlarmFactory* alarm_factory = simulator.GetAlarmFactory(); size_t alarm_counter = 0; std::unique_ptr<QuicAlarm> alarm( alarm_factory->CreateAlarm(new CounterDelegate(&alarm_counter))); const QuicTime start_time = simulator.GetClock()->Now(); simulator.RunFor(QuicTime::Delta::FromMilliseconds(400)); alarm->Set(start_time); simulator.RunFor(QuicTime::Delta::FromMilliseconds(1)); EXPECT_FALSE(alarm->IsSet()); EXPECT_EQ(1u, alarm_counter); } TEST_F(SimulatorTest, RunUntilOrTimeout) { Simulator simulator; bool simulation_result; Counter counter(&simulator, "counter", QuicTime::Delta::FromSeconds(1)); simulation_result = simulator.RunUntilOrTimeout( [&counter]() { return counter.get_value() == 10; }, QuicTime::Delta::FromSeconds(20)); ASSERT_TRUE(simulation_result); simulation_result = simulator.RunUntilOrTimeout( [&counter]() { return counter.get_value() == 100; }, QuicTime::Delta::FromSeconds(20)); ASSERT_FALSE(simulation_result); } TEST_F(SimulatorTest, RunFor) { Simulator simulator; Counter counter(&simulator, "counter", QuicTime::Delta::FromSeconds(3)); simulator.RunFor(QuicTime::Delta::FromSeconds(100)); EXPECT_EQ(33, counter.get_value()); } class MockPacketFilter : public PacketFilter { public: MockPacketFilter(Simulator* simulator, std::string name, Endpoint* endpoint) : PacketFilter(simulator, name, endpoint) {} MOCK_METHOD(bool, FilterPacket, (const Packet&), (override)); }; TEST_F(SimulatorTest, PacketFilter) { const QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(1024 * 1024); const QuicTime::Delta base_propagation_delay = QuicTime::Delta::FromMilliseconds(5); Simulator simulator; LinkSaturator saturator_a(&simulator, "Saturator A", 1000, "Saturator B"); LinkSaturator saturator_b(&simulator, "Saturator B", 1000, "Saturator A"); Switch network_switch(&simulator, "Switch", 8, bandwidth * base_propagation_delay * 10); StrictMock<MockPacketFilter> a_to_b_filter(&simulator, "A -> B filter", network_switch.port(1)); StrictMock<MockPacketFilter> b_to_a_filter(&simulator, "B -> A filter", network_switch.port(2)); SymmetricLink link_a(&a_to_b_filter, &saturator_b, bandwidth, base_propagation_delay); SymmetricLink link_b(&b_to_a_filter, &saturator_a, bandwidth, base_propagation_delay); EXPECT_CALL(a_to_b_filter, FilterPacket(_)).WillRepeatedly(Return(true)); EXPECT_CALL(b_to_a_filter, FilterPacket(_)).WillRepeatedly(Return(false)); simulator.RunFor(QuicTime::Delta::FromSeconds(10)); EXPECT_GE(saturator_b.counter()->packets(), 1u); EXPECT_EQ(saturator_a.counter()->packets(), 0u); } TEST_F(SimulatorTest, TrafficPolicer) { const QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(1024 * 1024); const QuicTime::Delta base_propagation_delay = QuicTime::Delta::FromMilliseconds(5); const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(10); Simulator simulator; LinkSaturator saturator1(&simulator, "Saturator 1", 1000, "Saturator 2"); LinkSaturator saturator2(&simulator, "Saturator 2", 1000, "Saturator 1"); Switch network_switch(&simulator, "Switch", 8, bandwidth * base_propagation_delay * 10); static const QuicByteCount initial_burst = 1000 * 10; static const QuicByteCount max_bucket_size = 1000 * 100; static const QuicBandwidth target_bandwidth = bandwidth * 0.25; TrafficPolicer policer(&simulator, "Policer", initial_burst, max_bucket_size, target_bandwidth, network_switch.port(2)); SymmetricLink link1(&saturator1, network_switch.port(1), bandwidth, base_propagation_delay); SymmetricLink link2(&saturator2, &policer, bandwidth, base_propagation_delay); bool simulator_result = simulator.RunUntilOrTimeout( [&saturator1]() { return saturator1.bytes_transmitted() == initial_burst; }, timeout); ASSERT_TRUE(simulator_result); saturator1.Pause(); simulator_result = simulator.RunUntilOrTimeout( [&saturator2]() { return saturator2.counter()->bytes() == initial_burst; }, timeout); ASSERT_TRUE(simulator_result); saturator1.Resume(); const QuicTime::Delta simulation_time = QuicTime::Delta::FromSeconds(10); simulator.RunFor(simulation_time); for (auto* saturator : {&saturator1, &saturator2}) { EXPECT_APPROX_EQ(bandwidth * simulation_time, saturator->bytes_transmitted(), 0.01f); } EXPECT_APPROX_EQ(saturator1.bytes_transmitted() / 4, saturator2.counter()->bytes(), 0.1f); EXPECT_APPROX_EQ(saturator2.bytes_transmitted(), saturator1.counter()->bytes(), 0.1f); } TEST_F(SimulatorTest, TrafficPolicerBurst) { const QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(1024 * 1024); const QuicTime::Delta base_propagation_delay = QuicTime::Delta::FromMilliseconds(5); const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(10); Simulator simulator; LinkSaturator saturator1(&simulator, "Saturator 1", 1000, "Saturator 2"); LinkSaturator saturator2(&simulator, "Saturator 2", 1000, "Saturator 1"); Switch network_switch(&simulator, "Switch", 8, bandwidth * base_propagation_delay * 10); const QuicByteCount initial_burst = 1000 * 10; const QuicByteCount max_bucket_size = 1000 * 100; const QuicBandwidth target_bandwidth = bandwidth * 0.25; TrafficPolicer policer(&simulator, "Policer", initial_burst, max_bucket_size, target_bandwidth, network_switch.port(2)); SymmetricLink link1(&saturator1, network_switch.port(1), bandwidth, base_propagation_delay); SymmetricLink link2(&saturator2, &policer, bandwidth, base_propagation_delay); bool simulator_result = simulator.RunUntilOrTimeout( [&saturator1, &saturator2]() { return saturator1.packets_transmitted() > 0 && saturator2.packets_transmitted() > 0; }, timeout); ASSERT_TRUE(simulator_result); saturator1.Pause(); saturator2.Pause(); simulator.RunFor(1.5f * target_bandwidth.TransferTime(max_bucket_size)); saturator1.Resume(); simulator.RunFor(bandwidth.TransferTime(max_bucket_size)); saturator1.Pause(); simulator.RunFor(2 * base_propagation_delay); EXPECT_APPROX_EQ(saturator1.bytes_transmitted(), saturator2.counter()->bytes(), 0.1f); saturator1.Resume(); simulator.RunFor(QuicTime::Delta::FromSeconds(10)); EXPECT_APPROX_EQ(saturator1.bytes_transmitted() / 4, saturator2.counter()->bytes(), 0.1f); } TEST_F(SimulatorTest, PacketAggregation) { const QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond(1000); const QuicTime::Delta base_propagation_delay = QuicTime::Delta::FromMicroseconds(1); const QuicByteCount aggregation_threshold = 1000; const QuicTime::Delta aggregation_timeout = QuicTime::Delta::FromSeconds(30); Simulator simulator; LinkSaturator saturator1(&simulator, "Saturator 1", 10, "Saturator 2"); LinkSaturator saturator2(&simulator, "Saturator 2", 10, "Saturator 1"); Switch network_switch(&simulator, "Switch", 8, 10 * aggregation_threshold); SymmetricLink link1(&saturator1, network_switch.port(1), bandwidth, base_propagation_delay); SymmetricLink link2(&saturator2, network_switch.port(2), bandwidth, 2 * base_propagation_delay); Queue* queue = network_switch.port_queue(2); queue->EnableAggregation(aggregation_threshold, aggregation_timeout); network_switch.port_queue(1)->EnableAggregation(5, aggregation_timeout); simulator.RunFor(0.9 * bandwidth.TransferTime(aggregation_threshold)); EXPECT_EQ(0u, saturator2.counter()->bytes()); saturator1.Pause(); saturator2.Pause(); simulator.RunFor(QuicTime::Delta::FromSeconds(10)); EXPECT_EQ(0u, saturator2.counter()->bytes()); EXPECT_EQ(900u, queue->bytes_queued()); EXPECT_EQ(910u, saturator1.counter()->bytes()); saturator1.Resume(); simulator.RunFor(0.5 * bandwidth.TransferTime(aggregation_threshold)); saturator1.Pause(); simulator.RunFor(QuicTime::Delta::FromSeconds(10)); EXPECT_EQ(1000u, saturator2.counter()->bytes()); EXPECT_EQ(400u, queue->bytes_queued()); simulator.RunFor(aggregation_timeout); EXPECT_EQ(1400u, saturator2.counter()->bytes()); EXPECT_EQ(0u, queue->bytes_queued()); saturator1.Resume(); simulator.RunFor(5.5 * bandwidth.TransferTime(aggregation_threshold)); saturator1.Pause(); simulator.RunFor(QuicTime::Delta::FromSeconds(10)); EXPECT_EQ(6400u, saturator2.counter()->bytes()); EXPECT_EQ(500u, queue->bytes_queued()); simulator.RunFor(aggregation_timeout); EXPECT_EQ(6900u, saturator2.counter()->bytes()); EXPECT_EQ(0u, queue->bytes_queued()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/simulator/simulator.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/simulator/simulator_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
17d19366-2d7f-45aa-9c96-4b5ac5ca6c8d
cpp
tensorflow/tensorflow
hlo_control_flow_flattening
third_party/xla/xla/tools/hlo_control_flow_flattening.cc
third_party/xla/xla/tools/hlo_control_flow_flattening_test.cc
#include "xla/tools/hlo_control_flow_flattening.h" #include <algorithm> #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/comparison_util.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/call_graph.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_dce.h" #include "xla/service/tuple_util.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { HloInstruction* CreateConstant(const Shape& shape, HloComputation* computation) { if (shape.IsTuple()) { std::vector<HloInstruction*> tuple_arguments(shape.tuple_shapes_size()); for (int index = 0; index < shape.tuple_shapes_size(); ++index) { tuple_arguments[index] = CreateConstant(shape.tuple_shapes(index), computation); } return computation->AddInstruction( HloInstruction::CreateTuple(tuple_arguments)); } else { return computation->AddInstruction( HloInstruction::CreateConstant(Literal::CreateFromShape(shape))); } } void PrintSubexpression(HloInstruction* inst, int depth) { if (depth == 0) { return; } for (auto* operand : inst->operands()) { PrintSubexpression(operand, depth - 1); } VLOG(2) << inst->ToString(); } bool IsConstantScalarInt(const HloInstruction* inst) { return inst->opcode() == HloOpcode::kConstant && ShapeUtil::IsEffectiveScalar(inst->shape()) && inst->shape().IsInteger(); } bool IsNotContainedInLoop(const HloInstruction& while_hlo, const CallGraph& call_graph) { const HloComputation* computation = while_hlo.parent(); while (!computation->IsEntryComputation()) { auto& node = call_graph.GetNode(computation); CHECK_EQ(node.caller_callsites().size(), 1) << "The module is not flattened!"; auto& callsite = node.caller_callsites()[0]; if (callsite.instruction()->opcode() == HloOpcode::kWhile) { return false; } computation = callsite.instruction()->parent(); } return true; } } int GetLoopBound(const HloInstruction& while_hlo, const int default_loop_count, const int max_loop_count) { HloInstruction* condition = while_hlo.while_condition()->root_instruction(); if (condition->opcode() == HloOpcode::kCompare) { int64_t value = 0; Comparison::Direction cmp = condition->comparison_direction(); if ((cmp == Comparison::Direction::kLt || cmp == Comparison::Direction::kLe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(1))) { value = *condition->operand(1)->literal().GetFirstInteger(); } else if ((cmp == Comparison::Direction::kGt || cmp == Comparison::Direction::kGe || cmp == Comparison::Direction::kNe) && IsConstantScalarInt(condition->operand(0))) { value = *condition->operand(0)->literal().GetFirstInteger(); } if (value > 0) { return std::min(value, static_cast<int64_t>(max_loop_count)); } } return default_loop_count; } int GetLoopBoundWithOuterLoopMax(const HloInstruction& while_hlo, const CallGraph& call_graph, const int default_loop_count, const int max_outer_loop_count, const int max_loop_count) { int loop_bound = GetLoopBound(while_hlo, default_loop_count, max_loop_count); if (loop_bound > max_outer_loop_count) { if (IsNotContainedInLoop(while_hlo, call_graph)) { return max_outer_loop_count; } } return loop_bound; } absl::Status HloControlFlowFlattening::FlattenWhileLoop( HloInstruction* while_hlo, const CallGraph& call_graph) const { CHECK_EQ(while_hlo->opcode(), HloOpcode::kWhile); HloComputation* computation = while_hlo->parent(); HloInstruction* initialization = computation->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(0))); HloInstruction* old_tuple = while_hlo->mutable_operand(0); HloInstruction* new_tuple = TupleUtil::AppendSuffix(old_tuple, {initialization}); int new_tuple_size = new_tuple->shape().tuple_shapes().size(); TF_RETURN_IF_ERROR(while_hlo->ReplaceOperandWithDifferentShape(0, new_tuple)); auto change_op_shape = [&](HloInstruction* instruction) { Shape* shape = instruction->mutable_shape(); CHECK(shape->IsTuple()); CHECK_EQ(shape->tuple_shapes().size(), new_tuple_size - 1); Shape* subshape = shape->add_tuple_shapes(); return ShapeUtil::PopulateShape(S32, {}, subshape); }; auto replace_non_gte_users = [](HloInstruction* new_tuple) -> absl::StatusOr<HloInstruction*> { CHECK(new_tuple->shape().IsTuple()); HloInstruction* prefix = nullptr; std::vector<HloInstruction*> users(new_tuple->users()); for (HloInstruction* user : users) { if (user->opcode() == HloOpcode::kGetTupleElement) { continue; } if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix( new_tuple, new_tuple->shape().tuple_shapes_size() - 1); } TF_RETURN_IF_ERROR(new_tuple->ReplaceUseWithDifferentShape(user, prefix)); } return prefix; }; { HloComputation* condition = while_hlo->while_condition(); TF_RETURN_IF_ERROR(change_op_shape(condition->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(condition->parameter_instruction(0)).status()); if (VLOG_IS_ON(2)) { VLOG(2) << "Loop condition in " << while_hlo->parent()->name(); PrintSubexpression(condition->root_instruction(), 3); } const int loop_bound = GetLoopBoundWithOuterLoopMax( *while_hlo, call_graph, while_execution_count_, max_outer_loop_count_, max_loop_count_); VLOG(1) << "loop_bound = " << loop_bound; HloInstruction* limit = condition->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(loop_bound))); Shape shape = initialization->shape(); HloInstruction* induction_variable = condition->AddInstruction(HloInstruction::CreateGetTupleElement( shape, condition->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* compare = condition->AddInstruction(HloInstruction::CreateCompare( ShapeUtil::MakeShape(PRED, {}), induction_variable, limit, ComparisonDirection::kLt)); TF_RETURN_IF_ERROR( condition->ReplaceInstruction(condition->root_instruction(), compare)); } { HloComputation* body = while_hlo->while_body(); TF_RETURN_IF_ERROR(change_op_shape(body->parameter_instruction(0))); TF_RETURN_IF_ERROR( replace_non_gte_users(body->parameter_instruction(0)).status()); HloInstruction* old_root = body->root_instruction(); Shape shape = initialization->shape(); HloInstruction* induction_variable = body->AddInstruction(HloInstruction::CreateGetTupleElement( shape, body->parameter_instruction(0), new_tuple_size - 1)); HloInstruction* increment = body->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int>(1))); induction_variable = body->AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, induction_variable, increment)); HloInstruction* new_root = TupleUtil::AppendSuffix(old_root, {induction_variable}); body->set_root_instruction(new_root, true); } std::vector<HloInstruction*> while_users(while_hlo->users().begin(), while_hlo->users().end()); TF_RETURN_IF_ERROR(change_op_shape(while_hlo)); TF_ASSIGN_OR_RETURN(HloInstruction * prefix, replace_non_gte_users(while_hlo)); if (while_hlo->parent()->root_instruction() == while_hlo) { if (prefix == nullptr) { prefix = TupleUtil::ExtractPrefix(while_hlo, new_tuple_size - 1); } while_hlo->parent()->set_root_instruction(prefix, true); } return absl::OkStatus(); } absl::Status HloControlFlowFlattening::RemoveInfeed( HloInstruction* infeed_hlo) const { CHECK_EQ(infeed_hlo->opcode(), HloOpcode::kInfeed); HloComputation* computation = infeed_hlo->parent(); CHECK_EQ(infeed_hlo->shape().tuple_shapes_size(), 2); const Shape& infeed_shape = ShapeUtil::GetSubshape(infeed_hlo->shape(), {0}); HloInstruction* custom_call = computation->AddInstruction( HloInstruction::CreateCustomCall(infeed_shape, {}, kNopCustomCallTarget)); auto new_tuple = HloInstruction::CreateTuple( {custom_call, infeed_hlo->mutable_operand(0)}); TF_RETURN_IF_ERROR( computation->ReplaceWithNewInstruction(infeed_hlo, std::move(new_tuple))); custom_call->SetAndSanitizeName(infeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveRecvAndRecvDone( HloInstruction* recv_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(recv_done->opcode(), HloOpcode::kRecvDone); CHECK_EQ(recv_done->operand_count(), 1); HloInstruction* recv = recv_done->mutable_operand(0); CHECK_EQ(recv->opcode(), HloOpcode::kRecv); HloComputation* computation = recv_done->parent(); CHECK_EQ(recv_done->shape().tuple_shapes_size(), 2); HloModule* module = computation->parent(); HloInstruction* custom_call_recv = computation->AddInstruction(HloInstruction::CreateCustomCall( recv->shape(), recv->operands(), kNopCustomCallTarget)); std::string original_recv_name(recv->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv, custom_call_recv); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(recv, custom_call_recv)); custom_call_recv->SetAndSanitizeName(original_recv_name); std::string original_recv_done_name(recv_done->name()); HloInstruction* custom_call_recv_done = computation->AddInstruction( HloInstruction::CreateCustomCall( recv_done->shape(), recv_done->operands(), kNopCustomCallTarget), recv_done->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, recv_done, custom_call_recv_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(recv_done, custom_call_recv_done)); custom_call_recv_done->SetAndSanitizeName(original_recv_done_name); return std::make_pair(custom_call_recv, custom_call_recv_done); } absl::Status HloControlFlowFlattening::RemoveOutfeed( HloInstruction* outfeed_hlo) const { CHECK_EQ(outfeed_hlo->opcode(), HloOpcode::kOutfeed); HloComputation* computation = outfeed_hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( outfeed_hlo->shape(), outfeed_hlo->operands(), kNopReturnTokenCustomCallTarget)); Cast<HloCustomCallInstruction>(custom_call) ->set_custom_call_has_side_effect(true); custom_call->set_sharding(HloSharding::Manual()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(outfeed_hlo, custom_call)); custom_call->SetAndSanitizeName(outfeed_hlo->name()); return absl::OkStatus(); } absl::StatusOr<std::pair<HloInstruction*, HloInstruction*>> HloControlFlowFlattening::RemoveSendAndSendDone( HloInstruction* send_done, absl::flat_hash_set<HloInstruction*>* additional_removed) const { CHECK_EQ(send_done->opcode(), HloOpcode::kSendDone); CHECK_EQ(send_done->operand_count(), 1); HloInstruction* send = send_done->mutable_operand(0); CHECK_EQ(send->opcode(), HloOpcode::kSend); HloComputation* computation = send_done->parent(); HloModule* module = computation->parent(); HloInstruction* custom_call_send = computation->AddInstruction(HloInstruction::CreateCustomCall( send->shape(), send->operands(), kNopCustomCallTarget)); std::string original_send_name(send->name()); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send, custom_call_send); } TF_RETURN_IF_ERROR(computation->ReplaceInstruction(send, custom_call_send)); custom_call_send->SetAndSanitizeName(original_send_name); HloInstruction* custom_call_send_done = computation->AddInstruction(HloInstruction::CreateCustomCall( send_done->shape(), send_done->operands(), kNopReturnTokenCustomCallTarget)); std::string original_send_done_name(send_done->name()); Cast<HloCustomCallInstruction>(custom_call_send_done) ->set_custom_call_has_side_effect(true); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, send_done, custom_call_send_done); } TF_RETURN_IF_ERROR( computation->ReplaceInstruction(send_done, custom_call_send_done)); custom_call_send_done->SetAndSanitizeName(original_send_done_name); return std::make_pair(custom_call_send, custom_call_send_done); } absl::StatusOr<HloInstruction*> HloControlFlowFlattening::RemoveCollective( HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* custom_call = computation->AddInstruction(HloInstruction::CreateCustomCall( hlo->shape(), hlo->operands(), kNopCustomCallTarget)); custom_call->CopyBackendConfigFrom(hlo); HloModule* module = computation->parent(); if (module->has_schedule() && module->schedule().is_computation_scheduled(computation)) { module->schedule().replace_instruction(computation, hlo, custom_call); } std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, custom_call)); custom_call->SetAndSanitizeName(original_op_name); return custom_call; } absl::Status HloControlFlowFlattening::RemoveId(HloInstruction* hlo) const { HloComputation* computation = hlo->parent(); HloInstruction* zero = CreateConstant(hlo->shape(), computation); std::string original_op_name(hlo->name()); TF_RETURN_IF_ERROR(computation->ReplaceInstruction(hlo, zero)); zero->SetAndSanitizeName(original_op_name); return absl::OkStatus(); } absl::StatusOr<bool> HloControlFlowFlattening::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { auto call_graph = CallGraph::Build(module); bool changed = false; absl::flat_hash_set<HloInstruction*> removed; for (HloComputation* computation : module->computations(execution_threads)) { if (computation->IsAsyncComputation()) { continue; } for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (removed.contains(instruction)) { continue; } if (flatten_while_loop_ && instruction->opcode() == HloOpcode::kWhile) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(FlattenWhileLoop(instruction, *call_graph)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kInfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveInfeed(instruction)); changed = true; } else if (remove_infeed_outfeed_ && instruction->opcode() == HloOpcode::kOutfeed) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveOutfeed(instruction)); changed = true; } else if (instruction->opcode() == HloOpcode::kSendDone) { auto send_done_instruction = DynCast<HloSendDoneInstruction>(instruction); CHECK(send_done_instruction); if (remove_comm_ || (remove_host_transfer_ && send_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveSendAndSendDone(instruction, &removed).status()); changed = true; } } else if (instruction->opcode() == HloOpcode::kRecvDone) { auto recv_done_instruction = DynCast<HloRecvDoneInstruction>(instruction); CHECK(recv_done_instruction); if (remove_comm_ || (remove_host_transfer_ && recv_done_instruction->is_host_transfer())) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR( RemoveRecvAndRecvDone(instruction, &removed).status()); changed = true; } } else if (remove_comm_ && IsCollective(instruction) && !instruction->parent()->IsFusionComputation() && (instruction->opcode() != HloOpcode::kAsyncStart && instruction->opcode() != HloOpcode::kAsyncUpdate)) { if (instruction->opcode() == HloOpcode::kAsyncDone) { while (instruction->opcode() == HloOpcode::kAsyncDone || instruction->opcode() == HloOpcode::kAsyncUpdate || instruction->opcode() == HloOpcode::kAsyncStart) { HloInstruction* operand = instruction->mutable_operand(0); VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); instruction = operand; } } else { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveCollective(instruction).status()); } changed = true; } else if ((remove_comm_ || remove_id_) && (instruction->opcode() == HloOpcode::kPartitionId || instruction->opcode() == HloOpcode::kReplicaId || (instruction->opcode() == HloOpcode::kCustomCall && instruction->custom_call_target() == "SliceId"))) { VLOG(1) << "Remove " << instruction->name(); TF_RETURN_IF_ERROR(RemoveId(instruction)); changed = true; } } } HloDCE hlo_dce; TF_ASSIGN_OR_RETURN(bool dce_changed, hlo_dce.Run(module, execution_threads)); changed |= dce_changed; if (changed && module->has_schedule()) { TF_RETURN_IF_ERROR(module->schedule().Update()); } XLA_VLOG_LINES(3, module->ToString()); return changed; } }
#include "xla/tools/hlo_control_flow_flattening.h" #include <memory> #include <utility> #include "absl/strings/str_replace.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/despecializer.h" #include "xla/service/hlo_verifier.h" #include "xla/service/spmd/spmd_partitioner.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" namespace xla { namespace { namespace op = xla::testing::opcode_matchers; class HloControlFlowFlatteningTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> PartitionComputation( std::unique_ptr<VerifiedHloModule> hlo_module, int64_t num_devices = 2) { spmd::SpmdPartitionerOptions options; auto collective_ops_creator = spmd::GetDefaultCollectiveOpsCreator(num_devices, 1); collective_ops_creator.create_cross_partition_all_gather = nullptr; HloModuleConfig config = GetModuleConfigForTest(); config.set_use_spmd_partitioning(true); config.set_num_partitions(num_devices); HloPassPipeline pass("spmd-partitioning"); pass.AddPass<HloVerifier>(false, false); pass.AddPass<spmd::SpmdPartitioner>(num_devices, 1, options, collective_ops_creator); pass.AddPass<HloVerifier>(false, false); TF_RETURN_IF_ERROR(pass.Run(hlo_module.get()).status()); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(hlo_module)); } }; constexpr int kDefaultMaxLoopCount = 1000; TEST_F(HloControlFlowFlatteningTest, WhileRoot) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileConditionCallComputation) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition.called { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] custom-call(), custom_call_target="AllocateBuffer", custom_call_has_side_effect=true less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT ROOT tuple.2 = (pred[]) tuple(less-than) } While.condition { loop_var.3 = (s32[], s32[3]{0}) parameter(0) call = (pred[]) call(loop_var.3), to_apply=While.condition.called ROOT get-tuple-element.4 = pred[] get-tuple-element(call), index=0 } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); XLA_VLOG_LINES(3, "Loaded HLO module: " + module->ToString()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); auto body = while_op->while_body(); EXPECT_THAT(body->root_instruction(), op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Add(op::GetTupleElement(op::Parameter(0), 2), op::Constant()))); } TEST_F(HloControlFlowFlatteningTest, WhileRootScheduled) { absl::string_view hlo_string = R"( HloModule While, is_scheduled=true While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto root = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(root, op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1))); EXPECT_THAT(while_op, op::While(op::Tuple(op::GetTupleElement(), op::GetTupleElement(), op::Constant()))); auto condition = while_op->while_condition(); EXPECT_THAT( condition->root_instruction(), op::Compare(op::GetTupleElement(op::Parameter(0), 2), op::Constant())); } TEST_F(HloControlFlowFlatteningTest, WhileUser) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } FusedComputation { param = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(param), index=0 get-tuple-element.5 = s32[3]{0} get-tuple-element(param), index=1 broadcast = s32[3]{0} broadcast(get-tuple-element.4), dimensions={} ROOT add = s32[3]{0} add(broadcast, get-tuple-element.5) } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body ROOT fusion = s32[3]{0} fusion(while), kind=kLoop, calls=FusedComputation } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto fusion = module->entry_computation()->root_instruction(); auto while_op = module->entry_computation()->GetInstructionWithName("while"); EXPECT_THAT(fusion, op::Fusion(op::Tuple(op::GetTupleElement(while_op, 0), op::GetTupleElement(while_op, 1)))); } TEST_F(HloControlFlowFlatteningTest, Infeed) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed.23 = ((bf16[3]{0}, s32[12,5]{0,1}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->GetInstructionWithName("infeed.23"); EXPECT_THAT(custom_call, op::CustomCall()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(custom_call, op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, InfeedPreserveLayout) { absl::string_view hlo_string = R"( HloModule Infeed ENTRY Infeed { after-all = token[] after-all() ROOT infeed = ((bf16[3]{0}, s32[12,5]{0,1:T(8,128)}), token[]) infeed(after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); Shape root_shape = module->entry_computation()->root_instruction()->shape(); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto tuple = module->entry_computation()->root_instruction(); EXPECT_THAT(tuple, op::Tuple(op::CustomCall(), op::AfterAll())); EXPECT_EQ(tuple->shape(), root_shape); } TEST_F(HloControlFlowFlatteningTest, OutfeedCustomCallIsPartitionable) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true}); EXPECT_TRUE(flattening.Run(module.get()).value()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_TRUE(custom_call->has_sharding()); TF_ASSERT_OK_AND_ASSIGN(auto hlo_module, PartitionComputation(std::move(module))); } TEST_F(HloControlFlowFlatteningTest, Outfeed) { absl::string_view hlo_string = R"( HloModule Outfeed ENTRY Outfeed { param = (bf16[3]{0}, s32[12,5]{0,1}) parameter(0) after-all = token[] after-all() ROOT outfeed.23 = token[] outfeed(param, after-all) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); auto custom_call = module->entry_computation()->root_instruction(); EXPECT_EQ(custom_call->name(), "outfeed.23"); EXPECT_THAT(custom_call, op::CustomCall(op::Parameter(0), op::AfterAll())); } TEST_F(HloControlFlowFlatteningTest, AllReduce) { absl::string_view hlo_string = R"( HloModule AllReduce sum { p0 = f32[] parameter(0) p1 = f32[] parameter(1) ROOT add = f32[] add(p0, p1) } ENTRY AllReduce { param0 = f32[3]{0} parameter(0) param1 = f32[12,5]{0,1} parameter(1) ROOT all-reduce = (bf16[3]{0}, bf16[12,5]{0,1}) all-reduce(param0, param1), to_apply=sum, replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Parameter(1))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "all-reduce"); } TEST_F(HloControlFlowFlatteningTest, AllReduceStartAndDone) { absl::string_view hlo_string = R"( HloModule CRS add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY CRS { input = f32[8]{0} parameter(0) crs = f32[8]{0} all-reduce-start(input), replica_groups={}, to_apply=add ROOT done = f32[8]{0} all-reduce-done(crs) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "crs"); } TEST_F(HloControlFlowFlatteningTest, AllGather) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY AllGather { input = f32[128,32]{0,1} parameter(0) ROOT ag = f32[128,128]{0,1} all-gather(input), replica_groups={}, dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag"); } TEST_F(HloControlFlowFlatteningTest, AllToAll) { absl::string_view hlo_string = R"( HloModule AllToAll ENTRY AllToAll { input = f32[128,32]{0,1} parameter(0) ROOT a2a = (f32[128,32]{0,1}) all-to-all(input), replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "a2a"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermute) { absl::string_view hlo_string = R"( HloModule CollectivePermute ENTRY CollectivePermute { input = f32[128,32]{0,1} parameter(0) ROOT collective-permute = f32[128,32]{0,1} collective-permute(input), source_target_pairs={{0,1},{1,2},{2,3}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, ReplicaIdSucceedsWithChange) { absl::string_view hlo_string = R"( HloModule ReplicaId ENTRY ReplicaId { ROOT replica-id.18600 = u32[]{:T(128)} replica-id() } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Constant()); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "replica-id.18600"); } TEST_F(HloControlFlowFlatteningTest, RemoveReplicaIdButKeepAllReduce) { absl::string_view kHloText = R"( HloModule RemoveReplicaIdButKeepCollective %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } ENTRY ReplicaId { replica-id.1 = u32[]{:T(128)} replica-id() ROOT all-reduce.1 = u32[]{:T(128)} all-reduce(replica-id.1), to_apply=sum, replica_groups={} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<VerifiedHloModule> module, ParseAndReturnVerifiedModule(kHloText)); HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 1, 1, 1, false, false, false, false, true}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::AllReduce()); EXPECT_THAT(module->entry_computation()->root_instruction()->operand(0), op::Constant()); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteInPlaceUpdate) { absl::string_view hlo_string = R"( HloModule CollectivePermuteInPlaceUpdate ENTRY CollectivePermuteInPlaceUpdate { input = f32[128,32]{0,1} parameter(0) constant = f32[] constant(1) output = f32[128,128]{0,1} broadcast(constant), dimensions={} constant.1 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.1, constant.1) constant.2 = s32[] constant(64) tuple.2 = (s32[], s32[]) tuple(constant.1, constant.2) ROOT collective-permute = f32[128,128]{0,1} collective-permute(input, output, tuple.1, tuple.2), source_target_pairs={{0,1},{1,2},{2,3}}, slice_sizes={{128,32}} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Broadcast(op::Constant()), op::Tuple(op::Constant(), op::Constant()), op::Tuple(op::Constant(), op::Constant()))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute"); } TEST_F(HloControlFlowFlatteningTest, CollectivePermuteStartAndDone) { absl::string_view hlo_string = R"( HloModule CollectivePermuteStartAndDone ENTRY CollectivePermuteStartAndDone { input = f32[128,32]{0,1} parameter(0) collective-permute-start.1 = (f32[128,32]{0,1}, f32[128,32]{0,1}, u32[], u32[]) collective-permute-start(input), source_target_pairs={{0,1},{1,2},{2,3}} ROOT collective-permute-done.1 = f32[128,32]{0,1} collective-permute-done(collective-permute-start.1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "collective-permute-done.1"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "collective-permute-start.1"); } TEST_F(HloControlFlowFlatteningTest, Recv) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, RecvHostTransfer) { absl::string_view hlo_string = R"( HloModule Recv ENTRY %Recv () -> (f32[], token[]) { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15, is_host_transfer=true ROOT %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15, is_host_transfer=true %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "recv-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "recv"); } TEST_F(HloControlFlowFlatteningTest, Send) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16 } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, SendHostTransfer) { absl::string_view hlo_string = R"( HloModule Send ENTRY %Send () -> token[] { %token0 = token[] after-all() %recv = (f32[], u32[], token[]) recv(token[] %token0), channel_id=15 %recv-done = (f32[], token[]) recv-done((f32[], u32[], token[]) %recv), channel_id=15 %constant = f32[] constant(2.1) %send = (f32[], u32[], token[]) send(f32[] %constant, token[] %token0), channel_id=16, is_host_transfer=true, control-predecessors={%recv} ROOT %send-done = token[] send-done((f32[], u32[], token[]) %send), channel_id=16, is_host_transfer=true } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); ControlDepRemover control_remover; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ 3, 3, 3, true, true, false, true}); TF_ASSERT_OK(control_remover.Run(module.get()).status()); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall())); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "send-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "send"); } TEST_F(HloControlFlowFlatteningTest, AllGatherStartAndDone) { absl::string_view hlo_string = R"( HloModule AllGatherStartAndDone ENTRY AllGatherStartAndDone { %input = f32[8,256,256] parameter(0) %ag-start = (f32[8,256,256], f32[16,256,256]) all-gather-start( f32[8,256,256] %input), replica_groups={{0,1}}, dimensions={0}, metadata={op_type="AllGather" op_name="ag0"} ROOT %ag-done = f32[16,256,256] all-gather-done( (f32[8,256,256], f32[16,256,256]) %ag-start), metadata={op_type="AllGather" op_name="ag0"} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); HloControlFlowFlattening flattening( HloControlFlowFlattening::Options{3}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "ag-done"); EXPECT_EQ(module->entry_computation()->root_instruction()->operand(0)->name(), "ag-start"); } TEST_F(HloControlFlowFlatteningTest, CollectiveFusion) { absl::string_view hlo_template = R"( HloModule collective-fusion, is_scheduled=true %sum (a: f32[], b: f32[]) -> f32[] { %a = f32[] parameter(0) %b = f32[] parameter(1) ROOT %add = f32[] add(f32[] a, f32[] b) } %all-gather { %constant.3 = f32[] constant(0) %broadcast = f32[full_size,8,128]{2,1,0} broadcast(%constant.3), dimensions={} %input.0 = f32[4,8,128]{2,1,0} parameter(0) %input.1 = f32[4,8,128]{2,1,0} parameter(1) %replica-id.1 = u32[] replica-id() %constant.4 = u32[] constant(4) %multiply.1 = u32[] multiply(%replica-id.1, %constant.4) %constant.5 = u32[] constant(0) %constant.6 = u32[] constant(0) %dynamic-update-slice = f32[full_size,8,128]{2,1,0} dynamic-update-slice(%broadcast, %input.0, %multiply.1, %constant.5, %constant.6) %dynamic-update-slice.1 = f32[full_size,8,128]{2,1,0} dynamic-update-slice(%broadcast, %input.1, %multiply.1, %constant.5, %constant.6) %all-reduce = (f32[full_size,8,128]{2,1,0}, f32[full_size,8,128]{2,1,0}) all-reduce(%dynamic-update-slice, %dynamic-update-slice.1), replica_groups={}, backend_config="{barrier_config:{barrier_type:3,id:0}}", to_apply=%sum %gte0 = f32[full_size,8,128]{2,1,0} get-tuple-element(%all-reduce), index=0 %slice = f32[unpadded_size,8,128]{2,1,0} slice(%gte0), slice={[0:unpadded_size], [0:8], [0:128]} %bitcast = f32[unpadded_size,1,8,128]{3,2,1,0} bitcast(%slice) %gte1 = f32[full_size,8,128]{2,1,0} get-tuple-element(%all-reduce), index=1 ROOT %tuple = (f32[unpadded_size,1,8,128]{3,2,1,0}, f32[full_size,8,128]{2,1,0}) tuple(%bitcast, %gte1) } ENTRY main { %add.1 = f32[4,8,128]{2,1,0} parameter(0) %add.2 = f32[4,8,128]{2,1,0} parameter(1) ROOT %fusion = (f32[unpadded_size,1,8,128]{3,2,1,0}, f32[full_size,8,128]{2,1,0}) fusion(%add.1, %add.2), kind=kCustom, calls=%all-gather } )"; auto hlo_string = absl::StrReplaceAll( hlo_template, {{"full_size", absl::StrCat(12288)}, {"unpadded_size", absl::StrCat(12285)}}); TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_TRUE(IsCollective(module->entry_computation()->root_instruction())); HloControlFlowFlattening flattening({}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::Parameter(0), op::Parameter(1))); EXPECT_EQ(module->entry_computation()->root_instruction()->name(), "fusion"); } TEST_F(HloControlFlowFlatteningTest, AsyncAllToAll) { absl::string_view hlo = R"( ENTRY main { param = f32[4,8,128]{2,1,0} parameter(0) all-to-all-start = ((f32[4,8,128]{2,1,0}), f32[4,8,128]{2,1,0}, u32[], u32[]) all-to-all-start(param), channel_id=1, replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={1} ROOT all-to-all-done = f32[4,8,128]{2,1,0} all-to-all-done(all-to-all-start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo)); EXPECT_TRUE(IsCollective(module->entry_computation()->root_instruction())); HloControlFlowFlattening flattening({}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::CustomCall(op::CustomCall(op::Parameter(0)))); } void CheckWhileBound(HloInstruction* while_op, int expected_bound) { auto* cond = while_op->while_condition(); ASSERT_NE(cond, nullptr); auto* hlo_bound = cond->root_instruction()->operand(1); EXPECT_TRUE(hlo_bound->IsConstant()); if (hlo_bound->IsConstant()) { EXPECT_TRUE(hlo_bound->literal().IsAll(expected_bound)); } } TEST_F(HloControlFlowFlatteningTest, MaxOuterLoopCount) { absl::string_view hlo_string = R"( HloModule NestedWhileComp InnerBody { constant.8 = pred[] constant(false) parameter.5 = (s32[], s32[]) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(parameter.5), index=0 constant.9 = s32[] constant(1) add.10 = s32[] add(get-tuple-element.6, constant.9) get-tuple-element.7 = s32[] get-tuple-element(parameter.5), index=1 constant.11 = s32[] constant(1) add.12 = s32[] add(get-tuple-element.7, constant.11) ROOT tuple.13 = (s32[], s32[]) tuple(add.10, add.12) } InnerCond { parameter.15 = (s32[], s32[]) parameter(0) get-tuple-element.17 = s32[] get-tuple-element(parameter.15), index=1 constant.18 = pred[] constant(false) get-tuple-element.16 = s32[] get-tuple-element(parameter.15), index=0 inner_bound = s32[] constant(100) ROOT compare.20 = pred[] compare(get-tuple-element.16, inner_bound), direction=LT } OuterBody { constant.24 = pred[] constant(false) constant.25 = s32[] constant(0) parameter.22 = (s32[]) parameter(0) get-tuple-element.23 = s32[] get-tuple-element(parameter.22), index=0 tuple.26 = (s32[], s32[]) tuple(constant.25, get-tuple-element.23) inner_while = (s32[], s32[]) while(tuple.26), condition=InnerCond, body=InnerBody get-tuple-element.28 = s32[] get-tuple-element(inner_while), index=0 get-tuple-element.29 = s32[] get-tuple-element(inner_while), index=1 tuple.30 = (s32[], s32[]) tuple(get-tuple-element.28, get-tuple-element.29) get-tuple-element.31 = s32[] get-tuple-element(tuple.30), index=0 get-tuple-element.32 = s32[] get-tuple-element(tuple.30), index=1 ROOT tuple.33 = (s32[]) tuple(get-tuple-element.32) } OuterCond { constant.37 = pred[] constant(false) parameter.35 = (s32[]) parameter(0) get-tuple-element.36 = s32[] get-tuple-element(parameter.35), index=0 outer_bound = s32[] constant(1000) ROOT compare.39 = pred[] compare(get-tuple-element.36, outer_bound), direction=LT } ENTRY NestedWhileComp { constant.1 = pred[] constant(false) constant.2 = s32[] constant(0) tuple.3 = (s32[]) tuple(constant.2) outer_while = (s32[]) while(tuple.3), condition=OuterCond, body=OuterBody get-tuple-element.41 = s32[] get-tuple-element(outer_while), index=0 tuple.42 = (s32[]) tuple(get-tuple-element.41) get-tuple-element.43 = s32[] get-tuple-element(tuple.42), index=0 ROOT tuple.44 = (s32[]) tuple(get-tuple-element.43) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); constexpr int kWhileExecutionCount = 5; constexpr int kExistingInnerLoopCount = 100; constexpr int kMaxLoopCount = 10; HloControlFlowFlattening flattening(HloControlFlowFlattening::Options{ kWhileExecutionCount, kMaxLoopCount}); EXPECT_TRUE(flattening.Run(module.get()).value()); TF_ASSERT_OK(HloVerifier(true, true) .Run(module.get()) .status()); LOG(INFO) << module->ToString(); auto* outer_while = module->entry_computation()->GetInstructionWithName("outer_while"); ASSERT_NE(outer_while, nullptr); CheckWhileBound(outer_while, kMaxLoopCount); auto* while_body = outer_while->while_body(); ASSERT_NE(while_body, nullptr); auto* inner_while = while_body->GetInstructionWithName("inner_while"); ASSERT_NE(inner_while, nullptr); CheckWhileBound(inner_while, kExistingInnerLoopCount); } TEST_F(HloControlFlowFlatteningTest, MatchLtUseInferedLoopCount) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_EQ(GetLoopBound(*module->entry_computation()->root_instruction(), 123, kDefaultMaxLoopCount), 100); } TEST_F(HloControlFlowFlatteningTest, MatchGtUseInferedLoopCount) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(50) ROOT greater-than = pred[] compare(constant.2, get-tuple-element.3), direction=GT } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_EQ(GetLoopBound(*module->entry_computation()->root_instruction(), 123, kDefaultMaxLoopCount), 50); } TEST_F(HloControlFlowFlatteningTest, NotMatchEqUseDefaultLoopCount) { absl::string_view hlo_string = R"( HloModule While While.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } While.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(100) ROOT equal = pred[] compare(get-tuple-element.3, constant.2), direction=EQ } ENTRY While { constant.3 = s32[] constant(42) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition=While.condition, body=While.body } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); EXPECT_EQ(GetLoopBound(*module->entry_computation()->root_instruction(), 123, kDefaultMaxLoopCount), 123); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_control_flow_flattening.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tools/hlo_control_flow_flattening_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a31fc2ca-d988-44e3-8fc8-687ff14810e6
cpp
tensorflow/tensorflow
transpose_conv
tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.cc
tensorflow/lite/delegates/xnnpack/transpose_conv_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.h" #include <any> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { namespace { class ConvolutionTransposedBuffers : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes.size() != 1) { return absl::UnimplementedError( "Convolution Transposed does not support more than 1 runtime tensor"); } const auto& attr = std::any_cast<const ConvolutionTransposedAttributes&>(ctx.op_attr); auto weights = attr.weights.shape; std::vector<Variable> parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"kernel_size", int2(weights.w, weights.h)}, {"stride", int2(attr.stride.w, attr.stride.h)}, {"padding", int2(weights.w - 1 - attr.padding.prepended.w, weights.h - 1 - attr.padding.prepended.h)}, }; std::vector<std::pair<std::string, Object>> objects = { {"weights", MakeReadonlyObject(Get3DSizeForPHWO4I4(attr.weights.shape), ConvertToPHWO4I4Transposed(attr.weights))}}; std::string source = R"( #define IN_BOUNDS(p, p0, p1) (all(greaterThanEqual(p, p0)) && all(lessThan(p, p1))) ivec2 p0 = ($padding$ + $stride$ - gid.xy % $stride$) % $stride$; for (int y = p0.y; y < $kernel_size.y$; y += $stride.y$) { for (int x = p0.x; x < $kernel_size.x$; x += $stride.x$) { int i = int(float(y * $kernel_size.x$) + float(x)); ivec2 idx = ivec2(vec2(gid.xy + ivec2(x, y)) - vec2($padding$)); if (IN_BOUNDS(idx, ivec2(0), ivec2($input_data_0_w$, $input_data_0_h$) * $stride$)) { ivec2 coord = idx / $stride$; for (int l = 0; l < $src_depth$; ++l) { vec4 src_color = $input_data_0[coord.x, coord.y, l]$; value_0.x += dot(src_color, $weights[l * 4 + 0, i, gid.z]$); value_0.y += dot(src_color, $weights[l * 4 + 1, i, gid.z]$); value_0.z += dot(src_color, $weights[l * 4 + 2, i, gid.z]$); value_0.w += dot(src_color, $weights[l * 4 + 3, i, gid.z]$); } } } } )"; if (!attr.bias.data.empty()) { source += "value_0 += $bias[gid.z]$;\n"; objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)}); } *generated_code = { std::move(parameters), std::move(objects), {}, uint3(), uint3(), source, IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewConvolutionTransposedNodeShader() { return std::make_unique<ConvolutionTransposedBuffers>(); } } } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/transpose_conv_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { namespace xnnpack { TEST(TransposeConvTest, 2x2Stride2) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(2) .KernelWidth(2) .StrideHeight(2) .StrideWidth(2) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, 2x2Stride2NoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(2) .KernelWidth(2) .StrideHeight(2) .StrideWidth(2) .ValidPadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, 3x3Stride2) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(3) .KernelWidth(3) .StrideHeight(2) .StrideWidth(2) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, 3x3Stride2NoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(3) .KernelWidth(3) .StrideHeight(2) .StrideWidth(2) .SamePadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, 4x4Stride2) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(4) .KernelWidth(4) .StrideHeight(2) .StrideWidth(2) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, 4x4Stride2NoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(4) .KernelWidth(4) .StrideHeight(2) .StrideWidth(2) .ValidPadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, 4x4Stride4) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(4) .KernelWidth(4) .StrideHeight(4) .StrideWidth(4) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, 4x4Stride4NoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(4) .KernelWidth(4) .StrideHeight(4) .StrideWidth(4) .ValidPadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SmallKernelWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SmallKernelWithSamePaddingNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .SamePadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SmallKernelWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SmallKernelWithValidPaddingNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 7), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .ValidPadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, StrideWithSamePadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, StrideWithSamePaddingNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, StrideWithValidPadding) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ValidPadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, StrideWithValidPaddingNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .ValidPadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .FP16Weights() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, FP16WeightsNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .FP16Weights() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, TensorWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .TensorWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, TensorWiseQuantizedInt8WeightsNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .TensorWiseQuantizedInt8Weights() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, ChannelWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .ChannelWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, ChannelWiseQuantizedInt8WeightsNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .ChannelWiseQuantizedInt8Weights() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseWeightsNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseFP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .FP16Weights() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseFP16WeightsNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .FP16Weights() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseTensorWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .TensorWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseTensorWiseQuantizedInt8WeightsNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .TensorWiseQuantizedInt8Weights() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseChannelWiseQuantizedInt8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .ChannelWiseQuantizedInt8Weights() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, SparseChannelWiseQuantizedInt8WeightsNoBias) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .SparseWeights() .ChannelWiseQuantizedInt8Weights() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, MultiThreadingNoBias) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .NoBias() .Test(xnnpack_delegate.get()); } TEST(TransposeConvTest, WeightsCache) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); std::unique_ptr<TfLiteXNNPackDelegateWeightsCache, decltype(&TfLiteXNNPackDelegateWeightsCacheDelete)> weights_cache(TfLiteXNNPackDelegateWeightsCacheCreate(), TfLiteXNNPackDelegateWeightsCacheDelete); delegate_options.weights_cache = weights_cache.get(); std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto batch_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng)); auto output_rng = std::bind(std::uniform_int_distribution<int32_t>(10, 25), std::ref(rng)); auto kernel_rng = std::bind(std::uniform_int_distribution<int32_t>(3, 5), std::ref(rng)); auto stride_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng)); auto channel_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); TransposeConvTester() .BatchSize(batch_rng()) .OutputHeight(output_rng()) .OutputWidth(output_rng()) .InputChannels(channel_rng()) .OutputChannels(channel_rng()) .KernelHeight(kernel_rng()) .KernelWidth(kernel_rng()) .StrideHeight(stride_rng()) .StrideWidth(stride_rng()) .SamePadding() .WeightsCache(weights_cache.get()) .Test(xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/transpose_conv.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/transpose_conv_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
09730dec-80af-493b-9079-4dd8922a3bdf
cpp
tensorflow/tensorflow
slice_sinker
third_party/xla/xla/service/slice_sinker.cc
third_party/xla/xla/service/slice_sinker_test.cc
#include "xla/service/slice_sinker.h" #include <algorithm> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/types/span.h" #include "xla/shape_util.h" namespace xla { namespace { bool SameSliceConfiguration(const HloInstruction* slice_1, const HloInstruction* slice_2) { CHECK_EQ(slice_1->opcode(), HloOpcode::kSlice); CHECK_EQ(slice_2->opcode(), HloOpcode::kSlice); CHECK(slice_1->operand(0)->shape().dimensions() == slice_2->operand(0)->shape().dimensions()); return slice_1->slice_starts() == slice_2->slice_starts() && slice_1->slice_limits() == slice_2->slice_limits() && slice_1->slice_strides() == slice_2->slice_strides(); } bool IsElementwiseOperationOnSimilarSlices(const HloInstruction* inst) { CHECK(inst->IsElementwise()); if (absl::c_any_of(inst->operands(), [](const HloInstruction* operand) { return operand->opcode() != HloOpcode::kSlice; })) { return false; } const HloInstruction* slice0 = inst->operand(0); return absl::c_all_of(absl::MakeSpan(inst->operands()).subspan(1), [slice0](const HloInstruction* slice) { return ShapeUtil::CompatibleIgnoringElementType( slice0->operand(0)->shape(), slice->operand(0)->shape()) && SameSliceConfiguration(slice0, slice); }); } bool IsSimilarOperationOnSlices(const HloInstruction* operation_on_slices, const HloInstruction* candidate) { if (candidate->user_count() == 0) { return false; } if (!candidate->SameOp(*operation_on_slices) || operation_on_slices->shape().element_type() != candidate->shape().element_type()) { return false; } const HloInstruction* operand_slice0 = candidate->operand(0); for (int64_t i = 0; i < candidate->operand_count(); ++i) { const HloInstruction* operand_slice = candidate->operand(i); if (operand_slice->opcode() != HloOpcode::kSlice || operand_slice->operand(0) != operation_on_slices->operand(i)->operand(0) || !SameSliceConfiguration(operand_slice0, operand_slice)) { return false; } } return true; } bool ShouldTransform(const std::vector<HloInstruction*>& operations_on_slices) { int64_t sum = 0; for (HloInstruction* user : operations_on_slices) { sum += ShapeUtil::ElementsIn(user->shape()); } return sum >= xla::ShapeUtil::ElementsIn( operations_on_slices[0]->operand(0)->operand(0)->shape()); } std::optional<std::vector<HloInstruction*>> FindElementwiseOperationGroup( const HloInstruction* operation_on_slices) { std::vector<HloInstruction*> operations; const HloInstruction* slice_source0 = operation_on_slices->operand(0)->operand(0); for (const HloInstruction* operand_slice0 : slice_source0->users()) { if (operand_slice0->opcode() != HloOpcode::kSlice) { continue; } for (HloInstruction* user : operand_slice0->users()) { if (IsSimilarOperationOnSlices(operation_on_slices, user)) { operations.push_back(user); } } } return ShouldTransform(operations) ? std::make_optional(operations) : std::nullopt; } absl::Status SinkSlices( const std::vector<HloInstruction*>& slice_sources, const std::vector<HloInstruction*>& operation_on_slices) { const Shape shape = slice_sources[0]->shape(); PrimitiveType element_type = operation_on_slices[0]->shape().element_type(); Shape new_shape = ShapeUtil::ChangeElementType(shape, element_type); HloComputation* computation = operation_on_slices[0]->parent(); auto operation_on_slice_sources = computation->AddInstruction( operation_on_slices[0]->CloneWithNewOperands(new_shape, slice_sources)); VLOG(10) << "Adding operation_on_slice_sources: " << operation_on_slice_sources->ToString(); for (HloInstruction* user : operation_on_slices) { const HloInstruction* operand_slice = user->operand(0); auto user_slice = computation->AddInstruction(operand_slice->CloneWithNewOperands( user->shape(), {operation_on_slice_sources})); VLOG(10) << "Adding new slice: " << user_slice->ToString() << " to replace: " << user->ToString(); TF_RETURN_IF_ERROR(user->ReplaceAllUsesWith(user_slice)); } return absl::OkStatus(); } } absl::StatusOr<bool> SliceSinker::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* computation : module->computations(execution_threads)) { for (HloInstruction* instruction : computation->MakeInstructionPostOrder()) { if (!instruction->IsElementwise() || instruction->operand_count() == 0 || instruction->user_count() == 0) { continue; } VLOG(10) << "Processing instruction : " << instruction->ToString(); if (!IsElementwiseOperationOnSimilarSlices(instruction)) { continue; } std::optional<std::vector<HloInstruction*>> similar_operations = FindElementwiseOperationGroup(instruction); if (!similar_operations.has_value()) { continue; } std::vector<HloInstruction*> slice_sources; absl::c_transform( instruction->operands(), std::back_inserter(slice_sources), [](HloInstruction* slice) { return slice->mutable_operand(0); }); TF_RETURN_IF_ERROR(SinkSlices(slice_sources, similar_operations.value())); changed = true; } } return changed; } }
#include "xla/service/slice_sinker.h" #include <memory> #include <vector> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal_util.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" namespace xla { namespace { namespace m = match; using ::testing::ElementsAre; class SliceSinkerTest : public HloTestBase {}; TEST_F(SliceSinkerTest, TernaryOperation) { const char* kModuleStr = R"( HloModule m test { p0 = pred[8,9] parameter(0) p1 = f32[8,9] parameter(1) p2 = f32[8,9] parameter(2) s00 = pred[2,9] slice(pred[8,9] p0), slice={[0:2], [0:9]} s01 = pred[6,9] slice(pred[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} s20 = f32[2,9] slice(f32[8,9] p2), slice={[0:2], [0:9]} s21 = f32[6,9] slice(f32[8,9] p2), slice={[2:8], [0:9]} sel0 = f32[2,9] select(pred[2,9] s00, f32[2,9] s10, f32[2,9] s20) sel1 = f32[6,9] select(pred[6,9] s01, f32[6,9] s11, f32[6,9] s21) ROOT tuple = (f32[2,9], f32[6,9]) tuple(sel0, sel1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; EXPECT_THAT(inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Select(m::Parameter(0), m::Parameter(1), m::Parameter(2))), m::Slice(&slice1, m::Select(m::Parameter(0), m::Parameter(1), m::Parameter(2)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, OverlappingPartialSlicesBeneficial) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[5,9] slice(f32[8,9] p0), slice={[3:8], [0:9]} s02 = f32[8,4] slice(f32[8,9] p0), slice={[0:8], [0:4]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[5,9] slice(f32[8,9] p1), slice={[3:8], [0:9]} s12 = f32[8,4] slice(f32[8,9] p1), slice={[0:8], [0:4]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[5,9] add(f32[5,9] s01, f32[5,9] s11) add2 = f32[8,4] add(f32[8,4] s02, f32[8,4] s12) ROOT tuple = (f32[2,9], f32[5,9], f32[8,4]) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Add(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(3, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(8, 4)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, SameSliceSourcesTwoPeerGroups) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s02 = f32[8,2] slice(f32[8,9] p0), slice={[0:8], [0:2]} s03 = f32[8,7] slice(f32[8,9] p0), slice={[0:8], [2:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} s12 = f32[8,2] slice(f32[8,9] p1), slice={[0:8], [0:2]} s13 = f32[8,7] slice(f32[8,9] p1), slice={[0:8], [2:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] s11) mul0 = f32[8,2] multiply(f32[8,2] s02, f32[8,2] s12) mul1 = f32[8,7] multiply(f32[8,7] s03, f32[8,7] s13) ROOT tuple = (f32[2,9], f32[6,9], f32[8,2], f32[8,7]) tuple(add0, add1, mul0, mul1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; const HloInstruction* slice3; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Multiply(m::Parameter(0), m::Parameter(1))), m::Slice(&slice3, m::Multiply(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(8, 2)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice3->slice_starts(), ElementsAre(0, 2)); EXPECT_THAT(slice3->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice3->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, OverlappingMultipleSlices) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[5,9] slice(f32[8,9] p0), slice={[3:8], [0:9]} s02 = f32[3,9] slice(f32[8,9] p0), slice={[2:5], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[5,9] slice(f32[8,9] p1), slice={[3:8], [0:9]} s12 = f32[3,9] slice(f32[8,9] p1), slice={[2:5], [0:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[5,9] add(f32[5,9] s01, f32[5,9] s11) add2 = f32[3,9] add(f32[3,9] s02, f32[3,9] s12) ROOT tuple = (f32[2,9], f32[5,9], f32[3,9]) tuple(add0, add1, add2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Add(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(3, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(5, 9)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, DisjointedPartialSlices) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[5,9] slice(f32[8,9] p0), slice={[2:7], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[5,9] slice(f32[8,9] p1), slice={[2:7], [0:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[5,9] add(f32[5,9] s01, f32[5,9] s11) ROOT tuple = (f32[2,9], f32[5,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, OverlappingPartialSlicesNotBeneficial) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,7] slice(f32[8,9] p0), slice={[0:2], [0:7]} s01 = f32[6,7] slice(f32[8,9] p0), slice={[2:8], [0:7]} s10 = f32[2,7] slice(f32[8,9] p1), slice={[0:2], [0:7]} s11 = f32[6,7] slice(f32[8,9] p1), slice={[2:8], [0:7]} add0 = f32[2,7] add(f32[2,7] s00, f32[2,7] s10) add1 = f32[6,7] add(f32[6,7] s01, f32[6,7] s11) ROOT tuple = (f32[2,7], f32[6,7]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, DifferentOrderingOfSliceSources) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,7] parameter(0) p1 = f32[8,7] parameter(1) s00 = f32[2,7] slice(f32[8,7] p0), slice={[0:2], [0:7]} s01 = f32[6,7] slice(f32[8,7] p0), slice={[2:8], [0:7]} s10 = f32[2,7] slice(f32[8,7] p1), slice={[0:2], [0:7]} s11 = f32[6,7] slice(f32[8,7] p1), slice={[2:8], [0:7]} add0 = f32[2,7] add(f32[2,7] s00, f32[2,7] s10) add1 = f32[6,7] add(f32[6,7] s11, f32[6,7] s01) ROOT tuple = (f32[2,7], f32[6,7]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SlicesFromDifferentIndices) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[4,9] slice(f32[8,9] p0), slice={[0:4], [0:9]} s01 = f32[4,9] slice(f32[8,9] p0), slice={[4:8], [0:9]} s10 = f32[4,9] slice(f32[8,9] p1), slice={[0:4], [0:9]} s11 = f32[4,9] slice(f32[8,9] p1), slice={[4:8], [0:9]} add0 = f32[4,9] add(f32[4,9] s01, f32[4,9] s10) add1 = f32[4,9] add(f32[4,9] s00, f32[4,9] s11) ROOT tuple = (f32[4,9], f32[4,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, DifferentOperator) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} mul = f32[2,9] multiply(f32[2,9] s00, f32[2,9] s10) add = f32[6,9] add(f32[6,9] s01, f32[6,9] s11) ROOT tuple = (f32[2,9], f32[6,9]) tuple(mul, add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SameOperatorDifferentAttributes) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} cmp1 = pred[2,9] compare(f32[2,9] s00, f32[2,9] s10), direction=GT cmp2 = pred[6,9] compare(f32[6,9] s01, f32[6,9] s11), direction=LT ROOT tuple = (pred[2,9], pred[6,9]) tuple(cmp1, cmp2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SlicesWithMultiUsers) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] s10) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] s11) mul0 = f32[2,9] multiply(f32[2,9] s00, f32[2,9] s10) mul1 = f32[6,9] multiply(f32[6,9] s01, f32[6,9] s11) ROOT tuple = (f32[2,9], f32[6,9], f32[2,9], f32[6,9]) tuple(add0, add1, mul0, mul1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; const HloInstruction* slice2; const HloInstruction* slice3; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice2, m::Multiply(m::Parameter(0), m::Parameter(1))), m::Slice(&slice3, m::Multiply(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice2->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice2->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice2->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice3->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice3->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice3->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, NonElementWise) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8] parameter(0) s00 = f32[2] slice(f32[8] p0), slice={[0:2]} s01 = f32[6] slice(f32[8] p0), slice={[2:8]} bc0 = f32[2,9] broadcast(f32[2] s00), dimensions={0} bc1 = f32[6,9] broadcast(f32[6] s01), dimensions={0} ROOT tuple = (f32[2,9], f32[6,9]) tuple(bc0, bc1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, SlicesWithNontrivialStrides) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[4,9] slice(f32[8,9] p0), slice={[0:7:2], [0:9]} s01 = f32[4,9] slice(f32[8,9] p0), slice={[1:8:2], [0:9]} s10 = f32[4,9] slice(f32[8,9] p1), slice={[0:7:2], [0:9]} s11 = f32[4,9] slice(f32[8,9] p1), slice={[1:8:2], [0:9]} add0 = f32[4,9] add(f32[4,9] s00, f32[4,9] s10) add1 = f32[4,9] add(f32[4,9] s01, f32[4,9] s11) ROOT tuple = (f32[4,9], f32[4,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Parameter(1))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Parameter(1)))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(7, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(2, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(1, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(2, 1)); } TEST_F(SliceSinkerTest, NotAllSliceOperand) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[2,9] parameter(1) p2 = f32[6,9] parameter(2) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} abs0 = f32[2,9] abs(f32[2,9] p1) abs1 = f32[6,9] abs(f32[6,9] p2) add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] abs0) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] abs1) ROOT tuple = (f32[2,9], f32[6,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } TEST_F(SliceSinkerTest, Cascade) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) p1 = f32[8,9] parameter(1) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} s10 = f32[2,9] slice(f32[8,9] p1), slice={[0:2], [0:9]} s11 = f32[6,9] slice(f32[8,9] p1), slice={[2:8], [0:9]} abs0 = f32[2,9] abs(f32[2,9] s10) abs1 = f32[6,9] abs(f32[6,9] s11) add0 = f32[2,9] add(f32[2,9] s00, f32[2,9] abs0) add1 = f32[6,9] add(f32[6,9] s01, f32[6,9] abs1) ROOT tuple = (f32[2,9], f32[6,9]) tuple(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_TRUE(result); HloInstruction* inst = module->entry_computation()->root_instruction(); const HloInstruction* slice0; const HloInstruction* slice1; EXPECT_THAT( inst, GmockMatch(m::Tuple( m::Slice(&slice0, m::Add(m::Parameter(0), m::Abs(m::Parameter(1)))), m::Slice(&slice1, m::Add(m::Parameter(0), m::Abs(m::Parameter(1))))))); EXPECT_THAT(slice0->slice_starts(), ElementsAre(0, 0)); EXPECT_THAT(slice0->slice_limits(), ElementsAre(2, 9)); EXPECT_THAT(slice0->slice_strides(), ElementsAre(1, 1)); EXPECT_THAT(slice1->slice_starts(), ElementsAre(2, 0)); EXPECT_THAT(slice1->slice_limits(), ElementsAre(8, 9)); EXPECT_THAT(slice1->slice_strides(), ElementsAre(1, 1)); } TEST_F(SliceSinkerTest, SameOpcodeDifferentResultElementTypes) { const char* kModuleStr = R"( HloModule m test { p0 = f32[8,9] parameter(0) s00 = f32[2,9] slice(f32[8,9] p0), slice={[0:2], [0:9]} s01 = f32[6,9] slice(f32[8,9] p0), slice={[2:8], [0:9]} convert0 = s32[2,9] convert(f32[2,9] s00) convert1 = s64[6,9] convert(f32[6,9] s01) ROOT tuple = (s32[2,9], s64[6,9]) tuple(convert0, convert1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); SliceSinker slice_sinker; TF_ASSERT_OK_AND_ASSIGN(bool result, RunHloPass(&slice_sinker, module.get())); EXPECT_FALSE(result); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/slice_sinker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/slice_sinker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
89a1a9b3-e32c-4cc4-b376-5c91402185c0
cpp
tensorflow/tensorflow
reverse_op
tensorflow/compiler/tf2xla/kernels/reverse_op.cc
tensorflow/core/kernels/reverse_op_test.cc
#include <vector> #include "absl/container/inlined_vector.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/literal.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { namespace { class ReverseOp : public XlaOpKernel { public: explicit ReverseOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const TensorShape x_shape = ctx->InputShape(0); const TensorShape revd_shape = ctx->InputShape(1); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(revd_shape), errors::InvalidArgument("axes must be a vector, not shape ", revd_shape.DebugString())); OP_REQUIRES(ctx, revd_shape.num_elements() == x_shape.dims(), errors::InvalidArgument("axes ", revd_shape.DebugString(), " must have same number of elements as" " than input tensor has dimensions ", x_shape.DebugString(), ".")); if (revd_shape.num_elements() == 0) { ctx->SetOutput(0, ctx->Input(0)); return; } xla::Literal lax; OP_REQUIRES_OK(ctx, ctx->ConstantInput(1, &lax)); std::vector<int64_t> dimensions; for (int d = 0; d < x_shape.dims(); ++d) { if (lax.Get<bool>({d})) { dimensions.push_back(d); } } ctx->SetOutput(0, xla::Rev(ctx->Input(0), dimensions)); } }; REGISTER_XLA_OP(Name("Reverse").CompileTimeConstantInput("dims"), ReverseOp); class ReverseV2Op : public XlaOpKernel { public: explicit ReverseV2Op(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const TensorShape x_shape = ctx->InputShape(0); const TensorShape axes_shape = ctx->InputShape(1); OP_REQUIRES(ctx, TensorShapeUtils::IsVector(axes_shape), errors::InvalidArgument("axes must be a vector, not shape ", axes_shape.DebugString())); OP_REQUIRES(ctx, axes_shape.num_elements() <= x_shape.dims(), errors::InvalidArgument("axes ", axes_shape.DebugString(), " can not have more elements" " than input tensor has dimensions ", x_shape.DebugString(), ".")); if (axes_shape.num_elements() == 0) { ctx->SetOutput(0, ctx->Input(0)); return; } std::vector<int64_t> axes; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsIntVector(1, &axes)); absl::InlinedVector<bool, 8> witnessed_axes(x_shape.dims(), false); for (int d = 0; d < axes.size(); ++d) { OP_REQUIRES( ctx, (-x_shape.dims() <= axes[d]) && (axes[d] < x_shape.dims()), errors::InvalidArgument(axes[d], " is out of range [-", x_shape.dims(), ", ", x_shape.dims(), ").")); if (axes[d] < 0) { axes[d] += x_shape.dims(); } OP_REQUIRES(ctx, !witnessed_axes[axes[d]], errors::InvalidArgument("canonicalized axis ", axes[d], " was repeated.")); witnessed_axes[axes[d]] = true; } ctx->SetOutput(0, xla::Rev(ctx->Input(0), axes)); } }; REGISTER_XLA_OP(Name("ReverseV2").CompileTimeConstantInput("axis"), ReverseV2Op); } }
#include <functional> #include <memory> #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { class ReverseOpTest : public OpsTestBase { protected: void MakeOp(DataType data_type) { TF_ASSERT_OK(NodeDefBuilder("myop", "Reverse") .Input(FakeInput(data_type)) .Input(FakeInput()) .Attr("T", data_type) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } template <typename T> void Reverse_0() { MakeOp(DataTypeToEnum<T>::value); AddInputFromArray<T>(TensorShape({}), {3}); AddInputFromArray<bool>(TensorShape({}), {true}); TF_ASSERT_OK(RunOpKernel()); Tensor* output = GetOutput(0); Tensor expected(allocator(), DataTypeToEnum<T>::value, TensorShape({})); expected.scalar<T>() = expected.scalar<T>().constant(3); test::ExpectTensorEqual<T>(expected, *output); } template <typename T> void Reverse_234() { MakeOp(DataTypeToEnum<T>::value); AddInputFromArray<T>(TensorShape({2, 3, 4}), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}); AddInputFromArray<bool>(TensorShape({3}), {true, false, true}); TF_ASSERT_OK(RunOpKernel()); Tensor* params_tensor = GetOutput(0); Tensor expected(allocator(), DataTypeToEnum<T>::value, TensorShape({2, 3, 4})); test::FillValues<T>(&expected, {15, 14, 13, 12, 19, 18, 17, 16, 23, 22, 21, 20, 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8}); test::ExpectTensorEqual<T>(expected, *params_tensor); } template <typename T> void Reverse_1234() { MakeOp(DataTypeToEnum<T>::value); AddInputFromArray<T>(TensorShape({1, 2, 3, 4}), {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}); AddInputFromArray<bool>(TensorShape({4}), {true, true, false, true}); TF_ASSERT_OK(RunOpKernel()); Tensor* params_tensor = GetOutput(0); Tensor expected(allocator(), DataTypeToEnum<T>::value, TensorShape({1, 2, 3, 4})); test::FillValues<T>(&expected, {15, 14, 13, 12, 19, 18, 17, 16, 23, 22, 21, 20, 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8}); test::ExpectTensorEqual<T>(expected, *params_tensor); } }; TEST_F(ReverseOpTest, Reverse_0_uint8) { Reverse_0<uint8>(); } TEST_F(ReverseOpTest, Reverse_0_int8) { Reverse_0<int8>(); } TEST_F(ReverseOpTest, Reverse_0_uint16) { Reverse_0<uint16>(); } TEST_F(ReverseOpTest, Reverse_0_int16) { Reverse_0<int16>(); } TEST_F(ReverseOpTest, Reverse_0_float) { Reverse_0<float>(); } TEST_F(ReverseOpTest, Reverse_0_int32) { Reverse_0<int32>(); } TEST_F(ReverseOpTest, Reverse_0_int64) { Reverse_0<int64_t>(); } TEST_F(ReverseOpTest, Reverse_0_double) { Reverse_0<double>(); } TEST_F(ReverseOpTest, Reverse_0_complex64) { Reverse_0<complex64>(); } TEST_F(ReverseOpTest, Reverse_0_complex128) { Reverse_0<complex128>(); } TEST_F(ReverseOpTest, Reverse_234_uint8) { Reverse_234<uint8>(); } TEST_F(ReverseOpTest, Reverse_234_int8) { Reverse_234<int8>(); } TEST_F(ReverseOpTest, Reverse_234_uint16) { Reverse_234<uint16>(); } TEST_F(ReverseOpTest, Reverse_234_int16) { Reverse_234<int16>(); } TEST_F(ReverseOpTest, Reverse_234_float) { Reverse_234<float>(); } TEST_F(ReverseOpTest, Reverse_234_int32) { Reverse_234<int32>(); } TEST_F(ReverseOpTest, Reverse_234_int64) { Reverse_234<int64_t>(); } TEST_F(ReverseOpTest, Reverse_234_double) { Reverse_234<double>(); } TEST_F(ReverseOpTest, Reverse_234_complex64) { Reverse_234<complex64>(); } TEST_F(ReverseOpTest, Reverse_234_complex128) { Reverse_234<complex128>(); } TEST_F(ReverseOpTest, Reverse_1234_uint8) { Reverse_1234<uint8>(); } TEST_F(ReverseOpTest, Reverse_1234_int8) { Reverse_1234<int8>(); } TEST_F(ReverseOpTest, Reverse_1234_uint16) { Reverse_1234<uint16>(); } TEST_F(ReverseOpTest, Reverse_1234_int16) { Reverse_1234<int16>(); } TEST_F(ReverseOpTest, Reverse_1234_float) { Reverse_1234<float>(); } TEST_F(ReverseOpTest, Reverse_1234_int32) { Reverse_1234<int32>(); } TEST_F(ReverseOpTest, Reverse_1234_int64) { Reverse_1234<int64_t>(); } TEST_F(ReverseOpTest, Reverse_1234_double) { Reverse_1234<double>(); } TEST_F(ReverseOpTest, Reverse_1234_complex64) { Reverse_1234<complex64>(); } TEST_F(ReverseOpTest, Reverse_1234_complex128) { Reverse_1234<complex128>(); } static SessionOptions GetOptions(int intra_threads) { SessionOptions opts; opts.config.set_intra_op_parallelism_threads(intra_threads); opts.config.set_inter_op_parallelism_threads(1); return opts; } template <typename T> static Graph* Reverse(const TensorShape& shape, int reverse_axis) { Graph* g = new Graph(OpRegistry::Global()); Tensor data(DataTypeToEnum<T>::value, shape); data.flat<T>().setRandom(); Tensor axes(DT_INT32, TensorShape({1})); axes.flat<int32>()(0) = reverse_axis; test::graph::Reverse(g, test::graph::Constant(g, data), test::graph::Constant(g, axes)); return g; } template <typename T> static void RunReverseRowsBenchmark(::testing::benchmark::State& state, int outer_dim, int middle_dim, int intra_threads, int channels) { SessionOptions opts = GetOptions(intra_threads); TensorShape shape{outer_dim, middle_dim, channels}; test::Benchmark("cpu", Reverse<T>(shape, 1), &opts, nullptr, nullptr, "", false) .Run(state); const int64_t num_items = static_cast<int64_t>(state.iterations()) * shape.num_elements(); state.SetItemsProcessed(num_items); state.SetBytesProcessed(num_items * sizeof(T)); } void BM_ReverseRowsOf1Channel_1T_float(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<float>(state, outer_dim, middle_dim, 1 , 1 ); } BENCHMARK(BM_ReverseRowsOf1Channel_1T_float) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf1Channel_1T_uint8(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<uint8>(state, outer_dim, middle_dim, 1 , 1 ); } BENCHMARK(BM_ReverseRowsOf1Channel_1T_uint8) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf1Channel_4T_float(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<float>(state, outer_dim, middle_dim, 4 , 1 ); } BENCHMARK(BM_ReverseRowsOf1Channel_4T_float) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf1Channel_4T_uint8(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<uint8>(state, outer_dim, middle_dim, 4 , 1 ); } BENCHMARK(BM_ReverseRowsOf1Channel_4T_uint8) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf3Channels_1T_float(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<float>(state, outer_dim, middle_dim, 1 , 3 ); } BENCHMARK(BM_ReverseRowsOf3Channels_1T_float) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(30, 30) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf3Channels_1T_uint8(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<uint8>(state, outer_dim, middle_dim, 1 , 3 ); } BENCHMARK(BM_ReverseRowsOf3Channels_1T_uint8) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(30, 30) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf3Channels_4T_float(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<float>(state, outer_dim, middle_dim, 4 , 3 ); } BENCHMARK(BM_ReverseRowsOf3Channels_4T_float) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(30, 30) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf3Channels_4T_uint8(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<uint8>(state, outer_dim, middle_dim, 4 , 3 ); } BENCHMARK(BM_ReverseRowsOf3Channels_4T_uint8) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(30, 30) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf4Channels_1T_float(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<float>(state, outer_dim, middle_dim, 1 , 4 ); } BENCHMARK(BM_ReverseRowsOf4Channels_1T_float) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf4Channels_1T_uint8(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<uint8>(state, outer_dim, middle_dim, 1 , 4 ); } BENCHMARK(BM_ReverseRowsOf4Channels_1T_uint8) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf4Channels_4T_float(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<float>(state, outer_dim, middle_dim, 4 , 4 ); } BENCHMARK(BM_ReverseRowsOf4Channels_4T_float) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); void BM_ReverseRowsOf4Channels_4T_uint8(::testing::benchmark::State& state) { const int outer_dim = state.range(0); const int middle_dim = state.range(1); RunReverseRowsBenchmark<uint8>(state, outer_dim, middle_dim, 4 , 4 ); } BENCHMARK(BM_ReverseRowsOf4Channels_4T_uint8) ->UseRealTime() ->ArgPair(288, 288) ->ArgPair(1024, 1024) ->ArgPair(10 * 1024, 1024); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/reverse_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/reverse_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9aa7f320-8708-44ab-8106-6d86e1782605
cpp
tensorflow/tensorflow
space_to_batch_converter
third_party/xla/xla/service/space_to_batch_converter.cc
third_party/xla/xla/service/space_to_batch_converter_test.cc
#include "xla/service/space_to_batch_converter.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <queue> #include <tuple> #include <utility> #include <vector> #include "absl/algorithm/algorithm.h" #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "xla/debug_options_flags.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo_creation_utils.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/tsl/lib/core/bitmap.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" namespace xla { namespace { namespace m = match; constexpr int64_t kNumMappedDims = 3; class ConvolutionVisitor { public: absl::Status PerformSpaceToBatchOnConvolution(HloInstruction* convolution); struct ConvDetails { std::vector<int64_t> spatial_dimensions_to_split; int64_t inherent_low_padding, inherent_high_padding, stride, spatial_size, base_dilation_factor, halo_size, high_padding_for_conv, low_padding_for_conv, kernel_spatial_dim_size, input_dim_size; }; ConvDetails GetConvolutionDetails(HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers); std::pair<std::vector<int64_t>, std::vector<int64_t>> GetSpatialDimsToSplit( HloInstruction* old_operand); bool IsForwardWindowDilatedConv(HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers); bool CanPropagate(HloInstruction* consumer, HloInstruction* producer); bool IsBroadcastTree(HloInstruction* op, HloInstruction* consumer, std::vector<HloInstruction*>& instructions_to_transform); void RewriteBroadcastTree( HloInstruction* producer, std::vector<HloInstruction*>& instructions_to_transform); void PropagateOnBroadcast(HloInstruction* consumer, HloInstruction* producer); bool IsOpcodeNonPropagatable(HloInstruction* consumer); bool SupportedOpForPropagation(HloInstruction* consumer, HloInstruction* producer); bool SupportedDotForPropagation(HloInstruction* consumer, HloInstruction* producer); bool IsBroadcastPropagatable(HloInstruction* broadcast, HloInstruction* old_other_op); absl::StatusOr<bool> Propagate(HloInstruction* consumer, HloInstruction* producer); absl::StatusOr<std::pair<HloInstruction*, std::vector<int64_t>>> SplitSpace( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop = false, bool is_rhs = false); absl::StatusOr<HloInstruction*> PerformSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t spatial_split_size, int64_t num_splits); absl::StatusOr<HloInstruction*> TransposeAndMergeBatch( HloInstruction* activations, absl::Span<const int64_t> final_split_spatial_dim_positioning, int64_t activations_batch_dim, int64_t old_batch_size); absl::StatusOr<HloInstruction*> PadAndSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits); absl::StatusOr<HloInstruction*> PropagateOnConstant(HloInstruction* consumer, HloInstruction* producer); absl::Status PropagateOnConv(HloInstruction* convolution); absl::Status PropagateOnConcat(HloInstruction* concat); absl::Status PropagateOnReverse(HloInstruction* reverse); absl::Status PropagateOnPad(HloInstruction* pad); absl::Status PropagateOnSlice(HloInstruction* slice); absl::Status PropagateOnBackpropFilterConv(HloInstruction* convolution); bool IsConvSuitableForSpaceToBatch(HloInstruction* convolution); bool IsThisBackPropFilterConv(HloInstruction* convolution); absl::Status PropagateOnUsers(HloInstruction* old_conv); absl::StatusOr<HloInstruction*> SelectValidPortion( HloInstruction* new_instr, HloInstruction* old_instr, HloInstruction* select_val, int64_t new_batch_dim, absl::Span<const int64_t> new_space_dims, int64_t old_batch_dim, absl::Span<const int64_t> old_space_dims); struct SpaceNextToBatchDetails { HloInstruction* instr; std::vector<int64_t> transpose_dims; }; absl::StatusOr<SpaceNextToBatchDetails> BringSpaceNextToBatch( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop = false, bool is_rhs = false); absl::StatusOr<HloInstruction*> ChangeSpatialSizeOnSpaceToBatchedShape( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t new_spatial_dim_size, bool increase_spatial_size = false); absl::StatusOr<HloInstruction*> SplitAndTransposeMergedBatch( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions); absl::StatusOr<HloInstruction*> BatchToSpace(HloInstruction* old_instr); absl::StatusOr<HloInstruction*> HaloDuplicateWithSlice( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t low_padding, int64_t halo_size, HloInstruction* pad_val = nullptr); absl::StatusOr<bool> Run(); const bool changed() const { return changed_; } ~ConvolutionVisitor() = default; explicit ConvolutionVisitor(SpaceToBatchController ctrl, HloComputation* computation); int64_t GetFirstChosenSpatialDim(HloInstruction* convolution) { const int64_t dim_count = ctrl_.count_of_dimensions_to_convert; const int64_t end_point = convolution->convolution_dimension_numbers() .input_spatial_dimensions_size() - ctrl_.dimension_from_end_to_convert; return end_point - dim_count + 1; } std::vector<int64_t> GetChosenSpatialDims(HloInstruction* convolution) { const int64_t dim_count = ctrl_.count_of_dimensions_to_convert; const int64_t first_dim = GetFirstChosenSpatialDim(convolution); std::vector<int64_t> dims(dim_count); for (int i = 0; i < dim_count; ++i) { dims[i] = convolution->convolution_dimension_numbers().input_spatial_dimensions( first_dim + i); } return dims; } int64_t DimLookUp(absl::Span<const int64_t> permute_dims, int64_t id) { return permute_dims[id]; } int DimMapper(SpaceToBatchDimMap s) { return static_cast<int>(s); } int64_t ReverseDimLookUp(absl::Span<const int64_t> permute_dims, int64_t id) { return std::distance(permute_dims.begin(), absl::c_find(permute_dims, id)); } HloInstruction* DoesConvolutionFeedReduceWindowOrSelectAndScatter( HloInstruction* instr, int64_t depth); bool DoesConvolutionFeedUnpropagatableOp( HloInstruction* instr, int64_t depth = kUnpropagatableOpSearchDepth); bool IsSpaceToBatchedSpaceSizeSuitable(HloInstruction* instr); private: HloComputation* computation_; absl::flat_hash_set<HloInstruction*> convs_to_visit_; std::vector<HloInstruction*> conv_visitor_list_; HloInstructionSet non_propagatable_instrs_; absl::flat_hash_map<HloInstruction*, HloInstruction*> batch_to_space_map_; absl::flat_hash_map<HloInstruction*, HloInstruction*> old_to_new_instrs_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> instr_to_dim_map_; absl::flat_hash_map<HloInstruction*, std::vector<int64_t>> instr_to_dim_permute_map_; absl::flat_hash_map<HloInstruction*, absl::flat_hash_set<HloInstruction*>> broadcast_map_; bool changed_ = false; static constexpr int64_t kReduceWindowSearchDepth = 10; static constexpr int64_t kUnpropagatableOpSearchDepth = 3; static constexpr int64_t kMultiplierOnSpaceForBaseDilation = 3; absl::flat_hash_map<std::pair<HloInstruction*, int64_t>, bool> unpropagatability_cache_; SpaceToBatchController ctrl_; }; ConvolutionVisitor::ConvolutionVisitor(SpaceToBatchController ctrl, HloComputation* computation) { ctrl_ = ctrl; computation_ = computation; for (HloInstruction* inst : computation->MakeInstructionPostOrder()) { if (inst->opcode() != HloOpcode::kConvolution) { continue; } auto convolution = inst; if (!IsConvSuitableForSpaceToBatch(convolution)) { VLOG(1) << "Conv not suitable for space-to-batch " << convolution->ToString(); continue; } VLOG(1) << "Conv added to space-to-batch worklist " << convolution->ToString(); convs_to_visit_.insert(convolution); conv_visitor_list_.push_back(convolution); } } std::pair<std::vector<int64_t>, std::vector<int64_t>> ConvolutionVisitor::GetSpatialDimsToSplit(HloInstruction* old_operand) { auto new_operand = old_to_new_instrs_[old_operand]; auto dim_map_val = instr_to_dim_map_[old_operand]; auto permute_dims = instr_to_dim_permute_map_[new_operand]; std::vector<int64_t> old_dims(ctrl_.count_of_dimensions_to_convert), new_dims(ctrl_.count_of_dimensions_to_convert); old_dims[0] = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; new_dims[0] = DimLookUp(permute_dims, old_dims[0]); for (int i = 1; i < ctrl_.count_of_dimensions_to_convert; ++i) { old_dims[i] = old_dims[0] + i; new_dims[i] = new_dims[0] + i; } return std::make_pair(old_dims, new_dims); } bool ConvolutionVisitor::IsForwardWindowDilatedConv( HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers) { const int64_t window_dilation_factor = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation(); if (window_dilation_factor == 1) { return false; } const int64_t output_spatial_dim = dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); const int64_t kernel_spatial_dim = dim_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); return convolution->operand(1)->shape().dimensions(kernel_spatial_dim) < convolution->shape().dimensions(output_spatial_dim); } bool ConvolutionVisitor::IsConvSuitableForSpaceToBatch( HloInstruction* convolution) { ConvolutionDimensionNumbers dim_numbers = convolution->convolution_dimension_numbers(); if (GetFirstChosenSpatialDim(convolution) < 0) { return false; } if (convolution->batch_group_count() != 1) { return false; } if (convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation() != 1) { if (!IsForwardWindowDilatedConv(convolution, dim_numbers)) { return false; } } const ConvDetails c = GetConvolutionDetails(convolution, dim_numbers); const int64_t low_pad = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_low(); if (c.base_dilation_factor != 1) { if (!ctrl_.enable_propagations_on_base_dilations) { return false; } if (c.stride != 1) { return false; } if (low_pad == 0) { if (c.kernel_spatial_dim_size != 1) { return false; } } else if (low_pad != c.base_dilation_factor - 1 && low_pad != c.base_dilation_factor) { return false; } } int64_t activations_batch_dim = dim_numbers.input_batch_dimension(); const int64_t old_batch_size = convolution->operand(0)->shape().dimensions(activations_batch_dim); if (old_batch_size > ctrl_.limit_on_batch_size) { return false; } VLOG(1) << "spatial size " << c.spatial_size << " halo size " << c.halo_size; if (c.halo_size > CeilOfRatio(c.spatial_size, ctrl_.number_of_splits)) { return false; } if (c.base_dilation_factor > 1 && c.inherent_low_padding == c.base_dilation_factor) { if (c.spatial_size < kMultiplierOnSpaceForBaseDilation * ctrl_.number_of_splits) { return false; } } VLOG(1) << "Legal space-to-batch convolution " << convolution->ToString(); return true; } bool ConvolutionVisitor::IsThisBackPropFilterConv(HloInstruction* convolution) { auto activations = convolution->mutable_operand(0); auto kernel = convolution->mutable_operand(1); auto dim_numbers = convolution->convolution_dimension_numbers(); if (!old_to_new_instrs_.contains(kernel) && !old_to_new_instrs_.contains(activations)) { return false; } if (old_to_new_instrs_.contains(kernel)) { auto dim_map_val_op_0 = instr_to_dim_map_[kernel]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; if (convolution->convolution_dimension_numbers() .kernel_input_feature_dimension() != old_batch_dim) { return false; } } if (old_to_new_instrs_.contains(activations)) { auto dim_map_val_op_0 = instr_to_dim_map_[activations]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; if (dim_numbers.input_feature_dimension() != old_batch_dim) { return false; } } return true; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::HaloDuplicateWithSlice( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t low_padding, int64_t halo_size, HloInstruction* pad_val) { const int64_t spatial_dim_count = spatial_dimensions_to_split.size(); const int64_t additional_batch_size = IPow<int64_t>(ctrl_.number_of_splits, spatial_dim_count); const int64_t original_batch_size = activations->shape().dimensions(activations_batch_dim) / additional_batch_size; const int64_t spatial_split_size = activations->shape().dimensions(spatial_dimensions_to_split[0]); const int64_t batch_size = ctrl_.number_of_splits; TF_ASSIGN_OR_RETURN( activations, SplitAndTransposeMergedBatch( activations, activations_batch_dim, original_batch_size, spatial_dimensions_to_split)); const int64_t rank = activations->shape().rank(); VLOG(1) << "In HaloDuplicateWithSlice with activations " << activations->ToString() << " batch_size " << batch_size << " spatial_split_size " << spatial_split_size << " low_padding " << low_padding << " halo size " << halo_size; CHECK_LE(std::abs(halo_size - low_padding), spatial_split_size); for (int64_t i = 0; i < spatial_dimensions_to_split.size(); ++i) { int64_t spatial_dimension_to_split = activations_batch_dim + 2 * (i + 1); int64_t remapped_batch_dimension = spatial_dimension_to_split - 1; HloInstruction* first_slice = nullptr; std::vector<int64_t> strides(rank, 1); HloInstruction* padding = pad_val == nullptr ? activations->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(activations->shape().element_type()))) : pad_val; if (low_padding > 0) { std::vector<int64_t> start_indices(rank, 0), end_indices(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); start_indices[spatial_dimension_to_split] = spatial_split_size - low_padding; end_indices[remapped_batch_dimension] = batch_size - 1; end_indices[spatial_dimension_to_split] = spatial_split_size; TF_ASSIGN_OR_RETURN(first_slice, MakeSliceHlo(activations, start_indices, end_indices, strides, &activations->metadata(), &activations->frontend_attributes())); VLOG(1) << "first slice " << first_slice->ToString(); PaddingConfig padding_config = MakeNoPaddingConfig(first_slice->shape().dimensions_size()); padding_config.mutable_dimensions(remapped_batch_dimension) ->set_edge_padding_low(1); TF_ASSIGN_OR_RETURN(first_slice, MakePadHlo(first_slice, padding, padding_config, &first_slice->metadata(), &first_slice->frontend_attributes())); } HloInstruction* halo_region = nullptr; if (halo_size - low_padding > 0) { std::vector<int64_t> start_indices_halo(rank, 0), end_indices_halo(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); start_indices_halo[remapped_batch_dimension] = 1; end_indices_halo[spatial_dimension_to_split] = halo_size - low_padding; TF_ASSIGN_OR_RETURN( halo_region, MakeSliceHlo(activations, start_indices_halo, end_indices_halo, strides, &activations->metadata(), &activations->frontend_attributes())); VLOG(1) << "halo_region " << halo_region->ToString(); PaddingConfig padding_config_halo = MakeNoPaddingConfig(halo_region->shape().dimensions_size()); padding_config_halo.mutable_dimensions(remapped_batch_dimension) ->set_edge_padding_high(1); TF_ASSIGN_OR_RETURN(halo_region, MakePadHlo(halo_region, padding, padding_config_halo, &halo_region->metadata(), &halo_region->frontend_attributes())); } if ((halo_size == 0 && low_padding != 0) || low_padding < 0) { std::vector<int64_t> start_indices_activations_cut(rank, 0), end_indices_activations_cut(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); if (low_padding > 0) { end_indices_activations_cut[spatial_dimension_to_split] = spatial_split_size - low_padding; } else { start_indices_activations_cut[spatial_dimension_to_split] = 0 - low_padding; end_indices_activations_cut[spatial_dimension_to_split] = spatial_split_size; } TF_ASSIGN_OR_RETURN( activations, MakeSliceHlo(activations, start_indices_activations_cut, end_indices_activations_cut, strides, &activations->metadata(), &activations->frontend_attributes())); } if (first_slice != nullptr) { TF_ASSIGN_OR_RETURN( activations, MakeConcatHlo({first_slice, activations}, spatial_dimension_to_split, &activations->metadata(), &activations->frontend_attributes())); } if (halo_region != nullptr) { TF_ASSIGN_OR_RETURN( activations, MakeConcatHlo({activations, halo_region}, spatial_dimension_to_split, &activations->metadata(), &activations->frontend_attributes())); } } TF_ASSIGN_OR_RETURN( activations, TransposeAndMergeBatch( activations, spatial_dimensions_to_split, activations_batch_dim, original_batch_size)); VLOG(1) << "HaloDuplicated activations " << activations->ToString(); return activations; } absl::StatusOr<ConvolutionVisitor::SpaceNextToBatchDetails> ConvolutionVisitor::BringSpaceNextToBatch( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop, bool is_rhs) { for (int64_t i = 1; i < spatial_dimensions_to_split->size(); ++i) { CHECK_EQ(spatial_dimensions_to_split->at(i), spatial_dimensions_to_split->at(i - 1) + 1) << "Spatial dimensions are not contiguous"; } int64_t spatial_dimension_to_split = spatial_dimensions_to_split->at(0); std::vector<int64_t> transpose_dims(activations->shape().rank()); if (spatial_dimension_to_split == activations_batch_dim + 1) { absl::c_iota(transpose_dims, 0); } else { ConvolutionDimensionNumbers new_dim_numbers = dim_numbers; int64_t pushed_counter = 0; int64_t new_batch_dim, new_spatial_dim; int64_t dim_counter = 0; if (is_rhs) { CHECK(is_backprop); for (int i = 0; i < activations->shape().rank(); ++i) { if (i == activations_batch_dim) { continue; } if (i == spatial_dimension_to_split) { transpose_dims[dim_counter++] = activations_batch_dim; new_batch_dim = pushed_counter; pushed_counter++; new_spatial_dim = pushed_counter; } if (i == dim_numbers.kernel_output_feature_dimension()) { new_dim_numbers.set_kernel_output_feature_dimension(pushed_counter); } else { auto it = absl::c_find(dim_numbers.kernel_spatial_dimensions(), i); if (it != dim_numbers.kernel_spatial_dimensions().end()) { int64_t j = it - dim_numbers.kernel_spatial_dimensions().begin(); new_dim_numbers.set_kernel_spatial_dimensions(j, pushed_counter); } } transpose_dims[dim_counter++] = i; pushed_counter++; } activations_batch_dim = new_batch_dim; spatial_dimension_to_split = new_spatial_dim; TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, transpose_dims)); new_dim_numbers.set_kernel_input_feature_dimension(activations_batch_dim); } else { for (int i = 0; i < activations->shape().rank(); ++i) { if (i == activations_batch_dim) { continue; } if (i == spatial_dimension_to_split) { transpose_dims[dim_counter++] = activations_batch_dim; new_batch_dim = pushed_counter; pushed_counter++; new_spatial_dim = pushed_counter; } if (is_backprop && i == dim_numbers.input_batch_dimension()) { new_dim_numbers.set_input_batch_dimension(pushed_counter); } else if (i == dim_numbers.input_feature_dimension()) { new_dim_numbers.set_input_feature_dimension(pushed_counter); } else { auto it = absl::c_find(dim_numbers.input_spatial_dimensions(), i); if (it != dim_numbers.input_spatial_dimensions().end()) { int64_t j = it - dim_numbers.input_spatial_dimensions().begin(); new_dim_numbers.set_input_spatial_dimensions(j, pushed_counter); } } transpose_dims[dim_counter++] = i; pushed_counter++; } activations_batch_dim = new_batch_dim; spatial_dimension_to_split = new_spatial_dim; TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, transpose_dims)); if (is_backprop) { new_dim_numbers.set_input_feature_dimension(activations_batch_dim); } else { new_dim_numbers.set_input_batch_dimension(activations_batch_dim); } } dim_numbers = new_dim_numbers; } for (int64_t i = 0; i < spatial_dimensions_to_split->size(); ++i) { (*spatial_dimensions_to_split)[i] = spatial_dimension_to_split + i; } return SpaceNextToBatchDetails{activations, transpose_dims}; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::SplitAndTransposeMergedBatch( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions) { CHECK_EQ(batch_dimension + 1, spatial_dimensions[0]); std::vector<int64_t> new_dimensions(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); const int64_t new_batch_size = activations->shape().dimensions(batch_dimension); VLOG(3) << "Decreasing the spatial size while propagating new_batch_size " << new_batch_size << " old_batch_size " << old_batch_size; new_dimensions[batch_dimension] = old_batch_size; const int64_t spatial_dim_count = spatial_dimensions.size(); for (int64_t i = 0; i < spatial_dim_count; ++i) { new_dimensions.insert(new_dimensions.begin() + spatial_dimensions[0], ctrl_.number_of_splits); } TF_ASSIGN_OR_RETURN(HloInstruction * batch_split_activations, MakeReshapeHlo(new_dimensions, activations)); if (spatial_dim_count > 1) { std::vector<int64_t> transpose_dims(new_dimensions.size()); absl::c_iota(transpose_dims, 0); std::vector<int64_t> trans_dims(new_dimensions.size()); absl::c_iota(trans_dims, 0); int64_t start_batch_dim_position = batch_dimension + 1; int64_t start_space_dim_position = batch_dimension + 2; for (int i = 0; i < spatial_dim_count; ++i) { transpose_dims[start_batch_dim_position + 2 * i] = batch_dimension + spatial_dim_count - i; transpose_dims[start_space_dim_position + 2 * i] = batch_dimension + spatial_dim_count + 1 + i; } TF_ASSIGN_OR_RETURN( batch_split_activations, MakeTransposeHlo(batch_split_activations, transpose_dims)); } return batch_split_activations; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::ChangeSpatialSizeOnSpaceToBatchedShape( HloInstruction* activations, int64_t batch_dimension, int64_t old_batch_size, absl::Span<const int64_t> spatial_dimensions, int64_t new_spatial_dim_size, bool increase_spatial_size) { CHECK_EQ(batch_dimension + 1, spatial_dimensions[0]); std::vector<int64_t> new_dimensions(activations->shape().dimensions().begin(), activations->shape().dimensions().end()); const int64_t spatial_dim_count = spatial_dimensions.size(); const int64_t spatial_dim_size = activations->shape().dimensions(spatial_dimensions[0]); const int64_t reshaped_space_size = spatial_dim_size * ctrl_.number_of_splits; TF_ASSIGN_OR_RETURN( HloInstruction * batch_split_activations, SplitAndTransposeMergedBatch(activations, batch_dimension, old_batch_size, spatial_dimensions)); std::vector<int64_t> batch_space_collapse_reshape_dims( batch_split_activations->shape().dimensions().begin(), batch_split_activations->shape().dimensions().end()); batch_space_collapse_reshape_dims.erase( batch_space_collapse_reshape_dims.begin() + spatial_dimensions[0], batch_space_collapse_reshape_dims.begin() + spatial_dimensions[0] + spatial_dim_count); for (auto spatial_dimension : spatial_dimensions) { batch_space_collapse_reshape_dims[spatial_dimension] = reshaped_space_size; } TF_ASSIGN_OR_RETURN(HloInstruction * batch_space_collapsed_reshape, MakeReshapeHlo(batch_space_collapse_reshape_dims, batch_split_activations)); VLOG(3) << "First reshape done"; const int64_t rank = activations->shape().rank(); if (increase_spatial_size) { PaddingConfig padding_config = MakeNoPaddingConfig( batch_space_collapsed_reshape->shape().dimensions_size()); for (auto spatial_dimension : spatial_dimensions) { padding_config.mutable_dimensions(spatial_dimension) ->set_edge_padding_high(new_spatial_dim_size * ctrl_.number_of_splits - reshaped_space_size); padding_config.mutable_dimensions(spatial_dimension) ->set_edge_padding_low(0); } HloInstruction* padding = activations->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::Zero( batch_space_collapsed_reshape->shape().element_type()))); TF_ASSIGN_OR_RETURN( batch_space_collapsed_reshape, MakePadHlo(batch_space_collapsed_reshape, padding, padding_config, &batch_space_collapsed_reshape->metadata(), &batch_space_collapsed_reshape->frontend_attributes())); } else { std::vector<int64_t> start_indices(rank, 0), end_indices(batch_space_collapsed_reshape->shape().dimensions().begin(), batch_space_collapsed_reshape->shape().dimensions().end()), strides(rank, 1); for (auto spatial_dimension : spatial_dimensions) { end_indices[spatial_dimension] = new_spatial_dim_size * ctrl_.number_of_splits; } TF_ASSIGN_OR_RETURN( batch_space_collapsed_reshape, MakeSliceHlo(batch_space_collapsed_reshape, start_indices, end_indices, strides, &batch_space_collapsed_reshape->metadata(), &batch_space_collapsed_reshape->frontend_attributes())); } TF_ASSIGN_OR_RETURN( HloInstruction * activations_new, PerformSplitSpace(batch_space_collapsed_reshape, spatial_dimensions, batch_dimension, new_spatial_dim_size, ctrl_.number_of_splits)); VLOG(3) << "Size decreased activations " << activations_new->ToString(); return activations_new; } absl::StatusOr<bool> ConvolutionVisitor::Run() { for (auto conv : conv_visitor_list_) { if (ctrl_.disable_starting_on_small_chains && DoesConvolutionFeedUnpropagatableOp(conv)) { VLOG(1) << "Giving up on conv " << conv->ToString() << " because it feeds an unpropagatable op"; convs_to_visit_.erase(conv); } if (convs_to_visit_.count(conv) > 0) { TF_CHECK_OK(PerformSpaceToBatchOnConvolution(conv)); changed_ = true; } } conv_visitor_list_.clear(); convs_to_visit_.clear(); for (auto instr : non_propagatable_instrs_) { if (instr->opcode() == HloOpcode::kConvolution) { VLOG(1) << "Instr " << instr->ToString(); } if (instr->opcode() == HloOpcode::kConvolution && !IsConvSuitableForSpaceToBatch(instr)) { HloInstruction* producer = nullptr; if (old_to_new_instrs_.contains(instr->mutable_operand(0))) { producer = instr->mutable_operand(0); } else if (old_to_new_instrs_.contains(instr->mutable_operand(1))) { producer = instr->mutable_operand(1); } if (producer) { if (CanPropagate(instr, producer)) { bool needs_further_propagation; TF_ASSIGN_OR_RETURN(needs_further_propagation, Propagate(instr, producer)); TF_CHECK_OK(computation_->ReplaceInstruction( instr, old_to_new_instrs_[instr])); continue; } } } VLOG(1) << "Could not eventually propagate through " << instr->ToString(); absl::flat_hash_map<int64_t, HloInstruction*> operand_map; for (int64_t i = 0; i < instr->operand_count(); ++i) { if (old_to_new_instrs_.count(instr->mutable_operand(i))) { TF_ASSIGN_OR_RETURN(operand_map[i], BatchToSpace(instr->mutable_operand(i))); } } for (auto entry : operand_map) { TF_CHECK_OK(instr->ReplaceOperandWith(entry.first, entry.second)); } } non_propagatable_instrs_.clear(); return changed_; } bool IsTrivialElementwise(HloInstruction* hlo) { if (hlo->opcode() == HloOpcode::kFusion || hlo->opcode() == HloOpcode::kRng || hlo->opcode() == HloOpcode::kCopy || hlo->opcode() == HloOpcode::kConstant || hlo->opcode() == HloOpcode::kIota || hlo->opcode() == HloOpcode::kMap) { return false; } return hlo->IsElementwise(); } bool ConvolutionVisitor::CanPropagate(HloInstruction* consumer, HloInstruction* producer) { if (IsTrivialElementwise(consumer)) { VLOG(2) << "Doing propagation check on elementwise op: " << consumer->ToString(); HloInstruction* pivot_operand = nullptr; for (int64_t i = 0; i < consumer->operand_count(); ++i) { auto old_producer = consumer->mutable_operand(i); std::vector<HloInstruction*> to_transform; const bool broadcast_or_constant = (old_producer->opcode() == HloOpcode::kConstant) || (old_producer->opcode() == HloOpcode::kBroadcast && IsBroadcastPropagatable(old_producer, producer)) || (consumer->IsElementwiseBinary() && old_producer->opcode() == HloOpcode::kBroadcast && IsBroadcastTree(old_producer, producer, to_transform)); if (!old_to_new_instrs_.contains(old_producer) && !broadcast_or_constant) { VLOG(1) << "Cannot propagate on elementwise op " << consumer->ToString() << " because operand " << old_producer->ToString() << " isn't ready "; return false; } else { if (broadcast_or_constant) { VLOG(2) << "Skipping on " << old_producer->ToString(); continue; } CHECK(old_to_new_instrs_.contains(old_producer)); CHECK(instr_to_dim_map_.contains(old_producer)); if (pivot_operand == nullptr) { pivot_operand = old_producer; VLOG(2) << "Elementwise op: pivot " << old_producer->ToString(); } else { if (instr_to_dim_map_[pivot_operand] [DimMapper(SpaceToBatchDimMap::kBatch)] != instr_to_dim_map_[old_producer] [DimMapper(SpaceToBatchDimMap::kBatch)] || instr_to_dim_map_[pivot_operand] [DimMapper(SpaceToBatchDimMap::kSpace0)] != instr_to_dim_map_[old_producer] [DimMapper(SpaceToBatchDimMap::kSpace0)]) { VLOG(2) << "Elementwise op: checking for shape equivalence " << consumer->ToString() << " failed due to changed batch space ordering "; return false; } auto pivot_new_instr = old_to_new_instrs_[pivot_operand]; auto pivot_permute_dims = instr_to_dim_permute_map_[pivot_new_instr]; auto new_instr = old_to_new_instrs_[old_producer]; auto permute_dims = instr_to_dim_permute_map_[new_instr]; for (int j = 0; j < pivot_permute_dims.size(); ++j) { if (pivot_permute_dims[j] != permute_dims[j]) { VLOG(2) << "Elementwise op: checking for shape equivalence " << consumer->ToString() << " failed due to permuted dimensions "; return false; } if (pivot_new_instr->shape().dimensions(j) != new_instr->shape().dimensions(j)) { if (!((consumer->IsElementwiseBinary() || consumer->opcode() == HloOpcode::kSelect) && j == instr_to_dim_map_[pivot_operand][DimMapper( SpaceToBatchDimMap::kSpace0)])) { VLOG(2) << "Elementwise op: checking for shape equivalence " << consumer->ToString() << " failed due to changed shape sizes "; return false; } } } } } } } if (consumer->opcode() == HloOpcode::kConcatenate) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (!instr_to_dim_map_.contains(consumer->mutable_operand(i))) { return false; } } auto pivot_operand = consumer->mutable_operand(0); auto pivot_new_instr = old_to_new_instrs_[pivot_operand]; auto pivot_permute_dims = instr_to_dim_permute_map_[pivot_new_instr]; for (int64_t i = 1; i < consumer->operand_count(); ++i) { auto new_instr = old_to_new_instrs_[consumer->mutable_operand(i)]; auto permute_dims = instr_to_dim_permute_map_[new_instr]; for (int j = 0; j < pivot_permute_dims.size(); ++j) { if (pivot_permute_dims[j] != permute_dims[j]) { VLOG(2) << "Concat op: checking for shape equivalence " << consumer->ToString() << " failed due to permuted dimensions "; return false; } if (pivot_new_instr->shape().dimensions(j) != new_instr->shape().dimensions(j)) { VLOG(2) << "Concat op: checking for shape equivalence " << consumer->ToString() << " failed due to changed shape sizes "; return false; } } } return true; } if (consumer->opcode() == HloOpcode::kConvolution) { if (!ConsumeFuel("space-to-batch-converter", [&] { return "Skipping space-to-batch propagation because fuel over\n"; })) { return false; } auto are_conv_dims_compatible = [&](const ConvolutionDimensionNumbers dim_numbers, std::vector<int64_t>& dim_map, bool check_lhs) { if (check_lhs) { if (dim_numbers.input_spatial_dimensions( GetFirstChosenSpatialDim(consumer)) != dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)]) { return false; } for (int i = 0; i < dim_numbers.input_spatial_dimensions().size(); ++i) { if (dim_numbers.input_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] || dim_numbers.input_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kFeature)]) { return false; } } } else { if (dim_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(consumer)) != dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)]) { return false; } for (int i = 0; i < dim_numbers.kernel_spatial_dimensions().size(); ++i) { if (dim_numbers.kernel_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] || dim_numbers.kernel_spatial_dimensions(i) == dim_map[DimMapper(SpaceToBatchDimMap::kFeature)]) { return false; } } } return true; }; VLOG(1) << "Checking if conv is supported for propagation " << consumer->ToString(); bool found_good_non_window_dilated_conv = true; if (IsConvSuitableForSpaceToBatch(consumer)) { if (!old_to_new_instrs_.contains(consumer->mutable_operand(0))) { found_good_non_window_dilated_conv = false; } ConvolutionDimensionNumbers dim_numbers = consumer->convolution_dimension_numbers(); ConvDetails c = GetConvolutionDetails(consumer, dim_numbers); auto retval = GetSpatialDimsToSplit(consumer->mutable_operand(0)); std::vector<int64_t> new_spatial_dims = retval.second; auto new_activations = old_to_new_instrs_[consumer->mutable_operand(0)]; if (new_activations->shape().dimensions(retval.second[0]) < c.inherent_low_padding) { return false; } auto dim_map_val_op_0 = instr_to_dim_map_[consumer->mutable_operand(0)]; if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_0, true)) { found_good_non_window_dilated_conv = false; } if (consumer->convolution_dimension_numbers().input_batch_dimension() != dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]) { found_good_non_window_dilated_conv = false; } if (found_good_non_window_dilated_conv) { return true; } } if (!ctrl_.enable_propagations_on_window_dilations) { return false; } if (!IsThisBackPropFilterConv(consumer)) { return false; } if (GetFirstChosenSpatialDim(consumer) < 0) { return false; } if (consumer->window() .dimensions(GetFirstChosenSpatialDim(consumer)) .stride() != 1) { return false; } if (consumer->feature_group_count() != 1) { return false; } VLOG(2) << "Checking for backprop filter conv propagatability"; CHECK_EQ(consumer->operand_count(), 2); auto activations = consumer->mutable_operand(0); auto kernel = consumer->mutable_operand(1); auto win_dims = consumer->window().dimensions(GetFirstChosenSpatialDim(consumer)); const int64_t rhs_dilation = win_dims.window_dilation(); const int64_t lhs_dilation = win_dims.base_dilation(); if (lhs_dilation != 1) { return false; } if (rhs_dilation == 1 && !ctrl_.enable_propagations_on_trivial_window_dilations) { if (!old_to_new_instrs_.contains(kernel) || !old_to_new_instrs_.contains(activations)) { return false; } } if (!old_to_new_instrs_.contains(kernel)) { const int64_t rhs_batch = kernel->shape().dimensions(consumer->convolution_dimension_numbers() .kernel_input_feature_dimension()); auto dim_map_val_op_0 = instr_to_dim_map_[activations]; const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto first_operand = old_to_new_instrs_[activations]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; const int64_t new_batch_dim = DimLookUp(permute_dims_first_operand, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims_first_operand, old_space_dim); const int64_t lhs_batch = first_operand->shape().dimensions(new_batch_dim); if (first_operand->shape().dimensions(new_space_dim) % rhs_dilation != 0) { return false; } if (rhs_batch * ctrl_.number_of_splits != lhs_batch) { return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_0, true)) { return false; } VLOG(2) << "Backprop filter conv ready for propagation: activations ready, " " kernel will be space-to-batched"; return true; } if (!old_to_new_instrs_.contains(activations)) { const int64_t lhs_batch = activations->shape().dimensions( consumer->convolution_dimension_numbers().input_feature_dimension()); auto dim_map_val_op_1 = instr_to_dim_map_[consumer->mutable_operand(1)]; const int64_t old_batch_dim = dim_map_val_op_1[DimMapper(SpaceToBatchDimMap::kBatch)]; auto second_operand = old_to_new_instrs_[kernel]; auto permute_dims_second_operand = instr_to_dim_permute_map_[second_operand]; const int64_t new_batch_dim = DimLookUp(permute_dims_second_operand, old_batch_dim); const int64_t rhs_batch = second_operand->shape().dimensions(new_batch_dim); if (rhs_batch != ctrl_.number_of_splits * lhs_batch) { return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_1, false)) { return false; } VLOG(2) << "Backprop filter conv ready for propagation: kernel ready, " " activations will be space-to-batched"; return true; } auto first_operand = old_to_new_instrs_[activations]; auto dim_map_val_op_0 = instr_to_dim_map_[activations]; auto second_operand = old_to_new_instrs_[kernel]; auto dim_map_val_op_1 = instr_to_dim_map_[kernel]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; auto permute_dims_second_operand = instr_to_dim_permute_map_[second_operand]; const int64_t new_batch_dim_operand_0 = DimLookUp(permute_dims_first_operand, dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]); const int64_t new_space_dim_operand_0 = DimLookUp(permute_dims_first_operand, dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kSpace0)]); const int64_t new_batch_dim_operand_1 = DimLookUp(permute_dims_second_operand, dim_map_val_op_1[DimMapper(SpaceToBatchDimMap::kBatch)]); const int64_t new_space_dim_operand_1 = DimLookUp(permute_dims_second_operand, dim_map_val_op_1[DimMapper(SpaceToBatchDimMap::kSpace0)]); if (first_operand->shape().dimensions(new_batch_dim_operand_0) != second_operand->shape().dimensions(new_batch_dim_operand_1)) { VLOG(2) << "Backprop filter conv not ready for propagation because batch " "dimensions don't line up"; return false; } if (first_operand->shape().dimensions(new_space_dim_operand_0) > rhs_dilation * second_operand->shape().dimensions(new_space_dim_operand_1)) { VLOG(2) << "Backprop filter conv not ready for propagation because of " "dilation factor mismatch"; return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_0, true)) { return false; } if (!are_conv_dims_compatible(consumer->convolution_dimension_numbers(), dim_map_val_op_1, false)) { return false; } VLOG(2) << "Backprop filter conv ready for propagation"; return true; } if (consumer->opcode() == HloOpcode::kReduceWindow || consumer->opcode() == HloOpcode::kReduce) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { auto old_producer = consumer->mutable_operand(i); if (i == 0 && !old_to_new_instrs_.contains(old_producer)) { return false; } } if (consumer->opcode() == HloOpcode::kReduceWindow) { return IsSpaceToBatchedSpaceSizeSuitable(consumer); } } if (consumer->opcode() == HloOpcode::kSelectAndScatter) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { auto old_producer = consumer->mutable_operand(i); if (i < 2 && !old_to_new_instrs_.contains(old_producer)) { return false; } } auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto dim_map_val_op_0 = instr_to_dim_map_[consumer->mutable_operand(0)]; auto second_operand = old_to_new_instrs_[consumer->mutable_operand(1)]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; auto permute_dims_second_operand = instr_to_dim_permute_map_[second_operand]; if (permute_dims_first_operand != permute_dims_second_operand) { VLOG(2) << "Can't propagate through select and scatter due to " "permutation mismatch"; return false; } const int64_t old_batch_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val_op_0[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t new_batch_dim = DimLookUp(permute_dims_first_operand, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims_first_operand, old_space_dim); if (first_operand->shape().dimensions(new_batch_dim) != second_operand->shape().dimensions(new_batch_dim)) { VLOG(2) << "Can't propagate through select and scatter due to dim mismatch"; return false; } const int64_t stride = consumer->window().dimensions(old_space_dim).stride(); const int64_t pad_high = consumer->window().dimensions(old_space_dim).padding_high(); const int64_t pad_low = consumer->window().dimensions(old_space_dim).padding_low(); if ((first_operand->shape().dimensions(new_space_dim) + pad_high + pad_low) / stride != second_operand->shape().dimensions(new_space_dim)) { VLOG(2) << "Can't propagate through select and scatter due to stride " "mismatch"; return false; } return IsSpaceToBatchedSpaceSizeSuitable(consumer); } return true; } void ConvolutionVisitor::PropagateOnBroadcast(HloInstruction* consumer, HloInstruction* producer) { auto new_producer = old_to_new_instrs_[producer]; auto permute_dims = instr_to_dim_permute_map_[new_producer]; auto dim_map_val = instr_to_dim_map_[producer]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto orig_broadcast_dims = consumer->dimensions(); bool batch_is_broadcasted = absl::c_linear_search(orig_broadcast_dims, old_batch_dim); const int64_t new_batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims, old_space_dim); bool map_found = broadcast_map_.contains(consumer); if (map_found) { for (auto previous_broadcast : broadcast_map_[consumer]) { if (ShapeUtil::CompatibleIgnoringElementType(previous_broadcast->shape(), new_producer->shape())) { return; } } } std::vector<int64_t> final_shape_dims( new_producer->shape().dimensions().begin(), new_producer->shape().dimensions().end()); if (batch_is_broadcasted) { final_shape_dims[new_batch_dim] = producer->shape().dimensions(old_batch_dim); final_shape_dims[new_space_dim] *= ctrl_.number_of_splits; } std::vector<int64_t> broadcast_dims; const auto& dimensions = consumer->dimensions(); broadcast_dims.reserve(dimensions.size()); for (auto j : dimensions) { broadcast_dims.push_back(DimLookUp(permute_dims, j)); } auto new_broadcast = MakeBroadcastHlo( consumer->mutable_operand(0), broadcast_dims, final_shape_dims, &consumer->metadata(), &consumer->frontend_attributes()); VLOG(1) << "Created broadcast " << new_broadcast->ToString(); if (batch_is_broadcasted) { new_broadcast = MakeReshapeHlo(new_producer->shape().dimensions(), new_broadcast) .value(); VLOG(2) << "Created reshape of broadcast " << new_broadcast->ToString(); } if (!map_found) { absl::flat_hash_set<HloInstruction*> set_of_broadcasts; broadcast_map_[consumer] = set_of_broadcasts; } broadcast_map_[consumer].insert(new_broadcast); } void ConvolutionVisitor::RewriteBroadcastTree( HloInstruction* producer, std::vector<HloInstruction*>& instructions_to_transform) { CHECK(old_to_new_instrs_.contains(producer)); for (auto instr : instructions_to_transform) { if (instr->opcode() == HloOpcode::kBroadcast) { PropagateOnBroadcast(instr, producer); } else if (IsTrivialElementwise(instr)) { Propagate(instr, instr->mutable_operand(0)).value(); } else { LOG(FATAL) << "Unsupported opcode in RewriteBroadcastTree"; } } } bool ConvolutionVisitor::IsBroadcastTree( HloInstruction* op, HloInstruction* consumer, std::vector<HloInstruction*>& instructions_to_transform) { if (op->opcode() == HloOpcode::kBroadcast) { if (IsBroadcastPropagatable(op, consumer)) { instructions_to_transform.push_back(op); return true; } else { return false; } } if (Match(op, m::ConstantScalar())) { return true; } if (!IsTrivialElementwise(op)) { return false; } for (int64_t i = 0; i < op->operand_count(); ++i) { if (!IsBroadcastTree(op->mutable_operand(i), consumer, instructions_to_transform)) { return false; } } instructions_to_transform.push_back(op); return true; } bool ConvolutionVisitor::IsBroadcastPropagatable(HloInstruction* broadcast, HloInstruction* old_other_op) { CHECK_EQ(broadcast->opcode(), HloOpcode::kBroadcast); CHECK(instr_to_dim_map_.contains(old_other_op)); auto result = instr_to_dim_map_[old_other_op]; const int64_t space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto broadcast_dims = broadcast->dimensions(); return !absl::c_linear_search(broadcast_dims, space_dim); } bool ConvolutionVisitor::IsOpcodeNonPropagatable(HloInstruction* consumer) { switch (consumer->opcode()) { case HloOpcode::kCustomCall: return true; default: return false; } } bool ConvolutionVisitor::SupportedDotForPropagation(HloInstruction* consumer, HloInstruction* producer) { if (consumer->opcode() != HloOpcode::kDot) { return false; } auto operand = consumer->mutable_operand(0); if (operand != producer || !instr_to_dim_map_.contains(operand)) { return false; } const auto& dnums = consumer->dot_dimension_numbers(); const auto& contracting_dims = dnums.lhs_contracting_dimensions(); const auto& batch_dims = dnums.lhs_batch_dimensions(); auto result = instr_to_dim_map_[operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_feature_dim = result[DimMapper(SpaceToBatchDimMap::kFeature)]; if (consumer->operand(1)->shape().rank() == batch_dims.size() + contracting_dims.size()) { return false; } bool found = false; for (auto dim : batch_dims) { if (dim == old_batch_dim || dim == old_space_dim) { return false; } if (dim == old_feature_dim) { found = true; } } if (!found) { return false; } for (auto dim : contracting_dims) { if (dim == old_batch_dim || dim == old_space_dim) { return false; } } return true; } bool ConvolutionVisitor::SupportedOpForPropagation(HloInstruction* consumer, HloInstruction* producer) { if (IsOpcodeNonPropagatable(consumer)) { return false; } if (IsTrivialElementwise(consumer)) { for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (consumer->operand(i)->opcode() == HloOpcode::kBroadcast) { if (!IsBroadcastPropagatable(consumer->mutable_operand(i), producer)) { VLOG(2) << "Could not propagate through broadcast"; return false; } } } return true; } if (consumer->opcode() == HloOpcode::kConvolution) { return true; } if (consumer->opcode() == HloOpcode::kConcatenate) { HloInstruction* pivot_operand = nullptr; for (int64_t i = 0; i < consumer->operand_count(); ++i) { if (instr_to_dim_map_.contains(consumer->mutable_operand(i))) { pivot_operand = consumer->mutable_operand(i); break; } } if (pivot_operand == nullptr) { VLOG(1) << "Concat: Dim map not found on any operand"; return false; } auto result = instr_to_dim_map_[pivot_operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (consumer->concatenate_dimension() == old_batch_dim || consumer->concatenate_dimension() == old_space_dim) { return false; } return true; } if (consumer->opcode() == HloOpcode::kReverse) { auto operand_0 = consumer->mutable_operand(0); if (!instr_to_dim_map_.contains(operand_0)) { return false; } auto result = instr_to_dim_map_[operand_0]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; for (auto dim : consumer->dimensions()) { if (dim == old_batch_dim || dim == old_space_dim) { return false; } } return true; } if (consumer->opcode() == HloOpcode::kTranspose) { return true; } if (consumer->opcode() == HloOpcode::kPad) { auto operand_0 = consumer->mutable_operand(0); if (!instr_to_dim_map_.contains(operand_0)) { return false; } auto result = instr_to_dim_map_[operand_0]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto does_dim_have_padding = [](PaddingConfig padding_config, int64_t dim) { return padding_config.dimensions(dim).edge_padding_low() != 0 || padding_config.dimensions(dim).edge_padding_high() != 0 || padding_config.dimensions(dim).interior_padding() != 0; }; if (does_dim_have_padding(consumer->padding_config(), old_batch_dim) || does_dim_have_padding(consumer->padding_config(), old_space_dim)) { return false; } return true; } if (consumer->opcode() == HloOpcode::kSlice) { auto operand = consumer->mutable_operand(0); if (!instr_to_dim_map_.contains(operand)) { return false; } auto result = instr_to_dim_map_[operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (consumer->shape().dimensions(old_batch_dim) != operand->shape().dimensions(old_batch_dim)) { return false; } if (consumer->shape().dimensions(old_space_dim) != operand->shape().dimensions(old_space_dim)) { return false; } return true; } if (SupportedDotForPropagation(consumer, producer)) { return true; } if (consumer->opcode() == HloOpcode::kReduce) { if (consumer->shape().IsTuple()) { return false; } auto reduce_dims = consumer->dimensions(); auto result = instr_to_dim_map_[consumer->mutable_operand(0)]; const int64_t batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (!absl::c_linear_search(reduce_dims, batch_dim) && !absl::c_linear_search(reduce_dims, space_dim)) { return true; } return absl::c_linear_search(reduce_dims, batch_dim) && absl::c_linear_search(reduce_dims, space_dim); } if (consumer->opcode() == HloOpcode::kReduceWindow && consumer->shape().IsTuple()) { return false; } if (consumer->opcode() == HloOpcode::kReduceWindow || consumer->opcode() == HloOpcode::kSelectAndScatter) { auto first_operand = consumer->mutable_operand(0); auto window = consumer->window(); if (instr_to_dim_map_.count(first_operand) <= 0) { VLOG(1) << "Dim map not found on windowed operand. Window dim count " << window.dimensions().size(); return false; } auto result = instr_to_dim_map_[first_operand]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; if (window.dimensions(old_batch_dim).size() != 1) { return false; } if (window.dimensions(old_space_dim).padding_low() != 0) { return false; } if (window.dimensions(old_space_dim).base_dilation() != 1 || window.dimensions(old_space_dim).window_dilation() != 1) { return false; } if (window.dimensions(old_batch_dim).base_dilation() != 1 || window.dimensions(old_batch_dim).window_dilation() != 1) { return false; } if (window.dimensions(old_space_dim).padding_high() > window.dimensions(old_space_dim).size()) { return false; } if (old_to_new_instrs_.count(first_operand) <= 0) { return false; } auto new_operand = old_to_new_instrs_[first_operand]; auto permute_dims = instr_to_dim_permute_map_[new_operand]; if (consumer->opcode() == HloOpcode::kSelectAndScatter) { const int64_t new_space_dim = DimLookUp(permute_dims, old_space_dim); if (new_operand->shape().dimensions(new_space_dim) % window.dimensions(old_space_dim).stride() != 0) { return false; } if (!ShapeUtil::ElementIsFloating(consumer->shape())) { return false; } auto scatter_comp = consumer->scatter(); if (!Match(scatter_comp->root_instruction(), m::AddAnyOrder(m::Parameter(0), m::Parameter(1)))) { return false; } auto select_comp = consumer->select(); if (!Match(select_comp->root_instruction(), m::Compare(m::Parameter(0), m::Parameter(1)) .WithComparisonDirection(ComparisonDirection::kGe)) && !Match(select_comp->root_instruction(), m::Compare(m::Parameter(1), m::Parameter(0)) .WithComparisonDirection(ComparisonDirection::kGe))) { return false; } if (consumer->window().dimensions(old_space_dim).padding_low() != 0) { return false; } } return true; } return false; } absl::StatusOr<bool> ConvolutionVisitor::Propagate(HloInstruction* consumer, HloInstruction* producer) { auto computation = consumer->parent(); if (IsTrivialElementwise(consumer)) { auto dim_map_val = instr_to_dim_map_[producer]; auto new_consumer = computation->AddInstruction(consumer->Clone()); bool is_pivot_producer_modified = false; if (consumer->IsElementwiseBinary() || consumer->opcode() == HloOpcode::kSelect) { int64_t pivot_operand_number = -1; HloInstruction* pivot_operand = nullptr; for (int i = 0; i < consumer->operand_count(); ++i) { if (consumer->operand(i)->opcode() == HloOpcode::kBroadcast) { continue; } auto operand = consumer->mutable_operand(i); if (old_to_new_instrs_.contains(operand)) { if (pivot_operand_number == -1 || old_to_new_instrs_[pivot_operand]->shape().dimensions() < old_to_new_instrs_[operand]->shape().dimensions()) { is_pivot_producer_modified = true; pivot_operand_number = i; pivot_operand = consumer->mutable_operand(pivot_operand_number); } } } if (pivot_operand_number != -1) { producer = pivot_operand; } } for (int64_t i = 0; i < consumer->operand_count(); ++i) { std::vector<HloInstruction*> instructions_to_transform; if (consumer->operand(i)->opcode() == HloOpcode::kBroadcast) { auto broadcast = consumer->mutable_operand(i); PropagateOnBroadcast(broadcast, producer); HloInstruction* new_broadcast = nullptr; auto new_producer = old_to_new_instrs_[producer]; for (auto previous_broadcast : broadcast_map_[broadcast]) { if (ShapeUtil::CompatibleIgnoringElementType( previous_broadcast->shape(), new_producer->shape())) { new_broadcast = previous_broadcast; break; } } CHECK_NE(new_broadcast, nullptr); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(i, new_broadcast)); } else if (old_to_new_instrs_.contains(consumer->mutable_operand(i))) { HloInstruction* operand_to_use = nullptr; auto result = instr_to_dim_map_[producer]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_batch_size = producer->shape().dimensions(old_batch_dim); HloInstruction* new_instr = old_to_new_instrs_[consumer->mutable_operand(i)]; HloInstruction* pivot_new_instr = old_to_new_instrs_[producer]; auto permute_dims = instr_to_dim_permute_map_[new_instr]; const int64_t batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t space_dim = DimLookUp(permute_dims, old_space_dim); const int64_t batch_size = new_instr->shape().dimensions(batch_dim); if (new_instr->shape().dimensions(space_dim) != pivot_new_instr->shape().dimensions(space_dim)) { CHECK_EQ(batch_dim + 1, space_dim); std::vector<int64_t> new_dimensions( new_instr->shape().dimensions().begin(), new_instr->shape().dimensions().end()); new_dimensions[space_dim] *= (batch_size / old_batch_size); new_dimensions[batch_dim] = old_batch_size; TF_ASSIGN_OR_RETURN(HloInstruction * reshape, MakeReshapeHlo(new_dimensions, new_instr)); const int64_t pivot_space_size = pivot_new_instr->shape().dimensions(space_dim) * batch_size / old_batch_size; CHECK(pivot_space_size > new_dimensions[space_dim] || !is_pivot_producer_modified); PaddingConfig padding_config = MakeNoPaddingConfig(reshape->shape().dimensions_size()); padding_config.mutable_dimensions(space_dim)->set_edge_padding_high( pivot_space_size - new_dimensions[space_dim]); padding_config.mutable_dimensions(space_dim)->set_edge_padding_low(0); HloInstruction* padding = consumer->AddInstruction(HloInstruction::CreateConstant( LiteralUtil::Zero(reshape->shape().element_type()))); TF_ASSIGN_OR_RETURN( HloInstruction * padded_operand, MakePadHlo(reshape, padding, padding_config, &reshape->metadata(), &reshape->frontend_attributes())); TF_ASSIGN_OR_RETURN( operand_to_use, MakeReshapeHlo(pivot_new_instr->shape().dimensions(), padded_operand)); } else { operand_to_use = old_to_new_instrs_[consumer->mutable_operand(i)]; } TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(i, operand_to_use)); } else if (consumer->IsElementwiseBinary() && consumer->mutable_operand(i)->opcode() == HloOpcode::kBroadcast && IsBroadcastTree(consumer->mutable_operand(i), producer, instructions_to_transform)) { RewriteBroadcastTree(producer, instructions_to_transform); TF_CHECK_OK(new_consumer->ReplaceOperandWithDifferentShape( i, old_to_new_instrs_[consumer->mutable_operand(i)])); } else if (consumer->operand(i)->opcode() == HloOpcode::kConstant) { TF_ASSIGN_OR_RETURN( auto new_constant, PropagateOnConstant(consumer->mutable_operand(i), producer)); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(i, new_constant)); } } auto old_type = new_consumer->mutable_shape()->element_type(); *(new_consumer->mutable_shape()) = old_to_new_instrs_[producer]->shape(); new_consumer->mutable_shape()->set_element_type(old_type); old_to_new_instrs_[consumer] = new_consumer; instr_to_dim_map_[consumer] = std::vector<int64_t>(dim_map_val); CHECK(instr_to_dim_permute_map_.contains(old_to_new_instrs_[producer])); instr_to_dim_permute_map_[new_consumer] = std::vector<int64_t>( instr_to_dim_permute_map_[old_to_new_instrs_[producer]]); VLOG(2) << " new_consumer " << new_consumer->ToString() << " old_to_new_instrs_[producer] " << old_to_new_instrs_[producer]->ToString() << " permute dims " << instr_to_dim_permute_map_.count(new_consumer); return true; } if (consumer->opcode() == HloOpcode::kConvolution) { if (IsConvSuitableForSpaceToBatch(consumer)) { TF_CHECK_OK(PropagateOnConv(consumer)); return true; } else { TF_CHECK_OK(PropagateOnBackpropFilterConv(consumer)); return false; } } if (consumer->opcode() == HloOpcode::kConcatenate) { TF_CHECK_OK(PropagateOnConcat(consumer)); return true; } if (consumer->opcode() == HloOpcode::kReverse) { TF_CHECK_OK(PropagateOnReverse(consumer)); return true; } if (consumer->opcode() == HloOpcode::kDot) { auto dim_map_val = instr_to_dim_map_[producer]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; int64_t new_batch_dim = -1; int64_t new_space_dim = -1; int64_t outer = 0; for (int64_t i = 0; i < producer->shape().rank(); ++i) { if (absl::c_linear_search( consumer->dot_dimension_numbers().lhs_batch_dimensions(), i) || absl::c_linear_search( consumer->dot_dimension_numbers().lhs_contracting_dimensions(), i)) { continue; } if (i == old_batch_dim) { new_batch_dim = outer + consumer->dot_dimension_numbers().lhs_batch_dimensions_size(); } if (i == old_space_dim) { new_batch_dim = outer + consumer->dot_dimension_numbers().lhs_batch_dimensions_size(); } ++outer; } std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = new_batch_dim; dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = new_space_dim; dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = consumer->shape().rank() - 1; instr_to_dim_map_[consumer] = dim_map; auto new_consumer = computation->AddInstruction(consumer->Clone()); new_consumer->mutable_shape()->mutable_dimensions()[new_batch_dim] = producer->shape().dimensions(old_batch_dim); new_consumer->mutable_shape()->mutable_dimensions()[new_space_dim] = producer->shape().dimensions(old_space_dim); old_to_new_instrs_[consumer] = new_consumer; return true; } if (consumer->opcode() == HloOpcode::kPad) { TF_CHECK_OK(PropagateOnPad(consumer)); return true; } if (consumer->opcode() == HloOpcode::kSlice) { TF_CHECK_OK(PropagateOnSlice(consumer)); return true; } if (consumer->opcode() == HloOpcode::kReduce) { auto reduce_dims = consumer->dimensions(); auto dim_map_val = instr_to_dim_map_[consumer->mutable_operand(0)]; auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t new_batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t new_space_dim = DimLookUp(permute_dims, space_dim); std::vector<int64_t> changed_dims(consumer->dimensions().size()); if (!absl::c_linear_search(reduce_dims, old_batch_dim) && !absl::c_linear_search(reduce_dims, space_dim)) { for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { changed_dims[i] = DimLookUp(permute_dims, consumer->dimensions(i)); } int64_t new_output_batch_dim = new_batch_dim; int64_t new_output_space_dim = new_space_dim; for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { if (changed_dims[i] < new_batch_dim) { new_output_batch_dim--; } if (changed_dims[i] < new_space_dim) { new_output_space_dim--; } } int64_t old_output_batch_dim = old_batch_dim; int64_t old_output_space_dim = space_dim; for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { if (reduce_dims[i] < old_batch_dim) { old_output_batch_dim--; } if (reduce_dims[i] < space_dim) { old_output_space_dim--; } } HloInstruction* new_consumer = nullptr; TF_ASSIGN_OR_RETURN( new_consumer, MakeReduceHlo(first_operand, consumer->mutable_operand(1), changed_dims, consumer->called_computations()[0])); VLOG(3) << " new_output_batch_dim " << new_output_batch_dim << " size " << first_operand->shape().dimensions(new_batch_dim) << " new_output_space_dim " << new_output_space_dim << " size " << first_operand->shape().dimensions(new_space_dim); std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = old_output_batch_dim; dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = old_output_space_dim; dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = -1; instr_to_dim_map_[consumer] = dim_map; const int64_t rank = first_operand->shape().rank(); const int64_t output_rank = new_consumer->shape().rank(); std::vector<int64_t> old_reduce_output_to_input(output_rank); int dim_number_to_assign_old = 0; for (int64_t i = 0; i < rank; ++i) { if (auto it = absl::c_find(reduce_dims, i); it != reduce_dims.end()) { continue; } old_reduce_output_to_input[dim_number_to_assign_old++] = i; } std::vector<int64_t> new_reduce_output_to_input(output_rank); int dim_number_to_assign_new = 0; for (int64_t i = 0; i < rank; ++i) { if (auto it = absl::c_find(changed_dims, i); it != changed_dims.end()) { continue; } new_reduce_output_to_input[dim_number_to_assign_new++] = i; } std::vector<int64_t> new_permute_dims(output_rank); for (int64_t i = 0; i < output_rank; ++i) { new_permute_dims[i] = std::distance( new_reduce_output_to_input.begin(), absl::c_find( new_reduce_output_to_input, DimLookUp(permute_dims, old_reduce_output_to_input[i]))); } instr_to_dim_permute_map_[new_consumer] = new_permute_dims; old_to_new_instrs_[consumer] = new_consumer; return true; } HloInstruction* new_consumer = computation->AddInstruction(consumer->Clone()); auto retval = GetSpatialDimsToSplit(consumer->mutable_operand(0)); std::vector<int64_t> old_spatial_dims = retval.first; std::vector<int64_t> new_spatial_dims = retval.second; TF_ASSIGN_OR_RETURN( first_operand, SelectValidPortion(first_operand, consumer->mutable_operand(0), consumer->mutable_operand(1), new_batch_dim, new_spatial_dims, old_batch_dim, old_spatial_dims)); for (int64_t i = 0; i < new_consumer->dimensions().size(); ++i) { changed_dims[i] = DimLookUp(permute_dims, new_consumer->dimensions(i)); } *(new_consumer->mutable_dimensions()) = changed_dims; TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(0, first_operand)); old_to_new_instrs_[consumer] = new_consumer; instr_to_dim_map_[consumer] = std::vector<int64_t>(dim_map_val); return false; } if (consumer->opcode() == HloOpcode::kTranspose) { auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto new_consumer = computation->AddInstruction(first_operand->Clone()); old_to_new_instrs_[consumer] = new_consumer; auto dim_map_val = instr_to_dim_map_[consumer->mutable_operand(0)]; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_feature_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kFeature)]; int64_t new_batch_dim, new_space_dim, new_feature_dim; std::vector<int64_t> new_dimensions(consumer->dimensions().size()); for (int64_t ctr = 0; ctr < consumer->dimensions().size(); ++ctr) { int64_t dim = consumer->dimensions(ctr); if (dim == old_batch_dim) { new_batch_dim = ctr; } if (dim == old_space_dim) { new_space_dim = ctr; } if (dim == old_feature_dim) { new_feature_dim = ctr; } } std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = new_batch_dim; dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = new_feature_dim; dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = new_space_dim; instr_to_dim_map_[consumer] = dim_map; std::vector<int64_t> new_permute_dims(consumer->dimensions().size()); auto permute_dims = instr_to_dim_permute_map_[first_operand]; for (int64_t i = 0; i < consumer->dimensions().size(); ++i) { new_permute_dims[i] = DimLookUp(permute_dims, consumer->dimensions(i)); } instr_to_dim_permute_map_[new_consumer] = new_permute_dims; return true; } if (consumer->opcode() == HloOpcode::kReduceWindow || consumer->opcode() == HloOpcode::kSelectAndScatter) { bool is_select_and_scatter = consumer->opcode() == HloOpcode::kSelectAndScatter; auto first_operand = old_to_new_instrs_[consumer->mutable_operand(0)]; auto init_val = is_select_and_scatter ? consumer->mutable_operand(2) : consumer->mutable_operand(1); auto dim_map_val = instr_to_dim_map_[consumer->mutable_operand(0)]; auto retval = GetSpatialDimsToSplit(consumer->mutable_operand(0)); std::vector<int64_t> old_spatial_dims = retval.first; std::vector<int64_t> new_spatial_dims = retval.second; const int64_t old_batch_dim = dim_map_val[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = old_spatial_dims[0]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; const int64_t new_batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t new_space_dim = new_spatial_dims[0]; auto new_shape = first_operand->shape(); auto old_shape = consumer->mutable_operand(0)->shape(); const int64_t new_space_size = new_shape.dimensions(new_space_dim); const int64_t stride = consumer->window().dimensions(old_space_dim).stride(); auto pad_val = is_select_and_scatter ? consumer->AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MinValue( consumer->operand(2)->shape().element_type()))) : init_val; TF_ASSIGN_OR_RETURN( first_operand, SelectValidPortion(first_operand, consumer->mutable_operand(0), pad_val, new_batch_dim, new_spatial_dims, old_batch_dim, old_spatial_dims)); const int64_t extra_space = new_space_size % stride; if (extra_space) { CHECK_EQ(consumer->opcode(), HloOpcode::kReduceWindow); const int64_t old_batch_size = old_shape.dimensions(old_batch_dim); const int64_t old_space_size = old_shape.dimensions(old_space_dim); if ((new_space_size - extra_space) * old_batch_size * ctrl_.number_of_splits >= old_batch_size * old_space_size) { TF_ASSIGN_OR_RETURN( first_operand, ChangeSpatialSizeOnSpaceToBatchedShape( first_operand, new_batch_dim, old_batch_size, new_spatial_dims, new_space_size - extra_space)); } else { TF_ASSIGN_OR_RETURN( first_operand, ChangeSpatialSizeOnSpaceToBatchedShape( first_operand, new_batch_dim, old_batch_size, new_spatial_dims, new_space_size + stride - extra_space, true)); } } const int64_t window_size = consumer->window().dimensions(old_space_dim).size(); const int64_t last_overlap_point = ((new_space_size - 1) / stride) * stride; VLOG(1) << "last_overlap_point " << last_overlap_point << " window_size " << window_size << " new_space_size " << new_space_size; const int64_t halo_size = last_overlap_point + window_size - new_space_size; if (halo_size > 0) { TF_ASSIGN_OR_RETURN( first_operand, HaloDuplicateWithSlice(first_operand, new_spatial_dims, new_batch_dim, 0, halo_size, init_val)); } Window new_win; for (int64_t i = 0; i < consumer->window().dimensions().size(); ++i) { auto dim = ReverseDimLookUp(permute_dims, i); new_win.add_dimensions(); new_win.mutable_dimensions(i)->set_stride( consumer->window().dimensions(dim).stride()); new_win.mutable_dimensions(i)->set_size( consumer->window().dimensions(dim).size()); if (i == old_space_dim) { new_win.mutable_dimensions(i)->set_padding_high(0); new_win.mutable_dimensions(i)->set_padding_low(0); } else { new_win.mutable_dimensions(i)->set_padding_high( consumer->window().dimensions(dim).padding_high()); new_win.mutable_dimensions(i)->set_padding_low( consumer->window().dimensions(dim).padding_low()); } new_win.mutable_dimensions(i)->set_window_dilation( consumer->window().dimensions(dim).window_dilation()); new_win.mutable_dimensions(i)->set_base_dilation( consumer->window().dimensions(dim).base_dilation()); new_win.mutable_dimensions(i)->set_window_reversal( consumer->window().dimensions(dim).window_reversal()); } new_shape = first_operand->shape(); HloInstruction* new_consumer = nullptr; if (is_select_and_scatter) { auto second_operand = old_to_new_instrs_[consumer->mutable_operand(1)]; auto select_comp = consumer->select(); auto scatter_comp = consumer->scatter(); TF_ASSIGN_OR_RETURN( auto new_select_and_scatter_shape, ShapeInference::InferSelectAndScatterShape( new_shape, select_comp->ComputeProgramShape(), new_win, second_operand->shape(), init_val->shape(), scatter_comp->ComputeProgramShape())); new_consumer = computation_->AddInstruction( HloInstruction::CreateSelectAndScatter( new_select_and_scatter_shape, first_operand, select_comp, new_win, second_operand, init_val, scatter_comp), &consumer->metadata(), &consumer->frontend_attributes()); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(0, first_operand)); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(1, second_operand)); VLOG(2) << "New select and scatter " << new_consumer->ToString(); if (halo_size > 0) { const int64_t rank = new_consumer->shape().rank(); const int64_t batch_size = new_consumer->shape().dimensions(new_batch_dim); std::vector<int64_t> start_indices(rank, 0), end_indices(new_consumer->shape().dimensions().begin(), new_consumer->shape().dimensions().end()), strides(rank, 1); start_indices[new_space_dim] = new_space_size; end_indices[new_space_dim] = new_space_size + halo_size; end_indices[new_batch_dim] = batch_size - 1; TF_ASSIGN_OR_RETURN( HloInstruction * bottom, MakeSliceHlo(new_consumer, start_indices, end_indices, strides, &consumer->metadata(), &consumer->frontend_attributes())); std::vector<int64_t> start_indices_top(rank, 0), end_indices_top(new_consumer->shape().dimensions().begin(), new_consumer->shape().dimensions().end()); end_indices_top[new_space_dim] = halo_size; start_indices_top[new_batch_dim] = 1; TF_ASSIGN_OR_RETURN( HloInstruction * top, MakeSliceHlo(new_consumer, start_indices_top, end_indices_top, strides, &consumer->metadata(), &consumer->frontend_attributes())); HloInstruction* default_fill = MakeBroadcastHlo( init_val, {}, top->shape().dimensions(), &init_val->metadata(), &init_val->frontend_attributes()); TF_ASSIGN_OR_RETURN( HloInstruction * bottom_compare, MakeCompareHlo(ComparisonDirection::kNe, bottom, default_fill, &bottom->metadata(), &bottom->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * bottom_taken, MakeSelectHlo(bottom_compare, bottom, default_fill, nullptr, &bottom_compare->metadata(), &bottom_compare->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * top_compare, MakeCompareHlo(ComparisonDirection::kNe, top, default_fill, &top->metadata(), &top->frontend_attributes())); TF_ASSIGN_OR_RETURN(HloInstruction * top_taken, MakeSelectHlo(top_compare, top, bottom_taken, nullptr, &top_compare->metadata(), &top_compare->frontend_attributes())); TF_ASSIGN_OR_RETURN(HloInstruction * both_compare, MakeBinaryHlo(HloOpcode::kAnd, top_compare, bottom_compare, &consumer->metadata(), &consumer->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * both_added, MakeBinaryHlo(HloOpcode::kAdd, top, bottom, &consumer->metadata(), &consumer->frontend_attributes())); TF_ASSIGN_OR_RETURN( HloInstruction * final_selection, MakeSelectHlo(both_compare, both_added, top_taken, nullptr, &both_compare->metadata(), &both_compare->frontend_attributes())); PaddingConfig padding_config = MakeNoPaddingConfig(final_selection->shape().dimensions_size()); padding_config.mutable_dimensions(new_batch_dim) ->set_edge_padding_low(1); padding_config.mutable_dimensions(new_space_dim) ->set_edge_padding_high(new_space_size); HloInstruction* padding = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(final_selection->shape().element_type())), &consumer->metadata(), &consumer->frontend_attributes()); TF_ASSIGN_OR_RETURN( final_selection, MakePadHlo(final_selection, padding, padding_config, &final_selection->metadata(), &final_selection->frontend_attributes())); tsl::core::Bitmap b(batch_size * (new_space_size + halo_size)); for (int k = 0; k < batch_size * (new_space_size + halo_size); ++k) { const int64_t space_index = k % (new_space_size + halo_size); const int64_t batch_index = (k / (new_space_size + halo_size)); if (batch_index < 1 || space_index >= halo_size) { b.set(k); } else { b.clear(k); } } auto arg_literal = LiteralUtil::CreateR1(b); VLOG(4) << "Slice mask created: arg literal " << arg_literal.ToString(); HloInstruction* slice_mask = computation_->AddInstruction( HloInstruction::CreateConstant(std::move(arg_literal)), &consumer->metadata(), &consumer->frontend_attributes()); std::vector<int64_t> slice_mask_reshape_dims(2); slice_mask_reshape_dims[0] = batch_size; slice_mask_reshape_dims[1] = (new_space_size + halo_size); TF_ASSIGN_OR_RETURN( HloInstruction * slice_mask_reshaped, MakeReshapeHlo(slice_mask_reshape_dims, slice_mask)); HloInstruction* shape_mask = MakeBroadcastHlo( slice_mask_reshaped, {new_batch_dim, new_space_dim}, final_selection->shape().dimensions(), &slice_mask->metadata(), &slice_mask->frontend_attributes()); TF_ASSIGN_OR_RETURN( new_consumer, MakeSelectHlo(shape_mask, new_consumer, final_selection, nullptr, &shape_mask->metadata(), &shape_mask->frontend_attributes())); } auto previous_shape = old_to_new_instrs_[consumer->mutable_operand(0)]->shape(); std::vector<int64_t> start_indices(previous_shape.rank(), 0), end_indices(previous_shape.dimensions().begin(), previous_shape.dimensions().end()), strides(previous_shape.rank(), 1); TF_ASSIGN_OR_RETURN(new_consumer, MakeSliceHlo(new_consumer, start_indices, end_indices, strides, &consumer->metadata(), &consumer->frontend_attributes())); } else { auto reduce_comp = consumer->to_apply(); TF_ASSIGN_OR_RETURN(auto new_reduce_window_shape, ShapeInference::InferReduceWindowShape( new_shape, init_val->shape(), new_win)); new_consumer = computation_->AddInstruction( HloInstruction::CreateReduceWindow(new_reduce_window_shape, first_operand, init_val, new_win, reduce_comp), &consumer->metadata(), &consumer->frontend_attributes()); TF_CHECK_OK( new_consumer->ReplaceOperandWithDifferentShape(0, first_operand)); VLOG(1) << "New reduce window " << new_consumer->ToString(); } old_to_new_instrs_[consumer] = new_consumer; instr_to_dim_map_[consumer] = std::vector<int64_t>(dim_map_val); instr_to_dim_permute_map_[new_consumer] = std::vector<int64_t>( instr_to_dim_permute_map_[old_to_new_instrs_[consumer->mutable_operand( 0)]]); return true; } LOG(FATAL) << "Trying to propagate through an unsupported instruction " << consumer->ToString(); return true; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::SelectValidPortion( HloInstruction* new_instr, HloInstruction* old_instr, HloInstruction* select_val, int64_t new_batch_dim, absl::Span<const int64_t> new_space_dims, int64_t old_batch_dim, absl::Span<const int64_t> old_space_dims) { auto new_shape = new_instr->shape(); auto old_shape = old_instr->shape(); VLOG(1) << "In SelectValidPortion new_batch_dim " << new_batch_dim << " new_space_dim " << new_space_dims[0] << " old_batch_dim " << old_batch_dim << " old_space_dim " << old_space_dims[0]; const int64_t new_batch_size = new_shape.dimensions(new_batch_dim); const int64_t new_space_size = new_shape.dimensions(new_space_dims[0]); const int64_t old_batch_size = old_shape.dimensions(old_batch_dim); const int64_t old_space_size = old_shape.dimensions(old_space_dims[0]); CHECK_EQ(new_batch_size % old_batch_size, 0) << " New batch size " << new_batch_size << " old batch size " << old_batch_size; const int64_t num_splits = ctrl_.number_of_splits; const int64_t spatial_dim_count = new_space_dims.size(); std::vector<int64_t> bounds(2 + spatial_dim_count, new_space_size); bounds[0] = old_batch_size; bounds[1] = IPow<int64_t>(num_splits, spatial_dim_count); const int64_t total_new_space = IPow<int64_t>(new_space_size, spatial_dim_count); tsl::core::Bitmap b(new_batch_size * total_new_space); for (int k = 0; k < new_batch_size * total_new_space; ++k) { auto radix = ToMixedRadix(k, bounds); bool out_of_bounds = false; int64_t batch_residue = 1; for (int i = 0; i < spatial_dim_count; ++i) { const int64_t space_index = radix[2 + i]; const int64_t batch_index = (radix[1] / batch_residue) % num_splits; batch_residue *= num_splits; if (batch_index * new_space_size + space_index >= old_space_size) { out_of_bounds = true; } } if (!out_of_bounds) { b.set(k); } else { b.clear(k); } } auto arg_literal = LiteralUtil::CreateR1(b); VLOG(4) << "Slice mask created: arg literal " << arg_literal.ToString(); HloInstruction* slice_mask = computation_->AddInstruction( HloInstruction::CreateConstant(std::move(arg_literal)), &old_instr->metadata(), &old_instr->frontend_attributes()); std::vector<int64_t> slice_mask_reshape_dims(1 + spatial_dim_count, new_space_size); slice_mask_reshape_dims[0] = new_batch_size; TF_ASSIGN_OR_RETURN(HloInstruction * slice_mask_reshaped, MakeReshapeHlo(slice_mask_reshape_dims, slice_mask)); std::vector<int64_t> broadcast_dims(new_space_dims.begin(), new_space_dims.end()); broadcast_dims.insert(broadcast_dims.begin(), new_batch_dim); HloInstruction* shape_mask = MakeBroadcastHlo( slice_mask_reshaped, broadcast_dims, new_instr->shape().dimensions(), &slice_mask_reshaped->metadata(), &slice_mask_reshaped->frontend_attributes()); VLOG(1) << "Shape mask made " << shape_mask->ToString(); HloInstruction* zeroes = MakeBroadcastHlo( select_val, {}, new_instr->shape().dimensions(), &select_val->metadata(), &select_val->frontend_attributes()); TF_ASSIGN_OR_RETURN(new_instr, MakeSelectHlo(shape_mask, new_instr, zeroes, nullptr, &shape_mask->metadata(), &shape_mask->frontend_attributes())); return new_instr; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::BatchToSpace( HloInstruction* old_instr) { if (batch_to_space_map_.count(old_instr)) { CHECK_NE(batch_to_space_map_[old_instr], nullptr); return batch_to_space_map_[old_instr]; } auto result = instr_to_dim_map_[old_instr]; const int64_t old_batch_dim = result[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = result[DimMapper(SpaceToBatchDimMap::kSpace0)]; const int64_t old_batch_size = old_instr->shape().dimensions(old_batch_dim); CHECK(old_to_new_instrs_.contains(old_instr)); auto new_instr = old_to_new_instrs_[old_instr]; VLOG(2) << "old_batch_dim " << old_batch_dim << " old_space_dim " << old_space_dim << " old_instr " << old_instr->ToString() << "\n new_instr " << new_instr->ToString() << " permute dims " << instr_to_dim_permute_map_.count(new_instr) << " old_batch_size " << old_batch_size; CHECK(instr_to_dim_permute_map_.contains(new_instr)); auto permute_dims = instr_to_dim_permute_map_[new_instr]; const int64_t batch_dim = DimLookUp(permute_dims, old_batch_dim); const int64_t space_dim = DimLookUp(permute_dims, old_space_dim); const int64_t spatial_dim_size = new_instr->shape().dimensions(space_dim); std::vector<int64_t> split_spatial_dimensions( ctrl_.count_of_dimensions_to_convert); absl::c_iota(split_spatial_dimensions, space_dim); TF_ASSIGN_OR_RETURN(new_instr, SplitAndTransposeMergedBatch( new_instr, batch_dim, old_batch_size, split_spatial_dimensions)); std::vector<int64_t> new_dimensions(new_instr->shape().dimensions().begin(), new_instr->shape().dimensions().end()); new_dimensions.erase(new_dimensions.begin() + split_spatial_dimensions[0], new_dimensions.begin() + split_spatial_dimensions[0] + ctrl_.count_of_dimensions_to_convert); for (auto spatial_dimension : split_spatial_dimensions) { new_dimensions[spatial_dimension] = spatial_dim_size * ctrl_.number_of_splits; } TF_ASSIGN_OR_RETURN(HloInstruction * reshape, MakeReshapeHlo(new_dimensions, new_instr)); VLOG(1) << "Batch to space reshape " << reshape->ToString(); const int64_t rank = old_instr->shape().rank(); std::vector<int64_t> start_indices(rank, 0), end_indices(new_dimensions.begin(), new_dimensions.end()), strides(rank, 1); for (auto spatial_dimension : split_spatial_dimensions) { end_indices[spatial_dimension] = old_instr->shape().dimensions(old_space_dim); } TF_ASSIGN_OR_RETURN( HloInstruction * output_slice, MakeSliceHlo(reshape, start_indices, end_indices, strides, &reshape->metadata(), &reshape->frontend_attributes())); VLOG(1) << "Batch to space slice " << output_slice->ToString(); std::vector<int64_t> transpose_dims(permute_dims); TF_ASSIGN_OR_RETURN(HloInstruction * output_transpose, MakeTransposeHlo(output_slice, transpose_dims)); old_instr->SetupDerivedInstruction(output_transpose); batch_to_space_map_[old_instr] = output_transpose; return output_transpose; } absl::Status ConvolutionVisitor::PropagateOnUsers(HloInstruction* old_conv) { std::queue<std::pair<HloInstruction*, HloInstruction*>> propagation_worklist; if (old_conv->user_count() == 0) { TF_ASSIGN_OR_RETURN(HloInstruction * batch_to_space, BatchToSpace(old_conv)); VLOG(1) << "Replacing the root instruction to " << batch_to_space->ToString(); TF_CHECK_OK(computation_->ReplaceInstruction(old_conv, batch_to_space)); VLOG(1) << "Replacement successful"; return absl::OkStatus(); } int64_t iteration_count = 0; propagation_worklist.push( std::make_pair(old_conv, old_conv->mutable_operand(0))); while (!propagation_worklist.empty()) { auto top = propagation_worklist.front(); auto node = top.first; auto parent = top.second; VLOG(1) << "Traversing for propagation operating on " << node->ToString(); propagation_worklist.pop(); if (old_to_new_instrs_.count(node) > 0 && iteration_count != 0) { continue; } bool needs_further_propagation = true; if (iteration_count != 0) { TF_ASSIGN_OR_RETURN(needs_further_propagation, Propagate(node, parent)); } iteration_count++; if (node->parent()->root_instruction() == node) { if (!needs_further_propagation) { VLOG(1) << "Replacing the root instruction to " << old_to_new_instrs_[node]->ToString(); TF_CHECK_OK( computation_->ReplaceInstruction(node, old_to_new_instrs_[node])); continue; } TF_ASSIGN_OR_RETURN(HloInstruction * batch_to_space, BatchToSpace(node)); VLOG(1) << "Replacing the root instruction to " << batch_to_space->ToString(); TF_CHECK_OK(computation_->ReplaceInstruction(node, batch_to_space)); } else { if (!needs_further_propagation) { TF_CHECK_OK( computation_->ReplaceInstruction(node, old_to_new_instrs_[node])); continue; } HloInstructionSet unsupported_users; for (auto user : node->users()) { if (!SupportedOpForPropagation(user, node)) { VLOG(1) << "Unsupported op found " << user->ToString(); unsupported_users.insert(user); continue; } if (CanPropagate(user, node)) { non_propagatable_instrs_.erase(user); propagation_worklist.push(std::make_pair(user, node)); } else { non_propagatable_instrs_.insert(user); } } if (!unsupported_users.empty()) { TF_ASSIGN_OR_RETURN(HloInstruction * batch_to_space, BatchToSpace(node)); for (auto user : unsupported_users) { for (int64_t i = 0; i < user->operand_count(); ++i) { if (user->operand(i) == node) { TF_CHECK_OK(user->ReplaceOperandWith(i, batch_to_space)); } } } } } } return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnConv(HloInstruction* convolution) { auto activations_old = convolution->mutable_operand(0); CHECK(old_to_new_instrs_.contains(activations_old)); auto activations_new = old_to_new_instrs_[activations_old]; auto permute_dims = instr_to_dim_permute_map_[activations_new]; auto original_conv_dims = convolution->convolution_dimension_numbers(); auto old_new_dims = GetSpatialDimsToSplit(activations_old); std::vector<int64_t> old_spatial_dims = old_new_dims.first; std::vector<int64_t> new_spatial_dims = old_new_dims.second; auto permuted_conv_dims_numbers = original_conv_dims; int64_t activations_batch_dim = DimLookUp(permute_dims, original_conv_dims.input_batch_dimension()); int64_t activations_feature_dim = DimLookUp(permute_dims, original_conv_dims.input_feature_dimension()); permuted_conv_dims_numbers.set_input_batch_dimension(activations_batch_dim); permuted_conv_dims_numbers.set_input_feature_dimension( activations_feature_dim); for (int64_t i = 0; i < original_conv_dims.input_spatial_dimensions_size(); ++i) { permuted_conv_dims_numbers.set_input_spatial_dimensions( i, DimLookUp(permute_dims, original_conv_dims.input_spatial_dimensions(i))); } const int64_t old_batch_dim = original_conv_dims.input_batch_dimension(); const int64_t old_batch_size = activations_old->shape().dimensions(old_batch_dim); ConvDetails c = GetConvolutionDetails(convolution, permuted_conv_dims_numbers); VLOG(1) << "Propagating on conv activations_batch_dim " << activations_batch_dim << " spatial_dimension_to_split " << c.spatial_dimensions_to_split[0] << " old_batch_size " << old_batch_size; TF_ASSIGN_OR_RETURN( auto retval, BringSpaceNextToBatch(activations_new, permuted_conv_dims_numbers, activations_batch_dim, &new_spatial_dims)); activations_new = retval.instr; std::vector<int64_t> trans_dims = retval.transpose_dims; CHECK(!trans_dims.empty()); auto select_val = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(activations_new->shape().element_type())), &convolution->metadata(), &convolution->frontend_attributes()); TF_ASSIGN_OR_RETURN( activations_new, SelectValidPortion(activations_new, activations_old, select_val, activations_batch_dim, new_spatial_dims, old_batch_dim, old_spatial_dims)); auto new_dim_numbers = permuted_conv_dims_numbers; const int64_t num_splits = ctrl_.number_of_splits; const int64_t output_offsets = convolution->shape().dimensions( permuted_conv_dims_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution))); const int64_t output_offsets_per_split = CeilOfRatio(output_offsets, num_splits); int64_t spatial_split_size = CeilOfRatio(output_offsets_per_split, c.base_dilation_factor) * c.stride; VLOG(1) << "spatial size " << c.spatial_size << " halo size " << c.halo_size << " spatial_split_size " << spatial_split_size; while (spatial_split_size * num_splits + c.halo_size - c.spatial_size < 0 || spatial_split_size < c.halo_size - c.inherent_low_padding) { spatial_split_size += c.stride; } VLOG(1) << "Modified spatial_split_size " << spatial_split_size; const int64_t new_space_size = activations_new->shape().dimensions(new_spatial_dims[0]); int64_t slice_size = spatial_split_size + c.halo_size; if (spatial_split_size > new_space_size) { TF_ASSIGN_OR_RETURN( activations_new, ChangeSpatialSizeOnSpaceToBatchedShape( activations_new, activations_batch_dim, old_batch_size, new_spatial_dims, spatial_split_size, true)); } else { if (spatial_split_size < new_space_size) { VLOG(3) << "Decreasing the spatial size while propagating spatial_split_size " << spatial_split_size << " new_space_size " << new_space_size; if (new_space_size % c.stride != 0 || c.base_dilation_factor != 1) { TF_ASSIGN_OR_RETURN( activations_new, ChangeSpatialSizeOnSpaceToBatchedShape( activations_new, activations_batch_dim, old_batch_size, new_spatial_dims, spatial_split_size)); } else { const int64_t additional_space_present = spatial_split_size % c.stride; spatial_split_size = new_space_size; slice_size = spatial_split_size + std::max(c.kernel_spatial_dim_size - c.stride - additional_space_present, static_cast<int64_t>(0)); } } } TF_ASSIGN_OR_RETURN( activations_new, HaloDuplicateWithSlice( activations_new, new_spatial_dims, activations_batch_dim, c.base_dilation_factor != 1 && c.inherent_low_padding != 0 ? (c.inherent_low_padding == c.base_dilation_factor ? 1 : 0) : c.inherent_low_padding, slice_size - spatial_split_size)); const int64_t rank = (convolution->shape().rank()); std::vector<int64_t> transpose_dims(rank); int dim_count = 0; std::map<int64_t, int64_t> dim_translator; for (int j = 0; j < permuted_conv_dims_numbers.output_spatial_dimensions_size(); ++j) { if (j == GetFirstChosenSpatialDim(convolution)) { dim_translator[permuted_conv_dims_numbers.output_batch_dimension()] = dim_count; new_dim_numbers.set_output_batch_dimension(dim_count++); } dim_translator[permuted_conv_dims_numbers.output_spatial_dimensions(j)] = dim_count; new_dim_numbers.set_output_spatial_dimensions(j, dim_count); dim_count++; } dim_translator[permuted_conv_dims_numbers.output_feature_dimension()] = dim_count; new_dim_numbers.set_output_feature_dimension(dim_count); int p = 0; for (const auto& entry : dim_translator) { transpose_dims[p] = entry.second; p++; } auto new_window = convolution->window(); const int64_t first_dim = GetFirstChosenSpatialDim(convolution); for (int i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { new_window.mutable_dimensions(first_dim + i) ->set_padding_high(c.high_padding_for_conv); new_window.mutable_dimensions(first_dim + i) ->set_padding_low(c.low_padding_for_conv); } TF_ASSIGN_OR_RETURN( HloInstruction * new_conv, MakeConvolveHlo( activations_new, convolution->mutable_operand(1), convolution->feature_group_count(), convolution->batch_group_count(), new_window, new_dim_numbers, convolution->precision_config(), convolution->shape().element_type())); convolution->SetupDerivedInstruction(new_conv); old_to_new_instrs_[convolution] = new_conv; VLOG(1) << "Space-to-batched convolution " << new_conv->ToString(); std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = original_conv_dims.output_batch_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = original_conv_dims.output_feature_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = original_conv_dims.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); instr_to_dim_map_[convolution] = dim_map; instr_to_dim_permute_map_[new_conv] = std::vector<int64_t>(transpose_dims); convs_to_visit_.erase(convolution); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnConcat(HloInstruction* concat) { auto first_operand = old_to_new_instrs_[concat->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; const int64_t new_concat_dim = DimLookUp(permute_dims, concat->concatenate_dimension()); std::vector<HloInstruction*> new_operands(concat->operand_count()); for (int64_t i = 0; i < concat->operand_count(); ++i) { new_operands[i] = old_to_new_instrs_[concat->mutable_operand(i)]; } TF_ASSIGN_OR_RETURN( HloInstruction * new_concat, MakeConcatHlo(new_operands, new_concat_dim, &concat->metadata(), &concat->frontend_attributes())); old_to_new_instrs_[concat] = new_concat; instr_to_dim_map_[concat] = std::vector<int64_t>(instr_to_dim_map_[concat->mutable_operand(0)]); instr_to_dim_permute_map_[new_concat] = std::vector<int64_t>(instr_to_dim_permute_map_[first_operand]); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnReverse(HloInstruction* reverse) { auto first_operand = old_to_new_instrs_[reverse->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; std::vector<int64_t> new_reverse_dimensions(reverse->dimensions().size()); int dim_count = 0; for (auto dim : reverse->dimensions()) { new_reverse_dimensions[dim_count++] = DimLookUp(permute_dims, dim); } TF_ASSIGN_OR_RETURN(HloInstruction * new_reverse, MakeReverseHlo(first_operand, new_reverse_dimensions)); old_to_new_instrs_[reverse] = new_reverse; instr_to_dim_map_[reverse] = std::vector<int64_t>(instr_to_dim_map_[reverse->mutable_operand(0)]); instr_to_dim_permute_map_[new_reverse] = std::vector<int64_t>(instr_to_dim_permute_map_[first_operand]); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnPad(HloInstruction* pad) { auto first_operand = old_to_new_instrs_[pad->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[first_operand]; PaddingConfig padding_config; for (int i = 0; i < pad->shape().rank(); ++i) { auto dimension = padding_config.add_dimensions(); const int64_t old_dim = ReverseDimLookUp(permute_dims, i); auto old_padding = pad->padding_config().dimensions(old_dim); dimension->set_edge_padding_low(old_padding.edge_padding_low()); dimension->set_edge_padding_high(old_padding.edge_padding_high()); dimension->set_interior_padding(old_padding.interior_padding()); } HloInstruction* padding = pad->mutable_operand(1); TF_ASSIGN_OR_RETURN(auto new_pad, MakePadHlo(first_operand, padding, padding_config, &first_operand->metadata(), &first_operand->frontend_attributes())); old_to_new_instrs_[pad] = new_pad; instr_to_dim_map_[pad] = std::vector<int64_t>(instr_to_dim_map_[pad->mutable_operand(0)]); instr_to_dim_permute_map_[new_pad] = std::vector<int64_t>(instr_to_dim_permute_map_[first_operand]); return absl::OkStatus(); } absl::Status ConvolutionVisitor::PropagateOnSlice(HloInstruction* slice) { auto operand = old_to_new_instrs_[slice->mutable_operand(0)]; auto permute_dims = instr_to_dim_permute_map_[operand]; DimensionVector starts(slice->shape().rank()); DimensionVector limits(slice->shape().rank()); DimensionVector strides(slice->shape().rank()); for (int i = 0; i < slice->shape().rank(); ++i) { const int64_t old_dim = ReverseDimLookUp(permute_dims, i); if (slice->shape().dimensions(old_dim) == slice->operand(0)->shape().dimensions(old_dim)) { starts[i] = 0; strides[i] = 1; limits[i] = operand->shape().dimensions(i); continue; } starts[i] = slice->slice_starts(old_dim); strides[i] = slice->slice_strides(old_dim); limits[i] = slice->slice_limits(old_dim); } TF_ASSIGN_OR_RETURN( auto new_slice, MakeSliceHlo(operand, starts, limits, strides, &operand->metadata(), &operand->frontend_attributes())); old_to_new_instrs_[slice] = new_slice; instr_to_dim_map_[slice] = std::vector<int64_t>(instr_to_dim_map_[slice->mutable_operand(0)]); instr_to_dim_permute_map_[new_slice] = std::vector<int64_t>(instr_to_dim_permute_map_[operand]); return absl::OkStatus(); } absl::StatusOr<HloInstruction*> ConvolutionVisitor::TransposeAndMergeBatch( HloInstruction* activations, absl::Span<const int64_t> final_split_spatial_dim_positioning, int64_t activations_batch_dim, int64_t old_batch_size) { const int64_t spatial_dim_count = final_split_spatial_dim_positioning.size(); if (final_split_spatial_dim_positioning.size() > 1) { int64_t start_batch_dim_position = activations_batch_dim + 1; int64_t start_space_dim_position = start_batch_dim_position + spatial_dim_count; std::vector<int64_t> trans_dims(activations->shape().dimensions_size()); absl::c_iota(trans_dims, 0); for (int i = 0; i < spatial_dim_count; ++i) { trans_dims[start_batch_dim_position + i] = start_batch_dim_position + (spatial_dim_count - 1 - i) * 2; trans_dims[start_space_dim_position + i] = start_batch_dim_position + i * 2 + 1; } TF_ASSIGN_OR_RETURN(activations, MakeTransposeHlo(activations, trans_dims)); } std::vector<int64_t> batch_collapse_reshape_dims( activations->shape().dimensions().begin(), activations->shape().dimensions().end()); const int64_t collapsed_batch_size = old_batch_size * IPow<int64_t>(ctrl_.number_of_splits, spatial_dim_count); batch_collapse_reshape_dims.erase( batch_collapse_reshape_dims.begin() + activations_batch_dim, batch_collapse_reshape_dims.begin() + activations_batch_dim + spatial_dim_count); batch_collapse_reshape_dims[activations_batch_dim] = collapsed_batch_size; TF_ASSIGN_OR_RETURN(HloInstruction * batch_collapsed_reshape, MakeReshapeHlo(batch_collapse_reshape_dims, activations)); return batch_collapsed_reshape; } absl::StatusOr<HloInstruction*> ConvolutionVisitor::PerformSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t spatial_split_size, int64_t num_splits) { const int64_t old_batch_size = activations->shape().dimensions(activations_batch_dim); std::vector<int64_t> reshape_dimensions( activations->shape().dimensions().begin(), activations->shape().dimensions().end()); for (auto spatial_dimension_to_split : spatial_dimensions_to_split) { reshape_dimensions[spatial_dimension_to_split] = spatial_split_size; } int counter = 0; for (auto spatial_dimension_to_split : spatial_dimensions_to_split) { reshape_dimensions.insert( reshape_dimensions.begin() + (spatial_dimension_to_split + counter), num_splits); counter++; } TF_ASSIGN_OR_RETURN(HloInstruction * batch_increased_reshape, MakeReshapeHlo(reshape_dimensions, activations)); return TransposeAndMergeBatch( batch_increased_reshape, spatial_dimensions_to_split, activations_batch_dim, old_batch_size); } absl::StatusOr<HloInstruction*> ConvolutionVisitor::PadAndSplitSpace( HloInstruction* activations, absl::Span<const int64_t> spatial_dimensions_to_split, int64_t activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits) { const int64_t old_batch_size = activations->shape().dimensions(activations_batch_dim); if (high_padding || low_padding) { PaddingConfig padding_config = MakeNoPaddingConfig(activations->shape().dimensions_size()); for (auto spatial_dimension_to_split : spatial_dimensions_to_split) { padding_config.mutable_dimensions(spatial_dimension_to_split) ->set_edge_padding_high(high_padding); padding_config.mutable_dimensions(spatial_dimension_to_split) ->set_edge_padding_low(low_padding); } HloInstruction* padding = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(activations->shape().element_type())), &activations->metadata(), &activations->frontend_attributes()); TF_ASSIGN_OR_RETURN(activations, MakePadHlo(activations, padding, padding_config, &activations->metadata(), &activations->frontend_attributes())); } VLOG(1) << "Initial padded activations shape " << activations->shape().ToString() << " old_batch_size " << old_batch_size << " activations_batch_dim " << activations_batch_dim; return PerformSplitSpace(activations, spatial_dimensions_to_split, activations_batch_dim, spatial_split_size, num_splits); } absl::StatusOr<std::pair<HloInstruction*, std::vector<int64_t>>> ConvolutionVisitor::SplitSpace( HloInstruction* activations, ConvolutionDimensionNumbers& dim_numbers, int64_t& activations_batch_dim, int64_t high_padding, int64_t low_padding, int64_t spatial_split_size, int64_t num_splits, std::vector<int64_t>* spatial_dimensions_to_split, bool is_backprop, bool is_rhs) { TF_ASSIGN_OR_RETURN( auto retval, BringSpaceNextToBatch(activations, dim_numbers, activations_batch_dim, spatial_dimensions_to_split, is_backprop, is_rhs)); activations = retval.instr; std::vector<int64_t> transpose_dims = retval.transpose_dims; TF_ASSIGN_OR_RETURN( auto new_activations, PadAndSplitSpace(activations, *spatial_dimensions_to_split, activations_batch_dim, high_padding, low_padding, spatial_split_size, num_splits)); return std::make_pair(new_activations, transpose_dims); } absl::StatusOr<HloInstruction*> ConvolutionVisitor::PropagateOnConstant( HloInstruction* consumer, HloInstruction* producer) { CHECK(old_to_new_instrs_.contains(producer)); HloInstruction* new_producer = old_to_new_instrs_[producer]; auto prod_transpose_dims = instr_to_dim_permute_map_[new_producer]; std::vector<int64_t> reversed_transpose_dims(prod_transpose_dims.size()); for (int64_t i = 0; i < prod_transpose_dims.size(); ++i) { reversed_transpose_dims[i] = ReverseDimLookUp(prod_transpose_dims, i); } TF_ASSIGN_OR_RETURN(consumer, MakeTransposeHlo(consumer, reversed_transpose_dims)); auto retval = GetSpatialDimsToSplit(producer); std::vector<int64_t> old_spatial_dims = retval.first; std::vector<int64_t> new_spatial_dims = retval.second; auto dim_map = instr_to_dim_map_[producer]; const int64_t old_batch_dim = dim_map[DimMapper(SpaceToBatchDimMap::kBatch)]; const int64_t old_space_dim = old_spatial_dims[0]; const int64_t new_batch_dim = DimLookUp(prod_transpose_dims, old_batch_dim); const int64_t new_space_dim = new_spatial_dims[0]; const int64_t old_batch_size = producer->shape().dimensions(old_batch_dim); const int64_t new_batch_size = old_batch_size * ctrl_.number_of_splits; const int64_t high_padding = (new_batch_size * new_producer->shape().dimensions(new_space_dim) - old_batch_size * producer->shape().dimensions(old_space_dim)) / old_batch_size; auto new_consumer = PadAndSplitSpace( consumer, new_spatial_dims, new_batch_dim, high_padding, 0, new_producer->shape().dimensions(new_space_dim), ctrl_.number_of_splits); return new_consumer; } absl::Status ConvolutionVisitor::PropagateOnBackpropFilterConv( HloInstruction* convolution) { auto activations_old = convolution->mutable_operand(0); const int64_t rhs_dilation = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation(); auto original_conv_dims = convolution->convolution_dimension_numbers(); std::vector<int64_t> old_split_spatial_dims( ctrl_.dimension_from_end_to_convert), old_split_kernel_spatial_dims(ctrl_.dimension_from_end_to_convert); for (int i = 0; i < ctrl_.dimension_from_end_to_convert; ++i) { old_split_spatial_dims[i] = original_conv_dims.input_spatial_dimensions( GetFirstChosenSpatialDim(convolution) + i); old_split_kernel_spatial_dims[i] = original_conv_dims.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution) + i); } auto kernel_old = convolution->mutable_operand(1); const int64_t old_kernel_split_dim_size = kernel_old->shape().dimensions(old_split_kernel_spatial_dims[0]); int64_t old_split_dim_size = activations_old->shape().dimensions(old_split_spatial_dims[0]); int64_t old_batch_dim = original_conv_dims.input_feature_dimension(); int64_t kernel_old_batch_dim = original_conv_dims.kernel_input_feature_dimension(); const int64_t old_batch_size = activations_old->shape().dimensions(old_batch_dim); CHECK(old_to_new_instrs_.contains(kernel_old) || old_to_new_instrs_.contains(activations_old)); HloInstruction* activations_new = nullptr; HloInstruction* kernel_new = nullptr; bool activations_locally_space_to_batched = false; bool kernel_locally_space_to_batched = false; std::vector<int64_t> permute_dims_kernel, permute_dims; if (old_to_new_instrs_.contains(activations_old)) { activations_new = old_to_new_instrs_[activations_old]; permute_dims = instr_to_dim_permute_map_[activations_new]; } if (old_to_new_instrs_.contains(kernel_old)) { kernel_new = old_to_new_instrs_[kernel_old]; permute_dims_kernel = instr_to_dim_permute_map_[kernel_new]; } if (!old_to_new_instrs_.contains(activations_old)) { kernel_new = old_to_new_instrs_[kernel_old]; permute_dims_kernel = instr_to_dim_permute_map_[kernel_new]; VLOG(1) << "Space-to-batching activations to enable space-to-depth"; const int64_t new_kernel_space_dim = DimLookUp(permute_dims_kernel, old_split_kernel_spatial_dims[0]); const int64_t new_kernel_split_dim_size = kernel_new->shape().dimensions(new_kernel_space_dim); const int64_t needed_spatial_size = rhs_dilation * new_kernel_split_dim_size; const int64_t pad_size = needed_spatial_size * ctrl_.number_of_splits - old_split_dim_size; ConvolutionDimensionNumbers tmp_dim_numbers; tmp_dim_numbers = original_conv_dims; TF_ASSIGN_OR_RETURN( auto retval, SplitSpace(activations_old, tmp_dim_numbers, old_batch_dim, pad_size, 0, needed_spatial_size, ctrl_.number_of_splits, &old_split_spatial_dims, true)); activations_new = retval.first; std::vector<int64_t> reversed_transpose_dims(retval.second.size()); for (int64_t i = 0; i < retval.second.size(); ++i) { reversed_transpose_dims[i] = ReverseDimLookUp(retval.second, i); } permute_dims = reversed_transpose_dims; VLOG(3) << "New Activations " << retval.first->ToString(); activations_locally_space_to_batched = true; } else if (!old_to_new_instrs_.contains(kernel_old)) { activations_new = old_to_new_instrs_[activations_old]; permute_dims = instr_to_dim_permute_map_[activations_new]; VLOG(1) << "Space-to-batching kernel to enable space-to-depth"; const int64_t new_space_dim = DimLookUp(permute_dims, old_split_spatial_dims[0]); const int64_t new_split_dim_size = activations_new->shape().dimensions(new_space_dim); const int64_t needed_spatial_size = CeilOfRatio(new_split_dim_size, rhs_dilation); int64_t old_kernel_split_dim_size = kernel_old->shape().dimensions(old_split_kernel_spatial_dims[0]); const int64_t pad_size = needed_spatial_size * ctrl_.number_of_splits - old_kernel_split_dim_size; ConvolutionDimensionNumbers tmp_dim_numbers; tmp_dim_numbers = original_conv_dims; TF_ASSIGN_OR_RETURN( auto retval, SplitSpace(kernel_old, tmp_dim_numbers, kernel_old_batch_dim, pad_size, 0, needed_spatial_size, ctrl_.number_of_splits, &old_split_kernel_spatial_dims, true, true)); kernel_new = retval.first; std::vector<int64_t> reversed_transpose_dims(retval.second.size()); for (int64_t i = 0; i < retval.second.size(); ++i) { reversed_transpose_dims[i] = ReverseDimLookUp(retval.second, i); } permute_dims_kernel = reversed_transpose_dims; VLOG(3) << "New kernel " << retval.first->ToString(); kernel_locally_space_to_batched = true; } CHECK_NE(activations_new, nullptr); CHECK_NE(kernel_new, nullptr); const int64_t new_spatial_dimension = activations_new->shape().dimensions_size(); auto permuted_conv_dims_numbers = original_conv_dims; int64_t activations_batch_dim = DimLookUp(permute_dims, original_conv_dims.input_feature_dimension()); int64_t activations_feature_dim = DimLookUp(permute_dims, original_conv_dims.input_batch_dimension()); const int64_t previous_spatial_dim_count = original_conv_dims.input_spatial_dimensions_size(); for (int64_t i = 0; i < previous_spatial_dim_count; ++i) { permuted_conv_dims_numbers.set_input_spatial_dimensions( i, DimLookUp(permute_dims, original_conv_dims.input_spatial_dimensions(i))); permuted_conv_dims_numbers.set_kernel_spatial_dimensions( i, DimLookUp(permute_dims_kernel, original_conv_dims.kernel_spatial_dimensions(i))); } permuted_conv_dims_numbers.add_input_spatial_dimensions( new_spatial_dimension); permuted_conv_dims_numbers.add_kernel_spatial_dimensions( new_spatial_dimension); permuted_conv_dims_numbers.add_output_spatial_dimensions( new_spatial_dimension); const int64_t previous_chosen_spatial_dim_in_output = permuted_conv_dims_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); permuted_conv_dims_numbers.set_output_spatial_dimensions( GetFirstChosenSpatialDim(convolution), new_spatial_dimension); permuted_conv_dims_numbers.set_output_spatial_dimensions( previous_spatial_dim_count, previous_chosen_spatial_dim_in_output); const int64_t kernel_input_feature_dim = DimLookUp( permute_dims_kernel, original_conv_dims.kernel_input_feature_dimension()); const int64_t kernel_output_feature_dim = DimLookUp(permute_dims_kernel, original_conv_dims.kernel_output_feature_dimension()); permuted_conv_dims_numbers.set_kernel_input_feature_dimension( kernel_input_feature_dim); permuted_conv_dims_numbers.set_kernel_output_feature_dimension( kernel_output_feature_dim); std::vector<int64_t> spatial_dimensions_to_split( ctrl_.count_of_dimensions_to_convert); const int64_t first_dim_to_split = GetFirstChosenSpatialDim(convolution); for (int64_t i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { spatial_dimensions_to_split[i] = permuted_conv_dims_numbers.input_spatial_dimensions(first_dim_to_split + i); } const int64_t kernel_spatial_dimension_to_split = permuted_conv_dims_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); int64_t new_split_dim_size = activations_new->shape().dimensions(spatial_dimensions_to_split[0]); const int64_t kernel_new_split_dim_size = kernel_new->shape().dimensions(kernel_spatial_dimension_to_split); permuted_conv_dims_numbers.set_input_batch_dimension(activations_feature_dim); permuted_conv_dims_numbers.set_input_feature_dimension(activations_batch_dim); VLOG(1) << "Propagating on conv activations_batch_dim " << activations_batch_dim << " spatial_dimension_to_split " << spatial_dimensions_to_split[0] << " old_batch_size " << old_batch_size << " new_split_dim_size " << new_split_dim_size; TF_ASSIGN_OR_RETURN( auto retval, BringSpaceNextToBatch(activations_new, permuted_conv_dims_numbers, activations_batch_dim, &spatial_dimensions_to_split, true)); int64_t spatial_dimension_to_split = spatial_dimensions_to_split[0]; std::vector<int64_t> transpose_dims = retval.transpose_dims; CHECK(!transpose_dims.empty()); activations_new = retval.instr; VLOG(1) << "Activations_new post BringSpaceNextToBatch " << activations_new->ToString(); VLOG(1) << "activations_batch_dim " << activations_batch_dim << " activations_feature_dim " << activations_feature_dim; const int64_t expected_split_dim_size = rhs_dilation * kernel_new_split_dim_size; if (new_split_dim_size != expected_split_dim_size) { CHECK_LT(new_split_dim_size, expected_split_dim_size); new_split_dim_size = expected_split_dim_size; TF_ASSIGN_OR_RETURN( activations_new, ChangeSpatialSizeOnSpaceToBatchedShape( activations_new, activations_batch_dim, old_batch_size, spatial_dimensions_to_split, new_split_dim_size, true)); } spatial_dimension_to_split = spatial_dimensions_to_split[0]; auto select_val = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(activations_new->shape().element_type())), &activations_new->metadata(), &activations_new->frontend_attributes()); if (!activations_locally_space_to_batched) { TF_ASSIGN_OR_RETURN( activations_new, SelectValidPortion(activations_new, activations_old, select_val, activations_batch_dim, spatial_dimensions_to_split, old_batch_dim, old_split_spatial_dims)); } if (!kernel_locally_space_to_batched) { VLOG(3) << "Selecting the valid kernel area"; std::vector<int64_t> new_kernel_split_spatial_dims( ctrl_.dimension_from_end_to_convert); new_kernel_split_spatial_dims[0] = kernel_spatial_dimension_to_split; TF_ASSIGN_OR_RETURN( kernel_new, SelectValidPortion(kernel_new, kernel_old, select_val, kernel_input_feature_dim, new_kernel_split_spatial_dims, original_conv_dims.kernel_input_feature_dimension(), old_split_kernel_spatial_dims)); } auto new_dim_numbers = permuted_conv_dims_numbers; VLOG(2) << "New dim numbers " << new_dim_numbers.DebugString(); const int64_t inherent_low_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_low(); const int64_t inherent_high_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_high(); std::vector<HloInstruction*> activations_chunks; for (int64_t i = 0; i < inherent_low_padding; ++i) { HloInstruction* activations_to_use = nullptr; if (i == 0) { activations_to_use = activations_new; } else { activations_to_use = activations_chunks.back(); } TF_ASSIGN_OR_RETURN( HloInstruction * activations_slice, HaloDuplicateWithSlice(activations_to_use, spatial_dimensions_to_split, activations_batch_dim, 1, 0)); activations_chunks.push_back(activations_slice); } absl::c_reverse(activations_chunks); const int64_t expanded_kernel = old_kernel_split_dim_size * rhs_dilation - (rhs_dilation - 1); const int64_t overlap_count = old_split_dim_size - expanded_kernel + 1 + (inherent_low_padding < 0 ? inherent_low_padding : 0) + (inherent_high_padding < 0 ? inherent_high_padding : 0); VLOG(1) << "overlap_count " << overlap_count << " inherent_low_padding " << inherent_low_padding << " inherent_high_padding " << inherent_high_padding; const int64_t total_overlap_count = overlap_count + (inherent_low_padding > 0 ? inherent_low_padding : 0) + (inherent_high_padding > 0 ? inherent_high_padding : 0); for (int64_t i = 0; i < overlap_count; ++i) { HloInstruction* activations_to_use = nullptr; HloInstruction* activations_slice = nullptr; if (i == 0) { activations_to_use = activations_new; if (inherent_low_padding < 0) { TF_ASSIGN_OR_RETURN( activations_slice, HaloDuplicateWithSlice( activations_to_use, spatial_dimensions_to_split, activations_batch_dim, inherent_low_padding, 0)); } else { activations_slice = activations_to_use; } } else { activations_to_use = activations_chunks.back(); TF_ASSIGN_OR_RETURN(activations_slice, HaloDuplicateWithSlice( activations_to_use, spatial_dimensions_to_split, activations_batch_dim, -1, 0)); } activations_chunks.push_back(activations_slice); } int64_t high_padding_to_materialize = 0; if (inherent_high_padding > 0) { high_padding_to_materialize = std::max(total_overlap_count - (std::max(overlap_count, static_cast<int64_t>(0)) + std::max(inherent_low_padding, static_cast<int64_t>(0))), static_cast<int64_t>(0)); } for (int64_t i = 0; i < high_padding_to_materialize; ++i) { HloInstruction* activations_to_use = nullptr; activations_to_use = activations_chunks.back(); TF_ASSIGN_OR_RETURN( HloInstruction * activations_slice, HaloDuplicateWithSlice(activations_to_use, spatial_dimensions_to_split, activations_batch_dim, -1, 0)); activations_chunks.push_back(activations_slice); } for (int64_t i = 0; i < activations_chunks.size(); ++i) { std::vector<int64_t> input_sizes( activations_chunks[i]->shape().dimensions().begin(), activations_chunks[i]->shape().dimensions().end()); input_sizes.push_back(1); TF_ASSIGN_OR_RETURN(activations_chunks[i], MakeReshapeHlo(input_sizes, activations_chunks[i])); VLOG(1) << "new_spatial_dimension " << new_spatial_dimension << " slice " << activations_chunks[i]->ToString(); } TF_ASSIGN_OR_RETURN( activations_new, MakeConcatHlo(absl::MakeSpan(activations_chunks), new_spatial_dimension, &activations_old->metadata(), &activations_old->frontend_attributes())); std::vector<int64_t> kernel_sizes(kernel_new->shape().dimensions().begin(), kernel_new->shape().dimensions().end()); kernel_sizes.push_back(1); TF_ASSIGN_OR_RETURN(kernel_new, MakeReshapeHlo(kernel_sizes, kernel_new)); auto new_window = convolution->window(); new_window.mutable_dimensions(GetFirstChosenSpatialDim(convolution)) ->set_padding_high(-(rhs_dilation - 1)); new_window.mutable_dimensions(GetFirstChosenSpatialDim(convolution)) ->set_padding_low(0); new_window.mutable_dimensions(GetFirstChosenSpatialDim(convolution)) ->set_size(CeilOfRatio(new_split_dim_size, rhs_dilation)); auto window_dim = new_window.add_dimensions(); window_dim->set_base_dilation(1); window_dim->set_size(1); int64_t stride = 1; if (inherent_low_padding > total_overlap_count) { stride = activations_chunks.size(); } window_dim->set_stride(stride); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_reversal(false); window_dim->set_window_dilation(1); TF_ASSIGN_OR_RETURN( HloInstruction * new_conv, MakeConvolveHlo( activations_new, kernel_new, convolution->feature_group_count(), convolution->batch_group_count(), new_window, new_dim_numbers, convolution->precision_config(), convolution->shape().element_type())); convolution->SetupDerivedInstruction(new_conv); VLOG(2) << "New backprop filter convolution " << new_conv->ToString(); std::vector<int64_t> output_sizes(new_conv->shape().dimensions().begin(), new_conv->shape().dimensions().end()); output_sizes.erase(output_sizes.begin() + new_dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution))); TF_ASSIGN_OR_RETURN(new_conv, MakeReshapeHlo(output_sizes, new_conv)); old_to_new_instrs_[convolution] = new_conv; VLOG(1) << "Space-to-featured convolution " << new_conv->ToString(); std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = original_conv_dims.output_batch_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = original_conv_dims.output_feature_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = original_conv_dims.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); instr_to_dim_map_[convolution] = dim_map; std::vector<int64_t> trans_dims(convolution->shape().dimensions_size()); absl::c_iota(trans_dims, 0); instr_to_dim_permute_map_[new_conv] = trans_dims; return absl::OkStatus(); } HloInstruction* ConvolutionVisitor::DoesConvolutionFeedReduceWindowOrSelectAndScatter( HloInstruction* instr, int64_t depth = kReduceWindowSearchDepth) { if (depth == 0) { return nullptr; } for (auto user : instr->users()) { if (user->opcode() == HloOpcode::kReduceWindow || user->opcode() == HloOpcode::kSelectAndScatter) { return user; } if (user->opcode() == HloOpcode::kConvolution || user->opcode() == HloOpcode::kPad || user->opcode() == HloOpcode::kTranspose || user->opcode() == HloOpcode::kDot) { continue; } auto ret = DoesConvolutionFeedReduceWindowOrSelectAndScatter(user, depth - 1); if (ret != nullptr) { return ret; } } return nullptr; } bool ConvolutionVisitor::DoesConvolutionFeedUnpropagatableOp( HloInstruction* instr, int64_t depth) { auto key = std::make_pair(instr, depth); if (unpropagatability_cache_.contains(key)) { return unpropagatability_cache_[key]; } if (depth == 0 || instr->user_count() == 0) { unpropagatability_cache_[key] = false; return false; } for (auto user : instr->users()) { if (IsOpcodeNonPropagatable(user)) { unpropagatability_cache_[key] = true; return true; } int64_t depth_to_use = depth; if (user->opcode() == HloOpcode::kConvolution || user->opcode() == HloOpcode::kDot) { depth_to_use--; } if (DoesConvolutionFeedUnpropagatableOp(user, depth_to_use)) { unpropagatability_cache_[key] = true; return true; } } unpropagatability_cache_[key] = false; return false; } bool ConvolutionVisitor::IsSpaceToBatchedSpaceSizeSuitable( HloInstruction* instr) { CHECK(instr->opcode() == HloOpcode::kSelectAndScatter || instr->opcode() == HloOpcode::kReduceWindow); auto old_producer = instr->mutable_operand(0); auto dim_map_val_op = instr_to_dim_map_[old_producer]; const int64_t old_space_dim = dim_map_val_op[DimMapper(SpaceToBatchDimMap::kSpace0)]; auto first_operand = old_to_new_instrs_[old_producer]; auto permute_dims_first_operand = instr_to_dim_permute_map_[first_operand]; const int64_t new_space_dim = DimLookUp(permute_dims_first_operand, old_space_dim); const int64_t window_size = instr->window().dimensions(old_space_dim).size(); if (first_operand->shape().dimensions(new_space_dim) < window_size) { return false; } return true; } ConvolutionVisitor::ConvDetails ConvolutionVisitor::GetConvolutionDetails( HloInstruction* convolution, ConvolutionDimensionNumbers& dim_numbers) { auto activations = convolution->mutable_operand(0); auto kernel = convolution->mutable_operand(1); const auto& kernel_shape = kernel->shape(); const int64_t kernel_spatial_dim = dim_numbers.kernel_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); int64_t kernel_spatial_dim_size = kernel_shape.dimensions(kernel_spatial_dim); if (IsForwardWindowDilatedConv(convolution, dim_numbers)) { const int64_t window_dilation_factor = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .window_dilation(); kernel_spatial_dim_size = (kernel_spatial_dim_size - 1) * (window_dilation_factor - 1) + kernel_spatial_dim_size; } std::vector<int64_t> spatial_dimensions_to_split = GetChosenSpatialDims(convolution); const int64_t spatial_dimension_to_split = spatial_dimensions_to_split[0]; const int64_t input_dim_size = activations->shape().dimensions(spatial_dimension_to_split); const int64_t inherent_low_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_low(); const int64_t inherent_high_padding = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .padding_high(); const int64_t stride = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .stride(); const int64_t base_dilation_factor = convolution->window() .dimensions(GetFirstChosenSpatialDim(convolution)) .base_dilation(); bool is_base_dilated = base_dilation_factor > 1; const int64_t spatial_size = input_dim_size + (is_base_dilated ? 0 : inherent_low_padding) + inherent_high_padding; const int64_t last_overlap = base_dilation_factor == inherent_low_padding ? kernel_spatial_dim_size : kernel_spatial_dim_size - 1; const int64_t halo_size = is_base_dilated ? last_overlap / base_dilation_factor : kernel_spatial_dim_size - 1; const int64_t high_padding_for_base_dilation = inherent_low_padding == 0 ? base_dilation_factor - 1 : last_overlap % base_dilation_factor; const int64_t high_padding_for_conv = is_base_dilated ? high_padding_for_base_dilation : 0; const int64_t low_padding_for_conv = is_base_dilated && (base_dilation_factor != inherent_low_padding) ? inherent_low_padding : 0; return ConvDetails{spatial_dimensions_to_split, inherent_low_padding, inherent_high_padding, stride, spatial_size, base_dilation_factor, halo_size, high_padding_for_conv, low_padding_for_conv, kernel_spatial_dim_size, input_dim_size}; } absl::Status ConvolutionVisitor::PerformSpaceToBatchOnConvolution( HloInstruction* convolution) { if (!ConsumeFuel("space-to-batch-converter", [&] { return "Skipping space-to-batch propagation because fuel over\n"; })) { return absl::OkStatus(); } VLOG(1) << "Handling conv " << convolution->ToString(); ConvolutionDimensionNumbers dim_numbers = convolution->convolution_dimension_numbers(); ConvDetails c = GetConvolutionDetails(convolution, dim_numbers); int64_t activations_batch_dim = dim_numbers.input_batch_dimension(); auto activations = convolution->mutable_operand(0); VLOG(1) << "spatial size " << c.spatial_size; if (c.spatial_size < 2 * ctrl_.number_of_splits) { return absl::OkStatus(); } auto original_conv = convolution; const int64_t output_spatial_dim = dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); const int64_t output_offsets = convolution->shape().dimensions(output_spatial_dim); const int64_t output_offsets_per_split = CeilOfRatio(output_offsets, ctrl_.number_of_splits); int64_t spatial_split_size = CeilOfRatio(output_offsets_per_split, c.base_dilation_factor) * c.stride; while (spatial_split_size * ctrl_.number_of_splits - c.spatial_size < 0) { spatial_split_size += c.stride; } auto reduce_window_or_select_and_scatter = DoesConvolutionFeedReduceWindowOrSelectAndScatter(convolution); if (reduce_window_or_select_and_scatter != nullptr && reduce_window_or_select_and_scatter->shape().IsArray() && reduce_window_or_select_and_scatter->shape().rank() == convolution->shape().rank()) { VLOG(2) << "DoesConvolutionFeedReduceWindowOrSelectAndScatter returned true"; const int64_t win_stride = std::max(reduce_window_or_select_and_scatter->window() .dimensions(output_spatial_dim) .stride(), static_cast<int64_t>(1)); CHECK_NE(win_stride, 0) << "Bad op " << reduce_window_or_select_and_scatter->ToString(); CHECK_NE(c.stride, 0) << "Bad op " << convolution->ToString(); while ((spatial_split_size / c.stride) % win_stride != 0) { spatial_split_size += c.stride; } } const int64_t slice_size = spatial_split_size + c.halo_size; const int64_t low_pad_to_handle_base_dilation = (c.base_dilation_factor > 1 && c.base_dilation_factor == c.inherent_low_padding) ? 1 : 0; int64_t pad_size = spatial_split_size * ctrl_.number_of_splits - c.spatial_size; bool handle_low_pad_in_first_reshape = false; if (pad_size > low_pad_to_handle_base_dilation) { pad_size -= low_pad_to_handle_base_dilation; handle_low_pad_in_first_reshape = true; } VLOG(1) << "spatial_split_size " << spatial_split_size << " stride " << c.stride << " slice_size " << slice_size; VLOG(1) << "spatial_dimension_to_split " << c.spatial_dimensions_to_split[0] << " num_splits " << ctrl_.number_of_splits << " kernel_spatial_dim_size " << c.kernel_spatial_dim_size; std::vector<int64_t> spatial_dimensions_to_split = c.spatial_dimensions_to_split; TF_ASSIGN_OR_RETURN( auto retval, SplitSpace( activations, dim_numbers, activations_batch_dim, c.inherent_high_padding + pad_size, c.base_dilation_factor == 1 ? c.inherent_low_padding : handle_low_pad_in_first_reshape ? low_pad_to_handle_base_dilation : 0, spatial_split_size, ctrl_.number_of_splits, &spatial_dimensions_to_split)); HloInstruction* batch_increased_reshape = retval.first; convolution->SetupDerivedInstruction(batch_increased_reshape); VLOG(1) << "First reshape done " << batch_increased_reshape->ToString(); TF_ASSIGN_OR_RETURN( activations, HaloDuplicateWithSlice( batch_increased_reshape, spatial_dimensions_to_split, activations_batch_dim, handle_low_pad_in_first_reshape ? 0 : low_pad_to_handle_base_dilation, c.halo_size)); VLOG(1) << "Batch merge done " << activations->ToString(); auto new_dim_numbers = dim_numbers; const int64_t rank = convolution->shape().rank(); std::vector<int64_t> transpose_dims(rank); int dim_count = 0; std::map<int64_t, int64_t> dim_translator; for (int j = 0; j < dim_numbers.output_spatial_dimensions_size(); ++j) { if (j == GetFirstChosenSpatialDim(convolution)) { dim_translator[dim_numbers.output_batch_dimension()] = dim_count; new_dim_numbers.set_output_batch_dimension(dim_count++); } dim_translator[dim_numbers.output_spatial_dimensions(j)] = dim_count; new_dim_numbers.set_output_spatial_dimensions(j, dim_count); dim_count++; } dim_translator[dim_numbers.output_feature_dimension()] = dim_count; new_dim_numbers.set_output_feature_dimension(dim_count); int p = 0; for (const auto& entry : dim_translator) { transpose_dims[p] = entry.second; p++; } VLOG(1) << "New dim numbers " << new_dim_numbers.DebugString() << " batch dim " << new_dim_numbers.input_batch_dimension(); auto new_window = convolution->window(); const int64_t first_dim = GetFirstChosenSpatialDim(convolution); for (int i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { new_window.mutable_dimensions(first_dim + i) ->set_padding_high(c.high_padding_for_conv); new_window.mutable_dimensions(first_dim + i) ->set_padding_low(c.low_padding_for_conv); } TF_ASSIGN_OR_RETURN( HloInstruction * new_conv, MakeConvolveHlo( activations, convolution->mutable_operand(1), convolution->feature_group_count(), convolution->batch_group_count(), new_window, new_dim_numbers, convolution->precision_config(), convolution->shape().element_type(), &convolution->metadata(), &convolution->frontend_attributes())); convolution->SetupDerivedInstruction(new_conv); batch_to_space_map_[convolution->mutable_operand(0)] = convolution->mutable_operand(0); VLOG(1) << "Space-to-batched convolution " << new_conv->ToString(); std::vector<int64_t> new_output_split_spatial_dims( ctrl_.count_of_dimensions_to_convert), old_output_split_spatial_dims(ctrl_.count_of_dimensions_to_convert); for (int i = 0; i < ctrl_.count_of_dimensions_to_convert; ++i) { old_output_split_spatial_dims[i] = dim_numbers.output_spatial_dimensions(first_dim + i); new_output_split_spatial_dims[i] = new_dim_numbers.output_spatial_dimensions(first_dim + i); } const int64_t output_batch_dim = new_dim_numbers.output_batch_dimension(); auto select_val = computation_->AddInstruction( HloInstruction::CreateConstant( LiteralUtil::Zero(new_conv->shape().element_type())), &convolution->metadata(), &convolution->frontend_attributes()); TF_ASSIGN_OR_RETURN( new_conv, SelectValidPortion(new_conv, original_conv, select_val, output_batch_dim, new_output_split_spatial_dims, dim_numbers.output_batch_dimension(), old_output_split_spatial_dims)); old_to_new_instrs_[original_conv] = new_conv; std::vector<int64_t> dim_map(kNumMappedDims); dim_map[DimMapper(SpaceToBatchDimMap::kBatch)] = dim_numbers.output_batch_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kFeature)] = dim_numbers.output_feature_dimension(); dim_map[DimMapper(SpaceToBatchDimMap::kSpace0)] = dim_numbers.output_spatial_dimensions( GetFirstChosenSpatialDim(convolution)); instr_to_dim_map_[original_conv] = dim_map; instr_to_dim_permute_map_[new_conv] = std::vector<int64_t>(transpose_dims); if (non_propagatable_instrs_.count(convolution) > 0) { non_propagatable_instrs_.erase(convolution); } TF_CHECK_OK(PropagateOnUsers(original_conv)); return absl::OkStatus(); } } absl::StatusOr<bool> SpaceToBatchConverter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { XLA_VLOG_LINES( 2, "SpaceToBatchConverter::Run(), before:\n" + module->ToString()); bool changed = false; for (auto* comp : module->MakeNonfusionComputations(execution_threads)) { ConvolutionVisitor visitor(ctrl_, comp); if (visitor.Run().value()) { changed = true; } VLOG(1) << "Done operating on computation"; } XLA_VLOG_LINES(2, "SpaceToBatchConverter::Run(), after:\n" + module->ToString()); return changed; } }
#include "xla/service/space_to_batch_converter.h" #include <memory> #include <string> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/types.h" namespace xla { namespace { using SpaceToBatchConverterTest = HloTestBase; namespace op = testing::opcode_matchers; TEST_F(SpaceToBatchConverterTest, SimpleBatch1) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) ROOT %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 1); } TEST_F(SpaceToBatchConverterTest, SimpleBatch1ConvXpose) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f ROOT tr = bf16[1,256,256,32] transpose(%convolution), dimensions={0,2,1,3} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0), op::Select()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); } TEST_F(SpaceToBatchConverterTest, SimpleBatch1WithReduceWindow) { std::string hlo_string = R"( HloModule module adder (lhs: bf16[], rhs: bf16[]) -> bf16[] { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(lhs, rhs) } ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f %constant = bf16[3] constant({1.0, 2.0, 3.0}) %tuple = (bf16[1,256,256,32], bf16[3])tuple(%convolution, %constant) ROOT %gte = bf16[1,256,256,32] get-tuple-element(%tuple), index=0 %gte2 = bf16[3]get-tuple-element(%tuple), index=1 %init = bf16[] constant(1.0) %reduce-window = bf16[3] reduce-window(bf16[3] %gte2, bf16[] %init), window={size=1}, to_apply=%adder } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, SimpleBatch2) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[2,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) ROOT %convolution = bf16[2,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 1}); ASSERT_FALSE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, UnpropagatableOp) { std::string hlo_string = R"( HloModule module ENTRY comp { %reduce-window = bf16[1,76,76,64]{3,2,1,0} parameter(0) %convert.13 = bf16[3,3,64,64]{3,2,1,0} parameter(1) %convolution.1 = bf16[64,76,76,1]{0,2,1,3} convolution( %reduce-window, %convert.13), window={size=3x3 pad=1_1x1_1}, dim_labels=b01f_01io->f01b ROOT custom-call.5079 = bf16[64,152,152,1]{0,2,1,3} custom-call(%convolution.1), custom_call_target="ResizeNearest" } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 1}); ASSERT_FALSE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, Batch1WithStrideAndPad) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,224,224,3]{3,2,1,0} parameter(0) %p1 = bf16[7,7,3,64]{3,2,1,0} parameter(1) ROOT %convolution.3 = bf16[1,112,112,64]{3,2,1,0} convolution(%p0, %p1), window={size=7x7 stride=2x2 pad=3_3x3_3}, dim_labels=b01f_01io->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 4}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 4); } TEST_F(SpaceToBatchConverterTest, Batch1WithBaseDilation) { std::string hlo_string = R"( HloModule module ENTRY computation { %p2 = bf16[1,28,28,128]{3,0,2,1} parameter(0) %p3 = bf16[1,1,512,128]{3,2,1,0} parameter(1) ROOT %c = bf16[1,56,56,512]{3,0,2,1} convolution(%p2, %p3), window={size=1x1 pad=0_1x0_1 lhs_dilate=2x2 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); auto reshape = root->operand(0)->operand(0); EXPECT_THAT(reshape, op::Reshape()); auto previous_reshape = reshape->operand(0); EXPECT_THAT(previous_reshape, op::Reshape()); EXPECT_THAT(previous_reshape->operand(0)->operand(1), op::Convolution()); const int64_t batch_dim = previous_reshape->operand(0) ->operand(1) ->convolution_dimension_numbers() .output_batch_dimension(); EXPECT_GT(previous_reshape->operand(0)->shape().dimensions(batch_dim), 4); } TEST_F(SpaceToBatchConverterTest, PropagateThroughDot) { std::string hlo_string = R"( HloModule module ENTRY computation { %p0 = bf16[1,258,258,32] parameter(0) %p1 = bf16[3,3,32,32] parameter(1) %convolution = bf16[1,256,256,32] convolution(%p0, %p1), window={size=3x3}, dim_labels=b01f_01io->b01f %p2 = bf16[32,32] parameter(2) ROOT %dot.5010 = bf16[1,256,256,32] dot(%convolution, %p2), lhs_contracting_dims={3}, rhs_contracting_dims={0} } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); } TEST_F(SpaceToBatchConverterTest, PropagateOnTrivialReduce) { std::string hlo_string = R"( HloModule module %region_1.37 (Arg_0.38: f32[], Arg_1.39: f32[]) -> f32[] { %Arg_0.38 = f32[] parameter(0) %Arg_1.39 = f32[] parameter(1) ROOT %add.40 = f32[] add(f32[] %Arg_0.38, f32[] %Arg_1.39) } ENTRY computation { %p0 = bf16[7,320,800,3]{3,2,1,0} parameter(0) %p1 = bf16[3,3,3,32]{3,2,1,0} parameter(1) %c = f32[7,160,400,32]{3,2,1,0} convolution( %p0, %p1), window={size=3x3 stride=2x2 pad=0_1x0_1}, dim_labels=b01f_01io->b01f %constant.5 = f32[] constant(0) ROOT %reduce.41 = f32[7,160,400]{2,1,0} reduce(%c, %constant.5), dimensions={3}, to_apply=%region_1.37 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0)->operand(0)->operand(0)->operand(0), op::Reduce()); auto new_reduce = root->operand(0)->operand(0)->operand(0)->operand(0); EXPECT_EQ(new_reduce->shape().dimensions(1), 7 * 8); } TEST_F(SpaceToBatchConverterTest, DoNotPropagateOnTupleReduce) { std::string hlo_string = R"( HloModule module %minmax_func.2717 { %lhs_value.2718 = f32[] parameter(0) %rhs_value.2720 = f32[] parameter(2) %compare.2722 = pred[] compare(f32[] %lhs_value.2718, f32[] %rhs_value.2720), direction=GE %select.2723 = f32[] select(pred[] %compare.2722, f32[] %lhs_value.2718, f32[] %rhs_value.2720) %compare.2725 = pred[] compare(f32[] %lhs_value.2718, f32[] %rhs_value.2720), direction=EQ %lhs_index.2719 = f32[] parameter(1) %rhs_index.2721 = f32[] parameter(3) %minimum.2726 = f32[] minimum(f32[] %lhs_index.2719, f32[] %rhs_index.2721) %select.2724 = f32[] select(pred[] %compare.2722, f32[] %lhs_index.2719, f32[] %rhs_index.2721) %select.2727 = f32[] select(pred[] %compare.2725, f32[] %minimum.2726, f32[] %select.2724) ROOT %tuple.4 = (f32[], f32[]) tuple(f32[] %select.2723, f32[] %select.2727) } ENTRY computation { %p0 = bf16[7,320,800,3]{3,2,1,0} parameter(0) %p1 = bf16[3,3,3,32]{3,2,1,0} parameter(1) %c = f32[7,160,400,32]{3,2,1,0} convolution( %p0, %p1), window={size=3x3 stride=2x2 pad=0_1x0_1}, dim_labels=b01f_01io->b01f %constant.5 = f32[] constant(0) %constant.6 = f32[] constant(1) ROOT %reduce.36 = (f32[7,160,400]{2,1,0}, f32[7,160,400]{2,1,0}) reduce(%c, %c, %constant.5, %constant.6), dimensions={3}, to_apply=%minmax_func.2717 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Reduce()); } TEST_F(SpaceToBatchConverterTest, ReduceDegenerateDim) { std::string hlo_string = R"( HloModule module %region_42.4982 { %Arg_0.38 = f32[] parameter(0) %Arg_1.39 = f32[] parameter(1) ROOT %add.40 = f32[] add(f32[] %Arg_0.38, f32[] %Arg_1.39) } ENTRY computation { %p0 = f32[2,1,84,84,3]{4,3,2,1,0} parameter(0) %p1 = f32[3,3,3,3,32]{4,3,2,1,0} parameter(1) %constant.10559 = f32[] constant(0) %convolution.98 = f32[2,1,84,84,32]{4,3,2,1,0} convolution(%p0, %p1), window={size=3x3x3 pad=1_1x1_1x1_1}, dim_labels=b012f_012io->b012f ROOT %reduce.2606 = f32[2,84,84]{2,1,0} reduce(f32[2,1,84,84,32]{4,3,2,1,0} %convolution.98, f32[] %constant.10559), dimensions={1,4}, to_apply=%region_42.4982 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Transpose()); EXPECT_THAT(root->operand(0), op::Slice()); } TEST_F(SpaceToBatchConverterTest, PropagateOnReduce) { std::string hlo_string = R"( HloModule xla_computation_unknown.14 region_0.134 { Arg_0.135 = f32[] parameter(0) Arg_1.136 = f32[] parameter(1) ROOT add.137 = f32[] add(Arg_0.135, Arg_1.136) } ENTRY main.140 { p0 = bf16[1,512,32,128]{3,2,1,0} parameter(0) p1 = f32[3,3,128,128]{3,2,1,0} parameter(1) %convolution.755 = f32[1,512,32,128]{3,2,1,0} convolution(p0, p1), window={size=3x3 pad=1_1x1_1 rhs_reversal=1x1}, dim_labels=b01f_01oi->b01f %constant.19458 = f32[] constant(0) ROOT %reduce.1354 = f32[128]{0} reduce(%convolution.755, %constant.19458), dimensions={0,1,2}, to_apply=%region_0.134 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_string)); auto computation = module->entry_computation(); SpaceToBatchConverter converter( SpaceToBatchController{true, true, true, true, 8}); ASSERT_TRUE(converter.Run(module.get()).value()); HloInstruction* root = computation->root_instruction(); EXPECT_THAT(root, op::Reduce()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/space_to_batch_converter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/space_to_batch_converter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
70cab951-f568-4125-8238-ab87fb041758
cpp
google/cel-cpp
overflow
internal/overflow.cc
internal/overflow_test.cc
#include "internal/overflow.h" #include <cmath> #include <cstdint> #include <limits> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/time/time.h" #include "internal/status_macros.h" #include "internal/time.h" namespace cel::internal { namespace { constexpr int64_t kInt32Max = std::numeric_limits<int32_t>::max(); constexpr int64_t kInt32Min = std::numeric_limits<int32_t>::lowest(); constexpr int64_t kInt64Max = std::numeric_limits<int64_t>::max(); constexpr int64_t kInt64Min = std::numeric_limits<int64_t>::lowest(); constexpr uint64_t kUint32Max = std::numeric_limits<uint32_t>::max(); ABSL_ATTRIBUTE_UNUSED constexpr uint64_t kUint64Max = std::numeric_limits<uint64_t>::max(); constexpr uint64_t kUintToIntMax = static_cast<uint64_t>(kInt64Max); constexpr double kDoubleToIntMax = static_cast<double>(kInt64Max); constexpr double kDoubleToIntMin = static_cast<double>(kInt64Min); const double kDoubleTwoTo64 = std::ldexp(1.0, 64); const absl::Duration kOneSecondDuration = absl::Seconds(1); const int64_t kOneSecondNanos = absl::ToInt64Nanoseconds(kOneSecondDuration); const int64_t kMinUnixTime = absl::ToInt64Seconds(MinTimestamp() - absl::UnixEpoch()); const int64_t kMaxUnixTime = absl::ToInt64Seconds(MaxTimestamp() - absl::UnixEpoch()); absl::Status CheckRange(bool valid_expression, absl::string_view error_message) { return valid_expression ? absl::OkStatus() : absl::OutOfRangeError(error_message); } absl::Status CheckArgument(bool valid_expression, absl::string_view error_message) { return valid_expression ? absl::OkStatus() : absl::InvalidArgumentError(error_message); } bool IsFinite(absl::Duration d) { return d != absl::InfiniteDuration() && d != -absl::InfiniteDuration(); } bool IsFinite(absl::Time t) { return t != absl::InfiniteFuture() && t != absl::InfinitePast(); } } absl::StatusOr<int64_t> CheckedAdd(int64_t x, int64_t y) { #if ABSL_HAVE_BUILTIN(__builtin_add_overflow) int64_t sum; if (!__builtin_add_overflow(x, y, &sum)) { return sum; } return absl::OutOfRangeError("integer overflow"); #else CEL_RETURN_IF_ERROR(CheckRange( y > 0 ? x <= kInt64Max - y : x >= kInt64Min - y, "integer overflow")); return x + y; #endif } absl::StatusOr<int64_t> CheckedSub(int64_t x, int64_t y) { #if ABSL_HAVE_BUILTIN(__builtin_sub_overflow) int64_t diff; if (!__builtin_sub_overflow(x, y, &diff)) { return diff; } return absl::OutOfRangeError("integer overflow"); #else CEL_RETURN_IF_ERROR(CheckRange( y < 0 ? x <= kInt64Max + y : x >= kInt64Min + y, "integer overflow")); return x - y; #endif } absl::StatusOr<int64_t> CheckedNegation(int64_t v) { #if ABSL_HAVE_BUILTIN(__builtin_mul_overflow) int64_t prod; if (!__builtin_mul_overflow(v, -1, &prod)) { return prod; } return absl::OutOfRangeError("integer overflow"); #else CEL_RETURN_IF_ERROR(CheckRange(v != kInt64Min, "integer overflow")); return -v; #endif } absl::StatusOr<int64_t> CheckedMul(int64_t x, int64_t y) { #if ABSL_HAVE_BUILTIN(__builtin_mul_overflow) int64_t prod; if (!__builtin_mul_overflow(x, y, &prod)) { return prod; } return absl::OutOfRangeError("integer overflow"); #else CEL_RETURN_IF_ERROR( CheckRange(!((x == -1 && y == kInt64Min) || (y == -1 && x == kInt64Min) || (x > 0 && y > 0 && x > kInt64Max / y) || (x < 0 && y < 0 && x < kInt64Max / y) || (x > 0 && y < 0 && y < kInt64Min / x) || (x < 0 && y > 0 && x < kInt64Min / y)), "integer overflow")); return x * y; #endif } absl::StatusOr<int64_t> CheckedDiv(int64_t x, int64_t y) { CEL_RETURN_IF_ERROR( CheckRange(x != kInt64Min || y != -1, "integer overflow")); CEL_RETURN_IF_ERROR(CheckArgument(y != 0, "divide by zero")); return x / y; } absl::StatusOr<int64_t> CheckedMod(int64_t x, int64_t y) { CEL_RETURN_IF_ERROR( CheckRange(x != kInt64Min || y != -1, "integer overflow")); CEL_RETURN_IF_ERROR(CheckArgument(y != 0, "modulus by zero")); return x % y; } absl::StatusOr<uint64_t> CheckedAdd(uint64_t x, uint64_t y) { #if ABSL_HAVE_BUILTIN(__builtin_add_overflow) uint64_t sum; if (!__builtin_add_overflow(x, y, &sum)) { return sum; } return absl::OutOfRangeError("unsigned integer overflow"); #else CEL_RETURN_IF_ERROR( CheckRange(x <= kUint64Max - y, "unsigned integer overflow")); return x + y; #endif } absl::StatusOr<uint64_t> CheckedSub(uint64_t x, uint64_t y) { #if ABSL_HAVE_BUILTIN(__builtin_sub_overflow) uint64_t diff; if (!__builtin_sub_overflow(x, y, &diff)) { return diff; } return absl::OutOfRangeError("unsigned integer overflow"); #else CEL_RETURN_IF_ERROR(CheckRange(y <= x, "unsigned integer overflow")); return x - y; #endif } absl::StatusOr<uint64_t> CheckedMul(uint64_t x, uint64_t y) { #if ABSL_HAVE_BUILTIN(__builtin_mul_overflow) uint64_t prod; if (!__builtin_mul_overflow(x, y, &prod)) { return prod; } return absl::OutOfRangeError("unsigned integer overflow"); #else CEL_RETURN_IF_ERROR( CheckRange(y == 0 || x <= kUint64Max / y, "unsigned integer overflow")); return x * y; #endif } absl::StatusOr<uint64_t> CheckedDiv(uint64_t x, uint64_t y) { CEL_RETURN_IF_ERROR(CheckArgument(y != 0, "divide by zero")); return x / y; } absl::StatusOr<uint64_t> CheckedMod(uint64_t x, uint64_t y) { CEL_RETURN_IF_ERROR(CheckArgument(y != 0, "modulus by zero")); return x % y; } absl::StatusOr<absl::Duration> CheckedAdd(absl::Duration x, absl::Duration y) { CEL_RETURN_IF_ERROR( CheckRange(IsFinite(x) && IsFinite(y), "integer overflow")); CEL_ASSIGN_OR_RETURN(int64_t nanos, CheckedAdd(absl::ToInt64Nanoseconds(x), absl::ToInt64Nanoseconds(y))); return absl::Nanoseconds(nanos); } absl::StatusOr<absl::Duration> CheckedSub(absl::Duration x, absl::Duration y) { CEL_RETURN_IF_ERROR( CheckRange(IsFinite(x) && IsFinite(y), "integer overflow")); CEL_ASSIGN_OR_RETURN(int64_t nanos, CheckedSub(absl::ToInt64Nanoseconds(x), absl::ToInt64Nanoseconds(y))); return absl::Nanoseconds(nanos); } absl::StatusOr<absl::Duration> CheckedNegation(absl::Duration v) { CEL_RETURN_IF_ERROR(CheckRange(IsFinite(v), "integer overflow")); CEL_ASSIGN_OR_RETURN(int64_t nanos, CheckedNegation(absl::ToInt64Nanoseconds(v))); return absl::Nanoseconds(nanos); } absl::StatusOr<absl::Time> CheckedAdd(absl::Time t, absl::Duration d) { CEL_RETURN_IF_ERROR( CheckRange(IsFinite(t) && IsFinite(d), "timestamp overflow")); const int64_t s1 = absl::ToUnixSeconds(t); const int64_t ns1 = (t - absl::FromUnixSeconds(s1)) / absl::Nanoseconds(1); const int64_t s2 = d / kOneSecondDuration; const int64_t ns2 = absl::ToInt64Nanoseconds(d % kOneSecondDuration); CEL_ASSIGN_OR_RETURN(int64_t s, CheckedAdd(s1, s2)); absl::Duration ns = absl::Nanoseconds(ns2 + ns1); if (ns < absl::ZeroDuration() || ns >= kOneSecondDuration) { CEL_ASSIGN_OR_RETURN(s, CheckedAdd(s, ns / kOneSecondDuration)); ns -= (ns / kOneSecondDuration) * kOneSecondDuration; if (ns < absl::ZeroDuration()) { CEL_ASSIGN_OR_RETURN(s, CheckedAdd(s, -1)); ns += kOneSecondDuration; } } CEL_RETURN_IF_ERROR( CheckRange(s >= kMinUnixTime && s <= kMaxUnixTime, "timestamp overflow")); return absl::FromUnixSeconds(s) + ns; } absl::StatusOr<absl::Time> CheckedSub(absl::Time t, absl::Duration d) { CEL_ASSIGN_OR_RETURN(auto neg_duration, CheckedNegation(d)); return CheckedAdd(t, neg_duration); } absl::StatusOr<absl::Duration> CheckedSub(absl::Time t1, absl::Time t2) { CEL_RETURN_IF_ERROR( CheckRange(IsFinite(t1) && IsFinite(t2), "integer overflow")); const int64_t s1 = absl::ToUnixSeconds(t1); const int64_t ns1 = (t1 - absl::FromUnixSeconds(s1)) / absl::Nanoseconds(1); const int64_t s2 = absl::ToUnixSeconds(t2); const int64_t ns2 = (t2 - absl::FromUnixSeconds(s2)) / absl::Nanoseconds(1); CEL_ASSIGN_OR_RETURN(int64_t s, CheckedSub(s1, s2)); absl::Duration ns = absl::Nanoseconds(ns1 - ns2); CEL_ASSIGN_OR_RETURN(const int64_t t, CheckedMul(s, kOneSecondNanos)); CEL_ASSIGN_OR_RETURN(const int64_t v, CheckedAdd(t, absl::ToInt64Nanoseconds(ns))); return absl::Nanoseconds(v); } absl::StatusOr<int64_t> CheckedDoubleToInt64(double v) { CEL_RETURN_IF_ERROR( CheckRange(std::isfinite(v) && v < kDoubleToIntMax && v > kDoubleToIntMin, "double out of int64_t range")); return static_cast<int64_t>(v); } absl::StatusOr<uint64_t> CheckedDoubleToUint64(double v) { CEL_RETURN_IF_ERROR( CheckRange(std::isfinite(v) && v >= 0 && v < kDoubleTwoTo64, "double out of uint64_t range")); return static_cast<uint64_t>(v); } absl::StatusOr<uint64_t> CheckedInt64ToUint64(int64_t v) { CEL_RETURN_IF_ERROR(CheckRange(v >= 0, "int64 out of uint64_t range")); return static_cast<uint64_t>(v); } absl::StatusOr<int32_t> CheckedInt64ToInt32(int64_t v) { CEL_RETURN_IF_ERROR( CheckRange(v >= kInt32Min && v <= kInt32Max, "int64 out of int32_t range")); return static_cast<int32_t>(v); } absl::StatusOr<int64_t> CheckedUint64ToInt64(uint64_t v) { CEL_RETURN_IF_ERROR( CheckRange(v <= kUintToIntMax, "uint64 out of int64_t range")); return static_cast<int64_t>(v); } absl::StatusOr<uint32_t> CheckedUint64ToUint32(uint64_t v) { CEL_RETURN_IF_ERROR( CheckRange(v <= kUint32Max, "uint64 out of uint32_t range")); return static_cast<uint32_t>(v); } }
#include "internal/overflow.h" #include <cstdint> #include <limits> #include <string> #include <vector> #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/time/time.h" #include "internal/testing.h" namespace cel::internal { namespace { using ::testing::HasSubstr; using ::testing::ValuesIn; template <typename T> struct TestCase { std::string test_name; absl::FunctionRef<absl::StatusOr<T>()> op; absl::StatusOr<T> result; }; template <typename T> void ExpectResult(const T& test_case) { auto result = test_case.op(); ASSERT_EQ(result.status().code(), test_case.result.status().code()); if (result.ok()) { EXPECT_EQ(*result, *test_case.result); } else { EXPECT_THAT(result.status().message(), HasSubstr(test_case.result.status().message())); } } using IntTestCase = TestCase<int64_t>; using CheckedIntResultTest = testing::TestWithParam<IntTestCase>; TEST_P(CheckedIntResultTest, IntOperations) { ExpectResult(GetParam()); } INSTANTIATE_TEST_SUITE_P( CheckedIntMathTest, CheckedIntResultTest, ValuesIn(std::vector<IntTestCase>{ {"OneAddOne", [] { return CheckedAdd(1L, 1L); }, 2L}, {"ZeroAddOne", [] { return CheckedAdd(0, 1L); }, 1L}, {"ZeroAddMinusOne", [] { return CheckedAdd(0, -1L); }, -1L}, {"OneAddZero", [] { return CheckedAdd(1L, 0); }, 1L}, {"MinusOneAddZero", [] { return CheckedAdd(-1L, 0); }, -1L}, {"OneAddIntMax", [] { return CheckedAdd(1L, std::numeric_limits<int64_t>::max()); }, absl::OutOfRangeError("integer overflow")}, {"MinusOneAddIntMin", [] { return CheckedAdd(-1L, std::numeric_limits<int64_t>::lowest()); }, absl::OutOfRangeError("integer overflow")}, {"TwoSubThree", [] { return CheckedSub(2L, 3L); }, -1L}, {"TwoSubZero", [] { return CheckedSub(2L, 0); }, 2L}, {"ZeroSubTwo", [] { return CheckedSub(0, 2L); }, -2L}, {"MinusTwoSubThree", [] { return CheckedSub(-2L, 3L); }, -5L}, {"MinusTwoSubZero", [] { return CheckedSub(-2L, 0); }, -2L}, {"ZeroSubMinusTwo", [] { return CheckedSub(0, -2L); }, 2L}, {"IntMinSubIntMax", [] { return CheckedSub(std::numeric_limits<int64_t>::max(), std::numeric_limits<int64_t>::lowest()); }, absl::OutOfRangeError("integer overflow")}, {"TwoMulThree", [] { return CheckedMul(2L, 3L); }, 6L}, {"MinusTwoMulThree", [] { return CheckedMul(-2L, 3L); }, -6L}, {"MinusTwoMulMinusThree", [] { return CheckedMul(-2L, -3L); }, 6L}, {"TwoMulMinusThree", [] { return CheckedMul(2L, -3L); }, -6L}, {"TwoMulIntMax", [] { return CheckedMul(2L, std::numeric_limits<int64_t>::max()); }, absl::OutOfRangeError("integer overflow")}, {"MinusOneMulIntMin", [] { return CheckedMul(-1L, std::numeric_limits<int64_t>::lowest()); }, absl::OutOfRangeError("integer overflow")}, {"IntMinMulMinusOne", [] { return CheckedMul(std::numeric_limits<int64_t>::lowest(), -1L); }, absl::OutOfRangeError("integer overflow")}, {"IntMinMulZero", [] { return CheckedMul(std::numeric_limits<int64_t>::lowest(), 0); }, 0}, {"ZeroMulIntMin", [] { return CheckedMul(0, std::numeric_limits<int64_t>::lowest()); }, 0}, {"IntMaxMulZero", [] { return CheckedMul(std::numeric_limits<int64_t>::max(), 0); }, 0}, {"ZeroMulIntMax", [] { return CheckedMul(0, std::numeric_limits<int64_t>::max()); }, 0}, {"ZeroDivOne", [] { return CheckedDiv(0, 1L); }, 0}, {"TenDivTwo", [] { return CheckedDiv(10L, 2L); }, 5}, {"TenDivMinusOne", [] { return CheckedDiv(10L, -1L); }, -10}, {"MinusTenDivMinusOne", [] { return CheckedDiv(-10L, -1L); }, 10}, {"MinusTenDivTwo", [] { return CheckedDiv(-10L, 2L); }, -5}, {"OneDivZero", [] { return CheckedDiv(1L, 0L); }, absl::InvalidArgumentError("divide by zero")}, {"IntMinDivMinusOne", [] { return CheckedDiv(std::numeric_limits<int64_t>::lowest(), -1L); }, absl::OutOfRangeError("integer overflow")}, {"ZeroModTwo", [] { return CheckedMod(0, 2L); }, 0}, {"TwoModTwo", [] { return CheckedMod(2L, 2L); }, 0}, {"ThreeModTwo", [] { return CheckedMod(3L, 2L); }, 1L}, {"TwoModZero", [] { return CheckedMod(2L, 0); }, absl::InvalidArgumentError("modulus by zero")}, {"IntMinModTwo", [] { return CheckedMod(std::numeric_limits<int64_t>::lowest(), 2L); }, 0}, {"IntMaxModMinusOne", [] { return CheckedMod(std::numeric_limits<int64_t>::max(), -1L); }, 0}, {"IntMinModMinusOne", [] { return CheckedMod(std::numeric_limits<int64_t>::lowest(), -1L); }, absl::OutOfRangeError("integer overflow")}, {"NegateOne", [] { return CheckedNegation(1L); }, -1L}, {"NegateMinInt64", [] { return CheckedNegation(std::numeric_limits<int64_t>::lowest()); }, absl::OutOfRangeError("integer overflow")}, {"Uint64Conversion", [] { return CheckedUint64ToInt64(1UL); }, 1L}, {"Uint32MaxConversion", [] { return CheckedUint64ToInt64( static_cast<uint64_t>(std::numeric_limits<int64_t>::max())); }, std::numeric_limits<int64_t>::max()}, {"Uint32MaxConversionError", [] { return CheckedUint64ToInt64( static_cast<uint64_t>(std::numeric_limits<uint64_t>::max())); }, absl::OutOfRangeError("out of int64_t range")}, {"DoubleConversion", [] { return CheckedDoubleToInt64(100.1); }, 100L}, {"DoubleInt64MaxConversionError", [] { return CheckedDoubleToInt64( static_cast<double>(std::numeric_limits<int64_t>::max())); }, absl::OutOfRangeError("out of int64_t range")}, {"DoubleInt64MaxMinus512Conversion", [] { return CheckedDoubleToInt64( static_cast<double>(std::numeric_limits<int64_t>::max() - 512)); }, std::numeric_limits<int64_t>::max() - 1023}, {"DoubleInt64MaxMinus1024Conversion", [] { return CheckedDoubleToInt64( static_cast<double>(std::numeric_limits<int64_t>::max() - 1024)); }, std::numeric_limits<int64_t>::max() - 1023}, {"DoubleInt64MinConversionError", [] { return CheckedDoubleToInt64( static_cast<double>(std::numeric_limits<int64_t>::lowest())); }, absl::OutOfRangeError("out of int64_t range")}, {"DoubleInt64MinMinusOneConversionError", [] { return CheckedDoubleToInt64( static_cast<double>(std::numeric_limits<int64_t>::lowest()) - 1.0); }, absl::OutOfRangeError("out of int64_t range")}, {"DoubleInt64MinMinus511ConversionError", [] { return CheckedDoubleToInt64( static_cast<double>(std::numeric_limits<int64_t>::lowest()) - 511.0); }, absl::OutOfRangeError("out of int64_t range")}, {"InfiniteConversionError", [] { return CheckedDoubleToInt64(std::numeric_limits<double>::infinity()); }, absl::OutOfRangeError("out of int64_t range")}, {"NegRangeConversionError", [] { return CheckedDoubleToInt64(-1.0e99); }, absl::OutOfRangeError("out of int64_t range")}, {"PosRangeConversionError", [] { return CheckedDoubleToInt64(1.0e99); }, absl::OutOfRangeError("out of int64_t range")}, }), [](const testing::TestParamInfo<CheckedIntResultTest::ParamType>& info) { return info.param.test_name; }); using UintTestCase = TestCase<uint64_t>; using CheckedUintResultTest = testing::TestWithParam<UintTestCase>; TEST_P(CheckedUintResultTest, UnsignedOperations) { ExpectResult(GetParam()); } INSTANTIATE_TEST_SUITE_P( CheckedUintMathTest, CheckedUintResultTest, ValuesIn(std::vector<UintTestCase>{ {"OneAddOne", [] { return CheckedAdd(1UL, 1UL); }, 2UL}, {"ZeroAddOne", [] { return CheckedAdd(0, 1UL); }, 1UL}, {"OneAddZero", [] { return CheckedAdd(1UL, 0); }, 1UL}, {"OneAddIntMax", [] { return CheckedAdd(1UL, std::numeric_limits<uint64_t>::max()); }, absl::OutOfRangeError("unsigned integer overflow")}, {"OneSubOne", [] { return CheckedSub(1UL, 1UL); }, 0}, {"ZeroSubOne", [] { return CheckedSub(0, 1UL); }, absl::OutOfRangeError("unsigned integer overflow")}, {"OneSubZero", [] { return CheckedSub(1UL, 0); }, 1UL}, {"OneMulOne", [] { return CheckedMul(1UL, 1UL); }, 1UL}, {"ZeroMulOne", [] { return CheckedMul(0, 1UL); }, 0}, {"OneMulZero", [] { return CheckedMul(1UL, 0); }, 0}, {"TwoMulUintMax", [] { return CheckedMul(2UL, std::numeric_limits<uint64_t>::max()); }, absl::OutOfRangeError("unsigned integer overflow")}, {"TwoDivTwo", [] { return CheckedDiv(2UL, 2UL); }, 1UL}, {"TwoDivFour", [] { return CheckedDiv(2UL, 4UL); }, 0}, {"OneDivZero", [] { return CheckedDiv(1UL, 0); }, absl::InvalidArgumentError("divide by zero")}, {"TwoModTwo", [] { return CheckedMod(2UL, 2UL); }, 0}, {"TwoModFour", [] { return CheckedMod(2UL, 4UL); }, 2UL}, {"OneModZero", [] { return CheckedMod(1UL, 0); }, absl::InvalidArgumentError("modulus by zero")}, {"Int64Conversion", [] { return CheckedInt64ToUint64(1L); }, 1UL}, {"Int64MaxConversion", [] { return CheckedInt64ToUint64(std::numeric_limits<int64_t>::max()); }, static_cast<uint64_t>(std::numeric_limits<int64_t>::max())}, {"NegativeInt64ConversionError", [] { return CheckedInt64ToUint64(-1L); }, absl::OutOfRangeError("out of uint64_t range")}, {"DoubleConversion", [] { return CheckedDoubleToUint64(100.1); }, 100UL}, {"DoubleUint64MaxConversionError", [] { return CheckedDoubleToUint64( static_cast<double>(std::numeric_limits<uint64_t>::max())); }, absl::OutOfRangeError("out of uint64_t range")}, {"DoubleUint64MaxMinus512Conversion", [] { return CheckedDoubleToUint64( static_cast<double>(std::numeric_limits<uint64_t>::max() - 512)); }, absl::OutOfRangeError("out of uint64_t range")}, {"DoubleUint64MaxMinus1024Conversion", [] { return CheckedDoubleToUint64(static_cast<double>( std::numeric_limits<uint64_t>::max() - 1024)); }, std::numeric_limits<uint64_t>::max() - 2047}, {"InfiniteConversionError", [] { return CheckedDoubleToUint64( std::numeric_limits<double>::infinity()); }, absl::OutOfRangeError("out of uint64_t range")}, {"NegConversionError", [] { return CheckedDoubleToUint64(-1.1); }, absl::OutOfRangeError("out of uint64_t range")}, {"NegRangeConversionError", [] { return CheckedDoubleToUint64(-1.0e99); }, absl::OutOfRangeError("out of uint64_t range")}, {"PosRangeConversionError", [] { return CheckedDoubleToUint64(1.0e99); }, absl::OutOfRangeError("out of uint64_t range")}, }), [](const testing::TestParamInfo<CheckedUintResultTest::ParamType>& info) { return info.param.test_name; }); using DurationTestCase = TestCase<absl::Duration>; using CheckedDurationResultTest = testing::TestWithParam<DurationTestCase>; TEST_P(CheckedDurationResultTest, DurationOperations) { ExpectResult(GetParam()); } INSTANTIATE_TEST_SUITE_P( CheckedDurationMathTest, CheckedDurationResultTest, ValuesIn(std::vector<DurationTestCase>{ {"OneSecondAddOneSecond", [] { return CheckedAdd(absl::Seconds(1), absl::Seconds(1)); }, absl::Seconds(2)}, {"MaxDurationAddOneNano", [] { return CheckedAdd( absl::Nanoseconds(std::numeric_limits<int64_t>::max()), absl::Nanoseconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"MinDurationAddMinusOneNano", [] { return CheckedAdd( absl::Nanoseconds(std::numeric_limits<int64_t>::lowest()), absl::Nanoseconds(-1)); }, absl::OutOfRangeError("integer overflow")}, {"InfinityAddOneNano", [] { return CheckedAdd(absl::InfiniteDuration(), absl::Nanoseconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"NegInfinityAddOneNano", [] { return CheckedAdd(-absl::InfiniteDuration(), absl::Nanoseconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"OneSecondAddInfinity", [] { return CheckedAdd(absl::Nanoseconds(1), absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, {"OneSecondAddNegInfinity", [] { return CheckedAdd(absl::Nanoseconds(1), -absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, {"OneSecondSubOneSecond", [] { return CheckedSub(absl::Seconds(1), absl::Seconds(1)); }, absl::ZeroDuration()}, {"MinDurationSubOneSecond", [] { return CheckedSub( absl::Nanoseconds(std::numeric_limits<int64_t>::lowest()), absl::Nanoseconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"InfinitySubOneNano", [] { return CheckedSub(absl::InfiniteDuration(), absl::Nanoseconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"NegInfinitySubOneNano", [] { return CheckedSub(-absl::InfiniteDuration(), absl::Nanoseconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"OneNanoSubInfinity", [] { return CheckedSub(absl::Nanoseconds(1), absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, {"OneNanoSubNegInfinity", [] { return CheckedSub(absl::Nanoseconds(1), -absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, {"TimeSubOneSecond", [] { return CheckedSub(absl::FromUnixSeconds(100), absl::FromUnixSeconds(1)); }, absl::Seconds(99)}, {"TimeWithNanosPositive", [] { return CheckedSub(absl::FromUnixSeconds(2) + absl::Nanoseconds(1), absl::FromUnixSeconds(1) - absl::Nanoseconds(1)); }, absl::Seconds(1) + absl::Nanoseconds(2)}, {"TimeWithNanosNegative", [] { return CheckedSub(absl::FromUnixSeconds(1) + absl::Nanoseconds(1), absl::FromUnixSeconds(2) + absl::Seconds(1) - absl::Nanoseconds(1)); }, absl::Seconds(-2) + absl::Nanoseconds(2)}, {"MinTimestampMinusOne", [] { return CheckedSub( absl::FromUnixSeconds(std::numeric_limits<int64_t>::lowest()), absl::FromUnixSeconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"InfinitePastSubOneSecond", [] { return CheckedSub(absl::InfinitePast(), absl::FromUnixSeconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"InfiniteFutureSubOneMinusSecond", [] { return CheckedSub(absl::InfiniteFuture(), absl::FromUnixSeconds(-1)); }, absl::OutOfRangeError("integer overflow")}, {"InfiniteFutureSubInfinitePast", [] { return CheckedSub(absl::InfiniteFuture(), absl::InfinitePast()); }, absl::OutOfRangeError("integer overflow")}, {"InfinitePastSubInfiniteFuture", [] { return CheckedSub(absl::InfinitePast(), absl::InfiniteFuture()); }, absl::OutOfRangeError("integer overflow")}, {"NegateOneSecond", [] { return CheckedNegation(absl::Seconds(1)); }, absl::Seconds(-1)}, {"NegateMinDuration", [] { return CheckedNegation( absl::Nanoseconds(std::numeric_limits<int64_t>::lowest())); }, absl::OutOfRangeError("integer overflow")}, {"NegateInfiniteDuration", [] { return CheckedNegation(absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, {"NegateNegInfiniteDuration", [] { return CheckedNegation(-absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, }), [](const testing::TestParamInfo<CheckedDurationResultTest::ParamType>& info) { return info.param.test_name; }); using TimeTestCase = TestCase<absl::Time>; using CheckedTimeResultTest = testing::TestWithParam<TimeTestCase>; TEST_P(CheckedTimeResultTest, TimeDurationOperations) { ExpectResult(GetParam()); } INSTANTIATE_TEST_SUITE_P( CheckedTimeDurationMathTest, CheckedTimeResultTest, ValuesIn(std::vector<TimeTestCase>{ {"DateAddOneHourMinusOneMilli", [] { return CheckedAdd(absl::FromUnixSeconds(3506), absl::Hours(1) + absl::Milliseconds(-1)); }, absl::FromUnixSeconds(7106) + absl::Milliseconds(-1)}, {"DateAddOneHourOneNano", [] { return CheckedAdd(absl::FromUnixSeconds(3506), absl::Hours(1) + absl::Nanoseconds(1)); }, absl::FromUnixSeconds(7106) + absl::Nanoseconds(1)}, {"MaxIntAddOneSecond", [] { return CheckedAdd( absl::FromUnixSeconds(std::numeric_limits<int64_t>::max()), absl::Seconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"MaxTimestampAddOneSecond", [] { return CheckedAdd(absl::FromUnixSeconds(253402300799), absl::Seconds(1)); }, absl::OutOfRangeError("timestamp overflow")}, {"TimeWithNanosNegative", [] { return CheckedAdd(absl::FromUnixSeconds(1) + absl::Nanoseconds(1), absl::Nanoseconds(-999999999)); }, absl::FromUnixNanos(2)}, {"TimeWithNanosPositive", [] { return CheckedAdd( absl::FromUnixSeconds(1) + absl::Nanoseconds(999999999), absl::Nanoseconds(999999999)); }, absl::FromUnixSeconds(2) + absl::Nanoseconds(999999998)}, {"SecondsAddInfinity", [] { return CheckedAdd( absl::FromUnixSeconds(1) + absl::Nanoseconds(999999999), absl::InfiniteDuration()); }, absl::OutOfRangeError("timestamp overflow")}, {"SecondsAddNegativeInfinity", [] { return CheckedAdd( absl::FromUnixSeconds(1) + absl::Nanoseconds(999999999), -absl::InfiniteDuration()); }, absl::OutOfRangeError("timestamp overflow")}, {"InfiniteFutureAddNegativeInfinity", [] { return CheckedAdd(absl::InfiniteFuture(), -absl::InfiniteDuration()); }, absl::OutOfRangeError("timestamp overflow")}, {"InfinitePastAddInfinity", [] { return CheckedAdd(absl::InfinitePast(), absl::InfiniteDuration()); }, absl::OutOfRangeError("timestamp overflow")}, {"DateSubOneHour", [] { return CheckedSub(absl::FromUnixSeconds(3506), absl::Hours(1)); }, absl::FromUnixSeconds(-94)}, {"MinTimestampSubOneSecond", [] { return CheckedSub(absl::FromUnixSeconds(-62135596800), absl::Seconds(1)); }, absl::OutOfRangeError("timestamp overflow")}, {"MinIntSubOneViaNanos", [] { return CheckedSub( absl::FromUnixSeconds(std::numeric_limits<int64_t>::min()), absl::Nanoseconds(1)); }, absl::OutOfRangeError("integer overflow")}, {"MinTimestampSubOneViaNanosScaleOverflow", [] { return CheckedSub( absl::FromUnixSeconds(-62135596800) + absl::Nanoseconds(1), absl::Nanoseconds(999999999)); }, absl::OutOfRangeError("timestamp overflow")}, {"SecondsSubInfinity", [] { return CheckedSub( absl::FromUnixSeconds(1) + absl::Nanoseconds(999999999), absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, {"SecondsSubNegInfinity", [] { return CheckedSub( absl::FromUnixSeconds(1) + absl::Nanoseconds(999999999), -absl::InfiniteDuration()); }, absl::OutOfRangeError("integer overflow")}, }), [](const testing::TestParamInfo<CheckedTimeResultTest::ParamType>& info) { return info.param.test_name; }); using ConvertInt64Int32TestCase = TestCase<int32_t>; using CheckedConvertInt64Int32Test = testing::TestWithParam<ConvertInt64Int32TestCase>; TEST_P(CheckedConvertInt64Int32Test, Conversions) { ExpectResult(GetParam()); } INSTANTIATE_TEST_SUITE_P( CheckedConvertInt64Int32Test, CheckedConvertInt64Int32Test, ValuesIn(std::vector<ConvertInt64Int32TestCase>{ {"SimpleConversion", [] { return CheckedInt64ToInt32(1L); }, 1}, {"Int32MaxConversion", [] { return CheckedInt64ToInt32( static_cast<int64_t>(std::numeric_limits<int32_t>::max())); }, std::numeric_limits<int32_t>::max()}, {"Int32MaxConversionError", [] { return CheckedInt64ToInt32( static_cast<int64_t>(std::numeric_limits<int64_t>::max())); }, absl::OutOfRangeError("out of int32_t range")}, {"Int32MinConversion", [] { return CheckedInt64ToInt32( static_cast<int64_t>(std::numeric_limits<int32_t>::lowest())); }, std::numeric_limits<int32_t>::lowest()}, {"Int32MinConversionError", [] { return CheckedInt64ToInt32( static_cast<int64_t>(std::numeric_limits<int64_t>::lowest())); }, absl::OutOfRangeError("out of int32_t range")}, }), [](const testing::TestParamInfo<CheckedConvertInt64Int32Test::ParamType>& info) { return info.param.test_name; }); using ConvertUint64Uint32TestCase = TestCase<uint32_t>; using CheckedConvertUint64Uint32Test = testing::TestWithParam<ConvertUint64Uint32TestCase>; TEST_P(CheckedConvertUint64Uint32Test, Conversions) { ExpectResult(GetParam()); } INSTANTIATE_TEST_SUITE_P( CheckedConvertUint64Uint32Test, CheckedConvertUint64Uint32Test, ValuesIn(std::vector<ConvertUint64Uint32TestCase>{ {"SimpleConversion", [] { return CheckedUint64ToUint32(1UL); }, 1U}, {"Uint32MaxConversion", [] { return CheckedUint64ToUint32( static_cast<uint64_t>(std::numeric_limits<uint32_t>::max())); }, std::numeric_limits<uint32_t>::max()}, {"Uint32MaxConversionError", [] { return CheckedUint64ToUint32( static_cast<uint64_t>(std::numeric_limits<uint64_t>::max())); }, absl::OutOfRangeError("out of uint32_t range")}, }), [](const testing::TestParamInfo<CheckedConvertUint64Uint32Test::ParamType>& info) { return info.param.test_name; }); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/overflow.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/overflow_test.cc
4552db5798fb0853b131b783d8875794334fae7f
b8d6818f-df0e-4df0-98c7-5f5861ecee80
cpp
tensorflow/tensorflow
sendrecv_ops
tensorflow/compiler/tf2xla/kernels/sendrecv_ops.cc
tensorflow/core/kernels/sendrecv_ops_test.cc
#include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/xla_compiler.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace { class SendOp : public XlaOpKernel { public: explicit SendOp(OpKernelConstruction* ctx); void Compile(XlaOpKernelContext* ctx) override; private: string tensor_name_; SendOp(const SendOp&) = delete; void operator=(const SendOp&) = delete; }; SendOp::SendOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("tensor_name", &tensor_name_)); } void SendOp::Compile(XlaOpKernelContext* ctx) { XlaCompiler* compiler = ctx->compiler(); xla::ChannelHandle channel; OP_REQUIRES_OK(ctx, compiler->GetChannelHandle(tensor_name_, &channel)); xla::Send(ctx->Input(0), channel); } REGISTER_XLA_OP(Name("XlaSend"), SendOp); class RecvOp : public XlaOpKernel { public: explicit RecvOp(OpKernelConstruction* ctx); void Compile(XlaOpKernelContext* ctx) override; private: string tensor_name_; xla::Shape shape_; RecvOp(const RecvOp&) = delete; void operator=(const RecvOp&) = delete; }; RecvOp::RecvOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) { OP_REQUIRES_OK(ctx, ctx->GetAttr("tensor_name", &tensor_name_)); TensorShape tensor_shape; DataType dtype; OP_REQUIRES_OK(ctx, ctx->GetAttr("shape", &tensor_shape)); OP_REQUIRES_OK(ctx, ctx->GetAttr("dtype", &dtype)); OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, tensor_shape, &shape_)); } void RecvOp::Compile(XlaOpKernelContext* ctx) { XlaCompiler* compiler = ctx->compiler(); xla::ChannelHandle channel; OP_REQUIRES_OK(ctx, compiler->GetChannelHandle(tensor_name_, &channel)); ctx->SetOutput(0, xla::Recv(ctx->builder(), shape_, channel)); } REGISTER_XLA_OP(Name("XlaRecv"), RecvOp); } }
#include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace { class DummyRendezvous : public Rendezvous { Status Send(const ParsedKey& key, const Args& args, const Tensor& val, const bool is_dead) override { return absl::OkStatus(); } void RecvAsync(const ParsedKey& key, const Args& args, DoneCallback done) override { static Tensor* t = new Tensor(DT_FLOAT, TensorShape({0})); done(absl::OkStatus(), args, args, *t, false); } void StartAbort(const Status& status) override {} }; static Graph* Send() { Graph* g = new Graph(OpRegistry::Global()); Tensor in0(DT_FLOAT, TensorShape({0})); test::graph::Send(g, test::graph::Constant(g, in0), "T", "/cpu:0", 1, "/cpu:0"); test::graph::Recv(g, "T", "float", "/cpu:0", 1, "/cpu:0"); return g; } static Graph* Recv() { Graph* g = new Graph(OpRegistry::Global()); test::graph::Recv(g, "T", "float", "/cpu:0", 1, "/cpu:0"); return g; } void BM_Send(::testing::benchmark::State& state) { test::Benchmark("cpu", Send(), nullptr, nullptr, new DummyRendezvous, "", false) .Run(state); state.SetItemsProcessed(static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_Send)->UseRealTime(); void BM_Recv(::testing::benchmark::State& state) { test::Benchmark("cpu", Recv(), nullptr, nullptr, new DummyRendezvous, "", false) .Run(state); state.SetItemsProcessed(static_cast<int64_t>(state.iterations())); } BENCHMARK(BM_Recv)->UseRealTime(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/sendrecv_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sendrecv_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cd6f7740-592e-4590-b580-e12b3fe549c5
cpp
google/tensorstore
async_cache
tensorstore/internal/cache/async_cache.cc
tensorstore/internal/cache/async_cache_test.cc
#include "tensorstore/internal/cache/async_cache.h" #include <algorithm> #include <atomic> #include <cassert> #include <cstddef> #include <functional> #include <mutex> #include <type_traits> #include <utility> #include "absl/base/call_once.h" #include "absl/base/no_destructor.h" #include "absl/base/optimization.h" #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/batch.h" #include "tensorstore/batch_impl.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/compare.h" #include "tensorstore/internal/container/intrusive_linked_list.h" #include "tensorstore/internal/container/intrusive_red_black_tree.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/mutex.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/transaction.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal { namespace { using Entry = AsyncCache::Entry; using ReadState = AsyncCache::ReadState; using TransactionNode = AsyncCache::TransactionNode; using TransactionTree = AsyncCache::Entry::TransactionTree; using PendingWritebackQueueAccessor = TransactionNode::PendingWritebackQueueAccessor; using PrepareForCommitState = TransactionNode::PrepareForCommitState; constexpr absl::Duration kEpsilonDuration = absl::Nanoseconds(1); void AcquireReadRequestReference(Entry& entry) { internal::PinnedCacheEntry<AsyncCache>(&entry).release(); } void ReleaseReadRequestReference(Entry& entry) { internal::PinnedCacheEntry<AsyncCache>(&entry, internal::adopt_object_ref); } void AcquireReadRequestReference(TransactionNode& node) { if (!node.transaction()->commit_started()) { node.transaction()->AcquireCommitBlock(); } intrusive_ptr_increment(&node); } void ReleaseReadRequestReference(TransactionNode& node) { if (!node.transaction()->commit_started()) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << node << "Releasing commit block"; node.transaction()->ReleaseCommitBlock(); } intrusive_ptr_decrement(&node); } Future<const void> GetFuture(Promise<void>& promise) { if (!promise.null()) { auto future = promise.future(); if (!future.null()) return future; } auto pair = PromiseFuturePair<void>::Make(); promise = std::move(pair.promise); return std::move(pair.future); } const AsyncCache::ReadRequestState& GetEffectiveReadRequestState(Entry& entry) { return entry.read_request_state_; } const AsyncCache::ReadRequestState& GetEffectiveReadRequestState( TransactionNode& node) { return node.reads_committed_ ? GetOwningEntry(node).read_request_state_ : node.read_request_state_; } template <typename EntryOrNode> void EntryOrNodeStartRead(EntryOrNode& entry_or_node, UniqueWriterLock<Entry> lock, Batch::View batch) { static_assert(std::is_same_v<EntryOrNode, Entry> || std::is_same_v<EntryOrNode, TransactionNode>); auto& request_state = entry_or_node.read_request_state_; if (request_state.queued_request_is_deferred) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << entry_or_node << "EntryOrNodeStartRead: no pending read request"; return; } if (!request_state.queued.result_needed()) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << entry_or_node << "EntryOrNodeStartRead: pending read request was cancelled"; request_state.queued = Promise<void>(); request_state.queued_request_is_deferred = true; request_state.queued_time = absl::InfinitePast(); return; } assert(request_state.issued.null()); auto staleness_bound = request_state.issued_time = std::exchange(request_state.queued_time, absl::InfinitePast()); request_state.issued = std::move(request_state.queued); request_state.queued_request_is_deferred = true; lock.unlock(); AcquireReadRequestReference(entry_or_node); ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << entry_or_node << "EntryOrNodeStartRead: calling DoRead"; AsyncCache::AsyncCacheReadRequest read_request; read_request.staleness_bound = staleness_bound; read_request.batch = batch; entry_or_node.DoRead(std::move(read_request)); } void MaybeStartReadOrWriteback(Entry& entry, UniqueWriterLock<Entry> lock, Batch::View read_batch) { auto& read_request_state = entry.read_request_state_; if (TransactionNode* committing_transaction_node = entry.committing_transaction_node_) { TransactionNode* next; while (true) { const auto existing_prepare_for_commit_state = committing_transaction_node->prepare_for_commit_state_.load( std::memory_order_relaxed); const bool read_request_issued = !read_request_state.issued.null(); PrepareForCommitState new_prepare_for_commit_state; switch (existing_prepare_for_commit_state) { case PrepareForCommitState::kNone: case PrepareForCommitState::kPrepareDoneCalled: new_prepare_for_commit_state = PrepareForCommitState::kPrepareDoneCalled; if (read_request_issued) break; [[fallthrough]]; case PrepareForCommitState::kReadyForCommitCalled: new_prepare_for_commit_state = PrepareForCommitState::kReadyForCommitCalled; } committing_transaction_node->prepare_for_commit_state_ = new_prepare_for_commit_state; next = PendingWritebackQueueAccessor::GetNext(committing_transaction_node); if (next == committing_transaction_node || next->transaction() != committing_transaction_node->transaction() || next->prepare_for_commit_state_.load(std::memory_order_relaxed) == PrepareForCommitState::kReadyForCommitCalled) { next = nullptr; } lock.unlock(); switch (existing_prepare_for_commit_state) { case PrepareForCommitState::kNone: ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *committing_transaction_node << "PrepareDone"; committing_transaction_node->PrepareDone(); [[fallthrough]]; case PrepareForCommitState::kPrepareDoneCalled: if (read_request_issued) return; ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *committing_transaction_node << "ReadyForCommit"; committing_transaction_node->ReadyForCommit(); break; case PrepareForCommitState::kReadyForCommitCalled: break; } if (!next) return; committing_transaction_node = next; lock = UniqueWriterLock<Entry>(entry); } } if (read_request_state.issued.null()) { EntryOrNodeStartRead(entry, std::move(lock), read_batch); } } void MaybeIssueRead(Entry& entry, UniqueWriterLock<Entry> lock, Batch::View batch) { MaybeStartReadOrWriteback(entry, std::move(lock), batch); } void MaybeIssueRead(TransactionNode& node, UniqueWriterLock<Entry> lock, Batch::View batch) { if (!node.read_request_state_.issued.null()) return; EntryOrNodeStartRead(node, std::move(lock), batch); } template <typename EntryOrNode> void SetReadState(EntryOrNode& entry_or_node, ReadState&& read_state, size_t read_state_size) { static_assert(std::is_same_v<EntryOrNode, Entry> || std::is_same_v<EntryOrNode, TransactionNode>); if constexpr (std::is_same_v<EntryOrNode, TransactionNode>) { if (entry_or_node.reads_committed_) { assert(entry_or_node.prepare_for_commit_state_.load( std::memory_order_relaxed) == PrepareForCommitState::kReadyForCommitCalled); SetReadState(GetOwningEntry(entry_or_node), std::move(read_state), read_state_size); return; } } entry_or_node.read_request_state_.known_to_be_stale = false; entry_or_node.read_request_state_.read_state = std::move(read_state); size_t change = read_state_size - std::exchange(entry_or_node.read_request_state_.read_state_size, read_state_size); if (change != 0) { if constexpr (std::is_same_v<EntryOrNode, TransactionNode>) { entry_or_node.UpdateSizeInBytes(change); } else { entry_or_node.NotifySizeChanged(); } } } template <typename EntryOrNode> class AsyncCacheBatchEntry : public Batch::Impl::Entry { public: using EntryOrNodePtr = std::conditional_t<std::is_same_v<EntryOrNode, AsyncCache::Entry>, PinnedCacheEntry<AsyncCache>, OpenTransactionNodePtr<AsyncCache::TransactionNode>>; using KeyParam = internal_future::FutureStateBase*; explicit AsyncCacheBatchEntry(size_t nesting_depth, EntryOrNode& entry_or_node, Promise<void> promise) : Batch::Impl::Entry(nesting_depth), entry_or_node_(&entry_or_node), promise_(std::move(promise)) {} KeyParam key() const { return &internal_future::FutureAccess::rep(promise_); } private: void Submit(Batch::View batch) override { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *entry_or_node_ << "Submitting batch read"; auto& entry = GetOwningEntry(*entry_or_node_); UniqueWriterLock lock(entry); auto& read_request_state = entry_or_node_->read_request_state_; if (!HaveSameSharedState(read_request_state.queued, promise_)) { return; } read_request_state.queued_request_is_deferred = false; MaybeIssueRead(*entry_or_node_, std::move(lock), batch); delete this; } EntryOrNodePtr entry_or_node_; Promise<void> promise_; }; template <typename EntryOrNode> Future<const void> RequestRead(EntryOrNode& entry_or_node, AsyncCache::AsyncCacheReadRequest options, bool must_not_be_known_to_be_stale) { static_assert(std::is_same_v<EntryOrNode, Entry> || std::is_same_v<EntryOrNode, TransactionNode>); auto& entry = GetOwningEntry(entry_or_node); UniqueWriterLock lock(entry); auto& effective_request_state = GetEffectiveReadRequestState(entry_or_node); const auto existing_time = effective_request_state.read_state.stamp.time; if (existing_time != absl::InfinitePast() && existing_time >= options.staleness_bound) { if (must_not_be_known_to_be_stale && effective_request_state.known_to_be_stale) { options.staleness_bound = existing_time + kEpsilonDuration; } else { return MakeReadyFuture(); } } auto& request_state = entry_or_node.read_request_state_; request_state.queued_time = std::max(request_state.queued_time, std::min(options.staleness_bound, absl::Now())); if (!request_state.issued.null() && request_state.issued_time >= options.staleness_bound) { return GetFuture(request_state.issued); } auto future = GetFuture(request_state.queued); if (options.batch.deferred() && request_state.queued_request_is_deferred) { using BatchE = AsyncCacheBatchEntry<EntryOrNode>; auto& promise = request_state.queued; Batch::Impl::From(options.batch) ->GetEntry<BatchE>(&internal_future::FutureAccess::rep(promise), [&] { return std::make_unique<BatchE>( GetOwningCache(entry).BatchNestingDepth(), entry_or_node, promise); }); } else { request_state.queued_request_is_deferred = false; } MaybeIssueRead(entry_or_node, std::move(lock), options.batch); return future; } class QueuedReadHandler { public: explicit QueuedReadHandler(AsyncCache::ReadRequestState& request_state, absl::Time time) { if (!request_state.queued.null() && time >= request_state.queued_time) { queued_ = std::move(request_state.queued); request_state.queued_time = absl::InfinitePast(); request_state.queued_request_is_deferred = true; } } ~QueuedReadHandler() { if (!queued_.null()) { queued_.SetResult(tensorstore::MakeResult()); } } private: Promise<void> queued_; }; template <typename EntryOrNode> void ResolveIssuedRead(EntryOrNode& entry_or_node, absl::Status status, UniqueWriterLock<Entry> lock) { static_assert(std::is_same_v<EntryOrNode, Entry> || std::is_same_v<EntryOrNode, TransactionNode>); auto& request_state = entry_or_node.read_request_state_; auto issued = std::move(request_state.issued); auto time = GetEffectiveReadRequestState(entry_or_node).read_state.stamp.time; assert(!issued.null()); assert(!status.ok() || time >= request_state.issued_time); { QueuedReadHandler queued_read_handler(request_state, time); MaybeIssueRead(entry_or_node, std::move(lock), {}); issued.SetResult(tensorstore::MakeResult(status)); } ReleaseReadRequestReference(entry_or_node); } size_t GetReadStateSize(Entry& entry, const void* read_data) { if (!read_data) return 0; return entry.ComputeReadDataSizeInBytes(read_data); } template <typename EntryOrNode> void EntryOrNodeReadSuccess(EntryOrNode& entry_or_node, ReadState&& read_state) { static_assert(std::is_same_v<EntryOrNode, Entry> || std::is_same_v<EntryOrNode, TransactionNode>); Entry& entry = GetOwningEntry(entry_or_node); const size_t read_state_size = GetReadStateSize(entry, read_state.data.get()); UniqueWriterLock lock(entry); assert(read_state.stamp.time != absl::InfinitePast()); assert(!StorageGeneration::IsUnknown(read_state.stamp.generation)); SetReadState(entry_or_node, std::move(read_state), read_state_size); ResolveIssuedRead(entry_or_node, absl::OkStatus(), std::move(lock)); } template <typename EntryOrNode> void EntryOrNodeReadError(EntryOrNode& entry_or_node, absl::Status error) { static_assert(std::is_same_v<EntryOrNode, Entry> || std::is_same_v<EntryOrNode, TransactionNode>); assert(!error.ok()); ResolveIssuedRead(entry_or_node, std::move(error), UniqueWriterLock{GetOwningEntry(entry_or_node)}); } void RemoveTransactionFromMap(TransactionNode& node) { if (TransactionTree::IsDisconnected(node)) { return; } ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << node << "RemoveTransactionFromMap"; GetOwningEntry(node).transactions_.Remove(node); } void ResolveIssuedWriteback(AsyncCache::TransactionNode& node, UniqueWriterLock<Entry> lock) { auto& entry = GetOwningEntry(node); assert(node.prepare_for_commit_state_.load(std::memory_order_relaxed) == PrepareForCommitState::kReadyForCommitCalled); assert(entry.committing_transaction_node_ && entry.committing_transaction_node_->transaction() == node.transaction()); assert(entry.read_request_state_.issued.null()); if (entry.committing_transaction_node_ != &node) { intrusive_linked_list::Remove(PendingWritebackQueueAccessor{}, &node); } else { auto* next_node = PendingWritebackQueueAccessor::GetNext(&node); if (next_node != &node) { intrusive_linked_list::Remove(PendingWritebackQueueAccessor{}, &node); if (next_node->transaction() == node.transaction()) { entry.committing_transaction_node_ = next_node; } else { entry.committing_transaction_node_ = next_node; } } else { entry.committing_transaction_node_ = nullptr; } } RemoveTransactionFromMap(node); MaybeStartReadOrWriteback(entry, std::move(lock), {}); ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << node << "CommitDone"; node.CommitDone(); } } const ReadState& AsyncCache::ReadState::Unknown() { static const absl::NoDestructor<ReadState> read_state; return *read_state; } size_t AsyncCache::Entry::ComputeReadDataSizeInBytes(const void* data) { return 0; } size_t AsyncCache::DoGetFixedSizeInBytes(Cache::Entry* entry) { return this->Cache::DoGetSizeInBytes(entry); } size_t AsyncCache::DoGetSizeInBytes(Cache::Entry* base_entry) { auto* entry = static_cast<Entry*>(base_entry); return this->DoGetFixedSizeInBytes(entry) + entry->read_request_state_.read_state_size; } Future<const void> AsyncCache::Entry::Read(AsyncCacheReadRequest request, bool must_not_be_known_to_be_stale) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "Read: staleness_bound=" << request.staleness_bound << ", must_not_be_known_to_be_stale=" << must_not_be_known_to_be_stale; return RequestRead(*this, request, must_not_be_known_to_be_stale); } void AsyncCache::Entry::ReadSuccess(ReadState&& read_state) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "ReadSuccess: " << read_state.stamp << ", data=" << read_state.data.get(); internal::EntryOrNodeReadSuccess(*this, std::move(read_state)); } void AsyncCache::Entry::ReadError(absl::Status error) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "ReadError: error=" << error; internal::EntryOrNodeReadError(*this, std::move(error)); } AsyncCache::TransactionNode::TransactionNode(Entry& entry) : internal::TransactionState::Node(Cache::PinnedEntry(&entry).release()), reads_committed_(false), size_updated_(false) {} Future<const void> AsyncCache::TransactionNode::Read( AsyncCacheReadRequest request, bool must_not_be_known_to_be_stale) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "Read: staleness_bound=" << request.staleness_bound << ", must_not_be_known_to_be_stale=" << must_not_be_known_to_be_stale; if (reads_committed_ && (prepare_for_commit_state_.load(std::memory_order_acquire) != PrepareForCommitState::kReadyForCommitCalled)) { return RequestRead(GetOwningEntry(*this), request, must_not_be_known_to_be_stale); } return RequestRead(*this, request, must_not_be_known_to_be_stale); } void AsyncCache::TransactionNode::ReadSuccess(ReadState&& read_state) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "ReadSuccess: " << read_state.stamp << ", data=" << read_state.data.get(); internal::EntryOrNodeReadSuccess(*this, std::move(read_state)); } void AsyncCache::TransactionNode::ReadError(absl::Status error) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "ReadError: error=" << error; internal::EntryOrNodeReadError(*this, std::move(error)); } void AsyncCache::TransactionNode::PrepareForCommit() { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "PrepareForCommit"; intrusive_ptr_increment(this); auto& entry = GetOwningEntry(*this); UniqueWriterLock lock(entry); RemoveTransactionFromMap(*this); if (entry.committing_transaction_node_) { intrusive_linked_list::InsertBefore(PendingWritebackQueueAccessor{}, entry.committing_transaction_node_, this); if (entry.committing_transaction_node_->transaction() != transaction()) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "Commit: enqueuing for writeback"; return; } assert(entry.committing_transaction_node_->prepare_for_commit_state_.load( std::memory_order_relaxed) >= PrepareForCommitState::kPrepareDoneCalled); } else { intrusive_linked_list::Initialize(PendingWritebackQueueAccessor{}, this); } entry.committing_transaction_node_ = this; MaybeStartReadOrWriteback(entry, std::move(lock), {}); } void AsyncCache::TransactionNode::Abort() { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "Abort"; auto& entry = GetOwningEntry(*this); UniqueWriterLock lock(entry); RemoveTransactionFromMap(*this); lock.unlock(); AbortDone(); } void AsyncCache::TransactionNode::WritebackSuccess(ReadState&& read_state) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "WritebackSuccess: " << read_state.stamp << ", data=" << read_state.data.get(); auto& entry = GetOwningEntry(*this); const size_t read_state_size = GetReadStateSize(entry, read_state.data.get()); UniqueWriterLock lock{entry}; auto& request_state = entry.read_request_state_; absl::Time read_state_time = read_state.stamp.time; if (!StorageGeneration::IsUnknown(read_state.stamp.generation)) { assert(read_state.stamp.generation != StorageGeneration::Invalid()); assert(read_state_time != absl::InfinitePast()); assert(read_state_time >= request_state.read_state.stamp.time); SetReadState(entry, std::move(read_state), read_state_size); } else if (read_state_time > request_state.read_state.stamp.time) { request_state.known_to_be_stale = true; } QueuedReadHandler queued_read_handler(request_state, read_state_time); ResolveIssuedWriteback(*this, std::move(lock)); } void AsyncCache::TransactionNode::WritebackError() { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "WritebackError"; ResolveIssuedWriteback(*this, UniqueWriterLock{GetOwningEntry(*this)}); } Result<OpenTransactionNodePtr<AsyncCache::TransactionNode>> AsyncCache::Entry::GetTransactionNodeImpl(OpenTransactionPtr& transaction) { constexpr auto EnsureTransactionNodeInitialized = [](AsyncCache::TransactionNode& node, OpenTransactionPtr& transaction) -> bool { auto& entry = GetOwningEntry(node); bool initialized = false; absl::call_once(node.initialized_, [&] { const bool new_implicit_transaction = !transaction; node.initialized_status_ = node.DoInitialize(transaction); if (node.initialized_status_.ok()) { if (new_implicit_transaction) { node.SetTransaction(GetOrCreateOpenTransaction(transaction)); UniqueWriterLock lock(entry); entry.transactions_.FindOrInsert( [&](TransactionNode& existing_node) { return internal::DoThreeWayComparison( std::less<>{}, transaction.get(), existing_node.transaction()); }, [&] { return &node; }); } assert(node.transaction() == transaction.get()); ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << node << "New node, new implicit=" << new_implicit_transaction << ", transaction=" << transaction.get(); node.initialized_status_ = node.Register(); } else if (!new_implicit_transaction) { UniqueWriterLock lock(entry); RemoveTransactionFromMap(node); } initialized = true; }); return initialized; }; WeakTransactionNodePtr<TransactionNode> node; if (!transaction) { WeakTransactionNodePtr<TransactionNode> stale_node; while (true) { node.reset(GetOwningCache(*this).DoAllocateTransactionNode(*this)); [[maybe_unused]] bool initialized = EnsureTransactionNodeInitialized(*node, transaction); TENSORSTORE_RETURN_IF_ERROR(node->initialized_status_); assert(initialized); if (node->IsRevoked()) { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *node << "Node is revoked"; std::swap(stale_node, node); continue; } node->transaction()->RequestCommit(); break; } } else { size_t min_phase = transaction->phase(); WeakTransactionNodePtr<TransactionNode> stale_node; while (true) { UniqueWriterLock lock(*this); const auto MakeNode = [&] { auto* node = GetOwningCache(*this).DoAllocateTransactionNode(*this); node->SetTransaction(*transaction); ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *node << "Adding transaction to map"; return node; }; auto* candidate_node = transactions_ .FindOrInsert( [transaction = transaction.get()](TransactionNode& node) { return internal::DoThreeWayComparison( std::less<>{}, transaction, node.transaction()); }, MakeNode) .first; if (candidate_node == stale_node.get()) { auto* new_node = MakeNode(); ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *candidate_node << "Replacing in map"; ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *new_node << "Adding to map"; transactions_.Replace(*candidate_node, *new_node); candidate_node = new_node; } node.reset(candidate_node); lock.unlock(); stale_node.reset(); EnsureTransactionNodeInitialized(*node, transaction); TENSORSTORE_RETURN_IF_ERROR(node->initialized_status_); if (node->phase() >= min_phase && !node->IsRevoked()) { break; } stale_node = std::move(node); } } OpenTransactionPtr(node->transaction()).release(); return OpenTransactionNodePtr<TransactionNode>(node.release(), internal::adopt_object_ref); } void AsyncCache::TransactionNode::Commit() { intrusive_ptr_decrement(this); } void AsyncCache::TransactionNode::WriterLock() { mutex_.WriterLock(); } void AsyncCache::TransactionNode::WriterUnlock() { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "unlock"; UniqueWriterLock lock(mutex_, std::adopt_lock); if (!size_updated_) return; size_updated_ = false; const size_t new_size = this->ComputeWriteStateSizeInBytes(); const size_t change = new_size - std::exchange(write_state_size_, new_size); if (change == 0) return; this->UpdateSizeInBytes(change); } bool AsyncCache::TransactionNode::try_lock() { mutex_.WriterLock(); if (!IsRevoked()) return true; mutex_.WriterUnlock(); return false; } size_t AsyncCache::TransactionNode::ComputeWriteStateSizeInBytes() { return 0; } absl::Status AsyncCache::TransactionNode::DoInitialize( internal::OpenTransactionPtr& transaction) { return absl::OkStatus(); } void AsyncCache::TransactionNode::DoApply(ApplyOptions options, ApplyReceiver receiver) { ABSL_UNREACHABLE(); } void AsyncCache::TransactionNode::Revoke() { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "Revoke"; revoked_.store(true, std::memory_order_release); } void AsyncCache::TransactionNode::InvalidateReadState() { assert(this->transaction()->commit_started()); ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "InvalidateReadState"; this->read_request_state_.read_state = ReadState{}; } AsyncCache::TransactionNode::~TransactionNode() { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "~TransactionNode"; Cache::PinnedEntry(static_cast<Cache::Entry*>(associated_data()), adopt_object_ref); } #ifdef TENSORSTORE_ASYNC_CACHE_DEBUG AsyncCache::Entry::~Entry() { ABSL_LOG_IF(INFO, TENSORSTORE_ASYNC_CACHE_DEBUG) << *this << "~Entry"; } #endif } }
#include "tensorstore/internal/cache/async_cache.h" #include <cstddef> #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "tensorstore/internal/cache/cache.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/queue_testutil.h" #include "tensorstore/internal/testing/concurrent.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/transaction.h" #include "tensorstore/util/future.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::Future; using ::tensorstore::no_transaction; using ::tensorstore::Transaction; using ::tensorstore::UniqueWriterLock; using ::tensorstore::internal::AsyncCache; using ::tensorstore::internal::CachePool; using ::tensorstore::internal::GetCache; using ::tensorstore::internal::OpenTransactionPtr; using ::tensorstore::internal::PinnedCacheEntry; using ::tensorstore::internal::TransactionState; using ::tensorstore::internal::UniqueNow; using ::tensorstore::internal::WeakTransactionNodePtr; using ::tensorstore::internal_testing::TestConcurrent; constexpr CachePool::Limits kSmallCacheLimits{10000000}; struct RequestLog { struct ReadRequest { AsyncCache::Entry* entry; void Success(absl::Time time = absl::Now(), std::shared_ptr<const size_t> value = {}) { entry->ReadSuccess( {std::move(value), {tensorstore::StorageGeneration::FromString("g"), time}}); } void Error(absl::Status error) { entry->ReadError(std::move(error)); } }; struct TransactionReadRequest { AsyncCache::TransactionNode* node; void Success(absl::Time time = absl::Now(), std::shared_ptr<const size_t> value = {}) { node->ReadSuccess( {std::move(value), {tensorstore::StorageGeneration::FromString("g"), time}}); } void Error(absl::Status error) { node->ReadError(std::move(error)); } }; struct WritebackRequest { AsyncCache::TransactionNode* node; void Success(absl::Time time = absl::Now(), std::shared_ptr<const size_t> value = {}) { node->WritebackSuccess( {std::move(value), {tensorstore::StorageGeneration::FromString("g"), time}}); } void Error(absl::Status error) { node->SetError(error); node->WritebackError(); } }; tensorstore::internal::ConcurrentQueue<ReadRequest> reads; tensorstore::internal::ConcurrentQueue<TransactionReadRequest> transaction_reads; tensorstore::internal::ConcurrentQueue<WritebackRequest> writebacks; void HandleWritebacks() { while (auto req = writebacks.pop_nonblock()) { req->Success(); } } }; class TestCache : public tensorstore::internal::AsyncCache { using Base = tensorstore::internal::AsyncCache; public: using ReadData = size_t; class Entry : public AsyncCache::Entry { public: using OwningCache = TestCache; auto CreateWriteTransaction(OpenTransactionPtr transaction = {}) { return GetTransactionNode(*this, transaction).value(); } Future<const void> CreateWriteTransactionFuture( OpenTransactionPtr transaction = {}) { return CreateWriteTransaction(std::move(transaction)) ->transaction() ->future(); } void DoRead(AsyncCacheReadRequest request) override { GetOwningCache(*this).log_->reads.push(RequestLog::ReadRequest{this}); } size_t ComputeReadDataSizeInBytes(const void* data) override { return *static_cast<const size_t*>(data); } absl::Status do_initialize_transaction_error; bool share_implicit_transaction_nodes = true; }; class TransactionNode : public Base::TransactionNode { public: using OwningCache = TestCache; using Base::TransactionNode::TransactionNode; absl::Status DoInitialize(OpenTransactionPtr& transaction) override { TENSORSTORE_RETURN_IF_ERROR( this->Base::TransactionNode::DoInitialize(transaction)); auto& entry = GetOwningEntry(*this); ++value; SetReadsCommitted(); return entry.do_initialize_transaction_error; } void DoRead(AsyncCacheReadRequest request) override { GetOwningCache(*this).log_->transaction_reads.push( RequestLog::TransactionReadRequest{this}); } void Commit() override { GetOwningCache(*this).log_->writebacks.push( RequestLog::WritebackRequest{this}); Base::TransactionNode::Commit(); } size_t ComputeWriteStateSizeInBytes() override { return size; } int value = 0; size_t size = 0; }; TestCache(RequestLog* log) : log_(log) {} Entry* DoAllocateEntry() final { return new Entry; } size_t DoGetSizeofEntry() final { return sizeof(Entry); } TransactionNode* DoAllocateTransactionNode(AsyncCache::Entry& entry) final { return new TransactionNode(static_cast<Entry&>(entry)); } private: RequestLog* log_; }; TEST(AsyncCacheTest, ReadBasic) { auto pool = CachePool::Make(CachePool::Limits{}); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); absl::Time read_time1, read_time2; { auto init_time = absl::Now(); auto read_future = entry->Read({init_time}); ASSERT_FALSE(read_future.ready()); { auto read_future2 = entry->Read({init_time}); EXPECT_TRUE(HaveSameSharedState(read_future, read_future2)); } ASSERT_EQ(1u, log.reads.size()); ASSERT_TRUE(log.writebacks.empty()); read_time1 = absl::Now(); { auto read_req = log.reads.pop(); EXPECT_EQ(absl::InfinitePast(), AsyncCache::ReadLock<void>(*read_req.entry).stamp().time); read_req.Success(read_time1); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); { auto read_future3 = entry->Read({read_time1}); ASSERT_TRUE(read_future3.ready()); TENSORSTORE_EXPECT_OK(read_future3); ASSERT_TRUE(log.reads.empty()); ASSERT_TRUE(log.writebacks.empty()); } } { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1u, log.reads.size()); ASSERT_TRUE(log.writebacks.empty()); read_time2 = absl::Now(); { auto read_req = log.reads.pop(); EXPECT_EQ(read_time1, AsyncCache::ReadLock<void>(*read_req.entry).stamp().time); read_req.Success(read_time2); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); } { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); auto read_time = UniqueNow(); auto read_future1 = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future1.ready()); EXPECT_FALSE(HaveSameSharedState(read_future, read_future1)); { auto read_future2 = entry->Read({absl::InfiniteFuture()}); EXPECT_TRUE(HaveSameSharedState(read_future1, read_future2)); } ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); EXPECT_EQ(read_time2, AsyncCache::ReadLock<void>(*read_req.entry).stamp().time); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); ASSERT_FALSE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); auto read_time2 = absl::Now(); { auto read_req = log.reads.pop(); EXPECT_EQ(read_time, AsyncCache::ReadLock<void>(*read_req.entry).stamp().time); read_req.Success(read_time2); } ASSERT_TRUE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future1); } { auto read_future = entry->Read({absl::InfiniteFuture()}); auto read_future1 = entry->Read({absl::InfiniteFuture()}); auto read_time = absl::Now(); ASSERT_FALSE(read_future.ready()); ASSERT_FALSE(read_future1.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_TRUE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future1); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); auto read_time = absl::Now(); { auto read_future1 = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future1.ready()); } ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); { auto read_future1 = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future1.ready()); } auto read_future1 = entry->Read({absl::InfiniteFuture()}); auto read_time = absl::Now(); ASSERT_FALSE(read_future1.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_TRUE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future1); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } } TEST(AsyncCacheTest, ReadFailed) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); const auto read_status = absl::UnknownError("read failed"); { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Error(read_status); } ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); ASSERT_TRUE(read_future.ready()); EXPECT_EQ(read_status, read_future.status()); } { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Success(); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } } TEST(AsyncCacheTest, ReadFailedAfterSuccessfulRead) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Success(); } ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); } const auto read_status = absl::UnknownError("read failed"); { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Error(read_status); } ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); ASSERT_TRUE(read_future.ready()); EXPECT_EQ(read_status, read_future.status()); } { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Success(); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } } TEST(AsyncCacheTest, NonTransactionalWrite) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); WeakTransactionNodePtr<TestCache::TransactionNode> weak_node; Future<const void> write_future; { auto node = entry->CreateWriteTransaction(); weak_node.reset(node.get()); write_future = node->transaction()->future(); } ASSERT_FALSE(write_future.ready()); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(1, log.writebacks.size()); { auto write_req = log.writebacks.pop(); EXPECT_EQ(weak_node.get(), write_req.node); write_req.Success(); } ASSERT_TRUE(write_future.ready()); TENSORSTORE_ASSERT_OK(write_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } TEST(AsyncCacheTest, NonTransactionalWriteback) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto write_future = entry->CreateWriteTransactionFuture(); ASSERT_FALSE(write_future.ready()); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(1, log.writebacks.size()); auto write_time = absl::Now(); { auto write_req = log.writebacks.pop(); write_req.Success(write_time); } ASSERT_TRUE(write_future.ready()); TENSORSTORE_ASSERT_OK(write_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_future = entry->Read({write_time}); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); } { auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); EXPECT_FALSE(read_future.ready()); auto read_req = log.reads.pop(); read_req.Success(); EXPECT_TRUE(read_future.ready()); } } TEST(AsyncCacheTest, WritebackRequestedWithReadIssued) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto read_future = entry->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); auto write_future = entry->CreateWriteTransactionFuture(); write_future.Force(); ASSERT_FALSE(write_future.ready()); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.reads.pop(); read_req.Success(); } ASSERT_FALSE(write_future.ready()); ASSERT_TRUE(read_future.ready()); TENSORSTORE_ASSERT_OK(read_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(1, log.writebacks.size()); { auto write_req = log.writebacks.pop(); write_req.Success(); } ASSERT_TRUE(write_future.ready()); TENSORSTORE_ASSERT_OK(write_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } TEST(AsyncCacheTest, WritebackRequestedByCache) { auto pool = CachePool::Make(CachePool::Limits{}); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto write_future = entry->CreateWriteTransactionFuture(); ASSERT_FALSE(write_future.ready()); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(1, log.writebacks.size()); { auto write_req = log.writebacks.pop(); write_req.Success(); } ASSERT_TRUE(write_future.ready()); TENSORSTORE_ASSERT_OK(write_future); ASSERT_EQ(0, log.reads.size()); ASSERT_EQ(0, log.writebacks.size()); } TEST(AsyncCacheTest, TransactionalReadBasic) { auto pool = CachePool::Make(CachePool::Limits{}); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto transaction = Transaction(tensorstore::atomic_isolated); WeakTransactionNodePtr<TestCache::TransactionNode> weak_node; { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); auto node = entry->CreateWriteTransaction(open_transaction); EXPECT_EQ(node, GetTransactionNode(*entry, open_transaction)); weak_node.reset(node.get()); } absl::Time read_time1, read_time2; auto commit_future = transaction.CommitAsync(); EXPECT_TRUE(transaction.commit_started()); auto write_req = log.writebacks.pop(); EXPECT_EQ(weak_node.get(), write_req.node); { auto init_time = absl::Now(); auto read_future = weak_node->Read({init_time}); ASSERT_FALSE(read_future.ready()); { auto read_future2 = weak_node->Read({init_time}); EXPECT_TRUE(HaveSameSharedState(read_future, read_future2)); } ASSERT_EQ(1u, log.transaction_reads.size()); read_time1 = absl::Now(); { auto read_req = log.transaction_reads.pop(); EXPECT_EQ(absl::InfinitePast(), AsyncCache::ReadLock<void>(*read_req.node).stamp().time); read_req.Success(read_time1); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); { auto read_future3 = weak_node->Read({read_time1}); ASSERT_TRUE(read_future3.ready()); TENSORSTORE_EXPECT_OK(read_future3); ASSERT_TRUE(log.transaction_reads.empty()); ASSERT_TRUE(log.writebacks.empty()); } } { auto read_future = weak_node->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); ASSERT_EQ(1u, log.transaction_reads.size()); ASSERT_TRUE(log.writebacks.empty()); read_time2 = absl::Now(); { auto read_req = log.transaction_reads.pop(); EXPECT_EQ(read_time1, AsyncCache::ReadLock<void>(*read_req.node).stamp().time); read_req.Success(read_time2); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); } { auto read_future = weak_node->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); auto read_time = UniqueNow(); auto read_future1 = weak_node->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future1.ready()); EXPECT_FALSE(HaveSameSharedState(read_future, read_future1)); { auto read_future2 = weak_node->Read({absl::InfiniteFuture()}); EXPECT_TRUE(HaveSameSharedState(read_future1, read_future2)); } ASSERT_EQ(1, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.transaction_reads.pop(); EXPECT_EQ(read_time2, AsyncCache::ReadLock<void>(*read_req.node).stamp().time); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); ASSERT_FALSE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_EQ(1, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); auto read_time2 = absl::Now(); { auto read_req = log.transaction_reads.pop(); EXPECT_EQ(read_time, AsyncCache::ReadLock<void>(*read_req.node).stamp().time); read_req.Success(read_time2); } ASSERT_TRUE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future1); } { auto read_future = weak_node->Read({absl::InfiniteFuture()}); auto read_future1 = weak_node->Read({absl::InfiniteFuture()}); auto read_time = absl::Now(); ASSERT_FALSE(read_future.ready()); ASSERT_FALSE(read_future1.ready()); ASSERT_EQ(1, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.transaction_reads.pop(); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_TRUE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future1); ASSERT_EQ(0, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); } { auto read_future = weak_node->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); auto read_time = absl::Now(); { auto read_future1 = weak_node->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future1.ready()); } ASSERT_EQ(1, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.transaction_reads.pop(); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_EQ(0, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); } { auto read_future = weak_node->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future.ready()); { auto read_future1 = weak_node->Read({absl::InfiniteFuture()}); ASSERT_FALSE(read_future1.ready()); } auto read_future1 = weak_node->Read({absl::InfiniteFuture()}); auto read_time = absl::Now(); ASSERT_FALSE(read_future1.ready()); ASSERT_EQ(1, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); { auto read_req = log.transaction_reads.pop(); read_req.Success(read_time); } ASSERT_TRUE(read_future.ready()); TENSORSTORE_EXPECT_OK(read_future); ASSERT_TRUE(read_future1.ready()); TENSORSTORE_EXPECT_OK(read_future1); ASSERT_EQ(0, log.transaction_reads.size()); ASSERT_EQ(0, log.writebacks.size()); } write_req.Success(); ASSERT_TRUE(commit_future.ready()); TENSORSTORE_EXPECT_OK(commit_future); } TEST(AsyncCacheTest, TransactionalWritebackSuccess) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto transaction = Transaction(tensorstore::atomic_isolated); WeakTransactionNodePtr<TestCache::TransactionNode> weak_node; { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); auto node = entry->CreateWriteTransaction(open_transaction); EXPECT_EQ(node, GetTransactionNode(*entry, open_transaction)); weak_node.reset(node.get()); } auto future = transaction.CommitAsync(); EXPECT_TRUE(transaction.commit_started()); { auto write_req = log.writebacks.pop(); EXPECT_EQ(weak_node.get(), write_req.node); write_req.Success(); } ASSERT_TRUE(future.ready()); TENSORSTORE_EXPECT_OK(future); } TEST(AsyncCacheTest, TransactionalWritebackError) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto transaction = Transaction(tensorstore::isolated); WeakTransactionNodePtr<TestCache::TransactionNode> weak_node; { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); weak_node.reset(entry->CreateWriteTransaction(open_transaction).get()); } auto future = transaction.CommitAsync(); auto error = absl::UnknownError("write error"); { auto write_req = log.writebacks.pop(); EXPECT_EQ(weak_node.get(), write_req.node); write_req.Error(error); } ASSERT_TRUE(future.ready()); EXPECT_EQ(error, future.status()); } TEST(AsyncCacheTest, ConcurrentTransactionCommit) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); static constexpr size_t kNumEntries = 2; tensorstore::internal::PinnedCacheEntry<TestCache> entries[kNumEntries]; for (size_t i = 0; i < kNumEntries; ++i) { entries[i] = GetCacheEntry(cache, tensorstore::StrCat(i)); } static constexpr size_t kNumTransactions = 3; std::vector<Transaction> transactions(kNumTransactions, no_transaction); TestConcurrent<kNumTransactions>( 100, [&] { for (size_t i = 0; i < kNumTransactions; ++i) { auto& transaction = transactions[i]; transaction = Transaction(tensorstore::atomic_isolated); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError( transaction)); for (size_t j = 0; j < kNumEntries; ++j) { entries[(i + j) % kNumEntries]->CreateWriteTransaction( open_transaction); } ASSERT_FALSE(transaction.future().ready()); } }, [&] { TransactionState* expected_transactions[kNumTransactions]; for (size_t i = 0; i < kNumTransactions; ++i) { auto& transaction = transactions[i]; ASSERT_TRUE(transaction.commit_started()); ASSERT_FALSE(transaction.future().ready()); expected_transactions[i] = TransactionState::get(transaction); } TransactionState* transaction_order[kNumTransactions]; for (size_t i = 0; i < kNumTransactions; ++i) { PinnedCacheEntry<TestCache> entry_order[kNumEntries]; ASSERT_EQ(kNumEntries, log.writebacks.size()); for (size_t j = 0; j < kNumEntries; ++j) { auto write_req = log.writebacks.pop(); entry_order[j].reset(static_cast<TestCache::Entry*>( &GetOwningEntry(*write_req.node))); if (j == 0) { transaction_order[i] = write_req.node->transaction(); } else { ASSERT_EQ(transaction_order[i], write_req.node->transaction()); } write_req.Success(); } EXPECT_THAT(entry_order, ::testing::UnorderedElementsAreArray(entries)); } EXPECT_THAT(transaction_order, ::testing::UnorderedElementsAreArray( expected_transactions)); for (auto& transaction : transactions) { ASSERT_TRUE(transaction.future().ready()); TENSORSTORE_ASSERT_OK(transaction.future()); transaction = no_transaction; } }, [&](size_t i) { transactions[i].CommitAsync().IgnoreFuture(); }); } TEST(AsyncCacheTest, DoInitializeTransactionError) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); entry->do_initialize_transaction_error = absl::UnknownError("initialize"); { OpenTransactionPtr transaction; EXPECT_THAT( GetTransactionNode(*entry, transaction).status(), tensorstore::MatchesStatus(absl::StatusCode::kUnknown, "initialize.*")); } { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError( Transaction(tensorstore::isolated))); EXPECT_THAT( GetTransactionNode(*entry, transaction).status(), tensorstore::MatchesStatus(absl::StatusCode::kUnknown, "initialize.*")); } } TEST(AsyncCacheTest, ConcurrentInitializeExplicitTransaction) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); OpenTransactionPtr open_transaction; TestConcurrent<2>( 100, [&] { TENSORSTORE_ASSERT_OK_AND_ASSIGN( open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError( Transaction(tensorstore::isolated))); }, [] {}, [&](size_t i) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto node, GetTransactionNode(*entry, open_transaction)); EXPECT_EQ(1, node->value); }); } TEST(AsyncCacheTest, ConcurrentInitializeImplicitTransaction) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); TestConcurrent<2>( 100, [] {}, [&] { log.HandleWritebacks(); }, [&](size_t i) { OpenTransactionPtr transaction; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto node, GetTransactionNode(*entry, transaction)); EXPECT_EQ(1, node->value); }); } TEST(AsyncCacheTest, ShareImplicitTransactionNodesFalse) { auto pool = CachePool::Make(kSmallCacheLimits); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto node = entry->CreateWriteTransaction(); auto node2 = entry->CreateWriteTransaction(); EXPECT_NE(node, node2); node = {}; node2 = {}; log.HandleWritebacks(); } TEST(AsyncCacheTest, ReadSizeInBytes) { auto pool = CachePool::Make(CachePool::Limits{20000}); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); { auto entry = GetCacheEntry(cache, "a"); auto read_future = entry->Read({absl::Now()}); log.reads.pop().Success(absl::Now(), std::make_shared<size_t>(19000)); } { auto entry = GetCacheEntry(cache, "a"); EXPECT_THAT(AsyncCache::ReadLock<size_t>(*entry).data(), ::testing::Pointee(19000)); auto read_future = entry->Read({absl::InfiniteFuture()}); log.reads.pop().Success(absl::Now(), std::make_shared<size_t>(21000)); ASSERT_TRUE(read_future.ready()); } { auto entry = GetCacheEntry(cache, "a"); EXPECT_THAT(AsyncCache::ReadLock<size_t>(*entry).data(), ::testing::IsNull()); auto read_future = entry->Read({absl::InfiniteFuture()}); log.reads.pop().Success(absl::Now(), std::make_shared<size_t>(1000)); ASSERT_TRUE(read_future.ready()); } { auto entry = GetCacheEntry(cache, "a"); EXPECT_THAT(AsyncCache::ReadLock<size_t>(*entry).data(), ::testing::Pointee(1000)); auto write_future = entry->CreateWriteTransactionFuture(); write_future.Force(); log.writebacks.pop().Success(absl::Now(), std::make_shared<size_t>(21000)); ASSERT_TRUE(write_future.ready()); } { auto entry = GetCacheEntry(cache, "a"); EXPECT_THAT(AsyncCache::ReadLock<size_t>(*entry).data(), ::testing::IsNull()); } } TEST(AsyncCacheTest, ExplicitTransactionSize) { auto pool = CachePool::Make(CachePool::Limits{20000}); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); { auto entry_b = GetCacheEntry(cache, "b"); auto read_future = entry_b->Read({absl::Now()}); log.reads.pop().Success(absl::Now(), std::make_shared<size_t>(1000)); } auto transaction = Transaction(tensorstore::isolated); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); { auto entry_a = GetCacheEntry(cache, "a"); { auto node = entry_a->CreateWriteTransaction(open_transaction); UniqueWriterLock lock(*node); node->size = 100000; node->MarkSizeUpdated(); } EXPECT_EQ(100000, transaction.total_bytes()); auto entry_c = GetCacheEntry(cache, "c"); { auto node = entry_c->CreateWriteTransaction(open_transaction); UniqueWriterLock lock(*node); node->size = 500; node->MarkSizeUpdated(); } EXPECT_EQ(100500, transaction.total_bytes()); { auto node = entry_a->CreateWriteTransaction(open_transaction); UniqueWriterLock lock(*node); node->size = 110000; node->MarkSizeUpdated(); } EXPECT_EQ(110500, transaction.total_bytes()); } { auto entry_b = GetCacheEntry(cache, "b"); EXPECT_THAT(AsyncCache::ReadLock<size_t>(*entry_b).data(), ::testing::Pointee(1000)); } } void TestRevokedTransactionNode(bool reverse_order) { auto pool = CachePool::Make(CachePool::Limits{}); RequestLog log; auto cache = GetCache<TestCache>( pool.get(), "", [&] { return std::make_unique<TestCache>(&log); }); auto entry = GetCacheEntry(cache, "a"); auto transaction = Transaction(tensorstore::atomic_isolated); WeakTransactionNodePtr<TestCache::TransactionNode> weak_node1; WeakTransactionNodePtr<TestCache::TransactionNode> weak_node2; { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto open_transaction, tensorstore::internal::AcquireOpenTransactionPtrOrError(transaction)); { auto node = entry->CreateWriteTransaction(open_transaction); EXPECT_EQ(node, GetTransactionNode(*entry, open_transaction)); weak_node1.reset(node.get()); node->Revoke(); } { auto node = entry->CreateWriteTransaction(open_transaction); EXPECT_EQ(node, GetTransactionNode(*entry, open_transaction)); weak_node2.reset(node.get()); } } auto future = transaction.CommitAsync(); EXPECT_TRUE(transaction.commit_started()); { auto write_req1 = log.writebacks.pop(); EXPECT_EQ(weak_node1.get(), write_req1.node); auto write_req2 = log.writebacks.pop(); EXPECT_EQ(weak_node2.get(), write_req2.node); if (reverse_order) { write_req2.Success(); write_req1.Success(); } else { write_req1.Success(); write_req2.Success(); } } ASSERT_TRUE(future.ready()); TENSORSTORE_EXPECT_OK(future); } TEST(AsyncCacheTest, RevokedTransactionNodeFifo) { TestRevokedTransactionNode(false); } TEST(AsyncCacheTest, RevokedTransactionNodeLifo) { TestRevokedTransactionNode(true); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/cache/async_cache.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/cache/async_cache_test.cc
4f887a6430414cd6088e1743555015b10f116d50
b42f1177-a746-48c5-936f-0579562c34b0
cpp
tensorflow/tensorflow
tfl_tensor_ref
tensorflow/lite/experimental/ml_adjacent/tflite/tfl_tensor_ref.cc
tensorflow/lite/experimental/ml_adjacent/tflite/tfl_tensor_ref_test.cc
#include "tensorflow/lite/experimental/ml_adjacent/tflite/tfl_tensor_ref.h" #include <cstddef> #include <vector> #include "tensorflow/lite/array.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace ml_adj { namespace data { using ::tflite::BuildTfLiteArray; using ::tflite::TfLiteArrayUniquePtr; using ::tflite::TfLiteTypeGetSize; namespace { etype_t TflToLibType(const TfLiteType tfl_type) { switch (tfl_type) { case kTfLiteFloat32: return etype_t::f32; case kTfLiteInt32: return etype_t::i32; case kTfLiteFloat64: return etype_t::f64; default: return etype_t::i32; } } } TflTensorRef::TflTensorRef(const TfLiteTensor* tfl_tensor) : DataRef(TflToLibType(tfl_tensor->type)), tfl_tensor_(tfl_tensor) { dims_.assign(tfl_tensor->dims->data, tfl_tensor->dims->data + tfl_tensor->dims->size); } const void* TflTensorRef::Data() const { return tfl_tensor_->data.data; } ind_t TflTensorRef::NumElements() const { return tfl_tensor_->bytes / TfLiteTypeGetSize(tfl_tensor_->type); } size_t TflTensorRef::Bytes() const { return tfl_tensor_->bytes; } MutableTflTensorRef::MutableTflTensorRef(TfLiteTensor* tfl_tensor, TfLiteContext* tfl_ctx) : MutableDataRef(TflToLibType(tfl_tensor->type)), tfl_tensor_(tfl_tensor), tfl_ctx_(tfl_ctx) { dims_.assign(tfl_tensor->dims->data, tfl_tensor->dims->data + tfl_tensor->dims->size); } void MutableTflTensorRef::Resize(dims_t&& dims) { TfLiteArrayUniquePtr<int> arr = BuildTfLiteArray(std::vector<int>(dims.begin(), dims.end())); TFLITE_CHECK_EQ(tfl_ctx_->ResizeTensor(tfl_ctx_, tfl_tensor_, arr.release()), kTfLiteOk); dims_ = dims; } const void* MutableTflTensorRef::Data() const { return tfl_tensor_->data.data; } ind_t MutableTflTensorRef::NumElements() const { return tfl_tensor_->bytes / TfLiteTypeGetSize(tfl_tensor_->type); } size_t MutableTflTensorRef::Bytes() const { return tfl_tensor_->bytes; } void* MutableTflTensorRef::Data() { return tfl_tensor_->data.data; } } }
#include "tensorflow/lite/experimental/ml_adjacent/tflite/tfl_tensor_ref.h" #include <algorithm> #include <cstddef> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/kernel_util.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/util.h" namespace ml_adj { namespace data { namespace { using ::testing::Each; using ::tflite::BuildTfLiteTensor; using ::tflite::DimsAre; using ::tflite::NumElements; using ::tflite::TensorUniquePtr; TfLiteStatus SimpleResizeTensor(TfLiteContext*, TfLiteTensor* tensor, TfLiteIntArray* new_size) { TFLITE_CHECK(tensor->type == kTfLiteFloat32); size_t num_bytes = NumElements(new_size) * sizeof(float); TF_LITE_ENSURE_STATUS(TfLiteTensorRealloc(num_bytes, tensor)); if (tensor->dims != nullptr) { TfLiteIntArrayFree(tensor->dims); } tensor->dims = new_size; return kTfLiteOk; } std::unique_ptr<TfLiteContext> MakeSimpleContext() { auto ctx = std::make_unique<TfLiteContext>(); ctx->ResizeTensor = SimpleResizeTensor; return ctx; } TEST(ImmutableTensorRefTest, ConstructsAndManifestsTensorData) { TensorUniquePtr tfl_tensor = BuildTfLiteTensor(kTfLiteFloat32, {2, 2}, kTfLiteDynamic); std::fill(tfl_tensor->data.f, tfl_tensor->data.f + 4, 2.0f); TflTensorRef ref(tfl_tensor.get()); ASSERT_EQ(ref.Type(), etype_t::f32); ASSERT_EQ(ref.Dims(), (dims_t{2, 2})); ASSERT_EQ(ref.Bytes(), 4 * sizeof(float)); absl::Span<const float> data(reinterpret_cast<const float*>(ref.Data()), 4); EXPECT_THAT(data, Each(2.0f)); } TEST(MutableTensorRefTest, ConstructsAndManifestsTensorData) { TensorUniquePtr tfl_tensor = BuildTfLiteTensor(kTfLiteFloat32, {2, 2}, kTfLiteDynamic); std::fill(tfl_tensor->data.f, tfl_tensor->data.f + 4, 2.0f); MutableTflTensorRef ref(tfl_tensor.get(), nullptr); ASSERT_EQ(ref.Type(), etype_t::f32); ASSERT_EQ(ref.Dims(), (dims_t{2, 2})); ASSERT_EQ(ref.Bytes(), 4 * sizeof(float)); absl::Span<const float> data(reinterpret_cast<const float*>(ref.Data()), 4); EXPECT_THAT(data, Each(2.0f)); } TEST(MutableTensorRefTest, TensorRefWritesDataToTensor) { TensorUniquePtr tfl_tensor = BuildTfLiteTensor(kTfLiteFloat32, {3, 3}, kTfLiteDynamic); MutableTflTensorRef ref(tfl_tensor.get(), nullptr); ASSERT_EQ(ref.Type(), etype_t::f32); ASSERT_EQ(ref.Dims(), (dims_t{3, 3})); ASSERT_EQ(ref.Bytes(), 9 * sizeof(float)); absl::Span<float> data(reinterpret_cast<float*>(ref.Data()), 9); std::fill(data.begin(), data.end(), 3.0f); EXPECT_THAT(absl::Span<const float>(tfl_tensor->data.f, 9), Each(3.0f)); } TEST(MutableTensorRefTest, ResizeIncreaseSize) { TensorUniquePtr tfl_tensor = BuildTfLiteTensor(kTfLiteFloat32, {2, 3}, kTfLiteDynamic); std::unique_ptr<TfLiteContext> ctx = MakeSimpleContext(); MutableTflTensorRef ref(tfl_tensor.get(), ctx.get()); ASSERT_EQ(ref.Type(), etype_t::f32); ASSERT_EQ(ref.Dims(), (dims_t{2, 3})); ASSERT_EQ(ref.Bytes(), 6 * sizeof(float)); ref.Resize({3, 3}); ASSERT_EQ(ref.Dims(), (dims_t{3, 3})); ASSERT_EQ(ref.Bytes(), 9 * sizeof(float)); absl::Span<float> ref_data(reinterpret_cast<float*>(ref.Data()), 9); ASSERT_THAT(tfl_tensor.get(), DimsAre({3, 3})); ASSERT_EQ(tfl_tensor->bytes, ref.Bytes()); ASSERT_EQ(ref.Data(), tfl_tensor->data.data); } TEST(MutableTensorRefTest, ResizeDecreasesSize) { TensorUniquePtr tfl_tensor = BuildTfLiteTensor(kTfLiteFloat32, {2, 3}, kTfLiteDynamic); std::unique_ptr<TfLiteContext> ctx = MakeSimpleContext(); MutableTflTensorRef ref(tfl_tensor.get(), ctx.get()); ASSERT_EQ(ref.Type(), etype_t::f32); ASSERT_EQ(ref.Dims(), (dims_t{2, 3})); ASSERT_EQ(ref.Bytes(), 6 * sizeof(float)); ref.Resize({2, 2}); ASSERT_EQ(ref.Dims(), (dims_t{2, 2})); ASSERT_EQ(ref.Bytes(), 4 * sizeof(float)); absl::Span<float> ref_data(reinterpret_cast<float*>(ref.Data()), 4); ASSERT_THAT(tfl_tensor.get(), DimsAre({2, 2})); ASSERT_EQ(tfl_tensor->bytes, ref.Bytes()); ASSERT_EQ(ref.Data(), tfl_tensor->data.data); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/tflite/tfl_tensor_ref.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/ml_adjacent/tflite/tfl_tensor_ref_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4c343d7a-ba36-4203-8386-ade34582bb27
cpp
google/arolla
bound_operators
arolla/qexpr/bound_operators.cc
arolla/qexpr/bound_operators_test.cc
#include "arolla/qexpr/bound_operators.h" #include <cstdint> #include <memory> #include "arolla/memory/frame.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/operators.h" namespace arolla { std::unique_ptr<BoundOperator> JumpBoundOperator(int64_t jump) { return MakeBoundOperator([=](EvaluationContext* ctx, FramePtr frame) { ctx->set_requested_jump(jump); }); } std::unique_ptr<BoundOperator> JumpIfNotBoundOperator( FrameLayout::Slot<bool> cond_slot, int64_t jump) { return MakeBoundOperator([=](EvaluationContext* ctx, FramePtr frame) { if (!frame.Get(cond_slot)) { ctx->set_requested_jump(jump); } }); } }
#include "arolla/qexpr/bound_operators.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/operators.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { using ::absl_testing::IsOk; using ::absl_testing::StatusIs; using ::testing::Eq; template <typename T> using Slot = FrameLayout::Slot<T>; absl::StatusOr<std::unique_ptr<BoundOperator>> CreateAddFloatsBoundOp( absl::Span<const TypedSlot> input_slots, Slot<OptionalValue<float>> output_slot) { std::vector<Slot<bool>> input_cond_slots; std::vector<Slot<float>> input_value_slots; for (const auto& typed_input_slot : input_slots) { QTypePtr input_type = typed_input_slot.GetType(); if (IsOptionalQType(input_type)) { ASSIGN_OR_RETURN(auto input_slot, typed_input_slot.ToSlot<OptionalValue<float>>()); input_cond_slots.push_back(GetPresenceSubslotFromOptional(input_slot)); input_value_slots.push_back(GetValueSubslotFromOptional(input_slot)); } else { ASSIGN_OR_RETURN(auto value_slot, typed_input_slot.ToSlot<float>()); input_value_slots.push_back(value_slot); } } Slot<bool> output_presence_slot = output_slot.GetSubslot<0>(); Slot<float> output_value_slot = output_slot.GetSubslot<1>(); auto add_op = FunctorBoundOperator([input_value_slots, output_value_slot]( EvaluationContext* ctx, FramePtr frame) { float result = 0.0f; for (auto input_value_slot : input_value_slots) { result += frame.Get(input_value_slot); } frame.Set(output_value_slot, result); }); return std::unique_ptr<BoundOperator>(new WhereAllBoundOperator( input_cond_slots, output_presence_slot, add_op)); } TEST(BoundOperators, RunBoundOperators) { FrameLayout::Builder layout_builder; Slot<int32_t> x_slot = layout_builder.AddSlot<int32_t>(); FrameLayout layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&layout); ASSERT_THAT(alloc.frame().Get(x_slot), Eq(0)); auto make_increment_operator = [x_slot](int32_t increment) { return MakeBoundOperator( [x_slot, increment](EvaluationContext* ctx, FramePtr frame) { frame.Set(x_slot, frame.Get(x_slot) + increment); }); }; std::vector<std::unique_ptr<BoundOperator>> bound_operators; bound_operators.push_back(make_increment_operator(1)); bound_operators.push_back(make_increment_operator(10)); bound_operators.push_back(make_increment_operator(100)); EvaluationContext ctx; EXPECT_EQ(RunBoundOperators(bound_operators, &ctx, alloc.frame()), 2); EXPECT_THAT(alloc.frame().Get(x_slot), Eq(111)); EXPECT_THAT(ctx.status(), IsOk()); } TEST(BoundOperators, RunBoundOperators_WithError) { FrameLayout::Builder layout_builder; Slot<int32_t> x_slot = layout_builder.AddSlot<int32_t>(); FrameLayout layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&layout); ASSERT_THAT(alloc.frame().Get(x_slot), Eq(0)); auto make_increment_operator = [x_slot](int32_t increment) { return MakeBoundOperator( [x_slot, increment](EvaluationContext* ctx, FramePtr frame) { frame.Set(x_slot, frame.Get(x_slot) + increment); }); }; std::vector<std::unique_ptr<BoundOperator>> bound_operators; bound_operators.push_back(make_increment_operator(1)); bound_operators.push_back(make_increment_operator(10)); bound_operators.push_back( MakeBoundOperator([](EvaluationContext* ctx, FramePtr frame) { ctx->set_status(absl::InvalidArgumentError("foo")); })); bound_operators.push_back(make_increment_operator(100)); EvaluationContext ctx; EXPECT_EQ(RunBoundOperators(bound_operators, &ctx, alloc.frame()), 2); EXPECT_THAT(alloc.frame().Get(x_slot), Eq(11)); EXPECT_THAT(ctx.status(), StatusIs(absl::StatusCode::kInvalidArgument, "foo")); } TEST(BoundOperators, RunBoundOperators_WithJump) { FrameLayout::Builder layout_builder; Slot<int32_t> x_slot = layout_builder.AddSlot<int32_t>(); FrameLayout layout = std::move(layout_builder).Build(); MemoryAllocation alloc(&layout); ASSERT_THAT(alloc.frame().Get(x_slot), Eq(0)); auto make_increment_operator = [x_slot](int32_t increment) { return MakeBoundOperator( [x_slot, increment](EvaluationContext* ctx, FramePtr frame) { frame.Set(x_slot, frame.Get(x_slot) + increment); }); }; std::vector<std::unique_ptr<BoundOperator>> bound_operators; bound_operators.push_back(make_increment_operator(1)); bound_operators.push_back(JumpBoundOperator(1)); bound_operators.push_back(make_increment_operator(10)); bound_operators.push_back(make_increment_operator(100)); EvaluationContext ctx; EXPECT_EQ(RunBoundOperators(bound_operators, &ctx, alloc.frame()), 3); EXPECT_THAT(alloc.frame().Get(x_slot), Eq(101)); EXPECT_THAT(ctx.status(), IsOk()); } TEST(BoundOperators, WhereAll) { FrameLayout::Builder layout_builder; auto input1 = layout_builder.AddSlot<OptionalValue<float>>(); auto input2 = layout_builder.AddSlot<OptionalValue<float>>(); auto input3 = layout_builder.AddSlot<float>(); auto input4 = layout_builder.AddSlot<float>(); auto result = layout_builder.AddSlot<OptionalValue<float>>(); ASSERT_OK_AND_ASSIGN( auto op1, CreateAddFloatsBoundOp( ToTypedSlots(input1, input2, input3, input4), result)); FrameLayout layout = std::move(layout_builder).Build(); RootEvaluationContext root_ctx(&layout); root_ctx.Set(input1, 1.0f); root_ctx.Set(input2, 10.0f); root_ctx.Set(input3, 100.0f); root_ctx.Set(input4, 1000.0f); EvaluationContext ctx(root_ctx); op1->Run(&ctx, root_ctx.frame()); EXPECT_OK(ctx.status()); EXPECT_EQ(root_ctx.Get(result), OptionalValue<float>{1111.0f}); root_ctx.Set(input2, std::nullopt); root_ctx.Set(result, 0.0f); op1->Run(&ctx, root_ctx.frame()); EXPECT_OK(ctx.status()); EXPECT_EQ(root_ctx.Get(result), OptionalValue<float>{}); EXPECT_EQ(root_ctx.Get(result).value, 0.0f); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/bound_operators.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/bound_operators_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
43a8a8a6-4fb8-4471-9a04-067387bd6f07
cpp
tensorflow/tensorflow
cpu_runtime
third_party/xla/xla/service/cpu/cpu_runtime.cc
third_party/xla/xla/service/cpu/cpu_runtime_test.cc
#include "xla/service/cpu/cpu_runtime.h" #include <cstdarg> #include <cstdint> #include <cstring> #include <iterator> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/base/dynamic_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "xla/executable_run_options.h" #include "xla/layout_util.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/computation_placer.h" #include "xla/service/cpu/collectives_interface.h" #include "xla/service/cpu/cpu_executable_run_options.h" #include "xla/service/cpu/in_process_collectives.h" #include "xla/service/cpu/xfeed_manager.h" #include "xla/service/global_device_id.h" #include "xla/service/hlo_parser.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/profiler/lib/traceme.h" namespace xla { namespace cpu { namespace runtime { XfeedManager* GetXfeedManager(int device_ordinal) { static auto* managers = new absl::flat_hash_map<int, XfeedManager*>(); static absl::Mutex* mutex = new absl::Mutex(); absl::MutexLock lock(mutex); auto it = managers->find(device_ordinal); if (it == managers->end()) { it = managers->emplace(device_ordinal, new XfeedManager()).first; } return it->second; } int GetDeviceOrdinal(const xla::ExecutableRunOptions* run_options) { if (!run_options) { return 0; } else if (run_options->device_ordinal() != -1) { return run_options->device_ordinal(); } return run_options->stream()->parent()->device_ordinal(); } extern const char* const kEigenMatMulF16SymbolName = "__xla_cpu_runtime_EigenMatMulF16"; extern const char* const kEigenMatMulF32SymbolName = "__xla_cpu_runtime_EigenMatMulF32"; extern const char* const kEigenMatMulF64SymbolName = "__xla_cpu_runtime_EigenMatMulF64"; extern const char* const kEigenMatMulC64SymbolName = "__xla_cpu_runtime_EigenMatMulC64"; extern const char* const kEigenMatMulC128SymbolName = "__xla_cpu_runtime_EigenMatMulC128"; extern const char* const kEigenMatMulS32SymbolName = "__xla_cpu_runtime_EigenMatMulS32"; extern const char* const kEigenBatchMatMulF32SymbolName = "__xla_cpu_runtime_EigenBatchMatMulF32"; extern const char* const kMKLConv2DF32SymbolName = "__xla_cpu_runtime_MKLConv2DF32"; extern const char* const kACLConv2DF32SymbolName = "__xla_cpu_runtime_ACLConv2DF32"; extern const char* const kACLMatMulF32SymbolName = "__xla_cpu_runtime_ACLMatMulF32"; extern const char* const kACLBatchMatMulF32SymbolName = "__xla_cpu_runtime_ACLBatchMatMulF32"; extern const char* const kEigenConv2DF16SymbolName = "__xla_cpu_runtime_EigenConv2DF16"; extern const char* const kEigenConv2DF32SymbolName = "__xla_cpu_runtime_EigenConv2DF32"; extern const char* const kEigenConv3DF16SymbolName = "__xla_cpu_runtime_EigenConv3DF16"; extern const char* const kEigenConv3DF32SymbolName = "__xla_cpu_runtime_EigenConv3DF32"; extern const char* const kDuccFftSymbolName = "__xla_cpu_runtime_DuccFft"; extern const char* const kDuccSingleThreadedFftSymbolName = "__xla_cpu_runtime_DuccSingleThreadedFft"; extern const char* const kEigenSingleThreadedMatMulF8E4M3FNSymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF8E4M3FN"; extern const char* const kEigenSingleThreadedMatMulF8E5M2SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF8E5M2"; extern const char* const kEigenSingleThreadedMatMulF16SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF16"; extern const char* const kEigenSingleThreadedMatMulF32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF32"; extern const char* const kEigenSingleThreadedMatMulF64SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulF64"; extern const char* const kEigenSingleThreadedMatMulC64SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulC64"; extern const char* const kEigenSingleThreadedMatMulC128SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulC128"; extern const char* const kEigenSingleThreadedMatMulS32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulS32"; extern const char* const kEigenSingleThreadedMatMulU8SymbolName = "__xla_cpu_runtime_EigenSingleThreadedMatMulU8"; extern const char* const kEigenSingleThreadedConv2DF16SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv2DF16"; extern const char* const kEigenSingleThreadedConv2DF32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv2DF32"; extern const char* const kEigenSingleThreadedConv3DF16SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv3DF16"; extern const char* const kEigenSingleThreadedConv3DF32SymbolName = "__xla_cpu_runtime_EigenSingleThreadedConv3DF32"; extern const char* const kAcquireInfeedBufferForDequeueSymbolName = "__xla_cpu_runtime_AcquireInfeedBufferForDequeue"; extern const char* const kReleaseInfeedBufferAfterDequeueSymbolName = "__xla_cpu_runtime_ReleaseInfeedBufferAfterDequeue"; extern const char* const kAcquireOutfeedBufferForPopulationSymbolName = "__xla_cpu_runtime_AcquireOutfeedBufferForPopulation"; extern const char* const kReleaseOutfeedBufferAfterPopulationSymbolName = "__xla_cpu_runtime_ReleaseOutfeedBufferAfterPopulation"; extern const char* const kParallelForkJoinSymbolName = "__xla_cpu_runtime_ParallelForkJoin"; extern const char* const kPrintfToStderrSymbolName = "__xla_cpu_runtime_PrintfToStderr"; extern const char* const kStatusIsSuccessSymbolName = "__xla_cpu_runtime_StatusIsSuccess"; extern const char* const kKeyValueSortSymbolName = "__xla_cpu_runtime_KeyValueSort"; extern const char* const kTopKF32SymbolName = "__xla_cpu_runtime_TopKF32"; extern const char* const kTracingStartSymbolName = "__xla_cpu_runtime_TracingStart"; extern const char* const kTracingEndSymbolName = "__xla_cpu_runtime_TracingEnd"; extern const char* const kXlaCpuRuntimeSymbolNamePrefix = "__xla_cpu_runtime_"; extern const char* const kAllReduceSymbolName = "__xla_cpu_runtime_AllReduce"; extern const char* const kAllGatherSymbolName = "__xla_cpu_runtime_AllGather"; extern const char* const kReduceScatterSymbolName = "__xla_cpu_runtime_ReduceScatter"; extern const char* const kAllToAllSymbolName = "__xla_cpu_runtime_AllToAll"; extern const char* const kCollectivePermuteSymbolName = "__xla_cpu_runtime_CollectivePermute"; extern const char* const kPartitionIdSymbolName = "__xla_cpu_runtime_PartitionId"; extern const char* const kReplicaIdSymbolName = "__xla_cpu_runtime_ReplicaId"; extern const char* const kOneDnnMatMulSymbolName = "__xla_cpu_runtime_OneDnnMatMul"; extern const char* const kOneDnnSoftmaxSymbolName = "__xla_cpu_runtime_OneDnnSoftmax"; extern const char* const kOneDnnLayerNormSymbolName = "__xla_cpu_runtime_OneDnnLayerNorm"; extern const char* const kOneDnnConvolutionSymbolName = "__xla_cpu_runtime_OneDnnConvolution"; extern const char* const kOneDnnMatMulReorderSymbolName = "__xla_cpu_runtime_OneDnnMatMulReorder"; extern const char* const kHandleFfiCallSymbolName = "__xla_cpu_runtime_HandleFfiCall"; namespace { absl::StatusOr<Shape> DecodeSelfDescribingShapeConstant(const void* shape_ptr, int32_t size_bytes) { ShapeProto shape_proto; if (!shape_proto.ParseFromArray(shape_ptr, size_bytes)) { return tsl::errors::Internal("Failed parsing the shape proto"); } Shape shape(shape_proto); auto status = ShapeUtil::ValidateShape(shape); if (!status.ok()) { return status; } return std::move(shape); } std::string ShapeString(const void* shape_ptr, int32_t shape_length) { absl::StatusOr<Shape> shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length); if (shape.ok()) { return ShapeUtil::HumanStringWithLayout(shape.value()); } return "<invalid shape>"; } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void* AcquireInfeedBufferForDequeueImpl(const ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "AcquireInfeedBufferForDequeue: " << ShapeString(shape, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); XfeedBuffer* buffer = xfeed->infeed()->BlockingDequeueBuffer(); CHECK_EQ(buffer->length(), buffer_length) << "XLA program infeed request buffer size " << buffer_length << " did not match the runtime's infed buffer length " << buffer->length() << "; program reports desired shape: " << ShapeString(shape, shape_length); return buffer->data(); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReleaseInfeedBufferAfterDequeueImpl( const ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "ReleaseInfeedBufferAfterDeque: " << ShapeString(shape_ptr, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); absl::StatusOr<Shape> shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length); xfeed->infeed()->ReleaseCurrentBuffer(buffer_length, buffer_ptr, std::move(shape)); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void* AcquireOutfeedBufferForPopulationImpl( const ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape_ptr, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "AcquireOutfeedBufferForPopulation: " << ShapeString(shape_ptr, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); XfeedBuffer* buffer = xfeed->outfeed()->BlockingDequeueBuffer(); CHECK_EQ(buffer->length(), buffer_length) << "XLA program outfeed request buffer size " << buffer_length << " did not match the runtime's outfeed buffer length " << buffer->length() << "; program reports outfed shape: " << ShapeString(shape_ptr, shape_length); return buffer->data(); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReleaseOutfeedBufferAfterPopulationImpl( const ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length) { int device_ordinal = GetDeviceOrdinal(run_options); VLOG(2) << "ReleaseOutfeedBufferAfterPopulation: " << ShapeString(shape_ptr, shape_length) << " on stream executor " << device_ordinal; XfeedManager* xfeed = GetXfeedManager(device_ordinal); absl::StatusOr<Shape> shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length); xfeed->outfeed()->ReleaseCurrentBuffer(buffer_length, buffer_ptr, std::move(shape)); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReplicaIdImpl(const ExecutableRunOptions* run_options, void* output_buffer) { int device_ordinal = GetDeviceOrdinal(run_options); int32_t replica_id = run_options->device_assignment() ->ReplicaIdForDevice(GlobalDeviceId(device_ordinal)) .value(); std::memcpy(output_buffer, &replica_id, 4); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void PartitionIdImpl(const ExecutableRunOptions* run_options, void* output_buffer) { int device_ordinal = GetDeviceOrdinal(run_options); const DeviceAssignment::LogicalID logical_id = run_options->device_assignment() ->LogicalIdForDevice(GlobalDeviceId(device_ordinal)) .value(); std::memcpy(output_buffer, &logical_id.computation_id, 4); } RendezvousKey GetRendezvousKey(const ExecutableRunOptions* run_options, GlobalDeviceId device, std::vector<ReplicaGroup> group, int32_t channel_id_present, std::optional<bool> use_global_device_ids, int64_t op_id) { const DeviceAssignment& device_assignment = *run_options->device_assignment(); RendezvousKey::CollectiveOpKind op_kind = channel_id_present ? RendezvousKey::kCrossModule : RendezvousKey::kCrossReplica; std::vector<GlobalDeviceId> participating_devices = GetParticipatingDevices(GlobalDeviceId(device), device_assignment, group, GetCollectiveOpGroupMode(channel_id_present != 0, use_global_device_ids) .value()) .value(); int num_local_participants = participating_devices.size(); return RendezvousKey{run_options->run_id(), std::move(participating_devices), num_local_participants, op_kind, op_id}; } CollectivesInterface* GetInProcessCollectivesImpl() { static InProcessCollectives* c = new InProcessCollectives(); return c; } CollectivesInterface* GetCollectivesImpl( const ExecutableRunOptions* run_options) { if (run_options->cpu_executable_run_options() && run_options->cpu_executable_run_options()->collectives()) { return run_options->cpu_executable_run_options()->collectives(); } return GetInProcessCollectivesImpl(); } absl::Duration DefaultCollectiveTimeout() { return absl::Minutes(30); } absl::StatusOr<int> RankInGlobalDevices( absl::Span<GlobalDeviceId const> devices, GlobalDeviceId device) { auto it = absl::c_find(devices, device); if (it == devices.end()) { return InvalidArgument( "Device %d not present in global devices %s.", device.value(), absl::StrJoin(devices, ", ", [](std::string* out, GlobalDeviceId id) { absl::StrAppend(out, id.value()); })); } return std::distance(devices.begin(), it); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void AllToAllImpl(const ExecutableRunOptions* run_options, int32_t channel_id_present, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t num_buffers, int64_t buffer_size, void** source_buffers, void** destination_buffers) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, std::nullopt, op_id); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(source_buffers, sizeof(void*) * num_buffers); ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(destination_buffers, sizeof(void*) * num_buffers); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); TF_CHECK_OK(communicator->AllToAll( rendezvous_key, buffer_size, absl::Span<const void* const>(source_buffers, num_buffers), absl::Span<void* const>(destination_buffers, num_buffers), DefaultCollectiveTimeout())); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void AllGatherImpl(const ExecutableRunOptions* run_options, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int64_t buffer_size, void* source_buffer, void* destination_buffer) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, use_global_device_ids, op_id); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); TF_CHECK_OK(communicator->AllGather(rendezvous_key, buffer_size, source_buffer, destination_buffer, DefaultCollectiveTimeout())); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void ReduceScatterImpl(const ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, int32_t element_type, int64_t chunk_elems, void* input_buffer, void* output_buffer) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, use_global_device_ids, op_id); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); TF_CHECK_OK(communicator->ReduceScatter( rendezvous_key, static_cast<ReductionKind>(reduction_kind), static_cast<PrimitiveType>(element_type), chunk_elems, input_buffer, output_buffer, DefaultCollectiveTimeout())); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void AllReduceImpl(const ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, const void* shape_ptr, int32_t shape_length, int32_t num_buffers, void** input_buffers, void** output_buffers) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view replica_groups_serialized( static_cast<const char*>(replica_groups_str), replica_groups_str_size); std::vector<ReplicaGroup> group = ParseReplicaGroupsOnly(replica_groups_serialized).value(); RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, group, channel_id_present, use_global_device_ids, op_id); auto shape_str = ShapeString(shape_ptr, shape_length); VLOG(2) << "All-reduce input/output shape : " << shape_str; Shape shape = DecodeSelfDescribingShapeConstant(shape_ptr, shape_length).value(); CHECK((num_buffers > 1 && shape.IsTuple()) || (num_buffers == 1 && LayoutUtil::IsDenseArray(shape))); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); for (int i = 0; i < num_buffers; i++) { Shape subshape = num_buffers == 1 ? shape : shape.tuple_shapes(i); TF_CHECK_OK(communicator->AllReduce( rendezvous_key, static_cast<ReductionKind>(reduction_kind), subshape.element_type(), ShapeUtil::ElementsIn(subshape), input_buffers[i], output_buffers[i], DefaultCollectiveTimeout())); } } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void CollectivePermuteImpl(const ExecutableRunOptions* run_options, int32_t channel_id_present, int64_t op_id, int32_t byte_size, void* input_buffer, void* output_buffer, const void* source_target_pairs, int32_t source_target_pairs_size) { GlobalDeviceId device(GetDeviceOrdinal(run_options)); std::string_view source_target_pairs_serialized( static_cast<const char*>(source_target_pairs), source_target_pairs_size); auto pairs = absl::StrSplit(source_target_pairs_serialized, ','); const DeviceAssignment::LogicalID logical_id = run_options->device_assignment()->LogicalIdForDevice(device).value(); int32_t logical_device_id = channel_id_present ? logical_id.computation_id : logical_id.replica_id; std::optional<int> source_replica_id; std::vector<int> copy_to; for (auto& p : pairs) { std::vector<std::string> mapping = absl::StrSplit(p, '='); CHECK_EQ(mapping.size(), 2); int from = std::stoi(mapping[0]); int to = std::stoi(mapping[1]); if (from == logical_device_id) { copy_to.push_back(to); } if (to == logical_device_id) { CHECK(!source_replica_id.has_value()); source_replica_id = from; } } RendezvousKey rendezvous_key = GetRendezvousKey(run_options, device, {}, channel_id_present, std::nullopt, op_id); int rank = RankInGlobalDevices(rendezvous_key.global_devices, device).value(); CollectivesInterface* collectives = GetCollectivesImpl(run_options); auto communicator = collectives->GetCommunicator(rendezvous_key.global_devices, rank).value(); TF_CHECK_OK(communicator->CollectivePermute( rendezvous_key, byte_size, source_replica_id, copy_to, input_buffer, output_buffer, DefaultCollectiveTimeout())); } } } } } extern "C" { ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY int __xla_cpu_runtime_PrintfToStderr( const char* format, ...) { VLOG(3) << "__xla_cpu_runtime_PrintfToStderr " << format; va_list args; va_start(args, format); int result = vfprintf(stderr, format, args); va_end(args); return result; } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY int64_t __xla_cpu_runtime_TracingStart( const void* , const char* name, const char* hlo_module, int64_t program_id) { VLOG(3) << "TracingStart " << name; auto trace_in = tsl::profiler::TraceMeEncode(name, {{"hlo_op", name}, {"hlo_module", hlo_module}, {"program_id", program_id}}); return tsl::profiler::TraceMe::ActivityStart(trace_in); } ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY void __xla_cpu_runtime_TracingEnd( const void* , int64_t id) { VLOG(3) << "TracingEnd " << id; tsl::profiler::TraceMe::ActivityEnd(id); } void* __xla_cpu_runtime_AcquireInfeedBufferForDequeue( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape, int32_t shape_length) { return xla::cpu::runtime::AcquireInfeedBufferForDequeueImpl( run_options, buffer_length, shape, shape_length); } void __xla_cpu_runtime_ReleaseInfeedBufferAfterDequeue( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length) { return xla::cpu::runtime::ReleaseInfeedBufferAfterDequeueImpl( run_options, buffer_length, buffer_ptr, shape_ptr, shape_length); } void* __xla_cpu_runtime_AcquireOutfeedBufferForPopulation( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, const void* shape_ptr, int32_t shape_length) { return xla::cpu::runtime::AcquireOutfeedBufferForPopulationImpl( run_options, buffer_length, shape_ptr, shape_length); } void __xla_cpu_runtime_ReleaseOutfeedBufferAfterPopulation( const xla::ExecutableRunOptions* run_options, int32_t buffer_length, void* buffer_ptr, const void* shape_ptr, int32_t shape_length) { return xla::cpu::runtime::ReleaseOutfeedBufferAfterPopulationImpl( run_options, buffer_length, buffer_ptr, shape_ptr, shape_length); } void __xla_cpu_runtime_AllToAll(const xla::ExecutableRunOptions* run_options, int32_t channel_id_present, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t num_buffers, int64_t buffer_size, void** source_buffers, void** destination_buffers) { return xla::cpu::runtime::AllToAllImpl( run_options, channel_id_present, op_id, replica_groups_str, replica_groups_str_size, num_buffers, buffer_size, source_buffers, destination_buffers); } void __xla_cpu_runtime_AllGather(const xla::ExecutableRunOptions* run_options, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, const void* replica_groups_str, int32_t replica_groups_str_size, int64_t buffer_size, void* source_buffer, void* destination_buffer) { return xla::cpu::runtime::AllGatherImpl( run_options, channel_id_present, use_global_device_ids, op_id, replica_groups_str, replica_groups_str_size, buffer_size, source_buffer, destination_buffer); } void __xla_cpu_runtime_ReduceScatter( const xla::ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, int32_t element_type, int64_t chunk_elems, void* input_buffer, void* output_buffer) { return xla::cpu::runtime::ReduceScatterImpl( run_options, replica_groups_str, replica_groups_str_size, channel_id_present, use_global_device_ids, op_id, reduction_kind, element_type, chunk_elems, input_buffer, output_buffer); } void __xla_cpu_runtime_AllReduce(const xla::ExecutableRunOptions* run_options, const void* replica_groups_str, int32_t replica_groups_str_size, int32_t channel_id_present, int32_t use_global_device_ids, int64_t op_id, int32_t reduction_kind, const void* shape_ptr, int32_t shape_length, int32_t num_buffers, void** input_buffers, void** output_buffers) { return xla::cpu::runtime::AllReduceImpl( run_options, replica_groups_str, replica_groups_str_size, channel_id_present, use_global_device_ids, op_id, reduction_kind, shape_ptr, shape_length, num_buffers, input_buffers, output_buffers); } void __xla_cpu_runtime_ReplicaId(const xla::ExecutableRunOptions* run_options, void* output_buffer) { return xla::cpu::runtime::ReplicaIdImpl(run_options, output_buffer); } void __xla_cpu_runtime_PartitionId(const xla::ExecutableRunOptions* run_options, void* output_buffer) { return xla::cpu::runtime::PartitionIdImpl(run_options, output_buffer); } void __xla_cpu_runtime_CollectivePermute( const xla::ExecutableRunOptions* run_options, int32_t channel_id_present, int64_t op_id, int32_t byte_size, void* input_buffer, void* output_buffer, const void* source_target_pairs, int32_t source_target_pairs_size) { return xla::cpu::runtime::CollectivePermuteImpl( run_options, channel_id_present, op_id, byte_size, input_buffer, output_buffer, source_target_pairs, source_target_pairs_size); } }
#define EIGEN_USE_THREADS #include "xla/service/cpu/cpu_runtime.h" #include <memory> #include <string> #include <tuple> #include "absl/strings/str_format.h" #include "unsupported/Eigen/CXX11/Tensor" #include "xla/array2d.h" #include "xla/client/local_client.h" #include "xla/executable_run_options.h" #include "xla/service/cpu/runtime_custom_call_status.h" #include "xla/service/cpu/runtime_matmul.h" #include "xla/service/cpu/runtime_matmul_acl.h" #include "xla/service/cpu/runtime_single_threaded_matmul.h" #include "xla/service/custom_call_status_internal.h" #include "xla/types.h" #include "tsl/platform/env.h" #include "tsl/platform/logging.h" #include "tsl/platform/test.h" namespace xla { namespace { class CpuRuntimeTest : public ::testing::Test {}; template <typename T> std::unique_ptr<Array2D<float>> MaybeTransposeArray2D(const Array2D<T>& array, bool transpose) { int64_t output_height = array.height(); int64_t output_width = array.width(); if (transpose) { std::swap(output_width, output_height); } auto output = std::make_unique<Array2D<float>>(output_height, output_width); for (int y = 0; y < array.height(); y++) { for (int x = 0; x < array.width(); x++) { if (transpose) { (*output)(x, y) = array(y, x); } else { (*output)(y, x) = array(y, x); } } } return output; } void CheckMatrixMultiply(const Array2D<float>& a, const Array2D<float>& b, const Array2D<float>& c) { for (int i = 0; i < a.height(); ++i) { for (int j = 0; j < b.width(); ++j) { float sum = 0.0; for (int k = 0; k < a.width(); ++k) { sum += a(i, k) * b(k, j); } EXPECT_NEAR(sum, c(i, j), 0.01); } } } std::unique_ptr<Array2D<float>> EigenMatrixMultiply(const Array2D<float>& a, const Array2D<float>& b, bool transpose_lhs, bool transpose_rhs, bool single_threaded) { CHECK_EQ(a.width(), b.height()); int64_t m = a.height(); int64_t n = b.width(); int64_t k = a.width(); auto a_transpose = MaybeTransposeArray2D(a, !transpose_lhs); auto b_transpose = MaybeTransposeArray2D(b, !transpose_rhs); auto c_transpose = std::make_unique<Array2D<float>>(n, m); if (single_threaded) { __xla_cpu_runtime_EigenSingleThreadedMatMulF32( nullptr, c_transpose->data(), a_transpose->data(), b_transpose->data(), m, n, k, transpose_lhs, transpose_rhs); } else { tsl::thread::ThreadPool pool(tsl::Env::Default(), "XLAEigen", 2); Eigen::ThreadPoolDevice device(pool.AsEigenThreadPool(), pool.NumThreads()); ExecutableRunOptions run_options; run_options.set_intra_op_thread_pool(&device); __xla_cpu_runtime_EigenMatMulF32(&run_options, c_transpose->data(), a_transpose->data(), b_transpose->data(), m, n, k, transpose_lhs, transpose_rhs); } return MaybeTransposeArray2D(*c_transpose, true); } struct MatMulShape { int64_t m; int64_t k; int64_t n; }; MatMulShape MatMulShapes[] = { MatMulShape{2, 2, 3}, MatMulShape{256, 512, 1024}, MatMulShape{128, 128, 1}, MatMulShape{1, 128, 128}, MatMulShape{1, 32, 128}, MatMulShape{1, 32, 16}, MatMulShape{32, 16, 1}, MatMulShape{32, 128, 1}, }; using MatMulTestParam = std::tuple<MatMulShape, bool, bool, bool>; class EigenMatMulTest : public CpuRuntimeTest, public ::testing::WithParamInterface<MatMulTestParam> { public: static std::string Name( const ::testing::TestParamInfo<MatMulTestParam>& info) { MatMulShape shape = std::get<0>(info.param); bool transpose_lhs = std::get<1>(info.param); bool transpose_rhs = std::get<2>(info.param); bool single_threaded = std::get<3>(info.param); return absl::StrFormat("EigenMatMul_%d_%d_%d_%s%s%s_threaded", shape.m, shape.k, shape.n, transpose_lhs ? "Tlhs_" : "", transpose_rhs ? "Trhs_" : "", single_threaded ? "single" : "multi"); } }; TEST_P(EigenMatMulTest, DoIt) { MatMulShape shape = std::get<0>(GetParam()); bool transpose_lhs = std::get<1>(GetParam()); bool transpose_rhs = std::get<2>(GetParam()); bool single_threaded = std::get<3>(GetParam()); auto a = MakeLinspaceArray2D(0.0, 1.0, shape.m, shape.k); auto b = MakeLinspaceArray2D(-2.0, 2.0, shape.k, shape.n); auto c = EigenMatrixMultiply(*a, *b, transpose_lhs, transpose_rhs, single_threaded); CheckMatrixMultiply(*a, *b, *c); } INSTANTIATE_TEST_SUITE_P(EigenMatMulTestInstantiaion, EigenMatMulTest, ::testing::Combine(::testing::ValuesIn(MatMulShapes), ::testing::Bool(), ::testing::Bool(), ::testing::Bool()), EigenMatMulTest::Name); TEST_F(CpuRuntimeTest, SuccessStatus) { XlaCustomCallStatus success_status; ASSERT_TRUE(__xla_cpu_runtime_StatusIsSuccess(&success_status)); } TEST_F(CpuRuntimeTest, FailureStatus) { XlaCustomCallStatus success_status; XlaCustomCallStatusSetFailure(&success_status, "Failed", 6); ASSERT_FALSE(__xla_cpu_runtime_StatusIsSuccess(&success_status)); } TEST_F(CpuRuntimeTest, GetDeviceOrdinalWhenRunOptionsEmpty) { EXPECT_EQ(cpu::runtime::GetDeviceOrdinal(nullptr), 0); } TEST_F(CpuRuntimeTest, GetDeviceOrdinalWhenSetInRunOptions) { ExecutableRunOptions run_options; ASSERT_EQ(run_options.device_ordinal(), -1); run_options.set_device_ordinal(3); EXPECT_EQ(cpu::runtime::GetDeviceOrdinal(&run_options), 3); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/cpu_runtime.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/cpu/cpu_runtime_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0aa2f5d2-966e-42b9-a207-44881d727aae
cpp
tensorflow/tensorflow
tensor_flag_utils
tensorflow/core/kernels/tensor_flag_utils.cc
tensorflow/core/kernels/tensor_flag_utils_test.cc
#include "tensorflow/core/kernels/tensor_flag_utils.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/tensor_shape.h" namespace tensorflow { namespace tensor_flag_utils { Status ValidateSparseMatrixShardingConfig(const Tensor& config) { if (TensorShapeUtils::IsScalar(config.shape())) { const float scalar_config = config.template scalar<float>()(); if (0 < scalar_config && scalar_config <= 1.0) { return absl::OkStatus(); } return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Expected config to be in range (0, 1] but instead found ", scalar_config)); } if (!TensorShapeUtils::IsMatrix(config.shape())) { return Status(absl::StatusCode::kInvalidArgument, absl::StrCat("Expected config to be either scalar or matrix " "but instead found tensor of rank ", config.dims())); } if (config.dim_size(1) != 3) { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat( "Expected config matrix to have dim(1) = 3 but instead found ", config.dim_size(1))); } auto config_matrix = config.matrix<float>(); for (int i = 0; i < config.dim_size(0); ++i) { if (0 > config_matrix(i, 0)) { return errors::InvalidArgument( "First column of fraction_rows_per_thread_config " "should " "have non-negative values but found ", config_matrix(i, 0), " in row ", i); } if (0 > config_matrix(i, 1)) { return errors::InvalidArgument( "Second column of fraction_rows_per_thread_config " "should " "have non-negative values but found ", config_matrix(i, 1), " in row ", i); } if (!(0 < config_matrix(i, 2) && config_matrix(i, 2) <= 1)) { return errors::InvalidArgument( "Last column of fraction_rows_per_thread_config should " "have values in the range (0, 1] but found ", config_matrix(i, 2), " in row ", i); } } return absl::OkStatus(); } template <typename MatrixType, typename K> MatrixType FindConfigValueForKey( const typename TTypes<MatrixType>::ConstMatrix& config_mat, const std::pair<K, K>& key) { const int last_row_index = config_mat.dimension(0) - 1; for (int i = 0; i < last_row_index; ++i) { if (key.first >= config_mat(i, 0) && key.second >= config_mat(i, 1)) { return config_mat(i, 2); } } return config_mat(last_row_index, 2); } Status ValidateScalarQuantityShardingConfig(const Tensor& config) { if (TensorShapeUtils::IsScalar(config.shape())) { const float scalar_config = config.template scalar<float>()(); if (0 < scalar_config && scalar_config <= 1.0) { return absl::OkStatus(); } return Status( absl::StatusCode::kInvalidArgument, absl::StrCat("Expected config to be in range (0, 1] but instead found ", scalar_config)); } if (!TensorShapeUtils::IsMatrix(config.shape())) { return Status(absl::StatusCode::kInvalidArgument, absl::StrCat("Expected config to be either scalar or matrix " "but instead found tensor of rank ", config.dims())); } if (config.dim_size(1) != 2) { return Status( absl::StatusCode::kInvalidArgument, absl::StrCat( "Expected config matrix to have dim(1) = 2 but instead found ", config.dim_size(1))); } auto config_matrix = config.matrix<float>(); for (int i = 0; i < config.dim_size(0); ++i) { if (0 > config_matrix(i, 0)) { return errors::InvalidArgument( "First column of fraction_rows_per_thread_config " "should " "have non-negative values but found ", config_matrix(i, 0), " in row ", i); } if (!(0 < config_matrix(i, 1) && config_matrix(i, 1) <= 1)) { return errors::InvalidArgument( "Last column of fraction_rows_per_thread_config should " "have values in the range (0, 1] but found ", config_matrix(i, 1), " in row ", i); } } return absl::OkStatus(); } template <typename MatrixType, typename K> MatrixType FindConfigValueForKey( const typename TTypes<MatrixType>::ConstMatrix& config_mat, const K key) { const int last_row_index = config_mat.dimension(0) - 1; for (int i = 0; i < last_row_index; ++i) { if (key >= config_mat(i, 0)) { return config_mat(i, 1); } } return config_mat(last_row_index, 1); } template <typename Tindices> Tindices GetLinearBucket(const Tindices value, const Tindices bucket_size) { const Tindices next_multiple_of_bucket_size = (value + bucket_size - 1) / bucket_size * bucket_size; return next_multiple_of_bucket_size - (bucket_size - 1); } template <typename Tindices> Tindices GetPowerBucket(const Tindices value, const Tindices bucket_size) { if (bucket_size == 1) { return 1; } return std::pow(bucket_size, std::floor(std::log(bucket_size * (value - 1)) / std::log(bucket_size)) - 1) + 1; } #define REGISTER_SPARSE_UTIL_FUNCTIONS(TypeIndex) \ template float FindConfigValueForKey<float, TypeIndex>( \ const TTypes<float>::ConstMatrix& config_mat, \ const std::pair<TypeIndex, TypeIndex>& key); \ template float FindConfigValueForKey<float, TypeIndex>( \ const TTypes<float>::ConstMatrix& config_mat, const TypeIndex key); \ template int64 FindConfigValueForKey<int64, TypeIndex>( \ const TTypes<int64_t>::ConstMatrix& config_mat, const TypeIndex key); REGISTER_SPARSE_UTIL_FUNCTIONS(int32); REGISTER_SPARSE_UTIL_FUNCTIONS(int64); REGISTER_SPARSE_UTIL_FUNCTIONS(uint8); REGISTER_SPARSE_UTIL_FUNCTIONS(uint16); REGISTER_SPARSE_UTIL_FUNCTIONS(uint32); REGISTER_SPARSE_UTIL_FUNCTIONS(uint64); template int32 GetLinearBucket(const int32 value, const int32 bucket_size); template int64 GetLinearBucket(const int64 value, const int64 bucket_size); template int32 GetPowerBucket(const int32 value, const int32 bucket_size); template int64 GetPowerBucket(const int64 value, const int64 bucket_size); } }
#include "tensorflow/core/kernels/tensor_flag_utils.h" #include <vector> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/platform/test.h" namespace { using ::int64_t; using tensorflow::DataType; using tensorflow::int32; using tensorflow::Tensor; using tensorflow::TTypes; using tensorflow::error::INVALID_ARGUMENT; using tensorflow::tensor_flag_utils::FindConfigValueForKey; using tensorflow::tensor_flag_utils::GetLinearBucket; using tensorflow::tensor_flag_utils::GetPowerBucket; using tensorflow::tensor_flag_utils::ValidateScalarQuantityShardingConfig; using tensorflow::tensor_flag_utils::ValidateSparseMatrixShardingConfig; TEST(SparseUtilsTest, ValidateSparseMatrixShardingConfig) { { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 0.7; EXPECT_TRUE(ValidateSparseMatrixShardingConfig(t).ok()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 1.0; EXPECT_TRUE(ValidateSparseMatrixShardingConfig(t).ok()); } { Tensor t(DataType::DT_FLOAT, {1, 1}); int indx = 0; for (const float v : {60.0}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {1, 2}); int indx = 0; for (const float v : { 60.0, 50.0, }) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {1, 3}); int indx = 0; for (const float v : {30.0, 20.0, 1.0}) { t.flat<float>()(indx++) = v; } EXPECT_TRUE(ValidateSparseMatrixShardingConfig(t).ok()); } { Tensor t(DataType::DT_FLOAT, {2, 3}); int indx = 0; for (const float v : {60.0, 50.0, 0.41, 30.0, 20.0, 0.7}) { t.flat<float>()(indx++) = v; } EXPECT_TRUE(ValidateSparseMatrixShardingConfig(t).ok()); } { Tensor t(DataType::DT_FLOAT, {2, 3}); int indx = 0; for (const float v : {60.0, 40.0, 0.41, 30.0, 20.0, 10.7}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {2, 3}); int indx = 0; for (const float v : {60.0, 40.0, 0.41, 30.0, 20.0, -0.7}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {2, 3}); int indx = 0; for (const float v : {60.0, -40.0, 0.41, 30.0, 20.0, 0.7}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = -0.5; EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 0; EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 1.2; EXPECT_EQ(INVALID_ARGUMENT, ValidateSparseMatrixShardingConfig(t).code()); } } TEST(SparseUtilsTest, ValidateScalarQuantityShardingConfig) { { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 0.7; EXPECT_TRUE(ValidateScalarQuantityShardingConfig(t).ok()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 1.0; EXPECT_TRUE(ValidateScalarQuantityShardingConfig(t).ok()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 1.2; EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {1, 1}); int indx = 0; for (const float v : {60.0}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {1, 2}); int indx = 0; for (const float v : { 60.0, 50.0, }) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {1, 3}); int indx = 0; for (const float v : {30.0, 20.0, 1.0}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {2, 2}); int indx = 0; for (const float v : {60.0, 0.41, 30.0, 0.7}) { t.flat<float>()(indx++) = v; } EXPECT_TRUE(ValidateScalarQuantityShardingConfig(t).ok()); } { Tensor t(DataType::DT_FLOAT, {2, 2}); int indx = 0; for (const float v : {60.0, 0.41, 30.0, 10.7}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {2, 2}); int indx = 0; for (const float v : {60.0, 0.41, 30.0, -0.7}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {2, 2}); int indx = 0; for (const float v : {-40.0, 0.41, 20.0, 0.7}) { t.flat<float>()(indx++) = v; } EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = -0.5; EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 0; EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } { Tensor t(DataType::DT_FLOAT, {}); t.scalar<float>()() = 1.2; EXPECT_EQ(INVALID_ARGUMENT, ValidateScalarQuantityShardingConfig(t).code()); } } TEST(SparseUtils, FindConfigValueForKey) { { float data[] = {60.0, 50.0, 0.41, 30.0, 20.0, 0.1, 0, 0, 0.7}; TTypes<float>::ConstMatrix config_mat(data, 3, 3); auto val = FindConfigValueForKey<float, int32>(config_mat, {70, 40}); EXPECT_FLOAT_EQ(0.1, val); val = FindConfigValueForKey<float, int32>(config_mat, {60, 50}); EXPECT_FLOAT_EQ(0.41, val); val = FindConfigValueForKey<float, int32>(config_mat, {60, 60}); EXPECT_FLOAT_EQ(0.41, val); val = FindConfigValueForKey<float, int32>(config_mat, {60, 40}); EXPECT_FLOAT_EQ(0.1, val); val = FindConfigValueForKey<float, int32>(config_mat, {50, 60}); EXPECT_FLOAT_EQ(0.1, val); val = FindConfigValueForKey<float, int32>(config_mat, {20, 30}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int32>(config_mat, {30, 10}); EXPECT_FLOAT_EQ(0.7, val); } { float data[] = {0, 0, 0.7}; TTypes<float>::ConstMatrix config_mat(data, 1, 3); auto val = FindConfigValueForKey<float, int64_t>(config_mat, {70, 40}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int64_t>(config_mat, {60, 50}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int64_t>(config_mat, {60, 60}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int64_t>(config_mat, {60, 40}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int64_t>(config_mat, {50, 60}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int64_t>(config_mat, {20, 30}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int64_t>(config_mat, {30, 10}); EXPECT_FLOAT_EQ(0.7, val); } { float data[] = {60.0, 50.0, 0.41, 0, 0, 0.7}; TTypes<float>::ConstMatrix config_mat(data, 2, 3); auto val = FindConfigValueForKey<float, int32>(config_mat, {70, 40}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int32>(config_mat, {60, 50}); EXPECT_FLOAT_EQ(0.41, val); val = FindConfigValueForKey<float, int32>(config_mat, {60, 60}); EXPECT_FLOAT_EQ(0.41, val); val = FindConfigValueForKey<float, int32>(config_mat, {60, 40}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int32>(config_mat, {50, 60}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int32>(config_mat, {20, 30}); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int32>(config_mat, {30, 10}); EXPECT_FLOAT_EQ(0.7, val); } { float data[] = {60.0, 0.41, 50.0, 0.14, 0, 0.7}; TTypes<float>::ConstMatrix config_mat(data, 3, 2); auto val = FindConfigValueForKey<float, int32>(config_mat, 70); EXPECT_FLOAT_EQ(0.41, val); val = FindConfigValueForKey<float, int32>(config_mat, 60); EXPECT_FLOAT_EQ(0.41, val); val = FindConfigValueForKey<float, int32>(config_mat, 55); EXPECT_FLOAT_EQ(0.14, val); val = FindConfigValueForKey<float, int32>(config_mat, 50); EXPECT_FLOAT_EQ(0.14, val); val = FindConfigValueForKey<float, int32>(config_mat, 20); EXPECT_FLOAT_EQ(0.7, val); val = FindConfigValueForKey<float, int32>(config_mat, 30); EXPECT_FLOAT_EQ(0.7, val); } } TEST(SparseUtils, GetLinearBucket) { EXPECT_EQ(11, GetLinearBucket(11, 5)); EXPECT_EQ(11, GetLinearBucket(12, 5)); EXPECT_EQ(1, GetLinearBucket(int64_t{4}, int64_t{5})); } TEST(SparseUtils, GetPowerBucket) { EXPECT_EQ(6, GetPowerBucket(11, 5)); EXPECT_EQ(6, GetPowerBucket(12, 5)); EXPECT_EQ(1332, GetPowerBucket(1335, 11)); EXPECT_EQ(5, GetPowerBucket(int64_t{5}, int64_t{4})); EXPECT_EQ(1, GetPowerBucket(int64_t{4}, int64_t{1})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/tensor_flag_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/tensor_flag_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bdbf84ca-7758-46a6-aae4-144045d7cdef
cpp
google/tsl
google_auth_provider
tsl/platform/cloud/google_auth_provider.cc
tsl/platform/cloud/google_auth_provider_test.cc
#include "tsl/platform/cloud/google_auth_provider.h" #ifndef _WIN32 #include <pwd.h> #include <unistd.h> #else #include <sys/types.h> #endif #include <fstream> #include <utility> #include "absl/strings/match.h" #include "json/json.h" #include "tsl/platform/base64.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/path.h" #include "tsl/platform/retrying_utils.h" namespace tsl { namespace { constexpr char kGoogleApplicationCredentials[] = "GOOGLE_APPLICATION_CREDENTIALS"; constexpr char kGoogleAuthTokenForTesting[] = "GOOGLE_AUTH_TOKEN_FOR_TESTING"; constexpr char kCloudSdkConfig[] = "CLOUDSDK_CONFIG"; constexpr char kNoGceCheck[] = "NO_GCE_CHECK"; constexpr char kGCloudConfigFolder[] = ".config/gcloud/"; constexpr char kWellKnownCredentialsFile[] = "application_default_credentials.json"; constexpr int kExpirationTimeMarginSec = 60; constexpr char kOAuthV3Url[] = "https: constexpr char kOAuthV4Url[] = "https: constexpr char kGceTokenPath[] = "instance/service-accounts/default/token"; constexpr char kOAuthScope[] = "https: bool IsFile(const string& filename) { std::ifstream fstream(filename.c_str()); return fstream.good(); } absl::Status GetEnvironmentVariableFileName(string* filename) { if (!filename) { return errors::FailedPrecondition("'filename' cannot be nullptr."); } const char* result = std::getenv(kGoogleApplicationCredentials); if (!result || !IsFile(result)) { return errors::NotFound(strings::StrCat("$", kGoogleApplicationCredentials, " is not set or corrupt.")); } *filename = result; return absl::OkStatus(); } absl::Status GetWellKnownFileName(string* filename) { if (!filename) { return errors::FailedPrecondition("'filename' cannot be nullptr."); } string config_dir; const char* config_dir_override = std::getenv(kCloudSdkConfig); if (config_dir_override) { config_dir = config_dir_override; } else { const char* home_dir = std::getenv("HOME"); if (!home_dir) { return errors::FailedPrecondition("Could not read $HOME."); } config_dir = io::JoinPath(home_dir, kGCloudConfigFolder); } auto result = io::JoinPath(config_dir, kWellKnownCredentialsFile); if (!IsFile(result)) { return errors::NotFound( "Could not find the credentials file in the standard gcloud location."); } *filename = result; return absl::OkStatus(); } } GoogleAuthProvider::GoogleAuthProvider( std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client) : GoogleAuthProvider(std::unique_ptr<OAuthClient>(new OAuthClient()), std::move(compute_engine_metadata_client), Env::Default()) {} GoogleAuthProvider::GoogleAuthProvider( std::unique_ptr<OAuthClient> oauth_client, std::shared_ptr<ComputeEngineMetadataClient> compute_engine_metadata_client, Env* env) : oauth_client_(std::move(oauth_client)), compute_engine_metadata_client_( std::move(compute_engine_metadata_client)), env_(env) {} absl::Status GoogleAuthProvider::GetToken(string* t) { mutex_lock lock(mu_); const uint64 now_sec = env_->NowSeconds(); if (now_sec + kExpirationTimeMarginSec < expiration_timestamp_sec_) { *t = current_token_; return absl::OkStatus(); } if (GetTokenForTesting().ok()) { *t = current_token_; return absl::OkStatus(); } auto token_from_files_status = GetTokenFromFiles(); if (token_from_files_status.ok()) { *t = current_token_; return absl::OkStatus(); } char* no_gce_check_var = std::getenv(kNoGceCheck); bool skip_gce_check = no_gce_check_var != nullptr && absl::EqualsIgnoreCase(no_gce_check_var, "true"); absl::Status token_from_gce_status; if (skip_gce_check) { token_from_gce_status = absl::Status(absl::StatusCode::kCancelled, strings::StrCat("GCE check skipped due to presence of $", kNoGceCheck, " environment variable.")); } else { token_from_gce_status = GetTokenFromGce(); } if (token_from_gce_status.ok()) { *t = current_token_; return absl::OkStatus(); } if (skip_gce_check) { LOG(INFO) << "Attempting an empty bearer token since no token was retrieved " << "from files, and GCE metadata check was skipped."; } else { LOG(WARNING) << "All attempts to get a Google authentication bearer token failed, " << "returning an empty token. Retrieving token from files failed with " "\"" << token_from_files_status.ToString() << "\"." << " Retrieving token from GCE failed with \"" << token_from_gce_status.ToString() << "\"."; } *t = ""; if (skip_gce_check) { expiration_timestamp_sec_ = 0; } else { expiration_timestamp_sec_ = UINT64_MAX; } current_token_ = ""; return absl::OkStatus(); } absl::Status GoogleAuthProvider::GetTokenFromFiles() { string credentials_filename; if (!GetEnvironmentVariableFileName(&credentials_filename).ok() && !GetWellKnownFileName(&credentials_filename).ok()) { return errors::NotFound("Could not locate the credentials file."); } Json::Value json; Json::Reader reader; std::ifstream credentials_fstream(credentials_filename); if (!reader.parse(credentials_fstream, json)) { return errors::FailedPrecondition( "Couldn't parse the JSON credentials file."); } if (json.isMember("refresh_token")) { TF_RETURN_IF_ERROR(oauth_client_->GetTokenFromRefreshTokenJson( json, kOAuthV3Url, &current_token_, &expiration_timestamp_sec_)); } else if (json.isMember("private_key")) { TF_RETURN_IF_ERROR(oauth_client_->GetTokenFromServiceAccountJson( json, kOAuthV4Url, kOAuthScope, &current_token_, &expiration_timestamp_sec_)); } else { return errors::FailedPrecondition( "Unexpected content of the JSON credentials file."); } return absl::OkStatus(); } absl::Status GoogleAuthProvider::GetTokenFromGce() { std::vector<char> response_buffer; const uint64 request_timestamp_sec = env_->NowSeconds(); TF_RETURN_IF_ERROR(compute_engine_metadata_client_->GetMetadata( kGceTokenPath, &response_buffer)); absl::string_view response = absl::string_view(&response_buffer[0], response_buffer.size()); TF_RETURN_IF_ERROR(oauth_client_->ParseOAuthResponse( response, request_timestamp_sec, &current_token_, &expiration_timestamp_sec_)); return absl::OkStatus(); } absl::Status GoogleAuthProvider::GetTokenForTesting() { const char* token = std::getenv(kGoogleAuthTokenForTesting); if (!token) { return errors::NotFound("The env variable for testing was not set."); } expiration_timestamp_sec_ = UINT64_MAX; current_token_ = token; return absl::OkStatus(); } }
#include "tsl/platform/cloud/google_auth_provider.h" #include <stdlib.h> #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/path.h" #include "tsl/platform/test.h" namespace tsl { namespace { string TestData() { return io::JoinPath(testing::TslSrcRoot(), "platform", "cloud", "testdata"); } class FakeEnv : public EnvWrapper { public: FakeEnv() : EnvWrapper(Env::Default()) {} uint64 NowSeconds() const override { return now; } uint64 now = 10000; }; class FakeOAuthClient : public OAuthClient { public: absl::Status GetTokenFromServiceAccountJson( Json::Value json, absl::string_view oauth_server_uri, absl::string_view scope, string* token, uint64* expiration_timestamp_sec) override { provided_credentials_json = json; *token = return_token; *expiration_timestamp_sec = return_expiration_timestamp; return absl::OkStatus(); } absl::Status GetTokenFromRefreshTokenJson( Json::Value json, absl::string_view oauth_server_uri, string* token, uint64* expiration_timestamp_sec) override { provided_credentials_json = json; *token = return_token; *expiration_timestamp_sec = return_expiration_timestamp; return absl::OkStatus(); } string return_token; uint64 return_expiration_timestamp; Json::Value provided_credentials_json; }; } class GoogleAuthProviderTest : public ::testing::Test { protected: void SetUp() override { ClearEnvVars(); } void TearDown() override { ClearEnvVars(); } void ClearEnvVars() { unsetenv("CLOUDSDK_CONFIG"); unsetenv("GOOGLE_APPLICATION_CREDENTIALS"); unsetenv("GOOGLE_AUTH_TOKEN_FOR_TESTING"); unsetenv("NO_GCE_CHECK"); } }; TEST_F(GoogleAuthProviderTest, EnvironmentVariable_Caching) { setenv("GOOGLE_APPLICATION_CREDENTIALS", io::JoinPath(TestData(), "service_account_credentials.json").c_str(), 1); setenv("CLOUDSDK_CONFIG", TestData().c_str(), 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); oauth_client->return_token = "fake-token"; oauth_client->return_expiration_timestamp = env.NowSeconds() + 3600; string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); EXPECT_EQ("fake_key_id", oauth_client->provided_credentials_json.get("private_key_id", "") .asString()); oauth_client->return_token = "new-fake-token"; env.now += 3000; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); env.now += 598; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("new-fake-token", token); } TEST_F(GoogleAuthProviderTest, GCloudRefreshToken) { setenv("CLOUDSDK_CONFIG", TestData().c_str(), 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); oauth_client->return_token = "fake-token"; oauth_client->return_expiration_timestamp = env.NowSeconds() + 3600; string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-token", token); EXPECT_EQ("fake-refresh-token", oauth_client->provided_credentials_json.get("refresh_token", "") .asString()); } TEST_F(GoogleAuthProviderTest, RunningOnGCE) { auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", R"( { "access_token":"fake-gce-token", "expires_in": 3920, "token_type":"Bearer" })"), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", R"( { "access_token":"new-fake-gce-token", "expires_in": 3920, "token_type":"Bearer" })")}); FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-gce-token", token); env.now += 3700; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("fake-gce-token", token); env.now += 598; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("new-fake-gce-token", token); } TEST_F(GoogleAuthProviderTest, OverrideForTesting) { setenv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "tokenForTesting", 1); auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> empty_requests; FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&empty_requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("tokenForTesting", token); } TEST_F(GoogleAuthProviderTest, NothingAvailable) { auto oauth_client = new FakeOAuthClient; std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::NotFound("404"), 404)}); FakeEnv env; std::shared_ptr<HttpRequest::Factory> fakeHttpRequestFactory = std::make_shared<FakeHttpRequestFactory>(&requests); auto metadataClient = std::make_shared<ComputeEngineMetadataClient>( fakeHttpRequestFactory, RetryConfig(0 )); GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), metadataClient, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); } TEST_F(GoogleAuthProviderTest, NoGceCheckEnvironmentVariable) { setenv("NO_GCE_CHECK", "True", 1); auto oauth_client = new FakeOAuthClient; FakeEnv env; GoogleAuthProvider provider(std::unique_ptr<OAuthClient>(oauth_client), nullptr, &env); string token; TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); setenv("NO_GCE_CHECK", "true", 1); TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("", token); setenv("GOOGLE_AUTH_TOKEN_FOR_TESTING", "newToken", 1); TF_EXPECT_OK(provider.GetToken(&token)); EXPECT_EQ("newToken", token); } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/cloud/google_auth_provider.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/cloud/google_auth_provider_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423
2d3d62f2-68fa-4364-8207-ec0daf9a2f91
cpp
tensorflow/tensorflow
add_original_value
third_party/xla/xla/service/add_original_value.cc
third_party/xla/xla/service/add_original_value_test.cc
#include "xla/service/add_original_value.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/ir/hlo_original_value.h" #include "xla/shape_util.h" namespace xla { absl::StatusOr<bool> AddOriginalValue::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (const auto computation : module->computations()) { for (const auto instruction : computation->instructions()) { auto original_value = std::make_shared<OriginalValue>(instruction->shape()); if (instruction->opcode() == HloOpcode::kGetTupleElement) { const auto* tuple = instruction->operand(0); original_value->CopySubtreeFrom(*tuple->original_value(), {instruction->tuple_index()}, {}); } else if (instruction->opcode() == HloOpcode::kTuple) { for (int64_t operand_number = 0; operand_number < instruction->operand_count(); ++operand_number) { original_value->CopySubtreeFrom( *instruction->operand(operand_number)->original_value(), {}, {operand_number}); } } else { for (auto& leaf : original_value->leaves()) { leaf.second = {std::string(instruction->name()), leaf.first}; } } instruction->set_original_value(original_value); changed = true; } } return changed; } }
#include "xla/service/add_original_value.h" #include <memory> #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "xla/tests/hlo_test_base.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla { namespace { using AddOriginalValueTest = HloTestBase; using ::absl::string_view; TEST_F(AddOriginalValueTest, Basic) { constexpr absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={(s32[]{:T(256)})->u32[2]{0:T(256)}} ENTRY test { Arg_0.1 = s32[] parameter(0) constant.2 = s32[] constant(32) shift-right-logical.3 = s32[] shift-right-logical(Arg_0.1, constant.2) convert.4 = u32[] convert(shift-right-logical.3) reshape.5 = u32[1]{0} reshape(convert.4) convert.6 = u32[] convert(Arg_0.1) reshape.7 = u32[1]{0} reshape(convert.6) ROOT concatenate.8 = u32[2]{0} concatenate(reshape.5, reshape.7), dimensions={0} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); AddOriginalValue pass; TF_ASSERT_OK_AND_ASSIGN(bool changed, pass.Run(module.get())); EXPECT_TRUE(changed); } TEST_F(AddOriginalValueTest, Tuple) { constexpr absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={(f32[], f32[3]{0}, f32[2,3]{1,0})->((f32[], f32[3]{0}), f32[2,3]{1,0})} ENTRY test (v1: f32[], v2: f32[3], v3: f32[2,3]) -> ((f32[], f32[3]{0}), f32[2,3]{1,0}) { v1 = f32[] parameter(0) v2 = f32[3]{0} parameter(1) v3 = f32[2,3]{1,0} parameter(2) t1 = (f32[], f32[3]{0}) tuple(f32[] v1, f32[3]{0} v2) ROOT t2 = ((f32[], f32[3]{0}), f32[2,3]{1,0}) tuple((f32[], f32[3]{0}) t1, f32[2,3]{1,0} v3) } )"; RunAndFilecheckHloRewrite(hlo_string, AddOriginalValue(), R"( CHECK: %[[V1:.*]] = f32[] parameter(0), origin={{[{]}}{"[[V1]]"} CHECK: %[[V2:.*]] = f32[3]{0} parameter(1), origin={{[{]}}{"[[V2]]"} CHECK: %[[TUPLE:.*]] = (f32[], f32[3]{0}) tuple(%[[V1]], %[[V2]]), origin={({"[[V1]]"}, {"[[V2]]"})} CHECK: %[[V3:.*]] = f32[2,3]{1,0} parameter(2), origin={{[{]}}{"[[V3]]"} CHECK: ((f32[], f32[3]{0}), f32[2,3]{1,0}) tuple(%[[TUPLE]], %[[V3]]), origin={(({"v1"}, {"v2"}), {"v3"})} )"); } TEST_F(AddOriginalValueTest, GetTupleElement) { constexpr absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={()->s32[2,3]{1,0}} ENTRY test { constant = f32[3]{0} constant({1, 2, 3}) constant.1 = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }) tuple = (f32[3]{0}, s32[2,3]{1,0}) tuple(f32[3]{0} constant, s32[2,3]{1,0} constant.1) ROOT get-tuple-element = s32[2,3]{1,0} get-tuple-element((f32[3]{0}, s32[2,3]{1,0}) tuple), index=1 } )"; RunAndFilecheckHloRewrite(hlo_string, AddOriginalValue(), R"( CHECK: %[[CONSTANT1:.*]] = f32[3]{0} constant({1, 2, 3}), origin={{[{]}}{"[[CONSTANT1]]"} CHECK: %[[CONSTANT2:.*]] = s32[2,3]{1,0} constant({ { 1, 2, 3 }, { 4, 5, 6 } }), origin={{[{]}}{"[[CONSTANT2]]"} CHECK: %[[TUPLE:.*]] = (f32[3]{0}, s32[2,3]{1,0}) tuple(%[[CONSTANT1]], %[[CONSTANT2]]), origin={({"[[CONSTANT1]]"}, {"[[CONSTANT2]]"})} CHECK: s32[2,3]{1,0} get-tuple-element(%[[TUPLE]]), index=1, origin={{[{]}}{"[[CONSTANT2]]"} )"); } TEST_F(AddOriginalValueTest, GetTupleElementNonSymbolic) { constexpr absl::string_view hlo_string = R"( HloModule test, entry_computation_layout={((f32[], s32[]))->s32[]} ENTRY test { p = (f32[], s32[]) parameter(0) ROOT get-tuple-element = s32[] get-tuple-element(p), index=1 } )"; RunAndFilecheckHloRewrite(hlo_string, AddOriginalValue(), R"( CHECK: %[[PARAM:.*]] = (f32[], s32[]) parameter(0), origin={({"p" {0}{{[}]}}, {"p" {1}})} CHECK: s32[] get-tuple-element(%[[PARAM]]), index=1, origin={{[{]}}{"[[PARAM]]" {1} )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/add_original_value.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/add_original_value_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
aa187d9f-b591-4c32-9640-9440a3eb802c
cpp
tensorflow/tensorflow
custom_validation_embedder
tensorflow/lite/experimental/acceleration/mini_benchmark/model_modifier/custom_validation_embedder.cc
tensorflow/lite/experimental/acceleration/mini_benchmark/model_modifier/custom_validation_embedder_test.cc
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/model_modifier/custom_validation_embedder.h" #include <algorithm> #include <iostream> #include <iterator> #include <string> #include <vector> #include "flatbuffers/buffer.h" #include "flatbuffers/flatbuffer_builder.h" #include "flatbuffers/flexbuffers.h" #include "flatbuffers/vector.h" #include "tensorflow/lite/core/api/error_reporter.h" #include "tensorflow/lite/core/tools/verifier.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/constants.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/status_codes.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace acceleration { namespace { using ::flatbuffers::FlatBufferBuilder; flatbuffers::Offset<flatbuffers::Vector<uint8_t>> CallOpCustomOptions( int primary_subgraph_index, int batch_size, FlatBufferBuilder& output) { flexbuffers::Builder flexbuffer_builder; flexbuffer_builder.Map([&] { flexbuffer_builder.Int("subgraph_index", primary_subgraph_index); flexbuffer_builder.Int("loop_count", batch_size); }); flexbuffer_builder.Finish(); return output.CreateVector(flexbuffer_builder.GetBuffer()); } } void CustomValidationEmbedder::CreateTensorsFrom( const SubGraph& from_subgraph, const std::vector<int>& from_indexes, std::vector<std::vector<uint8_t>>* buffer_content, flatbuffers::FlatBufferBuilder& fbb, std::vector<int>& new_indexes, std::vector<flatbuffers::Offset<Buffer>>& buffers, std::vector<flatbuffers::Offset<Tensor>>& tensors) { int tensor_index_start = tensors.size(); for (int i = 0; i < from_indexes.size(); i++) { TensorT base_tensor; from_subgraph.tensors()->Get(from_indexes[i])->UnPackTo(&base_tensor); if (!base_tensor.shape.empty() && base_tensor.shape[0] == 1) { base_tensor.shape[0] = batch_size_; } if (!base_tensor.shape_signature.empty() && base_tensor.shape_signature[0] == 1) { base_tensor.shape_signature[0] = batch_size_; } base_tensor.buffer = buffers.size(); tensors.push_back(CreateTensor(fbb, &base_tensor)); new_indexes.push_back(tensor_index_start + i); if (buffer_content && !(*buffer_content)[i].empty()) { buffers.push_back( CreateBuffer(fbb, fbb.CreateVector((*buffer_content)[i]))); } else { buffers.push_back(CreateBuffer(fbb)); } } } MinibenchmarkStatus CustomValidationEmbedder::BuildModel( const Model& main_model, flatbuffers::FlatBufferBuilder& fbb) { ModelT main_model_obj; main_model.UnPackTo(&main_model_obj); if (main_model_obj.subgraphs[0]->inputs.size() != custom_input_.size()) { TF_LITE_REPORT_ERROR( error_reporter_, "Unexpected custom_input size. Expected: %d. Actual: %d.", main_model_obj.subgraphs[0]->inputs.size(), custom_input_.size()); return kMinibenchmarkValidationSubgraphBuildFailed; } std::vector<flatbuffers::Offset<Metadata>> metadata; metadata.reserve(main_model_obj.metadata.size()); for (auto& iter : main_model_obj.metadata) { metadata.push_back(CreateMetadata(fbb, iter.get())); } std::vector<flatbuffers::Offset<SignatureDef>> signature_defs; signature_defs.reserve(main_model_obj.signature_defs.size()); for (auto& iter : main_model_obj.signature_defs) { signature_defs.push_back(CreateSignatureDef(fbb, iter.get())); } std::vector<flatbuffers::Offset<SubGraph>> subgraphs; subgraphs.reserve(main_model_obj.subgraphs.size()); for (auto& iter : main_model_obj.subgraphs) { subgraphs.push_back(CreateSubGraph(fbb, iter.get())); } std::vector<flatbuffers::Offset<Buffer>> buffers; buffers.reserve(main_model_obj.buffers.size()); for (auto& iter : main_model_obj.buffers) { buffers.push_back(CreateBuffer(fbb, iter.get())); } std::vector<flatbuffers::Offset<OperatorCode>> operator_codes; operator_codes.reserve(main_model_obj.operator_codes.size()); for (auto& iter : main_model_obj.operator_codes) { operator_codes.push_back(CreateOperatorCode(fbb, iter.get())); } operator_codes.push_back(CreateOperatorCode( fbb, BuiltinOperator_CUSTOM, fbb.CreateString("validation/call"))); int operator_code_index = operator_codes.size() - 1; std::vector<flatbuffers::Offset<Tensor>> tensors; std::vector<int32_t> input; CreateTensorsFrom(*main_model.subgraphs()->Get(0), main_model_obj.subgraphs[0]->inputs, &custom_input_, fbb, input, buffers, tensors); std::vector<int32_t> output; CreateTensorsFrom(*main_model.subgraphs()->Get(0), main_model_obj.subgraphs[0]->outputs, nullptr, fbb, output, buffers, tensors); auto input_offset = fbb.CreateVector(input); auto output_offset = fbb.CreateVector(output); std::vector<flatbuffers::Offset<Operator>> operators{CreateOperator( fbb, operator_code_index, input_offset, output_offset, tflite::BuiltinOptions_NONE, 0, CallOpCustomOptions( 0, batch_size_, fbb), tflite::CustomOptionsFormat_FLEXBUFFERS)}; subgraphs.push_back( CreateSubGraph(fbb, fbb.CreateVector(tensors), input_offset, output_offset, fbb.CreateVector(operators), fbb.CreateString(std::string(kValidationGraphName)))); fbb.Finish( CreateModel(fbb, kModelSchemaVersion, fbb.CreateVector(operator_codes), fbb.CreateVector(subgraphs), fbb.CreateString(main_model_obj.description), fbb.CreateVector(buffers), 0, fbb.CreateVector(metadata), fbb.CreateVector(signature_defs)), "TFL3"); if (Verify(fbb.GetBufferPointer(), fbb.GetSize(), error_reporter_)) { return kMinibenchmarkSuccess; } else { return kMinibenchmarkValidationSubgraphBuildFailed; } } } }
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/model_modifier/custom_validation_embedder.h" #include <iostream> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffer_builder.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/interpreter_builder.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model_builder.h" #include "tensorflow/lite/core/subgraph.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/call_register.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/embedded_mobilenet_model.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/mini_benchmark_test_helper.h" #include "tensorflow/lite/experimental/acceleration/mini_benchmark/status_codes.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/model_loader.h" namespace tflite { namespace acceleration { namespace { using ::flatbuffers::FlatBufferBuilder; constexpr int kMobileNetModelInputByteSize = 1 * 224 * 224 * 3; class CustomValidationEmbedderTest : public ::testing::Test { protected: void SetUp() override { std::string plain_model_path = MiniBenchmarkTestHelper::DumpToTempFile( "mobilenet_quant.tflite", g_tflite_acceleration_embedded_mobilenet_model, g_tflite_acceleration_embedded_mobilenet_model_len); ASSERT_TRUE(!plain_model_path.empty()); plain_model_loader_ = std::make_unique<tools::PathModelLoader>(plain_model_path); ASSERT_TRUE(plain_model_loader_->Init()); } std::unique_ptr<tools::ModelLoader> plain_model_loader_; }; TEST_F(CustomValidationEmbedderTest, BuildValidationModelSucceed) { int batch_size = 5; std::vector<uint8_t> input_buffer(batch_size * kMobileNetModelInputByteSize); CustomValidationEmbedder embedder(batch_size, {input_buffer}); FlatBufferBuilder fbb; EXPECT_EQ( embedder.BuildModel(*plain_model_loader_->GetModel()->GetModel(), fbb), kMinibenchmarkSuccess); auto model = FlatBufferModel::BuildFromModel(GetModel(fbb.GetBufferPointer())); auto interpreter = std::make_unique<Interpreter>(); auto resolver = std::make_unique< ::tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates>(); resolver->AddCustom("validation/call", ops::Register_CALL(), 1); ASSERT_EQ(InterpreterBuilder(*model, *resolver)(&interpreter), kTfLiteOk); ASSERT_NE(interpreter, nullptr); Subgraph* validation_graph = interpreter->subgraph(1); EXPECT_THAT(input_buffer, testing::ElementsAreArray( GetTensorData<uint8_t>(validation_graph->tensor( validation_graph->inputs()[0])), input_buffer.size())); EXPECT_EQ(validation_graph->AllocateTensors(), kTfLiteOk); EXPECT_EQ(validation_graph->Invoke(), kTfLiteOk); } TEST_F(CustomValidationEmbedderTest, BuildValidationModelTooManyInput) { int batch_size = 5; CustomValidationEmbedder embedder(batch_size, {{}, {}}); FlatBufferBuilder fbb; EXPECT_EQ( embedder.BuildModel(*plain_model_loader_->GetModel()->GetModel(), fbb), kMinibenchmarkValidationSubgraphBuildFailed); } TEST_F(CustomValidationEmbedderTest, BuildValidationModelInvalidBufferSize) { CustomValidationEmbedder embedder(2, {std::vector<uint8_t>(2, 2)}); FlatBufferBuilder fbb; EXPECT_EQ( embedder.BuildModel(*plain_model_loader_->GetModel()->GetModel(), fbb), kMinibenchmarkValidationSubgraphBuildFailed); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/model_modifier/custom_validation_embedder.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/model_modifier/custom_validation_embedder_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b9327b78-625c-4f69-a147-65f529cff80c
cpp
google/tensorstore
span_json
tensorstore/util/span_json.h
tensorstore/util/span_json_test.cc
#ifndef TENSORSTORE_UTIL_SPAN_JSON_H_ #define TENSORSTORE_UTIL_SPAN_JSON_H_ #include <cstddef> #include <nlohmann/json.hpp> #include "tensorstore/util/span.h" namespace tensorstore { template <typename T, ptrdiff_t Extent> void to_json(::nlohmann::json& out, tensorstore::span<T, Extent> s) { out = ::nlohmann::json::array_t(s.begin(), s.end()); } } #endif
#include "tensorstore/util/span_json.h" #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/internal/json_gtest.h" #include "tensorstore/util/span.h" namespace { using ::tensorstore::span; TEST(SpanJsonTest, Basic) { EXPECT_EQ(::nlohmann::json({1, 2, 3}), ::nlohmann::json(span<const int, 3>({1, 2, 3}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/span_json.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/util/span_json_test.cc
4f887a6430414cd6088e1743555015b10f116d50
9be7b229-09c8-4138-96c7-ad097a47e3ee
cpp
google/cel-cpp
type_conversion_functions
runtime/standard/type_conversion_functions.cc
runtime/standard/type_conversion_functions_test.cc
#include "runtime/standard/type_conversion_functions.h" #include <cstdint> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "base/builtins.h" #include "base/function_adapter.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/overflow.h" #include "internal/status_macros.h" #include "internal/time.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" namespace cel { namespace { using ::cel::internal::EncodeDurationToJson; using ::cel::internal::EncodeTimestampToJson; using ::cel::internal::MaxTimestamp; const absl::Time kMaxTime = MaxTimestamp(); absl::Status RegisterBoolConversionFunctions(FunctionRegistry& registry, const RuntimeOptions&) { return UnaryFunctionAdapter<bool, bool>::RegisterGlobalOverload( cel::builtin::kBool, [](ValueManager&, bool v) { return v; }, registry); } absl::Status RegisterIntConversionFunctions(FunctionRegistry& registry, const RuntimeOptions&) { absl::Status status = UnaryFunctionAdapter<int64_t, bool>::RegisterGlobalOverload( cel::builtin::kInt, [](ValueManager&, bool v) { return static_cast<int64_t>(v); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<Value, double>::RegisterGlobalOverload( cel::builtin::kInt, [](ValueManager& value_factory, double v) -> Value { auto conv = cel::internal::CheckedDoubleToInt64(v); if (!conv.ok()) { return value_factory.CreateErrorValue(conv.status()); } return value_factory.CreateIntValue(*conv); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<int64_t, int64_t>::RegisterGlobalOverload( cel::builtin::kInt, [](ValueManager&, int64_t v) { return v; }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<Value, const StringValue&>::RegisterGlobalOverload( cel::builtin::kInt, [](ValueManager& value_factory, const StringValue& s) -> Value { int64_t result; if (!absl::SimpleAtoi(s.ToString(), &result)) { return value_factory.CreateErrorValue( absl::InvalidArgumentError("cannot convert string to int")); } return value_factory.CreateIntValue(result); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<int64_t, absl::Time>::RegisterGlobalOverload( cel::builtin::kInt, [](ValueManager&, absl::Time t) { return absl::ToUnixSeconds(t); }, registry); CEL_RETURN_IF_ERROR(status); return UnaryFunctionAdapter<Value, uint64_t>::RegisterGlobalOverload( cel::builtin::kInt, [](ValueManager& value_factory, uint64_t v) -> Value { auto conv = cel::internal::CheckedUint64ToInt64(v); if (!conv.ok()) { return value_factory.CreateErrorValue(conv.status()); } return value_factory.CreateIntValue(*conv); }, registry); } absl::Status RegisterStringConversionFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { if (!options.enable_string_conversion) { return absl::OkStatus(); } absl::Status status = UnaryFunctionAdapter<Value, const BytesValue&>::RegisterGlobalOverload( cel::builtin::kString, [](ValueManager& value_factory, const BytesValue& value) -> Value { auto handle_or = value_factory.CreateStringValue(value.ToString()); if (!handle_or.ok()) { return value_factory.CreateErrorValue(handle_or.status()); } return *handle_or; }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<StringValue, double>::RegisterGlobalOverload( cel::builtin::kString, [](ValueManager& value_factory, double value) -> StringValue { return value_factory.CreateUncheckedStringValue(absl::StrCat(value)); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<StringValue, int64_t>::RegisterGlobalOverload( cel::builtin::kString, [](ValueManager& value_factory, int64_t value) -> StringValue { return value_factory.CreateUncheckedStringValue(absl::StrCat(value)); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<StringValue, StringValue>::RegisterGlobalOverload( cel::builtin::kString, [](ValueManager&, StringValue value) -> StringValue { return value; }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<StringValue, uint64_t>::RegisterGlobalOverload( cel::builtin::kString, [](ValueManager& value_factory, uint64_t value) -> StringValue { return value_factory.CreateUncheckedStringValue(absl::StrCat(value)); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<Value, absl::Duration>::RegisterGlobalOverload( cel::builtin::kString, [](ValueManager& value_factory, absl::Duration value) -> Value { auto encode = EncodeDurationToJson(value); if (!encode.ok()) { return value_factory.CreateErrorValue(encode.status()); } return value_factory.CreateUncheckedStringValue(*encode); }, registry); CEL_RETURN_IF_ERROR(status); return UnaryFunctionAdapter<Value, absl::Time>::RegisterGlobalOverload( cel::builtin::kString, [](ValueManager& value_factory, absl::Time value) -> Value { auto encode = EncodeTimestampToJson(value); if (!encode.ok()) { return value_factory.CreateErrorValue(encode.status()); } return value_factory.CreateUncheckedStringValue(*encode); }, registry); } absl::Status RegisterUintConversionFunctions(FunctionRegistry& registry, const RuntimeOptions&) { absl::Status status = UnaryFunctionAdapter<Value, double>::RegisterGlobalOverload( cel::builtin::kUint, [](ValueManager& value_factory, double v) -> Value { auto conv = cel::internal::CheckedDoubleToUint64(v); if (!conv.ok()) { return value_factory.CreateErrorValue(conv.status()); } return value_factory.CreateUintValue(*conv); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<Value, int64_t>::RegisterGlobalOverload( cel::builtin::kUint, [](ValueManager& value_factory, int64_t v) -> Value { auto conv = cel::internal::CheckedInt64ToUint64(v); if (!conv.ok()) { return value_factory.CreateErrorValue(conv.status()); } return value_factory.CreateUintValue(*conv); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<Value, const StringValue&>::RegisterGlobalOverload( cel::builtin::kUint, [](ValueManager& value_factory, const StringValue& s) -> Value { uint64_t result; if (!absl::SimpleAtoi(s.ToString(), &result)) { return value_factory.CreateErrorValue( absl::InvalidArgumentError("doesn't convert to a string")); } return value_factory.CreateUintValue(result); }, registry); CEL_RETURN_IF_ERROR(status); return UnaryFunctionAdapter<uint64_t, uint64_t>::RegisterGlobalOverload( cel::builtin::kUint, [](ValueManager&, uint64_t v) { return v; }, registry); } absl::Status RegisterBytesConversionFunctions(FunctionRegistry& registry, const RuntimeOptions&) { absl::Status status = UnaryFunctionAdapter<BytesValue, BytesValue>::RegisterGlobalOverload( cel::builtin::kBytes, [](ValueManager&, BytesValue value) -> BytesValue { return value; }, registry); CEL_RETURN_IF_ERROR(status); return UnaryFunctionAdapter<absl::StatusOr<BytesValue>, const StringValue&>:: RegisterGlobalOverload( cel::builtin::kBytes, [](ValueManager& value_factory, const StringValue& value) { return value_factory.CreateBytesValue(value.ToString()); }, registry); } absl::Status RegisterDoubleConversionFunctions(FunctionRegistry& registry, const RuntimeOptions&) { absl::Status status = UnaryFunctionAdapter<double, double>::RegisterGlobalOverload( cel::builtin::kDouble, [](ValueManager&, double v) { return v; }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<double, int64_t>::RegisterGlobalOverload( cel::builtin::kDouble, [](ValueManager&, int64_t v) { return static_cast<double>(v); }, registry); CEL_RETURN_IF_ERROR(status); status = UnaryFunctionAdapter<Value, const StringValue&>::RegisterGlobalOverload( cel::builtin::kDouble, [](ValueManager& value_factory, const StringValue& s) -> Value { double result; if (absl::SimpleAtod(s.ToString(), &result)) { return value_factory.CreateDoubleValue(result); } else { return value_factory.CreateErrorValue(absl::InvalidArgumentError( "cannot convert string to double")); } }, registry); CEL_RETURN_IF_ERROR(status); return UnaryFunctionAdapter<double, uint64_t>::RegisterGlobalOverload( cel::builtin::kDouble, [](ValueManager&, uint64_t v) { return static_cast<double>(v); }, registry); } Value CreateDurationFromString(ValueManager& value_factory, const StringValue& dur_str) { absl::Duration d; if (!absl::ParseDuration(dur_str.ToString(), &d)) { return value_factory.CreateErrorValue( absl::InvalidArgumentError("String to Duration conversion failed")); } auto duration = value_factory.CreateDurationValue(d); if (!duration.ok()) { return value_factory.CreateErrorValue(duration.status()); } return *duration; } absl::Status RegisterTimeConversionFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR( (UnaryFunctionAdapter<Value, const StringValue&>::RegisterGlobalOverload( cel::builtin::kDuration, CreateDurationFromString, registry))); CEL_RETURN_IF_ERROR( (UnaryFunctionAdapter<Value, int64_t>::RegisterGlobalOverload( cel::builtin::kTimestamp, [](ValueManager& value_factory, int64_t epoch_seconds) -> Value { return value_factory.CreateUncheckedTimestampValue( absl::FromUnixSeconds(epoch_seconds)); }, registry))); CEL_RETURN_IF_ERROR( (UnaryFunctionAdapter<Value, absl::Time>::RegisterGlobalOverload( cel::builtin::kTimestamp, [](ValueManager&, absl::Time value) -> Value { return TimestampValue(value); }, registry))); CEL_RETURN_IF_ERROR( (UnaryFunctionAdapter<Value, absl::Duration>::RegisterGlobalOverload( cel::builtin::kDuration, [](ValueManager&, absl::Duration value) -> Value { return DurationValue(value); }, registry))); bool enable_timestamp_duration_overflow_errors = options.enable_timestamp_duration_overflow_errors; return UnaryFunctionAdapter<Value, const StringValue&>:: RegisterGlobalOverload( cel::builtin::kTimestamp, [=](ValueManager& value_factory, const StringValue& time_str) -> Value { absl::Time ts; if (!absl::ParseTime(absl::RFC3339_full, time_str.ToString(), &ts, nullptr)) { return value_factory.CreateErrorValue(absl::InvalidArgumentError( "String to Timestamp conversion failed")); } if (enable_timestamp_duration_overflow_errors) { if (ts < absl::UniversalEpoch() || ts > kMaxTime) { return value_factory.CreateErrorValue( absl::OutOfRangeError("timestamp overflow")); } } return value_factory.CreateUncheckedTimestampValue(ts); }, registry); } } absl::Status RegisterTypeConversionFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR(RegisterBoolConversionFunctions(registry, options)); CEL_RETURN_IF_ERROR(RegisterBytesConversionFunctions(registry, options)); CEL_RETURN_IF_ERROR(RegisterDoubleConversionFunctions(registry, options)); CEL_RETURN_IF_ERROR(RegisterIntConversionFunctions(registry, options)); CEL_RETURN_IF_ERROR(RegisterStringConversionFunctions(registry, options)); CEL_RETURN_IF_ERROR(RegisterUintConversionFunctions(registry, options)); CEL_RETURN_IF_ERROR(RegisterTimeConversionFunctions(registry, options)); absl::Status status = UnaryFunctionAdapter<Value, const Value&>::RegisterGlobalOverload( cel::builtin::kDyn, [](ValueManager&, const Value& value) -> Value { return value; }, registry); CEL_RETURN_IF_ERROR(status); return UnaryFunctionAdapter<Value, const Value&>::RegisterGlobalOverload( cel::builtin::kType, [](ValueManager& factory, const Value& value) { return factory.CreateTypeValue(value.GetRuntimeType()); }, registry); } }
#include "runtime/standard/type_conversion_functions.h" #include <vector> #include "base/builtins.h" #include "base/function_descriptor.h" #include "internal/testing.h" namespace cel { namespace { using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; MATCHER_P3(MatchesUnaryDescriptor, name, receiver, expected_kind, "") { const FunctionDescriptor& descriptor = arg.descriptor; std::vector<Kind> types{expected_kind}; return descriptor.name() == name && descriptor.receiver_style() == receiver && descriptor.types() == types; } TEST(RegisterTypeConversionFunctions, RegisterBoolConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT(registry.FindStaticOverloads(builtin::kBool, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kBool, false, Kind::kBool))); } TEST(RegisterTypeConversionFunctions, RegisterIntConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kInt, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kInt, false, Kind::kInt), MatchesUnaryDescriptor(builtin::kInt, false, Kind::kDouble), MatchesUnaryDescriptor(builtin::kInt, false, Kind::kUint), MatchesUnaryDescriptor(builtin::kInt, false, Kind::kBool), MatchesUnaryDescriptor(builtin::kInt, false, Kind::kString), MatchesUnaryDescriptor(builtin::kInt, false, Kind::kTimestamp))); } TEST(RegisterTypeConversionFunctions, RegisterUintConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kUint, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kUint, false, Kind::kInt), MatchesUnaryDescriptor(builtin::kUint, false, Kind::kDouble), MatchesUnaryDescriptor(builtin::kUint, false, Kind::kUint), MatchesUnaryDescriptor(builtin::kUint, false, Kind::kString))); } TEST(RegisterTypeConversionFunctions, RegisterDoubleConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kDouble, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kDouble, false, Kind::kInt), MatchesUnaryDescriptor(builtin::kDouble, false, Kind::kDouble), MatchesUnaryDescriptor(builtin::kDouble, false, Kind::kUint), MatchesUnaryDescriptor(builtin::kDouble, false, Kind::kString))); } TEST(RegisterTypeConversionFunctions, RegisterStringConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; options.enable_string_conversion = true; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kString, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kString, false, Kind::kInt), MatchesUnaryDescriptor(builtin::kString, false, Kind::kDouble), MatchesUnaryDescriptor(builtin::kString, false, Kind::kUint), MatchesUnaryDescriptor(builtin::kString, false, Kind::kString), MatchesUnaryDescriptor(builtin::kString, false, Kind::kBytes), MatchesUnaryDescriptor(builtin::kString, false, Kind::kDuration), MatchesUnaryDescriptor(builtin::kString, false, Kind::kTimestamp))); } TEST(RegisterTypeConversionFunctions, RegisterStringConversionFunctionsDisabled) { FunctionRegistry registry; RuntimeOptions options; options.enable_string_conversion = false; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kString, false, {Kind::kAny}), IsEmpty()); } TEST(RegisterTypeConversionFunctions, RegisterBytesConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kBytes, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kBytes, false, Kind::kBytes), MatchesUnaryDescriptor(builtin::kBytes, false, Kind::kString))); } TEST(RegisterTypeConversionFunctions, RegisterTimeConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT( registry.FindStaticOverloads(builtin::kTimestamp, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kTimestamp, false, Kind::kInt), MatchesUnaryDescriptor(builtin::kTimestamp, false, Kind::kString), MatchesUnaryDescriptor(builtin::kTimestamp, false, Kind::kTimestamp))); EXPECT_THAT( registry.FindStaticOverloads(builtin::kDuration, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kDuration, false, Kind::kString), MatchesUnaryDescriptor(builtin::kDuration, false, Kind::kDuration))); } TEST(RegisterTypeConversionFunctions, RegisterMetaTypeConversionFunctions) { FunctionRegistry registry; RuntimeOptions options; ASSERT_OK(RegisterTypeConversionFunctions(registry, options)); EXPECT_THAT(registry.FindStaticOverloads(builtin::kDyn, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kDyn, false, Kind::kAny))); EXPECT_THAT(registry.FindStaticOverloads(builtin::kType, false, {Kind::kAny}), UnorderedElementsAre( MatchesUnaryDescriptor(builtin::kType, false, Kind::kAny))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/type_conversion_functions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/runtime/standard/type_conversion_functions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
5dee0d93-d903-4902-acfb-be17f27a8659
cpp
tensorflow/tensorflow
delegate_provider
tensorflow/lite/tools/delegates/delegate_provider.cc
tensorflow/lite/tools/delegates/delegate_provider_test.cc
#include "tensorflow/lite/tools/delegates/delegate_provider.h" #include <algorithm> #include <string> #include <utility> #include <vector> namespace tflite { namespace tools { TfLiteDelegatePtr CreateNullDelegate() { return TfLiteDelegatePtr(nullptr, [](TfLiteOpaqueDelegate*) {}); } void ProvidedDelegateList::AddAllDelegateParams() const { for (const auto& provider : providers_) { params_->Merge(provider->DefaultParams()); } } void ProvidedDelegateList::AppendCmdlineFlags(std::vector<Flag>& flags) const { for (const auto& provider : providers_) { auto delegate_flags = provider->CreateFlags(params_); flags.insert(flags.end(), delegate_flags.begin(), delegate_flags.end()); } } void ProvidedDelegateList::RemoveCmdlineFlag(std::vector<Flag>& flags, const std::string& name) const { decltype(flags.begin()) it; for (it = flags.begin(); it < flags.end();) { if (it->GetFlagName() == name) { it = flags.erase(it); } else { ++it; } } } std::vector<ProvidedDelegateList::ProvidedDelegate> ProvidedDelegateList::CreateAllRankedDelegates(const ToolParams& params) const { std::vector<ProvidedDelegateList::ProvidedDelegate> delegates; for (const auto& provider : providers_) { auto ptr_rank = provider->CreateRankedTfLiteDelegate(params); if (ptr_rank.first == nullptr) continue; static bool already_logged = false; if (!already_logged) { TFLITE_LOG(INFO) << provider->GetName() << " delegate created."; #ifndef NDEBUG provider->LogParams(params, false); #endif already_logged = true; } ProvidedDelegateList::ProvidedDelegate info; info.provider = provider.get(); info.delegate = std::move(ptr_rank.first); info.rank = ptr_rank.second; delegates.emplace_back(std::move(info)); } std::sort(delegates.begin(), delegates.end(), [](const ProvidedDelegateList::ProvidedDelegate& a, const ProvidedDelegateList::ProvidedDelegate& b) { return a.rank < b.rank; }); return delegates; } } }
#include "tensorflow/lite/tools/delegates/delegate_provider.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/test_util.h" #include "tensorflow/lite/tools/tool_params.h" namespace tflite { namespace tools { namespace { TEST(ProvidedDelegateListTest, AddAllDelegateParams) { ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); EXPECT_TRUE(params.HasParam("use_xnnpack")); #if !TFLITE_WITH_STABLE_ABI EXPECT_TRUE(params.HasParam("use_nnapi")); #endif } TEST(ProvidedDelegateListTest, AppendCmdlineFlags) { std::vector<Flag> flags; ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); providers.AppendCmdlineFlags(flags); EXPECT_FALSE(flags.empty()); } TEST(KernelTestDelegateProvidersTest, CreateAllRankedDelegates) { #if !defined(__Fuchsia__) && !defined(__s390x__) && \ !defined(TFLITE_WITHOUT_XNNPACK) ToolParams params; ProvidedDelegateList providers(&params); providers.AddAllDelegateParams(); #if TFLITE_WITH_STABLE_ABI ASSERT_EQ(TfLiteInitializeShimsForTest(), 0); params.Set<bool>("use_xnnpack", true, 1); auto delegates = providers.CreateAllRankedDelegates(); EXPECT_EQ(1, delegates.size()); EXPECT_EQ("XNNPACK", delegates.front().provider->GetName()); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ(1, delegates.front().rank); #else params.Set<bool>("use_xnnpack", true, 2); params.Set<bool>("use_dummy_delegate", true, 1); auto delegates = providers.CreateAllRankedDelegates(); EXPECT_EQ(2, delegates.size()); EXPECT_EQ("DummyDelegate", delegates.front().provider->GetName()); EXPECT_EQ(1, delegates.front().rank); EXPECT_NE(nullptr, delegates.front().delegate.get()); EXPECT_EQ("XNNPACK", delegates.back().provider->GetName()); EXPECT_NE(nullptr, delegates.back().delegate.get()); EXPECT_EQ(2, delegates.back().rank); #endif #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/delegate_provider.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/delegate_provider_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8c2ba008-edd9-410e-a26c-ecfbda3b69d9
cpp
tensorflow/tensorflow
attr_util
tensorflow/core/runtime_fallback/kernel/attr_util.cc
tensorflow/core/runtime_fallback/kernel/attr_util_test.cc
#include "tensorflow/core/runtime_fallback/kernel/attr_util.h" #include <assert.h> #include <stdlib.h> #include <string> #include <vector> #include "absl/strings/numbers.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/stringpiece.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/runtime_fallback/util/attr_util.h" #include "tensorflow/core/util/padding.h" #include "tfrt/core_runtime/op_attr_type.h" #include "tfrt/core_runtime/op_attrs.h" #include "tfrt/host_context/kernel_utils.h" namespace tensorflow { DataType ParseTFDataType(StringPiece dtype) { if (dtype == "DT_INT8") { return DataType::DT_INT8; } else if (dtype == "DT_INT32") { return DataType::DT_INT32; } else if (dtype == "DT_INT64") { return DataType::DT_INT64; } else if (dtype == "DT_FLOAT") { return DataType::DT_FLOAT; } else if (dtype == "DT_DOUBLE") { return DataType::DT_DOUBLE; } else { assert(false && "Unsupported dtype"); abort(); } } bool ParseBoolAttrValue(StringPiece attr_value) { if (attr_value == "false") { return false; } else if (attr_value == "true") { return true; } else { assert(false && "Bool attribute value invalid"); abort(); } } Status ParseValue(StringPiece input, bool* value) { *value = ParseBoolAttrValue(input); return absl::OkStatus(); } Status ParseValue(StringPiece input, int32* value) { bool parse_result = absl::SimpleAtoi(input, value); if (!parse_result) { return errors::InvalidArgument("Could not parse int32 from ", input); } return absl::OkStatus(); } Status ParseValue(StringPiece input, DataType* value) { *value = ParseTFDataType(input); return absl::OkStatus(); } Status ParseValue(StringPiece input, std::string* value) { *value = std::string(input); return absl::OkStatus(); } Status ParseValue(StringPiece input, std::vector<int32>* value) { std::vector<std::string> parts = str_util::Split(input, ","); value->reserve(parts.size()); for (const auto& value_str : parts) { int32_t value_int; bool parse_result = absl::SimpleAtoi(value_str, &value_int); if (!parse_result) { return errors::InvalidArgument("Could not parse list of integers from ", input); } value->push_back(value_int); } return absl::OkStatus(); } Status ParseValue(StringPiece input, Padding* value) { return GetPaddingFromString(input, value); } Status AddOpAttr(const std::string& name, const std::string& attr_value, tfrt::OpAttrs* opattrs) { Status s; std::vector<absl::string_view> value_split = tfd::AttrValueSplit(attr_value); auto& type = value_split[0]; auto& value = value_split[1]; if (type == "bool") { bool val; s = ParseValue(value, &val); opattrs->Set<bool>(name, val); } else if (type == "i32") { int32_t val; s = ParseValue(value, &val); opattrs->Set<int32>(name, val); } else if (type == "string" || type == "padding") { std::string val; s = ParseValue(value, &val); opattrs->SetString(name, val); } else if (type == "tfdtype") { DataType val; s = ParseValue(value, &val); opattrs->Set<tfrt::OpAttrType>(name, tfd::ConvertFromTfDataType(val)); } else if (type == "list(i32)") { std::vector<int32> val; s = ParseValue(value, &val); opattrs->SetArray<int32>(name, val); } return s; } Status FillOpAttrs(tfrt::RemainingAttributes attrs, tfrt::OpAttrs* opattrs) { int num_tf_attrs = attrs.size() / 2; Status status; for (int i = 0; i < num_tf_attrs; ++i) { std::string name = attrs.GetStringAttribute(i * 2).str(); std::string attr_value = attrs.GetStringAttribute(i * 2 + 1).str(); Status s = AddOpAttr(name, attr_value, opattrs); status.Update(s); } return status; } }
#include "tensorflow/core/runtime_fallback/kernel/attr_util.h" #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tfrt/core_runtime/op_attr_type.h" #include "tfrt/core_runtime/op_attrs.h" #include "tfrt/support/forward_decls.h" using llvm::ArrayRef; using tfrt::OpAttrs; using tfrt::OpAttrType; namespace tensorflow { namespace { TEST(AttrUtilTest, TestGetBoolAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "bool$true", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "bool$false", &opattrs)); ASSERT_TRUE(opattrs.GetAsserting<bool>("foo")); ASSERT_FALSE(opattrs.GetAsserting<bool>("bar")); } TEST(AttrUtilTest, TestGetIntAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "i32$-2", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "i32$0", &opattrs)); TF_ASSERT_OK(AddOpAttr("baz", "i32$123", &opattrs)); ASSERT_EQ(opattrs.GetAsserting<int32>("foo"), -2); ASSERT_EQ(opattrs.GetAsserting<int32>("bar"), 0); ASSERT_EQ(opattrs.GetAsserting<int32>("baz"), 123); Status s = AddOpAttr("invalid", "i32$4.5", &opattrs); ASSERT_FALSE(s.ok()); } TEST(AttrUtilTest, TestGetDTypeAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "tfdtype$DT_INT32", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "tfdtype$DT_FLOAT", &opattrs)); ASSERT_EQ(opattrs.GetAsserting<OpAttrType>("foo"), OpAttrType::I32); ASSERT_EQ(opattrs.GetAsserting<OpAttrType>("bar"), OpAttrType::F32); } TEST(AttrUtilTest, TestGetIntListAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "list(i32)$", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "list(i32)$1", &opattrs)); TF_ASSERT_OK(AddOpAttr("baz", "list(i32)$1,2,3", &opattrs)); ArrayRef<int32> v1, v2, v3; std::vector<int32> expected_v1; std::vector<int32> expected_v2 = {1}; std::vector<int32> expected_v3 = {1, 2, 3}; ArrayRef<int32> expected_v1_ref(expected_v1); ArrayRef<int32> expected_v2_ref(expected_v2); ArrayRef<int32> expected_v3_ref(expected_v3); ASSERT_TRUE(opattrs.GetArray<int32>("foo", &v1)); ASSERT_TRUE(opattrs.GetArray<int32>("bar", &v2)); ASSERT_TRUE(opattrs.GetArray<int32>("baz", &v3)); ASSERT_EQ(v1, expected_v1_ref); ASSERT_EQ(v2, expected_v2_ref); ASSERT_EQ(v3, expected_v3_ref); } TEST(AttrUtilTest, TestGetStrAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "string$", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "string$test", &opattrs)); ASSERT_EQ(opattrs.GetStringAsserting("foo"), ""); ASSERT_EQ(opattrs.GetStringAsserting("bar"), "test"); } TEST(AttrUtilTest, TestGetPaddingAttr) { OpAttrs opattrs; TF_ASSERT_OK(AddOpAttr("foo", "padding$VALID", &opattrs)); TF_ASSERT_OK(AddOpAttr("bar", "padding$SAME", &opattrs)); ASSERT_EQ(opattrs.GetStringAsserting("foo"), "VALID"); ASSERT_EQ(opattrs.GetStringAsserting("bar"), "SAME"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/kernel/attr_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/runtime_fallback/kernel/attr_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1e029fa7-a92b-4f6b-89f9-6779c761db00
cpp
google/cel-cpp
minimal_descriptor_pool
internal/minimal_descriptor_pool.cc
internal/minimal_descriptor_pool_test.cc
#include "internal/minimal_descriptor_pool.h" #include <cstdint> #include "google/protobuf/descriptor.pb.h" #include "absl/base/attributes.h" #include "absl/base/macros.h" #include "absl/base/nullability.h" #include "absl/log/absl_check.h" #include "google/protobuf/descriptor.h" namespace cel::internal { namespace { ABSL_CONST_INIT const uint8_t kMinimalDescriptorSet[] = { #include "internal/minimal_descriptor_set_embed.inc" }; } absl::Nonnull<const google::protobuf::DescriptorPool*> GetMinimalDescriptorPool() { static absl::Nonnull<const google::protobuf::DescriptorPool* const> pool = []() { google::protobuf::FileDescriptorSet file_desc_set; ABSL_CHECK(file_desc_set.ParseFromArray( kMinimalDescriptorSet, ABSL_ARRAYSIZE(kMinimalDescriptorSet))); auto* pool = new google::protobuf::DescriptorPool(); for (const auto& file_desc : file_desc_set.file()) { ABSL_CHECK(pool->BuildFile(file_desc) != nullptr); } return pool; }(); return pool; } }
#include "internal/minimal_descriptor_pool.h" #include "internal/testing.h" #include "google/protobuf/descriptor.h" namespace cel::internal { namespace { using ::testing::NotNull; TEST(MinimalDescriptorPool, NullValue) { ASSERT_THAT(GetMinimalDescriptorPool()->FindEnumTypeByName( "google.protobuf.NullValue"), NotNull()); } TEST(MinimalDescriptorPool, BoolValue) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.BoolValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_BOOLVALUE); } TEST(MinimalDescriptorPool, Int32Value) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.Int32Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_INT32VALUE); } TEST(MinimalDescriptorPool, Int64Value) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.Int64Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_INT64VALUE); } TEST(MinimalDescriptorPool, UInt32Value) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.UInt32Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_UINT32VALUE); } TEST(MinimalDescriptorPool, UInt64Value) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.UInt64Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_UINT64VALUE); } TEST(MinimalDescriptorPool, FloatValue) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.FloatValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_FLOATVALUE); } TEST(MinimalDescriptorPool, DoubleValue) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.DoubleValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_DOUBLEVALUE); } TEST(MinimalDescriptorPool, BytesValue) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.BytesValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_BYTESVALUE); } TEST(MinimalDescriptorPool, StringValue) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.StringValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_STRINGVALUE); } TEST(MinimalDescriptorPool, Any) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName("google.protobuf.Any"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_ANY); } TEST(MinimalDescriptorPool, Duration) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.Duration"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_DURATION); } TEST(MinimalDescriptorPool, Timestamp) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.Timestamp"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_TIMESTAMP); } TEST(MinimalDescriptorPool, Value) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.Value"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_VALUE); } TEST(MinimalDescriptorPool, ListValue) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.ListValue"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_LISTVALUE); } TEST(MinimalDescriptorPool, Struct) { const auto* desc = GetMinimalDescriptorPool()->FindMessageTypeByName( "google.protobuf.Struct"); ASSERT_THAT(desc, NotNull()); EXPECT_EQ(desc->well_known_type(), google::protobuf::Descriptor::WELLKNOWNTYPE_STRUCT); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/minimal_descriptor_pool.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/minimal_descriptor_pool_test.cc
4552db5798fb0853b131b783d8875794334fae7f
e87940a3-3087-4512-85f9-cd3fc3a7d4f1
cpp
abseil/abseil-cpp
type_traits
absl/meta/type_traits.h
absl/meta/type_traits_test.cc
#ifndef ABSL_META_TYPE_TRAITS_H_ #define ABSL_META_TYPE_TRAITS_H_ #include <cstddef> #include <functional> #include <string> #include <type_traits> #include <vector> #include "absl/base/attributes.h" #include "absl/base/config.h" #ifdef __cpp_lib_span #include <span> #endif #ifdef ABSL_HAVE_STD_STRING_VIEW #include <string_view> #endif #if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__) #define ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT __STDCPP_DEFAULT_NEW_ALIGNMENT__ #else #define ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT alignof(std::max_align_t) #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace type_traits_internal { template <typename... Ts> struct VoidTImpl { using type = void; }; template <class Enabler, template <class...> class Op, class... Args> struct is_detected_impl { using type = std::false_type; }; template <template <class...> class Op, class... Args> struct is_detected_impl<typename VoidTImpl<Op<Args...>>::type, Op, Args...> { using type = std::true_type; }; template <template <class...> class Op, class... Args> struct is_detected : is_detected_impl<void, Op, Args...>::type {}; template <class Enabler, class To, template <class...> class Op, class... Args> struct is_detected_convertible_impl { using type = std::false_type; }; template <class To, template <class...> class Op, class... Args> struct is_detected_convertible_impl< typename std::enable_if<std::is_convertible<Op<Args...>, To>::value>::type, To, Op, Args...> { using type = std::true_type; }; template <class To, template <class...> class Op, class... Args> struct is_detected_convertible : is_detected_convertible_impl<void, To, Op, Args...>::type {}; } template <typename... Ts> using void_t = typename type_traits_internal::VoidTImpl<Ts...>::type; template <typename... Ts> struct conjunction : std::true_type {}; template <typename T, typename... Ts> struct conjunction<T, Ts...> : std::conditional<T::value, conjunction<Ts...>, T>::type {}; template <typename T> struct conjunction<T> : T {}; template <typename... Ts> struct disjunction : std::false_type {}; template <typename T, typename... Ts> struct disjunction<T, Ts...> : std::conditional<T::value, T, disjunction<Ts...>>::type {}; template <typename T> struct disjunction<T> : T {}; template <typename T> struct negation : std::integral_constant<bool, !T::value> {}; template <typename T> struct is_function : std::integral_constant< bool, !(std::is_reference<T>::value || std::is_const<typename std::add_const<T>::type>::value)> {}; using std::is_copy_assignable; using std::is_move_assignable; using std::is_trivially_copy_assignable; using std::is_trivially_copy_constructible; using std::is_trivially_default_constructible; using std::is_trivially_destructible; using std::is_trivially_move_assignable; using std::is_trivially_move_constructible; #if defined(__cpp_lib_remove_cvref) && __cpp_lib_remove_cvref >= 201711L template <typename T> using remove_cvref = std::remove_cvref<T>; template <typename T> using remove_cvref_t = typename std::remove_cvref<T>::type; #else template <typename T> struct remove_cvref { using type = typename std::remove_cv<typename std::remove_reference<T>::type>::type; }; template <typename T> using remove_cvref_t = typename remove_cvref<T>::type; #endif template <typename T> using remove_cv_t = typename std::remove_cv<T>::type; template <typename T> using remove_const_t = typename std::remove_const<T>::type; template <typename T> using remove_volatile_t = typename std::remove_volatile<T>::type; template <typename T> using add_cv_t = typename std::add_cv<T>::type; template <typename T> using add_const_t = typename std::add_const<T>::type; template <typename T> using add_volatile_t = typename std::add_volatile<T>::type; template <typename T> using remove_reference_t = typename std::remove_reference<T>::type; template <typename T> using add_lvalue_reference_t = typename std::add_lvalue_reference<T>::type; template <typename T> using add_rvalue_reference_t = typename std::add_rvalue_reference<T>::type; template <typename T> using remove_pointer_t = typename std::remove_pointer<T>::type; template <typename T> using add_pointer_t = typename std::add_pointer<T>::type; template <typename T> using make_signed_t = typename std::make_signed<T>::type; template <typename T> using make_unsigned_t = typename std::make_unsigned<T>::type; template <typename T> using remove_extent_t = typename std::remove_extent<T>::type; template <typename T> using remove_all_extents_t = typename std::remove_all_extents<T>::type; template <typename T> using decay_t = typename std::decay<T>::type; template <bool B, typename T = void> using enable_if_t = typename std::enable_if<B, T>::type; template <bool B, typename T, typename F> using conditional_t = typename std::conditional<B, T, F>::type; template <typename... T> using common_type_t = typename std::common_type<T...>::type; template <typename T> using underlying_type_t = typename std::underlying_type<T>::type; namespace type_traits_internal { #if (defined(__cpp_lib_is_invocable) && __cpp_lib_is_invocable >= 201703L) || \ (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) template <typename> struct result_of; template <typename F, typename... Args> struct result_of<F(Args...)> : std::invoke_result<F, Args...> {}; #else template <typename F> using result_of = std::result_of<F>; #endif } template <typename F> using result_of_t = typename type_traits_internal::result_of<F>::type; namespace type_traits_internal { #if defined(_MSC_VER) || (defined(_LIBCPP_VERSION) && \ _LIBCPP_VERSION < 4000 && _LIBCPP_STD_VER > 11) #define ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ 0 #else #define ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ 1 #endif #if !ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ template <typename Key, typename = size_t> struct IsHashable : std::true_type {}; #else template <typename Key, typename = void> struct IsHashable : std::false_type {}; template <typename Key> struct IsHashable< Key, absl::enable_if_t<std::is_convertible< decltype(std::declval<std::hash<Key>&>()(std::declval<Key const&>())), std::size_t>::value>> : std::true_type {}; #endif struct AssertHashEnabledHelper { private: static void Sink(...) {} struct NAT {}; template <class Key> static auto GetReturnType(int) -> decltype(std::declval<std::hash<Key>>()(std::declval<Key const&>())); template <class Key> static NAT GetReturnType(...); template <class Key> static std::nullptr_t DoIt() { static_assert(IsHashable<Key>::value, "std::hash<Key> does not provide a call operator"); static_assert( std::is_default_constructible<std::hash<Key>>::value, "std::hash<Key> must be default constructible when it is enabled"); static_assert( std::is_copy_constructible<std::hash<Key>>::value, "std::hash<Key> must be copy constructible when it is enabled"); static_assert(absl::is_copy_assignable<std::hash<Key>>::value, "std::hash<Key> must be copy assignable when it is enabled"); using ReturnType = decltype(GetReturnType<Key>(0)); static_assert(std::is_same<ReturnType, NAT>::value || std::is_same<ReturnType, size_t>::value, "std::hash<Key> must return size_t"); return nullptr; } template <class... Ts> friend void AssertHashEnabled(); }; template <class... Ts> inline void AssertHashEnabled() { using Helper = AssertHashEnabledHelper; Helper::Sink(Helper::DoIt<Ts>()...); } } namespace swap_internal { using std::swap; void swap(); template <class T> using IsSwappableImpl = decltype(swap(std::declval<T&>(), std::declval<T&>())); template <class T, class IsNoexcept = std::integral_constant< bool, noexcept(swap(std::declval<T&>(), std::declval<T&>()))>> using IsNothrowSwappableImpl = typename std::enable_if<IsNoexcept::value>::type; template <class T> struct IsSwappable : absl::type_traits_internal::is_detected<IsSwappableImpl, T> {}; template <class T> struct IsNothrowSwappable : absl::type_traits_internal::is_detected<IsNothrowSwappableImpl, T> {}; template <class T, absl::enable_if_t<IsSwappable<T>::value, int> = 0> void Swap(T& lhs, T& rhs) noexcept(IsNothrowSwappable<T>::value) { swap(lhs, rhs); } using StdSwapIsUnconstrained = IsSwappable<void()>; } namespace type_traits_internal { using swap_internal::IsNothrowSwappable; using swap_internal::IsSwappable; using swap_internal::StdSwapIsUnconstrained; using swap_internal::Swap; } #if ABSL_HAVE_BUILTIN(__is_trivially_relocatable) && \ (defined(__cpp_impl_trivially_relocatable) || \ (!defined(__clang__) && !defined(__APPLE__) && !defined(__NVCC__))) template <class T> struct is_trivially_relocatable : std::integral_constant<bool, __is_trivially_relocatable(T)> {}; #else template <class T> struct is_trivially_relocatable : std::is_trivially_copyable<T> {}; #endif #if defined(ABSL_HAVE_CONSTANT_EVALUATED) constexpr bool is_constant_evaluated() noexcept { #ifdef __cpp_lib_is_constant_evaluated return std::is_constant_evaluated(); #elif ABSL_HAVE_BUILTIN(__builtin_is_constant_evaluated) return __builtin_is_constant_evaluated(); #endif } #endif namespace type_traits_internal { template <typename T, typename = void> struct IsOwnerImpl : std::false_type { static_assert(std::is_same<T, absl::remove_cvref_t<T>>::value, "type must lack qualifiers"); }; template <typename T> struct IsOwnerImpl< T, std::enable_if_t<std::is_class<typename T::absl_internal_is_view>::value>> : absl::negation<typename T::absl_internal_is_view> {}; template <typename T> struct IsOwner : IsOwnerImpl<T> {}; template <typename T, typename Traits, typename Alloc> struct IsOwner<std::basic_string<T, Traits, Alloc>> : std::true_type {}; template <typename T, typename Alloc> struct IsOwner<std::vector<T, Alloc>> : std::true_type {}; template <typename T, typename = void> struct IsViewImpl : std::false_type { static_assert(std::is_same<T, absl::remove_cvref_t<T>>::value, "type must lack qualifiers"); }; template <typename T> struct IsViewImpl< T, std::enable_if_t<std::is_class<typename T::absl_internal_is_view>::value>> : T::absl_internal_is_view {}; template <typename T> struct IsView : std::integral_constant<bool, std::is_pointer<T>::value || IsViewImpl<T>::value> {}; #ifdef ABSL_HAVE_STD_STRING_VIEW template <typename Char, typename Traits> struct IsView<std::basic_string_view<Char, Traits>> : std::true_type {}; #endif #ifdef __cpp_lib_span template <typename T> struct IsView<std::span<T>> : std::true_type {}; #endif template <typename T, typename U> using IsLifetimeBoundAssignment = std::integral_constant<bool, IsView<absl::remove_cvref_t<T>>::value && IsOwner<absl::remove_cvref_t<U>>::value>; } ABSL_NAMESPACE_END } #endif
#include "absl/meta/type_traits.h" #include <cstdint> #include <string> #include <type_traits> #include <utility> #include <vector> #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/time/clock.h" #include "absl/time/time.h" #ifdef ABSL_HAVE_STD_STRING_VIEW #include <string_view> #endif namespace { using ::testing::StaticAssertTypeEq; template <typename T> using IsOwnerAndNotView = absl::conjunction<absl::type_traits_internal::IsOwner<T>, absl::negation<absl::type_traits_internal::IsView<T>>>; static_assert(IsOwnerAndNotView<std::vector<int>>::value, "vector is an owner, not a view"); static_assert(IsOwnerAndNotView<std::string>::value, "string is an owner, not a view"); static_assert(IsOwnerAndNotView<std::wstring>::value, "wstring is an owner, not a view"); #ifdef ABSL_HAVE_STD_STRING_VIEW static_assert(!IsOwnerAndNotView<std::string_view>::value, "string_view is a view, not an owner"); static_assert(!IsOwnerAndNotView<std::wstring_view>::value, "wstring_view is a view, not an owner"); #endif template <class T, class U> struct simple_pair { T first; U second; }; struct Dummy {}; struct ReturnType {}; struct ConvertibleToReturnType { operator ReturnType() const; }; struct StructA {}; struct StructB {}; struct StructC {}; struct TypeWithBarFunction { template <class T, absl::enable_if_t<std::is_same<T&&, StructA&>::value, int> = 0> ReturnType bar(T&&, const StructB&, StructC&&) &&; }; struct TypeWithBarFunctionAndConvertibleReturnType { template <class T, absl::enable_if_t<std::is_same<T&&, StructA&>::value, int> = 0> ConvertibleToReturnType bar(T&&, const StructB&, StructC&&) &&; }; template <class Class, class... Ts> using BarIsCallableImpl = decltype(std::declval<Class>().bar(std::declval<Ts>()...)); template <class Class, class... T> using BarIsCallable = absl::type_traits_internal::is_detected<BarIsCallableImpl, Class, T...>; template <class Class, class... T> using BarIsCallableConv = absl::type_traits_internal::is_detected_convertible< ReturnType, BarIsCallableImpl, Class, T...>; TEST(IsDetectedTest, BasicUsage) { EXPECT_TRUE((BarIsCallable<TypeWithBarFunction, StructA&, const StructB&, StructC>::value)); EXPECT_TRUE( (BarIsCallable<TypeWithBarFunction, StructA&, StructB&, StructC>::value)); EXPECT_TRUE( (BarIsCallable<TypeWithBarFunction, StructA&, StructB, StructC>::value)); EXPECT_FALSE((BarIsCallable<int, StructA&, const StructB&, StructC>::value)); EXPECT_FALSE((BarIsCallable<TypeWithBarFunction&, StructA&, const StructB&, StructC>::value)); EXPECT_FALSE((BarIsCallable<TypeWithBarFunction, StructA, const StructB&, StructC>::value)); } TEST(IsDetectedConvertibleTest, BasicUsage) { EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunction, StructA&, const StructB&, StructC>::value)); EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunction, StructA&, StructB&, StructC>::value)); EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunction, StructA&, StructB, StructC>::value)); EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType, StructA&, const StructB&, StructC>::value)); EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType, StructA&, StructB&, StructC>::value)); EXPECT_TRUE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType, StructA&, StructB, StructC>::value)); EXPECT_FALSE( (BarIsCallableConv<int, StructA&, const StructB&, StructC>::value)); EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunction&, StructA&, const StructB&, StructC>::value)); EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunction, StructA, const StructB&, StructC>::value)); EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType&, StructA&, const StructB&, StructC>::value)); EXPECT_FALSE((BarIsCallableConv<TypeWithBarFunctionAndConvertibleReturnType, StructA, const StructB&, StructC>::value)); } TEST(VoidTTest, BasicUsage) { StaticAssertTypeEq<void, absl::void_t<Dummy>>(); StaticAssertTypeEq<void, absl::void_t<Dummy, Dummy, Dummy>>(); } TEST(ConjunctionTest, BasicBooleanLogic) { EXPECT_TRUE(absl::conjunction<>::value); EXPECT_TRUE(absl::conjunction<std::true_type>::value); EXPECT_TRUE((absl::conjunction<std::true_type, std::true_type>::value)); EXPECT_FALSE((absl::conjunction<std::true_type, std::false_type>::value)); EXPECT_FALSE((absl::conjunction<std::false_type, std::true_type>::value)); EXPECT_FALSE((absl::conjunction<std::false_type, std::false_type>::value)); } struct MyTrueType { static constexpr bool value = true; }; struct MyFalseType { static constexpr bool value = false; }; TEST(ConjunctionTest, ShortCircuiting) { EXPECT_FALSE( (absl::conjunction<std::true_type, std::false_type, Dummy>::value)); EXPECT_TRUE((std::is_base_of<MyFalseType, absl::conjunction<std::true_type, MyFalseType, std::false_type>>::value)); EXPECT_TRUE( (std::is_base_of<MyTrueType, absl::conjunction<std::true_type, MyTrueType>>::value)); } TEST(DisjunctionTest, BasicBooleanLogic) { EXPECT_FALSE(absl::disjunction<>::value); EXPECT_FALSE(absl::disjunction<std::false_type>::value); EXPECT_TRUE((absl::disjunction<std::true_type, std::true_type>::value)); EXPECT_TRUE((absl::disjunction<std::true_type, std::false_type>::value)); EXPECT_TRUE((absl::disjunction<std::false_type, std::true_type>::value)); EXPECT_FALSE((absl::disjunction<std::false_type, std::false_type>::value)); } TEST(DisjunctionTest, ShortCircuiting) { EXPECT_TRUE( (absl::disjunction<std::false_type, std::true_type, Dummy>::value)); EXPECT_TRUE(( std::is_base_of<MyTrueType, absl::disjunction<std::false_type, MyTrueType, std::true_type>>::value)); EXPECT_TRUE(( std::is_base_of<MyFalseType, absl::disjunction<std::false_type, MyFalseType>>::value)); } TEST(NegationTest, BasicBooleanLogic) { EXPECT_FALSE(absl::negation<std::true_type>::value); EXPECT_FALSE(absl::negation<MyTrueType>::value); EXPECT_TRUE(absl::negation<std::false_type>::value); EXPECT_TRUE(absl::negation<MyFalseType>::value); } class Trivial { int n_; }; struct TrivialDestructor { ~TrivialDestructor() = default; }; struct NontrivialDestructor { ~NontrivialDestructor() {} }; struct DeletedDestructor { ~DeletedDestructor() = delete; }; class TrivialDefaultCtor { public: TrivialDefaultCtor() = default; explicit TrivialDefaultCtor(int n) : n_(n) {} private: int n_; }; class NontrivialDefaultCtor { public: NontrivialDefaultCtor() : n_(1) {} private: int n_; }; class DeletedDefaultCtor { public: DeletedDefaultCtor() = delete; explicit DeletedDefaultCtor(int n) : n_(n) {} private: int n_; }; class TrivialMoveCtor { public: explicit TrivialMoveCtor(int n) : n_(n) {} TrivialMoveCtor(TrivialMoveCtor&&) = default; TrivialMoveCtor& operator=(const TrivialMoveCtor& t) { n_ = t.n_; return *this; } private: int n_; }; class NontrivialMoveCtor { public: explicit NontrivialMoveCtor(int n) : n_(n) {} NontrivialMoveCtor(NontrivialMoveCtor&& t) noexcept : n_(t.n_) {} NontrivialMoveCtor& operator=(const NontrivialMoveCtor&) = default; private: int n_; }; class TrivialCopyCtor { public: explicit TrivialCopyCtor(int n) : n_(n) {} TrivialCopyCtor(const TrivialCopyCtor&) = default; TrivialCopyCtor& operator=(const TrivialCopyCtor& t) { n_ = t.n_; return *this; } private: int n_; }; class NontrivialCopyCtor { public: explicit NontrivialCopyCtor(int n) : n_(n) {} NontrivialCopyCtor(const NontrivialCopyCtor& t) : n_(t.n_) {} NontrivialCopyCtor& operator=(const NontrivialCopyCtor&) = default; private: int n_; }; class DeletedCopyCtor { public: explicit DeletedCopyCtor(int n) : n_(n) {} DeletedCopyCtor(const DeletedCopyCtor&) = delete; DeletedCopyCtor& operator=(const DeletedCopyCtor&) = default; private: int n_; }; class TrivialMoveAssign { public: explicit TrivialMoveAssign(int n) : n_(n) {} TrivialMoveAssign(const TrivialMoveAssign& t) : n_(t.n_) {} TrivialMoveAssign& operator=(TrivialMoveAssign&&) = default; ~TrivialMoveAssign() {} private: int n_; }; class NontrivialMoveAssign { public: explicit NontrivialMoveAssign(int n) : n_(n) {} NontrivialMoveAssign(const NontrivialMoveAssign&) = default; NontrivialMoveAssign& operator=(NontrivialMoveAssign&& t) noexcept { n_ = t.n_; return *this; } private: int n_; }; class TrivialCopyAssign { public: explicit TrivialCopyAssign(int n) : n_(n) {} TrivialCopyAssign(const TrivialCopyAssign& t) : n_(t.n_) {} TrivialCopyAssign& operator=(const TrivialCopyAssign& t) = default; ~TrivialCopyAssign() {} private: int n_; }; class NontrivialCopyAssign { public: explicit NontrivialCopyAssign(int n) : n_(n) {} NontrivialCopyAssign(const NontrivialCopyAssign&) = default; NontrivialCopyAssign& operator=(const NontrivialCopyAssign& t) { n_ = t.n_; return *this; } private: int n_; }; class DeletedCopyAssign { public: explicit DeletedCopyAssign(int n) : n_(n) {} DeletedCopyAssign(const DeletedCopyAssign&) = default; DeletedCopyAssign& operator=(const DeletedCopyAssign&) = delete; private: int n_; }; struct MovableNonCopyable { MovableNonCopyable() = default; MovableNonCopyable(const MovableNonCopyable&) = delete; MovableNonCopyable(MovableNonCopyable&&) = default; MovableNonCopyable& operator=(const MovableNonCopyable&) = delete; MovableNonCopyable& operator=(MovableNonCopyable&&) = default; }; struct NonCopyableOrMovable { NonCopyableOrMovable() = default; virtual ~NonCopyableOrMovable() = default; NonCopyableOrMovable(const NonCopyableOrMovable&) = delete; NonCopyableOrMovable(NonCopyableOrMovable&&) = delete; NonCopyableOrMovable& operator=(const NonCopyableOrMovable&) = delete; NonCopyableOrMovable& operator=(NonCopyableOrMovable&&) = delete; }; class Base { public: virtual ~Base() {} }; TEST(TypeTraitsTest, TestIsFunction) { struct Callable { void operator()() {} }; EXPECT_TRUE(absl::is_function<void()>::value); EXPECT_TRUE(absl::is_function<void()&>::value); EXPECT_TRUE(absl::is_function<void() const>::value); EXPECT_TRUE(absl::is_function<void() noexcept>::value); EXPECT_TRUE(absl::is_function<void(...) noexcept>::value); EXPECT_FALSE(absl::is_function<void (*)()>::value); EXPECT_FALSE(absl::is_function<void (&)()>::value); EXPECT_FALSE(absl::is_function<int>::value); EXPECT_FALSE(absl::is_function<Callable>::value); } TEST(TypeTraitsTest, TestRemoveCVRef) { EXPECT_TRUE( (std::is_same<typename absl::remove_cvref<int>::type, int>::value)); EXPECT_TRUE( (std::is_same<typename absl::remove_cvref<int&>::type, int>::value)); EXPECT_TRUE( (std::is_same<typename absl::remove_cvref<int&&>::type, int>::value)); EXPECT_TRUE(( std::is_same<typename absl::remove_cvref<const int&>::type, int>::value)); EXPECT_TRUE( (std::is_same<typename absl::remove_cvref<int*>::type, int*>::value)); EXPECT_TRUE((std::is_same<typename absl::remove_cvref<const int*>::type, const int*>::value)); EXPECT_TRUE( (std::is_same<typename absl::remove_cvref<int[2]>::type, int[2]>::value)); EXPECT_TRUE((std::is_same<typename absl::remove_cvref<int(&)[2]>::type, int[2]>::value)); EXPECT_TRUE((std::is_same<typename absl::remove_cvref<int(&&)[2]>::type, int[2]>::value)); EXPECT_TRUE((std::is_same<typename absl::remove_cvref<const int[2]>::type, int[2]>::value)); EXPECT_TRUE((std::is_same<typename absl::remove_cvref<const int(&)[2]>::type, int[2]>::value)); EXPECT_TRUE((std::is_same<typename absl::remove_cvref<const int(&&)[2]>::type, int[2]>::value)); } #define ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(trait_name, ...) \ EXPECT_TRUE((std::is_same<typename std::trait_name<__VA_ARGS__>::type, \ absl::trait_name##_t<__VA_ARGS__>>::value)) TEST(TypeTraitsTest, TestRemoveCVAliases) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_cv, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_cv, const int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_cv, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_cv, const volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_const, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_const, const int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_const, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_const, const volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_volatile, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_volatile, const int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_volatile, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_volatile, const volatile int); } TEST(TypeTraitsTest, TestAddCVAliases) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_cv, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_cv, const int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_cv, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_cv, const volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_const, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_const, const int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_const, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_const, const volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_volatile, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_volatile, const int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_volatile, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_volatile, const volatile int); } TEST(TypeTraitsTest, TestReferenceAliases) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_reference, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_reference, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_reference, int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_reference, volatile int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_reference, int&&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_reference, volatile int&&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_lvalue_reference, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_lvalue_reference, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_lvalue_reference, int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_lvalue_reference, volatile int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_lvalue_reference, int&&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_lvalue_reference, volatile int&&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_rvalue_reference, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_rvalue_reference, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_rvalue_reference, int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_rvalue_reference, volatile int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_rvalue_reference, int&&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_rvalue_reference, volatile int&&); } TEST(TypeTraitsTest, TestPointerAliases) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_pointer, int*); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_pointer, volatile int*); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_pointer, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(add_pointer, volatile int); } TEST(TypeTraitsTest, TestSignednessAliases) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_signed, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_signed, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_signed, unsigned); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_signed, volatile unsigned); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_unsigned, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_unsigned, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_unsigned, unsigned); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(make_unsigned, volatile unsigned); } TEST(TypeTraitsTest, TestExtentAliases) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_extent, int[]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_extent, int[1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_extent, int[1][1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_extent, int[][1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_all_extents, int[]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_all_extents, int[1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_all_extents, int[1][1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(remove_all_extents, int[][1]); } TEST(TypeTraitsTest, TestDecay) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, const int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, const volatile int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, const int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, volatile int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, const volatile int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, const int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, volatile int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, const volatile int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int[1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int[1][1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int[][1]); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int()); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int(float)); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(decay, int(char, ...)); } struct TypeA {}; struct TypeB {}; struct TypeC {}; struct TypeD {}; template <typename T> struct Wrap {}; enum class TypeEnum { A, B, C, D }; struct GetTypeT { template <typename T, absl::enable_if_t<std::is_same<T, TypeA>::value, int> = 0> TypeEnum operator()(Wrap<T>) const { return TypeEnum::A; } template <typename T, absl::enable_if_t<std::is_same<T, TypeB>::value, int> = 0> TypeEnum operator()(Wrap<T>) const { return TypeEnum::B; } template <typename T, absl::enable_if_t<std::is_same<T, TypeC>::value, int> = 0> TypeEnum operator()(Wrap<T>) const { return TypeEnum::C; } } constexpr GetType = {}; TEST(TypeTraitsTest, TestEnableIf) { EXPECT_EQ(TypeEnum::A, GetType(Wrap<TypeA>())); EXPECT_EQ(TypeEnum::B, GetType(Wrap<TypeB>())); EXPECT_EQ(TypeEnum::C, GetType(Wrap<TypeC>())); } TEST(TypeTraitsTest, TestConditional) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(conditional, true, int, char); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(conditional, false, int, char); } TEST(TypeTraitsTest, TestCommonType) { ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(common_type, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(common_type, int, char); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(common_type, int, char, int); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(common_type, int&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(common_type, int, char&); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(common_type, int, char, int&); } TEST(TypeTraitsTest, TestUnderlyingType) { enum class enum_char : char {}; enum class enum_long_long : long long {}; ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(underlying_type, enum_char); ABSL_INTERNAL_EXPECT_ALIAS_EQUIVALENCE(underlying_type, enum_long_long); } struct GetTypeExtT { template <typename T> absl::result_of_t<const GetTypeT&(T)> operator()(T&& arg) const { return GetType(std::forward<T>(arg)); } TypeEnum operator()(Wrap<TypeD>) const { return TypeEnum::D; } } constexpr GetTypeExt = {}; TEST(TypeTraitsTest, TestResultOf) { EXPECT_EQ(TypeEnum::A, GetTypeExt(Wrap<TypeA>())); EXPECT_EQ(TypeEnum::B, GetTypeExt(Wrap<TypeB>())); EXPECT_EQ(TypeEnum::C, GetTypeExt(Wrap<TypeC>())); EXPECT_EQ(TypeEnum::D, GetTypeExt(Wrap<TypeD>())); } namespace adl_namespace { struct DeletedSwap {}; void swap(DeletedSwap&, DeletedSwap&) = delete; struct SpecialNoexceptSwap { SpecialNoexceptSwap(SpecialNoexceptSwap&&) {} SpecialNoexceptSwap& operator=(SpecialNoexceptSwap&&) { return *this; } ~SpecialNoexceptSwap() = default; }; void swap(SpecialNoexceptSwap&, SpecialNoexceptSwap&) noexcept {} } TEST(TypeTraitsTest, IsSwappable) { using absl::type_traits_internal::IsSwappable; using absl::type_traits_internal::StdSwapIsUnconstrained; EXPECT_TRUE(IsSwappable<int>::value); struct S {}; EXPECT_TRUE(IsSwappable<S>::value); struct NoConstruct { NoConstruct(NoConstruct&&) = delete; NoConstruct& operator=(NoConstruct&&) { return *this; } ~NoConstruct() = default; }; EXPECT_EQ(IsSwappable<NoConstruct>::value, StdSwapIsUnconstrained::value); struct NoAssign { NoAssign(NoAssign&&) {} NoAssign& operator=(NoAssign&&) = delete; ~NoAssign() = default; }; EXPECT_EQ(IsSwappable<NoAssign>::value, StdSwapIsUnconstrained::value); EXPECT_FALSE(IsSwappable<adl_namespace::DeletedSwap>::value); EXPECT_TRUE(IsSwappable<adl_namespace::SpecialNoexceptSwap>::value); } TEST(TypeTraitsTest, IsNothrowSwappable) { using absl::type_traits_internal::IsNothrowSwappable; using absl::type_traits_internal::StdSwapIsUnconstrained; EXPECT_TRUE(IsNothrowSwappable<int>::value); struct NonNoexceptMoves { NonNoexceptMoves(NonNoexceptMoves&&) {} NonNoexceptMoves& operator=(NonNoexceptMoves&&) { return *this; } ~NonNoexceptMoves() = default; }; EXPECT_FALSE(IsNothrowSwappable<NonNoexceptMoves>::value); struct NoConstruct { NoConstruct(NoConstruct&&) = delete; NoConstruct& operator=(NoConstruct&&) { return *this; } ~NoConstruct() = default; }; EXPECT_FALSE(IsNothrowSwappable<NoConstruct>::value); struct NoAssign { NoAssign(NoAssign&&) {} NoAssign& operator=(NoAssign&&) = delete; ~NoAssign() = default; }; EXPECT_FALSE(IsNothrowSwappable<NoAssign>::value); EXPECT_FALSE(IsNothrowSwappable<adl_namespace::DeletedSwap>::value); EXPECT_TRUE(IsNothrowSwappable<adl_namespace::SpecialNoexceptSwap>::value); } TEST(TriviallyRelocatable, PrimitiveTypes) { static_assert(absl::is_trivially_relocatable<int>::value, ""); static_assert(absl::is_trivially_relocatable<char>::value, ""); static_assert(absl::is_trivially_relocatable<void*>::value, ""); } TEST(TriviallyRelocatable, UserDefinedTriviallyRelocatable) { struct S { int x; int y; }; static_assert(absl::is_trivially_relocatable<S>::value, ""); } TEST(TriviallyRelocatable, UserProvidedMoveConstructor) { struct S { S(S&&) {} }; static_assert(!absl::is_trivially_relocatable<S>::value, ""); } TEST(TriviallyRelocatable, UserProvidedCopyConstructor) { struct S { S(const S&) {} }; static_assert(!absl::is_trivially_relocatable<S>::value, ""); } TEST(TriviallyRelocatable, UserProvidedCopyAssignment) { struct S { S(const S&) = default; S& operator=(const S&) { return *this; } }; static_assert(!absl::is_trivially_relocatable<S>::value, ""); } TEST(TriviallyRelocatable, UserProvidedMoveAssignment) { struct S { S(S&&) = default; S& operator=(S&&) { return *this; } }; static_assert(!absl::is_trivially_relocatable<S>::value, ""); } TEST(TriviallyRelocatable, UserProvidedDestructor) { struct S { ~S() {} }; static_assert(!absl::is_trivially_relocatable<S>::value, ""); } #if defined(ABSL_HAVE_ATTRIBUTE_TRIVIAL_ABI) && \ ABSL_HAVE_BUILTIN(__is_trivially_relocatable) && \ (defined(__cpp_impl_trivially_relocatable) || \ (!defined(__clang__) && !defined(__APPLE__) && !defined(__NVCC__))) TEST(TriviallyRelocatable, TrivialAbi) { struct ABSL_ATTRIBUTE_TRIVIAL_ABI S { S(S&&) {} S(const S&) {} void operator=(S&&) {} void operator=(const S&) {} ~S() {} }; static_assert(absl::is_trivially_relocatable<S>::value, ""); } #endif #ifdef ABSL_HAVE_CONSTANT_EVALUATED constexpr int64_t NegateIfConstantEvaluated(int64_t i) { if (absl::is_constant_evaluated()) { return -i; } else { return i; } } #endif TEST(IsConstantEvaluated, is_constant_evaluated) { #ifdef ABSL_HAVE_CONSTANT_EVALUATED constexpr int64_t constant = NegateIfConstantEvaluated(42); EXPECT_EQ(constant, -42); int64_t now = absl::ToUnixSeconds(absl::Now()); int64_t not_constant = NegateIfConstantEvaluated(now); EXPECT_EQ(not_constant, now); static int64_t const_init = NegateIfConstantEvaluated(42); EXPECT_EQ(const_init, -42); #else GTEST_SKIP() << "absl::is_constant_evaluated is not defined"; #endif } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/meta/type_traits.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/meta/type_traits_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
c8b735fe-1061-46a4-98c4-74adb45572e5
cpp
tensorflow/tensorflow
node_io_dump_rewriter
tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.cc
tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter_test.cc
#include "tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.h" #include <cstdlib> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tfrt_stub { namespace { absl::StatusOr<std::string> GetDumpDir(absl::string_view dump_dir) { if (!dump_dir.empty()) return std::string(dump_dir); const char* prefix = getenv("TF_DUMP_GRAPH_PREFIX"); if (prefix != nullptr) return std::string(prefix); return errors::InvalidArgument("TF_DUMP_GRAPH_PREFIX not specified"); } Status InsertDumpOpsForNode(Graph& graph, Node& node, absl::string_view dump_dir) { auto insert = [&](bool is_input, const std::vector<const Edge*> edges) { for (const Edge* edge : edges) { if (edge->IsControlEdge()) continue; Node* dump_node; TF_RETURN_IF_ERROR( NodeBuilder(absl::StrCat(edge->src()->name(), "/", edge->src_output(), "/debug_identity"), "DebugIdentityV3") .Attr("io_of_node", node.name()) .Attr("is_input", is_input) .Attr("io_index", is_input ? edge->dst_input() : edge->src_output()) .Attr("tensor_name", absl::StrCat(edge->src()->name(), ":", edge->src_output())) .Attr("debug_urls", {absl::StrCat("file: .Input(edge->src(), edge->src_output()) .Finalize(&graph, &dump_node)); TF_RETURN_IF_ERROR( graph.UpdateEdge(dump_node, 0, edge->dst(), edge->dst_input())); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(insert(true, {node.in_edges().begin(), node.in_edges().end()})); TF_RETURN_IF_ERROR(insert( false, {node.out_edges().begin(), node.out_edges().end()})); return absl::OkStatus(); } } Status InsertDumpOps(Graph& graph, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir) { TF_ASSIGN_OR_RETURN(auto dir, GetDumpDir(dump_dir)); auto insert = [&](Graph& graph) { for (Node* node : graph.op_nodes()) { if (nodes_to_dump.contains(node->name())) { TF_RETURN_IF_ERROR(InsertDumpOpsForNode(graph, *node, dir)); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(insert(graph)); for (const auto& fname : graph.flib_def().ListFunctionNames()) { std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *graph.flib_def().Find(fname), AttrSlice(), &graph.flib_def(), &fbody)); TF_RETURN_IF_ERROR(insert(*fbody->graph)); FunctionDef new_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*fbody->graph, fname, &new_fdef)); TF_RETURN_IF_ERROR( graph.mutable_flib_def()->ReplaceFunction(fname, new_fdef)); } return absl::OkStatus(); } Status InsertDumpOps(MetaGraphDef& meta_graph_def, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir) { Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR( ConvertGraphDefToGraph({}, meta_graph_def.graph_def(), &graph)); TF_RETURN_IF_ERROR(InsertDumpOps(graph, nodes_to_dump, dump_dir)); graph.ToGraphDef(meta_graph_def.mutable_graph_def()); return absl::OkStatus(); } } }
#include "tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.h" #include <dirent.h> #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/saved_model/reader.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/tfrt/saved_model/saved_model.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr absl::string_view kDumpSubDirName = "node-io-dump"; const Node* FindNode(const Graph* graph, absl::string_view node_name) { for (Node* node : graph->nodes()) { if (node->name() == node_name) return node; } return nullptr; } const Node* GetInputNode(const Node* node, size_t index) { const Node* input_node; CHECK_OK(node->input_node(index, &input_node)); return input_node; } const Node* GetOutputNode(const Node* node, size_t index) { for (const Edge* edge : node->out_edges()) { if (edge->src_output() == index) return edge->dst(); } return nullptr; } absl::StatusOr<std::vector<std::string>> GetFilenames( absl::string_view dump_dir) { auto dump_sub_dir = absl::StrCat(dump_dir, "/", kDumpSubDirName); DIR* dir = opendir(dump_sub_dir.data()); if (dir == nullptr) { return absl::InvalidArgumentError( absl::StrCat("can't open directory: ", dump_sub_dir)); } std::vector<std::string> step_dirs; struct dirent* entry; while ((entry = readdir(dir)) != nullptr) { if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) { continue; } if (entry->d_type != DT_DIR) { return absl::InternalError(absl::StrCat( "Found non-directory entry under dump_sub_dir: ", entry->d_name)); } step_dirs.push_back(absl::StrCat(dump_sub_dir, "/", entry->d_name)); } closedir(dir); CHECK_EQ(step_dirs.size(), 1); dir = opendir(step_dirs[0].data()); if (dir == nullptr) { return absl::InvalidArgumentError( absl::StrCat("can't open directory: ", step_dirs[0])); } std::vector<std::string> filenames; while ((entry = readdir(dir)) != nullptr) { if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) { continue; } if (entry->d_type == DT_DIR) { return absl::InternalError(absl::StrCat( "Found directory entry under step_dir: ", entry->d_name)); } filenames.push_back(entry->d_name); } closedir(dir); return filenames; } TEST(NodeIoDumpRewriterTest, OnGraph) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); Scope scope = Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input_a = ops::Placeholder(scope.WithOpName("input_a"), DT_INT32); auto input_b = ops::Placeholder(scope.WithOpName("input_b"), DT_INT32); auto add = ops::Add(scope.WithOpName("add"), input_a, input_b); auto output = ops::Identity(scope.WithOpName("output"), add); TF_ASSERT_OK(scope.ToGraph(graph.get())); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnGraph"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(*graph, {"add"}, dump_dir)); auto* node = FindNode(graph.get(), "add"); EXPECT_EQ(node->num_inputs(), 2); EXPECT_EQ(GetInputNode(node, 0)->name(), "input_a/0/debug_identity"); EXPECT_EQ(GetInputNode(node, 1)->name(), "input_b/0/debug_identity"); EXPECT_EQ(node->num_outputs(), 1); EXPECT_EQ(GetOutputNode(node, 0)->name(), "add/0/debug_identity"); } TEST(NodeIoDumpRewriterTest, OnSavedModelV1) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnSavedModelV1"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(meta_graph_def, {"Add"}, dump_dir)); auto runtime = DefaultTfrtRuntime(1); SavedModel::Options options(runtime.get()); options.graph_execution_options.compile_options.enable_grappler = false; TF_ASSERT_OK_AND_ASSIGN( auto saved_model, SavedModelImpl::LoadSavedModel(options, meta_graph_def, saved_model_dir)); std::vector<tensorflow::Tensor> inputs; inputs.push_back( CreateTfTensor<int32_t>({1, 3}, {1, 1, 1})); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(saved_model->Run({}, "another_toy", inputs, &outputs)); ASSERT_EQ(outputs.size(), 2); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({6})); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[1]), ::testing::ElementsAreArray({12})); ASSERT_OK_AND_ASSIGN(auto filenames, GetFilenames(dump_dir)); ASSERT_EQ(filenames.size(), 3); EXPECT_TRUE(absl::StartsWith(filenames[0], "Add:out:0_")); EXPECT_TRUE(absl::StartsWith(filenames[1], "Add:in:0_")); EXPECT_TRUE(absl::StartsWith(filenames[2], "Add:in:1_")); } TEST(NodeIoDumpRewriterTest, OnSavedModelV2) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v2"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnSavedModelV2"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(meta_graph_def, {"result"}, dump_dir)); auto runtime = DefaultTfrtRuntime(1); SavedModel::Options options(runtime.get()); options.graph_execution_options.compile_options.enable_grappler = false; TF_ASSERT_OK_AND_ASSIGN( auto saved_model, SavedModelImpl::LoadSavedModel(options, meta_graph_def, saved_model_dir)); std::vector<tensorflow::Tensor> inputs; inputs.push_back( CreateTfTensor<int32_t>({1, 3}, {1, 1, 1})); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(saved_model->Run({}, "serving_default", inputs, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({6})); ASSERT_OK_AND_ASSIGN(auto filenames, GetFilenames(dump_dir)); ASSERT_EQ(filenames.size(), 3); EXPECT_TRUE(absl::StartsWith(filenames[0], "result:out:0_")); EXPECT_TRUE(absl::StartsWith(filenames[1], "result:in:1_")); EXPECT_TRUE(absl::StartsWith(filenames[2], "result:in:0_")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
03955f20-a5af-4082-9ddf-ddb88325bfea
cpp
tensorflow/tensorflow
tf_op_quant_spec
tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec.cc
tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec_test.cc
#include "tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec.h" #include <memory> #include <optional> #include <vector> #include "absl/container/flat_hash_set.h" #include "llvm/Support/Casting.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_utils.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" namespace mlir { namespace quant { bool IsOpWithDataMovementTrait(Operation* op) { return isa<TF::IdentityOp, TF::CastOp, TF::ReshapeOp, TF::XlaShardingOp, TF::GatherOp, TF::GatherV2Op, TF::XlaGatherOp, TF::ExpandDimsOp, TF::SqueezeOp, TF::TransposeOp>(op); } bool IsOpWithQuantizableTrait(Operation* op) { return isa<TF::XlaConvV2Op, TF::XlaDotV2Op, TF::MatMulOp, TF::Conv2DOp, TF::GatherOp, TF::GatherV2Op, TF::XlaGatherOp, TF::ResourceGatherOp, TF::DepthwiseConv2dNativeOp, TF::Conv3DOp, TF::BatchMatMulV2Op, TF::EinsumOp>(op); } bool IsOpWithInt8TypeOperand(Operation* op) { return (isa<TF::XlaConvV2Op, TF::XlaDotV2Op, TF::XlaGatherOp, TF::GatherOp, TF::GatherV2Op>(op)); } bool IsValueWithQuantizablePrecision(Value val) { auto type = mlir::dyn_cast<ShapedType>(val.getType()); if (!type) return false; if (type.getElementType().isF32() || type.getElementType().isBF16()) return true; return false; } std::optional<tensorflow::quantization::QuantizationComponentSpec> GetWeightComponentSpec( const tensorflow::quantization::QuantizationOptions& quantization_options) { for (auto& cur_spec : quantization_options.quantization_method() .quantization_component_specs()) { if (cur_spec.quantization_component() == tensorflow::quantization::QuantizationComponentSpec::COMPONENT_WEIGHT) return cur_spec; } return std::nullopt; } std::unique_ptr<OpQuantSpec> GetTFOpQuantSpec(Operation* op) { auto spec = std::make_unique<OpQuantSpec>(); if (auto call_op = dyn_cast<TF::PartitionedCallOp>(op)) { StringRef function_name = mlir::cast<FlatSymbolRefAttr>(call_op.getFAttr()).getValue(); if (!function_name.starts_with("composite_")) { return spec; } if (function_name.contains("depthwise_conv2d")) { spec->coeff_op_quant_dim[1] = 3; if (function_name.contains("with_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } else if (function_name.contains("conv2d")) { spec->coeff_op_quant_dim[1] = 3; if (function_name.contains("with_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } else if (function_name.contains("matmul")) { spec->coeff_op_quant_dim[1] = -1; if (function_name.contains("with_bias") || function_name.contains("and_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } else if (function_name.contains("einsum")) { spec->coeff_op_quant_dim[1] = -1; if (function_name.contains("with_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } else if (function_name.contains("conv3d")) { spec->coeff_op_quant_dim[1] = 4; if (function_name.contains("with_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } else if (function_name.contains("batch_matmul")) { spec->coeff_op_quant_dim[1] = -1; if (function_name.contains("with_bias")) { spec->biases_params[2] = {{0, 1}, quant::GetUniformQuantizedTypeForBias}; } } else if (function_name.contains("gather")) { spec->coeff_op_quant_dim[0] = -1; } for (auto quantizable_operand : spec->coeff_op_quant_dim) { spec->quantizable_operands.insert(quantizable_operand.first); } } return spec; } std::unique_ptr<OpQuantScaleSpec> GetTfQuantScaleSpec(Operation* op) { auto scale_spec = std::make_unique<OpQuantScaleSpec>(); if (llvm::isa< TF::AvgPoolOp, TF::ConcatOp, TF::ConcatV2Op, TF::ExpandDimsOp, TF::IdentityNOp, TF::IdentityOp, TF::MaxPoolOp, TF::PadV2Op, TF::RankOp, TF::ReshapeOp, TF::SelectOp, TF::SelectV2Op, TF::ShapeNOp, TF::ShapeOp, TF::SizeOp, TF::SqueezeOp, TF::TransposeOp >(op)) { scale_spec->has_same_scale_requirement = true; } return scale_spec; } } }
#include "tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec.h" #include <gtest/gtest.h> #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" namespace mlir::quant { namespace { using QuantizationOptions = tensorflow::quantization::QuantizationOptions; using QuantizationComponentSpec = tensorflow::quantization::QuantizationComponentSpec; TEST(TfOpQuantSpecTest, WeightComponentSpecExist) { QuantizationOptions quant_options; QuantizationComponentSpec quant_spec; quant_spec.set_quantization_component( QuantizationComponentSpec::COMPONENT_WEIGHT); quant_spec.set_tensor_type(QuantizationComponentSpec::TENSORTYPE_INT_8); auto mutable_quant_method = quant_options.mutable_quantization_method(); *mutable_quant_method->add_quantization_component_specs() = quant_spec; auto output = GetWeightComponentSpec(quant_options); EXPECT_TRUE(output.has_value()); } TEST(TfOpQuantSpecTest, WeightComponentSpecDoNotExist) { QuantizationOptions quant_options; auto output = GetWeightComponentSpec(quant_options); EXPECT_FALSE(output.has_value()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/ops/tf_op_quant_spec_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
96e128d6-eefa-45ae-800e-f8e8117dd875
cpp
google/cel-cpp
function_type
common/types/function_type.cc
common/types/function_type_test.cc
#include <cstddef> #include <cstring> #include <string> #include "absl/base/nullability.h" #include "absl/log/absl_check.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "common/type.h" #include "google/protobuf/arena.h" namespace cel { namespace { struct TypeFormatter { void operator()(std::string* out, const Type& type) const { out->append(type.DebugString()); } }; std::string FunctionDebugString(const Type& result, absl::Span<const Type> args) { return absl::StrCat("(", absl::StrJoin(args, ", ", TypeFormatter{}), ") -> ", result.DebugString()); } } namespace common_internal { absl::Nonnull<FunctionTypeData*> FunctionTypeData::Create( absl::Nonnull<google::protobuf::Arena*> arena, const Type& result, absl::Span<const Type> args) { return ::new (arena->AllocateAligned( offsetof(FunctionTypeData, args) + ((1 + args.size()) * sizeof(Type)), alignof(FunctionTypeData))) FunctionTypeData(result, args); } FunctionTypeData::FunctionTypeData(const Type& result, absl::Span<const Type> args) : args_size(1 + args.size()) { this->args[0] = result; std::memcpy(this->args + 1, args.data(), args.size() * sizeof(Type)); } } FunctionType::FunctionType(absl::Nonnull<google::protobuf::Arena*> arena, const Type& result, absl::Span<const Type> args) : FunctionType( common_internal::FunctionTypeData::Create(arena, result, args)) {} std::string FunctionType::DebugString() const { return FunctionDebugString(result(), args()); } TypeParameters FunctionType::GetParameters() const { ABSL_DCHECK(*this); return TypeParameters(absl::MakeConstSpan(data_->args, data_->args_size)); } const Type& FunctionType::result() const { ABSL_DCHECK(*this); return data_->args[0]; } absl::Span<const Type> FunctionType::args() const { ABSL_DCHECK(*this); return absl::MakeConstSpan(data_->args + 1, data_->args_size - 1); } }
#include <sstream> #include "absl/hash/hash.h" #include "common/type.h" #include "internal/testing.h" #include "google/protobuf/arena.h" namespace cel { namespace { TEST(FunctionType, Kind) { google::protobuf::Arena arena; EXPECT_EQ(FunctionType(&arena, DynType{}, {BytesType()}).kind(), FunctionType::kKind); EXPECT_EQ(Type(FunctionType(&arena, DynType{}, {BytesType()})).kind(), FunctionType::kKind); } TEST(FunctionType, Name) { google::protobuf::Arena arena; EXPECT_EQ(FunctionType(&arena, DynType{}, {BytesType()}).name(), "function"); EXPECT_EQ(Type(FunctionType(&arena, DynType{}, {BytesType()})).name(), "function"); } TEST(FunctionType, DebugString) { google::protobuf::Arena arena; { std::ostringstream out; out << FunctionType(&arena, DynType{}, {BytesType()}); EXPECT_EQ(out.str(), "(bytes) -> dyn"); } { std::ostringstream out; out << Type(FunctionType(&arena, DynType{}, {BytesType()})); EXPECT_EQ(out.str(), "(bytes) -> dyn"); } } TEST(FunctionType, Hash) { google::protobuf::Arena arena; EXPECT_EQ(absl::HashOf(FunctionType(&arena, DynType{}, {BytesType()})), absl::HashOf(FunctionType(&arena, DynType{}, {BytesType()}))); } TEST(FunctionType, Equal) { google::protobuf::Arena arena; EXPECT_EQ(FunctionType(&arena, DynType{}, {BytesType()}), FunctionType(&arena, DynType{}, {BytesType()})); EXPECT_EQ(Type(FunctionType(&arena, DynType{}, {BytesType()})), FunctionType(&arena, DynType{}, {BytesType()})); EXPECT_EQ(FunctionType(&arena, DynType{}, {BytesType()}), Type(FunctionType(&arena, DynType{}, {BytesType()}))); EXPECT_EQ(Type(FunctionType(&arena, DynType{}, {BytesType()})), Type(FunctionType(&arena, DynType{}, {BytesType()}))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/function_type.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/types/function_type_test.cc
4552db5798fb0853b131b783d8875794334fae7f
479417f4-59f9-4d2f-86c8-5736fa232d4f
cpp
tensorflow/tensorflow
spmd_expander
tensorflow/dtensor/mlir/spmd_expander.cc
tensorflow/dtensor/tests/spmd_expander_test.cc
#include "tensorflow/dtensor/mlir/spmd_expander.h" #include <climits> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/framework/registration/registration.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/dtensor/cc/dstatus.h" #include "tensorflow/dtensor/cc/dtensor_utils.h" #include "tensorflow/dtensor/cc/tensor_layout.h" #include "tensorflow/dtensor/mlir/expansions/replicated_spmd_expander.h" #include "tensorflow/dtensor/mlir/ir/tf_dtensor.h" #include "tensorflow/dtensor/mlir/layout_parsing.h" #include "tensorflow/dtensor/mlir/op_utils.h" #include "tensorflow/dtensor/mlir/shape_utils.h" #include "tensorflow/dtensor/proto/layout.pb.h" namespace tensorflow { namespace dtensor { namespace { Status AdjustPartedLayout(const llvm::DenseMap<int, Layout>& input_layouts, llvm::DenseMap<int, Layout>* computed_layouts) { bool input_has_parted_layout = false; for (const auto& input_layout : input_layouts) { if (input_layout.second.type() == Layout::LayoutType::kParted) { input_has_parted_layout = true; break; } } if (input_has_parted_layout) { for (auto& computed_layout : *computed_layouts) { TF_ASSIGN_OR_RETURN(Layout parted, computed_layout.second.ToParted()); computed_layout.getSecond() = parted; } } return absl::OkStatus(); } bool SkipExpansionForPartedLayout(mlir::Operation* op) { if (llvm::isa<mlir::func::ReturnOp, mlir::tf_device::ReturnOp>(op)) { return false; } auto status_or_input_layouts = ExtractRequiredLayoutFromOperands(op); if (!status_or_input_layouts.ok()) { return false; } bool operand_uses_parted_layout = false; for (const auto& layout : status_or_input_layouts.value()) { if (layout.type() == Layout::LayoutType::kParted) { operand_uses_parted_layout = true; break; } } return operand_uses_parted_layout; } } SPMDExpanderRegistry* SPMDExpanderRegistry::Global() { static SPMDExpanderRegistry* registry = new SPMDExpanderRegistry(); return registry; } SPMDExpanderBase* SPMDExpanderRegistry::GetPropagateFnForFullOpName( const std::string& full_op_name) { auto key = full_op_name; auto fn = op_to_propagate_fn_map_.find(key); if (fn == op_to_propagate_fn_map_.end()) { if (EnableReplicatedSpmdAsDefault(key)) { LOG(WARNING) << full_op_name << " is defaulting to ReplicatedOpSPMDExpander. This " << " has performance implications as all inputs and outputs " << " will be replicated if they are not already. Please file a " << " feature request to TF DTensor to implement an efficient " << " SPMD for this operation."; RegisterPropagateFn(key, std::make_unique<ReplicatedOpSPMDExpander>( true)); return op_to_propagate_fn_map_.find(key)->second.get(); } else { return nullptr; } } return fn->second.get(); } SPMDExpanderBase* SPMDExpanderRegistry::GetPropagateFnForOp( mlir::Operation* op) { return GetPropagateFnForFullOpName(OpName(op)); } InitOnStartupMarker SPMDExpanderRegistry::RegisterPropagateFn( std::string opName, std::unique_ptr<SPMDExpanderBase> prop) { CHECK(op_to_propagate_fn_map_ .insert_or_assign(opName, std::move(prop)) .second); return {}; } Status SPMDExpanderBase::ExpandOpAndSetLayout(mlir::Operation* op, mlir::Operation** output) { TF_ASSIGN_OR_RETURN(std::vector<std::optional<Layout>> computed_layout, ExtractLayoutFromOp(op)); if (computed_layout.empty() && op->getNumResults() != 0) { return errors::InvalidArgument( absl::StrCat("No attached layout found for op : ", OpName(op), " This might be due to an error in layout propagation.") .c_str()); } TF_ASSIGN_OR_RETURN(const Mesh& mesh, ExtractDeviceMeshEnclosingCluster(op)); bool skip_expansion_for_parted_layout = SkipExpansionForPartedLayout(op); if (mesh.IsSingleDevice() || mesh.use_xla_spmd() || skip_expansion_for_parted_layout) { if (skip_expansion_for_parted_layout) { *output = InferSPMDExpandedLocalShape(op); } else { *output = op; } SetLayoutOnOp(*output, absl::Span<std::optional<Layout>>( computed_layout.data(), computed_layout.size())); return absl::OkStatus(); } llvm::SmallVector<llvm::SmallVector<int64_t, 4>, 4> global_output_shapes; global_output_shapes.reserve(op->getNumResults()); for (auto output_value : op->getResults()) { auto maybe_ranked = mlir::dyn_cast<mlir::RankedTensorType>(output_value.getType()); if (llvm::isa<mlir::TF::RestoreV2Op, mlir::TF::DTensorRestoreV2Op>(op) && (!maybe_ranked || !maybe_ranked.hasStaticShape())) continue; TF_ASSIGN_OR_RETURN(auto global_shape, ExtractGlobalOutputShape(output_value)); global_output_shapes.emplace_back(llvm::SmallVector<int64_t, 4>{ global_shape.begin(), global_shape.end()}); } TF_ASSIGN_OR_RETURN(*output, this->ExpandOp(op)); SetLayoutOnOp(*output, absl::Span<std::optional<Layout>>( computed_layout.data(), computed_layout.size())); for (const auto& output_layout_and_index : llvm::enumerate(llvm::zip((*output)->getResults(), computed_layout))) { const int index = output_layout_and_index.index(); const auto& output_and_layout = output_layout_and_index.value(); auto output_value = std::get<0>(output_and_layout); auto local_expanded_shape_or_status = GetShapeOfValue(output_value); if (!local_expanded_shape_or_status.ok()) continue; const auto local_expanded_shape = local_expanded_shape_or_status.value(); const auto& layout = std::get<1>(output_and_layout); const auto expected_global_shape = layout->GlobalShapeFromLocalShape(local_expanded_shape); for (const auto& expanded_and_true_global_shape : llvm::zip(global_output_shapes[index], expected_global_shape)) { const auto expanded_shape = std::get<0>(expanded_and_true_global_shape); const auto expected_shape = std::get<1>(expanded_and_true_global_shape); if (expanded_shape <= 0 || expected_shape <= 0) continue; if (expanded_shape != expected_shape) { return errors::Internal( "SPMD expansion resulted in op output inconsistent with the " "provided layout. Expected shape: <", absl::StrJoin(expected_global_shape, ","), "> got shape: <", absl::StrJoin(global_output_shapes[index], ","), ">"); } } } return absl::OkStatus(); } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts) { return errors::Unimplemented( "ComputeLayoutForward API must be implemented via the subclass."); } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts, const llvm::DenseMap<int, Layout>& output_layouts) { TF_ASSIGN_OR_RETURN(const Mesh& mesh, ExtractDeviceMeshEnclosingCluster(op)); if (mesh.IsSingleDevice()) { TF_ASSIGN_OR_RETURN( Layout layout, Layout::GetLayout(Layout::LayoutType::kSingleDevice, {}, mesh)); auto layouts = llvm::DenseMap<int, Layout>{}; for (int i = 0; i < op->getNumResults(); ++i) { layouts.insert({i, layout}); } return layouts; } TF_ASSIGN_OR_RETURN(auto layouts, ComputeLayoutForward(op, input_layouts)); TF_RETURN_IF_ERROR(AdjustPartedLayout(input_layouts, &layouts)); return layouts; } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& output_layouts) { return errors::Unimplemented( "ComputeLayoutBackward API must be implemented via the subclass."); } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts, const llvm::DenseMap<int, Layout>& output_layouts) { TF_ASSIGN_OR_RETURN(const Mesh& mesh, ExtractDeviceMeshEnclosingCluster(op)); if (mesh.IsSingleDevice()) { TF_ASSIGN_OR_RETURN( Layout layout, Layout::GetLayout(Layout::LayoutType::kSingleDevice, {}, mesh)); auto layouts = llvm::DenseMap<int, Layout>{}; for (int i = 0; i < op->getNumOperands(); ++i) { layouts.insert({i, layout}); } return layouts; } return ComputeLayoutBackward(op, output_layouts); } Status RunSPMDExpansion(mlir::Operation* op, mlir::Operation** output) { SPMDExpanderBase* expander = SPMDExpanderRegistry::Global()->GetPropagateFnForOp(op); if (expander != nullptr) { return expander->ExpandOpAndSetLayout(op, output); } else { VLOG(1) << "No expansion found for " << OpName(op) << "\n"; *output = op; } return absl::OkStatus(); } } }
#include "tensorflow/dtensor/mlir/spmd_expander.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/ADT/DenseMap.h" #include "mlir/IR/Operation.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/dtensor/cc/dstatus.h" #include "tensorflow/dtensor/cc/tensor_layout.h" namespace tensorflow { namespace dtensor { namespace { using ::testing::IsNull; using ::testing::NotNull; class DummyExpander : public SPMDExpanderBase { StatusOr<mlir::Operation*> ExpandOp(mlir::Operation* op) override { return errors::Unimplemented(""); } StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts) override { return errors::Unimplemented(""); } StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& output_layouts) override { return errors::Unimplemented(""); } }; class SPMDExpanderRegistryTest : public ::testing::Test { public: SPMDExpanderRegistryTest() { registry_.RegisterPropagateFn(mlir::TF::AddOp::getOperationName().str(), std::make_unique<DummyExpander>()); } protected: SPMDExpanderRegistry registry_; }; TEST_F(SPMDExpanderRegistryTest, LookupFromOpName) { EXPECT_THAT(registry_.GetPropagateFnForFullOpName("tf.Add"), NotNull()); EXPECT_THAT(registry_.GetPropagateFnForFullOpName("Unknown"), IsNull()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/dtensor/mlir/spmd_expander.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/dtensor/tests/spmd_expander_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
80a4a321-6ecd-4fb0-b3a8-a72aa0335a14
cpp
tensorflow/tensorflow
summary_optimizer
tensorflow/core/common_runtime/eager/summary_optimizer.cc
tensorflow/core/common_runtime/eager/summary_optimizer_test.cc
#include "tensorflow/core/common_runtime/eager/summary_optimizer.h" #include <iterator> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" namespace tensorflow::summary_optimizer { namespace { constexpr char kDisableSummariesAtRuntime[] = "disable_summaries_at_runtime"; constexpr char kFlushSummaryWriter[] = "FlushSummaryWriter"; constexpr char kWriteSummary[] = "write_summary"; constexpr char kForwardFunctionName[] = "forward_function_name"; constexpr char kBackwardFunctionName[] = "backward_function_name"; constexpr char kEmptyString[] = ""; using summary_optimizer::internal::NormalizeEdgeName; using ArgDef = OpDef::ArgDef; void UpdateNestedFunctionName(NodeDef& ndef) { for (auto& [k, v] : *ndef.mutable_attr()) { if (v.has_func()) { v.mutable_func()->set_name(StrippedFunctionName(v.func().name())); } else if (v.list().func_size() > 0) { for (auto& func : *v.mutable_list()->mutable_func()) { func.set_name(StrippedFunctionName(func.name())); } } } } void PruneDeletedInputDeps( const absl::flat_hash_set<std::string>& nodes_to_keep, NodeDef& ndef) { auto inputs = ndef.input(); ndef.clear_input(); for (const std::string& input : inputs) { if (nodes_to_keep.contains(NormalizeEdgeName(input))) { ndef.add_input(input); } } } FunctionDef StripSummary(const FunctionDef& fdef_with_summaries) { FunctionDef fdef = fdef_with_summaries; fdef.mutable_signature()->set_name( StrippedFunctionName(fdef.signature().name())); auto nodes = fdef.node_def(); fdef.clear_node_def(); absl::flat_hash_set<std::string> nodes_to_keep; absl::c_transform(nodes, std::inserter(nodes_to_keep, nodes_to_keep.end()), [](const NodeDef& node_def) { return node_def.name(); }); absl::c_transform(fdef.signature().input_arg(), std::inserter(nodes_to_keep, nodes_to_keep.end()), [](const ArgDef& input_arg) { return input_arg.name(); }); for (const NodeDef& ndef : nodes) { if (ndef.op() == kFlushSummaryWriter) nodes_to_keep.erase(ndef.name()); for (const auto& substr : absl::StrSplit(ndef.name(), '/')) { if (substr == kWriteSummary) { nodes_to_keep.erase(ndef.name()); break; } } } for (NodeDef& ndef : nodes) { if (!nodes_to_keep.contains(ndef.name())) continue; PruneDeletedInputDeps(nodes_to_keep, ndef); UpdateNestedFunctionName(ndef); *fdef.add_node_def() = std::move(ndef); } auto control_ret = fdef.control_ret(); fdef.clear_control_ret(); for (const auto& [signature_node_name, node_name] : control_ret) { if (!nodes_to_keep.contains(NormalizeEdgeName(node_name))) continue; fdef.mutable_control_ret()->insert({signature_node_name, node_name}); } auto control_outputs = fdef.signature().control_output(); fdef.mutable_signature()->clear_control_output(); for (const std::string& control_output : control_outputs) { if (!fdef.control_ret().contains(control_output)) continue; fdef.mutable_signature()->add_control_output(control_output); } for (auto& [k, v] : *fdef.mutable_attr()) { if (k == kForwardFunctionName || k == kBackwardFunctionName) { v.set_s(StrippedFunctionName(v.s())); } if (k == kDisableSummariesAtRuntime) v.clear_list(); } return fdef; } } namespace internal { std::string NormalizeEdgeName(absl::string_view name) { std::vector<std::string> edge_name = absl::StrSplit(name, absl::ByAnyChar("^:")); return edge_name[0].empty() ? edge_name[1] : edge_name[0]; } } std::pair<absl::string_view, bool> GetDisableSummariesInputArg( const FunctionDef& fdef) { auto it = fdef.attr().find(kDisableSummariesAtRuntime); if (it == fdef.attr().end()) return {kEmptyString, false}; if (it->second.has_list()) { const auto& list = it->second.list(); if (list.s_size() == 1 && list.b_size() == 1) { return {list.s(0), list.b(0)}; } } return {kEmptyString, false}; } std::vector<FunctionDef> StripSummaries(const FunctionDef& fdef, const FunctionLibraryDefinition& flib) { std::vector<FunctionDef> results; if (GetDisableSummariesInputArg(fdef).first.empty()) return results; results.push_back(StripSummary(fdef)); FunctionLibraryDefinition reachable_library = flib.ReachableDefinitions(fdef); for (const std::string& fname : reachable_library.ListFunctionNames()) { auto* nested_fdef = flib.Find(fname); if (nested_fdef == nullptr) continue; results.push_back(StripSummary(*nested_fdef)); } return results; } std::string StrippedFunctionName(absl::string_view fname) { return absl::StrCat(fname, "__instance__no_summaries"); } }
#include "tensorflow/core/common_runtime/eager/summary_optimizer.h" #include <algorithm> #include <string> #include <vector> #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using ::tensorflow::summary_optimizer::GetDisableSummariesInputArg; using ::tensorflow::summary_optimizer::StrippedFunctionName; using ::tensorflow::summary_optimizer::StripSummaries; using ::tensorflow::summary_optimizer::internal::NormalizeEdgeName; using ::tsl::protobuf::TextFormat; using ::tsl::protobuf::util::MessageDifferencer; template <typename T> void CompareProto(const T& expected, const std::string& text_proto) { T proto; ASSERT_TRUE(TextFormat::ParseFromString(text_proto, &proto)); MessageDifferencer differencer; EXPECT_TRUE(differencer.Compare(expected, proto)); } TEST(SummaryOptimizerInternal, NormalizesEdgeName) { EXPECT_EQ(NormalizeEdgeName("include_summary"), "include_summary"); EXPECT_EQ(NormalizeEdgeName("^include_summary"), "include_summary"); EXPECT_EQ(NormalizeEdgeName("^include_summary:0"), "include_summary"); EXPECT_EQ(NormalizeEdgeName("^include_summary/identity:0"), "include_summary/identity"); } TEST(SummaryOptimizer, GetsDisableSummariesInputArg) { FunctionDef fdef; auto input_arg = GetDisableSummariesInputArg(fdef); EXPECT_EQ(input_arg.first, ""); EXPECT_FALSE(input_arg.second); AttrValue attr_val; ASSERT_TRUE(TextFormat::ParseFromString(R"pb( list { s: "remove_summary" b: true } )pb", &attr_val)); fdef.mutable_attr()->insert({"disable_summaries_at_runtime", attr_val}); input_arg = GetDisableSummariesInputArg(fdef); EXPECT_EQ(input_arg.first, "remove_summary"); EXPECT_TRUE(input_arg.second); } TEST(SummaryOptimizer, StripsSummaries) { FunctionDef fdef; ASSERT_TRUE(TextFormat::ParseFromString( R"pb( signature { name: "train" # Function name should be updated. input_arg: { name: "include_summaries" } control_output: "out_pruned" # Control output should be pruned # because it was pruned from # `control_ret`. control_output: "out" } node_def { name: "x" } node_def { name: "write_summary/Identity" } # Node should get pruned based on name. node_def { name: "Identity/x" input: "write_summary/Identity" # Summary scope input should get # pruned. input: "x" } node_def { name: "nested_fn" op: "PartitionedCall" attr { key: "f" value: { func: { name: "nested_fn" } } } } node_def { name: "list_of_nested_fns" op: "SomeCustomOp" attr { key: "functions" value: { list: { func: { name: "nested_fn2" } func: { name: "nested_fn3" } } } } } node_def { op: "FlushSummaryWriter" } # Node should get pruned based on op. control_ret { key: "out_pruned", value: "write_summary/Identity:0" } # Control return should get pruned because node was pruned. control_ret { key: "out", value: "Identity/x" } attr { key: "forward_function_name" value: { s: "__inference_train_1" } # Forward function name should be updated. } attr { key: "backward_function_name" value: { s: "__inference_train_2" } # Backward function name should be updated. } attr { key: "disable_summaries_at_runtime" value: { list { s: "include_summaries" b: false } } } )pb", &fdef)); FunctionDef nested_fdef; nested_fdef.mutable_signature()->set_name("nested_fn"); FunctionDef nested_fdef2; nested_fdef2.mutable_signature()->set_name("nested_fn2"); FunctionDef nested_fdef3; nested_fdef3.mutable_signature()->set_name("nested_fn3"); FunctionLibraryDefinition flib(OpRegistry::Global()); TF_ASSERT_OK(flib.AddFunctionDef(fdef)); TF_ASSERT_OK(flib.AddFunctionDef(nested_fdef)); TF_ASSERT_OK(flib.AddFunctionDef(nested_fdef2)); TF_ASSERT_OK(flib.AddFunctionDef(nested_fdef3)); std::vector<FunctionDef> stripped_fdefs = StripSummaries(fdef, flib); ASSERT_EQ(stripped_fdefs.size(), 4); struct { bool operator()(const FunctionDef& lhs, const FunctionDef& rhs) const { return lhs.signature().name() > rhs.signature().name(); } } fdefOrdering; std::sort(stripped_fdefs.begin(), stripped_fdefs.end(), fdefOrdering); CompareProto(stripped_fdefs[0], R"pb( signature { name: "train__instance__no_summaries" input_arg: { name: "include_summaries" } control_output: "out" } node_def { name: "x" } node_def { name: "Identity/x" input: "x" } node_def { name: "nested_fn" op: "PartitionedCall" attr { key: "f" value: { func: { name: "nested_fn__instance__no_summaries" } } } } node_def { name: "list_of_nested_fns" op: "SomeCustomOp" attr { key: "functions" value: { list: { func: { name: "nested_fn2__instance__no_summaries" } func: { name: "nested_fn3__instance__no_summaries" } } } } } control_ret { key: "out", value: "Identity/x" } attr { key: "forward_function_name", value: { s: "__inference_train_1__instance__no_summaries" } } attr { key: "backward_function_name", value: { s: "__inference_train_2__instance__no_summaries" } } attr { key: "disable_summaries_at_runtime" value {} } )pb"); CompareProto(stripped_fdefs[1], R"pb( signature { name: "nested_fn__instance__no_summaries" } )pb"); CompareProto(stripped_fdefs[2], R"pb( signature { name: "nested_fn3__instance__no_summaries" } )pb"); CompareProto(stripped_fdefs[3], R"pb( signature { name: "nested_fn2__instance__no_summaries" } )pb"); } TEST(SummaryOptimizer, DoesNotStripSummariesWhenNotEnabled) { FunctionDef fdef; ASSERT_TRUE( TextFormat::ParseFromString(R"pb( signature { name: "train" } attr { key: "disable_summaries_at_runtime", value: {} } )pb", &fdef)); FunctionLibraryDefinition flib(OpRegistry::Global()); TF_ASSERT_OK(flib.AddFunctionDef(fdef)); EXPECT_TRUE(StripSummaries(fdef, flib).empty()); fdef.clear_attr(); TF_ASSERT_OK(flib.RemoveFunction("train")); TF_ASSERT_OK(flib.AddFunctionDef(fdef)); EXPECT_TRUE(StripSummaries(fdef, flib).empty()); } TEST(SummaryOptimizer, GeneratesNewFunctionName) { EXPECT_EQ(StrippedFunctionName("train"), "train__instance__no_summaries"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/summary_optimizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/eager/summary_optimizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b915529b-6b60-4540-9f51-ef7f6ea5b06a
cpp
tensorflow/tensorflow
gpu_indexing_performance_model
third_party/xla/xla/service/gpu/model/gpu_indexing_performance_model.cc
third_party/xla/xla/service/gpu/model/gpu_indexing_performance_model_test.cc
#include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include <algorithm> #include <cstdint> #include <optional> #include <utility> #include <variant> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "llvm/Support/MathExtras.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/fusions/triton.h" #include "xla/service/gpu/hlo_fusion_analysis.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/coalescing_analysis.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/gpu/model/indexing_analysis.h" #include "xla/service/gpu/model/indexing_map.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/service/gpu/model/triton_emitter_constraints.h" #include "xla/service/instruction_fusion.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { struct OperandReadInfo { int64_t total_bytes_read = 0; int64_t is_coalesced = true; }; int64_t GetPaddedTileSize(absl::Span<int64_t const> tile_sizes) { int64_t result = 1; for (int64_t tile_size : tile_sizes) { result *= llvm::PowerOf2Ceil(tile_size); } return result; } bool DoesTileFitsInRegisters(int64_t tile_size, const se::DeviceDescription& device_info) { constexpr double kFractionOfRegistersAvailableToStoreTile = 0.4; return tile_size <= kFractionOfRegistersAvailableToStoreTile * device_info.registers_per_block_limit(); } int64_t GetNumWarps(int64_t tile_size) { if (tile_size <= 512) return 1; if (tile_size <= 1024) return 2; if (tile_size <= 16384) return 4; if (tile_size <= 32768) return 8; if (tile_size <= 65536) return 16; return 32; } } int64_t GpuPerformanceModelWithIndexingAnalysis::FlopsPerElement( const HloInstruction* instr) { switch (instr->opcode()) { case HloOpcode::kBitcast: case HloOpcode::kBroadcast: case HloOpcode::kConstant: case HloOpcode::kDynamicSlice: case HloOpcode::kDynamicUpdateSlice: case HloOpcode::kGather: case HloOpcode::kIota: case HloOpcode::kPad: case HloOpcode::kParameter: case HloOpcode::kSlice: case HloOpcode::kTranspose: case HloOpcode::kTuple: return 0; default: break; }; if (instr->IsElementwise()) { return cost_analysis_.GetFlopsPerElementwiseOpElement( instr->shape().element_type(), instr->opcode()); } if (instr->opcode() == HloOpcode::kReduce) { int64_t flops_per_reduce_computation = 0; for (const HloInstruction* reducer_instr : instr->called_computations()[0]->instructions()) { flops_per_reduce_computation += FlopsPerElement(reducer_instr); } auto operand_shape = instr->operand(0)->shape(); auto output_shape = instr->shape().IsArray() ? instr->shape() : instr->shape().tuple_shapes(0); int64_t reduction_factor = ShapeUtil::ElementsIn(operand_shape) / ShapeUtil::ElementsIn(output_shape); return (reduction_factor - 1) * flops_per_reduce_computation; } TF_CHECK_OK( cost_analysis_.RevisitInstruction(const_cast<HloInstruction*>(instr))); return cost_analysis_.flop_count(*instr) / ShapeUtil::ElementsInRecursive(instr->shape()); } int64_t GpuPerformanceModelWithIndexingAnalysis::GetShapeSizeRecursive( const Shape& shape) const { CHECK(shape.IsArray() || shape.IsTuple()); if (shape.IsArray()) { return shape_size_(shape); } int64_t total_size = 0; for (const auto& element_shape : shape.tuple_shapes()) { total_size += GetShapeSizeRecursive(element_shape); } return total_size; } int64_t GetIterationSpaceSize(const IndexingMap& indexing_map, const HloInstruction* instr) { if (indexing_map.IsUndefined()) { return ShapeUtil::ElementsInRecursive(instr->shape()); } if (indexing_map.IsKnownEmpty()) { return 0; } auto get_ranges_iteration_space_size = [](const std::vector<Interval>& ranges) { int64_t num_iters = 1; for (const Interval& range : ranges) { num_iters *= range.upper - range.lower + 1; } return num_iters; }; return get_ranges_iteration_space_size(indexing_map.GetSymbolBounds()) * get_ranges_iteration_space_size(indexing_map.GetDimensionBounds()); } EstimateRunTimeData GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForFusion( const HloFusionAnalysis& fusion_analysis, bool is_coalesced) { auto& fusion_adaptor = fusion_analysis.fusion(); VLOG(5) << "EstimateRunTimeForFusion: " << fusion_adaptor.ToString(); auto roots = fusion_adaptor.GetRoots(); CHECK_EQ(roots.size(), 1) << "Indexing cost model doesn't support multi-output fusions."; auto root_shape = roots.front().shape(); LaunchDimensions launch_dimensions = EstimateFusionLaunchDimensions(fusion_analysis); int64_t num_blocks = launch_dimensions.num_blocks(); auto grouped_fusion_indexing = ComputeGroupedOutputToInputIndexing( fusion_adaptor, roots[0], mlir_context_); int64_t flops = 0; int64_t bytes_read = 0; absl::Duration read_time = absl::ZeroDuration(); for (const auto& [instr, indexing_maps] : grouped_fusion_indexing) { VLOG(10) << "instr: " << instr->name(); bool is_operand = !fusion_adaptor.ContainsInstruction(instr); auto element_type = instr->shape().element_type(); int64_t n_bytes_total = 0; for (const auto& indexing_map : indexing_maps) { VLOG(10) << indexing_map; int64_t num_iters = GetIterationSpaceSize(indexing_map, instr); if (is_operand) { int64_t type_size = ShapeUtil::ByteSizeOfPrimitiveType(element_type); n_bytes_total += type_size * num_iters; } else { int64_t flops_per_element = FlopsPerElement(instr); flops += flops_per_element * num_iters; } } if (is_operand) { int64_t operand_size = shape_size_(instr->shape()); int64_t n_bytes_net = std::min(operand_size, n_bytes_total); bytes_read += n_bytes_total; VLogOperandRead(instr, n_bytes_total, n_bytes_net, is_coalesced); read_time += ReadTimeWithDRAMHeuristic(*device_info_, num_blocks, n_bytes_net, n_bytes_total, element_type, is_coalesced); } } int64_t bytes_written = GetShapeSizeRecursive(root_shape); absl::Duration compute_time = ComputeTime(*device_info_, flops, num_blocks, launch_dimensions.num_threads_per_block()); absl::Duration write_time = WriteTime(*device_info_, bytes_written); absl::Duration memory_access_time = read_time + write_time; absl::Duration exec_time = CombineComputeAndMemoryAccessTime( compute_time, memory_access_time, GpuPerformanceModelOptions::PriorityFusion()); EstimateRunTimeData runtime_data = {flops, bytes_read, bytes_written, read_time, write_time, compute_time, exec_time}; VLOG(3) << "Runtime data for HLO fusion: " << fusion_adaptor.ToString() << "\n" << launch_dimensions.ToString() << "\n" << runtime_data.ToString(); return runtime_data; } EstimateRunTimeData GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForInstruction( const HloInstruction* producer) { if (producer->opcode() == HloOpcode::kBitcast) { return EstimateRunTimeData::Zero(); } auto fusion_analysis = HloFusionAnalysis::Create(*producer, *device_info_); bool is_coalesced = IsReadCoalescedHeuristic( fusion_analysis.GetEmitterFusionKind(), producer); return EstimateRunTimeForFusion(fusion_analysis, is_coalesced); } EstimateRunTimeData GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForProducerConsumer( const HloInstruction* producer, const HloInstruction* consumer) { auto fusion_analysis = HloFusionAnalysis::Create(*producer, *consumer, *device_info_); bool is_coalesced = IsReadCoalescedHeuristic( fusion_analysis.GetEmitterFusionKind(), producer, consumer); return EstimateRunTimeForFusion(fusion_analysis, is_coalesced); } GpuPerformanceModelWithIndexingAnalysis::RunTimes GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimes( const HloInstruction* producer, absl::Span<const HloInstruction* const> fused_consumers) { auto producer_runtime = EstimateRunTimeForInstruction(producer); absl::Duration time_unfused = kKernelLaunchOverhead * (fused_consumers.size() + 1) + producer_runtime.exec_time; absl::Duration time_fused = kKernelLaunchOverhead * fused_consumers.size(); for (const auto& consumer : fused_consumers) { time_unfused += EstimateRunTimeForInstruction(consumer).exec_time; time_fused += EstimateRunTimeForProducerConsumer(producer, consumer).exec_time; } return {time_unfused, time_fused}; } absl::StatusOr<EstimateRunTimeData> GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForTiledHloComputation( const HloFusionAdaptor& fusion_adaptor, const TiledHloComputation& tiled_hlo_computation, const LaunchDimensions& launch_dimensions) { absl::flat_hash_map<const HloInstruction*, OperandReadInfo> n_bytes_total_map; int64_t flops = 0; int64_t bytes_read = 0; int64_t num_blocks = launch_dimensions.num_blocks(); for (const auto& tiled_hlo : tiled_hlo_computation.instructions()) { int64_t padded_tile_size = GetPaddedTileSize(tiled_hlo->tile_sizes()); if (!DoesTileFitsInRegisters(padded_tile_size, *device_info_)) { return EstimateRunTimeData::Infinite(); } const HloInstruction* hlo = tiled_hlo->hlo(); if (fusion_adaptor.ContainsInstruction(hlo)) { if (hlo->opcode() == HloOpcode::kConcatenate) { return absl::FailedPreconditionError( "Concatenate is not supported by the indexing cost model."); } int64_t num_elements = num_blocks * padded_tile_size; flops += FlopsPerElement(hlo) * num_elements; } else { int64_t tile_size = Product(tiled_hlo->tile_sizes()); int64_t num_elements = num_blocks * tile_size; int64_t element_type_size = ShapeUtil::ByteSizeOfPrimitiveType(hlo->shape().element_type()); int64_t tile_bytes_read = element_type_size * num_elements; bytes_read += tile_bytes_read; bool is_coalesced = IsTiledReadCoalescedHeuristic(*tiled_hlo, *device_info_); OperandReadInfo& operand_read_info = n_bytes_total_map[hlo]; operand_read_info.total_bytes_read += tile_bytes_read; operand_read_info.is_coalesced &= is_coalesced; } } absl::Duration read_time = absl::ZeroDuration(); for (const auto& [hlo, operand_read_info] : n_bytes_total_map) { int64_t operand_size = shape_size_(hlo->shape()); int64_t n_bytes_net = std::min(operand_size, operand_read_info.total_bytes_read); read_time += ReadTimeWithDRAMHeuristic(*device_info_, num_blocks, n_bytes_net, operand_read_info.total_bytes_read, hlo->shape().element_type(), operand_read_info.is_coalesced); } int64_t bytes_written = GetShapeSizeRecursive(tiled_hlo_computation.GetRoot()->hlo()->shape()); absl::Duration compute_time = ComputeTime(*device_info_, flops, launch_dimensions.num_blocks(), launch_dimensions.num_threads_per_block()); absl::Duration write_time = WriteTime(*device_info_, bytes_written); absl::Duration memory_access_time = read_time + write_time; absl::Duration exec_time = CombineComputeAndMemoryAccessTime( compute_time, memory_access_time, GpuPerformanceModelOptions::PriorityFusion()); return EstimateRunTimeData{flops, bytes_read, bytes_written, read_time, write_time, compute_time, exec_time}; } absl::StatusOr<EstimateRunTimeData> GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForTiledFusion( const HloFusionAdaptor& fusion_adaptor, const LaunchDimensions& launch_dimensions, absl::Span<const int64_t> tile_sizes) { SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeFusion( fusion_adaptor, mlir_context_, nullptr); if (const auto* fusion_decision = std::get_if<FusionDecision>(&analysis_or_error)) { return absl::FailedPreconditionError(absl::StrCat( "SymbolicTileAnalysis failed. ", fusion_decision->Explain())); } SymbolicTileAnalysis analysis = std::get<SymbolicTileAnalysis>(std::move(analysis_or_error)); TF_ASSIGN_OR_RETURN(TiledHloComputation tiled_hlo_computation, analysis.ComputeTiledHloInstructions(tile_sizes)); return EstimateRunTimeForTiledHloComputation( fusion_adaptor, tiled_hlo_computation, launch_dimensions); } absl::StatusOr<EstimateRunTimeData> GpuPerformanceModelWithIndexingAnalysis::EstimateRunTimeForTriton( const HloInstruction* producer, const HloInstruction* consumer) { const auto& fusion_analysis = (consumer == nullptr) ? fusion_analysis_cache_->Get(*producer) : fusion_analysis_cache_->Get(*producer, *consumer); auto launch_config = TritonFusion(fusion_analysis).launch_config(); if (!launch_config.has_value()) { return absl::InvalidArgumentError( "Could not get launch config for Triton fusion."); } return EstimateRunTimeForTiledFusion( fusion_analysis.fusion(), launch_config->launch_dimensions, launch_config->block_level_parameters.output_tile_sizes); } LaunchDimensions GpuPerformanceModelWithIndexingAnalysis::GetLaunchDimensionsForTiledFusion( const TiledHloComputation& tiled_hlo_computation) { int64_t num_blocks = tiled_hlo_computation.num_output_tiles(); int64_t largest_live_tile_size = 1; for (const auto& tiled_hlo : tiled_hlo_computation.instructions()) { largest_live_tile_size = std::max( largest_live_tile_size, GetPaddedTileSize(tiled_hlo->tile_sizes())); } int64_t num_warps = GetNumWarps(largest_live_tile_size); return {static_cast<uint64_t>(num_blocks), static_cast<uint64_t>(num_warps * WarpSize())}; } absl::StatusOr<TiledRunTimeDataOrError> GpuPerformanceModelWithIndexingAnalysis::TryFindBestTilingForFusion( const HloFusionAdaptor& fusion_adaptor) { SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeFusion( fusion_adaptor, mlir_context_, TritonEmitterConstraints::GetBuilder(*device_info_)); if (const auto* fusion_decision = std::get_if<FusionDecision>(&analysis_or_error)) { return *fusion_decision; } SymbolicTileAnalysis analysis = std::get<SymbolicTileAnalysis>(std::move(analysis_or_error)); TF_ASSIGN_OR_RETURN(auto tilings, analysis.GetGoodTilings()); std::optional<TiledRunTimeData> best_tiled_run_time_data; for (const auto& tiling : tilings) { TF_ASSIGN_OR_RETURN(TiledHloComputation tiled_hlo_computation, analysis.ComputeTiledHloInstructions(tiling)); LaunchDimensions launch_dimensions = GetLaunchDimensionsForTiledFusion(tiled_hlo_computation); TF_ASSIGN_OR_RETURN( EstimateRunTimeData estimate_run_time_data, EstimateRunTimeForTiledHloComputation( fusion_adaptor, tiled_hlo_computation, launch_dimensions)); if (!best_tiled_run_time_data.has_value() || estimate_run_time_data.exec_time < best_tiled_run_time_data->runtime_data.exec_time) { BlockLevelParameters block_level_parameters; block_level_parameters.output_tile_sizes = std::vector<int64_t>(tiling.begin(), tiling.end()); block_level_parameters.num_warps = launch_dimensions.num_threads_per_block() / WarpSize(); best_tiled_run_time_data = TiledRunTimeData{estimate_run_time_data, block_level_parameters}; } } if (!best_tiled_run_time_data.has_value()) { return FusionDecision::Forbid("No valid tilings found."); } return *best_tiled_run_time_data; } } }
#include "xla/service/gpu/model/gpu_indexing_performance_model.h" #include <cstdint> #include <memory> #include <variant> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/time/time.h" #include "mlir/IR/MLIRContext.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/gpu_device_info_for_tests.h" #include "xla/service/gpu/hlo_traversal.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/model/fusion_analysis_cache.h" #include "xla/service/gpu/model/gpu_hlo_cost_analysis.h" #include "xla/service/gpu/model/gpu_performance_model_base.h" #include "xla/service/gpu/model/symbolic_tile_analysis.h" #include "xla/service/gpu/model/tiled_hlo_computation.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_description.h" #include "xla/test_helpers.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::ElementsAre; using ::testing::HasSubstr; using ::tsl::testing::StatusIs; class GpuIndexingPerformanceModelTest : public HloTestBase { public: GpuHloCostAnalysis::ShapeSizeFunction ShapeSizeBytesFunction() const { return [&](const Shape& shape) { constexpr int64_t kPointerSize = 8; return ShapeUtil::ByteSizeOf(shape, kPointerSize); }; } mlir::MLIRContext mlir_context_; se::DeviceDescription device_info_{TestGpuDeviceInfo::RTXA6000DeviceInfo()}; HloFusionAnalysisCache fusion_analysis_cache_{device_info_}; GpuPerformanceModelWithIndexingAnalysis indexing_cost_model_{ &device_info_, &fusion_analysis_cache_, ShapeSizeBytesFunction(), &mlir_context_}; GpuIndexingPerformanceModelTest() : HloTestBase() {} }; TEST_F(GpuIndexingPerformanceModelTest, BroadcastElementwise) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule extracted ENTRY entry_computation { param_0 = f32[32]{0} parameter(0) broadcast = f32[32,1,768]{2,1,0} broadcast(param_0), dimensions={0} param_1 = f32[32,1,768]{2,1,0} parameter(1) ROOT multiply = f32[32,1,768]{2,1,0} multiply(broadcast, param_1) } )")); auto producer = module->entry_computation()->GetInstructionWithName("broadcast"); auto consumer = module->entry_computation()->GetInstructionWithName("multiply"); auto runtime_data = indexing_cost_model_.EstimateRunTimeForProducerConsumer( producer, consumer); EXPECT_EQ(runtime_data.flops, 73728); EXPECT_EQ(runtime_data.bytes_written, 98304); EXPECT_NEAR(absl::ToInt64Nanoseconds(runtime_data.write_time), 128, 2); EXPECT_NEAR(absl::ToInt64Nanoseconds(runtime_data.exec_time), 267, 2); } TEST_F(GpuIndexingPerformanceModelTest, Bitcast) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule m ENTRY entry_computation { param_0 = bf16[4,8,65,128]{3,2,1,0} parameter(0) ROOT bitcast = bf16[8,4,65,128]{3,2,0,1} bitcast(param_0) } )")); auto instruction = module->entry_computation()->GetInstructionWithName("bitcast"); auto runtime_data = indexing_cost_model_.EstimateRunTimeForInstruction(instruction); EXPECT_EQ(runtime_data.flops, 0); EXPECT_EQ(runtime_data.bytes_written, 0); EXPECT_EQ(runtime_data.write_time, absl::ZeroDuration()); EXPECT_EQ(runtime_data.exec_time, absl::ZeroDuration()); } TEST_F(GpuIndexingPerformanceModelTest, Reduce) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add.0 = f32[] add(param_0, param_1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32]{0} reduce(param_0.3, constant), dimensions={1}, to_apply=add } )")); auto instruction = module->entry_computation()->root_instruction(); auto runtime_data = indexing_cost_model_.EstimateRunTimeForInstruction(instruction); EXPECT_EQ(runtime_data.flops, 3744); EXPECT_EQ(runtime_data.bytes_written, 128); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.write_time), 0, 1); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.exec_time), 29, 1); } TEST_F(GpuIndexingPerformanceModelTest, VariadicReduce) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule( R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) param_2 = f32[] parameter(2) param_3 = f32[] parameter(3) add.0 = f32[] add(param_0, param_2) add.1 = f32[] add(param_1, param_3) ROOT t = (f32[], f32[]) tuple(add.0, add.1) } ENTRY entry_computation { param_0.3 = f32[32,40]{1,0} parameter(0) param_1.3 = f32[32,40]{1,0} parameter(1) param_2.2 = f32[] parameter(2) constant = f32[] constant(0) ROOT reduce = (f32[32]{0}, f32[32]{0}) reduce(param_0.3, param_1.3, param_2.2, constant), dimensions={1}, to_apply=add } )")); auto instruction = module->entry_computation()->root_instruction(); auto runtime_data = indexing_cost_model_.EstimateRunTimeForInstruction(instruction); EXPECT_EQ(runtime_data.flops, 7488); EXPECT_EQ(runtime_data.bytes_written, 256); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.write_time), 0, 1); EXPECT_NEAR(absl::ToDoubleNanoseconds(runtime_data.exec_time), 58, 1); } TEST_F(GpuIndexingPerformanceModelTest, TritonSoftmaxFusionInstructionIsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) broadcast_0 = f32[512,911]{1,0} broadcast(param_1), dimensions={1} multiply_0 = f32[512,911]{1,0} multiply(param_0, broadcast_0) constant_0 = f32[] constant(0) reduce_0 = f32[512]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[512,911]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[512,911]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) ROOT triton_softmax = f32[512,911]{1,0} fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","911"],"num_warps":"2"}}} } )")); TF_ASSERT_OK_AND_ASSIGN(auto runtime_data, indexing_cost_model_.EstimateRunTimeForTriton( module->entry_computation()->root_instruction())); constexpr int64_t kParam0SizeBytes = 512 * 911 * 4; constexpr int64_t kParam1SizeBytes = 911 * 4; constexpr int64_t kOutputSizeBytes = 512 * 911 * 4; constexpr int64_t kExpectedBytesRead = kParam0SizeBytes + 512 * kParam1SizeBytes; EXPECT_EQ(runtime_data.bytes_read, kExpectedBytesRead); EXPECT_EQ(runtime_data.bytes_written, kOutputSizeBytes); EXPECT_NEAR(absl::ToDoubleMicroseconds(runtime_data.exec_time), 5, 1); } TEST_F(GpuIndexingPerformanceModelTest, TritonSoftmaxProducerConsumerFusionIsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } fusion { param_0 = f32[512,911] parameter(0) param_1 = f32[911] parameter(1) broadcast = f32[512,911] broadcast(param_1), dimensions={1} ROOT multiply = f32[512,911] multiply(param_0, broadcast) } triton_softmax_computation { param_0 = f32[512,911] parameter(0) constant_0 = f32[] constant(0) reduce_0 = f32[512] reduce(param_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[512,911] broadcast(reduce_0), dimensions={0} ROOT multiply = f32[512,911] multiply(param_0, broadcast_4) } ENTRY main { param_0 = f32[512,911] parameter(0) param_1 = f32[911] parameter(1) fusion.1 = f32[512,911] fusion(param_0, param_1), kind=kLoop, calls=fusion ROOT triton_softmax = f32[512,911] fusion(fusion.1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton","block_level_fusion_config":{"output_tile_sizes":["1","911"],"num_warps":"2"}}} } )")); auto consumer = module->entry_computation()->root_instruction(); auto producer = consumer->operand(0); TF_ASSERT_OK_AND_ASSIGN( auto runtime_data, indexing_cost_model_.EstimateRunTimeForTriton(producer, consumer)); constexpr int64_t kParam0SizeBytes = 512 * 911 * 4; constexpr int64_t kParam1SizeBytes = 911 * 4; constexpr int64_t kOutputSizeBytes = 512 * 911 * 4; constexpr int64_t kExpectedBytesRead = kParam0SizeBytes + 512 * kParam1SizeBytes; EXPECT_EQ(runtime_data.bytes_read, kExpectedBytesRead); EXPECT_EQ(runtime_data.bytes_written, kOutputSizeBytes); EXPECT_NEAR(absl::ToDoubleMicroseconds(runtime_data.exec_time), 5, 1); } TEST_F(GpuIndexingPerformanceModelTest, EstimateBestTiling_TritonSoftmax_IsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) broadcast_0 = f32[512,911]{1,0} broadcast(param_1), dimensions={1} multiply_0 = f32[512,911]{1,0} multiply(param_0, broadcast_0) constant_0 = f32[] constant(0) reduce_0 = f32[512]{0} reduce(multiply_0, constant_0), dimensions={1}, to_apply=add broadcast_4 = f32[512,911]{1,0} broadcast(reduce_0), dimensions={0} ROOT multiply = f32[512,911]{1,0} multiply(multiply_0, broadcast_4) } ENTRY main { param_0 = f32[512,911]{1,0} parameter(0) param_1 = f32[911]{0} parameter(1) ROOT triton_softmax = f32[512,911]{1,0} fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN( auto tiling_result, indexing_cost_model_.TryFindBestTilingForFusion(*fusion_adaptor)); ASSERT_TRUE(std::holds_alternative<TiledRunTimeData>(tiling_result)); auto tiled_runtime_data = std::get<TiledRunTimeData>(tiling_result); constexpr int64_t kParam0SizeBytes = 512 * 911 * 4; constexpr int64_t kParam1SizeBytes = 911 * 4; constexpr int64_t kOutputSizeBytes = 512 * 911 * 4; constexpr int64_t kExpectedBytesRead = kParam0SizeBytes + 128 * kParam1SizeBytes; EXPECT_THAT(tiled_runtime_data.block_level_parameters.output_tile_sizes, ElementsAre(4, 911)); EXPECT_EQ(tiled_runtime_data.block_level_parameters.num_warps, 4); EXPECT_EQ(tiled_runtime_data.runtime_data.bytes_read, kExpectedBytesRead); EXPECT_EQ(tiled_runtime_data.runtime_data.bytes_written, kOutputSizeBytes); EXPECT_NEAR( absl::ToDoubleMicroseconds(tiled_runtime_data.runtime_data.exec_time), 5, 1); } TEST_F( GpuIndexingPerformanceModelTest, EstimateRunTimeForTiledFusion_NumberOfTilesLargerThanInt32Max_IsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule softmax max_computation { arg_0 = f16[] parameter(0) arg_1 = f16[] parameter(1) ROOT maximum = f16[] maximum(arg_0, arg_1) } softmax { param_0 = f16[131076,16384]{1,0} parameter(0) constant_neg_inf = f16[] constant(-inf) reduce = f16[131076]{0} reduce(param_0, constant_neg_inf), dimensions={1}, to_apply=max_computation broadcast = f16[131076,16384]{1,0} broadcast(reduce), dimensions={0} ROOT subtract = f16[131076,16384]{1,0} subtract(param_0, broadcast) } ENTRY main { param_0 = f16[131076,16384]{1,0} parameter(0) ROOT fusion = f16[131076,16384]{1,0} fusion(param_0), kind=kCustom, calls=softmax })")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); LaunchDimensions launch_dimensions{131076LL * 16384LL, 32}; TF_ASSERT_OK_AND_ASSIGN( auto runtime_data, indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, launch_dimensions, {1, 1})); EXPECT_NEAR(absl::ToDoubleSeconds(runtime_data.read_time), 2931, 1); EXPECT_NEAR(absl::ToDoubleSeconds(runtime_data.compute_time), 19, 1); EXPECT_NEAR(absl::ToDoubleSeconds(runtime_data.exec_time), 2932, 1); } TEST_F(GpuIndexingPerformanceModelTest, EstimateRunTimeForTiledFusion_ConcatenateOperandIsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m fusion { param_0 = f32[32,64] parameter(0) param_1 = f32[32,64] parameter(1) ROOT subtract = f32[32,64] subtract(param_0, param_1) } ENTRY main { param_0 = f32[32,16] parameter(0) param_1 = f32[32,48] parameter(1) param_2 = f32[32,64] parameter(2) concatenate = f32[32,64] concatenate(param_0, param_1), dimensions={1} ROOT fusion = f32[32,64] fusion(concatenate, param_2), kind=kCustom, calls=fusion })")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); LaunchDimensions launch_dimensions{8, WarpSize()}; auto result = indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, launch_dimensions, {16, 16}); TF_EXPECT_OK(result.status()); } TEST_F(GpuIndexingPerformanceModelTest, EstimateRunTimeForTiledFusion_ConcatenateIsNotSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m concatenate_fusion { param_0 = f32[32, 128] parameter(0) param_1 = f32[64, 128] parameter(1) ROOT concatenate = f32[96, 128] concatenate(param_0, param_1), dimensions={0} } ENTRY main { param_0 = f32[32, 128] parameter(0) param_1 = f32[64, 128] parameter(1) ROOT fusion = f32[96, 128] fusion(param_0, param_1), kind=kCustom, calls=concatenate_fusion })")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); LaunchDimensions launch_dimensions{96, 128}; auto result = indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, launch_dimensions, {1, 128}); EXPECT_THAT(result, StatusIs(absl::StatusCode::kFailedPrecondition, HasSubstr("SymbolicTileAnalysis failed"))); } TEST_F(GpuIndexingPerformanceModelTest, EstimateRunTimeForTiledFusion_RegisterSpill_ReturnsInfinite) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { Arg_0 = f32[] parameter(0) Arg_1 = f32[] parameter(1) ROOT add = f32[] add(Arg_0, Arg_1) } triton_softmax_computation { param_0 = f32[16,16000] parameter(0) constant_0 = f32[] constant(0) reduce_0 = f32[16] reduce(param_0, constant_0), dimensions={1}, to_apply=add broadcast = f32[16,16000] broadcast(reduce_0), dimensions={0} ROOT multiply = f32[16,16000] multiply(param_0, broadcast) } ENTRY main { param_0 = f32[16,16000] parameter(0) ROOT triton_softmax = f32[16,16000] fusion(param_0), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN( auto tiling_result, indexing_cost_model_.TryFindBestTilingForFusion(*fusion_adaptor)); TF_ASSERT_OK_AND_ASSIGN(auto res1, indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, {16, 32}, {1, 16000})); EXPECT_NEAR(absl::ToDoubleMicroseconds(res1.exec_time), 3, 1); TF_ASSERT_OK_AND_ASSIGN(auto res2, indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, {8, 32}, {2, 16000})); EXPECT_TRUE(res2.IsInfinite()); } TEST_F(GpuIndexingPerformanceModelTest, EstimateRunTimeForTiledFusion_UsesPaddedTileSizeForMemoryAccessTime) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m triton_softmax_computation { param_0 = f32[65,65] parameter(0) param_1 = f32[65,65] parameter(1) ROOT add = f32[65,65] add(param_0, param_1) } ENTRY main { param_0 = f32[65,65] parameter(0) param_1 = f32[65,65] parameter(1) ROOT triton_softmax = f32[65,65] fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN( auto tiling_result, indexing_cost_model_.TryFindBestTilingForFusion(*fusion_adaptor)); TF_ASSERT_OK_AND_ASSIGN( auto res, indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, {1, 2 * WarpSize()}, {65, 65})); constexpr int64_t kParamSizeBytes = 65 * 65 * 4; constexpr int64_t kPaddedOutputTileSize = 128 * 128; constexpr int64_t kAddFlops = 3; EXPECT_EQ(res.bytes_read, 2 * kParamSizeBytes); EXPECT_EQ(res.flops, kPaddedOutputTileSize * kAddFlops); } TEST_F(GpuIndexingPerformanceModelTest, EstimateRunTimeForTiledFusion_UncoalescedReadsTakeMoreTime) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m triton_softmax_computation { param_0 = f32[2048,512] parameter(0) param_1 = f32[2048,512] parameter(1) ROOT add = f32[2048,512] add(param_0, param_1) } ENTRY main { param_0 = f32[2048,512] parameter(0) param_1 = f32[2048,512] parameter(1) ROOT triton_softmax = f32[2048,512] fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); TF_ASSERT_OK_AND_ASSIGN( auto tiling_result, indexing_cost_model_.TryFindBestTilingForFusion(*fusion_adaptor)); TF_ASSERT_OK_AND_ASSIGN( auto res_coalesced, indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, {8192, 2 * WarpSize()}, {1, 128})); TF_ASSERT_OK_AND_ASSIGN( auto res_uncoalesced, indexing_cost_model_.EstimateRunTimeForTiledFusion( *fusion_adaptor, {8192, 2 * WarpSize()}, {128, 1})); constexpr int64_t kParamSizeBytes = 2048 * 512 * 4; EXPECT_EQ(res_coalesced.bytes_read, 2 * kParamSizeBytes); EXPECT_EQ(res_uncoalesced.bytes_read, 2 * kParamSizeBytes); EXPECT_NEAR(absl::ToDoubleMicroseconds(res_coalesced.read_time), 11, 1); EXPECT_NEAR(absl::ToDoubleMicroseconds(res_uncoalesced.read_time), 175, 1); } TEST_F(GpuIndexingPerformanceModelTest, GetLaunchDimensionsForTiledFusion_IsSupported) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m triton_softmax_computation { param_0 = f32[9,9,9] parameter(0) param_1 = f32[9,9,9] parameter(1) ROOT multiply = f32[9,9,9] multiply(param_0, param_1) } ENTRY main { param_0 = f32[9,9,9] parameter(0) param_1 = f32[9,9,9] parameter(1) ROOT fusion = f32[9,9,9] fusion(param_0, param_1), kind=kCustom, calls=triton_softmax_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeFusion( *fusion_adaptor, &mlir_context_, nullptr); ASSERT_TRUE(std::holds_alternative<SymbolicTileAnalysis>(analysis_or_error)); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, std::get<SymbolicTileAnalysis>(analysis_or_error) .ComputeTiledHloInstructions({9, 9, 9})); LaunchDimensions launch_dimensions = GpuPerformanceModelWithIndexingAnalysis:: GetLaunchDimensionsForTiledFusion(tiled_hlo_computation); EXPECT_EQ(launch_dimensions.num_blocks(), 1); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 4 * WarpSize()); } TEST_F(GpuIndexingPerformanceModelTest, NumberOfWarpsDependsOnLargestLiveTileSize) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add = f32[] add(param_0, param_1) } fusion_computation { param_0 = f32[1,4096] parameter(0) c0 = f32[] constant(0) ROOT reduce = f32[1] reduce(param_0, c0), dimensions={1}, to_apply=add } ENTRY main { param_0 = f32[1,4096] parameter(0) ROOT fusion = f32[1] fusion(param_0), kind=kCustom, calls=fusion_computation, backend_config={"fusion_backend_config": {"kind":"__triton"}} } )")); auto fusion_adaptor = HloFusionAdaptor::ForInstruction( module->entry_computation()->root_instruction()); SymbolicTileAnalysisOrError analysis_or_error = SymbolicTileAnalysis::AnalyzeFusion( *fusion_adaptor, &mlir_context_, nullptr); ASSERT_TRUE(std::holds_alternative<SymbolicTileAnalysis>(analysis_or_error)); TF_ASSERT_OK_AND_ASSIGN( TiledHloComputation tiled_hlo_computation, std::get<SymbolicTileAnalysis>(analysis_or_error) .ComputeTiledHloInstructions({1})); LaunchDimensions launch_dimensions = GpuPerformanceModelWithIndexingAnalysis:: GetLaunchDimensionsForTiledFusion(tiled_hlo_computation); EXPECT_EQ(launch_dimensions.num_blocks(), 1); EXPECT_EQ(launch_dimensions.num_threads_per_block(), 4 * WarpSize()); } class FlopsPerElementTest : public GpuIndexingPerformanceModelTest { public: void CompareFlopsModels(absl::string_view hlo_module_string) { TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_module_string)); GpuHloCostAnalysis cost_analysis( GpuHloCostAnalysis::Options{ShapeSizeBytesFunction(), {}, {}, true}, device_info_); ASSERT_IS_OK(module->entry_computation()->Accept(&cost_analysis)); auto instr = module->entry_computation()->root_instruction(); int64_t flops_per_element = indexing_cost_model_.FlopsPerElement(instr); const Shape& output_shape = instr->shape().IsArray() ? instr->shape() : instr->shape().tuple_shapes(0); int64_t total_flops = ShapeUtil::ElementsIn(output_shape) * flops_per_element; EXPECT_EQ(total_flops, cost_analysis.flop_count(*instr)); } }; TEST_F(FlopsPerElementTest, MatchesGpuHloCostAnalysis_Reduce) { CompareFlopsModels(R"( HloModule m add { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) ROOT add.0 = f32[] add(param_0, param_1) } ENTRY entry_computation { param_0.3 = f32[32,40] parameter(0) constant = f32[] constant(0) ROOT reduce = f32[32] reduce(param_0.3, constant), dimensions={1}, to_apply=add } )"); } TEST_F(FlopsPerElementTest, MatchesGpuHloCostAnalysis_VariadicReduce) { CompareFlopsModels(R"( HloModule m add_multiply { param_0 = f32[] parameter(0) param_1 = f32[] parameter(1) param_2 = f32[] parameter(2) param_3 = f32[] parameter(3) add = f32[] add(param_0, param_2) multiply = f32[] multiply(param_1, param_3) ROOT t = (f32[], f32[]) tuple(add, multiply) } ENTRY entry_computation { param_0 = f32[32,40] parameter(0) c0 = f32[] constant(0) ROOT reduce = (f32[32], f32[32]) reduce(param_0, param_0, c0, c0), dimensions={1}, to_apply=add_multiply } )"); } TEST_F(FlopsPerElementTest, MatchesGpuHloCostAnalysis_Elementwise_Cosine) { CompareFlopsModels(R"( HloModule m ENTRY entry_computation { param_0 = f32[32] parameter(0) ROOT cosine = f32[32] cosine(param_0) } )"); } TEST_F(FlopsPerElementTest, MatchesGpuHloCostAnalysis_Elementwise_Clamp) { CompareFlopsModels(R"( HloModule m ENTRY entry_computation { param_0 = f32[32] parameter(0) param_1 = f32[32] parameter(1) param_2 = f32[32] parameter(2) ROOT clamp = clamp(param_0, param_1, param_2) } )"); } TEST_F(FlopsPerElementTest, MatchesGpuHloCostAnalysis_Gather) { CompareFlopsModels(R"( HloModule module entry { operand = f32[33, 76, 70] parameter(0) indices = s32[1806, 2] parameter(1) ROOT gather = f32[1806, 7, 8, 4] gather(operand, indices), offset_dims={1,2,3}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={7,8,4} })"); } TEST_F(FlopsPerElementTest, MatchesGpuHloCostAnalysis_ReduceWindow) { CompareFlopsModels(R"( add { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY entry { param_0 = f32[13,12,8,15] parameter(0) c0 = f32[] constant(0) ROOT reduce-window = f32[13,3,8,15] reduce-window(param_0, c0), window={size=1x1x7x1 stride=1x4x1x1 pad=0_0x0_0x3_3x0_0}, to_apply=add })"); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/gpu_indexing_performance_model.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/model/gpu_indexing_performance_model_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6dca675b-a2d7-4768-a4d6-9fbb377b81d0
cpp
google/quiche
quic_coalesced_packet
quiche/quic/core/quic_coalesced_packet.cc
quiche/quic/core/quic_coalesced_packet_test.cc
#include "quiche/quic/core/quic_coalesced_packet.h" #include <string> #include <vector> #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" namespace quic { QuicCoalescedPacket::QuicCoalescedPacket() : length_(0), max_packet_length_(0), ecn_codepoint_(ECN_NOT_ECT) {} QuicCoalescedPacket::~QuicCoalescedPacket() { Clear(); } bool QuicCoalescedPacket::MaybeCoalescePacket( const SerializedPacket& packet, const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, quiche::QuicheBufferAllocator* allocator, QuicPacketLength current_max_packet_length, QuicEcnCodepoint ecn_codepoint) { if (packet.encrypted_length == 0) { QUIC_BUG(quic_bug_10611_1) << "Trying to coalesce an empty packet"; return true; } if (length_ == 0) { #ifndef NDEBUG for (const auto& buffer : encrypted_buffers_) { QUICHE_DCHECK(buffer.empty()); } #endif QUICHE_DCHECK(initial_packet_ == nullptr); max_packet_length_ = current_max_packet_length; self_address_ = self_address; peer_address_ = peer_address; } else { if (self_address_ != self_address || peer_address_ != peer_address) { QUIC_DLOG(INFO) << "Cannot coalesce packet because self/peer address changed"; return false; } if (max_packet_length_ != current_max_packet_length) { QUIC_BUG(quic_bug_10611_2) << "Max packet length changes in the middle of the write path"; return false; } if (ContainsPacketOfEncryptionLevel(packet.encryption_level)) { return false; } if (ecn_codepoint != ecn_codepoint_) { return false; } } if (length_ + packet.encrypted_length > max_packet_length_) { return false; } QUIC_DVLOG(1) << "Successfully coalesced packet: encryption_level: " << packet.encryption_level << ", encrypted_length: " << packet.encrypted_length << ", current length: " << length_ << ", max_packet_length: " << max_packet_length_; if (length_ > 0) { QUIC_CODE_COUNT(QUIC_SUCCESSFULLY_COALESCED_MULTIPLE_PACKETS); } ecn_codepoint_ = ecn_codepoint; length_ += packet.encrypted_length; transmission_types_[packet.encryption_level] = packet.transmission_type; if (packet.encryption_level == ENCRYPTION_INITIAL) { initial_packet_ = absl::WrapUnique<SerializedPacket>( CopySerializedPacket(packet, allocator, false)); return true; } encrypted_buffers_[packet.encryption_level] = std::string(packet.encrypted_buffer, packet.encrypted_length); return true; } void QuicCoalescedPacket::Clear() { self_address_ = QuicSocketAddress(); peer_address_ = QuicSocketAddress(); length_ = 0; max_packet_length_ = 0; for (auto& packet : encrypted_buffers_) { packet.clear(); } for (size_t i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; ++i) { transmission_types_[i] = NOT_RETRANSMISSION; } initial_packet_ = nullptr; } void QuicCoalescedPacket::NeuterInitialPacket() { if (initial_packet_ == nullptr) { return; } if (length_ < initial_packet_->encrypted_length) { QUIC_BUG(quic_bug_10611_3) << "length_: " << length_ << ", is less than initial packet length: " << initial_packet_->encrypted_length; Clear(); return; } length_ -= initial_packet_->encrypted_length; if (length_ == 0) { Clear(); return; } transmission_types_[ENCRYPTION_INITIAL] = NOT_RETRANSMISSION; initial_packet_ = nullptr; } bool QuicCoalescedPacket::CopyEncryptedBuffers(char* buffer, size_t buffer_len, size_t* length_copied) const { *length_copied = 0; for (const auto& packet : encrypted_buffers_) { if (packet.empty()) { continue; } if (packet.length() > buffer_len) { return false; } memcpy(buffer, packet.data(), packet.length()); buffer += packet.length(); buffer_len -= packet.length(); *length_copied += packet.length(); } return true; } bool QuicCoalescedPacket::ContainsPacketOfEncryptionLevel( EncryptionLevel level) const { return !encrypted_buffers_[level].empty() || (level == ENCRYPTION_INITIAL && initial_packet_ != nullptr); } TransmissionType QuicCoalescedPacket::TransmissionTypeOfPacket( EncryptionLevel level) const { if (!ContainsPacketOfEncryptionLevel(level)) { QUIC_BUG(quic_bug_10611_4) << "Coalesced packet does not contain packet of encryption level: " << EncryptionLevelToString(level); return NOT_RETRANSMISSION; } return transmission_types_[level]; } size_t QuicCoalescedPacket::NumberOfPackets() const { size_t num_of_packets = 0; for (int8_t i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; ++i) { if (ContainsPacketOfEncryptionLevel(static_cast<EncryptionLevel>(i))) { ++num_of_packets; } } return num_of_packets; } std::string QuicCoalescedPacket::ToString(size_t serialized_length) const { std::string info = absl::StrCat( "total_length: ", serialized_length, " padding_size: ", serialized_length - length_, " packets: {"); bool first_packet = true; for (int8_t i = ENCRYPTION_INITIAL; i < NUM_ENCRYPTION_LEVELS; ++i) { if (ContainsPacketOfEncryptionLevel(static_cast<EncryptionLevel>(i))) { absl::StrAppend(&info, first_packet ? "" : ", ", EncryptionLevelToString(static_cast<EncryptionLevel>(i))); first_packet = false; } } absl::StrAppend(&info, "}"); return info; } std::vector<size_t> QuicCoalescedPacket::packet_lengths() const { std::vector<size_t> lengths; for (const auto& packet : encrypted_buffers_) { if (lengths.empty()) { lengths.push_back( initial_packet_ == nullptr ? 0 : initial_packet_->encrypted_length); } else { lengths.push_back(packet.length()); } } return lengths; } }
#include "quiche/quic/core/quic_coalesced_packet.h" #include <string> #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quic { namespace test { namespace { TEST(QuicCoalescedPacketTest, MaybeCoalescePacket) { QuicCoalescedPacket coalesced; EXPECT_EQ("total_length: 0 padding_size: 0 packets: {}", coalesced.ToString(0)); quiche::SimpleBufferAllocator allocator; EXPECT_EQ(0u, coalesced.length()); EXPECT_EQ(0u, coalesced.NumberOfPackets()); char buffer[1000]; QuicSocketAddress self_address(QuicIpAddress::Loopback4(), 1); QuicSocketAddress peer_address(QuicIpAddress::Loopback4(), 2); SerializedPacket packet1(QuicPacketNumber(1), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); packet1.transmission_type = PTO_RETRANSMISSION; QuicAckFrame ack_frame(InitAckFrame(1)); packet1.nonretransmittable_frames.push_back(QuicFrame(&ack_frame)); packet1.retransmittable_frames.push_back( QuicFrame(QuicStreamFrame(1, true, 0, 100))); ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet1, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(PTO_RETRANSMISSION, coalesced.TransmissionTypeOfPacket(ENCRYPTION_INITIAL)); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(500u, coalesced.length()); EXPECT_EQ(1u, coalesced.NumberOfPackets()); EXPECT_EQ( "total_length: 1500 padding_size: 1000 packets: {ENCRYPTION_INITIAL}", coalesced.ToString(1500)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); SerializedPacket packet2(QuicPacketNumber(2), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); EXPECT_FALSE(coalesced.MaybeCoalescePacket( packet2, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); SerializedPacket packet3(QuicPacketNumber(3), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); packet3.nonretransmittable_frames.push_back(QuicFrame(QuicPaddingFrame(100))); packet3.encryption_level = ENCRYPTION_ZERO_RTT; packet3.transmission_type = LOSS_RETRANSMISSION; ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet3, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(1000u, coalesced.length()); EXPECT_EQ(2u, coalesced.NumberOfPackets()); EXPECT_EQ(LOSS_RETRANSMISSION, coalesced.TransmissionTypeOfPacket(ENCRYPTION_ZERO_RTT)); EXPECT_EQ( "total_length: 1500 padding_size: 500 packets: {ENCRYPTION_INITIAL, " "ENCRYPTION_ZERO_RTT}", coalesced.ToString(1500)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); SerializedPacket packet4(QuicPacketNumber(4), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); packet4.encryption_level = ENCRYPTION_FORWARD_SECURE; EXPECT_FALSE(coalesced.MaybeCoalescePacket( packet4, QuicSocketAddress(QuicIpAddress::Loopback4(), 3), peer_address, &allocator, 1500, ECN_NOT_ECT)); SerializedPacket packet5(QuicPacketNumber(5), PACKET_4BYTE_PACKET_NUMBER, buffer, 501, false, false); packet5.encryption_level = ENCRYPTION_FORWARD_SECURE; EXPECT_FALSE(coalesced.MaybeCoalescePacket( packet5, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(1000u, coalesced.length()); EXPECT_EQ(2u, coalesced.NumberOfPackets()); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); SerializedPacket packet6(QuicPacketNumber(6), PACKET_4BYTE_PACKET_NUMBER, buffer, 100, false, false); packet6.encryption_level = ENCRYPTION_FORWARD_SECURE; EXPECT_QUIC_BUG( coalesced.MaybeCoalescePacket(packet6, self_address, peer_address, &allocator, 1000, ECN_NOT_ECT), "Max packet length changes in the middle of the write path"); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(1000u, coalesced.length()); EXPECT_EQ(2u, coalesced.NumberOfPackets()); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); } TEST(QuicCoalescedPacketTest, CopyEncryptedBuffers) { QuicCoalescedPacket coalesced; quiche::SimpleBufferAllocator allocator; QuicSocketAddress self_address(QuicIpAddress::Loopback4(), 1); QuicSocketAddress peer_address(QuicIpAddress::Loopback4(), 2); std::string buffer(500, 'a'); std::string buffer2(500, 'b'); SerializedPacket packet1(QuicPacketNumber(1), PACKET_4BYTE_PACKET_NUMBER, buffer.data(), 500, false, false); packet1.encryption_level = ENCRYPTION_ZERO_RTT; SerializedPacket packet2(QuicPacketNumber(2), PACKET_4BYTE_PACKET_NUMBER, buffer2.data(), 500, false, false); packet2.encryption_level = ENCRYPTION_FORWARD_SECURE; ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet1, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet2, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(1000u, coalesced.length()); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); char copy_buffer[1000]; size_t length_copied = 0; EXPECT_FALSE( coalesced.CopyEncryptedBuffers(copy_buffer, 900, &length_copied)); ASSERT_TRUE( coalesced.CopyEncryptedBuffers(copy_buffer, 1000, &length_copied)); EXPECT_EQ(1000u, length_copied); char expected[1000]; memset(expected, 'a', 500); memset(expected + 500, 'b', 500); quiche::test::CompareCharArraysWithHexError("copied buffers", copy_buffer, length_copied, expected, 1000); } TEST(QuicCoalescedPacketTest, NeuterInitialPacket) { QuicCoalescedPacket coalesced; EXPECT_EQ("total_length: 0 padding_size: 0 packets: {}", coalesced.ToString(0)); coalesced.NeuterInitialPacket(); EXPECT_EQ("total_length: 0 padding_size: 0 packets: {}", coalesced.ToString(0)); quiche::SimpleBufferAllocator allocator; EXPECT_EQ(0u, coalesced.length()); char buffer[1000]; QuicSocketAddress self_address(QuicIpAddress::Loopback4(), 1); QuicSocketAddress peer_address(QuicIpAddress::Loopback4(), 2); SerializedPacket packet1(QuicPacketNumber(1), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); packet1.transmission_type = PTO_RETRANSMISSION; QuicAckFrame ack_frame(InitAckFrame(1)); packet1.nonretransmittable_frames.push_back(QuicFrame(&ack_frame)); packet1.retransmittable_frames.push_back( QuicFrame(QuicStreamFrame(1, true, 0, 100))); ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet1, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(PTO_RETRANSMISSION, coalesced.TransmissionTypeOfPacket(ENCRYPTION_INITIAL)); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(500u, coalesced.length()); EXPECT_EQ( "total_length: 1500 padding_size: 1000 packets: {ENCRYPTION_INITIAL}", coalesced.ToString(1500)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); coalesced.NeuterInitialPacket(); EXPECT_EQ(0u, coalesced.max_packet_length()); EXPECT_EQ(0u, coalesced.length()); EXPECT_EQ("total_length: 0 padding_size: 0 packets: {}", coalesced.ToString(0)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet1, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); SerializedPacket packet2(QuicPacketNumber(3), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); packet2.nonretransmittable_frames.push_back(QuicFrame(QuicPaddingFrame(100))); packet2.encryption_level = ENCRYPTION_ZERO_RTT; packet2.transmission_type = LOSS_RETRANSMISSION; ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet2, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(1000u, coalesced.length()); EXPECT_EQ(LOSS_RETRANSMISSION, coalesced.TransmissionTypeOfPacket(ENCRYPTION_ZERO_RTT)); EXPECT_EQ( "total_length: 1500 padding_size: 500 packets: {ENCRYPTION_INITIAL, " "ENCRYPTION_ZERO_RTT}", coalesced.ToString(1500)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); coalesced.NeuterInitialPacket(); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(500u, coalesced.length()); EXPECT_EQ( "total_length: 1500 padding_size: 1000 packets: {ENCRYPTION_ZERO_RTT}", coalesced.ToString(1500)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); SerializedPacket packet3(QuicPacketNumber(5), PACKET_4BYTE_PACKET_NUMBER, buffer, 501, false, false); packet3.encryption_level = ENCRYPTION_FORWARD_SECURE; EXPECT_TRUE(coalesced.MaybeCoalescePacket(packet3, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(1001u, coalesced.length()); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); coalesced.NeuterInitialPacket(); EXPECT_EQ(1500u, coalesced.max_packet_length()); EXPECT_EQ(1001u, coalesced.length()); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_NOT_ECT); } TEST(QuicCoalescedPacketTest, DoNotCoalesceDifferentEcn) { QuicCoalescedPacket coalesced; EXPECT_EQ("total_length: 0 padding_size: 0 packets: {}", coalesced.ToString(0)); quiche::SimpleBufferAllocator allocator; EXPECT_EQ(0u, coalesced.length()); EXPECT_EQ(0u, coalesced.NumberOfPackets()); char buffer[1000]; QuicSocketAddress self_address(QuicIpAddress::Loopback4(), 1); QuicSocketAddress peer_address(QuicIpAddress::Loopback4(), 2); SerializedPacket packet1(QuicPacketNumber(1), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); packet1.transmission_type = PTO_RETRANSMISSION; QuicAckFrame ack_frame(InitAckFrame(1)); packet1.nonretransmittable_frames.push_back(QuicFrame(&ack_frame)); packet1.retransmittable_frames.push_back( QuicFrame(QuicStreamFrame(1, true, 0, 100))); ASSERT_TRUE(coalesced.MaybeCoalescePacket(packet1, self_address, peer_address, &allocator, 1500, ECN_ECT1)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_ECT1); SerializedPacket packet2(QuicPacketNumber(2), PACKET_4BYTE_PACKET_NUMBER, buffer, 500, false, false); packet2.nonretransmittable_frames.push_back(QuicFrame(QuicPaddingFrame(100))); packet2.encryption_level = ENCRYPTION_ZERO_RTT; packet2.transmission_type = LOSS_RETRANSMISSION; EXPECT_FALSE(coalesced.MaybeCoalescePacket( packet2, self_address, peer_address, &allocator, 1500, ECN_NOT_ECT)); EXPECT_EQ(coalesced.ecn_codepoint(), ECN_ECT1); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_coalesced_packet.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_coalesced_packet_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
07d7b812-5975-4ca6-ad06-b484fe868faf
cpp
google/tensorstore
gcs_key_value_store
tensorstore/kvstore/gcs_http/gcs_key_value_store.cc
tensorstore/kvstore/gcs_http/gcs_key_value_store_test.cc
#include <stddef.h> #include <stdint.h> #include <atomic> #include <cassert> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/thread_annotations.h" #include "absl/flags/flag.h" #include "absl/log/absl_log.h" #include "absl/random/random.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/concurrency_resource.h" #include "tensorstore/internal/data_copy_concurrency_resource.h" #include "tensorstore/internal/env.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/json/json.h" #include "tensorstore/internal/json_binding/bindable.h" #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/log/verbose_flag.h" #include "tensorstore/internal/metrics/counter.h" #include "tensorstore/internal/metrics/histogram.h" #include "tensorstore/internal/oauth2/auth_provider.h" #include "tensorstore/internal/oauth2/google_auth_provider.h" #include "tensorstore/internal/path.h" #include "tensorstore/internal/rate_limiter/rate_limiter.h" #include "tensorstore/internal/retries_context_resource.h" #include "tensorstore/internal/source_location.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/byte_range.h" #include "tensorstore/kvstore/common_metrics.h" #include "tensorstore/kvstore/driver.h" #include "tensorstore/kvstore/gcs/gcs_resource.h" #include "tensorstore/kvstore/gcs/validate.h" #include "tensorstore/kvstore/gcs_http/gcs_resource.h" #include "tensorstore/kvstore/gcs_http/object_metadata.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/generic_coalescing_batch_util.h" #include "tensorstore/kvstore/http/byte_range_util.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/registry.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/supported_features.h" #include "tensorstore/kvstore/url_registry.h" #include "tensorstore/util/execution/any_receiver.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/executor.h" #include "tensorstore/util/future.h" #include "tensorstore/util/garbage_collection/fwd.h" #include "tensorstore/util/quote_string.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" #include "tensorstore/internal/cache_key/std_optional.h" #include "tensorstore/internal/json_binding/std_array.h" #include "tensorstore/internal/json_binding/std_optional.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/util/garbage_collection/std_optional.h" ABSL_FLAG(std::optional<std::string>, tensorstore_gcs_http_url, std::nullopt, "Url to used for http access to google cloud storage. " "Overrides TENSORSTORE_GCS_HTTP_URL."); ABSL_FLAG(std::optional<std::string>, tensorstore_gcs_http_version, std::nullopt, "Url to used for http access to google cloud storage. " "Overrides TENSORSTORE_GCS_HTTP_VERSION."); using ::tensorstore::internal::DataCopyConcurrencyResource; using ::tensorstore::internal::GetFlagOrEnvValue; using ::tensorstore::internal::IntrusivePtr; using ::tensorstore::internal::NoRateLimiter; using ::tensorstore::internal::RateLimiter; using ::tensorstore::internal::RateLimiterNode; using ::tensorstore::internal::ScheduleAt; using ::tensorstore::internal_http::HttpRequest; using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::internal_kvstore_gcs_http::GcsConcurrencyResource; using ::tensorstore::internal_kvstore_gcs_http::GcsRateLimiterResource; using ::tensorstore::internal_kvstore_gcs_http::ObjectMetadata; using ::tensorstore::internal_kvstore_gcs_http::ParseObjectMetadata; using ::tensorstore::internal_storage_gcs::GcsHttpResponseToStatus; using ::tensorstore::internal_storage_gcs::GcsRequestRetries; using ::tensorstore::internal_storage_gcs::GcsUserProjectResource; using ::tensorstore::internal_storage_gcs::IsRetriable; using ::tensorstore::internal_storage_gcs::IsValidBucketName; using ::tensorstore::internal_storage_gcs::IsValidObjectName; using ::tensorstore::internal_storage_gcs::IsValidStorageGeneration; using ::tensorstore::kvstore::Key; using ::tensorstore::kvstore::ListEntry; using ::tensorstore::kvstore::ListOptions; using ::tensorstore::kvstore::ListReceiver; using ::tensorstore::kvstore::SupportedFeatures; namespace { static constexpr char kUriScheme[] = "gs"; } namespace tensorstore { namespace { namespace jb = tensorstore::internal_json_binding; struct GcsMetrics : public internal_kvstore::CommonMetrics { internal_metrics::Counter<int64_t>& retries; }; auto gcs_metrics = []() -> GcsMetrics { return { TENSORSTORE_KVSTORE_COMMON_METRICS(gcs), TENSORSTORE_KVSTORE_COUNTER_IMPL( gcs, retries, "count of all retried requests (read/write/delete)")}; }(); ABSL_CONST_INIT internal_log::VerboseFlag gcs_http_logging("gcs_http"); std::string GetGcsBaseUrl() { return GetFlagOrEnvValue(FLAGS_tensorstore_gcs_http_url, "TENSORSTORE_GCS_HTTP_URL") .value_or("https: } IssueRequestOptions::HttpVersion GetHttpVersion() { using HttpVersion = IssueRequestOptions::HttpVersion; static auto http_version = []() -> HttpVersion { auto version = GetFlagOrEnvValue(FLAGS_tensorstore_gcs_http_version, "TENSORSTORE_GCS_HTTP_VERSION"); if (!version) { ABSL_LOG_IF(INFO, gcs_http_logging) << "--tensorstore_gcs_http_version unset"; return HttpVersion::kDefault; } ABSL_LOG_IF(INFO, gcs_http_logging) << "--tensorstore_gcs_http_version=" << *version; if (*version == "1" || *version == "1.1") { return HttpVersion::kHttp1; } if (*version == "2" || *version == "2.0") { return HttpVersion::kHttp2PriorKnowledge; } return HttpVersion::kHttp2TLS; }(); return http_version; } bool AddGenerationParam(std::string* url, const bool has_query, std::string_view param_name, const StorageGeneration& gen) { if (StorageGeneration::IsUnknown(gen)) { return false; } else { absl::StrAppend(url, (has_query ? "&" : "?"), param_name, "=", StorageGeneration::ToUint64(gen)); return true; } } bool AddUserProjectParam(std::string* url, const bool has_query, std::string_view encoded_user_project) { if (!encoded_user_project.empty()) { absl::StrAppend(url, (has_query ? "&" : "?"), "userProject=", encoded_user_project); return true; } return false; } std::string BucketResourceRoot(std::string_view bucket) { const char kVersion[] = "v1"; return absl::StrCat(GetGcsBaseUrl(), "/storage/", kVersion, "/b/", bucket); } std::string BucketUploadRoot(std::string_view bucket) { const char kVersion[] = "v1"; return absl::StrCat(GetGcsBaseUrl(), "/upload/storage/", kVersion, "/b/", bucket); } struct GcsKeyValueStoreSpecData { std::string bucket; Context::Resource<GcsConcurrencyResource> request_concurrency; std::optional<Context::Resource<GcsRateLimiterResource>> rate_limiter; Context::Resource<GcsUserProjectResource> user_project; Context::Resource<GcsRequestRetries> retries; Context::Resource<DataCopyConcurrencyResource> data_copy_concurrency; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(x.bucket, x.request_concurrency, x.rate_limiter, x.user_project, x.retries, x.data_copy_concurrency); }; constexpr static auto default_json_binder = jb::Object( jb::Member("bucket", jb::Projection<&GcsKeyValueStoreSpecData::bucket>(jb::Validate( [](const auto& options, const std::string* x) { if (!IsValidBucketName(*x)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid GCS bucket name: ", QuoteString(*x))); } return absl::OkStatus(); }))), jb::Member( GcsConcurrencyResource::id, jb::Projection<&GcsKeyValueStoreSpecData::request_concurrency>()), jb::Member(GcsRateLimiterResource::id, jb::Projection<&GcsKeyValueStoreSpecData::rate_limiter>()), jb::Member(GcsUserProjectResource::id, jb::Projection<&GcsKeyValueStoreSpecData::user_project>()), jb::Member(GcsRequestRetries::id, jb::Projection<&GcsKeyValueStoreSpecData::retries>()), jb::Member(DataCopyConcurrencyResource::id, jb::Projection< &GcsKeyValueStoreSpecData::data_copy_concurrency>()) ); }; std::string GetGcsUrl(std::string_view bucket, std::string_view path) { return absl::StrCat(kUriScheme, ": internal::PercentEncodeUriPath(path)); } class GcsKeyValueStoreSpec : public internal_kvstore::RegisteredDriverSpec<GcsKeyValueStoreSpec, GcsKeyValueStoreSpecData> { public: static constexpr char id[] = "gcs"; absl::Status NormalizeSpec(std::string& path) override { if (!path.empty() && !IsValidObjectName(path)) { return absl::InvalidArgumentError( absl::StrCat("Invalid GCS path: ", QuoteString(path))); } return absl::OkStatus(); } Future<kvstore::DriverPtr> DoOpen() const override; Result<std::string> ToUrl(std::string_view path) const override { return GetGcsUrl(data_.bucket, path); } }; class GcsKeyValueStore : public internal_kvstore::RegisteredDriver<GcsKeyValueStore, GcsKeyValueStoreSpec> { public: const std::string& resource_root() const { return resource_root_; } const std::string& upload_root() const { return upload_root_; } const std::string& encoded_user_project() const { return encoded_user_project_; } internal_kvstore_batch::CoalescingOptions GetBatchReadCoalescingOptions() const { return internal_kvstore_batch::kDefaultRemoteStorageCoalescingOptions; } Future<ReadResult> Read(Key key, ReadOptions options) override; Future<ReadResult> ReadImpl(Key&& key, ReadOptions&& options); Future<TimestampedStorageGeneration> Write(Key key, std::optional<Value> value, WriteOptions options) override; void ListImpl(ListOptions options, ListReceiver receiver) override; Future<const void> DeleteRange(KeyRange range) override; Result<std::optional<std::string>> GetAuthHeader() { absl::MutexLock lock(&auth_provider_mutex_); if (!auth_provider_) { auto result = tensorstore::internal_oauth2::GetSharedGoogleAuthProvider(); if (!result.ok() && absl::IsNotFound(result.status())) { auth_provider_ = nullptr; } else { TENSORSTORE_RETURN_IF_ERROR(result); auth_provider_ = *std::move(result); } } if (!*auth_provider_) return std::nullopt; auto auth_header_result = (*auth_provider_)->GetAuthHeader(); if (!auth_header_result.ok() && absl::IsNotFound(auth_header_result.status())) { return std::nullopt; } return auth_header_result; } const Executor& executor() const { return spec_.data_copy_concurrency->executor; } RateLimiter& read_rate_limiter() { if (spec_.rate_limiter.has_value()) { return *(spec_.rate_limiter.value()->read_limiter); } return no_rate_limiter_; } RateLimiter& write_rate_limiter() { if (spec_.rate_limiter.has_value()) { return *(spec_.rate_limiter.value()->write_limiter); } return no_rate_limiter_; } RateLimiter& admission_queue() { return *spec_.request_concurrency->queue; } absl::Status GetBoundSpecData(SpecData& spec) const { spec = spec_; return absl::OkStatus(); } std::string DescribeKey(std::string_view key) override { return GetGcsUrl(spec_.bucket, key); } SupportedFeatures GetSupportedFeatures( const KeyRange& key_range) const final { return SupportedFeatures::kSingleKeyAtomicReadModifyWrite | SupportedFeatures::kAtomicWriteWithoutOverwrite; } template <typename Task> absl::Status BackoffForAttemptAsync( absl::Status status, int attempt, Task* task, SourceLocation loc = ::tensorstore::SourceLocation::current()) { assert(task != nullptr); auto delay = spec_.retries->BackoffForAttempt(attempt); if (!delay) { return MaybeAnnotateStatus(std::move(status), absl::StrFormat("All %d retry attempts failed", spec_.retries->max_retries), absl::StatusCode::kAborted, loc); } gcs_metrics.retries.Increment(); ScheduleAt(absl::Now() + *delay, WithExecutor(executor(), [task = IntrusivePtr<Task>(task)] { task->Retry(); })); return absl::OkStatus(); } SpecData spec_; std::string resource_root_; std::string upload_root_; std::string encoded_user_project_; NoRateLimiter no_rate_limiter_; std::shared_ptr<HttpTransport> transport_; absl::Mutex auth_provider_mutex_; std::optional<std::shared_ptr<internal_oauth2::AuthProvider>> auth_provider_; }; Future<kvstore::DriverPtr> GcsKeyValueStoreSpec::DoOpen() const { auto driver = internal::MakeIntrusivePtr<GcsKeyValueStore>(); driver->spec_ = data_; driver->resource_root_ = BucketResourceRoot(data_.bucket); driver->upload_root_ = BucketUploadRoot(data_.bucket); driver->transport_ = internal_http::GetDefaultHttpTransport(); if (data_.rate_limiter.has_value()) { ABSL_LOG_IF(INFO, gcs_http_logging) << "Using experimental_gcs_rate_limiter"; } if (const auto& project_id = data_.user_project->project_id) { driver->encoded_user_project_ = internal::PercentEncodeUriComponent(*project_id); } return driver; } void AddUniqueQueryParameterToDisableCaching(std::string& url) { struct RandomState { absl::Mutex mutex; absl::BitGen gen ABSL_GUARDED_BY(mutex); }; static RandomState random_state; uint64_t uuid[2]; absl::MutexLock lock(&random_state.mutex); for (auto& x : uuid) { x = absl::Uniform<uint64_t>(random_state.gen); } absl::StrAppend(&url, "&tensorstore=", absl::Hex(uuid[0], absl::kZeroPad16), absl::Hex(uuid[1], absl::kZeroPad16)); } struct ReadTask : public RateLimiterNode, public internal::AtomicReferenceCount<ReadTask> { IntrusivePtr<GcsKeyValueStore> owner; std::string resource; kvstore::ReadOptions options; Promise<kvstore::ReadResult> promise; int attempt_ = 0; absl::Time start_time_; ReadTask(IntrusivePtr<GcsKeyValueStore> owner, std::string resource, kvstore::ReadOptions options, Promise<kvstore::ReadResult> promise) : owner(std::move(owner)), resource(std::move(resource)), options(std::move(options)), promise(std::move(promise)) {} ~ReadTask() { owner->admission_queue().Finish(this); } static void Start(void* task) { auto* self = reinterpret_cast<ReadTask*>(task); self->owner->read_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &ReadTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<ReadTask*>(task); self->owner->executor()( [state = IntrusivePtr<ReadTask>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (!promise.result_needed()) { return; } std::string media_url = absl::StrCat( resource, options.byte_range.size() == 0 ? "?alt=json" : "?alt=media"); AddGenerationParam(&media_url, true, "ifGenerationNotMatch", options.generation_conditions.if_not_equal); AddGenerationParam(&media_url, true, "ifGenerationMatch", options.generation_conditions.if_equal); AddUserProjectParam(&media_url, true, owner->encoded_user_project()); AddUniqueQueryParameterToDisableCaching(media_url); auto maybe_auth_header = owner->GetAuthHeader(); if (!maybe_auth_header.ok()) { promise.SetResult(maybe_auth_header.status()); return; } HttpRequestBuilder request_builder("GET", media_url); if (maybe_auth_header.value().has_value()) { request_builder.AddHeader(*maybe_auth_header.value()); } if (options.byte_range.size() != 0) { request_builder.MaybeAddRangeHeader(options.byte_range); } auto request = request_builder.EnableAcceptEncoding().BuildRequest(); start_time_ = absl::Now(); ABSL_LOG_IF(INFO, gcs_http_logging) << "ReadTask: " << request; auto future = owner->transport_->IssueRequest( request, IssueRequestOptions().SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady([self = IntrusivePtr<ReadTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "ReadTask " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = [&]() -> absl::Status { if (!response.ok()) return response.status(); switch (response.value().status_code) { case 412: case 404: case 304: return absl::OkStatus(); } return GcsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); } else { promise.SetResult(FinishResponse(response.value())); } } Result<kvstore::ReadResult> FinishResponse(const HttpResponse& httpresponse) { gcs_metrics.bytes_read.IncrementBy(httpresponse.payload.size()); auto latency = absl::Now() - start_time_; gcs_metrics.read_latency_ms.Observe(absl::ToInt64Milliseconds(latency)); switch (httpresponse.status_code) { case 204: case 404: return kvstore::ReadResult::Missing(start_time_); case 412: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ StorageGeneration::Unknown(), start_time_}); case 304: return kvstore::ReadResult::Unspecified(TimestampedStorageGeneration{ options.generation_conditions.if_not_equal, start_time_}); } absl::Cord value; ObjectMetadata metadata; if (options.byte_range.size() != 0) { ByteRange byte_range; int64_t total_size; TENSORSTORE_RETURN_IF_ERROR(internal_http::ValidateResponseByteRange( httpresponse, options.byte_range, value, byte_range, total_size)); SetObjectMetadataFromHeaders(httpresponse.headers, &metadata); } else { absl::Cord cord = httpresponse.payload; TENSORSTORE_ASSIGN_OR_RETURN(metadata, ParseObjectMetadata(cord.Flatten())); } auto generation = StorageGeneration::FromUint64(metadata.generation); return kvstore::ReadResult::Value( std::move(value), TimestampedStorageGeneration{std::move(generation), start_time_}); } }; Future<kvstore::ReadResult> GcsKeyValueStore::Read(Key key, ReadOptions options) { gcs_metrics.read.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid GCS object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal) || !IsValidStorageGeneration(options.generation_conditions.if_not_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } return internal_kvstore_batch::HandleBatchRequestByGenericByteRangeCoalescing( *this, std::move(key), std::move(options)); } Future<kvstore::ReadResult> GcsKeyValueStore::ReadImpl(Key&& key, ReadOptions&& options) { gcs_metrics.batch_read.Increment(); auto encoded_object_name = internal::PercentEncodeUriComponent(key); std::string resource = tensorstore::internal::JoinPath(resource_root_, "/o/", encoded_object_name); auto op = PromiseFuturePair<ReadResult>::Make(); auto state = internal::MakeIntrusivePtr<ReadTask>( internal::IntrusivePtr<GcsKeyValueStore>(this), std::move(resource), std::move(options), std::move(op.promise)); intrusive_ptr_increment(state.get()); read_rate_limiter().Admit(state.get(), &ReadTask::Start); return std::move(op.future); } struct WriteTask : public RateLimiterNode, public internal::AtomicReferenceCount<WriteTask> { IntrusivePtr<GcsKeyValueStore> owner; std::string encoded_object_name; absl::Cord value; kvstore::WriteOptions options; Promise<TimestampedStorageGeneration> promise; int attempt_ = 0; absl::Time start_time_; WriteTask(IntrusivePtr<GcsKeyValueStore> owner, std::string encoded_object_name, absl::Cord value, kvstore::WriteOptions options, Promise<TimestampedStorageGeneration> promise) : owner(std::move(owner)), encoded_object_name(std::move(encoded_object_name)), value(std::move(value)), options(std::move(options)), promise(std::move(promise)) {} ~WriteTask() { owner->admission_queue().Finish(this); } static void Start(void* task) { auto* self = reinterpret_cast<WriteTask*>(task); self->owner->write_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &WriteTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<WriteTask*>(task); self->owner->executor()( [state = IntrusivePtr<WriteTask>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (!promise.result_needed()) { return; } std::string upload_url = absl::StrCat(owner->upload_root(), "/o", "?uploadType=media", "&name=", encoded_object_name); AddGenerationParam(&upload_url, true, "ifGenerationMatch", options.generation_conditions.if_equal); AddUserProjectParam(&upload_url, true, owner->encoded_user_project()); auto maybe_auth_header = owner->GetAuthHeader(); if (!maybe_auth_header.ok()) { promise.SetResult(maybe_auth_header.status()); return; } HttpRequestBuilder request_builder("POST", upload_url); if (maybe_auth_header.value().has_value()) { request_builder.AddHeader(*maybe_auth_header.value()); } auto request = request_builder.AddHeader("Content-Type: application/octet-stream") .AddHeader(absl::StrCat("Content-Length: ", value.size())) .BuildRequest(); start_time_ = absl::Now(); ABSL_LOG_IF(INFO, gcs_http_logging) << "WriteTask: " << request << " size=" << value.size(); auto future = owner->transport_->IssueRequest( request, IssueRequestOptions(value).SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady([self = IntrusivePtr<WriteTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "WriteTask " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = [&]() -> absl::Status { if (!response.ok()) return response.status(); switch (response.value().status_code) { case 304: [[fallthrough]]; case 412: return absl::OkStatus(); case 404: if (!options.generation_conditions.MatchesNoValue()) { return absl::OkStatus(); } break; default: break; } return GcsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); } else { promise.SetResult(FinishResponse(response.value())); } } Result<TimestampedStorageGeneration> FinishResponse( const HttpResponse& httpresponse) { TimestampedStorageGeneration r; r.time = start_time_; switch (httpresponse.status_code) { case 304: [[fallthrough]]; case 412: r.generation = StorageGeneration::Unknown(); return r; case 404: if (!StorageGeneration::IsUnknown( options.generation_conditions.if_equal)) { r.generation = StorageGeneration::Unknown(); return r; } } auto latency = absl::Now() - start_time_; gcs_metrics.write_latency_ms.Observe(absl::ToInt64Milliseconds(latency)); gcs_metrics.bytes_written.IncrementBy(value.size()); auto payload = httpresponse.payload; auto parsed_object_metadata = ParseObjectMetadata(payload.Flatten()); TENSORSTORE_RETURN_IF_ERROR(parsed_object_metadata); r.generation = StorageGeneration::FromUint64(parsed_object_metadata->generation); return r; } }; struct DeleteTask : public RateLimiterNode, public internal::AtomicReferenceCount<DeleteTask> { IntrusivePtr<GcsKeyValueStore> owner; std::string resource; kvstore::WriteOptions options; Promise<TimestampedStorageGeneration> promise; int attempt_ = 0; absl::Time start_time_; DeleteTask(IntrusivePtr<GcsKeyValueStore> owner, std::string resource, kvstore::WriteOptions options, Promise<TimestampedStorageGeneration> promise) : owner(std::move(owner)), resource(std::move(resource)), options(std::move(options)), promise(std::move(promise)) {} ~DeleteTask() { owner->admission_queue().Finish(this); } static void Start(void* task) { auto* self = reinterpret_cast<DeleteTask*>(task); self->owner->write_rate_limiter().Finish(self); self->owner->admission_queue().Admit(self, &DeleteTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<DeleteTask*>(task); self->owner->executor()( [state = IntrusivePtr<DeleteTask>(self, internal::adopt_object_ref)] { state->Retry(); }); } void Retry() { if (!promise.result_needed()) { return; } std::string delete_url = resource; bool has_query = AddGenerationParam(&delete_url, false, "ifGenerationMatch", options.generation_conditions.if_equal); AddUserProjectParam(&delete_url, has_query, owner->encoded_user_project()); auto maybe_auth_header = owner->GetAuthHeader(); if (!maybe_auth_header.ok()) { promise.SetResult(maybe_auth_header.status()); return; } HttpRequestBuilder request_builder("DELETE", delete_url); if (maybe_auth_header.value().has_value()) { request_builder.AddHeader(*maybe_auth_header.value()); } auto request = request_builder.BuildRequest(); start_time_ = absl::Now(); ABSL_LOG_IF(INFO, gcs_http_logging) << "DeleteTask: " << request; auto future = owner->transport_->IssueRequest( request, IssueRequestOptions().SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady([self = IntrusivePtr<DeleteTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); }); } void OnResponse(const Result<HttpResponse>& response) { if (!promise.result_needed()) { return; } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "DeleteTask " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = [&]() -> absl::Status { if (!response.ok()) return response.status(); switch (response.value().status_code) { case 412: [[fallthrough]]; case 404: return absl::OkStatus(); default: break; } return GcsHttpResponseToStatus(response.value(), is_retryable); }(); if (!status.ok() && is_retryable) { status = owner->BackoffForAttemptAsync(std::move(status), attempt_++, this); if (status.ok()) { return; } } if (!status.ok()) { promise.SetResult(status); return; } TimestampedStorageGeneration r; r.time = start_time_; switch (response.value().status_code) { case 412: r.generation = StorageGeneration::Unknown(); break; case 404: if (!options.generation_conditions.MatchesNoValue()) { r.generation = StorageGeneration::Unknown(); break; } [[fallthrough]]; default: r.generation = StorageGeneration::NoValue(); break; } promise.SetResult(std::move(r)); } }; Future<TimestampedStorageGeneration> GcsKeyValueStore::Write( Key key, std::optional<Value> value, WriteOptions options) { gcs_metrics.write.Increment(); if (!IsValidObjectName(key)) { return absl::InvalidArgumentError("Invalid GCS object name"); } if (!IsValidStorageGeneration(options.generation_conditions.if_equal)) { return absl::InvalidArgumentError("Malformed StorageGeneration"); } std::string encoded_object_name = internal::PercentEncodeUriComponent(key); auto op = PromiseFuturePair<TimestampedStorageGeneration>::Make(); if (value) { auto state = internal::MakeIntrusivePtr<WriteTask>( IntrusivePtr<GcsKeyValueStore>(this), std::move(encoded_object_name), *std::move(value), std::move(options), std::move(op.promise)); intrusive_ptr_increment(state.get()); write_rate_limiter().Admit(state.get(), &WriteTask::Start); } else { std::string resource = tensorstore::internal::JoinPath( resource_root_, "/o/", encoded_object_name); auto state = internal::MakeIntrusivePtr<DeleteTask>( IntrusivePtr<GcsKeyValueStore>(this), std::move(resource), std::move(options), std::move(op.promise)); intrusive_ptr_increment(state.get()); write_rate_limiter().Admit(state.get(), &DeleteTask::Start); } return std::move(op.future); } struct GcsListResponsePayload { std::string next_page_token; std::vector<ObjectMetadata> items; }; constexpr static auto GcsListResponsePayloadBinder = jb::Object( jb::Member("nextPageToken", jb::Projection(&GcsListResponsePayload::next_page_token, jb::DefaultInitializedValue())), jb::Member("items", jb::Projection(&GcsListResponsePayload::items, jb::DefaultInitializedValue())), jb::DiscardExtraMembers); struct ListTask : public RateLimiterNode, public internal::AtomicReferenceCount<ListTask> { internal::IntrusivePtr<GcsKeyValueStore> owner_; ListOptions options_; ListReceiver receiver_; std::string resource_; std::string base_list_url_; std::string next_page_token_; int attempt_ = 0; bool has_query_parameters_; std::atomic<bool> cancelled_{false}; ListTask(internal::IntrusivePtr<GcsKeyValueStore>&& owner, ListOptions&& options, ListReceiver&& receiver, std::string&& resource) : owner_(std::move(owner)), options_(std::move(options)), receiver_(std::move(receiver)), resource_(std::move(resource)) { base_list_url_ = resource_; has_query_parameters_ = AddUserProjectParam(&base_list_url_, false, owner_->encoded_user_project()); if (auto& inclusive_min = options_.range.inclusive_min; !inclusive_min.empty()) { absl::StrAppend( &base_list_url_, (has_query_parameters_ ? "&" : "?"), "startOffset=", internal::PercentEncodeUriComponent(inclusive_min)); has_query_parameters_ = true; } if (auto& exclusive_max = options_.range.exclusive_max; !exclusive_max.empty()) { absl::StrAppend( &base_list_url_, (has_query_parameters_ ? "&" : "?"), "endOffset=", internal::PercentEncodeUriComponent(exclusive_max)); has_query_parameters_ = true; } } ~ListTask() { owner_->admission_queue().Finish(this); } inline bool is_cancelled() { return cancelled_.load(std::memory_order_relaxed); } static void Start(void* task) { auto* self = reinterpret_cast<ListTask*>(task); self->owner_->read_rate_limiter().Finish(self); self->owner_->admission_queue().Admit(self, &ListTask::Admit); } static void Admit(void* task) { auto* self = reinterpret_cast<ListTask*>(task); execution::set_starting(self->receiver_, [self] { self->cancelled_.store(true, std::memory_order_relaxed); }); self->owner_->executor()( [state = IntrusivePtr<ListTask>(self, internal::adopt_object_ref)] { state->IssueRequest(); }); } void Retry() { IssueRequest(); } void IssueRequest() { if (is_cancelled()) { execution::set_done(receiver_); execution::set_stopping(receiver_); return; } std::string list_url = base_list_url_; if (!next_page_token_.empty()) { absl::StrAppend(&list_url, (has_query_parameters_ ? "&" : "?"), "pageToken=", next_page_token_); } auto auth_header = owner_->GetAuthHeader(); if (!auth_header.ok()) { execution::set_error(receiver_, std::move(auth_header).status()); execution::set_stopping(receiver_); return; } HttpRequestBuilder request_builder("GET", list_url); if (auth_header->has_value()) { request_builder.AddHeader(auth_header->value()); } auto request = request_builder.BuildRequest(); ABSL_LOG_IF(INFO, gcs_http_logging) << "List: " << request; auto future = owner_->transport_->IssueRequest( request, IssueRequestOptions().SetHttpVersion(GetHttpVersion())); future.ExecuteWhenReady(WithExecutor( owner_->executor(), [self = IntrusivePtr<ListTask>(this)]( ReadyFuture<HttpResponse> response) { self->OnResponse(response.result()); })); } void OnResponse(const Result<HttpResponse>& response) { auto status = OnResponseImpl(response); if (absl::IsCancelled(status)) { execution::set_done(receiver_); execution::set_stopping(receiver_); return; } if (!status.ok()) { execution::set_error(receiver_, std::move(status)); execution::set_stopping(receiver_); return; } } absl::Status OnResponseImpl(const Result<HttpResponse>& response) { if (is_cancelled()) { return absl::CancelledError(); } ABSL_LOG_IF(INFO, gcs_http_logging.Level(1) && response.ok()) << "List " << *response; bool is_retryable = IsRetriable(response.status()); absl::Status status = response.ok() ? GcsHttpResponseToStatus(response.value(), is_retryable) : response.status(); if (!status.ok() && is_retryable) { return owner_->BackoffForAttemptAsync(std::move(status), attempt_++, this); } auto payload = response->payload; auto j = internal::ParseJson(payload.Flatten()); if (j.is_discarded()) { return absl::InternalError(absl::StrCat( "Failed to parse response metadata: ", payload.Flatten())); } TENSORSTORE_ASSIGN_OR_RETURN( auto parsed_payload, jb::FromJson<GcsListResponsePayload>(j, GcsListResponsePayloadBinder)); for (auto& metadata : parsed_payload.items) { if (is_cancelled()) { return absl::CancelledError(); } std::string_view name = metadata.name; if (options_.strip_prefix_length) { name = name.substr(options_.strip_prefix_length); } execution::set_value(receiver_, ListEntry{ std::string(name), ListEntry::checked_size(metadata.size), }); } attempt_ = 0; next_page_token_ = std::move(parsed_payload.next_page_token); if (!next_page_token_.empty()) { IssueRequest(); } else { execution::set_done(receiver_); execution::set_stopping(receiver_); } return absl::OkStatus(); } }; void GcsKeyValueStore::ListImpl(ListOptions options, ListReceiver receiver) { gcs_metrics.list.Increment(); if (options.range.empty()) { execution::set_starting(receiver, [] {}); execution::set_done(receiver); execution::set_stopping(receiver); return; } auto state = internal::MakeIntrusivePtr<ListTask>( IntrusivePtr<GcsKeyValueStore>(this), std::move(options), std::move(receiver), tensorstore::internal::JoinPath(resource_root_, "/o")); intrusive_ptr_increment(state.get()); read_rate_limiter().Admit(state.get(), &ListTask::Start); } struct DeleteRangeListReceiver { IntrusivePtr<GcsKeyValueStore> owner_; Promise<void> promise_; FutureCallbackRegistration cancel_registration_; void set_starting(AnyCancelReceiver cancel) { cancel_registration_ = promise_.ExecuteWhenNotNeeded(std::move(cancel)); } void set_value(ListEntry entry) { assert(!entry.key.empty()); if (!entry.key.empty()) { LinkError(promise_, owner_->Delete(std::move(entry.key))); } } void set_error(absl::Status error) { SetDeferredResult(promise_, std::move(error)); promise_ = Promise<void>(); } void set_done() { promise_ = Promise<void>(); } void set_stopping() { cancel_registration_.Unregister(); } }; Future<const void> GcsKeyValueStore::DeleteRange(KeyRange range) { gcs_metrics.delete_range.Increment(); if (range.empty()) return absl::OkStatus(); auto op = PromiseFuturePair<void>::Make(tensorstore::MakeResult()); ListOptions list_options; list_options.range = std::move(range); ListImpl(list_options, DeleteRangeListReceiver{ internal::IntrusivePtr<GcsKeyValueStore>(this), std::move(op.promise)}); return std::move(op.future); } Result<kvstore::Spec> ParseGcsUrl(std::string_view url) { auto parsed = internal::ParseGenericUri(url); assert(parsed.scheme == kUriScheme); if (!parsed.query.empty()) { return absl::InvalidArgumentError("Query string not supported"); } if (!parsed.fragment.empty()) { return absl::InvalidArgumentError("Fragment identifier not supported"); } if (!IsValidBucketName(parsed.authority)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid GCS bucket name: ", QuoteString(parsed.authority))); } auto decoded_path = parsed.path.empty() ? std::string() : internal::PercentDecode(parsed.path.substr(1)); auto driver_spec = internal::MakeIntrusivePtr<GcsKeyValueStoreSpec>(); driver_spec->data_.bucket = std::string(parsed.authority); driver_spec->data_.request_concurrency = Context::Resource<GcsConcurrencyResource>::DefaultSpec(); driver_spec->data_.user_project = Context::Resource<GcsUserProjectResource>::DefaultSpec(); driver_spec->data_.retries = Context::Resource<GcsRequestRetries>::DefaultSpec(); driver_spec->data_.data_copy_concurrency = Context::Resource<DataCopyConcurrencyResource>::DefaultSpec(); return {std::in_place, std::move(driver_spec), std::move(decoded_path)}; } } } TENSORSTORE_DECLARE_GARBAGE_COLLECTION_NOT_REQUIRED( tensorstore::GcsKeyValueStore) namespace { const tensorstore::internal_kvstore::DriverRegistration< tensorstore::GcsKeyValueStoreSpec> registration; const tensorstore::internal_kvstore::UrlSchemeRegistration url_scheme_registration{kUriScheme, tensorstore::ParseGcsUrl}; }
#include <stddef.h> #include <algorithm> #include <atomic> #include <memory> #include <string> #include <string_view> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/absl_log.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/match.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include <nlohmann/json.hpp> #include "tensorstore/context.h" #include "tensorstore/internal/http/curl_transport.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/http/mock_http_transport.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/internal/oauth2/google_auth_provider.h" #include "tensorstore/internal/oauth2/google_auth_test_utils.h" #include "tensorstore/internal/thread/schedule_at.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/json_serialization_options_base.h" #include "tensorstore/kvstore/batch_util.h" #include "tensorstore/kvstore/gcs_http/gcs_mock.h" #include "tensorstore/kvstore/generation.h" #include "tensorstore/kvstore/key_range.h" #include "tensorstore/kvstore/kvstore.h" #include "tensorstore/kvstore/operations.h" #include "tensorstore/kvstore/read_result.h" #include "tensorstore/kvstore/spec.h" #include "tensorstore/kvstore/test_matchers.h" #include "tensorstore/kvstore/test_util.h" #include "tensorstore/util/execution/execution.h" #include "tensorstore/util/execution/sender_testutil.h" #include "tensorstore/util/future.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" #include "tensorstore/util/str_cat.h" namespace { namespace kvstore = ::tensorstore::kvstore; using ::tensorstore::CompletionNotifyingReceiver; using ::tensorstore::Context; using ::tensorstore::Future; using ::tensorstore::GCSMockStorageBucket; using ::tensorstore::KeyRange; using ::tensorstore::MatchesJson; using ::tensorstore::MatchesStatus; using ::tensorstore::Result; using ::tensorstore::StorageGeneration; using ::tensorstore::internal::MatchesListEntry; using ::tensorstore::internal::ScheduleAt; using ::tensorstore::internal_http::ApplyResponseToHandler; using ::tensorstore::internal_http::HttpRequest; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_http::HttpResponseHandler; using ::tensorstore::internal_http::HttpTransport; using ::tensorstore::internal_http::IssueRequestOptions; using ::tensorstore::internal_http::SetDefaultHttpTransport; using ::tensorstore::internal_oauth2::GoogleAuthTestScope; static constexpr char kDriver[] = "gcs"; class MetadataMockHelper { public: tensorstore::Result<HttpResponse> GetResponse(const HttpRequest& request) { auto parsed = tensorstore::internal::ParseGenericUri(request.url); if (!absl::StartsWith(parsed.authority_and_path, "metadata.google.internal/")) { return absl::UnimplementedError("Mock cannot satisfy the request."); } constexpr char kOAuthPath[] = "metadata.google.internal/computeMetadata/v1/" "instance/service-accounts/[email protected]/token"; if (absl::StartsWith(parsed.authority_and_path, kOAuthPath)) { return HttpResponse{ 200, absl::Cord( R"({ "token_type" : "refresh", "access_token": "abc", "expires_in": 3600 })")}; } constexpr char kServiceAccountPath[] = "metadata.google.internal/computeMetadata/v1/" "instance/service-accounts/default/"; if (absl::StartsWith(parsed.authority_and_path, kServiceAccountPath)) { return HttpResponse{ 200, absl::Cord( R"({ "email": "[email protected]", "scopes": [ "test" ] })")}; } return HttpResponse{200, absl::Cord()}; } GoogleAuthTestScope google_auth_test_scope; }; class MyMockTransport : public HttpTransport { public: void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) override { ApplyResponseToHandler( [&]() -> Result<HttpResponse> { auto result = metadata_mock_.GetResponse(request); if (result.ok()) return result; for (auto* bucket : buckets_) { result = bucket->IssueRequest(request, options.payload); if (result.ok()) break; } return result; }(), response_handler); } MetadataMockHelper metadata_mock_; std::vector<GCSMockStorageBucket*> buckets_; }; struct DefaultHttpTransportSetter { DefaultHttpTransportSetter(std::shared_ptr<HttpTransport> transport) { SetDefaultHttpTransport(transport); tensorstore::internal_oauth2::ResetSharedGoogleAuthProvider(); } ~DefaultHttpTransportSetter() { tensorstore::internal_oauth2::ResetSharedGoogleAuthProvider(); SetDefaultHttpTransport(nullptr); } }; Context DefaultTestContext() { return Context{Context::Spec::FromJson({{"gcs_request_retries", {{"max_retries", 4}, {"initial_delay", "1ms"}, {"max_delay", "5ms"}}}}) .value()}; } TEST(GcsKeyValueStoreTest, BadBucketNames) { auto context = DefaultTestContext(); for (auto bucket : {"a", "_abc", "abc_", "ABC", "a..b", "a.-.b", "a." "0123456789123456789012345678912345678901234567891234567890" "1234567891234567890123456789123456789012345678912345678901" "23456789123456789.b"}) { EXPECT_FALSE( kvstore::Open({{"driver", kDriver}, {"bucket", bucket}}, context) .result()) << "bucket: " << bucket; } for (auto bucket : {"abc", "abc.1-2_3.abc"}) { EXPECT_TRUE( kvstore::Open({{"driver", kDriver}, {"bucket", bucket}}, context) .result()) << "bucket: " << bucket; } } TEST(GcsKeyValueStoreTest, BadObjectNames) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); EXPECT_THAT(kvstore::Read(store, ".").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, "..").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, ".well-known/acme-challenge").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, "foo\nbar").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Read(store, "foo\rbar").result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); { kvstore::ReadOptions options; options.generation_conditions.if_not_equal = StorageGeneration::FromString("abc123"); EXPECT_THAT(kvstore::Read(store, "abc", options).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); } } TEST(GcsKeyValueStoreTest, Basic) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto spec, store.spec()); EXPECT_THAT(spec.ToJson(tensorstore::IncludeDefaults{false}), ::testing::Optional( MatchesJson({{"driver", kDriver}, {"bucket", "my-bucket"}}))); tensorstore::internal::TestKeyValueReadWriteOps(store); } TEST(GcsKeyValueStoreTest, Retry) { for (int max_retries : {2, 3, 4}) { for (bool fail : {false, true}) { ABSL_LOG(INFO) << max_retries << (fail ? " fail" : " success"); auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = Context::Default(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}, {"context", { {"gcs_request_retries", {{"max_retries", max_retries}, {"initial_delay", "1ms"}, {"max_delay", "10ms"}}}, }}}, context) .result()); if (fail) { bucket.TriggerErrors(max_retries + 1); EXPECT_THAT(kvstore::Read(store, "x").result(), MatchesStatus(absl::StatusCode::kAborted)); } else { bucket.TriggerErrors(max_retries - 2); TENSORSTORE_EXPECT_OK(kvstore::Read(store, "x").result()); } } } } TEST(GcsKeyValueStoreTest, List) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{&notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } EXPECT_THAT(ListFuture(store, {}).result(), ::testing::Optional(::testing::ElementsAre())); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/b", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/d", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/x", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/y", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/e", absl::Cord("xyz"))); TENSORSTORE_EXPECT_OK(kvstore::Write(store, "a/c/z/f", absl::Cord("xyz"))); { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{&notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT( log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a/d", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_value: a/b", "set_done", "set_stopping")); } EXPECT_THAT(ListFuture(store, {}).result(), ::testing::Optional(::testing::UnorderedElementsAre( MatchesListEntry("a/d"), MatchesListEntry("a/c/z/f"), MatchesListEntry("a/c/y"), MatchesListEntry("a/c/z/e"), MatchesListEntry("a/c/x"), MatchesListEntry("a/b")))); { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {KeyRange::Prefix("a/c/")}), CompletionNotifyingReceiver{&notification, tensorstore::LoggingReceiver{&log}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::UnorderedElementsAre( "set_starting", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_done", "set_stopping")); } { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{ &notification, tensorstore::CancelOnStartingReceiver{{&log}}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::ElementsAre("set_starting", "set_done", "set_stopping")); } { absl::Notification notification; std::vector<std::string> log; tensorstore::execution::submit( kvstore::List(store, {}), CompletionNotifyingReceiver{ &notification, tensorstore::CancelAfterNReceiver<2>{{&log}}}); notification.WaitForNotification(); EXPECT_THAT(log, ::testing::Contains("set_starting")); EXPECT_THAT(log, ::testing::Contains("set_done")); EXPECT_THAT(log, ::testing::Contains("set_stopping")); EXPECT_LE(4, log.size()); EXPECT_THAT( log, ::testing::Contains(::testing::AnyOf( "set_value: a/d", "set_value: a/c/z/f", "set_value: a/c/y", "set_value: a/c/z/e", "set_value: a/c/x", "set_value: a/b"))); } EXPECT_THAT(ListFuture(store, {KeyRange::Prefix("a/c/")}).result(), ::testing::Optional(::testing::UnorderedElementsAre( MatchesListEntry("a/c/z/f"), MatchesListEntry("a/c/y"), MatchesListEntry("a/c/z/e"), MatchesListEntry("a/c/x")))); } TEST(GcsKeyValueStoreTest, SpecRoundtrip) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); tensorstore::internal::KeyValueStoreSpecRoundtripOptions options; options.full_spec = {{"driver", kDriver}, {"bucket", "my-bucket"}}; tensorstore::internal::TestKeyValueStoreSpecRoundtrip(options); } TEST(GcsKeyValueStoreTest, InvalidSpec) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; auto context = DefaultTestContext(); EXPECT_THAT( kvstore::Open( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"extra", "key"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Open({{"driver", kDriver}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open({{"driver", kDriver}, {"bucket", 5}}, context).result(), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( kvstore::Open( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"path", "a\tb"}}, context) .result(), MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } TEST(GcsKeyValueStoreTest, RequestorPays) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket1("my-bucket1"); GCSMockStorageBucket bucket2("my-bucket2", "myproject"); mock_transport->buckets_.push_back(&bucket1); mock_transport->buckets_.push_back(&bucket2); const auto TestWrite = [&](Context context, auto bucket2_status_matcher) { TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store1, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket1"}, {"context", { {"gcs_request_retries", {{"max_retries", 3}, {"initial_delay", "1ms"}, {"max_delay", "10ms"}}}, }}}, context) .result()); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store2, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket2"}, {"context", { {"gcs_request_retries", {{"max_retries", 3}, {"initial_delay", "1ms"}, {"max_delay", "10ms"}}}, }}}, context) .result()); TENSORSTORE_EXPECT_OK(kvstore::Write(store1, "abc", absl::Cord("xyz"))); EXPECT_THAT(kvstore::Write(store2, "abc", absl::Cord("xyz")).status(), bucket2_status_matcher); }; TestWrite(Context::Default(), MatchesStatus(absl::StatusCode::kInvalidArgument)); TestWrite(Context(Context::Spec::FromJson( {{"gcs_user_project", {{"project_id", "badproject"}}}}) .value()), MatchesStatus(absl::StatusCode::kInvalidArgument)); TestWrite(Context(Context::Spec::FromJson( {{"gcs_user_project", {{"project_id", "myproject"}}}}) .value()), absl::OkStatus()); } TEST(GcsKeyValueStoreTest, DeletePrefix) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeletePrefix(store); } TEST(GcsKeyValueStoreTest, DeleteRange) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); bucket.SetErrorRate(0.02); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeleteRange(store); } TEST(GcsKeyValueStoreTest, DeleteRangeToEnd) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeleteRangeToEnd(store); } TEST(GcsKeyValueStoreTest, DeleteRangeFromBeginning) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::TestKeyValueStoreDeleteRangeFromBeginning(store); } class MyDeleteRangeCancellationMockTransport : public MyMockTransport { public: void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) final { if (request.method == "DELETE") { cancellation_notification_.WaitForNotification(); ++total_delete_requests_; } MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); } std::atomic<size_t> total_delete_requests_{0}; absl::Notification cancellation_notification_; }; TEST(GcsKeyValueStoreTest, DeleteRangeCancellation) { auto mock_transport = std::make_shared<MyDeleteRangeCancellationMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open( { {"driver", kDriver}, {"bucket", "my-bucket"}, {"context", {{"gcs_request_concurrency", {{"limit", 1}}}}}, }, context) .result()); for (std::string key : {"a/b", "a/c/a", "a/c/b", "a/c/d", "a/d"}) { TENSORSTORE_ASSERT_OK(kvstore::Write(store, key, absl::Cord())); } { [[maybe_unused]] auto future = kvstore::DeleteRange(store, tensorstore::KeyRange{"a/ba", "a/ca"}); } mock_transport->cancellation_notification_.Notify(); absl::SleepFor(absl::Milliseconds(100)); EXPECT_GE(1, mock_transport->total_delete_requests_.load()); EXPECT_THAT(ListFuture(store).result(), ::testing::Optional(::testing::SizeIs(::testing::Ge(4)))); } class MyConcurrentMockTransport : public MyMockTransport { public: size_t reset() { absl::MutexLock lock(&concurrent_request_mutex_); cur_concurrent_requests_ = 0; return std::exchange(max_concurrent_requests_, 0); } void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) final { auto parsed = tensorstore::internal::ParseGenericUri(request.url); if (absl::StartsWith(parsed.authority_and_path, "metadata.google.internal/")) { MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); return; } { absl::MutexLock lock(&concurrent_request_mutex_); ++cur_concurrent_requests_; max_concurrent_requests_ = std::max(max_concurrent_requests_, cur_concurrent_requests_); } auto op = tensorstore::PromiseFuturePair<HttpResponse>::Make(); ScheduleAt(absl::Now() + absl::Milliseconds(5), [this, r = request, o = std::move(options), response_handler] { absl::MutexLock lock(&concurrent_request_mutex_); --cur_concurrent_requests_; MyMockTransport::IssueRequestWithHandler(r, std::move(o), response_handler); }); } size_t cur_concurrent_requests_ = 0; size_t max_concurrent_requests_ = 0; absl::Mutex concurrent_request_mutex_; }; TEST(GcsKeyValueStoreTest, Concurrency) { auto mock_transport = std::make_shared<MyConcurrentMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); const auto TestConcurrency = [&](size_t limit) { auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open( { {"driver", kDriver}, {"bucket", "my-bucket"}, {"context", {{"gcs_request_concurrency", {{"limit", limit}}}}} }, context) .result()); std::vector<tensorstore::Future<kvstore::ReadResult>> futures; for (size_t i = 0; i < 10 * limit; ++i) { futures.push_back(kvstore::Read(store, "abc")); } for (const auto& future : futures) { future.Wait(); } }; TestConcurrency(1); EXPECT_EQ(1, mock_transport->reset()); TestConcurrency(2); EXPECT_EQ(2, mock_transport->reset()); TestConcurrency(3); EXPECT_EQ(3, mock_transport->reset()); } class MyRateLimitedMockTransport : public MyMockTransport { public: std::tuple<absl::Time, absl::Time, size_t> reset() { absl::MutexLock l(&request_timing_mutex_); return {min_time_, max_time_, std::exchange(count_, 0)}; } void IssueRequestWithHandler(const HttpRequest& request, IssueRequestOptions options, HttpResponseHandler* response_handler) final { auto parsed = tensorstore::internal::ParseGenericUri(request.url); if (absl::StartsWith(parsed.authority_and_path, "metadata.google.internal/")) { MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); return; } { absl::MutexLock l(&request_timing_mutex_); max_time_ = absl::Now(); if (count_++ == 0) { min_time_ = max_time_; } } MyMockTransport::IssueRequestWithHandler(request, std::move(options), response_handler); } absl::Time min_time_; absl::Time max_time_; size_t count_; absl::Mutex request_timing_mutex_; }; TEST(GcsKeyValueStoreTest, RateLimited) { auto mock_transport = std::make_shared<MyRateLimitedMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); const auto TestRateLimiting = [&](size_t limit) { tensorstore::Context context{ tensorstore::Context::Spec::FromJson( { {"gcs_request_concurrency", {{"limit", 128}}}, {"data_copy_concurrency", {{"limit", 128}}}, {"experimental_gcs_rate_limiter", {{"read_rate", limit}, {"write_rate", limit}, {"doubling_time", "20m"}}}, }) .value()}; TENSORSTORE_CHECK_OK_AND_ASSIGN(auto store, kvstore::Open( { {"driver", kDriver}, {"bucket", "my-bucket"}, }, context) .result()); kvstore::Read(store, "xyz").Wait(); mock_transport->reset(); std::vector<tensorstore::Future<kvstore::ReadResult>> futures; for (size_t i = 0; i < 100; ++i) { futures.push_back(kvstore::Read(store, "abc")); } for (const auto& future : futures) { future.Wait(); } auto t = mock_transport->reset(); return std::get<1>(t) - std::get<0>(t); }; [[maybe_unused]] auto a = TestRateLimiting(10); [[maybe_unused]] auto b = TestRateLimiting(1000); #if 0 EXPECT_THAT(b, testing::Lt(a)); #endif } TEST(GcsKeyValueStoreTest, UrlRoundtrip) { tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"path", "abc"}}, "gs: tensorstore::internal::TestKeyValueStoreUrlRoundtrip( {{"driver", kDriver}, {"bucket", "my-bucket"}, {"path", "abc def"}}, "gs: } TEST(GcsKeyValueStoreTest, InvalidUri) { EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Invalid GCS bucket name: \"bucket:xyz\"")); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Query string not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*: Fragment identifier not supported")); EXPECT_THAT(kvstore::Spec::FromUrl("gs: MatchesStatus(absl::StatusCode::kInvalidArgument, ".*Invalid GCS path.*")); } TEST(GcsKeyValueStoreTest, BatchRead) { auto mock_transport = std::make_shared<MyMockTransport>(); DefaultHttpTransportSetter mock_transport_setter{mock_transport}; GCSMockStorageBucket bucket("my-bucket"); mock_transport->buckets_.push_back(&bucket); auto context = DefaultTestContext(); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto store, kvstore::Open({{"driver", kDriver}, {"bucket", "my-bucket"}}, context) .result()); tensorstore::internal::BatchReadGenericCoalescingTestOptions options; options.coalescing_options = tensorstore::internal_kvstore_batch:: kDefaultRemoteStorageCoalescingOptions; options.metric_prefix = "/tensorstore/kvstore/gcs/"; tensorstore::internal::TestBatchReadGenericCoalescing(store, options); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_http/gcs_key_value_store.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/kvstore/gcs_http/gcs_key_value_store_test.cc
4f887a6430414cd6088e1743555015b10f116d50
65c4ba39-beed-4193-b33f-f21f494b92c6
cpp
tensorflow/tensorflow
get_dimension_size
tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/get_dimension_size.cc
third_party/xla/xla/tests/get_dimension_size_test.cc
#include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/get_dimension_size.h" #include <cstdint> #include "llvm/Support/Casting.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/ImplicitLocOpBuilder.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "mlir/Transforms/DialectConversion.h" #include "tensorflow/compiler/mlir/lite/ir/tfl_ops.h" #include "tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/util.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" namespace mlir::odml { namespace { class LeagalizeDimensionSizeOp : public OpConversionPattern<mhlo::GetDimensionSizeOp> { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite( mhlo::GetDimensionSizeOp op, OpAdaptor adaptor, ConversionPatternRewriter& rewriter) const final { ImplicitLocOpBuilder builder(op.getLoc(), rewriter); auto operand_type = llvm::cast<ShapedType>(op.getOperand().getType()); auto shaped_op_type = RankedTensorType::get({operand_type.getRank()}, rewriter.getI64Type()); Value shape_op = rewriter.create<TFL::ShapeOp>(op.getLoc(), shaped_op_type, op.getOperand()); Value size = BuildIntArrayConstOp<arith::ConstantOp>(builder, rewriter, {1}, rewriter.getI64Type()); auto begin = BuildIntArrayConstOp<arith::ConstantOp>( builder, rewriter, llvm::SmallVector<int64_t>({static_cast<int64_t>(op.getDimension())}), rewriter.getI64Type()); auto slice_type = RankedTensorType::get({1}, rewriter.getI64Type()); Value slice = rewriter.create<TFL::SliceOp>(op.getLoc(), slice_type, shape_op, begin, size); auto op_el_type = llvm::cast<ShapedType>(op.getType()).getElementType(); if (op_el_type != slice_type.getElementType()) { slice = rewriter.create<TFL::CastOp>(op->getLoc(), slice_type.clone(op_el_type), slice); } rewriter.replaceOpWithNewOp<TFL::SqueezeOp>(op, op.getType(), slice, rewriter.getI64ArrayAttr({0})); return success(); } }; } void PopulateGetDimensionSizePatterns(MLIRContext* ctx, RewritePatternSet& patterns, ConversionTarget& target) { target.addIllegalOp<mhlo::GetDimensionSizeOp>(); patterns.add<LeagalizeDimensionSizeOp>(ctx); } }
#include <utility> #include "absl/status/status.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "tsl/platform/statusor.h" namespace xla { namespace { void DisableAllHloPasses(HloModule& module) { auto debug_options = module.config().debug_options(); debug_options.set_xla_disable_all_hlo_passes(true); module.mutable_config().set_debug_options(debug_options); } class GetDimensionSizeTest : public HloTestBase {}; TEST_F(GetDimensionSizeTest, CorrectComputation) { const char* const kModuleStr = R"( HloModule a_inference_call_110__.55 ENTRY %a_inference_call_110__.55 (arg0.1: f32[1,8], arg1.2: f32[8], arg2.3: f32[8]) -> s32[] { %constant.37 = f32[] constant(1e-12) %broadcast.38 = f32[1,1]{1,0} broadcast(f32[] %constant.37), dimensions={} %arg0.1 = f32[1,8]{1,0} parameter(0), parameter_replication={false} %reshape.4 = f32[1,8]{1,0} reshape(f32[1,8]{1,0} %arg0.1) %convert.5 = f32[1,8]{1,0} convert(f32[1,8]{1,0} %reshape.4) %constant.6 = f32[] constant(0) %convert.7 = f32[] convert(f32[] %constant.6) ROOT %get-dimension-size.13 = s32[] get-dimension-size(f32[1,8]{1,0} %convert.5), dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{0.01, 0.01})); } TEST_F(GetDimensionSizeTest, DISABLED_ON_INTERPRETER(DISABLED_ON_GPU( DISABLED_ON_TPU(ReturnsErrorWhenHloPassesDisabled)))) { const char* const kModuleStr = R"( HloModule m ENTRY %test { %arg0 = f32[1,8] parameter(0) ROOT %get-dimension-size.0 = s32[] get-dimension-size(%arg0), dimensions={1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(kModuleStr)); DisableAllHloPasses(*module); Literal arg0 = LiteralUtil::CreateR1<float>({0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}); auto status_or_result = Execute(std::move(module), {&arg0}); EXPECT_EQ(status_or_result.status().code(), absl::StatusCode::kUnimplemented); EXPECT_THAT( status_or_result.status().message(), ::testing::HasSubstr("GetDimensionSize should be rewritten for CPU")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/lite/stablehlo/transforms/legalize_hlo_conversions/get_dimension_size.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tests/get_dimension_size_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cd5d9ea9-18fe-4df4-93c5-bc52f4a12e63
cpp
tensorflow/tensorflow
plugin_program_serdes
third_party/xla/xla/python/ifrt/plugin_program_serdes.cc
third_party/xla/xla/python/ifrt/plugin_program_serdes_test.cc
#include <memory> #include <string> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/python/ifrt/plugin_program.h" #include "xla/python/ifrt/serdes.h" namespace xla { namespace ifrt { namespace { constexpr absl::string_view kSerializationPrefix = "__serialized_plugin_program "; class PluginProgramSerDes : public llvm::RTTIExtends<PluginProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::PluginProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { return absl::StrCat(kSerializationPrefix, llvm::cast<PluginProgram>(serializable).data); } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions>) override { if (!absl::StartsWith(serialized, kSerializationPrefix)) { return absl::InvalidArgumentError( absl::StrCat("Bad serialized ", type_name())); } absl::string_view data(serialized); data.remove_prefix(kSerializationPrefix.size()); auto result = std::make_unique<PluginProgram>(); result->data = data; return result; } static char ID; }; [[maybe_unused]] char PluginProgramSerDes::ID = 0; bool register_plugin_program_serdes = ([]() { RegisterSerDes<PluginProgram>( std::make_unique<PluginProgramSerDes>()); }(), true); class PluginCompileOptionsSerDes : public llvm::RTTIExtends<PluginCompileOptionsSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::PluginCompileOptions"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions>) override { return std::make_unique<PluginCompileOptions>(); } static char ID; }; [[maybe_unused]] char PluginCompileOptionsSerDes::ID = 0; bool register_plugin_compile_options_serdes = ([]() { RegisterSerDes<PluginCompileOptions>( std::make_unique<PluginCompileOptionsSerDes>()); }(), true); } } }
#include <memory> #include <gtest/gtest.h> #include "xla/python/ifrt/plugin_program.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/serdes.pb.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/status.pb.h" #include "tsl/platform/statusor.h" #include "tsl/protobuf/error_codes.pb.h" namespace xla { namespace ifrt { namespace { TEST(PluginProgramSerDesTest, RoundTrip) { PluginProgram orig; orig.data = "foo"; TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(orig)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<PluginProgram> deserialized_program, Deserialize<PluginProgram>(serialized, nullptr)); EXPECT_EQ(deserialized_program->data, "foo"); } TEST(PluginCompileOptionsSerDesTest, RoundTrip) { PluginCompileOptions orig; TF_ASSERT_OK_AND_ASSIGN(Serialized serialized, Serialize(orig)); TF_EXPECT_OK( Deserialize<PluginCompileOptions>(serialized, nullptr) .status()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/plugin_program_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/plugin_program_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b0083186-28e1-4ea5-95ad-1a8f341b1df3
cpp
tensorflow/tensorflow
hlo_evaluator
third_party/xla/xla/hlo/evaluator/hlo_evaluator.cc
third_party/xla/xla/hlo/evaluator/hlo_evaluator_test.cc
#include "xla/hlo/evaluator/hlo_evaluator.h" #include <algorithm> #include <atomic> #include <cmath> #include <complex> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <functional> #include <iterator> #include <limits> #include <memory> #include <numeric> #include <optional> #include <random> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/internal/endian.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/memory/memory.h" #include "absl/numeric/bits.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "Eigen/Core" #include "xla/array2d.h" #include "xla/comparison_util.h" #include "xla/hlo/evaluator/hlo_evaluator_typed_visitor.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_clone_context.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/index_util.h" #include "xla/layout.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/primitive_util.h" #include "xla/service/call_graph.h" #include "xla/service/compilation_environments.h" #include "xla/service/cpu/runtime_single_threaded_matmul.h" #include "xla/service/hlo_module_config.h" #include "xla/service/logical_buffer.h" #include "xla/service/pattern_matcher.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/cpu_info.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using primitive_util::NativeTypeOf; template <typename OperandT> absl::StatusOr<Literal> Compare(const Shape& shape, Comparison comparison, LiteralSlice lhs_literal, LiteralSlice rhs_literal) { auto populate = [&](auto compare_op) -> absl::StatusOr<Literal> { Literal result(shape); TF_RETURN_IF_ERROR(result.PopulateParallel<bool>( [&](absl::Span<const int64_t> multi_index, int ) { auto lhs = lhs_literal.Get<OperandT>(multi_index); auto rhs = rhs_literal.Get<OperandT>(multi_index); if constexpr (is_specialized_floating_point_v<OperandT>) { if (comparison.IsTotalOrder()) { return compare_op(ToSignMagnitude(lhs), ToSignMagnitude(rhs)); } } return compare_op(lhs, rhs); })); return std::move(result); }; switch (comparison.GetDirection()) { case ComparisonDirection::kEq: return populate([](auto lhs, auto rhs) { return lhs == rhs; }); case ComparisonDirection::kNe: return populate([](auto lhs, auto rhs) { return lhs != rhs; }); case ComparisonDirection::kGe: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs >= rhs; }); } break; case ComparisonDirection::kGt: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs > rhs; }); } break; case ComparisonDirection::kLe: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs <= rhs; }); } break; case ComparisonDirection::kLt: if constexpr (!is_complex_v<OperandT>) { return populate([](auto lhs, auto rhs) { return lhs < rhs; }); } break; } LOG(FATAL) << "unhandled direction for conversion to Comparison: " << comparison.ToString(); } std::optional<bool> GetInstructionStaticValueAsBool( const HloInstruction* instruction) { HloEvaluator evaluator; absl::StatusOr<Literal> static_value = evaluator.Evaluate(instruction, {}, true); if (static_value.ok()) { return static_value->GetFirstElement<bool>(); } return std::nullopt; } template <PrimitiveType kType> struct PopulateParallelImpl { using NativeT = NativeTypeOf<kType>; static absl::Status Run( Literal& literal, absl::FunctionRef<Literal(absl::Span<const int64_t>, int)> literal_generator) { return literal.PopulateParallel<NativeT>( [&literal_generator](absl::Span<const int64_t> output_index, int thread_id) { return literal_generator(output_index, thread_id) .template Get<NativeT>({}); }); } }; template <PrimitiveType kType> struct PopulateImpl { using NativeT = NativeTypeOf<kType>; static absl::Status Run( Literal& literal, absl::FunctionRef<Literal(absl::Span<const int64_t>)> literal_generator) { return literal.Populate<NativeT>( [&literal_generator](absl::Span<const int64_t> output_index) { return literal_generator(output_index).template Get<NativeT>({}); }); } }; template <template <PrimitiveType> typename Trait, typename F> absl::Status Apply(Literal& literal, F&& literal_generator) { return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&, literal_generator = std::forward<F>(literal_generator)]( auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { return Trait<primitive_type_constant>::Run( literal, std::move(literal_generator)); } LOG(FATAL) << "Unhandled primitive type " << literal.shape().element_type(); }, literal.shape().element_type()); } absl::Status MakeEvalErrorDueToParamOrInfeed( const HloInstruction& eval_instruction) { absl::Status error = absl::FailedPreconditionError(absl::StrCat( "Failed to evaluate instruction (", eval_instruction.name(), ") since it depends on infeed or parameters to its parent computation (", eval_instruction.parent()->name(), ").")); std::string error_payload; error_payload.resize(sizeof(internal::EvalErrorDetail)); absl::little_endian::Store32( const_cast<char*>(error_payload.data()), static_cast<uint32_t>( internal::EvalErrorDetail::kDynamicValueDependence)); error.SetPayload(internal::kEvalErrorDetailUrl, absl::Cord(error_payload)); return error; } struct DynamicOrStaticInteger { std::optional<int64_t> static_value; bool is_dynamic() const { return !static_value.has_value(); } std::string ToString() const { return is_dynamic() ? std::string("DYNAMIC") : absl::StrCat(*static_value); } }; std::optional<DynamicOrStaticInteger> GetInstructionValueAsInteger( const HloInstruction* instruction, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { HloEvaluator evaluator; absl::StatusOr<Literal> static_value = evaluator.Evaluate(instruction, precomputed_analyses, true); if (static_value.ok()) { if (instruction->shape().element_type() == PrimitiveType::PRED) { return DynamicOrStaticInteger{ static_cast<int64_t>(static_value->GetFirstElement<bool>())}; } else { return DynamicOrStaticInteger{static_value->GetFirstInteger()}; } } std::optional<internal::EvalErrorDetail> eval_error_detail = internal::ParseEvalErrorDetail(static_value.status()); if (eval_error_detail.has_value() && *eval_error_detail == internal::EvalErrorDetail::kDynamicValueDependence) { return DynamicOrStaticInteger{std::nullopt}; } return std::nullopt; } struct ParamIndexAndValue { std::optional<int64_t> param_index; std::optional<DynamicOrStaticInteger> value; bool IsValid() const { return param_index.has_value() || value.has_value(); } std::string ToString() const { return absl::StrCat( "param_index:", !param_index.has_value() ? std::string("UNKNOWN") : absl::StrCat(*param_index), ",", "value:", !value.has_value() ? std::string("UNKONWN") : value->ToString()); } }; std::optional<ParamIndexAndValue> TryParsingInstructionAsParameterAndInteger( const HloInstruction* instruction, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (instruction->opcode() == HloOpcode::kCopy) { return TryParsingInstructionAsParameterAndInteger(instruction->operand(0), precomputed_analyses); } if (instruction->opcode() == HloOpcode::kCopyDone) { return TryParsingInstructionAsParameterAndInteger( instruction->operand(0)->operand(1), precomputed_analyses); } ParamIndexAndValue result; if (Match(instruction, match::GetTupleElement().WithOperand( 0, match::Parameter().WithParameterNum(0)))) { result.param_index = instruction->tuple_index(); } std::optional<DynamicOrStaticInteger> integer_value = GetInstructionValueAsInteger(instruction, precomputed_analyses); result.value = std::move(integer_value); if (!result.IsValid()) { return std::nullopt; } return std::optional<ParamIndexAndValue>(std::move(result)); } struct WhileCondComparison { ComparisonDirection comparison_direction; ParamIndexAndValue lhs; ParamIndexAndValue rhs; std::string ToString() const { return absl::StrCat("WhileCondComparison{", "LHS:{", lhs.ToString(), "},RHS:{", rhs.ToString(), "}}"); } }; using WhileCondComparisonOrNoOp = std::variant<WhileCondComparison, ParamIndexAndValue>; std::optional<ParamIndexAndValue> ParseComparisonOperand( const HloInstruction* operand, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (operand->opcode() == HloOpcode::kCopy || operand->opcode() == HloOpcode::kCopyStart || operand->opcode() == HloOpcode::kCopyDone) { return ParseComparisonOperand(operand->operand(0), precomputed_analyses); } std::optional<int64_t> param_index; if (Match(operand, match::GetTupleElement().WithOperand( 0, match::Parameter().WithParameterNum(0)))) { param_index = operand->tuple_index(); } std::optional<DynamicOrStaticInteger> operand_value = GetInstructionValueAsInteger(operand, precomputed_analyses); if (!param_index.has_value() && !operand_value.has_value()) { return std::nullopt; } return ParamIndexAndValue{param_index, operand_value}; } std::optional<WhileCondComparisonOrNoOp> PatternMatchLoopCondComparison( const HloInstruction* comparison, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { CHECK_EQ(comparison->opcode(), HloOpcode::kCompare); std::optional<ParamIndexAndValue> lhs = ParseComparisonOperand(comparison->operand(0), precomputed_analyses); std::optional<ParamIndexAndValue> rhs = ParseComparisonOperand(comparison->operand(1), precomputed_analyses); if (!lhs.has_value() || !rhs.has_value()) { return std::nullopt; } return WhileCondComparison{comparison->comparison_direction(), *std::move(lhs), *std::move(rhs)}; } std::optional<WhileCondComparisonOrNoOp> PatternMatchLoopCondRoot( const HloInstruction* loop_cond_root, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (loop_cond_root->opcode() == HloOpcode::kCopy) { return PatternMatchLoopCondRoot(loop_cond_root->operand(0), precomputed_analyses); } if (loop_cond_root->opcode() == HloOpcode::kCopyDone) { return PatternMatchLoopCondRoot(loop_cond_root->operand(0)->operand(1), precomputed_analyses); } if (loop_cond_root->opcode() == HloOpcode::kCompare) { return PatternMatchLoopCondComparison(loop_cond_root, precomputed_analyses); } if (Match(loop_cond_root, match::GetTupleElement().WithOperand( 0, match::Parameter().WithParameterNum(0)))) { if (loop_cond_root->shape().element_type() != PrimitiveType::PRED && loop_cond_root->shape().rank() != 0) { return std::nullopt; } return ParamIndexAndValue{{loop_cond_root->tuple_index()}}; } if (Match(loop_cond_root, match::GetTupleElement().WithOperand( 0, match::Call().WithNumOperands(1).WithOperand( 0, match::Parameter().WithParameterNum(0))))) { const HloInstruction* call_instruction = loop_cond_root->operand(0); const HloComputation* to_apply = call_instruction->to_apply(); const HloInstruction* to_apply_root = to_apply->root_instruction(); if (Match(to_apply_root, match::Tuple())) { return PatternMatchLoopCondRoot( to_apply_root->operand(loop_cond_root->tuple_index()), precomputed_analyses); } } if (Match(loop_cond_root, match::GetTupleElement().WithOperand(0, match::Tuple()))) { const HloInstruction* new_cond_root = loop_cond_root->operand(0)->operand(loop_cond_root->tuple_index()); return PatternMatchLoopCondRoot(new_cond_root, precomputed_analyses); } return std::nullopt; } std::optional<DynamicOrStaticInteger> PatternMatchInductionVarUpdate( const HloInstruction* induction_var_update, int64_t tuple_index, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (induction_var_update->opcode() == HloOpcode::kCopy) { return PatternMatchInductionVarUpdate(induction_var_update->operand(0), tuple_index, precomputed_analyses); } if (induction_var_update->opcode() == HloOpcode::kCopyDone) { return PatternMatchInductionVarUpdate( induction_var_update->operand(0)->operand(1), tuple_index, precomputed_analyses); } std::optional<ParamIndexAndValue> update_param_index_and_value = TryParsingInstructionAsParameterAndInteger(induction_var_update, precomputed_analyses); if (update_param_index_and_value.has_value()) { if (update_param_index_and_value->param_index.has_value()) { if (*update_param_index_and_value->param_index == tuple_index) { VLOG(3) << "PatternMatchInductionVarUpdate, pattern: [induc_var]."; return DynamicOrStaticInteger{0}; } else { VLOG(3) << "PatternMatchInductionVarUpdate, induction variable is set to " "another parameter value. Parsed update: " << update_param_index_and_value->ToString(); return std::nullopt; } } if (update_param_index_and_value->value.has_value() && !update_param_index_and_value->value->is_dynamic()) { VLOG(3) << "PatternMatchInductionVarUpdate, induction variable is set to " "a constant. Parsed update: " << update_param_index_and_value->ToString(); return std::nullopt; } } if (induction_var_update->opcode() != HloOpcode::kAdd && induction_var_update->opcode() != HloOpcode::kSubtract) { return std::nullopt; } bool negate_update = induction_var_update->opcode() == HloOpcode::kSubtract; const HloInstruction* update_lhs = induction_var_update->operand(0); VLOG(3) << "PatternMatchInductionVarUpdate, LHS: " << update_lhs->ToString(); std::optional<ParamIndexAndValue> update_lhs_param_index_and_value = TryParsingInstructionAsParameterAndInteger(update_lhs, precomputed_analyses); const HloInstruction* update_rhs = induction_var_update->operand(1); VLOG(3) << "PatternMatchInductionVarUpdate, RHS: " << update_rhs->ToString(); std::optional<ParamIndexAndValue> update_rhs_param_index_and_value = TryParsingInstructionAsParameterAndInteger(update_rhs, precomputed_analyses); if (!update_lhs_param_index_and_value.has_value() || !update_lhs_param_index_and_value->value.has_value() || !update_rhs_param_index_and_value.has_value() || !update_rhs_param_index_and_value->value.has_value()) { VLOG(3) << "PatternMatchInductionVarUpdate, failed to parse operands. " "Induction var update instruction: " << induction_var_update->ToString(); return std::nullopt; } VLOG(3) << "update_lhs: " << update_lhs->ToString(); VLOG(3) << "update_rhs: " << update_rhs->ToString(); if (update_lhs_param_index_and_value->param_index.has_value() && *update_lhs_param_index_and_value->param_index == tuple_index && update_lhs_param_index_and_value->value->is_dynamic()) { if (update_rhs_param_index_and_value->value->is_dynamic()) { return update_rhs_param_index_and_value->value; } int64_t update_value = *update_rhs_param_index_and_value->value->static_value; return negate_update ? DynamicOrStaticInteger{-update_value} : DynamicOrStaticInteger{update_value}; } if (update_rhs_param_index_and_value->param_index.has_value() && *update_rhs_param_index_and_value->param_index == tuple_index && update_rhs_param_index_and_value->value->is_dynamic() && !negate_update) { return update_lhs_param_index_and_value->value; } VLOG(3) << "Failed to pattern match induction variable update."; return std::nullopt; } std::optional<DynamicOrStaticInteger> PatternMatchInductionVarUpdateFromLoopBodyRoot( const HloInstruction* loop_body_root, int64_t tuple_index, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { if (loop_body_root->opcode() != HloOpcode::kTuple || loop_body_root->operand_count() <= tuple_index) { return std::nullopt; } const HloInstruction* induction_var_update = loop_body_root->operand(tuple_index); return PatternMatchInductionVarUpdate(induction_var_update, tuple_index, precomputed_analyses); } std::optional<bool> PatternMatchLoopCondVarOverride( const HloInstruction* loop_body_root, int64_t tuple_index) { if (!Match(loop_body_root, match::Tuple()) || loop_body_root->operand_count() <= tuple_index) { return std::nullopt; } const HloInstruction* cond_var_override = loop_body_root->operand(tuple_index); return GetInstructionStaticValueAsBool(cond_var_override); } std::optional<DynamicOrStaticInteger> EvaluateWhileLoopParamInitValue( const HloInstruction* param_instruction, int64_t tuple_index) { if (param_instruction->opcode() != HloOpcode::kTuple) { return std::nullopt; } const HloInstruction* element_instruction = param_instruction->operand(tuple_index); return GetInstructionValueAsInteger(element_instruction, {}); } } namespace internal { constexpr absl::string_view kEvalErrorDetailUrl = "EvalErrorDetailUrl"; std::optional<EvalErrorDetail> ParseEvalErrorDetail(const absl::Status& error) { auto error_detail = error.GetPayload(kEvalErrorDetailUrl); if (!error_detail.has_value() || error_detail->empty()) { return std::nullopt; } return static_cast<EvalErrorDetail>( absl::little_endian::Load32(error_detail->Flatten().data())); } } std::optional<ParsedWhileLoop> HandleNoopLoopCondition( const ParamIndexAndValue& parameter_index_and_value, const HloInstruction* while_operand, const HloComputation* while_body) { CHECK(parameter_index_and_value.param_index.has_value()); int64_t loop_cond_var_index = *parameter_index_and_value.param_index; std::optional<DynamicOrStaticInteger> noop_value = EvaluateWhileLoopParamInitValue(while_operand, loop_cond_var_index); if (noop_value.has_value()) { if (noop_value->is_dynamic()) { return kParsedDynamicWhileLoop; } else if (*noop_value->static_value == 0) { return ParsedWhileLoop{ ParsedStaticWhileLoop{0, loop_cond_var_index, 0, 0, 0}}; } std::optional<bool> updated_loop_cond_var = PatternMatchLoopCondVarOverride( while_body->root_instruction(), loop_cond_var_index); if (updated_loop_cond_var.has_value()) { if (!*updated_loop_cond_var) { return ParsedWhileLoop{ ParsedStaticWhileLoop{1, loop_cond_var_index, 0, 1, 1}}; } else { return ParsedWhileLoop{ ParsedStaticWhileLoop{-1, loop_cond_var_index, 0, 0, 1}}; } } } return std::nullopt; } int64_t ComputeTripCountFromComparison(int64_t init, int64_t bound, int64_t update, bool comparison_with_equal) { if (comparison_with_equal && init > bound) { return 0; } if (!comparison_with_equal && init >= bound) { return 0; } int64_t distance = bound - init; int64_t trip_count = (distance + update - 1) / update; CHECK_GE(trip_count, 0); if (comparison_with_equal && (bound - init) % update == 0) { trip_count += 1; } return trip_count; } std::optional<ParsedWhileLoop> HandleStaticLoopComparison( int64_t lhs, int64_t rhs, Comparison::Direction comparison_direction) { if ((comparison_direction == Comparison::Direction::kLt && lhs < rhs) || (comparison_direction == Comparison::Direction::kLe && lhs <= rhs) || (comparison_direction == Comparison::Direction::kGt && lhs > rhs) || (comparison_direction == Comparison::Direction::kGe && lhs >= rhs) || (comparison_direction == Comparison::Direction::kEq && lhs == rhs) || (comparison_direction == Comparison::Direction::kNe && lhs != rhs)) { return ParsedWhileLoop{ParsedStaticWhileLoop{-1, -1, 0, 0, 1}}; } return ParsedWhileLoop{ParsedStaticWhileLoop{0, -1, 0, 0, 0}}; } std::optional<ParsedWhileLoop> PatternMatchParseWhileLoop( const HloInstruction* while_op, HloEvaluator::PrecomputedAnalyses precomputed_analyses) { VLOG(3) << "PatternMatchParseWhileLoop, while_op: " << while_op->name(); const HloComputation* while_cond = while_op->while_condition(); const HloComputation* while_body = while_op->while_body(); const HloInstruction* while_operand = while_op->operand(0); std::optional<WhileCondComparisonOrNoOp> loop_comparison_or_noop = PatternMatchLoopCondRoot(while_cond->root_instruction(), precomputed_analyses); if (!loop_comparison_or_noop.has_value()) { return std::nullopt; } if (loop_comparison_or_noop->index() == 1) { return HandleNoopLoopCondition( std::get<ParamIndexAndValue>(*loop_comparison_or_noop), while_operand, while_body); } CHECK_EQ(loop_comparison_or_noop->index(), 0); WhileCondComparison loop_comparison = std::get<WhileCondComparison>(*loop_comparison_or_noop); CHECK(loop_comparison.lhs.IsValid() && loop_comparison.rhs.IsValid()); if (while_operand->opcode() != HloOpcode::kTuple) { return std::nullopt; } if (!loop_comparison.lhs.value.has_value() || !loop_comparison.rhs.value.has_value()) { return std::nullopt; } CHECK(loop_comparison.lhs.value.has_value()); CHECK(loop_comparison.rhs.value.has_value()); VLOG(3) << loop_comparison.ToString(); if (loop_comparison.lhs.value->is_dynamic() && loop_comparison.rhs.value->is_dynamic()) { VLOG(3) << "Both operands of the loop condition comparison are dynamic."; return std::nullopt; } CHECK(!loop_comparison.lhs.value->is_dynamic() || !loop_comparison.rhs.value->is_dynamic()); if (!loop_comparison.lhs.value->is_dynamic() && !loop_comparison.rhs.value->is_dynamic()) { int64_t lhs_value = *loop_comparison.lhs.value->static_value; int64_t rhs_value = *loop_comparison.rhs.value->static_value; Comparison::Direction comparison_direction = loop_comparison.comparison_direction; return HandleStaticLoopComparison(lhs_value, rhs_value, comparison_direction); } std::optional<DynamicOrStaticInteger> induction_var_init; std::optional<DynamicOrStaticInteger> induction_var_update; bool lhs_is_induction_var = true; if (loop_comparison.lhs.value->is_dynamic()) { if (loop_comparison.lhs.param_index.has_value()) { VLOG(3) << "Comparison LHS is induction variable."; induction_var_init = EvaluateWhileLoopParamInitValue( while_operand, *loop_comparison.lhs.param_index); induction_var_update = PatternMatchInductionVarUpdateFromLoopBodyRoot( while_body->root_instruction(), *loop_comparison.lhs.param_index, precomputed_analyses); lhs_is_induction_var = true; } } else { CHECK(loop_comparison.rhs.value->is_dynamic()); if (loop_comparison.rhs.param_index.has_value()) { VLOG(3) << "Comparison RHS is induction variable."; induction_var_init = EvaluateWhileLoopParamInitValue( while_operand, *loop_comparison.rhs.param_index); induction_var_update = PatternMatchInductionVarUpdateFromLoopBodyRoot( while_body->root_instruction(), *loop_comparison.rhs.param_index, precomputed_analyses); lhs_is_induction_var = false; } } if (!induction_var_init.has_value() || !induction_var_update.has_value()) { return std::nullopt; } VLOG(3) << "induction_var_init: " << induction_var_init->ToString(); VLOG(3) << "induction_var_update: " << induction_var_update->ToString(); if (induction_var_init->is_dynamic() || induction_var_update->is_dynamic()) { return kParsedDynamicWhileLoop; } int64_t init_value = *induction_var_init->static_value; int64_t update_value = *induction_var_update->static_value; Comparison::Direction comparison_direction = loop_comparison.comparison_direction; ParsedWhileLoop parsed_static_while_loop = ParsedWhileLoop{ ParsedStaticWhileLoop{0, -1, init_value, update_value, -1}}; if (lhs_is_induction_var) { CHECK(loop_comparison.rhs.value.has_value() && !loop_comparison.rhs.value->is_dynamic()); int64_t bound = *loop_comparison.rhs.value->static_value; parsed_static_while_loop.static_while_loop->induction_var_index = *loop_comparison.lhs.param_index; parsed_static_while_loop.static_while_loop->loop_bound = bound; if (update_value > 0 && (comparison_direction == Comparison::Direction::kLt || comparison_direction == Comparison::Direction::kLe)) { int64_t trip_count = ComputeTripCountFromComparison( init_value, bound, update_value, comparison_direction == Comparison::Direction::kLe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } if (update_value < 0 && (comparison_direction == Comparison::Direction::kGt || comparison_direction == Comparison::Direction::kGe)) { int64_t trip_count = ComputeTripCountFromComparison( bound, init_value, -update_value, comparison_direction == Comparison::Direction::kGe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } return std::nullopt; } CHECK(loop_comparison.lhs.value.has_value() && !loop_comparison.lhs.value->is_dynamic()); int64_t bound = *loop_comparison.lhs.value->static_value; parsed_static_while_loop.static_while_loop->induction_var_index = *loop_comparison.rhs.param_index; parsed_static_while_loop.static_while_loop->loop_bound = bound; if (update_value > 0 && (comparison_direction == Comparison::Direction::kGt || comparison_direction == Comparison::Direction::kGe)) { int64_t trip_count = ComputeTripCountFromComparison( init_value, bound, update_value, comparison_direction == Comparison::Direction::kGe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } if (update_value < 0 && (comparison_direction == Comparison::Direction::kLt || comparison_direction == Comparison::Direction::kLe)) { int64_t trip_count = ComputeTripCountFromComparison( bound, init_value, -update_value, comparison_direction == Comparison::Direction::kLe); parsed_static_while_loop.static_while_loop->trip_count = trip_count; return parsed_static_while_loop; } return std::nullopt; } HloEvaluator::HloEvaluator(int64_t max_loop_iterations) : max_loop_iterations_(max_loop_iterations) { for (int i = PrimitiveType_MIN; i < PrimitiveType_ARRAYSIZE; ++i) { if (!primitive_util::IsArrayType(PrimitiveType{i})) { continue; } primitive_util::PrimitiveTypeSwitch<void>( [&](auto primitive_type) { if constexpr (primitive_util::IsArrayType(primitive_type)) { using NativeT = primitive_util::NativeTypeOf<primitive_type>; if constexpr (primitive_util::IsSignedIntegralType( primitive_type)) { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT, int64_t>>( this); } else if constexpr (primitive_util::IsUnsignedIntegralType( primitive_type)) { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT, uint64_t>>( this); } else if constexpr (primitive_util::IsFloatingPointType( primitive_type) && sizeof(NativeT) < sizeof(float)) { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT, float>>( this); } else { typed_visitors_[primitive_type] = std::make_unique<HloEvaluatorTypedVisitor<NativeT>>(this); } } }, PrimitiveType{i}); } typed_visitors_[TUPLE] = std::make_unique<ConstFunctionVisitor>([](const HloInstruction*) { return Unimplemented( "HloEvaluatorTypedVisitor: unhandled primitive type: TUPLE."); }); typed_visitors_[OPAQUE_TYPE] = std::make_unique<ConstFunctionVisitor>([](const HloInstruction*) { return Unimplemented( "HloEvaluatorTypedVisitor: unhandled primitive type: OPAQUE_TYPE."); }); typed_visitors_[TOKEN] = std::make_unique<ConstFunctionVisitor>([](const HloInstruction*) { return Unimplemented( "HloEvaluatorTypedVisitor: unhandled primitive type: TOKEN."); }); } absl::StatusOr<Literal> HloEvaluator::Evaluate( const HloComputation& computation, absl::Span<const Literal* const> arg_literals) { CHECK(computation.parent() != nullptr); XLA_VLOG_LINES( 2, "HloEvaluator::Evaluate computation:\n" + computation.ToString()); OnEvaluateComputation(computation); if (arg_literals.size() != computation.num_parameters()) { return InvalidArgument( "Expected %d argument%s, but got %d.", computation.num_parameters(), computation.num_parameters() == 1 ? "" : "s", arg_literals.size()); } for (int64_t i = 0; i < arg_literals.size(); ++i) { const auto& computation_shape = computation.parameter_instruction(i)->shape(); const auto& arg_shape = arg_literals[i]->shape(); if (!Shape::Equal().MinorToMajorOnlyInLayout()(computation_shape, arg_shape)) { return InvalidArgument( "Shape mismatch at parameter %d. Computation expected %s, but arg " "was %s.", i, ShapeUtil::HumanStringWithLayout(computation_shape), ShapeUtil::HumanStringWithLayout(arg_shape)); } } evaluated_.clear(); arg_literals_.clear(); call_graph_cache_.reset(); tuple_points_to_analysis_cache_.reset(); for (const auto& literal_ptr : arg_literals) { arg_literals_.push_back(&*literal_ptr); } if (computation.parent()->config().seed()) { seed_ = computation.parent()->config().seed(); } else { static std::atomic<uint64_t> global_seed{std::random_device()()}; seed_ = global_seed.fetch_add(1); } engine_.seed(seed_); TF_RETURN_IF_ERROR(computation.Accept(this)); const Literal& result = GetEvaluatedLiteralFor(computation.root_instruction()); if (VLOG_IS_ON(100)) { for (const HloInstruction* instr : computation.instructions()) { VLOG(100) << instr->name() << " = " << GetEvaluatedLiteralFor(instr); } } if (!result.IsKnown()) { return MakeEvalErrorDueToParamOrInfeed(*computation.root_instruction()); } return result.Clone(); } absl::StatusOr<Literal> HloEvaluator::Evaluate( const HloInstruction* instruction, PrecomputedAnalyses precomputed_analyses, bool recursively_evaluate_nonconstant_operands) { arg_literals_.clear(); evaluated_.clear(); call_graph_cache_.reset(); tuple_points_to_analysis_cache_.reset(); auto enable_partial_evaluation_cleanup = absl::MakeCleanup([this] { enable_partial_evaluation_ = false; }); enable_partial_evaluation_ = recursively_evaluate_nonconstant_operands; TF_RETURN_IF_ERROR( EvaluateInternal(instruction, precomputed_analyses, {}, recursively_evaluate_nonconstant_operands)); const Literal& result = GetEvaluatedLiteralFor(instruction); if (!result.IsKnown()) { return MakeEvalErrorDueToParamOrInfeed(*instruction); } return result.Clone(); } bool HloEvaluator::TryEvaluate(const HloInstruction* instruction, Literal* result, bool recursively_evaluate_nonconstant_operands) { CHECK(result != nullptr); auto result_or = Evaluate(instruction, {}, recursively_evaluate_nonconstant_operands); if (!result_or.ok()) { VLOG(1) << "TryEvaluate failed:" << result_or.status(); return false; } *result = std::move(result_or).value(); return true; } absl::StatusOr<Literal> HloEvaluator::EvaluateWithSubstitutions( const HloInstruction* instruction, const absl::flat_hash_map<const HloInstruction*, const LiteralBase*>& substitutions) { std::vector<std::unique_ptr<HloInstruction>> owned_operands; for (const HloInstruction* operand : instruction->operands()) { auto it = substitutions.find(operand); if (it == substitutions.end()) { owned_operands.push_back(operand->Clone()); } else { owned_operands.push_back( HloInstruction::CreateConstant(it->second->Clone())); } } std::vector<HloInstruction*> operands; operands.reserve(owned_operands.size()); for (auto& operand : owned_operands) { operands.push_back(operand.get()); } std::unique_ptr<HloInstruction> cloned_instruction = instruction->CloneWithNewOperands(instruction->shape(), operands); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseBinaryOp( HloOpcode opcode, const Literal& lhs, const Literal& rhs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateBinary(lhs.shape(), opcode, lhs_instr.get(), rhs_instr.get()); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseTernaryOp( HloOpcode opcode, const Literal& lhs, const Literal& rhs, const Literal& ehs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); std::unique_ptr<HloInstruction> ehs_instr = HloInstruction::CreateConstant(ehs.Clone()); TF_ASSIGN_OR_RETURN(auto output_shape, ShapeInference::InferTernaryOpShape( opcode, lhs.shape(), rhs.shape(), ehs.shape())); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateTernary(output_shape, opcode, lhs_instr.get(), rhs_instr.get(), ehs_instr.get()); return Evaluate(cloned_instruction.get()); } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseCompareOp( ComparisonDirection direction, const Literal& lhs, const Literal& rhs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateCompare( ShapeUtil::ChangeElementType(lhs.shape(), PRED), lhs_instr.get(), rhs_instr.get(), direction); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateElementwiseUnaryOp( HloOpcode opcode, const Literal& operand) { std::unique_ptr<HloInstruction> operand_instr = HloInstruction::CreateConstant(operand.Clone()); TF_ASSIGN_OR_RETURN(Shape inferred_shape, ShapeInference::InferUnaryOpShape( opcode, operand.shape())); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateUnary(inferred_shape, opcode, operand_instr.get()); auto result = Evaluate(cloned_instruction.get()); return result; } absl::StatusOr<Literal> HloEvaluator::EvaluateDotOp( const DotDimensionNumbers& dim_numbers, const PrecisionConfig& precision_config, const Literal& lhs, const Literal& rhs) { std::unique_ptr<HloInstruction> lhs_instr = HloInstruction::CreateConstant(lhs.Clone()); std::unique_ptr<HloInstruction> rhs_instr = HloInstruction::CreateConstant(rhs.Clone()); TF_ASSIGN_OR_RETURN( Shape dot_shape, ShapeInference::InferDotOpShape(lhs.shape(), rhs.shape(), dim_numbers, std::nullopt)); std::unique_ptr<HloInstruction> cloned_instruction = HloInstruction::CreateDot(dot_shape, lhs_instr.get(), rhs_instr.get(), dim_numbers, precision_config); return Evaluate(cloned_instruction.get()); } absl::Status HloEvaluator::EvaluateParameterFromCallerArgument( const HloInstruction* parameter, const ShapeIndex& shape_index, PrecomputedAnalyses analyses) { CHECK(!evaluated_.contains(parameter)); const HloComputation* parent_computation = parameter->parent(); std::vector<HloInstruction*> computation_callers = analyses.call_graph->GetComputationCallers(parent_computation); if (computation_callers.size() != 1) { return tsl::errors::FailedPrecondition( "The computation ", parent_computation->name(), " is called by ", computation_callers.size(), " callers and thus its argument value " "cannot be determined statically."); } const HloInstruction* computation_caller = computation_callers[0]; const HloInstruction* caller_operand = computation_caller->operand(0); if (computation_caller->opcode() != HloOpcode::kWhile && computation_caller->opcode() != HloOpcode::kCall) { return tsl::errors::FailedPrecondition( "The computation ", parent_computation->name(), " is called by ", "instruction ", computation_caller->name(), ", which is not yet supported."); } if (computation_caller->opcode() == HloOpcode::kWhile) { HloComputation* while_body = computation_caller->while_body(); TF_ASSIGN_OR_RETURN( const LogicalBuffer* logical_buffer, analyses.tuple_points_to->GetBufferDefinedAt( while_body->parameter_instruction(parameter->parameter_number()), shape_index)); const TuplePointsToAnalysis::BufferAliasVector& buffer_aliases = analyses.tuple_points_to->GetBufferAliases(*logical_buffer); bool unchanged_in_return = false; for (const BufferAlias& buffer_alias : buffer_aliases) { if (buffer_alias.instruction() == while_body->root_instruction() && buffer_alias.index() == shape_index) { unchanged_in_return = true; } } if (!unchanged_in_return) { return MakeEvalErrorDueToParamOrInfeed(*parameter); } } TF_RETURN_IF_ERROR( EvaluateInternal(caller_operand, analyses, shape_index, true)); const Literal& caller_operand_literal = GetEvaluatedLiteralFor(caller_operand); evaluated_[parameter] = Literal::CreateFromShapeWithUnknownLeafArrays(parameter->shape()); TF_RETURN_IF_ERROR(evaluated_[parameter].CopyFrom( caller_operand_literal, shape_index, shape_index)); return absl::OkStatus(); } std::vector<int64_t> HloEvaluator::GetS64Indices( absl::Span<HloInstruction* const> start_indices) { auto get_first_s64 = [&](const Literal& index) -> int64_t { return primitive_util::PrimitiveTypeSwitch<int64_t>( [&](auto primitive_type_constant) -> int64_t { if constexpr (primitive_util::IsIntegralType( primitive_type_constant)) { return static_cast<int64_t>( index.GetFirstElement<NativeTypeOf<primitive_type_constant>>()); } LOG(FATAL) << "GetS64Indices: unhandled primitive type for " << PrimitiveType_Name(index.shape().element_type()); }, index.shape().element_type()); }; std::vector<int64_t> start; start.reserve(start_indices.size()); for (HloInstruction* index : start_indices) { start.push_back(get_first_s64(GetEvaluatedLiteralFor(index))); } return start; } DimensionVector HloEvaluator::MakeDimMultipliers(const Shape& shape) { DimensionVector v(shape.rank()); int64_t scale = 1; for (auto dim : LayoutUtil::MinorToMajor(shape)) { v[dim] = scale; scale *= shape.dimensions(dim); } return v; } absl::Status HloEvaluator::EvaluateInternal( const HloInstruction* instruction, PrecomputedAnalyses precomputed_analyses, const ShapeIndex& shape_index, bool recursively_evaluate_nonconstant_operands) { if (IsAlreadyEvaluated(instruction, shape_index)) { return absl::OkStatus(); } if (!recursively_evaluate_nonconstant_operands) { if (!hlo_query::AllOperandsAreConstants(*instruction)) { return absl::FailedPreconditionError( absl::StrCat("Not all operands are constants. Instruction: ", instruction->ToString())); } } else { if (instruction->opcode() == HloOpcode::kGetTupleElement) { ShapeIndex new_shape_index = shape_index; new_shape_index.push_front(instruction->tuple_index()); TF_RETURN_IF_ERROR(EvaluateInternal( instruction->operand(0), precomputed_analyses, new_shape_index, true)); } else if (instruction->opcode() == HloOpcode::kTuple && !shape_index.empty()) { ShapeIndex new_shape_index = shape_index; int64_t tuple_index = new_shape_index.front(); new_shape_index.pop_front(); TF_RETURN_IF_ERROR( EvaluateInternal(instruction->operand(tuple_index), precomputed_analyses, new_shape_index, true)); } else if (instruction->opcode() == HloOpcode::kParameter) { CallGraph* call_graph = (precomputed_analyses.call_graph != nullptr) ? precomputed_analyses.call_graph : std::invoke([this, instruction]() -> CallGraph* { call_graph_cache_ = CallGraph::Build(instruction->GetModule()); return call_graph_cache_.get(); }); TuplePointsToAnalysis* tuple_points_to_analysis = (precomputed_analyses.tuple_points_to != nullptr) ? precomputed_analyses.tuple_points_to : std::invoke([this, instruction]() -> TuplePointsToAnalysis* { absl::StatusOr<std::unique_ptr<TuplePointsToAnalysis>> tuple_points_to_analysis = TuplePointsToAnalysis::Run(instruction->GetModule()); if (!tuple_points_to_analysis.ok()) { return nullptr; } tuple_points_to_analysis_cache_ = *std::move(tuple_points_to_analysis); return tuple_points_to_analysis_cache_.get(); }); if (call_graph && tuple_points_to_analysis) { absl::Status argument_eval_status = EvaluateParameterFromCallerArgument( instruction, shape_index, {tuple_points_to_analysis, call_graph}); if (!argument_eval_status.ok()) { VLOG(4) << "Failed to evaluate parameter " << instruction->name() << " from caller. Reason: " << argument_eval_status.message(); } else { VLOG(4) << "Successfully evaluated parameter: " << instruction->name(); } } } else { for (HloInstruction* operand : instruction->operands()) { TF_RETURN_IF_ERROR(EvaluateInternal( operand, precomputed_analyses, {}, true)); if ((!GetEvaluatedLiteralFor(operand).IsKnown() && instruction->opcode() != HloOpcode::kCopy && instruction->opcode() != HloOpcode::kCopyStart && instruction->opcode() != HloOpcode::kCopyDone && instruction->opcode() != HloOpcode::kAsyncStart && instruction->opcode() != HloOpcode::kAsyncUpdate && instruction->opcode() != HloOpcode::kAsyncDone && instruction->opcode() != HloOpcode::kWhile)) { evaluated_[instruction] = Literal::CreateFromShapeWithUnknownLeafArrays( instruction->shape()); return absl::OkStatus(); } } } } visitor_shape_index_ = shape_index; TF_RETURN_IF_ERROR(Preprocess(instruction)); TF_RETURN_IF_ERROR(instruction->Visit(this)); TF_RETURN_IF_ERROR(Postprocess(instruction)); return absl::OkStatus(); } absl::Status HloEvaluator::HandleBitcast(const HloInstruction* bitcast) { const Literal& operand_literal = GetEvaluatedLiteralFor(bitcast->operand(0)); Literal result(bitcast->shape()); TF_RET_CHECK(operand_literal.size_bytes() >= result.size_bytes()); memcpy(result.untyped_data(), operand_literal.untyped_data(), result.size_bytes()); evaluated_[bitcast] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleBitcastConvert(const HloInstruction* convert) { const HloInstruction* operand = convert->operand(0); TF_ASSIGN_OR_RETURN( Literal result, GetEvaluatedLiteralFor(operand).BitcastConvert(convert->shape())); evaluated_[convert] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleGetDimensionSize( const HloInstruction* get_dimension_size) { const HloInstruction* operand = get_dimension_size->operand(0); int64_t dim = get_dimension_size->dimension(); if (dynamic_dimension_inference_ == nullptr) { return InvalidArgument( "Evaluator cannot evaluate get_dimension_size without " "set_dynamic_dimension_inference."); } const HloInstruction* dynamic_size = dynamic_dimension_inference_->GetDynamicSize(operand, {}, dim); if (dynamic_size != nullptr) { evaluated_[get_dimension_size] = GetEvaluatedLiteralFor(dynamic_size).Clone(); return absl::OkStatus(); } const Shape& shape = get_dimension_size->operand(0)->shape(); Literal output(ShapeUtil::MakeShape(S32, {})); output.PopulateWithValue( static_cast<int32_t>(shape.dimensions(get_dimension_size->dimension()))); evaluated_[get_dimension_size] = std::move(output); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSetDimensionSize( const HloInstruction* set_dimension_size) { const Literal& operand_literal = GetEvaluatedLiteralFor(set_dimension_size->operand(0)); Literal result(set_dimension_size->shape()); memcpy(result.untyped_data(), operand_literal.untyped_data(), operand_literal.size_bytes()); const Literal& size_literal = GetEvaluatedLiteralFor(set_dimension_size->operand(1)); result.SetDynamicSize(set_dimension_size->dimension(), size_literal.Get<int32_t>({})); evaluated_[set_dimension_size] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleParameter(const HloInstruction* parameter) { if (!IsAlreadyEvaluated(parameter, visitor_shape_index_)) { if (!enable_partial_evaluation_) { return tsl::errors::FailedPrecondition( "Failed to evaluate instruction since its operands are unknown " "or undetermined and partial evaluation is not enabled."); } evaluated_[parameter] = Literal::CreateFromShapeWithUnknownLeafArrays(parameter->shape()); return absl::OkStatus(); } if (!arg_literals_.empty()) { CHECK_LT(parameter->parameter_number(), arg_literals_.size()); #ifndef NDEBUG const Literal* input_literal = arg_literals_[parameter->parameter_number()]; VLOG(2) << "Parameter evaluated to: " << input_literal->ToString(); DCHECK(Shape::Equal().MinorToMajorOnlyInLayout()(parameter->shape(), input_literal->shape())) << "parameter shape is: " << ShapeUtil::HumanStringWithLayout(parameter->shape()) << ", but input literal shape is: " << ShapeUtil::HumanStringWithLayout(input_literal->shape()); #endif } return absl::OkStatus(); } absl::Status HloEvaluator::HandleInfeed(const HloInstruction* infeed) { if (!enable_partial_evaluation_) { return tsl::errors::FailedPrecondition( "Failed to evaluate instruction since its operands are unknown " "or undetermined and partial evaluation is not enabled."); } evaluated_[infeed] = Literal::CreateFromShapeWithUnknownLeafArrays(infeed->shape()); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConstant(const HloInstruction*) { return absl::OkStatus(); } absl::Status HloEvaluator::HandleReshape(const HloInstruction* reshape) { TF_ASSIGN_OR_RETURN(evaluated_[reshape], GetEvaluatedLiteralFor(reshape->operand(0)) .Reshape(reshape->shape().dimensions())); return absl::OkStatus(); } absl::Status HloEvaluator::HandleTranspose(const HloInstruction* transpose) { evaluated_[transpose] = GetEvaluatedLiteralFor(transpose->operand(0)) .Transpose(transpose->dimensions()); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConcatenate( const HloInstruction* concatenate) { absl::Span<HloInstruction* const> operands(concatenate->operands()); const Shape& reference_shape = operands[0]->shape(); CHECK(reference_shape.IsArray()); const int64_t rank = reference_shape.rank(); const int64_t concat_dim = concatenate->dimensions()[0]; CHECK_GE(concat_dim, 0); CHECK_LT(concat_dim, rank); DimensionVector concat_dimensions(reference_shape.dimensions().begin(), reference_shape.dimensions().end()); for (int64_t i = 1; i < operands.size(); ++i) { const Shape& operand_shape = operands[i]->shape(); CHECK(operand_shape.IsArray()); concat_dimensions[concat_dim] += ShapeUtil::GetDimension(operand_shape, concat_dim); } auto result_literal = LiteralUtil::CreateFromDimensions( reference_shape.element_type(), concat_dimensions); DimensionVector source_indices(rank, 0); DimensionVector dest_indices(concat_dimensions.size(), 0); for (auto operand : operands) { const Shape& operand_shape = operand->shape(); TF_RETURN_IF_ERROR(result_literal.CopySliceFrom( GetEvaluatedLiteralFor(operand), source_indices, dest_indices, operand_shape.dimensions())); dest_indices[concat_dim] += ShapeUtil::GetDimension(operand_shape, concat_dim); } evaluated_[concatenate] = std::move(result_literal); return absl::OkStatus(); } absl::Status HloEvaluator::HandleIsFinite(const HloInstruction* is_finite) { auto operand = is_finite->operand(0); auto elem_ty = operand->shape().element_type(); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<bool, NativeT>( is_finite, [](NativeT elem_operand) { return Eigen::numext::isfinite(elem_operand); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[is_finite], std::move(result_or)); return absl::OkStatus(); } return InvalidArgument( "expected element type in shape to be floating point, but got: %s", PrimitiveType_Name(elem_ty)); }, elem_ty); } absl::Status HloEvaluator::HandleReal(const HloInstruction* real) { auto operand = real->operand(0); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<NativeT, NativeT>( real, [](NativeT elem_operand) { return elem_operand; }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[real], std::move(result_or)); return absl::OkStatus(); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<typename NativeT::value_type, NativeT>( real, [](NativeT elem_operand) { return std::real(elem_operand); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[real], std::move(result_or)); return absl::OkStatus(); } LOG(FATAL) << "HandleReal: unknown/unhandled primitive type: " << PrimitiveType_Name(operand->shape().element_type()); }, operand->shape().element_type()); } absl::Status HloEvaluator::HandleImag(const HloInstruction* imag) { auto operand = imag->operand(0); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<NativeT, NativeT>( imag, [](NativeT elem_operand) { return NativeT(0); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[imag], std::move(result_or)); return absl::OkStatus(); } if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; auto result_or = ElementWiseUnaryOpImpl<typename NativeT::value_type, NativeT>( imag, [](NativeT elem_operand) { return std::imag(elem_operand); }, GetEvaluatedLiteralFor(operand)); TF_ASSIGN_OR_RETURN(evaluated_[imag], std::move(result_or)); return absl::OkStatus(); } LOG(FATAL) << "HandleImag: unknown/unhandled primitive type: " << PrimitiveType_Name(operand->shape().element_type()); }, operand->shape().element_type()); } absl::Status HloEvaluator::HandleComplex(const HloInstruction* complex) { const Literal& real = GetEvaluatedLiteralFor(complex->operand(0)); const Literal& imag = GetEvaluatedLiteralFor(complex->operand(1)); TF_RET_CHECK(ShapeUtil::Compatible(real.shape(), imag.shape())); Literal result(complex->shape()); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsComplexType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; TF_RETURN_IF_ERROR(result.Populate<NativeT>( [&](absl::Span<const int64_t> multi_index) { return NativeT( real.Get<typename NativeT::value_type>(multi_index), imag.Get<typename NativeT::value_type>(multi_index)); })); evaluated_[complex] = std::move(result); return absl::OkStatus(); } LOG(FATAL) << "HandleComplex: unknown/unhandled primitive type: " << PrimitiveType_Name(complex->shape().element_type()); }, complex->shape().element_type()); } absl::Status HloEvaluator::HandleCompare(const HloInstruction* compare) { ComparisonDirection direction = compare->comparison_direction(); ComparisonOrder order = compare->comparison_order(); auto lhs = compare->operand(0); auto rhs = compare->operand(1); DCHECK(ShapeUtil::SameDimensions(compare->shape(), rhs->shape()) && ShapeUtil::SameDimensions(lhs->shape(), rhs->shape())); TF_RET_CHECK(lhs->shape().element_type() == rhs->shape().element_type()); auto element_type = lhs->shape().element_type(); Comparison comparison(direction, element_type, order); const Literal& lhs_literal = GetEvaluatedLiteralFor(lhs); const Literal& rhs_literal = GetEvaluatedLiteralFor(rhs); return primitive_util::PrimitiveTypeSwitch<absl::Status>( [&](auto primitive_type_constant) -> absl::Status { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { using NativeT = primitive_util::NativeTypeOf<primitive_type_constant>; TF_ASSIGN_OR_RETURN(evaluated_[compare], Compare<NativeT>(compare->shape(), comparison, lhs_literal, rhs_literal)); return absl::OkStatus(); } LOG(FATAL) << "HandleCompare: unknown primitive type: " << PrimitiveType_Name(element_type); }, element_type); } absl::Status HloEvaluator::HandleTuple(const HloInstruction* tuple) { std::vector<const Literal*> operand_literals; std::vector<Literal> operand_literal_values; if (!visitor_shape_index_.empty()) { int64_t tuple_index = visitor_shape_index_.front(); operand_literal_values.resize(tuple->operand_count()); for (int operand_index = 0; operand_index < tuple->operand_count(); ++operand_index) { if (operand_index == tuple_index) { operand_literals.push_back( &GetEvaluatedLiteralFor(tuple->operand(operand_index))); } else { operand_literal_values[operand_index] = Literal::CreateFromShapeWithUndeterminedLeafArrays( ShapeUtil::GetSubshape(tuple->shape(), {operand_index})); operand_literals.push_back(&operand_literal_values[operand_index]); } } } else { for (auto operand : tuple->operands()) { operand_literals.push_back(&GetEvaluatedLiteralFor(operand)); } } std::vector<const Shape*> element_shapes; element_shapes.reserve(operand_literals.size()); for (const auto* element : operand_literals) { element_shapes.push_back(&element->shape()); } Literal new_result = Literal::CreateFromShapeWithUndeterminedLeafArrays( ShapeUtil::MakeTupleShapeWithPtrs(element_shapes)); for (int i = 0, end = operand_literals.size(); i < end; ++i) { TF_RETURN_IF_ERROR( new_result.CopyFrom(*operand_literals[i], {i})); } if (evaluated_.contains(tuple)) { CHECK(new_result.IsDetermined(visitor_shape_index_)); TF_RETURN_IF_ERROR( evaluated_[tuple].CopyFrom(std::move(new_result), visitor_shape_index_, visitor_shape_index_)); } else { evaluated_[tuple] = std::move(new_result); } return absl::OkStatus(); } namespace { template <typename ToType, typename FromType> struct TypeConverter { static inline ToType GetAs(FromType value) { return static_cast<ToType>(value); } }; template <typename FromType> struct TypeConverter<float, FromType> { static inline float GetAs(FromType value) { return static_cast<float>(value.real()); } }; template <typename ComplexType> class FftTransform { public: explicit FftTransform(const HloInstruction* fft) : fft_type_(fft->fft_type()), fft_rank_(fft->fft_length().size()), fft_lengths_(fft->fft_length()) { absl::c_reverse(fft_lengths_); } absl::Status ComputeFft(const HloInstruction* fft, const Literal& input_literal, Literal* output_literal) { const Shape& input_shape = input_literal.shape(); const Shape& output_shape = fft->shape(); TF_RETURN_IF_ERROR(CheckParameters(input_shape, output_shape)); const auto fft_strides = ComputeStrides(fft_lengths_); const int64_t fft_size = fft_strides[fft_rank_]; if (fft_size > 0) { std::vector<ComplexType> data(fft_size); int64_t buffer_size = 0; for (auto len : fft_lengths_) { int64_t size = absl::has_single_bit(static_cast<uint64_t>(len)) ? len * 2 : len; buffer_size = std::max(buffer_size, size); } std::vector<ComplexType> buffer(buffer_size); const auto input_lengths = GetDimensionLengths(input_literal); const auto output_lengths = GetDimensionLengths(*output_literal); const auto input_strides = ComputeStrides(input_lengths, input_literal); const auto output_strides = ComputeStrides(output_lengths, *output_literal); auto base_case = [&](int64_t axis, int64_t output_index, int64_t input_index, bool within_src_bounds) { if (axis == fft_rank_ - 1) { CHECK(within_src_bounds); bool input_is_zero = CopyDataFromInput( input_literal, input_index, fft_size, fft_lengths_, fft_strides, input_lengths, input_strides, absl::MakeSpan(data)); if (!input_is_zero) { Sweep(fft_lengths_, fft_strides, absl::MakeSpan(data), absl::MakeSpan(buffer)); } CopyDataToOutput(absl::MakeSpan(data), output_index, fft_lengths_, fft_strides, output_lengths, output_strides, output_literal); return true; } return false; }; GenerateIndices(output_lengths, output_strides, input_lengths, input_strides, input_shape.rank(), 0, 0, base_case); } return absl::OkStatus(); } private: static bool GatherToBuffer(absl::Span<ComplexType> data, int64_t length, int64_t start, int64_t stride, bool expand_input, absl::Span<ComplexType> buffer) { CHECK_GE(buffer.size(), length); bool input_is_zero = true; const int64_t ub = expand_input ? length / 2 + 1 : length; CHECK_GE(data.size(), start + (ub - 1) * stride); for (int64_t k = 0; k < ub; k++) { ComplexType value = data[start + k * stride]; input_is_zero &= value == ComplexType(0.0, 0.0); buffer[k] = value; if (expand_input) { if (k > 0 && k < (length - ub + 1)) { buffer[length - k] = std::conj(value); } } } return input_is_zero; } static inline ComplexType Twiddle(int64_t k, int64_t length, bool inverse) { auto coeff = std::exp(ComplexType(0.0, -2.0 * M_PI * k / length)); return inverse ? std::conj(coeff) : coeff; } static void NaiveDft1D(int64_t length, int64_t start, int64_t stride, bool inverse, bool contract_output, bool expand_input, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { const bool input_is_zero = GatherToBuffer(data, length, start, stride, expand_input, buffer); if (!input_is_zero) { const int64_t ub = contract_output ? length / 2 + 1 : length; for (int64_t k = 0; k < ub; k++) { ComplexType value = ComplexType(0.0, 0.0); for (int n = 0; n < length; n++) { value += buffer[n] * Twiddle(n * k, length, inverse); } data[start + k * stride] = inverse ? value / ComplexType(length, 0.0) : value; } } } static void Fft1D(int64_t length, int64_t start, int64_t stride, bool inverse, bool contract_output, bool expand_input, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { CHECK(absl::has_single_bit(static_cast<uint64_t>(length))); const bool input_is_zero = GatherToBuffer(data, length, start, stride, expand_input, buffer); if (!input_is_zero) { auto generate_twiddles = [](int64_t length, bool inverse) { std::vector<ComplexType> twiddles; twiddles.reserve(length / 2); for (int64_t k = 0; k < length / 2; k++) { twiddles.push_back(Twiddle(k, length, inverse)); } return twiddles; }; int64_t in_base = length; int64_t out_base = 0; for (int64_t num_blocks = 1; num_blocks < length; num_blocks *= 2) { std::swap(in_base, out_base); auto twiddles = generate_twiddles(num_blocks * 2, inverse); const int64_t block_size = length / num_blocks; const int64_t next_iteration_block_size = block_size / 2; for (int64_t block = 0; block < num_blocks; block++) { const int64_t in_offset = in_base + block * block_size; const int64_t out_offset = out_base + block * next_iteration_block_size; for (int64_t pair = 0; pair < block_size / 2; pair++) { const ComplexType even = buffer[in_offset + pair]; const ComplexType odd = buffer[in_offset + block_size / 2 + pair]; const ComplexType twiddled_odd = twiddles[block] * odd; buffer[out_offset + pair] = even + twiddled_odd; buffer[out_offset + length / 2 + pair] = even - twiddled_odd; } } } const int64_t ub = contract_output ? length / 2 + 1 : length; for (int64_t k = 0; k < ub; k++) { ComplexType value = buffer[out_base + k]; data[start + k * stride] = inverse ? value / ComplexType(length, 0.0) : value; } } } static void Dft1D(int64_t length, int64_t start, int64_t stride, bool inverse, bool contract_output, bool expand_input, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { if (absl::has_single_bit(static_cast<uint64_t>(length))) { Fft1D(length, start, stride, inverse, contract_output, expand_input, data, buffer); } else { NaiveDft1D(length, start, stride, inverse, contract_output, expand_input, data, buffer); } } static std::vector<int64_t> GetDimensionLengths(const Literal& literal) { auto dimensions = literal.shape().dimensions(); return std::vector<int64_t>(dimensions.rbegin(), dimensions.rend()); } static std::vector<int64_t> ComputeStrides( const absl::Span<const int64_t> lengths, const Layout& layout) { const int64_t num_dimensions = lengths.size(); CHECK_EQ(num_dimensions, layout.minor_to_major_size()); std::vector<int64_t> strides(num_dimensions + 1); int64_t stride = 1; for (int64_t i = 0; i < num_dimensions; i++) { const int64_t index = (num_dimensions - 1) - layout.minor_to_major(i); strides[index] = stride; stride *= lengths[index]; } strides[num_dimensions] = stride; return strides; } static std::vector<int64_t> ComputeStrides( const absl::Span<const int64_t> lengths) { return ComputeStrides(lengths, LayoutUtil::GetDefaultLayoutForRank(lengths.size())); } static std::vector<int64_t> ComputeStrides( const absl::Span<const int64_t> lengths, const Literal& literal) { return literal.shape().has_layout() ? ComputeStrides(lengths, literal.shape().layout()) : ComputeStrides(lengths); } void Sweep(const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, absl::Span<ComplexType> data, absl::Span<ComplexType> buffer) { const bool inverse = fft_type_ == FftType::IFFT || fft_type_ == FftType::IRFFT; const bool input_is_truncated = fft_type_ == FftType::IRFFT; const bool output_is_truncated = fft_type_ == FftType::RFFT; std::function<void(int64_t, int64_t, int64_t)> sweep = [&](int64_t sweep_axis, int64_t axis, int64_t start) { if (axis < 0) { const int64_t length = fft_lengths[sweep_axis]; const int64_t stride = fft_strides[sweep_axis]; const bool expand_input = input_is_truncated && sweep_axis == 0; const bool contract_oputput = output_is_truncated && sweep_axis == 0; Dft1D(length, start, stride, inverse, contract_oputput, expand_input, data, buffer); } else if (axis == sweep_axis) { sweep(sweep_axis, axis - 1, start); } else { const int64_t length = fft_lengths[axis]; const bool is_truncated = input_is_truncated || output_is_truncated; const int64_t ub = is_truncated && axis == 0 ? (length / 2) + 1 : length; for (int64_t i = 0; i < ub; i++) { sweep(sweep_axis, axis - 1, start + i * fft_strides[axis]); } } }; if (input_is_truncated) { for (int64_t sweep_axis = fft_rank_ - 1; sweep_axis >= 0; sweep_axis--) { sweep(sweep_axis, fft_rank_ - 1, 0); } } else { for (int64_t sweep_axis = 0; sweep_axis < fft_rank_; sweep_axis++) { sweep(sweep_axis, fft_rank_ - 1, 0); } } } template <typename BaseFn> static void GenerateIndices(const absl::Span<const int64_t> dst_lengths, const absl::Span<const int64_t> dst_strides, const absl::Span<const int64_t> src_lengths, const absl::Span<const int64_t> src_strides, int64_t rank, int64_t dst_start, int64_t src_start, BaseFn&& base) { CHECK_EQ(dst_lengths.size() + 1, dst_strides.size()); CHECK_GE(dst_lengths.size(), rank); CHECK_EQ(src_lengths.size() + 1, src_strides.size()); CHECK_GE(src_lengths.size(), rank); std::function<void(int64_t, int64_t, int64_t, bool)> generate = [&](int64_t axis, int64_t dst_index, int64_t src_index, bool within_src_bounds) { if (!base(axis, dst_index, src_index, within_src_bounds)) { for (int64_t i = 0; i < dst_lengths[axis]; i++) { within_src_bounds &= i < src_lengths[axis]; generate(axis - 1, dst_index, src_index, within_src_bounds); dst_index += dst_strides[axis]; src_index += src_strides[axis]; } } }; generate(rank - 1, dst_start, src_start, true); } template <typename InputType> bool CopyDataFromInput(const Literal& input_literal, int64_t input_start, int64_t fft_size, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> input_lengths, const absl::Span<const int64_t> input_strides, absl::Span<ComplexType> data) { CHECK_GE(data.size(), fft_size); const bool input_is_truncated = fft_type_ == FftType::IRFFT; bool input_is_zero = true; const InputType* input_data = input_literal.data<InputType>().data(); auto base_case = [&](int64_t axis, int64_t dst_index, int64_t src_index, bool within_src_bounds) { if (axis == 0) { const int64_t length = fft_lengths[axis]; const int64_t ub = input_is_truncated ? (length / 2) + 1 : length; for (int64_t i = 0; i < ub; i++) { ComplexType value = ComplexType(0); if (within_src_bounds && i < input_lengths[axis]) { value = TypeConverter<ComplexType, InputType>::GetAs( input_data[src_index + i * input_strides[axis]]); input_is_zero &= value == ComplexType(0.0, 0.0); } data[dst_index + i * fft_strides[axis]] = value; } return true; } return false; }; GenerateIndices(fft_lengths, fft_strides, input_lengths, input_strides, fft_rank_, 0, input_start, base_case); return input_is_zero; } template <typename OutputType> void CopyDataToOutput(const absl::Span<ComplexType> data, int64_t output_start, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> output_lengths, const absl::Span<const int64_t> output_strides, Literal* output_literal) { const bool output_is_truncated = fft_type_ == FftType::RFFT; OutputType* output_data = output_literal->data<OutputType>().data(); auto base_case = [&](int64_t axis, int64_t dst_index, int64_t src_index, bool within_src_bounds) { if (axis == 0) { const int64_t length = fft_lengths[axis]; const int64_t ub = output_is_truncated ? (length / 2) + 1 : length; for (int64_t i = 0; i < output_lengths[axis]; i++) { OutputType value = OutputType(0); if (within_src_bounds && i < ub) { value = TypeConverter<OutputType, ComplexType>::GetAs( data[src_index + i * fft_strides[axis]]); } output_data[dst_index + i * output_strides[axis]] = value; } return true; } return false; }; GenerateIndices(output_lengths, output_strides, fft_lengths, fft_strides, fft_rank_, output_start, 0, base_case); } bool CopyDataFromInput(const Literal& input_literal, int64_t input_start, int64_t fft_size, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> input_lengths, const absl::Span<const int64_t> input_strides, absl::Span<ComplexType> data) { const bool input_is_float = fft_type_ == FftType::RFFT; if (input_is_float) { return CopyDataFromInput<float>(input_literal, input_start, fft_size, fft_lengths, fft_strides, input_lengths, input_strides, data); } else { return CopyDataFromInput<complex64>(input_literal, input_start, fft_size, fft_lengths, fft_strides, input_lengths, input_strides, data); } } void CopyDataToOutput(const absl::Span<ComplexType> data, int64_t output_start, const absl::Span<const int64_t> fft_lengths, const absl::Span<const int64_t> fft_strides, const absl::Span<const int64_t> output_lengths, const absl::Span<const int64_t> output_strides, Literal* output_literal) { const bool output_is_float = fft_type_ == FftType::IRFFT; if (output_is_float) { CopyDataToOutput<float>(data, output_start, fft_lengths, fft_strides, output_lengths, output_strides, output_literal); } else { CopyDataToOutput<complex64>(data, output_start, fft_lengths, fft_strides, output_lengths, output_strides, output_literal); } } absl::Status CheckParameters(const Shape& input_shape, const Shape& output_shape) { if (fft_rank_ <= 0) { return InvalidArgument("Zero or negative FFT rank."); } if (*absl::c_min_element(fft_lengths_) < 0) { return InvalidArgument("Negative FFT length."); } TF_CHECK_OK(ShapeUtil::ValidateShape(input_shape)); if (!input_shape.IsArray()) { return Unimplemented("Only array input shapes are supported."); } auto input_elt_type = input_shape.element_type(); if (fft_type_ == FftType::RFFT && input_elt_type != PrimitiveType::F32) { return InvalidArgument("Invalid input type: %d, must be %d (float).", input_elt_type, PrimitiveType::F32); } if (fft_type_ != FftType::RFFT && input_elt_type != PrimitiveType::C64) { return InvalidArgument("Invalid input type: %d, must be %d (complex64).", input_elt_type, PrimitiveType::C64); } const int64_t input_rank = input_shape.rank(); if (input_rank < fft_rank_) { return InvalidArgument("Input shape rank is smaller than FFT rank."); } TF_CHECK_OK(ShapeUtil::ValidateShape(output_shape)); if (!output_shape.IsArray()) { return Unimplemented("Only array output shapes are supported."); } auto output_elt_type = output_shape.element_type(); if (fft_type_ == FftType::IRFFT && output_elt_type != PrimitiveType::F32) { return InvalidArgument("Invalid output type: %d, must be %d (float).", output_elt_type, PrimitiveType::F32); } if (fft_type_ != FftType::IRFFT && output_elt_type != PrimitiveType::C64) { return InvalidArgument("Invalid output type: %d, must be %d (complex64).", output_elt_type, PrimitiveType::C64); } const int64_t output_rank = output_shape.rank(); if (output_rank < fft_rank_) { return InvalidArgument("Output shape rank is smaller than FFT rank."); } if (input_rank != output_rank) { return InvalidArgument( "Ranks of input shape and output shape do not match."); } for (int64_t dim = 0; dim < input_rank - fft_rank_; dim++) { if (ShapeUtil::GetDimension(input_shape, dim) != ShapeUtil::GetDimension(output_shape, dim)) { return InvalidArgument( "Higher dimension lengths of input shape and output shape do not " "match."); } } return absl::OkStatus(); } private: const FftType fft_type_; const int64_t fft_rank_; std::vector<int64_t> fft_lengths_; }; } absl::Status HloEvaluator::HandleFft(const HloInstruction* fft) { const Literal& input_literal = GetEvaluatedLiteralFor(fft->operand(0)); Literal output_literal = Literal::CreateFromShape(fft->shape()); FftTransform<complex128> transform(fft); TF_RETURN_IF_ERROR(transform.ComputeFft(fft, input_literal, &output_literal)); evaluated_[fft] = std::move(output_literal); return absl::OkStatus(); } ShapeUtil::IndexIterationSpace IterationSpaceForOutputBatchIndices( const Shape& output_shape, const GatherDimensionNumbers& dim_numbers) { int64_t output_rank = output_shape.dimensions_size(); std::vector<int64_t> index_base(output_rank, 0); std::vector<int64_t> index_count; index_count.reserve(output_rank); for (int64_t i = 0; i < output_rank; i++) { bool is_output_batch_dim = !absl::c_binary_search(dim_numbers.offset_dims(), i); index_count.push_back(is_output_batch_dim ? output_shape.dimensions(i) : 1); } return {std::move(index_base), std::move(index_count), std::vector<int64_t>(output_rank, 1)}; } ShapeUtil::IndexIterationSpace IterationSpaceForOutputOffsetIndices( int64_t output_rank, absl::Span<const int64_t> slice_sizes, const GatherDimensionNumbers& dim_numbers) { std::vector<int64_t> index_base(output_rank, 0); std::vector<int64_t> index_count(output_rank, 1); int64_t slice_sizes_idx = 0; for (int64_t i = 0; i < output_rank; i++) { bool is_output_window_dim = absl::c_binary_search(dim_numbers.offset_dims(), i); if (is_output_window_dim) { while (absl::c_binary_search(dim_numbers.collapsed_slice_dims(), slice_sizes_idx)) { slice_sizes_idx++; } index_count[i] = slice_sizes[slice_sizes_idx++]; } } return {std::move(index_base), std::move(index_count), std::vector<int64_t>(output_rank, 1)}; } class OutputBatchIndexToInputIndex { public: explicit OutputBatchIndexToInputIndex( const GatherDimensionNumbers* dim_numbers, const Shape& input_shape, const Shape& output_shape, const Literal* start_indices) : dim_numbers_(*dim_numbers), start_indices_(*start_indices) { for (int64_t i = 0; i < output_shape.dimensions_size(); i++) { output_dim_is_batch_dims_.push_back( !absl::c_binary_search(dim_numbers_.offset_dims(), i)); } for (int64_t i = 0; i < input_shape.dimensions_size(); i++) { int64_t index_of_input_dim_in_index_vector = std::distance(dim_numbers_.start_index_map().begin(), absl::c_find(dim_numbers_.start_index_map(), i)); if (index_of_input_dim_in_index_vector == dim_numbers_.start_index_map_size()) { input_dim_value_to_index_vector_.push_back(-1); } else { input_dim_value_to_index_vector_.push_back( index_of_input_dim_in_index_vector); } } index_vector_index_.resize(start_indices_.shape().dimensions_size()); input_index_.resize(input_shape.dimensions_size()); int64_t index_vector_size = start_indices_.shape().dimensions(dim_numbers_.index_vector_dim()); index_vector_.resize(index_vector_size); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> output_index) { PropagateOutputIndexGatherDimsToIndexVectorIndex(output_index); TF_RETURN_IF_ERROR(FetchIndexVector()); PropagateIndexVectorToInputIndex(); return absl::Span<const int64_t>(input_index_); } private: void PropagateOutputIndexGatherDimsToIndexVectorIndex( absl::Span<const int64_t> output_index) { int64_t index_vector_index_i = 0; for (int64_t i = 0, e = output_index.size(); i < e; i++) { if (!output_dim_is_batch_dims_[i]) { continue; } if (index_vector_index_i == dim_numbers_.index_vector_dim()) { index_vector_index_i++; } index_vector_index_[index_vector_index_i++] = output_index[i]; } } absl::Status FetchIndexVector() { int64_t index_vector_dim = dim_numbers_.index_vector_dim(); for (int64_t i = 0, e = index_vector_.size(); i < e; i++) { index_vector_index_[index_vector_dim] = i; auto start_index = start_indices_.GetIntegralAsS64(index_vector_index_); TF_RET_CHECK(start_index.has_value()); index_vector_[i] = *start_index; } return absl::OkStatus(); } void PropagateIndexVectorToInputIndex() { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_index_vector_[i] != -1) { input_index_[i] = index_vector_[input_dim_value_to_index_vector_[i]]; } } } std::vector<int64_t> input_dim_value_to_index_vector_; std::vector<bool> output_dim_is_batch_dims_; std::vector<int64_t> index_vector_index_; std::vector<int64_t> index_vector_; std::vector<int64_t> input_index_; const GatherDimensionNumbers& dim_numbers_; const Literal& start_indices_; }; class OutputOffsetIndexToInputIndex { public: explicit OutputOffsetIndexToInputIndex( const GatherDimensionNumbers& dim_numbers, const Shape& input_shape, const Shape& output_shape) { std::vector<int64_t> window_index_to_output_index; int64_t output_index_count = 0; for (int64_t i = 0; i < output_shape.dimensions_size(); i++) { if (absl::c_binary_search(dim_numbers.offset_dims(), i)) { window_index_to_output_index.push_back(output_index_count++); } else { output_index_count++; } } int64_t window_dim_count = 0; for (int64_t i = 0; i < input_shape.dimensions_size(); i++) { if (absl::c_binary_search(dim_numbers.collapsed_slice_dims(), i)) { input_dim_value_to_output_index_.push_back(-1); } else { input_dim_value_to_output_index_.push_back( window_index_to_output_index[window_dim_count++]); } } input_index_.resize(input_shape.dimensions_size()); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> output_index) { PropagateOutputIndexWindowDimsToInputIndex(output_index); return absl::Span<const int64_t>(input_index_); } int64_t input_dim_value_to_output_index(int64_t input_dim) { return input_dim_value_to_output_index_[input_dim]; } private: void PropagateOutputIndexWindowDimsToInputIndex( absl::Span<const int64_t> output_index) { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_output_index_[i] != -1) { input_index_[i] = output_index[input_dim_value_to_output_index_[i]]; } } } std::vector<int64_t> input_dim_value_to_output_index_; std::vector<int64_t> input_index_; }; static absl::StatusOr<std::reference_wrapper<const Literal>> ReshapedGatherIndices(int64_t index_vector_dim, const Literal& start_indices, Literal* reshaped_start_indices) { if (start_indices.shape().dimensions_size() != index_vector_dim) { return std::cref(start_indices); } std::vector<int64_t> new_shape(start_indices.shape().dimensions().begin(), start_indices.shape().dimensions().end()); new_shape.push_back(1); if (start_indices.shape().is_dynamic()) { TF_ASSIGN_OR_RETURN(*reshaped_start_indices, start_indices.ToStatic().Reshape(new_shape)); } else { TF_ASSIGN_OR_RETURN(*reshaped_start_indices, start_indices.Reshape(new_shape)); } return std::cref(*reshaped_start_indices); } absl::Status HloEvaluator::HandleGather(const HloInstruction* gather) { Literal result = Literal::CreateFromShape(gather->shape()); const Shape& shape = gather->shape(); const GatherDimensionNumbers& dim_numbers = gather->gather_dimension_numbers(); const Literal& operand = GetEvaluatedLiteralFor(gather->operand(0)); Literal reshaped_start_indices; TF_ASSIGN_OR_RETURN( const Literal& start_indices, ReshapedGatherIndices(dim_numbers.index_vector_dim(), GetEvaluatedLiteralFor(gather->operand(1)), &reshaped_start_indices)); ShapeUtil::IndexIterationSpace start_indices_iteration_space = IterationSpaceForOutputBatchIndices(shape, dim_numbers); ShapeUtil::IndexIterationSpace offset_indices_iteration_space = IterationSpaceForOutputOffsetIndices( shape.dimensions_size(), gather->gather_slice_sizes(), dim_numbers); std::vector<int64_t> input_index(operand.shape().dimensions_size()); std::vector<int64_t> output_index(gather->shape().dimensions_size()); std::vector<int64_t> input_index_clamped(operand.shape().dimensions_size()); OutputBatchIndexToInputIndex output_batch_index_to_input_index( &gather->gather_dimension_numbers(), operand.shape(), shape, &start_indices); OutputOffsetIndexToInputIndex output_offset_index_to_input_index( gather->gather_dimension_numbers(), operand.shape(), shape); const Shape& operand_shape = operand.shape(); if (ShapeUtil::IsZeroElementArray(operand_shape)) { evaluated_[gather] = std::move(result); return absl::OkStatus(); } auto gather_inner_loop_body = [&](absl::Span<const int64_t> output_window_index, absl::Span<const int64_t> input_gather_index, absl::Span<const int64_t> output_gather_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN( absl::Span<const int64_t> input_window_index, output_offset_index_to_input_index(output_window_index)); for (int i = 0, e = output_index.size(); i < e; i++) { output_index[i] = output_gather_index[i] + output_window_index[i]; DCHECK_LT(output_index[i], shape.dimensions(i)); } for (int i = 0, e = input_gather_index.size(); i < e; i++) { int64_t output_dim = output_offset_index_to_input_index.input_dim_value_to_output_index(i); int64_t output_dim_size = output_dim == -1 ? 1 : shape.dimensions(output_dim); input_index_clamped[i] = std::min(operand_shape.dimensions(i) - output_dim_size, std::max(int64_t{0}, input_gather_index[i])); } for (int i = 0, e = input_index.size(); i < e; i++) { input_index[i] = input_index_clamped[i] + input_window_index[i]; DCHECK_GE(input_index[i], 0); DCHECK_LT(input_index[i], operand_shape.dimensions(i)); } result.CopyElementFrom(operand, input_index, output_index); return true; }; auto gather_outer_loop_body = [&](absl::Span<const int64_t> output_gather_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN(absl::Span<const int64_t> input_gather_index, output_batch_index_to_input_index(output_gather_index)); TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( shape, offset_indices_iteration_space, std::bind(gather_inner_loop_body, std::placeholders::_1, input_gather_index, output_gather_index))); return true; }; TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( shape, start_indices_iteration_space, gather_outer_loop_body)); evaluated_[gather] = std::move(result); return absl::OkStatus(); } namespace { absl::StatusOr<std::reference_wrapper<const Literal>> ReshapedScatterIndices( int64_t index_vector_dim, const Literal& indices, Literal* reshaped_indices) { if (indices.shape().dimensions_size() != index_vector_dim) { return std::cref(indices); } std::vector<int64_t> new_shape(indices.shape().dimensions().begin(), indices.shape().dimensions().end()); new_shape.push_back(1); if (indices.shape().is_dynamic()) { TF_ASSIGN_OR_RETURN(*reshaped_indices, indices.ToStatic().Reshape(new_shape)); } else { TF_ASSIGN_OR_RETURN(*reshaped_indices, indices.Reshape(new_shape)); } return std::cref(*reshaped_indices); } template <bool kForUpdateWindowIndices> ShapeUtil::IndexIterationSpace GetIterationSpaceImpl( absl::Span<const int64_t> updates_dims, const ScatterDimensionNumbers& dim_numbers) { int64_t updates_rank = updates_dims.size(); std::vector<int64_t> index_base(updates_rank, 0); std::vector<int64_t> index_count(updates_rank, 1); for (int64_t i = 0; i < updates_rank; i++) { if (kForUpdateWindowIndices) { bool is_update_window_dim = absl::c_binary_search(dim_numbers.update_window_dims(), i); if (is_update_window_dim) { index_count[i] = updates_dims[i]; } } else { bool is_update_scatter_dim = !absl::c_binary_search(dim_numbers.update_window_dims(), i); if (is_update_scatter_dim) { index_count[i] = updates_dims[i]; } } } return {std::move(index_base), std::move(index_count), std::vector<int64_t>(updates_rank, 1)}; } ShapeUtil::IndexIterationSpace IterationSpaceForUpdateScatterIndices( absl::Span<const int64_t> updates_dims, const ScatterDimensionNumbers& dim_numbers) { return GetIterationSpaceImpl<false>(updates_dims, dim_numbers); } ShapeUtil::IndexIterationSpace IterationSpaceForUpdateWindowIndices( absl::Span<const int64_t> updates_dims, const ScatterDimensionNumbers& dim_numbers) { return GetIterationSpaceImpl<true>(updates_dims, dim_numbers); } class UpdateScatterIndexToInputIndex { public: explicit UpdateScatterIndexToInputIndex( const ScatterDimensionNumbers& dim_numbers, int64_t input_rank, int64_t updates_rank, const Literal* scatter_indices) : dim_numbers_(dim_numbers), scatter_indices_(*scatter_indices) { for (int64_t i = 0; i < updates_rank; i++) { update_dim_is_scatter_dims_.push_back( !absl::c_binary_search(dim_numbers_.update_window_dims(), i)); } for (int64_t i = 0; i < input_rank; i++) { int64_t index_of_input_dim_in_index_vector = FindIndex(dim_numbers_.scatter_dims_to_operand_dims(), i); if (index_of_input_dim_in_index_vector == dim_numbers_.scatter_dims_to_operand_dims_size()) { input_dim_value_to_index_vector_.push_back(-1); } else { input_dim_value_to_index_vector_.push_back( index_of_input_dim_in_index_vector); } } index_vector_index_.resize(scatter_indices_.shape().dimensions_size()); input_index_.resize(input_rank); int64_t index_vector_size = scatter_indices_.shape().dimensions(dim_numbers_.index_vector_dim()); index_vector_.resize(index_vector_size); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> update_index) { PropagateUpdateIndexScatterDimsToIndexVectorIndex(update_index); TF_RETURN_IF_ERROR(FetchIndexVector()); PropagateIndexVectorToInputIndex(); return absl::Span<const int64_t>(input_index_); } private: void PropagateUpdateIndexScatterDimsToIndexVectorIndex( absl::Span<const int64_t> update_index) { int64_t index_vector_index_i = 0; for (int64_t i = 0, e = update_index.size(); i < e; i++) { if (!update_dim_is_scatter_dims_[i]) { continue; } if (index_vector_index_i == dim_numbers_.index_vector_dim()) { index_vector_index_i++; } index_vector_index_[index_vector_index_i++] = update_index[i]; } } absl::Status FetchIndexVector() { int64_t index_vector_dim = dim_numbers_.index_vector_dim(); for (int64_t i = 0, e = index_vector_.size(); i < e; i++) { index_vector_index_[index_vector_dim] = i; index_vector_[i] = *scatter_indices_.GetIntegralAsS64(index_vector_index_); } return absl::OkStatus(); } void PropagateIndexVectorToInputIndex() { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_index_vector_[i] != -1) { input_index_[i] = index_vector_[input_dim_value_to_index_vector_[i]]; } } } std::vector<int64_t> input_dim_value_to_index_vector_; std::vector<bool> update_dim_is_scatter_dims_; std::vector<int64_t> index_vector_index_; std::vector<int64_t> index_vector_; std::vector<int64_t> input_index_; const ScatterDimensionNumbers& dim_numbers_; const Literal& scatter_indices_; }; class UpdateWindowIndexToInputIndex { public: explicit UpdateWindowIndexToInputIndex( const ScatterDimensionNumbers& dim_numbers, int64_t input_rank, int64_t update_rank) { std::vector<int64_t> window_index_to_update_index; int64_t update_index_count = 0; for (int64_t i = 0; i < update_rank; i++) { if (absl::c_binary_search(dim_numbers.update_window_dims(), i)) { window_index_to_update_index.push_back(update_index_count++); } else { update_index_count++; } } int64_t window_dim_count = 0; for (int64_t i = 0; i < input_rank; i++) { if (absl::c_binary_search(dim_numbers.inserted_window_dims(), i)) { input_dim_value_to_update_index_.push_back(-1); } else { input_dim_value_to_update_index_.push_back( window_index_to_update_index[window_dim_count++]); } } input_index_.resize(input_rank); } absl::StatusOr<absl::Span<const int64_t>> operator()( absl::Span<const int64_t> update_index) { PropagateUpdateIndexWindowDimsToInputIndex(update_index); return absl::Span<const int64_t>(input_index_); } int64_t input_dim_value_to_update_index(int64_t input_dim) { return input_dim_value_to_update_index_[input_dim]; } private: void PropagateUpdateIndexWindowDimsToInputIndex( absl::Span<const int64_t> update_index) { for (int64_t i = 0, e = input_index_.size(); i < e; i++) { if (input_dim_value_to_update_index_[i] != -1) { input_index_[i] = update_index[input_dim_value_to_update_index_[i]]; } } } std::vector<int64_t> input_dim_value_to_update_index_; std::vector<int64_t> input_index_; }; } absl::Status HloEvaluator::HandleScatter(const HloInstruction* hlo) { auto* scatter = DynCast<HloScatterInstruction>(hlo); const ScatterDimensionNumbers& dim_numbers = scatter->scatter_dimension_numbers(); absl::InlinedVector<const Literal*, 1> operands; operands.reserve(scatter->scatter_operand_count()); for (const HloInstruction* operand_inst : scatter->scatter_operands()) { operands.push_back(&GetEvaluatedLiteralFor(operand_inst)); } Literal reshaped_scatter_indices; TF_ASSIGN_OR_RETURN( const Literal& scatter_indices, ReshapedScatterIndices(dim_numbers.index_vector_dim(), GetEvaluatedLiteralFor(scatter->scatter_indices()), &reshaped_scatter_indices)); absl::InlinedVector<const Literal*, 1> updates; updates.reserve(operands.size()); for (const HloInstruction* updates_inst : scatter->scatter_updates()) { updates.push_back(&GetEvaluatedLiteralFor(updates_inst)); } auto updates_dims = updates[0]->shape().dimensions(); auto operand_dims = operands[0]->shape().dimensions(); ShapeUtil::IndexIterationSpace scatter_indices_iteration_space = IterationSpaceForUpdateScatterIndices(updates_dims, dim_numbers); ShapeUtil::IndexIterationSpace window_indices_iteration_space = IterationSpaceForUpdateWindowIndices(updates_dims, dim_numbers); std::vector<int64_t> input_index(operand_dims.size()); std::vector<int64_t> update_index(updates_dims.size()); UpdateScatterIndexToInputIndex update_scatter_index_to_input_index( scatter->scatter_dimension_numbers(), operand_dims.size(), updates_dims.size(), &scatter_indices); UpdateWindowIndexToInputIndex update_window_index_to_input_index( scatter->scatter_dimension_numbers(), operand_dims.size(), updates_dims.size()); Literal result = operands.size() > 1 ? LiteralUtil::MakeTuple(operands) : operands[0]->Clone(); auto maybe_slice = [](MutableLiteralBase& literal, int idx) { if (literal.shape().IsTuple()) { return MutableBorrowingLiteral(&literal, {idx}); } DCHECK_EQ(idx, 0); return MutableBorrowingLiteral(&literal); }; HloEvaluator embedded_evaluator; auto scatter_inner_loop_body = [&](absl::Span<const int64_t> update_window_index, absl::Span<const int64_t> input_scatter_index, absl::Span<const int64_t> update_scatter_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN( absl::Span<const int64_t> input_window_index, update_window_index_to_input_index(update_window_index)); for (int i = 0, e = update_index.size(); i < e; i++) { update_index[i] = update_scatter_index[i] + update_window_index[i]; DCHECK_LT(update_index[i], updates_dims[i]); } for (int i = 0, e = input_scatter_index.size(); i < e; i++) { int64_t update_dim = update_window_index_to_input_index.input_dim_value_to_update_index(i); int64_t update_dim_size = update_dim == -1 ? 1 : updates_dims[update_dim]; if ((input_scatter_index[i] < 0) || (input_scatter_index[i] > operand_dims[i] - update_dim_size)) { return true; } } for (int i = 0, e = input_index.size(); i < e; i++) { input_index[i] = input_scatter_index[i] + input_window_index[i]; } absl::InlinedVector<Literal, 2> to_apply_args; to_apply_args.reserve(operands.size() + updates.size()); for (int i = 0, n = operands.size(); i < n; ++i) { to_apply_args.push_back( LiteralUtil::GetScalarLiteral(maybe_slice(result, i), input_index)); } for (int i = 0, n = operands.size(); i < n; ++i) { to_apply_args.push_back( LiteralUtil::GetScalarLiteral(*updates[i], update_index)); } Literal updated_result = embedded_evaluator.Evaluate(*scatter->to_apply(), to_apply_args) .value(); embedded_evaluator.ResetVisitStates(); for (int i = 0, n = operands.size(); i < n; ++i) { auto result_slice = maybe_slice(result, i); LiteralUtil::SetScalarLiteral(result_slice, input_index, maybe_slice(updated_result, i)); } return true; }; auto scatter_outer_loop_body = [&](absl::Span<const int64_t> update_scatter_index) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN( absl::Span<const int64_t> input_scatter_index, update_scatter_index_to_input_index(update_scatter_index)); TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( updates[0]->shape(), window_indices_iteration_space, [&](absl::Span<const int64_t> update_window_index) { return scatter_inner_loop_body( update_window_index, input_scatter_index, update_scatter_index); })); return true; }; TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( updates[0]->shape(), scatter_indices_iteration_space, scatter_outer_loop_body)); evaluated_[scatter] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleBroadcast(const HloInstruction* broadcast) { const Literal& operand = GetEvaluatedLiteralFor(broadcast->operand(0)); TF_RET_CHECK(broadcast->shape().element_type() == operand.shape().element_type()) << " broadcast from a different data type is not supported"; TF_RET_CHECK(broadcast->dimensions().size() == operand.shape().rank()) << "broadcast dimensions is of size: " << broadcast->dimensions().size() << " and rank of operand_to_broadcast is: " << operand.shape().rank(); for (int64_t i = 0; i < broadcast->dimensions().size(); ++i) { auto operand_dim_size = operand.shape().dimensions(i); auto broadcast_dim_size = broadcast->shape().dimensions(broadcast->dimensions(i)); TF_RET_CHECK(operand_dim_size == broadcast_dim_size) << absl::StreamFormat( "Operand dimension %d is broadcast to output dimension %d, but the " "sizes of these two dims do not match (%d vs %d): %s", i, broadcast->dimensions(i), operand_dim_size, broadcast_dim_size, broadcast->ToString()); } TF_ASSIGN_OR_RETURN( evaluated_[broadcast], operand.Broadcast(broadcast->shape(), broadcast->dimensions())); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAfterAll(const HloInstruction* after_all) { evaluated_[after_all] = LiteralUtil::CreateToken(); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAddDependency( const HloInstruction* add_dependency) { evaluated_[add_dependency] = GetEvaluatedLiteralFor(add_dependency->operand(0)).Clone(); return absl::OkStatus(); } absl::Status HloEvaluator::HandleGetTupleElement( const HloInstruction* get_tuple_element) { const auto result_shape = get_tuple_element->shape(); const int64_t index = get_tuple_element->tuple_index(); auto operand = get_tuple_element->operand(0); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferGetTupleElementShape(operand->shape(), index)); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(operand); evaluated_[get_tuple_element] = Literal(ShapeUtil::GetTupleElementShape(operand->shape(), index)); return evaluated_[get_tuple_element].CopyFrom(operand_tuple_literal, {}, {index}); } absl::Status HloEvaluator::HandleCopy(const HloInstruction* copy) { if (copy->shape().element_type() != copy->operand(0)->shape().element_type()) { TF_ASSIGN_OR_RETURN(Literal result, GetEvaluatedLiteralFor(copy->operand(0)) .Convert(copy->shape().element_type())); TF_RET_CHECK(ShapeUtil::Compatible(copy->shape(), result.shape())); evaluated_[copy] = std::move(result); } else { TF_RET_CHECK( ShapeUtil::Compatible(copy->shape(), copy->operand(0)->shape())); evaluated_[copy] = GetEvaluatedLiteralFor(copy->operand(0)).Clone(); } return absl::OkStatus(); } absl::Status HloEvaluator::HandleAsyncStart(const HloInstruction* async_start) { std::vector<const Literal*> arg_literals; arg_literals.reserve(async_start->operands().size()); for (auto operand : async_start->operands()) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back(&arg_literal); } std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN( Literal result, embedded_evaluator->Evaluate(*async_start->async_wrapped_computation(), arg_literals)); evaluated_[async_start] = Literal(async_start->shape()); for (int i = 0; i < arg_literals.size(); ++i) { TF_RETURN_IF_ERROR(evaluated_[async_start].CopyFrom( *arg_literals[i], {0, i}, {})); } TF_RETURN_IF_ERROR(evaluated_[async_start].MoveFrom( std::move(result), {1})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAsyncUpdate( const HloInstruction* async_update) { const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(async_update->operand(0)); evaluated_[async_update] = Literal(async_update->shape()); TF_RETURN_IF_ERROR(evaluated_[async_update].CopyFrom(operand_tuple_literal, {}, {})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleAsyncDone(const HloInstruction* async_done) { const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(async_done->operand(0)); evaluated_[async_done] = Literal(async_done->shape()); TF_RETURN_IF_ERROR(evaluated_[async_done].CopyFrom(operand_tuple_literal, {}, {1})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCopyStart(const HloInstruction* copy_start) { if (copy_start->user_count() != 1 || copy_start->users().at(0)->opcode() != HloOpcode::kCopyDone) { return absl::FailedPreconditionError( absl::StrCat("Cannot evaluate a kCopyStart that doesn't have a single " "kCopyDone user. Instruction: ", copy_start->ToString())); } const Literal context_literal = LiteralUtil::CreateR0<uint32_t>(0); evaluated_[copy_start] = LiteralUtil::MakeTuple( {&GetEvaluatedLiteralFor(copy_start->operand(0)), &GetEvaluatedLiteralFor(copy_start->operand(0)), &context_literal}); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCopyDone(const HloInstruction* copy_done) { const HloInstruction* operand = copy_done->operand(0); if (operand->opcode() != HloOpcode::kCopyStart) { return absl::FailedPreconditionError( absl::StrCat("Cannot evaluate a kCopyDone that doesn't have a " "kCopyStart as operand. Instruction: ", copy_done->ToString())); } const Literal& operand_tuple_literal = GetEvaluatedLiteralFor(operand); evaluated_[copy_done] = Literal(ShapeUtil::GetTupleElementShape(operand->shape(), 0)); TF_RETURN_IF_ERROR(evaluated_[copy_done].CopyFrom(operand_tuple_literal, {}, {0})); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCall(const HloInstruction* call) { auto* computation = call->to_apply(); auto operands = call->operands(); std::vector<const Literal*> arg_literals; arg_literals.reserve(operands.size()); for (auto operand : operands) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back(&arg_literal); } std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN(Literal result, embedded_evaluator->Evaluate(*computation, arg_literals)); evaluated_[call] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleFusion(const HloInstruction* fusion) { HloModuleConfig config; HloModule empty_hlo_module("EmptyModuleForFusion", config, std::make_unique<CompilationEnvironments>( fusion->GetModule()->comp_envs())); HloCloneContext context(&empty_hlo_module); auto cloned_fused_computation = fusion->fused_instructions_computation()->Clone( "clone_with_layout", &context); for (auto* instruction : cloned_fused_computation->instructions()) { if (!LayoutUtil::HasLayout(instruction->shape())) { LayoutUtil::SetToDefaultLayout(instruction->mutable_shape()); } } auto readded_computation = empty_hlo_module.AddEntryComputation(std::move(cloned_fused_computation)); auto operands = fusion->operands(); std::vector<const Literal*> arg_literals; arg_literals.reserve(operands.size()); for (auto operand : operands) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back(&arg_literal); } std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN(Literal result, embedded_evaluator->Evaluate( *readded_computation, arg_literals)); evaluated_[fusion] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConditional( const HloInstruction* conditional) { const auto& branch_index_literal = GetEvaluatedLiteralFor(conditional->operand(0)); int branch_index; if (conditional->operand(0)->shape().element_type() == PRED) { branch_index = branch_index_literal.Get<bool>({}) ? 0 : 1; } else { branch_index = branch_index_literal.Get<int32_t>({}); if (branch_index < 0 || branch_index >= conditional->branch_count()) { branch_index = conditional->branch_count() - 1; } } const auto& branch_computation_arg = GetEvaluatedLiteralFor(conditional->operand(1 + branch_index)); std::unique_ptr<HloEvaluator> embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); TF_ASSIGN_OR_RETURN(Literal result, embedded_evaluator->Evaluate( *conditional->branch_computation(branch_index), {&branch_computation_arg})); evaluated_[conditional] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleConvert(const HloInstruction* convert) { const HloInstruction* operand = convert->operand(0); TF_RET_CHECK(ShapeUtil::SameDimensions(operand->shape(), convert->shape())); TF_ASSIGN_OR_RETURN(Literal result, GetEvaluatedLiteralFor(operand).Convert( convert->shape().element_type())); evaluated_[convert] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleDynamicSlice( const HloInstruction* dynamic_slice) { auto operand = dynamic_slice->operand(0); auto start_indices = dynamic_slice->operand(1); auto result_shape = dynamic_slice->shape(); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferDynamicSliceShape( operand->shape(), Cast<HloDynamicSliceInstruction>(dynamic_slice)->index_shapes(), dynamic_slice->dynamic_slice_sizes())); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); TF_RET_CHECK( primitive_util::IsIntegralType(start_indices->shape().element_type())); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); std::vector<int64_t> start = GetS64Indices(absl::MakeConstSpan(dynamic_slice->operands()).subspan(1)); for (int64_t i = 0; i < start.size(); ++i) { start[i] = std::min<int64_t>( std::max(int64_t{0}, start[i]), operand_literal.shape().dimensions(i) - result_shape.dimensions(i)); } std::vector<int64_t> operand_index(start.size()); Literal result(result_shape); const size_t element_byte_size = primitive_util::ByteWidth(result_shape.element_type()); auto* operand_base = static_cast<const char*>(operand_literal.untyped_data()); auto func = [&](void* dest, absl::Span<const int64_t> result_index) { for (int64_t i = 0; i < operand_index.size(); ++i) { CHECK_GE(result_index[i] + start[i], 0); operand_index[i] = result_index[i] + start[i]; } auto* src = operand_base + (element_byte_size * IndexUtil::MultidimensionalIndexToLinearIndex( operand_literal.shape(), operand_index)); std::memcpy(dest, src, element_byte_size); return true; }; TF_RETURN_IF_ERROR(result.PopulateInplace(func)); evaluated_[dynamic_slice] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleDynamicUpdateSlice(const HloInstruction* dus) { auto operand = dus->operand(0); auto update = dus->operand(1); auto start_indices = dus->operand(2); auto result_shape = dus->shape(); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferDynamicUpdateSliceShape( operand->shape(), update->shape(), Cast<HloDynamicUpdateSliceInstruction>(dus)->index_shapes())); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); TF_RET_CHECK( primitive_util::IsIntegralType(start_indices->shape().element_type())); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, operand->shape())); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const Literal& update_literal = GetEvaluatedLiteralFor(update); auto result = operand_literal.Clone(); const auto rank = result.shape().rank(); std::vector<int64_t> start = GetS64Indices(absl::MakeConstSpan(dus->operands()).subspan(2)); for (int64_t i = 0; i < rank; ++i) { start[i] = std::min<int64_t>( std::max<int64_t>(0, start[i]), result.shape().dimensions(i) - update_literal.shape().dimensions(i)); } std::vector<int64_t> result_index(rank, 0); auto func = [&](absl::Span<const int64_t> update_index) { std::transform(update_index.begin(), update_index.end(), start.begin(), result_index.begin(), std::plus<int64_t>()); result.CopyElementFrom(update_literal, update_index, result_index); return true; }; std::vector<int64_t> base(update_literal.shape().dimensions_size(), 0); std::vector<int64_t> step(update_literal.shape().dimensions_size(), 1); ShapeUtil::ForEachIndexNoStatus(update_literal.shape(), base, update_literal.shape().dimensions(), step, func); evaluated_[dus] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSelect(const HloInstruction* select) { const auto& pred = GetEvaluatedLiteralFor(select->operand(0)); const auto& on_true = GetEvaluatedLiteralFor(select->operand(1)); const auto& on_false = GetEvaluatedLiteralFor(select->operand(2)); if (ShapeUtil::IsScalar(pred.shape())) { if (pred.Get<bool>({})) { evaluated_[select] = on_true.Clone(); } else { evaluated_[select] = on_false.Clone(); } return absl::OkStatus(); } return DefaultAction(select); } namespace { absl::StatusOr<Literal> CreateScalarLiteral(int64_t value, PrimitiveType element_type) { return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsIntegralType(primitive_type_constant)) { return LiteralUtil::CreateR0( static_cast<NativeTypeOf<primitive_type_constant>>(value)); } return InvalidArgument("Unsupported element type."); }, element_type); } absl::StatusOr<Literal> TryParseAndEvaluateWhileInductionVar( const HloInstruction* while_hlo) { std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_hlo, {}); if (!parsed_while_loop.has_value() || parsed_while_loop->is_dynamic()) { return FailedPrecondition( "Cannot evaluate a while loop's induction variable since the loop " "does not match a known loop pattern or the loop is not static."); } int64_t induction_var_value = parsed_while_loop->static_while_loop->induction_var_init_value + parsed_while_loop->static_while_loop->trip_count * parsed_while_loop->static_while_loop->step_size; Shape result_shape = while_hlo->shape().tuple_shapes( parsed_while_loop->static_while_loop->induction_var_index); TF_ASSIGN_OR_RETURN( Literal result, CreateScalarLiteral(induction_var_value, result_shape.element_type())); std::vector<Literal*> while_result_element_ptrs; while_result_element_ptrs.reserve(while_hlo->shape().tuple_shapes_size()); std::vector<Literal> while_result_elements( while_hlo->shape().tuple_shapes_size()); for (int i = 0; i < while_hlo->shape().tuple_shapes_size(); ++i) { if (i == parsed_while_loop->static_while_loop->induction_var_index) { while_result_element_ptrs.push_back(&result); } else { const Shape& shape = while_hlo->shape().tuple_shapes(i); while_result_elements[i] = Literal::CreateFromShapeWithUnknownLeafArrays(shape); while_result_element_ptrs.push_back(&while_result_elements[i]); } } return LiteralUtil::MakeTuple(while_result_element_ptrs); } } absl::Status HloEvaluator::HandleWhile(const HloInstruction* while_hlo) { const HloComputation* cond_comp = while_hlo->while_condition(); const HloComputation* body_comp = while_hlo->while_body(); auto lcv = GetEvaluatedLiteralFor(while_hlo->operand(0)).Clone(); if (!lcv.IsKnown()) { std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_hlo, {}); evaluated_[while_hlo] = Literal::CreateFromShapeWithUnknownLeafArrays(while_hlo->shape()); if (!parsed_while_loop.has_value() || parsed_while_loop->is_dynamic() || visitor_shape_index_.size() != 1 || parsed_while_loop->static_while_loop->induction_var_index != visitor_shape_index_[0]) { return absl::OkStatus(); } Shape induction_var_shape = ShapeUtil::GetSubshape(while_hlo->shape(), visitor_shape_index_); int64_t trip_count = parsed_while_loop->static_while_loop->trip_count; TF_ASSIGN_OR_RETURN( Literal induction_var_val, CreateScalarLiteral(trip_count, induction_var_shape.element_type())); TF_RETURN_IF_ERROR(evaluated_[while_hlo].CopyFrom( induction_var_val, visitor_shape_index_, {})); return absl::OkStatus(); } bool keep_going = true; int64_t iteration_count = 0; std::unique_ptr<HloEvaluator> cond_evaluator = CreateEmbedded(max_loop_iterations_); cond_evaluator->set_dynamic_dimension_inference(dynamic_dimension_inference_); std::unique_ptr<HloEvaluator> loop_body_evaluator = CreateEmbedded(max_loop_iterations_); loop_body_evaluator->set_dynamic_dimension_inference( dynamic_dimension_inference_); while (keep_going) { if (max_loop_iterations_ >= 0 && iteration_count++ > max_loop_iterations_) { absl::StatusOr<Literal> result = TryParseAndEvaluateWhileInductionVar(while_hlo); if (result.ok()) { lcv = std::move(result).value(); break; } else { return InvalidArgument("Loop %s exceeded loop iteration limit (%d).", while_hlo->name(), max_loop_iterations_); } } TF_ASSIGN_OR_RETURN(auto cond_val, cond_evaluator->Evaluate(*cond_comp, {&lcv})); keep_going = cond_val.GetFirstElement<bool>(); if (keep_going) { TF_ASSIGN_OR_RETURN(auto body_val, loop_body_evaluator->Evaluate(*body_comp, {&lcv})); VLOG(3) << "Loop iteration result: " << body_val.ToString(); lcv = std::move(body_val); cond_evaluator->ResetVisitStates(); loop_body_evaluator->ResetVisitStates(); } } evaluated_[while_hlo] = std::move(lcv); return absl::OkStatus(); } namespace { template <typename NativeT> Literal ExtractLiteralFromIndexPositions(const Literal& from, absl::Span<int64_t const> indices) { absl::InlinedVector<NativeT, 10> values; for (int64_t index : indices) { values.push_back(from.Get<NativeT>({index})); } return LiteralUtil::CreateR1<NativeT>(values); } absl::StatusOr<Literal> ExtractFromIndexPositions( const Literal& from, absl::Span<int64_t const> indices) { PrimitiveType type = from.shape().element_type(); return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsArrayType(primitive_type_constant)) { return ExtractLiteralFromIndexPositions< NativeTypeOf<primitive_type_constant>>(from, indices); } return InvalidArgument("Unsupported type for Sort: %s", PrimitiveType_Name(type)); }, type); } void IterateThroughWindow( const Shape& window_shape, const Window& window, const Shape& base_shape, const absl::Span<const int64_t> window_count_index, const std::function<void(absl::Span<const int64_t>)>& f) { const int64_t rank = base_shape.rank(); DimensionVector window_index(rank); std::fill(window_index.begin(), window_index.end(), 0); do { DimensionVector base_index(rank); bool out_of_bound = false; for (int64_t i = 0; i < rank; ++i) { base_index[i] = window_count_index[i] * window.dimensions(i).stride() + window_index[i] * window.dimensions(i).window_dilation() - window.dimensions(i).padding_low(); if (base_index[i] % window.dimensions(i).base_dilation() != 0) { out_of_bound = true; break; } base_index[i] /= window.dimensions(i).base_dilation(); if (base_index[i] < 0 || base_index[i] >= base_shape.dimensions(i)) { out_of_bound = true; break; } } if (!out_of_bound) { f(base_index); } } while (IndexUtil::BumpIndices(window_shape, absl::MakeSpan(window_index))); } template <typename Fp, typename Uint, typename ResultT> absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { std::function<ResultT(Fp, Uint)> stochastic_convert_op = [](Fp operand, Uint random) -> ResultT { bool is_negative = static_cast<bool>(Eigen::numext::signbit(operand)); if (Eigen::numext::isinf(operand)) { return is_negative ? std::numeric_limits<ResultT>::min() : std::numeric_limits<ResultT>::max(); } if (Eigen::numext::isnan(operand)) { return static_cast<ResultT>(0); } if (operand >= static_cast<Fp>(std::numeric_limits<ResultT>::max())) { return std::numeric_limits<ResultT>::max(); } if (operand <= static_cast<Fp>(std::numeric_limits<ResultT>::min())) { return std::numeric_limits<ResultT>::min(); } operand = Eigen::numext::abs(operand); auto truncated = static_cast<ResultT>(operand); Fp fractional = operand - static_cast<Fp>(truncated); if (fractional == Fp{0}) { return is_negative ? -truncated : truncated; } auto fixed_fractional = static_cast<Uint>(std::ldexp( static_cast<double>(fractional), std::numeric_limits<Uint>::digits)); if (random < fixed_fractional) { if (truncated == std::numeric_limits<ResultT>::max()) { return std::numeric_limits<ResultT>::min(); } truncated++; } return is_negative ? -truncated : truncated; }; Literal result(result_shape); TF_RETURN_IF_ERROR( result.Populate<ResultT>([&](absl::Span<const int64_t> multi_index) { return stochastic_convert_op(operand_literal.Get<Fp>(multi_index), random_literal.Get<Uint>(multi_index)); })); return std::move(result); } template <PrimitiveType operand_type, PrimitiveType random_type, PrimitiveType result_type> absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { return StochasticConvertOp< typename primitive_util::PrimitiveTypeToNative<operand_type>::type, typename primitive_util::PrimitiveTypeToNative<random_type>::type, typename primitive_util::PrimitiveTypeToNative<result_type>::type>( operand_literal, random_literal, result_shape); } template <PrimitiveType operand_type, PrimitiveType random_type> absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsSignedIntegralType( primitive_type_constant)) { return StochasticConvertOp<operand_type, random_type, primitive_type_constant>( operand_literal, random_literal, result_shape); } return Unimplemented( "Stochastically converting from type %s to type %s is not " "implemented.", PrimitiveType_Name(operand_literal.shape().element_type()), PrimitiveType_Name(result_shape.element_type())); }, result_shape.element_type()); } absl::StatusOr<Literal> StochasticConvertOp(const Literal& operand_literal, const Literal& random_literal, const Shape& result_shape) { return primitive_util::PrimitiveTypeSwitch<absl::StatusOr<Literal>>( [&](auto primitive_type_constant) -> absl::StatusOr<Literal> { if constexpr (primitive_util::IsFloatingPointType( primitive_type_constant)) { return StochasticConvertOp< primitive_type_constant, primitive_util::UnsignedIntegralTypeForBitWidth( primitive_util::BitWidth(primitive_type_constant))>( operand_literal, random_literal, result_shape); } return Unimplemented( "Stochastically converting from type %s to type %s is not " "implemented.", PrimitiveType_Name(operand_literal.shape().element_type()), PrimitiveType_Name(result_shape.element_type())); }, operand_literal.shape().element_type()); } } absl::Status HloEvaluator::HandleReverse(const HloInstruction* reverse) { const Shape& result_shape = reverse->shape(); const auto reverse_dimensions = reverse->dimensions(); auto operand = reverse->operand(0); TF_ASSIGN_OR_RETURN( auto inferred_return_shape, ShapeInference::InferReverseShape(operand->shape(), reverse_dimensions)); TF_RET_CHECK(ShapeUtil::Compatible(result_shape, inferred_return_shape)) << "return shape set to: " << ShapeUtil::HumanString(result_shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); Literal result(result_shape); const size_t element_byte_size = primitive_util::ByteWidth(result_shape.element_type()); auto* operand_base = static_cast<const char*>(operand_literal.untyped_data()); TF_RETURN_IF_ERROR(result.PopulateInplaceParallel( [&](void* dest, absl::Span<const int64_t> out_index, int) { std::vector<int64_t> from_index(out_index.begin(), out_index.end()); for (const int64_t dim : reverse_dimensions) { from_index[dim] = result_shape.dimensions(dim) - 1 - out_index[dim]; } auto* src = operand_base + (element_byte_size * IndexUtil::MultidimensionalIndexToLinearIndex( operand_literal.shape(), from_index)); std::memcpy(dest, src, element_byte_size); })); evaluated_[reverse] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSelectAndScatter( const HloInstruction* select_and_scatter) { auto operand = select_and_scatter->operand(0); auto source = select_and_scatter->operand(1); const Window& window = select_and_scatter->window(); const Literal& init_literal = GetEvaluatedLiteralFor(select_and_scatter->operand(2)); TF_RET_CHECK(ShapeUtil::IsScalar(init_literal.shape())); TF_ASSIGN_OR_RETURN(Literal result, init_literal.Broadcast(select_and_scatter->shape(), {})); std::vector<int64_t> window_dimension_sizes; for (const auto& window_dimension : window.dimensions()) { window_dimension_sizes.push_back(window_dimension.size()); } const Shape window_shape = ShapeUtil::MakeShape( operand->shape().element_type(), window_dimension_sizes); const HloComputation* select = select_and_scatter->select(); const HloComputation* scatter = select_and_scatter->scatter(); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const Literal& source_literal = GetEvaluatedLiteralFor(source); int64_t rank = operand_literal.shape().rank(); HloEvaluator embedded_evaluator(max_loop_iterations_); DimensionVector source_index(rank, 0); do { std::optional<Literal> selected_val; std::optional<DimensionVector> selected_index; IterateThroughWindow( window_shape, window, operand_literal.shape(), source_index, [&](absl::Span<const int64_t> operand_index) { auto curr_val = LiteralUtil::GetScalarLiteral(operand_literal, operand_index); if (!selected_val.has_value()) { selected_val.emplace(curr_val.Clone()); selected_index.emplace(operand_index.begin(), operand_index.end()); } Literal computed_result = embedded_evaluator .Evaluate(*select, {&selected_val.value(), &curr_val}) .value(); bool selected = !computed_result.Get<bool>({}); if (selected) { *selected_val = std::move(curr_val); selected_index.emplace(operand_index.begin(), operand_index.end()); } embedded_evaluator.ResetVisitStates(); }); IterateThroughWindow( window_shape, window, operand_literal.shape(), source_index, [&](absl::Span<const int64_t> operand_index) { if (std::equal(operand_index.begin(), operand_index.end(), selected_index->begin())) { auto source = LiteralUtil::GetScalarLiteral(source_literal, source_index); auto scattered = LiteralUtil::GetScalarLiteral(result, operand_index); Literal computed_result = embedded_evaluator.Evaluate(*scatter, {&source, &scattered}) .value(); LiteralUtil::SetScalarLiteral(result, operand_index, computed_result); embedded_evaluator.ResetVisitStates(); } }); } while ( IndexUtil::BumpIndices(source->shape(), absl::MakeSpan(source_index))); evaluated_[select_and_scatter] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSlice(const HloInstruction* slice) { auto operand = slice->operand(0); const Shape& shape = slice->shape(); TF_ASSIGN_OR_RETURN(auto inferred_return_shape, ShapeInference::InferSliceShape( operand->shape(), slice->slice_starts(), slice->slice_limits(), slice->slice_strides())); TF_RET_CHECK(ShapeUtil::Compatible(shape, inferred_return_shape)) << "return shape set to: " << ShapeUtil::HumanString(shape) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); const int64_t rank = operand->shape().rank(); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const size_t element_byte_size = primitive_util::ByteWidth(shape.element_type()); auto* operand_base = static_cast<const char*>(operand_literal.untyped_data()); auto func = [&](void* dest, absl::Span<const int64_t> out_index, int) { DimensionVector operand_index(rank); for (int64_t i = 0; i < rank; ++i) { operand_index[i] = slice->slice_starts(i) + out_index[i] * slice->slice_strides(i); } auto* src = operand_base + (element_byte_size * IndexUtil::MultidimensionalIndexToLinearIndex( operand_literal.shape(), operand_index)); std::memcpy(dest, src, element_byte_size); }; Literal result(shape); TF_RETURN_IF_ERROR(result.PopulateInplaceParallel(func)); evaluated_[slice] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleSort(const HloInstruction* sort) { TF_RET_CHECK(sort->operand_count() >= 1) << "Expected at least 1 operand for sort"; for (int64_t i = 1; i < sort->operand_count(); ++i) { TF_RET_CHECK(ShapeUtil::SameDimensions(sort->operand(0)->shape(), sort->operand(i)->shape())) << "All Sort operands must have the same dimensions"; } if (VLOG_IS_ON(3)) { for (int64_t i = 0; i < sort->operand_count(); ++i) { VLOG(3) << "HandleSort operand " << i << " literal: " << GetEvaluatedLiteralFor(sort->operand(i)).ToString(); } } Shape key_shape = sort->operand(0)->shape(); auto rank = key_shape.rank(); std::vector<Literal> result_literals; result_literals.reserve(sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { result_literals.emplace_back(sort->operand(i)->shape()); } std::vector<int64_t> zero_base(rank, 0); std::vector<int64_t> increment(rank, 1); int64_t sort_dim = sort->dimensions(0); int64_t sort_dim_elements = key_shape.dimensions(sort_dim); TF_RET_CHECK(sort_dim >= 0 && sort_dim < increment.size()) << "Unexpected out-of-bound sort dimension " << sort_dim << " accessing increment of size " << increment.size(); increment[sort_dim] = sort_dim_elements; auto comparator = [sort](absl::Span<const Literal> literals_to_sort, int64_t a, int64_t b, HloEvaluator* embedded_evaluator) -> absl::StatusOr<bool> { absl::InlinedVector<Literal, 8> literals; literals.reserve(2 * sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { literals.push_back( LiteralUtil::GetScalarLiteral(literals_to_sort[i], {a})); literals.push_back( LiteralUtil::GetScalarLiteral(literals_to_sort[i], {b})); } absl::InlinedVector<const Literal*, 8> literal_ptrs; absl::c_transform(literals, std::back_inserter(literal_ptrs), [](const Literal& literal) { return &literal; }); TF_ASSIGN_OR_RETURN( auto computed_result, embedded_evaluator->Evaluate(*sort->to_apply(), literal_ptrs)); embedded_evaluator->ResetVisitStates(); return computed_result.Get<bool>({}); }; auto less_than = [&comparator](absl::Span<const Literal> literals_to_sort, int64_t a, int64_t b, HloEvaluator* embedded_evaluator) -> absl::StatusOr<bool> { TF_ASSIGN_OR_RETURN(bool a_is_smaller, comparator(literals_to_sort, a, b, embedded_evaluator)); #ifndef NDEBUG TF_ASSIGN_OR_RETURN(bool b_is_smaller, comparator(literals_to_sort, b, a, embedded_evaluator)); TF_RET_CHECK(!(b_is_smaller && a_is_smaller)); TF_ASSIGN_OR_RETURN(bool b_is_reflexive, comparator(literals_to_sort, b, b, embedded_evaluator)); TF_RET_CHECK(!b_is_reflexive); TF_ASSIGN_OR_RETURN(bool a_is_reflexive, comparator(literals_to_sort, a, a, embedded_evaluator)); TF_RET_CHECK(!a_is_reflexive); #endif return a_is_smaller; }; std::function<absl::Status(absl::Span<const Literal>, absl::Span<int64_t>, absl::Span<int64_t>, absl::Span<int64_t>, std::vector<int64_t>&, HloEvaluator*)> merge = [&](absl::Span<const Literal> literals_to_sort, absl::Span<int64_t> lhs, absl::Span<int64_t> rhs, absl::Span<int64_t> output, std::vector<int64_t>& tmp, HloEvaluator* embedded_evaluator) -> absl::Status { tmp.clear(); tmp.reserve(output.size()); while (!lhs.empty() && !rhs.empty()) { TF_ASSIGN_OR_RETURN(bool rhs_is_smaller, less_than(literals_to_sort, rhs.front(), lhs.front(), embedded_evaluator)); if (rhs_is_smaller) { tmp.push_back(rhs.front()); rhs.remove_prefix(1); } else { tmp.push_back(lhs.front()); lhs.remove_prefix(1); } } absl::c_copy(lhs, std::back_inserter(tmp)); absl::c_copy(rhs, std::back_inserter(tmp)); absl::c_copy(tmp, output.begin()); return absl::OkStatus(); }; auto* env = tsl::Env::Default(); const int max_parallelism = tsl::port::MaxParallelism(); constexpr size_t kMinElementsPerThread{1024}; const size_t useful_parallelism = std::min<size_t>( sort_dim_elements / kMinElementsPerThread, max_parallelism); const size_t work_per_thread = useful_parallelism > 1 ? sort_dim_elements / useful_parallelism : std::numeric_limits<size_t>::max(); std::function<absl::Status(absl::Span<const Literal>, absl::Span<int64_t>, std::vector<int64_t>*, HloEvaluator*)> mergesort = [&merge, &mergesort, &less_than, this, env, work_per_thread]( absl::Span<const Literal> literals_to_sort, absl::Span<int64_t> to_sort, std::vector<int64_t>* scratch, HloEvaluator* embedded_evaluator) -> absl::Status { if (to_sort.size() < 2) { return absl::OkStatus(); } size_t halfway = to_sort.size() / 2; auto lhs = to_sort.subspan(0, halfway); auto rhs = to_sort.subspan(halfway); std::unique_ptr<HloEvaluator> thread_local_embedded_evaluator; if (embedded_evaluator == nullptr) { thread_local_embedded_evaluator = CreateEmbedded(max_loop_iterations_); embedded_evaluator = thread_local_embedded_evaluator.get(); } constexpr size_t kMinElementsForMergesort{9}; if (to_sort.size() >= kMinElementsForMergesort) { std::unique_ptr<std::vector<int64_t>> thread_local_scratch; if (!scratch) { thread_local_scratch = std::make_unique<std::vector<int64_t>>(); scratch = thread_local_scratch.get(); } absl::Status lhs_status; if (to_sort.size() >= work_per_thread) { std::unique_ptr<tsl::Thread> thread = absl::WrapUnique(env->StartThread( tsl::ThreadOptions(), "XLA_mergesort", [literals_to_sort, lhs, &mergesort, &lhs_status] { lhs_status = mergesort(literals_to_sort, lhs, nullptr, nullptr); })); TF_RETURN_IF_ERROR( mergesort(literals_to_sort, rhs, scratch, embedded_evaluator)); thread.reset(); } else { TF_RETURN_IF_ERROR( mergesort(literals_to_sort, rhs, scratch, embedded_evaluator)); lhs_status = mergesort(literals_to_sort, lhs, scratch, embedded_evaluator); } TF_RETURN_IF_ERROR(lhs_status); TF_RETURN_IF_ERROR(merge(literals_to_sort, lhs, rhs, to_sort, *scratch, embedded_evaluator)); } else { for (auto i = to_sort.begin(); i != to_sort.end(); ++i) { auto len = i - to_sort.begin(); auto ub = to_sort.begin(); auto needle = *i; while (len != 0) { auto half_len = len / 2; auto midpoint = ub + half_len; TF_ASSIGN_OR_RETURN(bool is_smaller, less_than(literals_to_sort, needle, *midpoint, embedded_evaluator)); if (is_smaller) { len = half_len; } else { ub = midpoint + 1; len -= half_len + 1; } } std::rotate(ub, i, i + 1); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( key_shape, zero_base, key_shape.dimensions(), increment, [&](absl::Span<const int64_t> indices) -> absl::StatusOr<bool> { std::vector<int64_t> limit_indices(indices.begin(), indices.end()); absl::c_for_each(limit_indices, [](int64_t& index) { ++index; }); limit_indices[sort_dim] = sort_dim_elements; std::vector<Literal> literals_to_sort; literals_to_sort.reserve(sort->operand_count()); for (int64_t i = 0; i < sort->operand_count(); ++i) { TF_ASSIGN_OR_RETURN(auto literal_to_sort, GetEvaluatedLiteralFor(sort->operand(i)) .Slice(indices, limit_indices) .Reshape({sort_dim_elements})); literals_to_sort.push_back(std::move(literal_to_sort)); } std::vector<int64_t> indices_to_sort(sort_dim_elements); std::iota(indices_to_sort.begin(), indices_to_sort.end(), 0); TF_RETURN_IF_ERROR(mergesort(literals_to_sort, absl::MakeSpan(indices_to_sort), nullptr, nullptr)); std::vector<int64_t> slice_dimensions(rank, 1); slice_dimensions[sort_dim] = sort_dim_elements; std::vector<int64_t> start_indices(rank, 0); for (int64_t i = 0; i < sort->operand_count(); ++i) { TF_ASSIGN_OR_RETURN( Literal sorted_literal, ExtractFromIndexPositions(literals_to_sort[i], indices_to_sort)); TF_ASSIGN_OR_RETURN(auto sorted_literal_reshaped, sorted_literal.Reshape(slice_dimensions)); TF_RETURN_IF_ERROR(result_literals[i].CopySliceFrom( sorted_literal_reshaped, start_indices, indices, slice_dimensions)); } return true; })); if (sort->operand_count() == 1) { evaluated_[sort] = std::move(result_literals[0]); } else { std::vector<const Literal*> literal_ptrs; absl::c_transform(result_literals, std::back_inserter(literal_ptrs), [](const Literal& literal) { return &literal; }); Literal result_tuple = LiteralUtil::MakeTuple(literal_ptrs); VLOG(3) << "HandleSort result_tuple: " << result_tuple.ToString(); evaluated_[sort] = std::move(result_tuple); } return absl::OkStatus(); } absl::Status HloEvaluator::HandleStochasticConvert( const HloInstruction* stochastic_convert) { const HloInstruction* operand = stochastic_convert->operand(0); const HloInstruction* random = stochastic_convert->operand(1); const Shape& result_shape = stochastic_convert->shape(); TF_RET_CHECK(ShapeUtil::SameDimensions(operand->shape(), random->shape())); TF_RET_CHECK(ShapeUtil::SameDimensions(operand->shape(), result_shape)); const Literal& operand_literal = GetEvaluatedLiteralFor(operand); const Literal& random_literal = GetEvaluatedLiteralFor(random); TF_ASSIGN_OR_RETURN( evaluated_[stochastic_convert], StochasticConvertOp(operand_literal, random_literal, result_shape)); return absl::OkStatus(); } static bool IsScalarAdd(HloComputation* computation) { HloInstruction* instruction = computation->root_instruction(); if (instruction->opcode() == HloOpcode::kAdd && computation->num_parameters() == 2) { const HloInstruction* lhs = instruction->operand(0); const HloInstruction* rhs = instruction->operand(1); return lhs->opcode() == HloOpcode::kParameter && ShapeUtil::IsScalar(lhs->shape()) && rhs->opcode() == HloOpcode::kParameter && ShapeUtil::IsScalar(rhs->shape()) && lhs != rhs; } return false; } static absl::StatusOr<bool> PerformReductionStep( bool is_tuple, absl::Span<const int64_t> input_index, absl::Span<const int64_t> output_index, absl::Span<const Literal* const> input_args, absl::Span<Literal> results, HloComputation* computation, HloEvaluator* embedded_evaluator) { int num_args = results.size(); absl::InlinedVector<Literal, 1> arg_values; arg_values.reserve(num_args); absl::InlinedVector<Literal, 1> accumulators; accumulators.reserve(num_args); for (int64_t i = 0; i < num_args; ++i) { arg_values.emplace_back( ShapeUtil::MakeShape(input_args[i]->shape().element_type(), {})); accumulators.emplace_back( ShapeUtil::MakeShape(input_args[i]->shape().element_type(), {})); arg_values[i].CopyElementFrom(*input_args[i], input_index, {}); accumulators[i].CopyElementFrom(results[i], output_index, {}); } absl::InlinedVector<Literal*, 2> embedded_operands; for (Literal& accumulator : accumulators) { embedded_operands.push_back(&accumulator); } for (Literal& local_input : arg_values) { embedded_operands.push_back(&local_input); } TF_ASSIGN_OR_RETURN( Literal computed_result, embedded_evaluator->Evaluate(*computation, embedded_operands)); embedded_evaluator->ResetVisitStates(); if (is_tuple) { std::vector<Literal> computed_results = computed_result.DecomposeTuple(); for (int64_t i = 0; i < num_args; ++i) { results[i].CopyElementFrom(computed_results[i], {}, output_index); } } else { results[0].CopyElementFrom(computed_result, {}, output_index); } return true; } static absl::StatusOr<bool> GenerateReduceOutputElement( bool is_tuple, bool use_fast_path, absl::Span<const int64_t> output_index, absl::Span<const Literal* const> init_values, absl::Span<const Literal* const> input_args, absl::Span<Literal> results, HloComputation* function, HloEvaluator* embedded_evaluator, absl::Span<const int64_t> arg_dim_steps, absl::Span<const int64_t> arg_dim_counts, absl::Span<const int64_t> result_to_arg_index) { bool use_fast_add = use_fast_path && ShapeUtil::ElementIsFloating(init_values[0]->shape()) && IsScalarAdd(function) && !is_tuple; const Shape& arg_shape = input_args[0]->shape(); absl::Span<const int64_t> arg_dimensions = arg_shape.dimensions(); std::vector<int64_t> base(arg_dimensions.size()); for (int64_t i = 0; i < output_index.size(); ++i) { base[result_to_arg_index[i]] = output_index[i]; } for (int64_t i = 0; i < results.size(); ++i) { results[i].CopyElementFrom(*init_values[i], {}, output_index); } if (use_fast_add) { double computed_result = *init_values[0]->GetAsDouble({}); const Literal* input_arg0 = input_args[0]; const Shape& shape = input_arg0->shape(); absl::Span<const int64_t> minor_to_major = LayoutUtil::MinorToMajor(shape); static constexpr int kChunkSize = 512; int64_t linear_indices[kChunkSize]; int n_linear_indices = 0; auto reduction_step = [&](absl::Span<const int64_t> input_index) -> bool { linear_indices[n_linear_indices++] = IndexUtil::MultidimensionalIndexToLinearIndex(shape, minor_to_major, input_index); if (n_linear_indices == kChunkSize) { computed_result += *input_arg0->GetSumAsDouble( absl::MakeConstSpan(linear_indices, n_linear_indices)); n_linear_indices = 0; } return true; }; ShapeUtil::ForEachIndexNoStatus(arg_shape, base, arg_dim_counts, arg_dim_steps, reduction_step); if (n_linear_indices > 0) { computed_result += *input_arg0->GetSumAsDouble( absl::MakeConstSpan(linear_indices, n_linear_indices)); } TF_RETURN_IF_ERROR(results[0].SetFromDouble(output_index, computed_result)); return true; } TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexWithStatus( arg_shape, base, arg_dim_counts, arg_dim_steps, [&](absl::Span<const int64_t> input_index) { return PerformReductionStep(is_tuple, input_index, output_index, input_args, results, function, embedded_evaluator); })); return true; } absl::Status HloEvaluator::HandleReduce(const HloInstruction* hlo) { const HloReduceInstruction* reduce = Cast<HloReduceInstruction>(hlo); int64_t num_args = reduce->inputs().size(); absl::Span<const int64_t> dimensions_to_reduce(reduce->dimensions()); HloComputation* function = reduce->to_apply(); absl::InlinedVector<const Shape*, 1> operand_shapes; for (const HloInstruction* operand : reduce->operands()) { operand_shapes.push_back(&operand->shape()); } TF_ASSIGN_OR_RETURN(auto inferred_return_shape, ShapeInference::InferReduceShape( operand_shapes, dimensions_to_reduce, function->ComputeProgramShape())); TF_RET_CHECK(ShapeUtil::CompatibleIgnoringFpPrecision(reduce->shape(), inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanString(reduce->shape()) << " but is inferred to be: " << ShapeUtil::HumanString(inferred_return_shape); absl::InlinedVector<const Literal*, 1> input_args(num_args); absl::InlinedVector<const Literal*, 1> init_values(num_args); for (int64_t i = 0; i < num_args; ++i) { input_args[i] = &GetEvaluatedLiteralFor(reduce->inputs()[i]); VLOG(3) << "HandleReduce arg_literal: " << input_args[i]->ToString(); init_values[i] = &GetEvaluatedLiteralFor(reduce->init_values()[i]); VLOG(3) << "HandleReduce init_literal: " << init_values[i]->ToString(); TF_RET_CHECK(ShapeUtil::IsScalar(init_values[i]->shape())); } const Shape& arg_shape = input_args[0]->shape(); const Shape& out_shape = inferred_return_shape; bool is_tuple = out_shape.IsTuple(); const Shape& output_shape = inferred_return_shape.IsTuple() ? inferred_return_shape.tuple_shapes(0) : inferred_return_shape; absl::Span<const int64_t> arg_dimensions = arg_shape.dimensions(); std::vector<int64_t> arg_dim_steps(arg_dimensions.size()); std::vector<int64_t> arg_dim_counts(arg_dimensions.size()); for (const int64_t dim : dimensions_to_reduce) { arg_dim_steps[dim] = 1; arg_dim_counts[dim] = arg_dimensions[dim]; } std::vector<int64_t> result_to_arg_index; for (int64_t i = 0; i < arg_dimensions.size(); ++i) { if (arg_dim_steps[i] == 0) { result_to_arg_index.push_back(i); } } const int num_threads = ShapeUtil::GetForEachIndexParallelThreadCount() + 1; std::vector<std::unique_ptr<HloEvaluator>> embedded_evaluators; embedded_evaluators.reserve(num_threads); for (int i = 0; i < num_threads; ++i) { embedded_evaluators.push_back(CreateEmbedded(max_loop_iterations_)); } absl::InlinedVector<Literal, 1> results(num_args); for (int64_t i = 0; i < num_args; ++i) { results[i] = Literal(is_tuple ? out_shape.tuple_shapes(i) : out_shape); } TF_RETURN_IF_ERROR(ShapeUtil::ForEachIndexParallelWithStatus( output_shape, [&](absl::Span<const int64_t> output_index, int thread_id) { return GenerateReduceOutputElement( is_tuple, use_fast_path_reduce_, output_index, init_values, input_args, absl::Span<Literal>(results), function, embedded_evaluators[thread_id + 1].get(), arg_dim_steps, arg_dim_counts, result_to_arg_index); })); if (is_tuple) { Literal tuple_result(inferred_return_shape); for (int64_t i = 0; i < num_args; ++i) { TF_CHECK_OK(tuple_result.MoveFrom(std::move(results[i]), {i})); } evaluated_[reduce] = std::move(tuple_result); } else { CHECK_EQ(results.size(), 1); evaluated_[reduce] = std::move(results[0]); } if (!ShapeUtil::Compatible(reduce->shape(), inferred_return_shape)) { TF_ASSIGN_OR_RETURN(evaluated_[reduce], evaluated_[reduce].ConvertToShape(reduce->shape())); } return absl::OkStatus(); } absl::Status HloEvaluator::HandleReduceWindow(const HloInstruction* hlo) { auto* reduce_window = Cast<HloReduceWindowInstruction>(hlo); const Window& window = reduce_window->window(); HloComputation* function = reduce_window->to_apply(); TF_ASSIGN_OR_RETURN(auto inferred_return_shape, ShapeInference::InferReduceWindowShape( reduce_window->input_shapes(), reduce_window->init_value_shapes(), window, function->ComputeProgramShape())); TF_RET_CHECK( ShapeUtil::Compatible(reduce_window->shape(), inferred_return_shape)) << "return shape is set to: " << ShapeUtil::HumanStringWithLayout(reduce_window->shape()) << " but is inferred to be: " << ShapeUtil::HumanStringWithLayout(inferred_return_shape); absl::InlinedVector<const Literal*, 2> input_literal_vec, init_literal_vec; auto input_arrays = reduce_window->inputs(); auto init_values = reduce_window->init_values(); int64_t num_args = input_arrays.size(); for (int i = 0; i < num_args; ++i) { const Literal& input_literal = GetEvaluatedLiteralFor(input_arrays[i]); VLOG(3) << "HandleReduceWindow arg_literal: " << input_literal.ToString(); input_literal_vec.push_back(&input_literal); const Literal& init_literal = GetEvaluatedLiteralFor(init_values[i]); VLOG(3) << "HandleReduceWindow init_literal: " << init_literal.ToString(); TF_RET_CHECK(ShapeUtil::IsScalar(init_literal.shape())); init_literal_vec.push_back(&init_literal); } absl::InlinedVector<int64_t, 2> window_dimension_sizes; for (const auto& window_dimension : window.dimensions()) { window_dimension_sizes.push_back(window_dimension.size()); } const Shape window_shape = ShapeUtil::MakeShape( input_arrays[0]->shape().element_type(), window_dimension_sizes); const int num_threads = ShapeUtil::GetForEachIndexParallelThreadCount() + 1; std::vector<std::unique_ptr<HloEvaluator>> embedded_evaluators; embedded_evaluators.reserve(num_threads); for (int i = 0; i < num_threads; ++i) { embedded_evaluators.push_back(CreateEmbedded(max_loop_iterations_)); } auto evaluate_impl = [&init_literal_vec, &window_shape, &window, &input_literal_vec, &embedded_evaluators, function, &inferred_return_shape]( absl::Span<const int64_t> output_index, int thread_id) -> absl::InlinedVector<Literal, 2> { const int embedded_evaluator_index = thread_id + 1; CHECK_GE(embedded_evaluator_index, 0); CHECK_LT(embedded_evaluator_index, embedded_evaluators.size()); HloEvaluator& embedded_evaluator = *embedded_evaluators[embedded_evaluator_index]; absl::InlinedVector<Literal, 2> computed_result; computed_result.reserve(init_literal_vec.size()); for (const auto* init : init_literal_vec) { computed_result.push_back(init->Clone()); } IterateThroughWindow( window_shape, window, input_literal_vec[0]->shape(), output_index, [&](absl::Span<const int64_t> operand_index) -> void { absl::InlinedVector<const Literal*, 2> args; for (auto& curr_result_val : computed_result) { VLOG(2) << "Pushing:" << curr_result_val.ToString() << "\n"; args.push_back(&curr_result_val); } absl::InlinedVector<Literal, 2> curr_val_literal_vec; curr_val_literal_vec.reserve(input_literal_vec.size()); for (const auto* input_literal : input_literal_vec) { curr_val_literal_vec.push_back(Literal(ShapeUtil::MakeShape( input_literal->shape().element_type(), {}))); curr_val_literal_vec.back().CopyElementFrom(*input_literal, operand_index, {}); VLOG(2) << "Pushing:" << curr_val_literal_vec.back().ToString() << "\n"; args.push_back(&curr_val_literal_vec.back()); } computed_result[0] = embedded_evaluator.Evaluate(*function, args).value(); VLOG(2) << "Computed result:" << computed_result[0].ToString() << "\n"; embedded_evaluator.ResetVisitStates(); if (inferred_return_shape.IsTuple()) { auto decomposed = computed_result[0].DecomposeTuple(); computed_result.clear(); computed_result.reserve(decomposed.size()); for (int i = 0; i < decomposed.size(); ++i) { computed_result.push_back(std::move(decomposed[i])); } } }); VLOG(2) << "Final result size:" << computed_result.size() << "\n"; for (const auto& res : computed_result) { VLOG(2) << res.ToString() << "\n"; } return computed_result; }; Literal result(inferred_return_shape); if (inferred_return_shape.IsTuple()) { absl::InlinedVector<Literal, 1> results(num_args); for (int64_t i = 0; i < num_args; ++i) { results[i] = Literal(inferred_return_shape.tuple_shapes(i)); } ShapeUtil::ForEachIndexParallel( inferred_return_shape.tuple_shapes(0), [&results, &evaluate_impl](absl::Span<const int64_t> output_index, int thread_id) -> bool { absl::InlinedVector<Literal, 2> computed_result_vec = evaluate_impl(output_index, thread_id); for (int i = 0; i < computed_result_vec.size(); ++i) { results[i].CopyElementFrom(computed_result_vec[i], {}, output_index); } return true; }); result = Literal::MoveIntoTuple(absl::MakeSpan(results)); VLOG(2) << "Final result is:" << result.ToString() << "\n"; } else { TF_RETURN_IF_ERROR(Apply<PopulateParallelImpl>( result, [&evaluate_impl](absl::Span<const int64_t> output_index, int thread_id) { return std::move(evaluate_impl(output_index, thread_id)[0]); })); } VLOG(2) << "Final result is:" << result.ToString() << "\n"; evaluated_[reduce_window] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleMap(const HloInstruction* map) { auto operands = map->operands(); const HloComputation* computation = map->to_apply(); Literal result(map->shape()); HloEvaluator embedded_evaluator(max_loop_iterations_); TF_RETURN_IF_ERROR( Apply<PopulateImpl>(result, [&](absl::Span<const int64_t> multi_index) { std::vector<Literal> arg_literals; arg_literals.reserve(operands.size()); for (auto operand : operands) { const Literal& arg_literal = GetEvaluatedLiteralFor(operand); arg_literals.push_back( LiteralUtil::GetScalarLiteral(arg_literal, multi_index)); } Literal computed_result = embedded_evaluator.Evaluate(*computation, arg_literals).value(); embedded_evaluator.ResetVisitStates(); return computed_result; })); evaluated_[map] = std::move(result); return absl::OkStatus(); } absl::Status HloEvaluator::HandleCustomCall(const HloInstruction* custom_call) { if (!custom_call_handler_) { return DefaultAction(custom_call); } std::vector<const Literal*> operands; operands.reserve(custom_call->operand_count()); for (const HloInstruction* operand : custom_call->operands()) { operands.push_back(&GetEvaluatedLiteralFor(operand)); } TF_ASSIGN_OR_RETURN( auto output, custom_call_handler_(custom_call, absl::MakeSpan(operands))); evaluated_[custom_call] = std::move(output); return absl::OkStatus(); } absl::Status HloEvaluator::Preprocess(const HloInstruction* hlo) { VLOG(3) << "About to visit HLO: " << hlo->ToString(); if (!enable_partial_evaluation_) { for (const HloInstruction* operand : hlo->operands()) { if (!IsAlreadyEvaluated(operand) || !GetEvaluatedLiteralFor(operand).IsKnown()) { return tsl::errors::FailedPrecondition( "Failed to evaluate instruction since its operands are unknown " "or undetermined and partial evaluation is not enabled."); } } } return ShapeUtil::ValidateShape(hlo->shape()); } absl::Status HloEvaluator::Postprocess(const HloInstruction* hlo) { VLOG(3) << "Finished visiting " << hlo->ToString() << "; evaluated value is: " << GetEvaluatedLiteralFor(hlo).ToString(); auto evaluated_shape = GetEvaluatedLiteralFor(hlo).shape(); xla::Shape hlo_shape = hlo->shape(); if (hlo_shape.IsArray() && !hlo_shape.has_layout()) { *hlo_shape.mutable_layout() = LayoutUtil::GetDefaultLayoutForShape(hlo_shape); } if (evaluated_shape.has_layout() && hlo_shape.has_layout() && !Layout::Equal().MinorToMajorOnly()(evaluated_shape.layout(), hlo_shape.layout())) { evaluated_.at(hlo) = evaluated_.at(hlo).Relayout(hlo_shape); } return absl::OkStatus(); } namespace { template <typename T> std::unique_ptr<Array2D<T>> MatmulArray2DImpl( const Array2D<T>& lhs, const Array2D<T>& rhs, const std::function<void(const void* run_options_ptr, T* out, T* lhs, T* rhs, int64_t m, int64_t n, int64_t k, int32_t transpose_lhs, int32_t transpose_rhs)>& impl_fn) { CHECK_EQ(lhs.width(), rhs.height()); int m = lhs.height(); int n = rhs.width(); int k = lhs.width(); auto result = std::make_unique<Array2D<T>>(m, n); impl_fn( nullptr, result->data(), rhs.data(), lhs.data(), n, m, k, 0, 0); return result; } } std::unique_ptr<Array2D<Eigen::half>> HloEvaluator::MatmulArray2D( const Array2D<Eigen::half>& lhs, const Array2D<Eigen::half>& rhs) { return MatmulArray2DImpl<Eigen::half>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF16); } std::unique_ptr<Array2D<float>> HloEvaluator::MatmulArray2D( const Array2D<float>& lhs, const Array2D<float>& rhs) { return MatmulArray2DImpl<float>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF32); } std::unique_ptr<Array2D<double>> HloEvaluator::MatmulArray2D( const Array2D<double>& lhs, const Array2D<double>& rhs) { return MatmulArray2DImpl<double>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF64); } std::unique_ptr<Array2D<std::complex<float>>> HloEvaluator::MatmulArray2D( const Array2D<std::complex<float>>& lhs, const Array2D<std::complex<float>>& rhs) { return MatmulArray2DImpl<std::complex<float>>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulC64); } std::unique_ptr<Array2D<std::complex<double>>> HloEvaluator::MatmulArray2D( const Array2D<std::complex<double>>& lhs, const Array2D<std::complex<double>>& rhs) { return MatmulArray2DImpl<std::complex<double>>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulC128); } std::unique_ptr<Array2D<int32_t>> HloEvaluator::MatmulArray2D( const Array2D<int32_t>& lhs, const Array2D<int32_t>& rhs) { return MatmulArray2DImpl<int32_t>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulS32); } std::unique_ptr<Array2D<uint8_t>> HloEvaluator::MatmulArray2D( const Array2D<uint8_t>& lhs, const Array2D<uint8_t>& rhs) { return MatmulArray2DImpl<uint8_t>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulU8); } std::unique_ptr<Array2D<float>> Array2DF8E5M2ToF32( const Array2D<tsl::float8_e5m2>& input) { auto result = std::make_unique<Array2D<float>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<float>(input(rowno, colno)); } } return result; } std::unique_ptr<Array2D<float>> Array2DF8E4M3FNToF32( const Array2D<tsl::float8_e4m3fn>& input) { auto result = std::make_unique<Array2D<float>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<float>(input(rowno, colno)); } } return result; } std::unique_ptr<Array2D<tsl::float8_e5m2>> Array2DF32ToF8E5M2( const Array2D<float>& input) { auto result = std::make_unique<Array2D<tsl::float8_e5m2>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<tsl::float8_e5m2>(input(rowno, colno)); } } return result; } std::unique_ptr<Array2D<tsl::float8_e4m3fn>> Array2DF32ToF8E4M3FN( const Array2D<float>& input) { auto result = std::make_unique<Array2D<tsl::float8_e4m3fn>>(input.height(), input.width()); for (int64_t rowno = 0; rowno < input.height(); ++rowno) { for (int64_t colno = 0; colno < input.width(); ++colno) { (*result)(rowno, colno) = static_cast<tsl::float8_e4m3fn>(input(rowno, colno)); } } return result; } static bool promote_f8_to_f32 = true; std::unique_ptr<Array2D<tsl::float8_e5m2>> HloEvaluator::MatmulArray2D( const Array2D<tsl::float8_e5m2>& lhs, const Array2D<tsl::float8_e5m2>& rhs) { if (promote_f8_to_f32) { auto lhs_float = Array2DF8E5M2ToF32(lhs); auto rhs_float = Array2DF8E5M2ToF32(rhs); auto result = MatmulArray2D(*lhs_float, *rhs_float); return Array2DF32ToF8E5M2(*result); } else { return MatmulArray2DImpl<tsl::float8_e5m2>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF8E5M2); } } std::unique_ptr<Array2D<tsl::float8_e4m3fn>> HloEvaluator::MatmulArray2D( const Array2D<tsl::float8_e4m3fn>& lhs, const Array2D<tsl::float8_e4m3fn>& rhs) { if (promote_f8_to_f32) { auto lhs_float = Array2DF8E4M3FNToF32(lhs); auto rhs_float = Array2DF8E4M3FNToF32(rhs); auto result = MatmulArray2D(*lhs_float, *rhs_float); return Array2DF32ToF8E4M3FN(*result); } else { return MatmulArray2DImpl<tsl::float8_e4m3fn>( lhs, rhs, __xla_cpu_runtime_EigenSingleThreadedMatMulF8E4M3FN); } } }
#include "xla/hlo/evaluator/hlo_evaluator.h" #include <array> #include <complex> #include <cstdint> #include <initializer_list> #include <limits> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/internal/endian.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/array4d.h" #include "xla/client/xla_builder.h" #include "xla/comparison_util.h" #include "xla/debug_options_flags.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/permutation_util.h" #include "xla/primitive_util.h" #include "xla/service/call_graph.h" #include "xla/service/dynamic_dimension_inference.h" #include "xla/service/hlo_element_type_converter.h" #include "xla/service/hlo_module_config.h" #include "xla/service/shape_inference.h" #include "xla/service/tuple_points_to_analysis.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/types.h" #include "xla/util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla { namespace { static std::array<bool, 2> use_bf16_params{true, false}; class HloEvaluatorTest : public HloTestBase { public: HloEvaluatorTest() : use_bfloat16_(false) { InitializeFftData(); } absl::StatusOr<Literal> Evaluate( absl::Span<const Literal* const> arg_literals = {}) { if (use_bfloat16_) { HloElementTypeConverter(F32, BF16).Run(m_.get()).value(); } return evaluator_.Evaluate(*m_->entry_computation(), arg_literals); } Literal EvaluateWithModule( HloModule* module, absl::Span<const Literal* const> arg_literals = {}) { if (use_bfloat16_) { HloElementTypeConverter(F32, BF16).Run(m_.get()).value(); } return evaluator_.Evaluate(*module->entry_computation(), arg_literals) .value(); } void TestUnaryOp(HloOpcode opcode, Literal expected, Literal input, float aabs = 0) { HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); b.AddInstruction(HloInstruction::CreateUnary(expected.shape(), opcode, c1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto element_type = expected.shape().element_type(); if (element_type == F32 || element_type == F64) { ErrorSpec error(aabs); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, error)); } else { EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } } void TestBinaryOp(HloOpcode opcode, Literal expected, Literal lhs, Literal rhs) { HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs))); b.AddInstruction( HloInstruction::CreateBinary(expected.shape(), opcode, c1, c2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestTernaryOp(HloOpcode opcode, Literal expected, Literal src0, Literal src1, Literal src2) { HloComputation::Builder b(TestName()); auto operand0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src0))); auto operand1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src1))); auto operand2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(src2))); b.AddInstruction(HloInstruction::CreateTernary( expected.shape(), opcode, operand0, operand1, operand2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestEvaluateInstruction(HloInstruction* instruction, const Literal& expected) { TF_ASSERT_OK_AND_ASSIGN(Literal result, evaluator_.Evaluate(instruction)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestEvaluationFailure(HloInstruction* instruction) { absl::StatusOr<Literal> result = evaluator_.Evaluate(instruction); EXPECT_TRUE(!result.ok()); } void TestRecursivelyEvaluateInstruction(HloInstruction* instruction, const Literal& expected) { TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator_.Evaluate( instruction, {}, true)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void TestRecursiveEvaluationFailure(HloInstruction* instruction) { absl::StatusOr<Literal> result = evaluator_.Evaluate(instruction, {}, true); EXPECT_TRUE(!result.ok()); } std::unique_ptr<HloComputation> MaxComputationScalarF32() { HloComputation::Builder max_computation("max"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = max_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = max_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); max_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kMaximum, param_lhs, param_rhs)); return max_computation.Build(); } void ReduceWindowMaxIotaTest(int window_size, int padding, int stride, int window_dilation, int base_dilation, const Literal& expected) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(4, 4); arg_array->FillIota(0); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); auto max_func = m_->AddEmbeddedComputation(MaxComputationScalarF32()); Window window; WindowDimension dim; dim.set_size(window_size); dim.set_stride(stride); dim.set_padding_low(padding); dim.set_padding_high(padding); dim.set_window_dilation(window_dilation); dim.set_base_dilation(base_dilation); *window.add_dimensions() = dim; *window.add_dimensions() = dim; int dim0 = expected.shape().dimensions(0); int dim1 = expected.shape().dimensions(1); Shape shape = ShapeUtil::MakeShape(F32, {dim0, dim1}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, max_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } protected: explicit HloEvaluatorTest(bool use_bfloat16) : use_bfloat16_(use_bfloat16) { InitializeFftData(); } void InitializeFftData(); HloEvaluator evaluator_; const bool use_bfloat16_; std::unique_ptr<HloModule> m_ = CreateNewVerifiedModule(); ErrorSpec fft_error_ = ErrorSpec(1e-4, 1e-5); Literal fft_c64x2x4x8_; Literal fft_c64x2x4x8_1d_; Literal fft_c64x2x4x8_2d_; Literal fft_c64x2x4x8_3d_; }; class HloEvaluatorBf16Test : public ::testing::WithParamInterface<bool>, public HloEvaluatorTest { protected: HloEvaluatorBf16Test() : HloEvaluatorTest(GetParam()) {} }; INSTANTIATE_TEST_SUITE_P(HloEvaluatorTest_Instantiation, HloEvaluatorBf16Test, ::testing::ValuesIn(use_bf16_params)); TEST_P(HloEvaluatorBf16Test, DoesClamp) { auto low = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); auto value = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); auto high = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); Shape shape = low.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{0, 4}, {2, 4}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DoesClampInt64) { auto ones = [](int bits) { return (int64_t{1} << bits) - 1; }; auto low = LiteralUtil::CreateR2<int64_t>({{0, ones(54)}, {ones(54), ones(58)}}); auto value = LiteralUtil::CreateR2<int64_t>({{0, ones(56)}, {0, ones(58)}}); auto high = LiteralUtil::CreateR2<int64_t>( {{ones(54), ones(55)}, {ones(56), ones(58)}}); Shape shape = low.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int64_t>({{0, ones(55)}, {ones(54), ones(58)}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DISABLED_DoesClampSpecialBroadcast) { auto low = LiteralUtil::CreateR0<float>(0.f); auto value = LiteralUtil::CreateR2<float>({{-1.f, 0.f}, {1.f, 2.f}}); auto high = LiteralUtil::CreateR0<float>(1.f); Shape shape = value.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(low))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(value))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(high))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kClamp, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {1, 1}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DoesSelect) { auto pred = LiteralUtil::CreateR2<bool>({{true, false}, {false, true}}); auto on_true = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); auto on_false = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); Shape shape = on_true.shape(); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(pred))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(on_true))); auto c3 = b.AddInstruction(HloInstruction::CreateConstant(std::move(on_false))); b.AddInstruction( HloInstruction::CreateTernary(shape, HloOpcode::kSelect, c1, c2, c3)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); auto expected = LiteralUtil::CreateR2<float>({{2, 5}, {0, 4}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesAdd) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-96, 8}}); TestBinaryOp(HloOpcode::kAdd, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_P(HloEvaluatorBf16Test, DoesAnd) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{0, 0}, {4, 4}}); TestBinaryOp(HloOpcode::kAnd, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesOr) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-100, 4}}); TestBinaryOp(HloOpcode::kOr, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesXor) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{3, 4}, {-104, 0}}); TestBinaryOp(HloOpcode::kXor, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesMultiply) { auto lhs = LiteralUtil::CreateR2<int32_t>({{-1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int32_t>( {{std::numeric_limits<int32_t>::min(), 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int32_t>( {{std::numeric_limits<int32_t>::min(), 0}, {-400, 16}}); TestBinaryOp(HloOpcode::kMultiply, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesDivideInt64) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{0, 0}, {-25, 1}}); TestBinaryOp(HloOpcode::kDivide, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesClampS64) { auto low = LiteralUtil::CreateR1<int64_t>( {-8616761059752331528LL, 6780561065411491190LL, -8616761059752331528LL}); auto value = LiteralUtil::CreateR1<int64_t>( {-6780561065411491190LL, 6780561065411491180LL, 4241131823772864090LL}); auto high = LiteralUtil::CreateR1<int64_t>( {-6780561065411491180LL, 8616761059752331528LL, 3832151243857508051LL}); auto expected = LiteralUtil::CreateR1<int64_t>( {-6780561065411491190LL, 6780561065411491190LL, 3832151243857508051LL}); TestTernaryOp(HloOpcode::kClamp, std::move(expected), std::move(low), std::move(value), std::move(high)); } TEST_P(HloEvaluatorBf16Test, DoesDivideDouble) { auto lhs = LiteralUtil::CreateR2<double>({{1.0, 0.0}, {-100.0, 4.0}}); auto rhs = LiteralUtil::CreateR2<double>({{2.2, 4.0}, {4.0, 4.0}}); auto expected = LiteralUtil::CreateR2<double>({{0.45454545454545453, 0}, {-25, 1}}); TestBinaryOp(HloOpcode::kDivide, std::move(expected), std::move(lhs), std::move(rhs)); } TEST_F(HloEvaluatorTest, DoesAbsR2) { auto operand = LiteralUtil::CreateR2<int64_t>({{1, -20}, {-100, 4}}); auto expected = LiteralUtil::CreateR2<int64_t>({{1, 20}, {100, 4}}); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesAbsR0) { auto operand = LiteralUtil::CreateR0<float>(-1.0f); auto expected = LiteralUtil::CreateR0<float>(1.0f); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesAbsR1WithZeroSize) { auto operand = LiteralUtil::CreateR1<float>({}); auto expected = LiteralUtil::CreateR1<float>({}); TestUnaryOp(HloOpcode::kAbs, std::move(expected), std::move(operand)); } TEST_F(HloEvaluatorTest, DoesAbsC128) { auto x = LiteralUtil::CreateR0<complex128>({1, 2}); auto expected_real = LiteralUtil::CreateR0<double>(2.23607); TestUnaryOp(HloOpcode::kAbs, std::move(expected_real), std::move(x), 3e-06); } TEST_F(HloEvaluatorTest, DoesNegateR2) { auto operand = LiteralUtil::CreateR2<int32_t>( {{0, std::numeric_limits<int32_t>::min()}, {-1, 4}}); auto expected = LiteralUtil::CreateR2<int32_t>( {{0, std::numeric_limits<int>::min()}, {1, -4}}); TestUnaryOp(HloOpcode::kNegate, std::move(expected), std::move(operand)); } TEST_P(HloEvaluatorBf16Test, DoesCosR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{1, -1}, {-1, 1}}); TestUnaryOp(HloOpcode::kCos, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_P(HloEvaluatorBf16Test, DoesSinR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {0, 0}}); TestUnaryOp(HloOpcode::kSin, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_P(HloEvaluatorBf16Test, DoesTanR2) { auto operand = LiteralUtil::CreateR2<float>({{0, M_PI}, {-M_PI, 2 * M_PI}}); auto expected = LiteralUtil::CreateR2<float>({{0, 0}, {0, 0}}); TestUnaryOp(HloOpcode::kTan, std::move(expected), std::move(operand), use_bfloat16_ ? 0.031250 : 9.5367431640625E-7); } TEST_F(HloEvaluatorTest, DoesNotR2) { auto operand = LiteralUtil::CreateR2<int32_t>({{0, std::numeric_limits<int>::min()}, {-1, std::numeric_limits<int>::max()}}); auto expected = LiteralUtil::CreateR2<int32_t>({{-1, std::numeric_limits<int>::max()}, {0, std::numeric_limits<int>::min()}}); TestUnaryOp(HloOpcode::kNot, std::move(expected), std::move(operand)); } TEST_F(HloEvaluatorTest, DoesRealC128) { auto x = LiteralUtil::CreateR1<complex128>({{1, 0}, {-100, 4}}); auto expected_real = LiteralUtil::CreateR1<double>({1, -100}); TestUnaryOp(HloOpcode::kReal, std::move(expected_real), std::move(x)); } TEST_F(HloEvaluatorTest, DoesImagC128) { auto x = LiteralUtil::CreateR1<complex128>({{1, 0}, {-100, 4}}); auto expected_imag = LiteralUtil::CreateR1<double>({0, 4}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_P(HloEvaluatorBf16Test, DoesImagF32AndBf16) { auto x = LiteralUtil::CreateR1<float>({1, -100}); auto expected_imag = LiteralUtil::CreateR1<float>({0, 0}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_F(HloEvaluatorTest, DoesImagF64) { auto x = LiteralUtil::CreateR1<double>({1, -100}); auto expected_imag = LiteralUtil::CreateR1<double>({0, 0}); TestUnaryOp(HloOpcode::kImag, std::move(expected_imag), std::move(x)); } TEST_F(HloEvaluatorTest, DoesTraverseInstructions) { auto lhs = LiteralUtil::CreateR2<int64_t>({{1, 0}, {-100, 4}}); auto rhs = LiteralUtil::CreateR2<int64_t>({{2, 4}, {4, 4}}); auto rhs2 = LiteralUtil::CreateR2<int64_t>({{1, -20}, {-100, 4}}); std::vector<const Literal*> args = {&lhs, &rhs, &rhs2}; Shape shape = ShapeUtil::MakeShape(S64, {2, 2}); HloComputation::Builder b(TestName()); auto param_lhs = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "lhs")); auto param_rhs = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "rhs")); auto lhs_instruction = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto param_rhs2 = b.AddInstruction(HloInstruction::CreateParameter(2, shape, "rhs2")); b.AddInstruction(HloInstruction::CreateBinary(shape, HloOpcode::kAdd, lhs_instruction, param_rhs2)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate(args)); auto expected = LiteralUtil::CreateR2<int64_t>({{4, -16}, {-196, 12}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesReshape) { HloComputation::Builder b(TestName()); const int64_t dimensions[] = {11, 8, 7, 5, 9}; TF_ASSERT_OK_AND_ASSIGN(auto literal, LiteralUtil::CreateRandomLiteral<F32>( ShapeUtil::MakeShape(F32, dimensions), 0.0, 1.0)); auto literal_clone = literal.Clone(); HloInstruction* literal_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(literal))); Shape shape = ShapeUtil::MakeShape(F32, {8, 7, 11, 9, 5}); const int64_t permutation[] = {1, 2, 0, 4, 3}; b.AddInstruction( HloInstruction::CreateTranspose(shape, literal_instruction, permutation)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); using NativeT = typename primitive_util::PrimitiveTypeToNative<F32>::type; result.EachCell<NativeT>( [&](absl::Span<const int64_t> indices, NativeT value) { std::vector<int64_t> rindexes = PermuteInverse(indices, permutation); EXPECT_NEAR(value, literal_clone.Get<NativeT>(rindexes), 0.031250); }); } TEST_F(HloEvaluatorTest, DoesBroadcast) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}, {5, 6}}); auto output_literal = LiteralUtil::CreateR3<int32_t>( {{{1, 2}, {3, 4}, {5, 6}}, {{1, 2}, {3, 4}, {5, 6}}}); HloInstruction* literal_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateBroadcast( output_literal.shape(), literal_instruction, {1, 2})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); EXPECT_TRUE(LiteralTestUtil::Equal(result, output_literal)); } TEST_F(HloEvaluatorTest, DoesBroadcastScalar) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR0<int32_t>(111); auto output_literal = LiteralUtil::CreateR2<int32_t>( {{111, 111}, {111, 111}, {111, 111}, {111, 111}, {111, 111}, {111, 111}}); HloInstruction* literal_instruction = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateBroadcast( output_literal.shape(), literal_instruction, {})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({})); EXPECT_TRUE(LiteralTestUtil::Equal(result, output_literal)); } TEST_F(HloEvaluatorTest, DoesConcatenateSimple) { HloComputation::Builder b(TestName()); HloInstruction* operand1 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<int64_t>({{-1, -2}, {100, 200}}))); HloInstruction* operand2 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<int64_t>({{-2, -3}, {-100, -200}}))); std::vector<HloInstruction*> operands = {operand1, operand2}; Shape shape = ShapeUtil::MakeShape(S64, {4, 2}); b.AddInstruction(HloInstruction::CreateConcatenate(shape, operands, 0)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int64_t>( {{-1, -2}, {100, 200}, {-2, -3}, {-100, -200}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, ConcatenateHandlesShapeWithZeroElement) { HloComputation::Builder b(TestName()); HloInstruction* operand1 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<int64_t>({100, 200}))); HloInstruction* operand2 = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int64_t>({}))); std::vector<HloInstruction*> operands = {operand1, operand2}; Shape shape = ShapeUtil::MakeShape(S64, {2}); b.AddInstruction(HloInstruction::CreateConcatenate(shape, operands, 0)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR1<int64_t>({100, 200}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ConvertWithSameLayout) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}, {5, 6}}); auto expected = LiteralUtil::CreateR2<float>({{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}); ASSERT_TRUE(LayoutUtil::LayoutsInShapesEqual(input_literal.shape(), expected.shape())); HloInstruction* constant = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateConvert(expected.shape(), constant)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } TEST_P(HloEvaluatorBf16Test, ConvertWithDifferentLayout) { HloComputation::Builder b(TestName()); auto input_literal = LiteralUtil::CreateR2WithLayout<int32_t>( {{1, 2}, {3, 4}, {5, 6}}, LayoutUtil::MakeLayout({0, 1})); auto expected = LiteralUtil::CreateR2WithLayout<float>( {{1.0, 2.0}, {3.0, 4.0}, {5.0, 6.0}}, LayoutUtil::MakeLayout({1, 0})); ASSERT_FALSE(LayoutUtil::LayoutsInShapesEqual(input_literal.shape(), expected.shape())); HloInstruction* constant = b.AddInstruction( HloInstruction::CreateConstant(std::move(input_literal))); b.AddInstruction(HloInstruction::CreateConvert(expected.shape(), constant)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(result, expected)); } PaddingConfig CreatePaddingConfig( std::initializer_list<std::array<int64_t, 3>> padding_dimensions) { PaddingConfig padding_config; for (auto& paddings_per_dim : padding_dimensions) { auto dimension = padding_config.add_dimensions(); dimension->set_edge_padding_low(paddings_per_dim[0]); dimension->set_edge_padding_high(paddings_per_dim[1]); dimension->set_interior_padding(paddings_per_dim[2]); } return padding_config; } TEST_F(HloEvaluatorTest, Pad2DIntegerArrayWithZeroDimension) { auto operand = LiteralUtil::CreateR2<int32_t>({{}, {}}); HloComputation::Builder b(TestName()); auto operand_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(operand))); constexpr int32_t kPadValue = 10; auto pad_value = LiteralUtil::CreateR0<int32_t>(kPadValue); auto padding_value_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(pad_value))); auto padding_config = CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}}); Shape shape = ShapeUtil::MakeShape(S32, {5, 2}); b.AddInstruction(HloInstruction::CreatePad( shape, operand_instruction, padding_value_instruction, padding_config)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<int32_t>( {{10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Pad4DFloatArrayWithInteriorPadding) { HloComputation::Builder b(TestName()); Array4D<float> input_array(3, 2, 1, 1, {1, 2, 3, 4, 5, 6}); auto input = LiteralUtil::CreateR4FromArray4D<float>(input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); constexpr float kPadValue = 1.5; auto pad_value = LiteralUtil::CreateR0<float>(kPadValue); HloInstruction* pad_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(pad_value))); Shape shape = ShapeUtil::MakeShape(F32, {8, 5, 1, 1}); auto r4_padding_on_dim0_dim1 = CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}, {{0, 0, 0}}, {{0, 0, 0}}}); b.AddInstruction(HloInstruction::CreatePad( shape, input_instruction, pad_instruction, r4_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array4D<float>>(8, 5, 1, 1); expected_array->Fill(kPadValue); (*expected_array)(1, 0, 0, 0) = 1.0f; (*expected_array)(1, 2, 0, 0) = 2.0f; (*expected_array)(4, 0, 0, 0) = 3.0f; (*expected_array)(4, 2, 0, 0) = 4.0f; (*expected_array)(7, 0, 0, 0) = 5.0f; (*expected_array)(7, 2, 0, 0) = 6.0f; auto expected = LiteralUtil::CreateR4FromArray4D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, NegativePadding2D) { HloComputation::Builder b(TestName()); auto input_array = std::make_unique<Array2D<float>>(4, 3); input_array->FillUnique(1.0f); auto input = LiteralUtil::CreateR2FromArray2D<float>(*input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); auto pad_value_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.718f))); auto r2_padding_on_dim0_dim1 = CreatePaddingConfig({{{-1, -2, 0}}, {{-2, 4, 0}}}); Shape shape = ShapeUtil::MakeShape(F32, {1, 5}); b.AddInstruction(HloInstruction::CreatePad(shape, input_instruction, pad_value_instruction, r2_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array2D<float>>(1, 5); (*expected_array)(0, 0) = 7.0f; (*expected_array)(0, 1) = 2.718f; (*expected_array)(0, 2) = 2.718f; (*expected_array)(0, 3) = 2.718f; (*expected_array)(0, 4) = 2.718f; auto expected = LiteralUtil::CreateR2FromArray2D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, ErrorSpec(0.031250))); } TEST_P(HloEvaluatorBf16Test, NegativeAndInteriorPadding2D) { HloComputation::Builder b(TestName()); auto input_array = std::make_unique<Array2D<float>>(4, 3); input_array->FillUnique(1.0f); auto input = LiteralUtil::CreateR2FromArray2D<float>(*input_array); HloInstruction* input_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input))); auto pad_value_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(2.718f))); PaddingConfig padding_config = MakeNoPaddingConfig(2); auto r2_padding_on_dim0_dim1 = CreatePaddingConfig({{{-2, -5, 1}}, {{-2, 4, 2}}}); Shape shape = ShapeUtil::MakeShape(F32, {0, 9}); b.AddInstruction(HloInstruction::CreatePad(shape, input_instruction, pad_value_instruction, r2_padding_on_dim0_dim1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = std::make_unique<Array2D<float>>(0, 9); auto expected = LiteralUtil::CreateR2FromArray2D<float>(*expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, Pad2DFloatArrayDifferentTypes) { HloComputation::Builder b(TestName()); b.AddInstruction(HloInstruction::CreatePad( ShapeUtil::MakeShape(BF16, {5, 2}), b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<bfloat16>({{}, {}}))), b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(10.0f))), CreatePaddingConfig({{{1, 0, 2}}, {{0, 2, 1}}}))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); bfloat16 bf16_c(10.0f); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<bfloat16>({{bf16_c, bf16_c}, {bf16_c, bf16_c}, {bf16_c, bf16_c}, {bf16_c, bf16_c}, {bf16_c, bf16_c}}), result)); } TEST_P(HloEvaluatorBf16Test, DotRank2AndRank1) { HloComputation::Builder b(TestName()); auto lhs_array = std::make_unique<Array2D<float>>(4, 1); lhs_array->FillUnique(1.0f); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_literal = LiteralUtil::CreateR2<float>({{1, 2}}); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {4, 2}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = Array2D<float>({ {1.f, 2.f}, {2.f, 4.f}, {3.f, 6.f}, {4.f, 8.f}, }); auto expected = LiteralUtil::CreateR2FromArray2D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DotRank1AndRank2) { HloComputation::Builder b(TestName()); auto lhs_literal = LiteralUtil::CreateR1<float>({1, 2, 3}); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_array = std::make_unique<Array2D<float>>(3, 2); rhs_array->FillUnique(1.0f); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {2}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(0); dot_dnums.add_rhs_contracting_dimensions(0); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR1<float>({22.f, 28.f}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DotRank2AndRank2) { HloComputation::Builder b(TestName()); auto lhs_array = std::make_unique<Array2D<float>>(4, 3); lhs_array->FillUnique(1.0f); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_array = std::make_unique<Array2D<float>>(3, 2); rhs_array->FillUnique(1.0f); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<float>(*rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {4, 2}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(0); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected_array = Array2D<float>({ {22.f, 28.f}, {58.f, 76.f}, {94.f, 124.f}, {130.f, 172.f}, }); auto expected = LiteralUtil::CreateR2FromArray2D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DotRank4AndRank4) { HloComputation::Builder b(TestName()); auto lhs_array = std::make_unique<Array4D<float>>(2, 2, 3, 1); lhs_array->FillIota(1.0f); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(*lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_array = std::make_unique<Array4D<float>>(2, 2, 3, 1); rhs_array->FillIota(2.0f); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(*rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Shape shape = ShapeUtil::MakeShape(F32, {2, 1, 1}); DotDimensionNumbers dot_dnums; dot_dnums.add_lhs_batch_dimensions(0); dot_dnums.add_rhs_batch_dimensions(0); dot_dnums.add_lhs_contracting_dimensions(1); dot_dnums.add_lhs_contracting_dimensions(2); dot_dnums.add_rhs_contracting_dimensions(1); dot_dnums.add_rhs_contracting_dimensions(2); b.AddInstruction(HloInstruction::CreateDot(shape, lhs_instruction, rhs_instruction, dot_dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); float expected_1 = 0; for (float i = 1.0f; i < 7.0f; ++i) { expected_1 += i * i + i; } float expected_2 = 0; for (float i = 7.0f; i < 13.0f; ++i) { expected_2 += i * i + i; } auto expected_array = Array3D<float>({{{expected_1}}, {{expected_2}}}); auto expected = LiteralUtil::CreateR3FromArray3D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, SimpleConv1D) { HloComputation::Builder b(TestName()); Array3D<float> lhs_array = {{{1, 2, 3}}}; auto lhs_literal = LiteralUtil::CreateR3FromArray3D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array3D<float> rhs_array = {{{3.f, 4.f}}}; auto rhs_literal = LiteralUtil::CreateR3FromArray3D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.set_input_feature_dimension(1); dnums.set_output_feature_dimension(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_kernel_output_feature_dimension(0); dnums.set_kernel_input_feature_dimension(1); dnums.add_kernel_spatial_dimensions(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 3}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array3D<float> expected_array = {{{11.f, 18.f, 9.f}}}; auto expected = LiteralUtil::CreateR3FromArray3D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Simple4x4Conv2DWith2x2Kernel) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 4, 4}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 4, 4); expected_array.FillWithYX(Array2D<float>({ {100, 126, 152, 76}, {204, 230, 256, 124}, {308, 334, 360, 172}, {149, 160, 171, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Conv2DGeneralDimensionsReversed) { HloComputation::Builder b(TestName()); Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 7, 13}, {4, 10, 16}}, {{2, 8, 14}, {5, 11, 17}}, {{3, 9, 15}, {6, 12, 18}} }}); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(input); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(weight); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); rhs_instruction = b.AddInstruction(HloInstruction::CreateReverse( rhs_instruction->shape(), rhs_instruction, {3, 1})); Window window; WindowDimension dim; dim.set_size(3); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); dim.set_window_reversal(true); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(2); dnums.set_output_batch_dimension(2); dnums.set_input_feature_dimension(0); dnums.set_output_feature_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(3); dnums.add_output_spatial_dimensions(3); dnums.set_kernel_output_feature_dimension(0); dnums.set_kernel_input_feature_dimension(2); dnums.add_kernel_spatial_dimensions(3); dnums.add_kernel_spatial_dimensions(1); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 1, 2}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array({{{{2514, 2685}}}}); Array4D<float> expected_array_bf16({{{{2512, 2688}}}}); auto expected = LiteralUtil::CreateR4FromArray4D<float>( use_bfloat16_ ? expected_array_bf16 : expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Conv2DGeneralDimensions) { HloComputation::Builder b(TestName()); Array4D<float> input({ {{{1, 2, 3, 4}}, {{5, 6, 7, 8}}, {{9, 10, 11, 12}}}, {{{13, 14, 15, 16}}, {{17, 18, 19, 20}}, {{21, 22, 23, 24}}} }); Array4D<float> weight({{ {{1, 7, 13}, {4, 10, 16}}, {{2, 8, 14}, {5, 11, 17}}, {{3, 9, 15}, {6, 12, 18}} }}); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(input); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(weight); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(3); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(2); dnums.set_output_batch_dimension(2); dnums.set_input_feature_dimension(0); dnums.set_output_feature_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(3); dnums.add_output_spatial_dimensions(3); dnums.set_kernel_output_feature_dimension(0); dnums.set_kernel_input_feature_dimension(2); dnums.add_kernel_spatial_dimensions(3); dnums.add_kernel_spatial_dimensions(1); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 1, 2}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array({{{{2514, 2685}}}}); Array4D<float> expected_array_bf16({{{{2512, 2688}}}}); auto expected = LiteralUtil::CreateR4FromArray4D<float>( use_bfloat16_ ? expected_array_bf16 : expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DilatedBaseConv2DWithHighPadding) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(2); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 7, 7}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 7, 7); expected_array.FillWithYX(Array2D<float>({ {5, 12, 10, 18, 15, 24, 20}, {35, 48, 42, 56, 49, 64, 56}, {25, 36, 30, 42, 35, 48, 40}, {63, 80, 70, 88, 77, 96, 84}, {45, 60, 50, 66, 55, 72, 60}, {91, 112, 98, 120, 105, 128, 112}, {65, 84, 70, 90, 75, 96, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DilatedBaseConv2DWithLowAndHighPadding) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(1); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(2); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 8, 8}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 8, 8); expected_array.FillWithYX(Array2D<float>({ {8, 7, 16, 14, 24, 21, 32, 28}, {6, 5, 12, 10, 18, 15, 24, 20}, {40, 35, 48, 42, 56, 49, 64, 56}, {30, 25, 36, 30, 42, 35, 48, 40}, {72, 63, 80, 70, 88, 77, 96, 84}, {54, 45, 60, 50, 66, 55, 72, 60}, {104, 91, 112, 98, 120, 105, 128, 112}, {78, 65, 84, 70, 90, 75, 96, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DilatedWindowAndBaseConv2DWithDifferentLowAndHighPaddingAndStrides) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 3); rhs_array.FillWithYX(Array2D<float>({ {5, 6, 7}, {8, 9, 10}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(2); dim.set_padding_high(2); dim.set_window_dilation(2); dim.set_base_dilation(2); *window.add_dimensions() = dim; dim.set_size(3); dim.set_stride(3); dim.set_padding_low(2); dim.set_padding_high(-1); dim.set_window_dilation(1); dim.set_base_dilation(3); *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 9, 3}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 9, 3); expected_array.FillWithYX(Array2D<float>({ {10, 20, 30}, {0, 0, 0}, {57, 74, 91}, {0, 0, 0}, {125, 142, 159}, {0, 0, 0}, {193, 210, 227}, {0, 0, 0}, {91, 98, 105}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Conv2DGroupedConvolution) { HloComputation::Builder b(TestName()); std::vector<int64_t> input_dims = {1, 2, 2, 4}; std::vector<int64_t> filter_dims = {2, 2, 2, 8}; Shape input_shape = ShapeUtil::MakeShapeWithType<float>(input_dims); Shape filter_shape = ShapeUtil::MakeShapeWithType<float>(filter_dims); ConvolutionDimensionNumbers dnums; dnums.set_input_batch_dimension(0); dnums.set_output_batch_dimension(0); dnums.add_input_spatial_dimensions(1); dnums.add_output_spatial_dimensions(1); dnums.add_input_spatial_dimensions(2); dnums.add_output_spatial_dimensions(2); dnums.set_input_feature_dimension(3); dnums.set_output_feature_dimension(3); dnums.add_kernel_spatial_dimensions(0); dnums.add_kernel_spatial_dimensions(1); dnums.set_kernel_input_feature_dimension(2); dnums.set_kernel_output_feature_dimension(3); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; std::vector<float> input_elems(ShapeUtil::ElementsIn(input_shape)); std::iota(input_elems.begin(), input_elems.end(), -7); auto input_r1 = LiteralUtil::CreateR1<float>(input_elems); auto input_r4 = input_r1.Reshape(input_dims).value(); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(input_r4))); std::vector<float> filter_elems(ShapeUtil::ElementsIn(filter_shape)); std::iota(filter_elems.begin(), filter_elems.end(), -31); auto filter_r1 = LiteralUtil::CreateR1<float>(filter_elems); auto filter_r4 = filter_r1.Reshape(filter_dims).value(); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(filter_r4))); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 1, 8}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 2, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 1, 8); expected_array.FillWithYX( Array2D<float>({{668, 664, 660, 656, 668, 680, 692, 704}})); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } void HloEvaluatorTest::InitializeFftData() { fft_c64x2x4x8_ = LiteralUtil::CreateR3<complex64>({ {{{0.0, 0.0}, {1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}, {5.0, 0.0}, {6.0, 0.0}, {7.0, 0.0}}, {{0.0, 0.0}, {0.0, 1.0}, {0.0, 2.0}, {0.0, 3.0}, {0.0, 4.0}, {0.0, 5.0}, {0.0, 6.0}, {0.0, 7.0}}, {{0.0, 7.0}, {1.0, 6.0}, {2.0, 5.0}, {3.0, 4.0}, {4.0, 3.0}, {5.0, 2.0}, {6.0, 1.0}, {7.0, 0.0}}, {{7.0, 0.0}, {6.0, 1.0}, {5.0, 2.0}, {4.0, 3.0}, {3.0, 4.0}, {2.0, 5.0}, {1.0, 6.0}, {0.0, 7.0}}}, {{{-4.0, 0.0}, {-3.0, 0.0}, {-2.0, 0.0}, {-1.0, 0.0}, {1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}}, {{0.0, -4.0}, {0.0, -3.0}, {0.0, -2.0}, {0.0, -1.0}, {0.0, 1.0}, {0.0, 2.0}, {0.0, 3.0}, {0.0, 4.0}}, {{3.5, 3.5}, {-1.707107, -0.707107}, {-1.0, -0.0}, {-0.707107, 0.292893}, {-0.5, 0.5}, {-0.292893, 0.707107}, {0.0, 1.0}, {0.707107, 1.707107}}, {{3.5, 3.5}, {1.707107, 0.707107}, {1.0, 0.0}, {0.707107, -0.292893}, {0.5, -0.5}, {0.292893, -0.707107}, {-0.0, -1.0}, {-0.707107, -1.707107}}} }); fft_c64x2x4x8_1d_ = LiteralUtil::CreateR3<complex64>({ {{{28.0, 0.0}, {-4.0, 9.656854}, {-4.0, 4.0}, {-4.0, 1.656854}, {-4.0, 0.0}, {-4.0, -1.656854}, {-4.0, -4.0}, {-4.0, -9.656854}}, {{0.0, 28.0}, {-9.656854, -4.0}, {-4.0, -4.0}, {-1.656854, -4.0}, {0.0, -4.0}, {1.656854, -4.0}, {4.0, -4.0}, {9.656854, -4.0}}, {{28.0, 28.0}, {5.656854, 13.656854}, {0.0, 8.0}, {-2.343146, 5.656854}, {-4.0, 4.0}, {-5.656854, 2.343146}, {-8.0, -0.0}, {-13.656854, -5.656854}}, {{28.0, 28.0}, {-5.656854, -13.656854}, {-0.0, -8.0}, {2.343146, -5.656854}, {4.0, -4.0}, {5.656854, -2.343146}, {8.0, 0.0}, {13.656854, 5.656854}}}, {{{0.0, 0.0}, {-5.0, 12.071068}, {-4.0, 4.0}, {-5.0, 2.071068}, {-4.0, 0.0}, {-5.0, -2.071068}, {-4.0, -4.0}, {-5.0, -12.071068}}, {{0.0, 0.0}, {-12.071068, -5.0}, {-4.0, -4.0}, {-2.071068, -5.0}, {0.0, -4.0}, {2.071068, -5.0}, {4.0, -4.0}, {12.071068, -5.0}}, {{0.0, 7.0}, {1.0, 6.0}, {2.0, 5.0}, {3.0, 4.0}, {4.0, 3.0}, {5.0, 2.0}, {6.0, 1.0}, {7.0, 0.0}}, {{7.0, 0.0}, {6.0, 1.0}, {5.0, 2.0}, {4.0, 3.0}, {3.0, 4.0}, {2.0, 5.0}, {1.0, 6.0}, {0.0, 7.0}}} }); fft_c64x2x4x8_2d_ = LiteralUtil::CreateR3<complex64>({ {{{84.0, 84.0}, {-13.656854, 5.656854}, {-8.0, 0.0}, {-5.656854, -2.343146}, {-4.0, -4.0}, {-2.343146, -5.656854}, {0.0, -8.0}, {5.656854, -13.656854}}, {{0.0, 0.0}, {0.0, -0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{28.0, -28.0}, {16.970562, 40.970562}, {0.0, 24.0}, {-7.029438, 16.970562}, {-12.0, 12.0}, {-16.970562, 7.029438}, {-24.0, 0.0}, {-40.970562, -16.970562}}, {{0.0, -56.0}, {-19.313708, -8.0}, {-8.0, -8.0}, {-3.313708, -8.0}, {0.0, -8.0}, {3.313708, -8.0}, {8.0, -8.0}, {19.313708, -8.0}}}, {{{7.0, 7.0}, {-10.071068, 14.071068}, {-1.0, 7.0}, {-0.071068, 4.071068}, {3.0, 3.0}, {4.071068, -0.071068}, {7.0, -1.0}, {14.071068, -10.071068}}, {{0.0, 0.0}, {-12.0, 24.142136}, {-12.0, 8.0}, {-16.0, 4.142136}, {-16.0, 0.0}, {-20.0, -4.142136}, {-20.0, -8.0}, {-24.0, -24.142136}}, {{-7.0, 7.0}, {2.071068, 22.071068}, {-3.0, 11.0}, {-3.928932, 8.071068}, {-3.0, 3.0}, {-4.071068, -0.071068}, {-3.0, -5.0}, {-10.071068, -14.071068}}, {{0.0, -14.0}, {0.0, -12.0}, {0.0, -10.0}, {0.0, -8.0}, {0.0, -6.0}, {0.0, -4.0}, {0.0, -2.0}, {0.0, 0.0}}} }); fft_c64x2x4x8_3d_ = LiteralUtil::CreateR3<complex64>({ {{{91.0, 91.0}, {-23.727922, 19.727922}, {-9.0, 7.0}, {-5.727922, 1.727922}, {-1.0, -1.0}, {1.727922, -5.727922}, {7.0, -9}, {19.727922, -23.727922}}, {{0.0, 0.0}, {-12.0, 24.142136}, {-12.0, 8.0}, {-16.0, 4.142136}, {-16.0, 0.0}, {-20.0, -4.142136}, {-20.0, -8.0}, {-24.0, -24.142136}}, {{21.0, -21.0}, {19.041630, 63.041630}, {-3.0, 35.0}, {-10.958370, 25.041630}, {-15.0, 15.0}, {-21.041630, 6.958370}, {-27.0, -5.0}, {-51.041630, -31.041630}}, {{0.0, -70.0}, {-19.313708, -20.0}, {-8.0, -18.0}, {-3.313708, -16.0}, {0.0, -14.0}, {3.313708, -12.0}, {8.0, -10.0}, {19.313708, -8.0}}}, {{{77.0, 77.0}, {-3.585786, -8.414214}, {-7.0, -7.0}, {-5.585786, -6.414214}, {-7.0, -7.0}, {-6.414214, -5.585786}, {-7.0, -7.0}, {-8.414214, -3.585786}}, {{0.0, 0.0}, {12.0, -24.142136}, {12.0, -8.0}, {16.0, -4.142136}, {16.0, 0.0}, {20.0, 4.142136}, {20.0, 8.0}, {24.0, 24.142136}}, {{35.0, -35.0}, {14.899494, 18.899494}, {3.0, 13.0}, {-3.100506, 8.899494}, {-9.0, 9.0}, {-12.899494, 7.100506}, {-21.0, 5.0}, {-30.899494, -2.899494}}, {{0.0, -42.0}, {-19.313708, 4.0}, {-8.0, 2.0}, {-3.313708, 0.0}, {0.0, -2.0}, {3.313708, -4.0}, {8.0, -6.0}, {19.313708, -8.0}}} }); } TEST_F(HloEvaluatorTest, 1D_FFT_4_on_c64x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[4] parameter(0) ROOT fft = c64[4] fft(operand), fft_type=FFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}}); auto expected = LiteralUtil::CreateR1<complex64>( {{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}, {-2.0, -2.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IFFT_4_on_c64x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[4] parameter(0) ROOT ifft = c64[4] fft(operand), fft_type=IFFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}, {-2.0, -2.0}}); auto expected = LiteralUtil::CreateR1<complex64>( {{1.0, 0.0}, {2.0, 0.0}, {3.0, 0.0}, {4.0, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_RFFT_4_on_f32x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[4] parameter(0) ROOT rfft = c64[3] fft(operand), fft_type=RFFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0}); auto expected = LiteralUtil::CreateR1<complex64>({{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IRFFT_4_on_c64x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3] parameter(0) ROOT irfft = f32[4] fft(operand), fft_type=IRFFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>({{10.0, 0.0}, {-2.0, 2.0}, {-2.0, 0.0}}); auto expected = LiteralUtil::CreateR1<float>({1.0, 2.0, 3.0, 4.0}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT fft = c64[2, 4, 8] fft(operand), fft_type=FFT, fft_length={8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_1d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_1d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IFFT_8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT ifft = c64[2, 4, 8] fft(operand), fft_type=IFFT, fft_length={8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_1d_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_RFFT_8_on_f32x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[8] parameter(0) ROOT rfft = c64[5] fft(operand), fft_type=RFFT, fft_length={8} } )"; auto input = LiteralUtil::CreateR1<float>({1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}); auto expected = LiteralUtil::CreateR1<complex64>({{39.6, 0.0}, {-3.6, 8.691169}, {-3.6, 3.6}, {-3.6, 1.491169}, {-3.6, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IRFFT_8_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT irfft = f32[8] fft(operand), fft_type=IRFFT, fft_length={8} } )"; auto input = LiteralUtil::CreateR1<complex64>({{39.6, 0.0}, {-3.6, 8.691169}, {-3.6, 3.6}, {-3.6, 1.491169}, {-3.6, 0.0}}); auto expected = LiteralUtil::CreateR1<float>({1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_RFFT_9_on_f32x9) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[9] parameter(0) ROOT rfft = c64[5] fft(operand), fft_type=RFFT, fft_length={9} } )"; auto input = LiteralUtil::CreateR1<float>( {1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9.9}); auto expected = LiteralUtil::CreateR1<complex64>({{49.5, 0.0}, {-3.360560, 11.705792}, {-3.893717, 5.712929}, {-4.5, 3.117691}, {-4.895723, 1.021942}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IRFFT_9_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT irfft = f32[9] fft(operand), fft_type=IRFFT, fft_length={9} } )"; auto input = LiteralUtil::CreateR1<complex64>({{49.5, 0.0}, {-3.360560, 11.705792}, {-3.893717, 5.712929}, {-4.5, 3.117691}, {-4.895723, 1.021942}}); auto expected = LiteralUtil::CreateR1<float>( {1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9.9}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_FFT_4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT fft = c64[2, 4, 8] fft(operand), fft_type=FFT, fft_length={4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_2d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_2d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IFFT_4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT ifft = c64[2, 4, 8] fft(operand), fft_type=IFFT, fft_length={4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_2d_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_RFFT_3x8_on_f32x3x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 8] parameter(0) ROOT rfft = c64[3, 5] fft(operand), fft_type=RFFT, fft_length={3, 8} } )"; auto input = LiteralUtil::CreateR2<float>({{1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}, {8.1, 7.2, 6.3, 5.4, 4.5, 3.6, 2.7, 1.8}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8}}); auto expected = LiteralUtil::CreateR2<complex64>({{{118.8, 0.0}, {-4.4, 10.622540}, {-4.4, 4.4}, {-4.4, 1.822540}, {-4.4, 0.0}}, {{0.0, 0.0}, {-19.926162, 0.797280}, {-10.128203, -3.728203}, {-6.069756, -5.602720}, {-3.2, -6.928203}}, {{0.0, 0.0}, {13.526162, 14.653687}, {3.728203, 10.128203}, {-0.330244, 8.253687}, {-3.2, 6.928203}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IRFFT_3x8_on_c64x3x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 5] parameter(0) ROOT irfft = f32[3, 8] fft(operand), fft_type=IRFFT, fft_length={3, 8} } )"; auto input = LiteralUtil::CreateR2<complex64>({{{118.8, 0.0}, {-4.4, 10.622540}, {-4.4, 4.4}, {-4.4, 1.822540}, {-4.4, 0.0}}, {{0.0, 0.0}, {-19.926162, 0.797280}, {-10.128203, -3.728203}, {-6.069756, -5.602720}, {-3.2, -6.928203}}, {{0.0, 0.0}, {13.526162, 14.653687}, {3.728203, 10.128203}, {-0.330244, 8.253687}, {-3.2, 6.928203}}}); auto expected = LiteralUtil::CreateR2<float>({{1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1}, {8.1, 7.2, 6.3, 5.4, 4.5, 3.6, 2.7, 1.8}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_RFFT_3x9_on_f32x3x9) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 9] parameter(0) ROOT rfft = c64[3, 5] fft(operand), fft_type=RFFT, fft_length={3, 9} } )"; auto input = LiteralUtil::CreateR2<float>( {{1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1}, {9.1, 8.2, 7.3, 6.4, 5.5, 4.6, 3.7, 2.8, 1.9}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9}}); auto expected = LiteralUtil::CreateR2<complex64>({{{148.5, 0.0}, {-4.95, 13.600013}, {-4.95, 5.899180}, {-4.95, 2.857884}, {-4.95, 0.872819}}, {{0.0, 0.0}, {-25.014467, 2.096690}, {-12.888800, -3.503916}, {-8.1, -5.715768}, {-4.974333, -7.159452}}, {{0.0, 0.0}, {17.814467, 17.685147}, {5.688800, 12.084542}, {0.9, 9.872690}, {-2.225667, 8.429006}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IRFFT_3x9_on_c64x3x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 5] parameter(0) ROOT irfft = f32[3, 9] fft(operand), fft_type=IRFFT, fft_length={3, 9} } )"; auto input = LiteralUtil::CreateR2<complex64>({{{148.5, 0.0}, {-4.95, 13.600013}, {-4.95, 5.899180}, {-4.95, 2.857884}, {-4.95, 0.872819}}, {{0.0, 0.0}, {-25.014467, 2.096690}, {-12.888800, -3.503916}, {-8.1, -5.715768}, {-4.974333, -7.159452}}, {{0.0, 0.0}, {17.814467, 17.685147}, {5.688800, 12.084542}, {0.9, 9.872690}, {-2.225667, 8.429006}}}); auto expected = LiteralUtil::CreateR2<float>( {{1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1}, {9.1, 8.2, 7.3, 6.4, 5.5, 4.6, 3.7, 2.8, 1.9}, {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_2x4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT fft = c64[2, 4, 8] fft(operand), fft_type=FFT, fft_length={2, 4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_3d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_3d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IFFT_2x4x8_on_c64x2x4x8) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8] parameter(0) ROOT ifft = c64[2, 4, 8] fft(operand), fft_type=IFFT, fft_length={2, 4, 8} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&fft_c64x2x4x8_3d_})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_RFFT_3x3x4_on_f32x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 3, 4] parameter(0) ROOT rfft = c64[3, 3, 3] fft(operand), fft_type=RFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<float>( {{{1.8, 2.7, 3.6, 4.5}, {8.1, 7.2, 6.3, 5.4}, {1.1, 2.2, 3.3, 4.4}}, {{5.4, 6.3, 7.2, 8.1}, {4.5, 3.6, 2.7, 1.8}, {5.5, 6.6, 7.7, 8.8}}, {{-1.8, -2.7, -3.6, -4.5}, {-5.4, -6.3, -7.2, -8.1}, {1.9, 2.9, 3.9, 4.9}}}); auto expected = LiteralUtil::CreateR3<complex64>( {{{{92.8, 0.0}, {-2.8, 2.8}, {-2.8, 0.0}}, {{-5.9, 35.160631}, {-11.519100, -8.919100}, {-1.3, -10.219100}}, {{-5.9, -35.160631}, {8.919100, 11.519100}, {-1.3, 10.219100}}}, {{{29.5, -81.579593}, {1.390897, 5.190897}, {-1.9, 3.290897}}, {{-25.1, -49.017038}, {1.044486, 4.844486}, {-1.9, 2.944486}}, {{11.8, 27.712813}, {1.517691, 4.717691}, {-1.6, 3.117691}}}, {{{29.5, 81.579593}, {-5.190897, -1.390897}, {-1.9, -3.290897}}, {{11.8, -27.712813}, {-4.717691, -1.517691}, {-1.6, -3.117691}}, {{-25.1, 49.017038}, {-4.844486, -1.044486}, {-1.9, -2.944486}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IRFFT_3x3x4_on_c64x3x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 3] parameter(0) ROOT irfft = f32[3, 3, 4] fft(operand), fft_type=IRFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{92.8, 0.0}, {-2.8, 2.8}, {-2.8, 0.0}}, {{-5.9, 35.160631}, {-11.519100, -8.919100}, {-1.3, -10.219100}}, {{-5.9, -35.160631}, {8.919100, 11.519100}, {-1.3, 10.219100}}}, {{{29.5, -81.579593}, {1.390897, 5.190897}, {-1.9, 3.290897}}, {{-25.1, -49.017038}, {1.044486, 4.844486}, {-1.9, 2.944486}}, {{11.8, 27.712813}, {1.517691, 4.717691}, {-1.6, 3.117691}}}, {{{29.5, 81.579593}, {-5.190897, -1.390897}, {-1.9, -3.290897}}, {{11.8, -27.712813}, {-4.717691, -1.517691}, {-1.6, -3.117691}}, {{-25.1, 49.017038}, {-4.844486, -1.044486}, {-1.9, -2.944486}}}}); auto expected = LiteralUtil::CreateR3<float>( {{{1.8, 2.7, 3.6, 4.5}, {8.1, 7.2, 6.3, 5.4}, {1.1, 2.2, 3.3, 4.4}}, {{5.4, 6.3, 7.2, 8.1}, {4.5, 3.6, 2.7, 1.8}, {5.5, 6.6, 7.7, 8.8}}, {{-1.8, -2.7, -3.6, -4.5}, {-5.4, -6.3, -7.2, -8.1}, {1.9, 2.9, 3.9, 4.9}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_RFFT_3x3x5_on_f32x3x3x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 3, 5] parameter(0) ROOT rfft = c64[3, 3, 3] fft(operand), fft_type=RFFT, fft_length={3, 3, 5} } )"; auto input = LiteralUtil::CreateR3<float>({{{1.8, 2.7, 3.6, 4.5, 5.4}, {8.1, 7.2, 6.3, 5.4, 4.5}, {1.1, 2.2, 3.3, 4.4, 5.5}}, {{5.4, 6.3, 7.2, 8.1, 9.0}, {4.5, 3.6, 2.7, 1.8, 0.9}, {5.5, 6.6, 7.7, 8.8, 9.9}}, {{-1.8, -2.7, -3.6, -4.5, -5.4}, {-5.4, -6.3, -7.2, -8.1, -9.0}, {1.9, 2.9, 3.9, 4.9, 5.9}}}); auto expected = LiteralUtil::CreateR3<complex64>( {{{{119.5, 0.0}, {-3.5, 4.817337}, {-3.5, 1.137219}}, {{-5.75, 56.724664}, {-19.206730, -10.537254}, {-5.775483, -12.245880}}, {{-5.75, -56.724664}, {15.956730, 15.010495}, {2.525483, 13.301869}}}, {{{39.25, -106.088112}, {3.286913, 7.382528}, {-1.038404, 4.885305}}, {{-29.0, -64.951905}, {2.690922, 6.949515}, {-1.179098, 4.452292}}, {{16.75, 30.743902}, {3.363918, 6.649878}, {-0.733751, 4.546954}}}, {{{39.25, 106.088112}, {-8.036913, -0.844714}, {-3.711596, -3.341936}}, {{16.75, -30.743902}, {-7.363918, -1.144350}, {-3.266249, -3.247275}}, {{-29.0, 64.951905}, {-7.440922, -0.411701}, {-3.570902, -2.908924}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IRFFT_3x3x5_on_c64x3x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 3] parameter(0) ROOT irfft = f32[3, 3, 5] fft(operand), fft_type=IRFFT, fft_length={3, 3, 5} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{119.5, 0.0}, {-3.5, 4.817337}, {-3.5, 1.137219}}, {{-5.75, 56.724664}, {-19.206730, -10.537254}, {-5.775483, -12.245880}}, {{-5.75, -56.724664}, {15.956730, 15.010495}, {2.525483, 13.301869}}}, {{{39.25, -106.088112}, {3.286913, 7.382528}, {-1.038404, 4.885305}}, {{-29.0, -64.951905}, {2.690922, 6.949515}, {-1.179098, 4.452292}}, {{16.75, 30.743902}, {3.363918, 6.649878}, {-0.733751, 4.546954}}}, {{{39.25, 106.088112}, {-8.036913, -0.844714}, {-3.711596, -3.341936}}, {{16.75, -30.743902}, {-7.363918, -1.144350}, {-3.266249, -3.247275}}, {{-29.0, 64.951905}, {-7.440922, -0.411701}, {-3.570902, -2.908924}}}}); auto expected = LiteralUtil::CreateR3<float>({{{1.8, 2.7, 3.6, 4.5, 5.4}, {8.1, 7.2, 6.3, 5.4, 4.5}, {1.1, 2.2, 3.3, 4.4, 5.5}}, {{5.4, 6.3, 7.2, 8.1, 9.0}, {4.5, 3.6, 2.7, 1.8, 0.9}, {5.5, 6.6, 7.7, 8.8, 9.9}}, {{-1.8, -2.7, -3.6, -4.5, -5.4}, {-5.4, -6.3, -7.2, -8.1, -9.0}, {1.9, 2.9, 3.9, 4.9, 5.9}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_8_on_c64x2x4x8_with_layout) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8]{0, 2, 1} parameter(0) ROOT fft = c64[2, 4, 8]{1, 2, 0} fft(operand), fft_type=FFT, fft_length={8} } )"; auto input = fft_c64x2x4x8_.Relayout(LayoutUtil::MakeLayout({0, 2, 1})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_1d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_1d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_FFT_4x8_on_c64x2x4x8_with_layout) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8]{2, 0, 1} parameter(0) ROOT fft = c64[2, 4, 8]{1, 0, 2} fft(operand), fft_type=FFT, fft_length={4, 8} } )"; auto input = fft_c64x2x4x8_.Relayout(LayoutUtil::MakeLayout({2, 0, 1})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_2d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_2d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_2x4x8_on_c64x2x4x8_with_layout) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[2, 4, 8]{1, 2, 0} parameter(0) ROOT fft = c64[2, 4, 8]{0, 2, 1} fft(operand), fft_type=FFT, fft_length={2, 4, 8} } )"; auto input = fft_c64x2x4x8_.Relayout(LayoutUtil::MakeLayout({1, 2, 0})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), fft_c64x2x4x8_3d_.shape())); EXPECT_TRUE(LiteralTestUtil::Near(fft_c64x2x4x8_3d_, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_0_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={0} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); auto expected = LiteralUtil::CreateR4<complex64>({{{{{0.0, 0.0}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_1_on_c64x1x1x1x0) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 0] parameter(0) ROOT fft = c64[1, 1, 1, 0] fft(operand), fft_type=FFT, fft_length={1} } )"; TF_ASSERT_OK_AND_ASSIGN( auto input, LiteralUtil::CreateR4<complex64>({{{{}}}}).Reshape({1, 1, 1, 0})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_1_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_1x0x1_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={1, 0, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); auto expected = LiteralUtil::CreateR4<complex64>({{{{{0.0, 0.0}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_1x1x1_on_c64x0x1x0x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[0, 1, 0, 1] parameter(0) ROOT fft = c64[0, 1, 0, 1] fft(operand), fft_type=FFT, fft_length={1, 1, 1} } )"; TF_ASSERT_OK_AND_ASSIGN( auto input, LiteralUtil::CreateR4<complex64>({{{{}}}}).Reshape({0, 1, 0, 1})); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_1x1x1_on_c64x1x1x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 1, 1, 1] parameter(0) ROOT fft = c64[1, 1, 1, 1] fft(operand), fft_type=FFT, fft_length={1, 1, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_3x1x1_on_c64x1x3x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 3, 1, 1] parameter(0) ROOT fft = c64[1, 3, 1, 1] fft(operand), fft_type=FFT, fft_length={3, 1, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>( {{{{{42.24, 24.42}}}, {{{-42.24, 24.42}}}, {{{42.24, -24.42}}}}}); auto expected = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}, {{{84.5367, 97.5818}}}, {{{-0.0566792, -48.7418}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IFFT_3x1x1_on_c64x1x3x1x1) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[1, 3, 1, 1] parameter(0) ROOT ifft = c64[1, 3, 1, 1] fft(operand), fft_type=IFFT, fft_length={3, 1, 1} } )"; auto input = LiteralUtil::CreateR4<complex64>({{{{{42.24, 24.42}}}, {{{84.5367, 97.5818}}}, {{{-0.0566792, -48.7418}}}}}); auto expected = LiteralUtil::CreateR4<complex64>( {{{{{42.24, 24.42}}}, {{{-42.24, 24.42}}}, {{{42.24, -24.42}}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_5_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT fft = c64[5] fft(operand), fft_type=FFT, fft_length={5} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{1.0, 5.0}, {2.0, 4.0}, {3.0, 3.0}, {4.0, 2.0}, {5.0, 1.0}}); auto expected = LiteralUtil::CreateR1<complex64>({{15.0, 15.0}, {0.940955, 5.94095}, {-1.6877, 3.3123}, {-3.3123, 1.6877}, {-5.94095, -0.940955}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_IFFT_5_on_c64x5) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[5] parameter(0) ROOT ifft = c64[5] fft(operand), fft_type=IFFT, fft_length={5} } )"; auto input = LiteralUtil::CreateR1<complex64>({{15.0, 15.0}, {0.940955, 5.94095}, {-1.6877, 3.3123}, {-3.3123, 1.6877}, {-5.94095, -0.940955}}); auto expected = LiteralUtil::CreateR1<complex64>( {{1.0, 5.0}, {2.0, 4.0}, {3.0, 3.0}, {4.0, 2.0}, {5.0, 1.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 1D_FFT_4_on_zero_c64x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[4] parameter(0) ROOT fft = c64[4] fft(operand), fft_type=FFT, fft_length={4} } )"; auto input = LiteralUtil::CreateR1<complex64>( {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_FFT_3x3x4_on_zero_c64x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 4] parameter(0) ROOT fft = c64[3, 3, 4] fft(operand), fft_type=FFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IFFT_3x3x4_on_zero_c64x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 4] parameter(0) ROOT ifft = c64[3, 3, 4] fft(operand), fft_type=IFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), input.shape())); EXPECT_TRUE(LiteralTestUtil::Near(input, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_RFFT_3x3x4_on_zero_f32x3x3x4) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = f32[3, 3, 4] parameter(0) ROOT rfft = c64[3, 3, 3] fft(operand), fft_type=RFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<float>( {{{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}}); auto expected = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 3D_IRFFT_3x3x4_on_zero_c64x3x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3, 3] parameter(0) ROOT irfft = f32[3, 3, 4] fft(operand), fft_type=IRFFT, fft_length={3, 3, 4} } )"; auto input = LiteralUtil::CreateR3<complex64>( {{{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}, {{{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}, {{0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}}}}); auto expected = LiteralUtil::CreateR3<float>( {{{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}, {{0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}, {0.0, 0.0, 0.0, 0.0}}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } TEST_F(HloEvaluatorTest, 2D_IRFFT_3x4_on_c64x3x3) { const char* hlo_text = R"( HloModule Fft ENTRY main { operand = c64[3, 3] parameter(0) ROOT irfft = f32[3, 4] fft(operand), fft_type=IRFFT, fft_length={3, 4} } )"; auto input = LiteralUtil::CreateR2<complex64>({{{0.0, 0.0}, {1.0, 0.0}, {2.0, 0.0}}, {{3.0, 0.0}, {4.0, 0.0}, {5.0, 0.0}}, {{6.0, 0.0}, {7.0, 0.0}, {8.0, 0.0}}}); auto expected = LiteralUtil::CreateR2<float>({{4.0, -0.5, 0.0, -0.5}, {-1.5, 0.433013, 0.0, -0.433013}, {-1.5, -0.433013, 0.0, 0.433013}}); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&input})); EXPECT_TRUE(ShapeUtil::Compatible(result.shape(), expected.shape())); EXPECT_TRUE(LiteralTestUtil::Near(expected, result, fft_error_)); } class HloEvaluatorPreciseReduceTest : public HloTestBase {}; TEST_F(HloEvaluatorPreciseReduceTest, AddReductionPrecisionTest) { auto m = CreateNewVerifiedModule(); HloComputation::Builder b(TestName()); constexpr int kNumElements = 1 << 25; std::vector<float> v(kNumElements, 1.0f); HloInstruction* arg_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>(v))); HloInstruction* init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m->AddEmbeddedComputation(add_computation.Build()); HloInstruction* reduce_instruction = b.AddInstruction( HloInstruction::CreateReduce(scalar_shape, arg_instruction, init_value, {0}, add_func)); m->AddEntryComputation(b.Build()); HloEvaluator hlo_eval; Literal result = hlo_eval.Evaluate(reduce_instruction).value(); LiteralTestUtil::ExpectR0Equal<float>(kNumElements, result); } void BM_ReducePrecisely(::testing::benchmark::State& state) { HloComputation::Builder b("BM_ReducePrecisely"); HloModuleConfig config; config.set_debug_options(GetDebugOptionsFromFlags()); HloModule module("BM_ReducePrecisely", config); constexpr int kNumElements = 1 << 25; std::vector<float> v(kNumElements, 1.0f); HloInstruction* arg_instruction = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<float>(v))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = module.AddEmbeddedComputation(add_computation.Build()); HloInstruction* reduce_instruction = b.AddInstruction( HloInstruction::CreateReduce(scalar_shape, arg_instruction, init_value, {0}, add_func)); module.AddEntryComputation(b.Build()); for (auto s : state) { HloEvaluator hlo_eval; hlo_eval.Evaluate(reduce_instruction).value(); } } BENCHMARK(BM_ReducePrecisely); TEST_P(HloEvaluatorBf16Test, ReduceAdd) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(2, 3); arg_array->FillUnique(1.0f); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m_->AddEmbeddedComputation(add_computation.Build()); Shape shape = ShapeUtil::MakeShape(F32, {2}); b.AddInstruction( HloInstruction::CreateReduce(shape, arg_instruction, init_value, {1}, add_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR1<float>({6, 18}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMax) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(2, 3); arg_array->FillUnique(1.0f); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); auto max_func = m_->AddEmbeddedComputation(MaxComputationScalarF32()); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; Shape shape = ShapeUtil::MakeShape(F32, {1, 2}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, max_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{6, 7}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaWindowDilation) { auto expected = LiteralUtil::CreateR2<float>({{10, 11}, {14, 15}}); ReduceWindowMaxIotaTest( 2, 0, 1, 2, 1, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaStrideWindowDilation) { auto expected = LiteralUtil::CreateR2<float>({{10}}); ReduceWindowMaxIotaTest( 2, 0, 2, 2, 1, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaBaseDilation) { auto expected = LiteralUtil::CreateR2<float>({{0, 1, 1, 2, 2, 3}, {4, 5, 5, 6, 6, 7}, {4, 5, 5, 6, 6, 7}, {8, 9, 9, 10, 10, 11}, {8, 9, 9, 10, 10, 11}, {12, 13, 13, 14, 14, 15}}); ReduceWindowMaxIotaTest( 2, 0, 1, 1, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaStrideBaseDilation) { auto expected = LiteralUtil::CreateR2<float>({{0, 1, 2}, {4, 5, 6}, {8, 9, 10}}); ReduceWindowMaxIotaTest( 2, 0, 2, 1, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaStrideBothDilation) { auto expected = LiteralUtil::CreateR2<float>({{5, 6, 7}, {9, 10, 11}, {13, 14, 15}}); ReduceWindowMaxIotaTest( 2, 0, 2, 2, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowMaxIotaPaddingStrideBaseDilation) { auto expected = LiteralUtil::CreateR2<float>({{0, 2, 3}, {8, 10, 11}, {12, 14, 15}}); ReduceWindowMaxIotaTest( 3, 1, 3, 1, 2, expected); } TEST_P(HloEvaluatorBf16Test, ReduceWindowAdd) { HloComputation::Builder b(TestName()); auto arg_array = std::make_unique<Array2D<float>>(2, 3); arg_array->FillUnique(1.0f); auto arg_literal = LiteralUtil::CreateR2FromArray2D<float>(*arg_array); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m_->AddEmbeddedComputation(add_computation.Build()); Window window; WindowDimension dim; dim.set_size(1); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(1); dim.set_padding_high(0); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, add_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({{1, 3, 5}, {5, 11, 13}}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, ReduceWindowAdd6D) { HloComputation::Builder b(TestName()); std::vector<int64_t> input_dims(6, 4); Literal arg_literal = LiteralUtil::CreateFullWithDescendingLayout<float>(input_dims, 1.0f); HloInstruction* arg_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(arg_literal))); auto init_value = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<float>(0.f))); HloComputation::Builder add_computation("add"); Shape scalar_shape = ShapeUtil::MakeShape(F32, {}); auto param_lhs = add_computation.AddInstruction( HloInstruction::CreateParameter(0, scalar_shape, "lhs")); auto param_rhs = add_computation.AddInstruction( HloInstruction::CreateParameter(1, scalar_shape, "rhs")); add_computation.AddInstruction(HloInstruction::CreateBinary( scalar_shape, HloOpcode::kAdd, param_lhs, param_rhs)); auto add_func = m_->AddEmbeddedComputation(add_computation.Build()); Window window; WindowDimension trivial_dim; trivial_dim.set_size(1); trivial_dim.set_stride(1); trivial_dim.set_padding_low(0); trivial_dim.set_padding_high(0); trivial_dim.set_window_dilation(1); trivial_dim.set_base_dilation(1); WindowDimension active_dim; active_dim.set_size(2); active_dim.set_stride(1); active_dim.set_padding_low(0); active_dim.set_padding_high(0); active_dim.set_window_dilation(1); active_dim.set_base_dilation(1); *window.add_dimensions() = trivial_dim; *window.add_dimensions() = active_dim; *window.add_dimensions() = active_dim; *window.add_dimensions() = active_dim; *window.add_dimensions() = trivial_dim; *window.add_dimensions() = trivial_dim; Shape shape = ShapeUtil::MakeShape(F32, {4, 3, 3, 3, 4, 4}); b.AddInstruction(HloInstruction::CreateReduceWindow( shape, arg_instruction, init_value, window, add_func)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); std::vector<int64_t> output_dims = {4, 3, 3, 3, 4, 4}; Literal result_literal = LiteralUtil::CreateFullWithDescendingLayout<float>(output_dims, 8.0f); EXPECT_TRUE(LiteralTestUtil::Equal(result_literal, result)); } TEST_P(HloEvaluatorBf16Test, Min3In5Stride2Tuple) { HloComputation::Builder builder("main"); auto input1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({10000, 1000, 100, 10, 1}))); auto input2 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({10000, 1000, 100, 10, 1}))); HloComputation::Builder bcompute("ComputeFunction"); auto shape1 = ShapeUtil::MakeShape(F32, {}); auto shape2 = ShapeUtil::MakeShape(F32, {}); auto p2 = bcompute.AddInstruction(HloInstruction::CreateParameter(0, shape1, "x0")); auto p3 = bcompute.AddInstruction(HloInstruction::CreateParameter(1, shape2, "x1")); auto p4 = bcompute.AddInstruction(HloInstruction::CreateParameter(2, shape1, "y0")); auto p5 = bcompute.AddInstruction(HloInstruction::CreateParameter(3, shape2, "y1")); std::vector<HloInstruction*> compute_vec = { bcompute.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kMinimum, p2, p4)), bcompute.AddInstruction( HloInstruction::CreateBinary(shape2, HloOpcode::kMinimum, p3, p5))}; bcompute.AddInstruction(HloInstruction::CreateTuple(compute_vec)); auto compute_tuple = m_->AddEmbeddedComputation(bcompute.Build()); std::vector<HloInstruction*> input_vec = {input1, input2}; auto init1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(F32))); auto init2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(F32))); std::vector<HloInstruction*> init_vec = {init1, init2}; auto padding = std::pair<int64_t, int64_t>(0, 0); TF_ASSERT_OK_AND_ASSIGN(auto window, ShapeInference::InferWindowFromDimensions( {3}, {2}, absl::MakeSpan(&padding, 1), {}, {})); std::vector<const Shape*> input_shapes = {&input1->shape(), &input2->shape()}; std::vector<const Shape*> init_shapes = {&init1->shape(), &init2->shape()}; TF_ASSERT_OK_AND_ASSIGN(Shape shape, ShapeInference::InferReduceWindowShape( input_shapes, init_shapes, window, compute_tuple->ComputeProgramShape())); builder.AddInstruction(HloInstruction::CreateReduceWindow( shape, input_vec, init_vec, window, compute_tuple)); auto r1 = LiteralUtil::CreateR1<float>({100, 1}); auto expected = LiteralUtil::MakeTuple({&r1, &r1}); m_->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Min3In5Stride2TupleDiffInput) { HloComputation::Builder builder("main"); auto input1 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({10000, 1000, 100, 10, 1}))); auto input2 = builder.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<int>({15, 28, 300, 107, 12}))); HloComputation::Builder bcompute("ComputeFunction"); auto shape1 = ShapeUtil::MakeShape(F32, {}); auto shape2 = ShapeUtil::MakeShape(S32, {}); auto p2 = bcompute.AddInstruction(HloInstruction::CreateParameter(0, shape1, "x0")); auto p3 = bcompute.AddInstruction(HloInstruction::CreateParameter(1, shape2, "x1")); auto p4 = bcompute.AddInstruction(HloInstruction::CreateParameter(2, shape1, "y0")); auto p5 = bcompute.AddInstruction(HloInstruction::CreateParameter(3, shape2, "y1")); std::vector<HloInstruction*> compute_vec = { bcompute.AddInstruction( HloInstruction::CreateBinary(shape1, HloOpcode::kMinimum, p2, p4)), bcompute.AddInstruction( HloInstruction::CreateBinary(shape2, HloOpcode::kMinimum, p3, p5))}; bcompute.AddInstruction(HloInstruction::CreateTuple(compute_vec)); auto compute_tuple = m_->AddEmbeddedComputation(bcompute.Build()); std::vector<HloInstruction*> input_vec = {input1, input2}; auto init1 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(F32))); auto init2 = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::MaxValue(S32))); std::vector<HloInstruction*> init_vec = {init1, init2}; auto padding = std::pair<int64_t, int64_t>(0, 0); TF_ASSERT_OK_AND_ASSIGN(auto window, ShapeInference::InferWindowFromDimensions( {3}, {2}, absl::MakeSpan(&padding, 1), {}, {})); std::vector<const Shape*> input_shapes = {&input1->shape(), &input2->shape()}; std::vector<const Shape*> init_shapes = {&init1->shape(), &init2->shape()}; TF_ASSERT_OK_AND_ASSIGN(Shape shape, ShapeInference::InferReduceWindowShape( input_shapes, init_shapes, window, compute_tuple->ComputeProgramShape())); builder.AddInstruction(HloInstruction::CreateReduceWindow( shape, input_vec, init_vec, window, compute_tuple)); auto r1 = LiteralUtil::CreateR1<float>({100, 1}); auto r2 = LiteralUtil::CreateR1<int>({15, 12}); auto expected = LiteralUtil::MakeTuple({&r1, &r2}); m_->AddEntryComputation(builder.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, StridedSlice) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<float>>(3, 5); operand_array->FillUnique(1.0f); auto operand_literal = LiteralUtil::CreateR2FromArray2D<float>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); Shape shape = ShapeUtil::MakeShape(F32, {2, 1}); b.AddInstruction(HloInstruction::CreateSlice(shape, operand, {0, 2}, {3, 5}, {2, 3})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({ {3}, {19}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DynamicSlice) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<float>>(2, 4); operand_array->FillUnique(1.0f); auto operand_literal = LiteralUtil::CreateR2FromArray2D<float>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); auto zero = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto one = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); b.AddInstruction( HloInstruction::CreateDynamicSlice(shape, operand, {zero, one}, {2, 3})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({ {2, 3, 4}, {6, 7, 8}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DynamicSliceModSlice) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<float>>(2, 4); operand_array->FillUnique(1.0f); auto operand_literal = LiteralUtil::CreateR2FromArray2D<float>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); auto two = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(2))); auto one = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); Shape shape = ShapeUtil::MakeShape(F32, {2, 3}); b.AddInstruction( HloInstruction::CreateDynamicSlice(shape, operand, {two, one}, {2, 3})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<float>({ {2, 3, 4}, {6, 7, 8}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, DynamicSliceUpdate) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<double>>(2, 3); operand_array->FillUnique(1.0); auto operand_literal = LiteralUtil::CreateR2FromArray2D<double>(*operand_array); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); auto zero = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(0))); auto one = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR0<int32_t>(1))); auto update = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2<double>({{-2.0, -3.0}, {-6.0, -7.0}}))); Shape shape = ShapeUtil::MakeShape(F64, {2, 3}); b.AddInstruction(HloInstruction::CreateDynamicUpdateSlice( shape, operand, update, {zero, one})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<double>({ {1, -2, -3}, {5, -6, -7}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, SetAndGetTuples) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<double>>(2, 3); operand_array->FillUnique(1.0); auto operand_literal2 = LiteralUtil::CreateR2FromArray2D<double>(*operand_array); HloInstruction* operand2 = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal2))); HloInstruction* operand1 = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int64_t>({0, 1}))); auto tuple = b.AddInstruction(HloInstruction::CreateTuple({operand1, operand2})); Shape shape = ShapeUtil::MakeShape(F64, {2, 3}); b.AddInstruction(HloInstruction::CreateGetTupleElement(shape, tuple, 1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR2<double>({ {1, 2, 3}, {5, 6, 7}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, SetAndGetNestedTuples) { HloComputation::Builder b(TestName()); auto operand_array = std::make_unique<Array2D<double>>(2, 3); operand_array->FillUnique(1.0); HloInstruction* operand2 = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR2FromArray2D<double>(*operand_array))); HloInstruction* operand1 = b.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int64_t>({0, 1}))); auto tuple1 = b.AddInstruction(HloInstruction::CreateTuple({operand1, operand2})); auto tuple2 = b.AddInstruction(HloInstruction::CreateTuple({operand2, operand2})); auto outer_tuple = b.AddInstruction(HloInstruction::CreateTuple({tuple1, tuple2})); b.AddInstruction( HloInstruction::CreateGetTupleElement(tuple2->shape(), outer_tuple, 1)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto result_inner_literal = LiteralUtil::CreateR2FromArray2D<double>(*operand_array); auto expected = LiteralUtil::MakeTuple({&result_inner_literal, &result_inner_literal}); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Reverse) { HloComputation::Builder b(TestName()); Array4D<float> input({ {{{1.0f}, {2.0f}}, {{3.0f}, {4.0f}}, {{5.0f}, {6.0f}}}, {{{7.0f}, {8.0f}}, {{9.0f}, {10.0f}}, {{11.0f}, {12.0f}}}, {{{13.0f}, {14.0f}}, {{15.0f}, {16.0f}}, {{17.0f}, {18.0f}}}, {{{19.0f}, {20.0f}}, {{21.0f}, {22.0f}}, {{23.0f}, {24.0f}}}, }); auto operand_literal = LiteralUtil::CreateR4FromArray4D<float>(input); HloInstruction* operand = b.AddInstruction( HloInstruction::CreateConstant(std::move(operand_literal))); const Shape shape = ShapeUtil::MakeShape(F32, {4, 3, 2, 1}); b.AddInstruction(HloInstruction::CreateReverse(shape, operand, {0, 1})); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); auto expected = LiteralUtil::CreateR4FromArray4D<float>({ {{{23.0f}, {24.0f}}, {{21.0f}, {22.0f}}, {{19.0f}, {20.0f}}}, {{{17.0f}, {18.0f}}, {{15.0f}, {16.0f}}, {{13.0f}, {14.0f}}}, {{{11.0f}, {12.0f}}, {{9.0f}, {10.0f}}, {{7.0f}, {8.0f}}}, {{{5.0f}, {6.0f}}, {{3.0f}, {4.0f}}, {{1.0f}, {2.0f}}}, }); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, EvaluateWithSubstitutions) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4}); HloInstruction* param0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* square = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, param0, param0)); HloInstruction* add = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, param0, square)); HloEvaluator evaluator; Literal param0_literal = LiteralUtil::CreateR1<float>({1, 2, 3, 4}); Literal square_literal = LiteralUtil::CreateR1<float>({10, 20, 30, 40}); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator.EvaluateWithSubstitutions( add, {{param0, &param0_literal}, {square, &square_literal}})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({11, 22, 33, 44}), result)); } TEST_P(HloEvaluatorBf16Test, EvaluateWithSubstitutionsWithConstantOperand) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(F32, {4}); HloInstruction* param0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* square = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, param0, param0)); HloInstruction* constant = b.AddInstruction(HloInstruction::CreateConstant( LiteralUtil::CreateR1<float>({1, 2, 3, 4}))); HloInstruction* add = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, constant, square)); HloEvaluator evaluator; Literal square_literal = LiteralUtil::CreateR1<float>({10, 20, 30, 40}); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator.EvaluateWithSubstitutions(add, {{square, &square_literal}})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({11, 22, 33, 44}), result)); } TEST_F(HloEvaluatorTest, EvaluateWithSubstitutionsLiteralBase) { HloComputation::Builder b(TestName()); Shape shape = ShapeUtil::MakeShape(S64, {3}); HloInstruction* param0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param0")); HloInstruction* square = b.AddInstruction(HloInstruction::CreateBinary( shape, HloOpcode::kMultiply, param0, param0)); int64_t int64_values[] = {1, 2, 3}; const Shape literal_shape = ShapeUtil::MakeShape(S64, {3}); BorrowingLiteral literal(reinterpret_cast<const char*>(int64_values), literal_shape); HloEvaluator evaluator; TF_ASSERT_OK_AND_ASSIGN(Literal result, evaluator.EvaluateWithSubstitutions( square, {{param0, &literal}})); EXPECT_TRUE(LiteralTestUtil::Equal(LiteralUtil::CreateR1<int64_t>({1, 4, 9}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherV1) { const char* hlo_text = R"( HloModule TensorFlowGatherV1 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[2,3] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1, 3} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {7, 8, 9}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherV2) { const char* hlo_text = R"( HloModule TensorFlowGatherV2 ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[3,2] gather(operand, indices), offset_dims={0}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=1, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 3}, {4, 6}, {7, 9}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherMultipleBatchDims) { const char* hlo_text = R"( HloModule TensorFlowGatherMultipleBatchDims ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,3,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={1}, start_index_map={1}, index_vector_dim=2, slice_sizes={3, 1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{0, 2}, {2, 1}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR3<int32_t>( {{{1, 3}, {4, 6}, {7, 9}}, {{3, 2}, {6, 5}, {9, 8}}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherNd) { const char* hlo_text = R"( HloModule TensorFlowGatherNd ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0,1}, start_index_map={0,1}, index_vector_dim=1, slice_sizes={1,1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{-1, 1}, {-4, 4}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_TensorFlowGatherNdNonDefaultIndexVectorDim) { const char* hlo_text = R"( HloModule TensorFlowGatherNd ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,2] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0,1}, start_index_map={0,1}, index_vector_dim=0, slice_sizes={1,1,2} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{-2, 2}, {-1, 1}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_DynamicSlice) { const char* hlo_text = R"( HloModule DynamicSlice ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[1,1] gather(operand, indices), offset_dims={0,1}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=0, slice_sizes={1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({1, 1}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>({{5}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_BatchDynamicSlice) { const char* hlo_text = R"( HloModule BatchDynamicSlice ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) ROOT gather = s32[2,1,1] gather(operand, indices), offset_dims={1,2}, collapsed_slice_dims={}, start_index_map={0,1}, index_vector_dim=0, slice_sizes={1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal start_indices = LiteralUtil::CreateR2<int32_t>({{2, 1}, {1, 1}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR3<int32_t>({{{8}}, {{5}}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_ZeroDimBounds) { const char* hlo_text = R"( HloModule TensorFlowGatherV1 ENTRY main { operand = s32[3,0] parameter(0) indices = s32[2] parameter(1) ROOT gather = s32[2,0] gather(operand, indices), offset_dims={1}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=1, slice_sizes={1, 0} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{}, {}, {}}); Literal start_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>({{}, {}}), result)); } TEST_F(HloEvaluatorTest, EvaluateGather_NoOutputWindowDims) { const std::string hlo_text = R"( HloModule GatherXd ENTRY main { operand = s32[3] parameter(0) indices = s32[2,2,1] parameter(1) ROOT gather = s32[2,2] gather(operand, indices), offset_dims={}, collapsed_slice_dims={0}, start_index_map={0}, index_vector_dim=2, slice_sizes={1} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2}); Literal start_indices = LiteralUtil::CreateR3<int32_t>({{{0}, {1}}, {{2}, {1}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &start_indices})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{0, 1}, {2, 1}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterV1_Update) { const char* hlo_text = R"( HloModule TensorFlowScatterV1 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {4, 5, 6}, {70, 80, 90}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterV2_Update) { const char* hlo_text = R"( HloModule TensorFlowScatterV2 update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[3,2] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={0}, inserted_window_dims={1}, scatter_dims_to_operand_dims={1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 30}, {40, 60}, {70, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{10, 2, 30}, {40, 5, 60}, {70, 8, 90}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_Add) { const char* hlo_text = R"( HloModule TensorFlowScatter add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{11, 22, 33}, {4, 5, 6}, {77, 88, 99}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_Mul) { const char* hlo_text = R"( HloModule TensorFlowScatter mul_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT mul = s32[] multiply(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=mul_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>( {{10, 40, 90}, {4, 5, 6}, {490, 640, 810}}), result)); } TEST_P(HloEvaluatorBf16Test, EvaluateScatter_TensorFlowScatter_F32) { const char* hlo_text = R"( HloModule TensorFlowScatter add_f32 (lhs: f32[], rhs: f32[]) -> f32[] { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(f32[] lhs, f32[] rhs) } ENTRY main { operand = f32[3,3] parameter(0) indices = s32[2] parameter(1) updates = f32[2,3] parameter(2) ROOT scatter = f32[3,3] scatter(operand, indices, updates), to_apply=add_f32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<float>( {{1.1, 2.2, 3.3}, {4.4, 5.5, 6.6}, {7.7, 8.8, 9.9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({2, 1}); Literal updates = LiteralUtil::CreateR2<float>({{0.4, 1.1, 0.7}, {2.3, 3.1, 1.6}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Near( LiteralUtil::CreateR2<float>( {{1.1, 2.2, 3.3}, {6.7, 8.6, 8.2}, {8.1, 9.9, 10.6}}), result, ErrorSpec{0.1, 0.01})); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_RepeatedIndices) { const char* hlo_text = R"( HloModule TensorFlowScatter add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({1, 1}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {84, 105, 126}, {7, 8, 9}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatter_MultipleBatchDims) { const char* hlo_text = R"( HloModule TensorFlowScatterMultipleBatchDims add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,3,2] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={1}, scatter_dims_to_operand_dims={1}, index_vector_dim=2 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 2}, {2, 1}}); Literal updates = LiteralUtil::CreateR3<int32_t>( {{{10, 30}, {40, 60}, {70, 90}}, {{5, 5}, {5, 5}, {5, 5}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE( LiteralTestUtil::Equal(LiteralUtil::CreateR2<int32_t>( {{11, 7, 38}, {44, 10, 71}, {77, 13, 104}}), result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterNd) { const char* hlo_text = R"( HloModule TensorFlowScatterNd update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,2] parameter(2) ROOT scatter = s32[3,3,2] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0,1}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); Literal updates = LiteralUtil::CreateR2<int32_t>({{-10, 10}, {-40, 40}}); Literal expected = LiteralUtil::CreateR3<int32_t>({{{-10, 10}, {-2, 2}, {-3, 3}}, {{-40, 40}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_TensorFlowScatterNd_NonDefaultIndexVectorDim) { const char* hlo_text = R"( HloModule TensorFlowScatterNdNonDefaultIndexVectorDim update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,2] parameter(2) ROOT scatter = s32[3,3,2] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0,1}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); Literal updates = LiteralUtil::CreateR2<int32_t>({{-10, 10}, {-20, 20}}); Literal expected = LiteralUtil::CreateR3<int32_t>({{{-20, 20}, {-10, 10}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_DynamicUpdateSlice) { const char* hlo_text = R"( HloModule DynamicUpdateSlice update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[1,1] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={0,1}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({1, 1}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10}}); Literal expected = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 10, 6}, {7, 8, 9}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_BatchDynamicUpdateSlice) { const char* hlo_text = R"( HloModule BatchDynamicUpdateSlice update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2,2] parameter(1) updates = s32[2,1,1] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=0 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{2, 1}, {1, 1}}); Literal updates = LiteralUtil::CreateR3<int32_t>({{{10}}, {{20}}}); Literal expected = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 20, 6}, {7, 10, 9}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_ZeroDimBounds) { const char* hlo_text = R"( HloModule TensorFlowScatter_ZeroDimBounds update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,0] parameter(0) indices = s32[2] parameter(1) updates = s32[2,0] parameter(2) ROOT scatter = s32[3,0] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{}, {}, {}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({0, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{}, {}}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(operand, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_NoUpdateWindowDims) { const std::string hlo_text = R"( HloModule Scatter_NoUpdateWindowDims add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3] parameter(0) indices = s32[2,2,1] parameter(1) updates = s32[2,2] parameter(2) ROOT scatter = s32[3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=2 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR1<int32_t>({0, 1, 2}); Literal scatter_indices = LiteralUtil::CreateR3<int32_t>({{{0}, {1}}, {{2}, {1}}}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20}, {30, 40}}); Literal expected = LiteralUtil::CreateR1<int32_t>({10, 61, 32}); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&operand, &scatter_indices, &updates})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, EvaluateScatter_NegativeIndices) { const char* hlo_text = R"( HloModule TensorFlowScatter_NegativeIndices add_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) rhs = s32[] parameter(1) ROOT add = s32[] add(s32[] lhs, s32[] rhs) } ENTRY main { operand = s32[3,3] parameter(0) indices = s32[2] parameter(1) updates = s32[2,3] parameter(2) ROOT scatter = s32[3,3] scatter(operand, indices, updates), to_apply=add_s32, update_window_dims={1}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR1<int32_t>({-1, 2}); Literal updates = LiteralUtil::CreateR2<int32_t>({{10, 20, 30}, {70, 80, 90}}); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {77, 88, 99}}), EvaluateWithModule(module.get(), {&operand, &scatter_indices, &updates}))); } TEST_F(HloEvaluatorTest, EvaluateScatter_OobIndices) { const std::string hlo_text = R"( HloModule BatchDynamicUpdateSlice update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3]{1,0} parameter(0) indices = s32[6,2]{1,0} parameter(1) updates = s32[6,1,1]{2,1,0} parameter(2) ROOT scatter = s32[3,3]{1,0} scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1,2}, inserted_window_dims={}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>( {{2, 7}, {2, 1}, {1, 1}, {5, 1}, {2147483647, 1}, {1, 2}}); Literal updates = LiteralUtil::CreateR3<int32_t>( {{{10}}, {{20}}, {{30}}, {{40}}, {{50}}, {{60}}}); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR2<int32_t>({{1, 2, 3}, {4, 30, 60}, {7, 20, 9}}), EvaluateWithModule(module.get(), {&operand, &scatter_indices, &updates}))); } TEST_F(HloEvaluatorTest, EvaluateScatter_OobUpdateWindow) { const char* hlo_text = R"( HloModule TensorFlowScatterNd_OobUpdateWindow update_s32 (lhs: s32[], rhs: s32[]) -> s32[] { lhs = s32[] parameter(0) ROOT rhs = s32[] parameter(1) } ENTRY main { operand = s32[3,3,2] parameter(0) indices = s32[1,2] parameter(1) updates = s32[1,2,2] parameter(2) ROOT scatter = s32[3,3,2] scatter(operand, indices, updates), to_apply=update_s32, update_window_dims={1,2}, inserted_window_dims={0}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text)); Literal operand = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 2}}); Literal updates = LiteralUtil::CreateR3<int32_t>({{{-10, 10}, {-40, 40}}}); Literal expected = operand.Clone(); EXPECT_TRUE(LiteralTestUtil::Equal( expected, EvaluateWithModule(module.get(), {&operand, &scatter_indices, &updates}))); } TEST_F(HloEvaluatorTest, EvaluateScatter_Multioutput) { const char* hlo_text = R"( HloModule MultioutputScatter update { lhs0 = s32[] parameter(0) lhs1 = f32[] parameter(1) rhs0 = s32[] parameter(2) rhs1 = f32[] parameter(3) ROOT tuple = (s32[], f32[]) tuple(rhs0, rhs1) } ENTRY main { operand0 = s32[3,3,2] parameter(0) operand1 = f32[3,3,2] parameter(1) indices = s32[2,2] parameter(2) updates0 = s32[2,2] parameter(3) updates1 = f32[2,2] parameter(4) ROOT scatter = (s32[3,3,2], f32[3,3,2]) scatter(operand0, operand1, indices, updates0, updates1), to_apply=update, update_window_dims={1}, inserted_window_dims={0,1}, scatter_dims_to_operand_dims={0,1}, index_vector_dim=1 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal operand0 = LiteralUtil::CreateR3<int32_t>({{{-1, 1}, {-2, 2}, {-3, 3}}, {{-4, 4}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}); Literal operand1 = LiteralUtil::CreateR3<float>({{{-2, 2}, {-3, 3}, {-4, 4}}, {{-5, 5}, {-6, 6}, {-7, 7}}, {{-8, 8}, {-9, 9}, {-10, 10}}}); Literal scatter_indices = LiteralUtil::CreateR2<int32_t>({{0, 0}, {1, 0}}); Literal updates0 = LiteralUtil::CreateR2<int32_t>({{-10, 10}, {-40, 40}}); Literal updates1 = LiteralUtil::CreateR2<float>({{-11, 11}, {-41, 41}}); Literal expected = LiteralUtil::MakeTupleOwned( LiteralUtil::CreateR3<int32_t>({{{-10, 10}, {-2, 2}, {-3, 3}}, {{-40, 40}, {-5, 5}, {-6, 6}}, {{-7, 7}, {-8, 8}, {-9, 9}}}), LiteralUtil::CreateR3<float>({{{-11, 11}, {-3, 3}, {-4, 4}}, {{-41, 41}, {-6, 6}, {-7, 7}}, {{-8, 8}, {-9, 9}, {-10, 10}}})); TF_ASSERT_OK_AND_ASSIGN( Literal result, Evaluate({&operand0, &operand1, &scatter_indices, &updates0, &updates1})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DoesCompareBF16) { auto lhs = LiteralUtil::CreateR2<bfloat16>( {{bfloat16(0.25), bfloat16(0.35), bfloat16(0.125)}, {bfloat16(-0.25), bfloat16(-0.35), bfloat16(-0.125)}}); auto rhs = LiteralUtil::CreateR2<bfloat16>( {{bfloat16(0.5), bfloat16(0.125), bfloat16(0.125)}, {bfloat16(0.25), bfloat16(-0.375), bfloat16(-0.127)}}); auto expected = LiteralUtil::CreateR2<bool>({{false, true, true}, {false, true, true}}); HloComputation::Builder b(TestName()); auto c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs))); auto c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs))); b.AddInstruction(HloInstruction::CreateCompare(expected.shape(), c1, c2, ComparisonDirection::kGe)); m_->AddEntryComputation(b.Build()); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_P(HloEvaluatorBf16Test, Bf16Reduction) { const std::string hlo_text = R"( HloModule Bf16Reduction add_bf16 (lhs: bf16[], rhs: bf16[]) -> bf16[] { lhs = bf16[] parameter(0) rhs = bf16[] parameter(1) ROOT add = bf16[] add(bf16[] lhs, bf16[] rhs) } ENTRY main { arg0 = bf16[4]{0} parameter(0) init = bf16[] constant(0) ROOT %reduce = bf16[] reduce(arg0, init), dimensions={0}, to_apply=add_bf16 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal arg = LiteralUtil::CreateR1<bfloat16>( {bfloat16(1.0f), bfloat16(3.0f), bfloat16(-2.0f), bfloat16(42.0f)}); Literal expected = LiteralUtil::CreateR0<bfloat16>(bfloat16(44.0f)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&arg})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MixedPrecisionReduction) { const std::string hlo_text = R"( HloModule MixedPrecisionReduction add_f32 { lhs = f32[] parameter(0) rhs = f32[] parameter(1) ROOT add = f32[] add(lhs, rhs) } ENTRY main { arg0 = f32[4]{0} parameter(0) init = f32[] constant(0) ROOT %reduce = bf16[] reduce(arg0, init), dimensions={0}, to_apply=add_f32 } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal arg = LiteralUtil::CreateR1<float>({1.0f, 3.0f, -2.0f, 42.0f}); Literal expected = LiteralUtil::CreateR0<bfloat16>(bfloat16(44.0f)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&arg})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DontFailOnCallUnimplementedOps) { const std::string hlo_text = R"( HloModule DontFailOnCall call { token0 = token[] after-all() constant = u32[3]{0} constant({1,2,3}) ROOT outfeed = token[] outfeed(constant, token0), outfeed_shape=u32[3]{0} } ENTRY main { ROOT result = token[] call(), to_apply=call } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto statusor = Evaluate(); EXPECT_FALSE(statusor.status().ok()); } TEST_F(HloEvaluatorTest, DontFailOnFusionWithUnimplementedOps) { const std::string hlo_text = R"( HloModule DontFailOnFusion fused_computation { token0 = token[] after-all() constant = u32[3]{0} constant({1,2,3}) ROOT outfeed = token[] outfeed(constant, token0), outfeed_shape=u32[3]{0} } ENTRY main { ROOT result = token[] fusion(), kind=kLoop, calls=fused_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto statusor = Evaluate(); EXPECT_FALSE(statusor.status().ok()); } TEST_P(HloEvaluatorBf16Test, SliceWithDifferentLayout) { const std::string hlo_text = R"( HloModule SliceWithDifferentLayout ENTRY main { arg = f32[2,2,2]{0,1,2} parameter(0) ROOT %slice = f32[2,2,2]{1,0,2} slice(f32[2,2,2]{0,1,2} %arg), slice={[0:2], [0:2], [0:2]} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal arg = LiteralUtil::CreateR3WithLayout<float>( {{{1.0f, 2.0f}, {3.0f, 4.0f}}, {{5.0f, 6.0f}, {7.0f, 8.0f}}}, LayoutUtil::MakeLayout({0, 1, 2})); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&arg})); EXPECT_TRUE(LiteralTestUtil::Equal(arg, actual)); } TEST_P(HloEvaluatorBf16Test, Bitcast) { const absl::string_view hlo_text_base = R"( HloModule Bitcast ENTRY main { param = %s[32,121]{1,0} parameter(0) ROOT bitcast = %s[121,32,1]{0,1,2} bitcast(%s[32,121]{1,0} param) } )"; std::string hlo_text; if (use_bfloat16_) { hlo_text = absl::StrFormat(hlo_text_base, "bf16", "bf16", "bf16"); } else { hlo_text = absl::StrFormat(hlo_text_base, "f32", "f32", "f32"); } TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&args[0]})); if (use_bfloat16_) { EXPECT_TRUE( absl::c_equal(args[0].data<bfloat16>(), actual.data<bfloat16>())); } else { EXPECT_TRUE(absl::c_equal(args[0].data<float>(), actual.data<float>())); } } TEST_F(HloEvaluatorTest, Int32Overflow) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { c1 = s32[] constant(1073741824) sum = s32[] add(c1, c1) c2 = s32[] constant(-2147483648) sub = s32[] subtract(c2, c1) c3 = u32[] constant(4294967295) c4 = u32[] constant(33) mul = s32[] multiply(c1, c1) pow = u32[] power(c3, c4) ROOT tuple = (s32[], s32[], s32[], u32[]) tuple(sum, sub, mul, pow) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(auto literal, Evaluate({})); std::vector<Literal> actual = literal.DecomposeTuple(); ASSERT_EQ(actual.size(), 4); uint32_t pow30 = uint32_t{1} << 30; uint32_t pow31 = uint32_t{1} << 31; EXPECT_EQ(actual[0].GetFirstElement<int32_t>(), static_cast<int32_t>(pow31)); EXPECT_EQ(actual[1].GetFirstElement<int32_t>(), static_cast<int32_t>(-(pow31 + pow30))); EXPECT_EQ(actual[2].GetFirstElement<int32_t>(), static_cast<int32_t>(pow31 * pow31)); EXPECT_EQ(actual[3].GetFirstElement<uint32_t>(), uint32_t{4294967295}); } TEST_F(HloEvaluatorTest, GetDimensionSize) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { size = s32[] parameter(0) data = s32[4] parameter(1) data_dynamic = s32[<=4] set-dimension-size(data, size), dimensions={0} sum = s32[<=4] add(data_dynamic, data) ROOT dynamic_size = s32[] get-dimension-size(sum), dimensions={0} } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(DynamicDimensionInference dynamic_dimension_inference, DynamicDimensionInference::Run(m_.get())); evaluator_.set_dynamic_dimension_inference(&dynamic_dimension_inference); Literal size_arg = LiteralUtil::CreateR0<int32_t>(3); Literal data_arg = LiteralUtil::CreateR1<int32_t>({1, 2, 3, 4}); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&size_arg, &data_arg})); EXPECT_EQ(actual.GetFirstElement<int32_t>(), static_cast<int32_t>(3)); } TEST_F(HloEvaluatorTest, EvaluateWithWrongInputShapes) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { p0 = s32[1] parameter(0) ROOT sum = s32[1] add(p0, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal input_wrong_shape = LiteralUtil::CreateR1<int32_t>({0, 1}); EXPECT_EQ( HloEvaluator().Evaluate(*m_, {&input_wrong_shape}).status().message(), "Shape mismatch at parameter 0. Computation expected s32[1]{0}, " "but arg was s32[2]{0}."); EXPECT_EQ(HloEvaluator() .Evaluate(*m_->entry_computation(), {&input_wrong_shape}) .status() .message(), "Shape mismatch at parameter 0. Computation expected s32[1]{0}, " "but arg was s32[2]{0}."); } TEST_F(HloEvaluatorTest, EvaluateWithWrongNumberOfInputs) { const absl::string_view hlo_text = R"( HloModule Test ENTRY main { p0 = s32[1] parameter(0) ROOT sum = s32[1] add(p0, p0) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal input = LiteralUtil::CreateR1<int32_t>({0}); EXPECT_EQ(HloEvaluator().Evaluate(*m_, {&input, &input}).status().message(), "Expected 1 argument, but got 2."); EXPECT_EQ(HloEvaluator() .Evaluate(*m_->entry_computation(), {&input, &input}) .status() .message(), "Expected 1 argument, but got 2."); } TEST_F(HloEvaluatorTest, PreserveFusionInputLayout) { const absl::string_view hlo_text = R"( HloModule FusionInputLayout fused_computation { param_0 = f32[20,20]{0,1} parameter(0) ROOT bitcast = f32[20,20]{1,0} bitcast(param_0) } ENTRY kernel_entry { parameter.0 = f32[20,20]{0,1} parameter(0) ROOT fusion = f32[20,20]{1,0} fusion(parameter.0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&args[0]})); EXPECT_TRUE(absl::c_equal(args[0].data<float>(), actual.data<float>())); } TEST_F(HloEvaluatorTest, PreserveFusionOutputLayout) { const absl::string_view hlo_text = R"( HloModule FusionOutputLayout fused_computation { param_0 = f32[20,20]{1,0} parameter(0) ROOT bitcast = f32[20,20]{0,1} bitcast(param_0) } ENTRY kernel_entry { parameter.0 = f32[20,20]{1,0} parameter(0) ROOT fusion = f32[20,20]{0,1} fusion(parameter.0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual, Evaluate({&args[0]})); EXPECT_TRUE(absl::c_equal(args[0].data<float>(), actual.data<float>())); } TEST_F(HloEvaluatorTest, PreserveMOFusionOutputLayout) { const absl::string_view hlo_text = R"( HloModule MOFusionOutputLayout fused_computation { param_0 = f32[20,20]{1,0} parameter(0) bitcast = f32[20,20]{0,1} bitcast(param_0) ROOT tuple = (f32[20,20]{0,1}) tuple(bitcast) } ENTRY kernel_entry { parameter.0 = f32[20,20]{1,0} parameter(0) ROOT fusion = (f32[20,20]{0,1}) fusion(parameter.0), kind=kLoop, calls=fused_computation })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); TF_ASSERT_OK_AND_ASSIGN(Literal actual_tuple, Evaluate({&args[0]})); std::vector<Literal> actual_literals = actual_tuple.DecomposeTuple(); EXPECT_TRUE( absl::c_equal(args[0].data<float>(), actual_literals[0].data<float>())); } TEST_F(HloEvaluatorTest, EvaluateCustomCall_NoHandler) { const absl::string_view hlo_text = R"( HloModule EvaluateCustomCall_NoHandler ENTRY kernel_entry { parameter.0 = u32[2,2]{1,0} parameter(0) ROOT test_root = (u32[2,2]{1,0}) custom-call(parameter.0), custom_call_target="_my_custom_call" } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); EXPECT_EQ(HloEvaluator().Evaluate(*m_, {&args[0]}).status().code(), ::tsl::error::UNIMPLEMENTED); } TEST_F(HloEvaluatorTest, EvaluateCustomCall_HandlerError) { const absl::string_view hlo_text = R"( HloModule EvaluateCustomCall_HandlerError ENTRY kernel_entry { parameter.0 = u32[2,2]{1,0} parameter(0) ROOT test_root = (u32[2,2]{1,0}) custom-call(parameter.0), custom_call_target="_my_custom_call" } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); HloEvaluator evaluator; evaluator.set_custom_call_handler([](const HloInstruction* custom_call, absl::Span<const Literal*> operands) { return Internal("Test error"); }); EXPECT_EQ(evaluator.Evaluate(*m_, {&args[0]}).status().code(), ::tsl::error::INTERNAL); } TEST_F(HloEvaluatorTest, EvaluateCustomCall_ManyInputs) { const absl::string_view hlo_text = R"( HloModule EvaluateCustomCall_ManyInputs ENTRY kernel_entry { parameter.0 = u32[1]{0} parameter(0) parameter.1 = u32[1]{0} parameter(1) ROOT test_root = u32[1]{0} custom-call(parameter.0, parameter.1), custom_call_target="_my_custom_call" } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto args = MakeFakeArguments(m_.get()).value(); HloEvaluator evaluator; evaluator.set_custom_call_handler([](const HloInstruction* custom_call, absl::Span<const Literal*> operands) { EXPECT_EQ(HloOpcode::kCustomCall, custom_call->opcode()); EXPECT_EQ("_my_custom_call", custom_call->custom_call_target()); EXPECT_EQ(2, custom_call->operand_count()); EXPECT_EQ(2, operands.size()); auto output = Literal::CreateFromShape(custom_call->shape()); auto operand0_data = operands[0]->data<uint32_t>(); auto operand1_data = operands[1]->data<uint32_t>(); auto output_data = output.data<uint32_t>(); output_data[0] = operand0_data[0] + operand1_data[0]; return output; }); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, evaluator.Evaluate(*m_->entry_computation(), {&args[0], &args[1]})); auto arg0_data = args[0].data<uint32_t>(); auto arg1_data = args[1].data<uint32_t>(); std::vector<uint32_t> expected_data = {arg0_data[0] + arg1_data[0]}; EXPECT_TRUE(absl::c_equal(expected_data, actual_literal.data<uint32_t>())); } TEST_F(HloEvaluatorTest, EvaluateCustomCallInFusion) { const absl::string_view hlo_text = R"( fusion1 { p = f32[] parameter(0) ROOT c = f32[] custom-call(p), custom_call_target="__cchandler1" } ENTRY e { p = f32[] parameter(0) ROOT f = f32[] fusion(p), kind=kCustom, calls=fusion1 })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); auto input = LiteralUtil::CreateR0<float>(0); HloEvaluator evaluator; evaluator.set_custom_call_handler([](const HloInstruction* custom_call, absl::Span<const Literal*> operands) { return LiteralUtil::CreateR0<float>(1 - operands[0]->GetFirstElement<float>()); }); TF_ASSERT_OK_AND_ASSIGN(auto output, evaluator.Evaluate(*m_, {&input})); EXPECT_EQ(output, LiteralUtil::CreateR0<float>(1)); } TEST_F(HloEvaluatorTest, IsFiniteF16) { const absl::string_view hlo_text = R"( HloModule test ENTRY IsFiniteTest { c = f16[6] constant({nan, 7, nan, -1, inf, -inf}) ROOT is-finite = pred[6] is-finite(c) })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_THAT(actual_literal.data<bool>(), ::testing::ElementsAre(false, true, false, true, false, false)); } TEST_F(HloEvaluatorTest, IsFiniteBf16) { const absl::string_view hlo_text = R"( HloModule test ENTRY IsFiniteTest { c = bf16[6] constant({nan, 7, nan, -1, inf, -inf}) ROOT is-finite = pred[6] is-finite(c) })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_THAT(actual_literal.data<bool>(), ::testing::ElementsAre(false, true, false, true, false, false)); } TEST_F(HloEvaluatorTest, ZeroSizedIotaWithHugeDimension) { const absl::string_view hlo_text = R"( HloModule test ENTRY t { ROOT i = f32[1000000000000, 0] iota(), iota_dimension=0 })"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN( Literal actual_literal, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_THAT(actual_literal.data<float>(), ::testing::IsEmpty()); } TEST_F(HloEvaluatorTest, CopyStartCopyDone) { const absl::string_view hlo_text = R"( HloModule test ENTRY CopyStartCopyDone { init = f32[] constant(42.0) copy-start = (f32[]{:S(1)}, f32[], u32[]) copy-start(init) ROOT copy-done = f32[] copy-done(copy-start) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR0<float>(42.0f); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, CopyDifferentTypes) { TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(R"( HloModule test ENTRY CopyDifferentTypes { c = bf16[3] constant({1, 2, 3}) ROOT copy = f32[3] copy(bf16[3] c) } )")); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal( LiteralUtil::CreateR1<float>({1.f, 2.f, 3.f}), result)); } TEST_F(HloEvaluatorTest, AsyncOps) { const absl::string_view hlo_text = R"( HloModule test ENTRY AsyncOps { init = f32[] constant(42.0) async-start = ((f32[]), f32[], u32[]) negate-start(init) async-update = ((f32[]), f32[], u32[]) negate-update(async-start) ROOT async-done = f32[] negate-done(async-update) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR0<float>(-42.0f); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapBF16) { const absl::string_view hlo_text = R"( HloModule test map_computation { p = bf16[] parameter(0) add = bf16[] add(p, p) ROOT conv = f32[] convert(add) } ENTRY CopyStartCopyDone { c = bf16[3] constant({1, 2, 3}) ROOT map = f32[3] map(c), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapS16) { const absl::string_view hlo_text = R"( HloModule test map_computation { p = s16[] parameter(0) add = s16[] add(p, p) ROOT conv = f32[] convert(add) } ENTRY CopyStartCopyDone { c = s16[3] constant({1, 2, 3}) ROOT map = f32[3] map(c), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapU16) { const absl::string_view hlo_text = R"( HloModule test map_computation { p = u16[] parameter(0) add = u16[] add(p, p) ROOT conv = f32[] convert(add) } ENTRY CopyStartCopyDone { c = u16[3] constant({1, 2, 3}) ROOT map = f32[3] map(c), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, MapMixed) { const absl::string_view hlo_text = R"( HloModule test map_computation { p0 = u16[] parameter(0) p1 = f32[] parameter(1) c0 = f32[] convert(p0) ROOT add = f32[] add(c0, p1) } ENTRY CopyStartCopyDone { c0 = u16[3] constant({1, 2, 3}) c1 = f32[3] constant({1.5, 2.5, 3.5}) ROOT map = f32[3] map(c0, c1), to_apply=map_computation } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<float>({2.5f, 4.5f, 6.5f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, DotUpcast) { const absl::string_view hlo_text = R"( HloModule test ENTRY DotUpcast { l = s16[4,3]{1,0} parameter(0) r = s8[3,2]{1,0} parameter(1) ROOT result = s32[4,2] dot(l, r), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; auto lhs_array = std::make_unique<Array2D<int16_t>>(4, 3); lhs_array->FillUnique(1); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<int16_t>(*lhs_array); auto rhs_array = std::make_unique<Array2D<int8_t>>(3, 2); rhs_array->FillUnique(1); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<int8_t>(*rhs_array); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&lhs_literal, &rhs_literal})); auto expected_array = Array2D<int32_t>({{22, 28}, {58, 76}, {94, 124}, {130, 172}}); auto expected = LiteralUtil::CreateR2FromArray2D<int32_t>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, SortC64) { const absl::string_view hlo_text = R"( HloModule m sort_lt_comparator { parameter.0 = c64[] parameter(0) real.0 = f32[] real(parameter.0) parameter.1 = c64[] parameter(1) real.1 = f32[] real(parameter.1) ROOT compare = pred[] compare(real.0, real.1), direction=LT } ENTRY main { c = c64[3] constant({(2, 0), (4, 0), (6, 0)}) ROOT sort = c64[3]{0} sort(c), dimensions={0}, to_apply=sort_lt_comparator } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<std::complex<float>>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, ConvertC128ToC64) { const absl::string_view hlo_text = R"( HloModule m ENTRY main { c = c128[3] constant({(2, 0), (4, 0), (6, 0)}) ROOT sort = c64[3]{0} convert(c) } )"; TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); Literal expected = LiteralUtil::CreateR1<std::complex<float>>({2.f, 4.f, 6.f}); TF_ASSERT_OK_AND_ASSIGN( Literal result, HloEvaluator().Evaluate(*m_->entry_computation(), {})); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, RecursivelyEvaluateNonConstantOperands) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Literal c1_literal = LiteralUtil::CreateR2<float>({{0.f, 5.f}, {0.f, 4.f}}); Literal c2_literal = LiteralUtil::CreateR2<float>({{2.f, 4.f}, {4.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* c1 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c1_literal))); HloInstruction* c2 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c2_literal))); HloInstruction* add0 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, c0, c1)); HloInstruction* add1 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, c1, c2)); HloInstruction* add2 = b.AddInstruction( HloInstruction::CreateBinary(shape, HloOpcode::kAdd, add0, add1)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{2, 16}, {6, 16}}); TestRecursivelyEvaluateInstruction(add2, expected); } TEST_F(HloEvaluatorTest, GetTupleElementOnPartiallyKnownTupleSucceeds) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* tuple = b.AddInstruction(HloInstruction::CreateTuple({p0, p1, c0})); HloInstruction* gte = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple, 2)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); TestRecursivelyEvaluateInstruction(gte, expected); } TEST_F(HloEvaluatorTest, InfeedFailure) { HloComputation::Builder b(TestName()); HloInstruction* token = b.AddInstruction(HloInstruction::CreateToken()); HloInstruction* infeed = b.AddInstruction(HloInstruction::CreateInfeed( ShapeUtil::MakeShape(F32, {4, 4}), token, "")); m_->AddEntryComputation(b.Build()); TestRecursiveEvaluationFailure(infeed); } TEST_F(HloEvaluatorTest, GetUnknownTupleElementFails) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* tuple = b.AddInstruction(HloInstruction::CreateTuple({p0, p1, c0})); HloInstruction* gte = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple, 0)); m_->AddEntryComputation(b.Build()); TestRecursiveEvaluationFailure(gte); } TEST_F(HloEvaluatorTest, GetTupleElementFromNestedTupleSucceeds) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* tuple0 = b.AddInstruction(HloInstruction::CreateTuple({p0, c0})); HloInstruction* tuple1 = b.AddInstruction(HloInstruction::CreateTuple({tuple0, p1})); HloInstruction* gte0 = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple1, 0)); HloInstruction* gte1 = b.AddInstruction(HloInstruction::CreateGetTupleElement(gte0, 1)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); TestRecursivelyEvaluateInstruction(gte1, expected); } TEST_F(HloEvaluatorTest, GetTupleElementInterleavedWithTupleSucceeds) { Literal c0_literal = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); Shape shape = c0_literal.shape(); HloComputation::Builder b(TestName()); HloInstruction* c0 = b.AddInstruction(HloInstruction::CreateConstant(std::move(c0_literal))); HloInstruction* p0 = b.AddInstruction(HloInstruction::CreateParameter(0, shape, "param.0")); HloInstruction* p1 = b.AddInstruction(HloInstruction::CreateParameter(1, shape, "param.1")); HloInstruction* p2 = b.AddInstruction(HloInstruction::CreateParameter(2, shape, "param.2")); HloInstruction* tuple0 = b.AddInstruction(HloInstruction::CreateTuple({p0, c0})); HloInstruction* tuple1 = b.AddInstruction(HloInstruction::CreateTuple({tuple0, p1})); HloInstruction* gte0 = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple1, 0)); HloInstruction* tuple2 = b.AddInstruction(HloInstruction::CreateTuple({gte0, p2})); HloInstruction* gte1 = b.AddInstruction(HloInstruction::CreateGetTupleElement(tuple2, 0)); HloInstruction* gte2 = b.AddInstruction(HloInstruction::CreateGetTupleElement(gte1, 1)); m_->AddEntryComputation(b.Build()); Literal expected = LiteralUtil::CreateR2<float>({{0.f, 2.f}, {2.f, 4.f}}); TestRecursivelyEvaluateInstruction(gte2, expected); } TEST_F(HloEvaluatorTest, ParameterThroughCallSucceeds) { constexpr absl::string_view kHloModule = R"( HloModule parameter_through_call %identity { ROOT %param = s32[] parameter(0) } ENTRY parameter_through_call { %constant = s32[] constant(42) ROOT %call = s32[] call(s32[] %constant), to_apply=%identity } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); const HloInstruction* parameter_instruction = nullptr; for (const auto* computation : hlo_module->computations()) { for (const auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kParameter) { parameter_instruction = instruction; } } } ASSERT_NE(parameter_instruction, nullptr); Literal expected = LiteralUtil::CreateR0<int32_t>(42); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator_.Evaluate(parameter_instruction, {}, true)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } TEST_F(HloEvaluatorTest, ParameterThroughCallSucceedsWithPrecomputation) { constexpr absl::string_view kHloModule = R"( HloModule parameter_through_call %identity { ROOT %param = s32[] parameter(0) } ENTRY parameter_through_call { %constant = s32[] constant(42) ROOT %call = s32[] call(s32[] %constant), to_apply=%identity } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); const HloInstruction* parameter_instruction = nullptr; for (const auto* computation : hlo_module->computations()) { for (const auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kParameter) { parameter_instruction = instruction; } } } ASSERT_NE(parameter_instruction, nullptr); Literal expected = LiteralUtil::CreateR0<int32_t>(42); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<TuplePointsToAnalysis> tuple_points_to, TuplePointsToAnalysis::Run(hlo_module.get())); std::unique_ptr<CallGraph> call_graph = CallGraph::Build(hlo_module.get()); TF_ASSERT_OK_AND_ASSIGN( Literal result, evaluator_.Evaluate(parameter_instruction, {tuple_points_to.get(), call_graph.get()}, true)); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); } class PatternMatchParseWhileLoopTest : public HloTestBase {}; TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDefinedInsideOfCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %loop_bound = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %loop_bound), direction=LT } %while_body { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 5); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 5); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDefinedInsideOfCondWithPrecomputation) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %loop_bound = s32[] constant(5) ROOT result = pred[] compare(%gte.0, %loop_bound), direction=LT } %while_body { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<TuplePointsToAnalysis> tuple_points_to, TuplePointsToAnalysis::Run(hlo_module.get())); std::unique_ptr<CallGraph> call_graph = CallGraph::Build(hlo_module.get()); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop( while_op, {tuple_points_to.get(), call_graph.get()}); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 5); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 5); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDefinedOutsideOfCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %constant.1, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundComputedOutsideOfCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(10) %constant.2 = s32[] constant(4) %loop_bound = s32[] multiply(s32[] %constant.1, s32[] %constant.2) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 40); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 40); } TEST_F(PatternMatchParseWhileLoopTest, StepSizeNotOne) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(4) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %constant.1 = s32[] constant(10) %constant.2 = s32[] constant(4) %loop_bound = s32[] multiply(s32[] %constant.1, s32[] %constant.2) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 4); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 40); } TEST_F(PatternMatchParseWhileLoopTest, RecursiveCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %compute_pred { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, RecursiveCondGetTupleElement) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %compute_pred { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %get_tuple_element { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 ROOT %tuple.1 = (pred[]) tuple(pred[] %gte.4) } %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%get_tuple_element ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, LoopBoundDependsOnAnotherLoop) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %compute_pred.0 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %while_condition.0 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred.0 ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body.0 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } %compute_pred.1 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %compare = pred[] compare(gte.0, %gte.1), direction=LT ROOT %tuple = (pred[]) tuple(pred[] %compare) } %while_condition.1 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %call = (pred[]) call((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %param), to_apply=%compute_pred.1 ROOT %gte.4 = pred[] get-tuple-element((pred[]) %call), index=0 } %while_body.1 { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %param.2 = f32[1024, 1024] parameter(1) %constant.0 = s32[] constant(0) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init.0 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while.0 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init.0), condition=%while_condition.0, body=%while_body.0 %result.0 = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while.0), index=3 %new_loop_bound = s32[] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while.0), index=0 %while_init.1 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %new_loop_bound, f32[1024, 1024] %param.2, f32[1024, 1024] %result.0) %while.1 = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init.1), condition=%while_condition.1, body=%while_body.1 ROOT %result.1 = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while.1), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 10); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 10); } TEST_F(PatternMatchParseWhileLoopTest, DynamicLoop) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %param.2 = s32[] parameter(1) %loop_bound = s32[] constant(10) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %param.2, s32[] %loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=3 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_TRUE(parsed_while_loop->is_dynamic()); } TEST_F(PatternMatchParseWhileLoopTest, BooleanCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (pred[], f32[1024, 1024], f32[1024, 1024]) parameter(0) ROOT %gte.0 = pred[] get-tuple-element(%param), index=0 } %while_body { %param = (pred[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = pred[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %new_loop_cond = pred[] constant(false) ROOT %loop_result = (pred[], f32[1024, 1024], f32[1024, 1024]) tuple(%new_loop_cond, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = pred[] constant(true) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (pred[], f32[1024, 1024], f32[1024, 1024]) tuple(pred[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (pred[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((pred[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 1); } TEST_F(PatternMatchParseWhileLoopTest, NestedLoop) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %nested_while_condition { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %nested_while_body { %param = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.2, f32[1024, 1024] %gte.3) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %accumulation) } %while_condition { %param = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 ROOT result = pred[] compare(%gte.0, %gte.1), direction=LT } %while_body { %param = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = s32[] get-tuple-element(%param), index=1 %gte.2 = s32[] get-tuple-element(%param), index=2 %gte.3 = f32[1024, 1024] get-tuple-element(%param), index=3 %gte.4 = f32[1024, 1024] get-tuple-element(%param), index=4 %constant.4 = s32[] constant(0) %nested_while_init = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.4, s32[] %gte.2, f32[1024, 1024] %gte.3, f32[1024, 1024] %gte.4) %nested_while = (s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%nested_while_init), condition=%nested_while_condition, body=%nested_while_body %nested_while_result = f32[1024, 1024] get-tuple-element((s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %nested_while), index=3 %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %gte.2, %gte.3, %nested_while_result) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %param.2 = s32[] parameter(1) %constant.0 = s32[] constant(0) %constant.2 = s32[] constant(4) %loop_bound = s32[] multiply(s32[] %param.2, s32[] %constant.2) %constant.3 = s32[] constant(5) %nested_loop_bound = s32[] multiply(s32[] %constant.3, s32[] %constant.2) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, s32[] %loop_bound, s32[] %nested_loop_bound, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], s32[], s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=4 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); CHECK_EQ(while_op->opcode(), HloOpcode::kWhile); HloComputation* while_body = while_op->while_body(); HloInstruction* nested_while = while_body->root_instruction()->mutable_operand(4)->mutable_operand(0); CHECK_EQ(nested_while->opcode(), HloOpcode::kWhile); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(nested_while); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 20); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 20); } TEST_F(PatternMatchParseWhileLoopTest, CopiedLoopCond) { constexpr absl::string_view kHloModule = R"( HloModule accumulated_all_reduce %while_condition { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %copy.0 = s32[] copy(s32[] %gte.0) %loop_bound = s32[] constant(5) %result = pred[] compare(%gte.0, %loop_bound), direction=LT ROOT %copy.1 = pred[] copy(pred[] %result) } %while_body { %param = (s32[], f32[1024, 1024], f32[1024, 1024]) parameter(0) %gte.0 = s32[] get-tuple-element(%param), index=0 %gte.1 = f32[1024, 1024] get-tuple-element(%param), index=1 %gte.2 = f32[1024, 1024] get-tuple-element(%param), index=2 %accumulation = f32[1024, 1024] add(f32[1024, 1024] %gte.1, f32[1024, 1024] %gte.2) %constant = s32[] constant(1) %increment_iteration = s32[] add(s32[] %gte.0, s32[] %constant) ROOT %loop_result = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(%increment_iteration, %gte.1, %accumulation) } ENTRY accumulated_all_reduce { %param.1 = f32[1024, 1024] parameter(0) %constant.0 = s32[] constant(0) %accumulation_buffer_init = f32[] constant(0) %accumulation_buffer = f32[1024, 1024] broadcast(f32[] %accumulation_buffer_init), dimensions={} %while_init = (s32[], f32[1024, 1024], f32[1024, 1024]) tuple(s32[] %constant.0, f32[1024, 1024] %param.1, f32[1024, 1024] %accumulation_buffer) %while = (s32[], f32[1024, 1024], f32[1024, 1024]) while(%while_init), condition=%while_condition, body=%while_body ROOT %result = f32[1024, 1024] get-tuple-element((s32[], f32[1024, 1024], f32[1024, 1024]) %while), index=2 } )"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> hlo_module, ParseAndReturnVerifiedModule(kHloModule)); HloInstruction* while_op = hlo_module->entry_computation()->root_instruction()->mutable_operand(0); std::optional<ParsedWhileLoop> parsed_while_loop = PatternMatchParseWhileLoop(while_op); ASSERT_TRUE(parsed_while_loop.has_value()); EXPECT_FALSE(parsed_while_loop->is_dynamic()); EXPECT_EQ(parsed_while_loop->static_while_loop->trip_count, 5); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_index, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->induction_var_init_value, 0); EXPECT_EQ(parsed_while_loop->static_while_loop->step_size, 1); EXPECT_EQ(parsed_while_loop->static_while_loop->loop_bound, 5); } TEST_F(HloEvaluatorTest, DotTraced) { const absl::string_view hlo_text = R"( HloModule test ENTRY DotUpcast { l = s16[4,3]{1,0} parameter(0) r = s8[3,2]{1,0} parameter(1) ROOT result = s32[4,2] dot(l, r), lhs_contracting_dims={1}, rhs_contracting_dims={0} } )"; auto lhs_array = std::make_unique<Array2D<int16_t>>(4, 3); lhs_array->FillUnique(1); auto lhs_literal = LiteralUtil::CreateR2FromArray2D<int16_t>(*lhs_array); auto rhs_array = std::make_unique<Array2D<int8_t>>(3, 2); rhs_array->FillUnique(1); auto rhs_literal = LiteralUtil::CreateR2FromArray2D<int8_t>(*rhs_array); TF_ASSERT_OK_AND_ASSIGN(m_, ParseAndReturnVerifiedModule(hlo_text)); absl::flat_hash_set<std::array<int64_t, 3>> macs_traced; auto mac_handler = [&macs_traced](int64_t result_index, int64_t lhs_index, int64_t rhs_index) -> void { macs_traced.insert( std::array<int64_t, 3>{result_index, lhs_index, rhs_index}); }; evaluator_.set_trace_mac_handler(mac_handler); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate({&lhs_literal, &rhs_literal})); auto expected_array = Array2D<int32_t>({{22, 28}, {58, 76}, {94, 124}, {130, 172}}); auto expected = LiteralUtil::CreateR2FromArray2D<int32_t>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); const absl::flat_hash_set<std::array<int64_t, 3>> macs_expected = { {1, 0, 1}, {0, 0, 0}, {2, 4, 2}, {5, 6, 1}, {2, 5, 4}, {4, 7, 2}, {2, 3, 0}, {5, 7, 3}, {5, 8, 5}, {4, 6, 0}, {6, 9, 0}, {7, 10, 3}, {7, 11, 5}, {1, 1, 3}, {0, 2, 4}, {3, 4, 3}, {1, 2, 5}, {7, 9, 1}, {6, 10, 2}, {6, 11, 4}, {3, 5, 5}, {4, 8, 4}, {0, 1, 2}, {3, 3, 1}}; EXPECT_EQ(macs_traced, macs_expected); } TEST_F(HloEvaluatorTest, SimpleConvTraced) { HloComputation::Builder b(TestName()); Array4D<float> lhs_array(1, 1, 4, 4); lhs_array.FillWithYX(Array2D<float>({ {1, 2, 3, 4 }, {5, 6, 7, 8 }, {9, 10, 11, 12}, {13, 14, 15, 16}, })); auto lhs_literal = LiteralUtil::CreateR4FromArray4D<float>(lhs_array); HloInstruction* lhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(lhs_literal))); Array4D<float> rhs_array(1, 1, 2, 2); rhs_array.FillWithYX(Array2D<float>({ {5, 6}, {7, 8}, })); auto rhs_literal = LiteralUtil::CreateR4FromArray4D<float>(rhs_array); HloInstruction* rhs_instruction = b.AddInstruction(HloInstruction::CreateConstant(std::move(rhs_literal))); Window window; WindowDimension dim; dim.set_size(2); dim.set_stride(1); dim.set_padding_low(0); dim.set_padding_high(1); dim.set_window_dilation(1); dim.set_base_dilation(1); *window.add_dimensions() = dim; *window.add_dimensions() = dim; ConvolutionDimensionNumbers dnums = XlaBuilder::CreateDefaultConvDimensionNumbers(2); Shape shape = ShapeUtil::MakeShape(F32, {1, 1, 4, 4}); b.AddInstruction(HloInstruction::CreateConvolve( shape, lhs_instruction, rhs_instruction, 1, 1, window, dnums, DefaultPrecisionConfig(2))); m_->AddEntryComputation(b.Build()); absl::flat_hash_set<std::array<int64_t, 3>> macs_traced; auto mac_handler = [&macs_traced](int64_t result_index, int64_t lhs_index, int64_t rhs_index) -> void { macs_traced.insert( std::array<int64_t, 3>{result_index, lhs_index, rhs_index}); }; evaluator_.set_trace_mac_handler(mac_handler); TF_ASSERT_OK_AND_ASSIGN(Literal result, Evaluate()); Array4D<float> expected_array(1, 1, 4, 4); expected_array.FillWithYX(Array2D<float>({ {100, 126, 152, 76}, {204, 230, 256, 124}, {308, 334, 360, 172}, {149, 160, 171, 80}, })); auto expected = LiteralUtil::CreateR4FromArray4D<float>(expected_array); EXPECT_TRUE(LiteralTestUtil::Equal(expected, result)); const absl::flat_hash_set<std::array<int64_t, 3>> macs_expected = { {10, 14, 2}, {7, 7, 0}, {11, 15, 2}, {4, 4, 0}, {3, 7, 2}, {5, 9, 2}, {8, 9, 1}, {12, 12, 0}, {6, 10, 2}, {5, 6, 1}, {13, 14, 1}, {15, 15, 0}, {11, 11, 0}, {0, 5, 3}, {10, 10, 0}, {2, 7, 3}, {13, 13, 0}, {1, 6, 3}, {0, 0, 0}, {4, 9, 3}, {8, 12, 2}, {8, 13, 3}, {9, 9, 0}, {6, 7, 1}, {9, 13, 2}, {2, 6, 2}, {0, 1, 1}, {6, 6, 0}, {5, 10, 3}, {10, 15, 3}, {14, 14, 0}, {7, 11, 2}, {0, 4, 2}, {10, 11, 1}, {6, 11, 3}, {2, 2, 0}, {3, 3, 0}, {9, 14, 3}, {12, 13, 1}, {1, 5, 2}, {5, 5, 0}, {14, 15, 1}, {1, 1, 0}, {2, 3, 1}, {4, 5, 1}, {4, 8, 2}, {9, 10, 1}, {8, 8, 0}, {1, 2, 1}, }; EXPECT_EQ(macs_traced, macs_expected); } TEST(EvalErrorTest, OK) { EXPECT_EQ(std::nullopt, internal::ParseEvalErrorDetail(absl::OkStatus())); } TEST(EvalErrorTest, NoPayload) { EXPECT_EQ(std::nullopt, internal::ParseEvalErrorDetail(absl::InternalError("hmm"))); } TEST(EvalErrorTest, Payload) { absl::Status s = absl::InternalError("hmm"); std::string payload; payload.resize(sizeof(internal::EvalErrorDetail)); absl::little_endian::Store32( const_cast<char*>(payload.data()), static_cast<uint32_t>( internal::EvalErrorDetail::kDynamicValueDependence)); s.SetPayload(internal::kEvalErrorDetailUrl, absl::Cord(payload)); EXPECT_EQ(internal::ParseEvalErrorDetail(s), internal::EvalErrorDetail::kDynamicValueDependence); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/evaluator/hlo_evaluator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/evaluator/hlo_evaluator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
04380fb2-2d79-479f-a1d9-115cff0d4df9
cpp
google/arolla
aggregation
arolla/expr/operators/aggregation.cc
arolla/qexpr/operators/aggregation/aggregation_test.cc
#include "arolla/expr/operators/aggregation.h" #include <vector> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/expr/qtype_utils.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/fingerprint.h" #include "arolla/util/unit.h" #include "arolla/util/status_macros_backport.h" namespace arolla::expr_operators { using ::arolla::expr::CallOp; using ::arolla::expr::ExprNodePtr; using ::arolla::expr::ExprOperatorPtr; using ::arolla::expr::ExprOperatorSignature; using ::arolla::expr::IsDefaultEdgeArg; using ::arolla::expr::IsGroupScalarEdge; TakeOperator::TakeOperator() : BasicExprOperator( "array.take", ExprOperatorSignature( {{"x"}, {"ids"}, {.name = "over", .default_value = TypedValue::FromValue(kUnit)}, {.name = "ids_over", .default_value = TypedValue::FromValue(kUnit)}}), "", FingerprintHasher("arolla::expr_operators::TakeOperator").Finish()) {} absl::StatusOr<ExprNodePtr> TakeOperator::ToLowerLevel( const ExprNodePtr& node) const { RETURN_IF_ERROR(ValidateNodeDepsCount(*node)); const auto& node_deps = node->node_deps(); DCHECK_GE(node_deps.size(), 4); const ExprNodePtr& values = node_deps[0]; const ExprNodePtr& offsets = node_deps[1]; ExprNodePtr values_edge = node_deps[2]; ExprNodePtr offsets_edge = node_deps[3]; bool is_scalar_values_edge = IsDefaultEdgeArg(values_edge); if (!is_scalar_values_edge) { ASSIGN_OR_RETURN(is_scalar_values_edge, IsGroupScalarEdge(values_edge)); } bool is_scalar_offsets_edge = IsDefaultEdgeArg(offsets_edge); if (!is_scalar_offsets_edge) { ASSIGN_OR_RETURN(is_scalar_offsets_edge, IsGroupScalarEdge(offsets_edge)); } if (is_scalar_values_edge != is_scalar_offsets_edge) { return absl::InvalidArgumentError(absl::StrFormat( "Two edges must share the parent side but only one of them is an edge " "to scalar. is_scalar_values_edge(=%d) != is_scalar_offsets_edge(=%d)", is_scalar_values_edge, is_scalar_offsets_edge)); } if (is_scalar_values_edge) { return CallOp("array.at", {values, offsets}); } if (values_edge->fingerprint() == offsets_edge->fingerprint()) { return CallOp("array._take_over", {values, offsets, values_edge}); } return CallOp("array._take_over_over", {values, offsets, values_edge, offsets_edge}); } absl::StatusOr<QTypePtr> TakeOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { return input_qtypes[0]; } }
#include <cmath> #include <cstdint> #include <limits> #include <optional> #include <set> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/strings/numbers.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/aggregation_ops_interface.h" #include "arolla/qexpr/operators/aggregation/group_op_accumulators.h" #include "arolla/util/bytes.h" #include "arolla/util/meta.h" namespace arolla { namespace { using ::absl_testing::StatusIs; using ::testing::FloatEq; using ::testing::HasSubstr; struct TestAccumulator : Accumulator<AccumulatorType::kAggregator, int, meta::type_list<>, meta::type_list<int>> { explicit TestAccumulator(int init = 0) : init_val(init) {} void Reset() final { res = init_val; }; void Add(int v) final { res += v; } int GetResult() final { return res; } int init_val; int res; }; struct TestAccumulator2 : public TestAccumulator { static TestAccumulator2 Create(int init = 0) { return TestAccumulator2(init); } static absl::StatusOr<TestAccumulator2> Create(absl::string_view init) { int init_val; if (!absl::SimpleAtoi(init, &init_val)) { return absl::InvalidArgumentError( absl::Substitute("Expected integer, got '$0'", init)); } return TestAccumulator2(init_val); } private: explicit TestAccumulator2(int init) : TestAccumulator(init) {} }; TEST(Accumulator, AddN) { TestAccumulator acc; acc.Reset(); acc.AddN(10, 5); EXPECT_EQ(acc.GetResult(), 50); } TEST(OpInterface, CreateWithConstructor) { ASSERT_OK_AND_ASSIGN(TestAccumulator default_accumulator, CreateAccumulator<TestAccumulator>()); EXPECT_EQ(default_accumulator.init_val, 0); ASSERT_OK_AND_ASSIGN(TestAccumulator init_accumulator, CreateAccumulator<TestAccumulator>(5)); EXPECT_EQ(init_accumulator.init_val, 5); } TEST(OpInterface, CreateWithMethod) { ASSERT_OK_AND_ASSIGN(TestAccumulator2 default_accumulator, CreateAccumulator<TestAccumulator2>()); EXPECT_EQ(default_accumulator.init_val, 0); ASSERT_OK_AND_ASSIGN(TestAccumulator2 init_accumulator, CreateAccumulator<TestAccumulator2>("5")); EXPECT_EQ(init_accumulator.init_val, 5); EXPECT_THAT(CreateAccumulator<TestAccumulator2>("foo"), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Expected integer, got 'foo'"))); } TEST(Accumulator, LogicalAdd) { LogicalAllAggregator acc; acc.Reset(); EXPECT_EQ(acc.GetResult(), true); acc.Reset(); acc.AddN(2, std::nullopt); EXPECT_EQ(acc.GetResult(), std::nullopt); acc.Reset(); acc.AddN(2, std::nullopt); acc.Add(false); EXPECT_EQ(acc.GetResult(), false); acc.Reset(); acc.Add(std::nullopt); acc.AddN(2, true); EXPECT_EQ(acc.GetResult(), std::nullopt); acc.Reset(); acc.AddN(2, true); EXPECT_EQ(acc.GetResult(), true); } TEST(Accumulator, LogicalOr) { LogicalAnyAggregator acc; acc.Reset(); EXPECT_EQ(acc.GetResult(), false); acc.Reset(); acc.AddN(2, std::nullopt); EXPECT_EQ(acc.GetResult(), std::nullopt); acc.Reset(); acc.AddN(2, std::nullopt); acc.Add(false); EXPECT_EQ(acc.GetResult(), std::nullopt); acc.Reset(); acc.Add(std::nullopt); acc.AddN(2, true); EXPECT_EQ(acc.GetResult(), true); acc.Reset(); acc.AddN(2, true); EXPECT_EQ(acc.GetResult(), true); } TEST(Accumulator, InverseMapping) { InverseMappingAccumulator acc; acc.Add(1); acc.Add(3); acc.Add(2); acc.Add(0); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), int64_t{3}); EXPECT_EQ(acc.GetResult(), int64_t{0}); EXPECT_EQ(acc.GetResult(), int64_t{2}); EXPECT_EQ(acc.GetResult(), int64_t{1}); EXPECT_EQ(acc.GetStatus(), absl::OkStatus()); acc.Reset(); acc.Add(std::nullopt); acc.Add(4); acc.Add(0); acc.Add(std::nullopt); acc.Add(2); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), int64_t{2}); EXPECT_EQ(acc.GetResult(), std::nullopt); EXPECT_EQ(acc.GetResult(), int64_t{4}); EXPECT_EQ(acc.GetResult(), std::nullopt); EXPECT_EQ(acc.GetResult(), int64_t{1}); EXPECT_EQ(acc.GetStatus(), absl::OkStatus()); acc.Reset(); acc.Add(0); acc.Add(2); acc.FinalizeFullGroup(); acc.GetResult(); acc.GetResult(); EXPECT_THAT( acc.GetStatus(), StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr( "unable to compute array.inverse_mapping: invalid permutation, " "element 2 is not a valid element of a permutation of size 2"))); acc.Reset(); EXPECT_THAT( acc.GetStatus(), StatusIs( absl::StatusCode::kInvalidArgument, ::testing::HasSubstr( "unable to compute array.inverse_mapping: invalid permutation, " "element 2 is not a valid element of a permutation of size 2"))); acc.Reset(); acc.Add(0); acc.Add(0); acc.FinalizeFullGroup(); acc.GetResult(); acc.GetResult(); EXPECT_THAT( acc.GetStatus(), StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr( "unable to compute array.inverse_mapping: invalid permutation, " "element 0 appears twice in the permutation"))); } TEST(Accumulator, GroupBy) { int64_t group_counter = 10; GroupByAccumulator<float> acc(&group_counter); acc.Reset(); acc.Add(2.0f); EXPECT_EQ(acc.GetResult(), 10); acc.Add(3.0f); EXPECT_EQ(acc.GetResult(), 11); acc.Add(2.0f); EXPECT_EQ(acc.GetResult(), 10); acc.Reset(); acc.Add(3.0f); EXPECT_EQ(acc.GetResult(), 12); acc.Add(2.0f); EXPECT_EQ(acc.GetResult(), 13); acc.Add(3.0f); EXPECT_EQ(acc.GetResult(), 12); acc.Add(2.0f); EXPECT_EQ(acc.GetResult(), 13); } TEST(Accumulator, PermuteInt) { ArrayTakeOverAccumulator<int> acc; acc.Add(0, 2); acc.Add(1, 0); acc.Add(2, 1); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 1); EXPECT_EQ(acc.GetStatus(), absl::OkStatus()); acc.Reset(); acc.Add(10, std::nullopt); acc.Add(std::nullopt, 1); acc.Add(20, 0); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), std::nullopt); EXPECT_EQ(acc.GetResult(), std::nullopt); EXPECT_EQ(acc.GetResult(), 10); EXPECT_EQ(acc.GetStatus(), absl::OkStatus()); acc.Reset(); acc.Add(0, 0); acc.Add(1, 2); acc.FinalizeFullGroup(); acc.GetResult(); acc.GetResult(); EXPECT_THAT(acc.GetStatus(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid offsets: 2 is not a valid offset of " "an array of size 2"))); acc.Reset(); EXPECT_THAT(acc.GetStatus(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("invalid offsets: 2 is not a valid offset of " "an array of size 2"))); } TEST(Accumulator, PermuteBytes) { ArrayTakeOverAccumulator<Bytes> acc; std::vector<std::pair<OptionalValue<Bytes>, OptionalValue<int64_t>>> inputs( {{Bytes("the"), 4}, {Bytes("clone"), 0}, {Bytes("war"), 1}, {Bytes("has"), 2}, {Bytes("begun"), 3}}); for (const auto& add : inputs) { acc.Add(add.first, add.second); } acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), "begun"); EXPECT_EQ(acc.GetResult(), "the"); EXPECT_EQ(acc.GetResult(), "clone"); EXPECT_EQ(acc.GetResult(), "war"); EXPECT_EQ(acc.GetResult(), "has"); EXPECT_EQ(acc.GetStatus(), absl::OkStatus()); } TEST(Accumulator, CDF) { WeightedCDFAccumulator<float, float> acc; acc.Add(0.1, 0.1); acc.Add(0.2, 0.2); acc.Add(0.20001, 0.1); acc.Add(0.1, 0.2); acc.Add(-0.1, 0.3); acc.Add(-0.2, 0.1); acc.FinalizeFullGroup(); EXPECT_THAT(acc.GetResult(), FloatEq(0.7)); EXPECT_THAT(acc.GetResult(), FloatEq(0.9)); EXPECT_THAT(acc.GetResult(), FloatEq(1)); EXPECT_THAT(acc.GetResult(), FloatEq(0.7)); EXPECT_THAT(acc.GetResult(), FloatEq(0.4)); EXPECT_THAT(acc.GetResult(), FloatEq(0.1)); acc.Reset(); acc.Add(1, 1); acc.Add(0, 1); acc.FinalizeFullGroup(); EXPECT_THAT(acc.GetResult(), FloatEq(1)); EXPECT_THAT(acc.GetResult(), FloatEq(0.5)); acc.Reset(); acc.FinalizeFullGroup(); } TEST(Accumulator, CDFBig) { WeightedCDFAccumulator<float, float> acc; for (int i = 0; i < 18000000; ++i) { acc.Add(0.0, 1.0); } for (int i = 0; i < 2000000; ++i) { acc.Add(i, 1.0); } acc.FinalizeFullGroup(); EXPECT_THAT(acc.GetResult(), FloatEq(0.9)); } TEST(Accumulator, OrdinalRank) { OrdinalRankAccumulator<float, int64_t> acc; acc.Add(7, 10); acc.Add(7, 9); acc.Add(1, 7); acc.Add(2, 10); acc.Add(2, 11); acc.Add(2, 10); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), 5); EXPECT_EQ(acc.GetResult(), 4); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 1); EXPECT_EQ(acc.GetResult(), 3); EXPECT_EQ(acc.GetResult(), 2); } TEST(Accumulator, OrdinalRank_Descending) { OrdinalRankAccumulator<float, int> acc(true); acc.Add(7, 10); acc.Add(7, 9); acc.Add(std::numeric_limits<float>::quiet_NaN(), 10); acc.Add(1, 10); acc.Add(2, 10); acc.Add(2, 10); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), 1); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 5); EXPECT_EQ(acc.GetResult(), 4); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 3); } TEST(Accumulator, DenseRank) { DenseRankAccumulator<int> acc; acc.Add(7); acc.Add(7); acc.Add(1); acc.Add(2); acc.Add(2); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 1); EXPECT_EQ(acc.GetResult(), 1); acc.Reset(); acc.Add(3); acc.Add(0); acc.Add(2); acc.Add(1); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), 3); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 1); } TEST(Accumulator, DenseRankWithNan) { DenseRankAccumulator<float> acc; acc.Add(7); acc.Add(2); acc.Add(std::numeric_limits<float>::quiet_NaN()); acc.Add(7); acc.Add(1); acc.Add(std::numeric_limits<float>::quiet_NaN()); acc.Add(2); acc.FinalizeFullGroup(); std::set<int64_t> ranks_of_nan; EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 1); ranks_of_nan.insert(acc.GetResult()); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 0); ranks_of_nan.insert(acc.GetResult()); EXPECT_EQ(acc.GetResult(), 1); EXPECT_EQ(ranks_of_nan, (std::set<int64_t>{3, 4})); } TEST(Accumulator, DenseRank_Descending) { DenseRankAccumulator<float> acc(true); acc.Add(7); acc.Add(7); acc.Add(1); acc.Add(2); acc.Add(2); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 1); EXPECT_EQ(acc.GetResult(), 1); acc.Reset(); acc.Add(3); acc.Add(0); acc.Add(std::numeric_limits<float>::quiet_NaN()); acc.Add(1); acc.FinalizeFullGroup(); EXPECT_EQ(acc.GetResult(), 0); EXPECT_EQ(acc.GetResult(), 2); EXPECT_EQ(acc.GetResult(), 3); EXPECT_EQ(acc.GetResult(), 1); } TEST(Accumulator, AggMedian) { MedianAggregator<int> acc; EXPECT_EQ(acc.GetResult(), std::nullopt); acc.Reset(); acc.Add(7); acc.Add(1); acc.Add(1); acc.Add(2); EXPECT_EQ(acc.GetResult(), 1); acc.Reset(); acc.Add(7); acc.Add(1); acc.Add(2); EXPECT_EQ(acc.GetResult(), 2); } TEST(Accumulator, AggMedianNan) { MedianAggregator<float> acc; acc.Add(7); acc.Add(1); acc.Add(2); acc.Add(std::numeric_limits<float>::quiet_NaN()); EXPECT_TRUE(std::isnan(acc.GetResult().value)); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/expr/operators/aggregation.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qexpr/operators/aggregation/aggregation_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
49087145-934b-4828-9aec-9b8a982968fa
cpp
google/tensorstore
parse_json_matches
tensorstore/internal/parse_json_matches.cc
tensorstore/internal/parse_json_matches_test.cc
#include "tensorstore/internal/parse_json_matches.h" #include <ostream> #include <string> #include <utility> #include <gtest/gtest.h> #include <nlohmann/json.hpp> #include "tensorstore/internal/json_binding/json_binding.h" #include "tensorstore/internal/json_gtest.h" namespace tensorstore { namespace internal { namespace { class Matcher : public ::testing::MatcherInterface<std::string> { public: Matcher(::testing::Matcher<::nlohmann::json> json_matcher) : json_matcher_(std::move(json_matcher)) {} bool MatchAndExplain( std::string value, ::testing::MatchResultListener* listener) const override { return json_matcher_.MatchAndExplain( tensorstore::internal::ParseJson(value), listener); } void DescribeTo(std::ostream* os) const override { *os << "when parsed as JSON "; json_matcher_.DescribeTo(os); } private: ::testing::Matcher<::nlohmann::json> json_matcher_; }; } ::testing::Matcher<std::string> ParseJsonMatches( ::testing::Matcher<::nlohmann::json> json_matcher) { return ::testing::MakeMatcher(new Matcher(std::move(json_matcher))); } ::testing::Matcher<std::string> ParseJsonMatches(::nlohmann::json json) { return ParseJsonMatches(MatchesJson(json)); } } }
#include "tensorstore/internal/parse_json_matches.h" #include <sstream> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include <nlohmann/json.hpp> namespace { using ::tensorstore::internal::ParseJsonMatches; TEST(ParseJsonMatchesTest, Describe) { std::ostringstream ss; ParseJsonMatches(::nlohmann::json(true)).DescribeTo(&ss); EXPECT_EQ("when parsed as JSON matches json true", ss.str()); } TEST(ParseJsonMatchesTest, Explain) { ::testing::StringMatchResultListener listener; ::testing::ExplainMatchResult(ParseJsonMatches(::nlohmann::json(true)), "false", &listener); EXPECT_EQ( "where the difference is:\n" "[\n" " {\n" " \"op\": \"replace\",\n" " \"path\": \"\",\n" " \"value\": false\n" " }\n" "]", listener.str()); } TEST(ParseJsonMatchesTest, Matches) { EXPECT_THAT("{\"a\":\"b\"}", ParseJsonMatches(::nlohmann::json{{"a", "b"}})); EXPECT_THAT("{\"a\":\"b\"}", ::testing::Not(ParseJsonMatches(::nlohmann::json{{"a", "c"}}))); EXPECT_THAT("invalid", ::testing::Not(ParseJsonMatches(::nlohmann::json{{"a", "c"}}))); EXPECT_THAT("{\"a\":\"b\"}", ParseJsonMatches(::testing::Not(::nlohmann::json{{"a", "c"}}))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/parse_json_matches.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/parse_json_matches_test.cc
4f887a6430414cd6088e1743555015b10f116d50
f3e68bf1-a58d-4abf-a35d-59676e9bf3a6
cpp
abseil/abseil-cpp
sample_recorder
absl/profiling/internal/sample_recorder.h
absl/profiling/internal/sample_recorder_test.cc
#ifndef ABSL_PROFILING_INTERNAL_SAMPLE_RECORDER_H_ #define ABSL_PROFILING_INTERNAL_SAMPLE_RECORDER_H_ #include <atomic> #include <cstddef> #include <functional> #include "absl/base/config.h" #include "absl/base/thread_annotations.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace profiling_internal { template <typename T> struct Sample { absl::Mutex init_mu; T* next = nullptr; T* dead ABSL_GUARDED_BY(init_mu) = nullptr; int64_t weight; }; template <typename T> class SampleRecorder { public: SampleRecorder(); ~SampleRecorder(); template <typename... Targs> T* Register(Targs&&... args); void Unregister(T* sample); using DisposeCallback = void (*)(const T&); DisposeCallback SetDisposeCallback(DisposeCallback f); int64_t Iterate(const std::function<void(const T& stack)>& f); size_t GetMaxSamples() const; void SetMaxSamples(size_t max); private: void PushNew(T* sample); void PushDead(T* sample); template <typename... Targs> T* PopDead(Targs... args); std::atomic<size_t> dropped_samples_; std::atomic<size_t> size_estimate_; std::atomic<size_t> max_samples_{1 << 20}; std::atomic<T*> all_; T graveyard_; std::atomic<DisposeCallback> dispose_; }; template <typename T> typename SampleRecorder<T>::DisposeCallback SampleRecorder<T>::SetDisposeCallback(DisposeCallback f) { return dispose_.exchange(f, std::memory_order_relaxed); } template <typename T> SampleRecorder<T>::SampleRecorder() : dropped_samples_(0), size_estimate_(0), all_(nullptr), dispose_(nullptr) { absl::MutexLock l(&graveyard_.init_mu); graveyard_.dead = &graveyard_; } template <typename T> SampleRecorder<T>::~SampleRecorder() { T* s = all_.load(std::memory_order_acquire); while (s != nullptr) { T* next = s->next; delete s; s = next; } } template <typename T> void SampleRecorder<T>::PushNew(T* sample) { sample->next = all_.load(std::memory_order_relaxed); while (!all_.compare_exchange_weak(sample->next, sample, std::memory_order_release, std::memory_order_relaxed)) { } } template <typename T> void SampleRecorder<T>::PushDead(T* sample) { if (auto* dispose = dispose_.load(std::memory_order_relaxed)) { dispose(*sample); } absl::MutexLock graveyard_lock(&graveyard_.init_mu); absl::MutexLock sample_lock(&sample->init_mu); sample->dead = graveyard_.dead; graveyard_.dead = sample; } template <typename T> template <typename... Targs> T* SampleRecorder<T>::PopDead(Targs... args) { absl::MutexLock graveyard_lock(&graveyard_.init_mu); T* sample = graveyard_.dead; if (sample == &graveyard_) return nullptr; absl::MutexLock sample_lock(&sample->init_mu); graveyard_.dead = sample->dead; sample->dead = nullptr; sample->PrepareForSampling(std::forward<Targs>(args)...); return sample; } template <typename T> template <typename... Targs> T* SampleRecorder<T>::Register(Targs&&... args) { size_t size = size_estimate_.fetch_add(1, std::memory_order_relaxed); if (size > max_samples_.load(std::memory_order_relaxed)) { size_estimate_.fetch_sub(1, std::memory_order_relaxed); dropped_samples_.fetch_add(1, std::memory_order_relaxed); return nullptr; } T* sample = PopDead(args...); if (sample == nullptr) { sample = new T(); { absl::MutexLock sample_lock(&sample->init_mu); sample->init_mu.ForgetDeadlockInfo(); sample->PrepareForSampling(std::forward<Targs>(args)...); } PushNew(sample); } return sample; } template <typename T> void SampleRecorder<T>::Unregister(T* sample) { PushDead(sample); size_estimate_.fetch_sub(1, std::memory_order_relaxed); } template <typename T> int64_t SampleRecorder<T>::Iterate( const std::function<void(const T& stack)>& f) { T* s = all_.load(std::memory_order_acquire); while (s != nullptr) { absl::MutexLock l(&s->init_mu); if (s->dead == nullptr) { f(*s); } s = s->next; } return dropped_samples_.load(std::memory_order_relaxed); } template <typename T> void SampleRecorder<T>::SetMaxSamples(size_t max) { max_samples_.store(max, std::memory_order_release); } template <typename T> size_t SampleRecorder<T>::GetMaxSamples() const { return max_samples_.load(std::memory_order_acquire); } } ABSL_NAMESPACE_END } #endif
#include "absl/profiling/internal/sample_recorder.h" #include <atomic> #include <random> #include <vector> #include "gmock/gmock.h" #include "absl/base/thread_annotations.h" #include "absl/synchronization/internal/thread_pool.h" #include "absl/synchronization/mutex.h" #include "absl/synchronization/notification.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace profiling_internal { namespace { using ::absl::synchronization_internal::ThreadPool; using ::testing::IsEmpty; using ::testing::UnorderedElementsAre; struct Info : public Sample<Info> { public: void PrepareForSampling(int64_t w) { weight = w; } std::atomic<size_t> size; absl::Time create_time; }; std::vector<size_t> GetSizes(SampleRecorder<Info>* s) { std::vector<size_t> res; s->Iterate([&](const Info& info) { res.push_back(info.size.load(std::memory_order_acquire)); }); return res; } std::vector<int64_t> GetWeights(SampleRecorder<Info>* s) { std::vector<int64_t> res; s->Iterate([&](const Info& info) { res.push_back(info.weight); }); return res; } Info* Register(SampleRecorder<Info>* s, int64_t weight, size_t size) { auto* info = s->Register(weight); assert(info != nullptr); info->size.store(size); return info; } TEST(SampleRecorderTest, Registration) { SampleRecorder<Info> sampler; auto* info1 = Register(&sampler, 31, 1); EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1)); EXPECT_THAT(GetWeights(&sampler), UnorderedElementsAre(31)); auto* info2 = Register(&sampler, 32, 2); EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(1, 2)); info1->size.store(3); EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(3, 2)); EXPECT_THAT(GetWeights(&sampler), UnorderedElementsAre(31, 32)); sampler.Unregister(info1); sampler.Unregister(info2); } TEST(SampleRecorderTest, Unregistration) { SampleRecorder<Info> sampler; std::vector<Info*> infos; for (size_t i = 0; i < 3; ++i) { infos.push_back(Register(&sampler, 33 + i, i)); } EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 1, 2)); EXPECT_THAT(GetWeights(&sampler), UnorderedElementsAre(33, 34, 35)); sampler.Unregister(infos[1]); EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2)); EXPECT_THAT(GetWeights(&sampler), UnorderedElementsAre(33, 35)); infos.push_back(Register(&sampler, 36, 3)); infos.push_back(Register(&sampler, 37, 4)); EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 3, 4)); EXPECT_THAT(GetWeights(&sampler), UnorderedElementsAre(33, 35, 36, 37)); sampler.Unregister(infos[3]); EXPECT_THAT(GetSizes(&sampler), UnorderedElementsAre(0, 2, 4)); EXPECT_THAT(GetWeights(&sampler), UnorderedElementsAre(33, 35, 37)); sampler.Unregister(infos[0]); sampler.Unregister(infos[2]); sampler.Unregister(infos[4]); EXPECT_THAT(GetSizes(&sampler), IsEmpty()); } TEST(SampleRecorderTest, MultiThreaded) { SampleRecorder<Info> sampler; Notification stop; ThreadPool pool(10); for (int i = 0; i < 10; ++i) { pool.Schedule([&sampler, &stop, i]() { std::random_device rd; std::mt19937 gen(rd()); std::vector<Info*> infoz; while (!stop.HasBeenNotified()) { if (infoz.empty()) { infoz.push_back(sampler.Register(i)); } switch (std::uniform_int_distribution<>(0, 2)(gen)) { case 0: { infoz.push_back(sampler.Register(i)); break; } case 1: { size_t p = std::uniform_int_distribution<>(0, infoz.size() - 1)(gen); Info* info = infoz[p]; infoz[p] = infoz.back(); infoz.pop_back(); EXPECT_EQ(info->weight, i); sampler.Unregister(info); break; } case 2: { absl::Duration oldest = absl::ZeroDuration(); sampler.Iterate([&](const Info& info) { oldest = std::max(oldest, absl::Now() - info.create_time); }); ASSERT_GE(oldest, absl::ZeroDuration()); break; } } } }); } absl::SleepFor(absl::Seconds(3)); stop.Notify(); } TEST(SampleRecorderTest, Callback) { SampleRecorder<Info> sampler; auto* info1 = Register(&sampler, 39, 1); auto* info2 = Register(&sampler, 40, 2); static const Info* expected; auto callback = [](const Info& info) { EXPECT_EQ(&info, expected); }; EXPECT_EQ(sampler.SetDisposeCallback(callback), nullptr); expected = info1; sampler.Unregister(info1); EXPECT_EQ(callback, sampler.SetDisposeCallback(nullptr)); expected = nullptr; sampler.Unregister(info2); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/profiling/internal/sample_recorder.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/profiling/internal/sample_recorder_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
2349c720-6615-482b-b85d-847d3c18aa94
cpp
google/cel-cpp
set_util
eval/public/set_util.cc
eval/public/set_util_test.cc
#include "eval/public/set_util.h" #include <algorithm> #include <vector> namespace google::api::expr::runtime { namespace { template <typename T> int ComparisonImpl(T lhs, T rhs) { if (lhs < rhs) { return -1; } else if (lhs > rhs) { return 1; } else { return 0; } } template <> int ComparisonImpl(const CelError* lhs, const CelError* rhs) { if (*lhs == *rhs) { return 0; } return lhs < rhs ? -1 : 1; } template <> int ComparisonImpl(CelValue::MessageWrapper lhs_wrapper, CelValue::MessageWrapper rhs_wrapper) { auto* lhs = lhs_wrapper.message_ptr(); auto* rhs = rhs_wrapper.message_ptr(); if (lhs < rhs) { return -1; } else if (lhs > rhs) { return 1; } else { return 0; } } template <> int ComparisonImpl(const CelList* lhs, const CelList* rhs) { int size_comparison = ComparisonImpl(lhs->size(), rhs->size()); if (size_comparison != 0) { return size_comparison; } google::protobuf::Arena arena; for (int i = 0; i < lhs->size(); i++) { CelValue lhs_i = lhs->Get(&arena, i); CelValue rhs_i = rhs->Get(&arena, i); int value_comparison = CelValueCompare(lhs_i, rhs_i); if (value_comparison != 0) { return value_comparison; } } return 0; } template <> int ComparisonImpl(const CelMap* lhs, const CelMap* rhs) { int size_comparison = ComparisonImpl(lhs->size(), rhs->size()); if (size_comparison != 0) { return size_comparison; } google::protobuf::Arena arena; std::vector<CelValue> lhs_keys; std::vector<CelValue> rhs_keys; lhs_keys.reserve(lhs->size()); rhs_keys.reserve(lhs->size()); const CelList* lhs_key_view = lhs->ListKeys(&arena).value(); const CelList* rhs_key_view = rhs->ListKeys(&arena).value(); for (int i = 0; i < lhs->size(); i++) { lhs_keys.push_back(lhs_key_view->Get(&arena, i)); rhs_keys.push_back(rhs_key_view->Get(&arena, i)); } std::sort(lhs_keys.begin(), lhs_keys.end(), &CelValueLessThan); std::sort(rhs_keys.begin(), rhs_keys.end(), &CelValueLessThan); for (size_t i = 0; i < lhs_keys.size(); i++) { auto lhs_key_i = lhs_keys[i]; auto rhs_key_i = rhs_keys[i]; int key_comparison = CelValueCompare(lhs_key_i, rhs_key_i); if (key_comparison != 0) { return key_comparison; } auto lhs_value_i = lhs->Get(&arena, lhs_key_i).value(); auto rhs_value_i = rhs->Get(&arena, rhs_key_i).value(); int value_comparison = CelValueCompare(lhs_value_i, rhs_value_i); if (value_comparison != 0) { return value_comparison; } } return 0; } struct ComparisonVisitor { explicit ComparisonVisitor(CelValue rhs) : rhs(rhs) {} template <typename T> int operator()(T lhs_value) { T rhs_value; if (!rhs.GetValue(&rhs_value)) { return ComparisonImpl(CelValue::Type(CelValue::IndexOf<T>::value), rhs.type()); } return ComparisonImpl(lhs_value, rhs_value); } CelValue rhs; }; } int CelValueCompare(CelValue lhs, CelValue rhs) { return lhs.InternalVisit<int>(ComparisonVisitor(rhs)); } bool CelValueLessThan(CelValue lhs, CelValue rhs) { return lhs.InternalVisit<int>(ComparisonVisitor(rhs)) < 0; } bool CelValueEqual(CelValue lhs, CelValue rhs) { return lhs.InternalVisit<int>(ComparisonVisitor(rhs)) == 0; } bool CelValueGreaterThan(CelValue lhs, CelValue rhs) { return lhs.InternalVisit<int>(ComparisonVisitor(rhs)) > 0; } }
#include "eval/public/set_util.h" #include <cstddef> #include <set> #include <string> #include <tuple> #include <utility> #include <vector> #include "google/protobuf/empty.pb.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/arena.h" #include "google/protobuf/message.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "eval/public/unknown_set.h" namespace google { namespace api { namespace expr { namespace runtime { namespace { using google::protobuf::Arena; using protobuf::Empty; using protobuf::ListValue; using protobuf::Struct; constexpr char kExampleText[] = "abc"; constexpr char kExampleText2[] = "abd"; std::string* ExampleStr() { static std::string* example = new std::string(kExampleText); return example; } std::string* ExampleStr2() { static std::string* example = new std::string(kExampleText2); return example; } std::vector<CelValue> TypeExamples(Arena* arena) { Empty* empty = Arena::Create<Empty>(arena); Struct* proto_map = Arena::Create<Struct>(arena); ListValue* proto_list = Arena::Create<ListValue>(arena); UnknownSet* unknown_set = Arena::Create<UnknownSet>(arena); return {CelValue::CreateBool(false), CelValue::CreateInt64(0), CelValue::CreateUint64(0), CelValue::CreateDouble(0.0), CelValue::CreateStringView(kExampleText), CelValue::CreateBytes(ExampleStr()), CelProtoWrapper::CreateMessage(empty, arena), CelValue::CreateDuration(absl::ZeroDuration()), CelValue::CreateTimestamp(absl::Now()), CelProtoWrapper::CreateMessage(proto_list, arena), CelProtoWrapper::CreateMessage(proto_map, arena), CelValue::CreateUnknownSet(unknown_set), CreateErrorValue(arena, "test", absl::StatusCode::kInternal)}; } class TypeOrderingTest : public testing::TestWithParam<std::tuple<int, int>> { public: TypeOrderingTest() { i_ = std::get<0>(GetParam()); j_ = std::get<1>(GetParam()); } protected: int i_; int j_; Arena arena_; }; TEST_P(TypeOrderingTest, TypeLessThan) { auto examples = TypeExamples(&arena_); CelValue lhs = examples[i_]; CelValue rhs = examples[j_]; EXPECT_EQ(CelValueLessThan(lhs, rhs), i_ < j_); EXPECT_EQ(CelValueEqual(lhs, rhs), i_ == j_); } std::string TypeOrderingTestName( testing::TestParamInfo<std::tuple<int, int>> param) { int i = std::get<0>(param.param); int j = std::get<1>(param.param); return absl::StrCat(CelValue::TypeName(CelValue::Type(i)), "_", CelValue::TypeName(CelValue::Type(j))); } INSTANTIATE_TEST_SUITE_P(TypePairs, TypeOrderingTest, testing::Combine(testing::Range(0, 13), testing::Range(0, 13)), &TypeOrderingTestName); TEST(CelValueLessThanComparator, StdSetSupport) { Arena arena; auto examples = TypeExamples(&arena); std::set<CelValue, CelValueLessThanComparator> value_set(&CelValueLessThan); for (CelValue value : examples) { auto insert = value_set.insert(value); bool was_inserted = insert.second; EXPECT_TRUE(was_inserted) << absl::StrCat("Insertion failed ", CelValue::TypeName(value.type())); } for (CelValue value : examples) { auto insert = value_set.insert(value); bool was_inserted = insert.second; EXPECT_FALSE(was_inserted) << absl::StrCat( "Re-insertion succeeded ", CelValue::TypeName(value.type())); } } enum class ExpectedCmp { kEq, kLt, kGt }; struct PrimitiveCmpTestCase { CelValue lhs; CelValue rhs; ExpectedCmp expected; }; class PrimitiveCmpTest : public testing::TestWithParam<PrimitiveCmpTestCase> { public: PrimitiveCmpTest() { lhs_ = GetParam().lhs; rhs_ = GetParam().rhs; expected_ = GetParam().expected; } protected: CelValue lhs_; CelValue rhs_; ExpectedCmp expected_; }; TEST_P(PrimitiveCmpTest, Basic) { switch (expected_) { case ExpectedCmp::kLt: EXPECT_TRUE(CelValueLessThan(lhs_, rhs_)); break; case ExpectedCmp::kGt: EXPECT_TRUE(CelValueGreaterThan(lhs_, rhs_)); break; case ExpectedCmp::kEq: EXPECT_TRUE(CelValueEqual(lhs_, rhs_)); break; } } std::string PrimitiveCmpTestName( testing::TestParamInfo<PrimitiveCmpTestCase> info) { absl::string_view cmp_name; switch (info.param.expected) { case ExpectedCmp::kEq: cmp_name = "Eq"; break; case ExpectedCmp::kLt: cmp_name = "Lt"; break; case ExpectedCmp::kGt: cmp_name = "Gt"; break; } return absl::StrCat(CelValue::TypeName(info.param.lhs.type()), "_", cmp_name); } INSTANTIATE_TEST_SUITE_P( Pairs, PrimitiveCmpTest, testing::ValuesIn(std::vector<PrimitiveCmpTestCase>{ {CelValue::CreateStringView(kExampleText), CelValue::CreateStringView(kExampleText), ExpectedCmp::kEq}, {CelValue::CreateStringView(kExampleText), CelValue::CreateStringView(kExampleText2), ExpectedCmp::kLt}, {CelValue::CreateStringView(kExampleText2), CelValue::CreateStringView(kExampleText), ExpectedCmp::kGt}, {CelValue::CreateBytes(ExampleStr()), CelValue::CreateBytes(ExampleStr()), ExpectedCmp::kEq}, {CelValue::CreateBytes(ExampleStr()), CelValue::CreateBytes(ExampleStr2()), ExpectedCmp::kLt}, {CelValue::CreateBytes(ExampleStr2()), CelValue::CreateBytes(ExampleStr()), ExpectedCmp::kGt}, {CelValue::CreateBool(false), CelValue::CreateBool(false), ExpectedCmp::kEq}, {CelValue::CreateBool(false), CelValue::CreateBool(true), ExpectedCmp::kLt}, {CelValue::CreateBool(true), CelValue::CreateBool(false), ExpectedCmp::kGt}, {CelValue::CreateInt64(1), CelValue::CreateInt64(1), ExpectedCmp::kEq}, {CelValue::CreateInt64(1), CelValue::CreateInt64(2), ExpectedCmp::kLt}, {CelValue::CreateInt64(2), CelValue::CreateInt64(1), ExpectedCmp::kGt}, {CelValue::CreateUint64(1), CelValue::CreateUint64(1), ExpectedCmp::kEq}, {CelValue::CreateUint64(1), CelValue::CreateUint64(2), ExpectedCmp::kLt}, {CelValue::CreateUint64(2), CelValue::CreateUint64(1), ExpectedCmp::kGt}, {CelValue::CreateDuration(absl::Minutes(1)), CelValue::CreateDuration(absl::Minutes(1)), ExpectedCmp::kEq}, {CelValue::CreateDuration(absl::Minutes(1)), CelValue::CreateDuration(absl::Minutes(2)), ExpectedCmp::kLt}, {CelValue::CreateDuration(absl::Minutes(2)), CelValue::CreateDuration(absl::Minutes(1)), ExpectedCmp::kGt}, {CelValue::CreateTimestamp(absl::FromUnixSeconds(1)), CelValue::CreateTimestamp(absl::FromUnixSeconds(1)), ExpectedCmp::kEq}, {CelValue::CreateTimestamp(absl::FromUnixSeconds(1)), CelValue::CreateTimestamp(absl::FromUnixSeconds(2)), ExpectedCmp::kLt}, {CelValue::CreateTimestamp(absl::FromUnixSeconds(2)), CelValue::CreateTimestamp(absl::FromUnixSeconds(1)), ExpectedCmp::kGt}}), &PrimitiveCmpTestName); TEST(CelValueLessThan, PtrCmpMessage) { Arena arena; CelValue lhs = CelProtoWrapper::CreateMessage(Arena::Create<Empty>(&arena), &arena); CelValue rhs = CelProtoWrapper::CreateMessage(Arena::Create<Empty>(&arena), &arena); if (lhs.MessageOrDie() > rhs.MessageOrDie()) { std::swap(lhs, rhs); } EXPECT_TRUE(CelValueLessThan(lhs, rhs)); EXPECT_FALSE(CelValueLessThan(rhs, lhs)); EXPECT_FALSE(CelValueLessThan(lhs, lhs)); } TEST(CelValueLessThan, PtrCmpUnknownSet) { Arena arena; CelValue lhs = CelValue::CreateUnknownSet(Arena::Create<UnknownSet>(&arena)); CelValue rhs = CelValue::CreateUnknownSet(Arena::Create<UnknownSet>(&arena)); if (lhs.UnknownSetOrDie() > rhs.UnknownSetOrDie()) { std::swap(lhs, rhs); } EXPECT_TRUE(CelValueLessThan(lhs, rhs)); EXPECT_FALSE(CelValueLessThan(rhs, lhs)); EXPECT_FALSE(CelValueLessThan(lhs, lhs)); } TEST(CelValueLessThan, PtrCmpError) { Arena arena; CelValue lhs = CreateErrorValue(&arena, "test1", absl::StatusCode::kInternal); CelValue rhs = CreateErrorValue(&arena, "test2", absl::StatusCode::kInternal); if (lhs.ErrorOrDie() > rhs.ErrorOrDie()) { std::swap(lhs, rhs); } EXPECT_TRUE(CelValueLessThan(lhs, rhs)); EXPECT_FALSE(CelValueLessThan(rhs, lhs)); EXPECT_FALSE(CelValueLessThan(lhs, lhs)); } TEST(CelValueLessThan, CelListSameSize) { ContainerBackedListImpl cel_list_1(std::vector<CelValue>{ CelValue::CreateInt64(1), CelValue::CreateInt64(2)}); ContainerBackedListImpl cel_list_2(std::vector<CelValue>{ CelValue::CreateInt64(1), CelValue::CreateInt64(3)}); EXPECT_TRUE(CelValueLessThan(CelValue::CreateList(&cel_list_1), CelValue::CreateList(&cel_list_2))); } TEST(CelValueLessThan, CelListDifferentSizes) { ContainerBackedListImpl cel_list_1( std::vector<CelValue>{CelValue::CreateInt64(2)}); ContainerBackedListImpl cel_list_2(std::vector<CelValue>{ CelValue::CreateInt64(1), CelValue::CreateInt64(3)}); EXPECT_TRUE(CelValueLessThan(CelValue::CreateList(&cel_list_1), CelValue::CreateList(&cel_list_2))); } TEST(CelValueLessThan, CelListEqual) { ContainerBackedListImpl cel_list_1(std::vector<CelValue>{ CelValue::CreateInt64(1), CelValue::CreateInt64(2)}); ContainerBackedListImpl cel_list_2(std::vector<CelValue>{ CelValue::CreateInt64(1), CelValue::CreateInt64(2)}); EXPECT_FALSE(CelValueLessThan(CelValue::CreateList(&cel_list_1), CelValue::CreateList(&cel_list_2))); EXPECT_TRUE(CelValueEqual(CelValue::CreateList(&cel_list_2), CelValue::CreateList(&cel_list_1))); } TEST(CelValueLessThan, CelListSupportProtoListCompatible) { Arena arena; ListValue list_value; list_value.add_values()->set_bool_value(true); list_value.add_values()->set_number_value(1.0); list_value.add_values()->set_string_value("abc"); CelValue proto_list = CelProtoWrapper::CreateMessage(&list_value, &arena); ASSERT_TRUE(proto_list.IsList()); std::vector<CelValue> list_values{CelValue::CreateBool(true), CelValue::CreateDouble(1.0), CelValue::CreateStringView("abd")}; ContainerBackedListImpl list_backing(list_values); CelValue cel_list = CelValue::CreateList(&list_backing); EXPECT_TRUE(CelValueLessThan(proto_list, cel_list)); } TEST(CelValueLessThan, CelMapSameSize) { std::vector<std::pair<CelValue, CelValue>> values{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}, {CelValue::CreateInt64(3), CelValue::CreateInt64(6)}}; auto cel_map_backing_1 = CreateContainerBackedMap(absl::MakeSpan(values)).value(); std::vector<std::pair<CelValue, CelValue>> values2{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}, {CelValue::CreateInt64(4), CelValue::CreateInt64(6)}}; auto cel_map_backing_2 = CreateContainerBackedMap(absl::MakeSpan(values2)).value(); std::vector<std::pair<CelValue, CelValue>> values3{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}, {CelValue::CreateInt64(3), CelValue::CreateInt64(8)}}; auto cel_map_backing_3 = CreateContainerBackedMap(absl::MakeSpan(values3)).value(); CelValue map1 = CelValue::CreateMap(cel_map_backing_1.get()); CelValue map2 = CelValue::CreateMap(cel_map_backing_2.get()); CelValue map3 = CelValue::CreateMap(cel_map_backing_3.get()); EXPECT_TRUE(CelValueLessThan(map1, map2)); EXPECT_TRUE(CelValueLessThan(map1, map3)); EXPECT_TRUE(CelValueLessThan(map3, map2)); } TEST(CelValueLessThan, CelMapDifferentSizes) { std::vector<std::pair<CelValue, CelValue>> values{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}, {CelValue::CreateInt64(2), CelValue::CreateInt64(4)}}; auto cel_map_1 = CreateContainerBackedMap(absl::MakeSpan(values)).value(); std::vector<std::pair<CelValue, CelValue>> values2{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}, {CelValue::CreateInt64(2), CelValue::CreateInt64(4)}, {CelValue::CreateInt64(3), CelValue::CreateInt64(6)}}; auto cel_map_2 = CreateContainerBackedMap(absl::MakeSpan(values2)).value(); EXPECT_TRUE(CelValueLessThan(CelValue::CreateMap(cel_map_1.get()), CelValue::CreateMap(cel_map_2.get()))); } TEST(CelValueLessThan, CelMapEqual) { std::vector<std::pair<CelValue, CelValue>> values{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}, {CelValue::CreateInt64(2), CelValue::CreateInt64(4)}, {CelValue::CreateInt64(3), CelValue::CreateInt64(6)}}; auto cel_map_1 = CreateContainerBackedMap(absl::MakeSpan(values)).value(); std::vector<std::pair<CelValue, CelValue>> values2{ {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}, {CelValue::CreateInt64(2), CelValue::CreateInt64(4)}, {CelValue::CreateInt64(3), CelValue::CreateInt64(6)}}; auto cel_map_2 = CreateContainerBackedMap(absl::MakeSpan(values2)).value(); EXPECT_FALSE(CelValueLessThan(CelValue::CreateMap(cel_map_1.get()), CelValue::CreateMap(cel_map_2.get()))); EXPECT_TRUE(CelValueEqual(CelValue::CreateMap(cel_map_2.get()), CelValue::CreateMap(cel_map_1.get()))); } TEST(CelValueLessThan, CelMapSupportProtoMapCompatible) { Arena arena; const std::vector<std::string> kFields = {"field1", "field2", "field3"}; Struct value_struct; auto& value1 = (*value_struct.mutable_fields())[kFields[0]]; value1.set_bool_value(true); auto& value2 = (*value_struct.mutable_fields())[kFields[1]]; value2.set_number_value(1.0); auto& value3 = (*value_struct.mutable_fields())[kFields[2]]; value3.set_string_value("test"); CelValue proto_struct = CelProtoWrapper::CreateMessage(&value_struct, &arena); ASSERT_TRUE(proto_struct.IsMap()); std::vector<std::pair<CelValue, CelValue>> values{ {CelValue::CreateStringView(kFields[2]), CelValue::CreateStringView("test")}, {CelValue::CreateStringView(kFields[1]), CelValue::CreateDouble(1.0)}, {CelValue::CreateStringView(kFields[0]), CelValue::CreateBool(true)}}; auto backing_map = CreateContainerBackedMap(absl::MakeSpan(values)).value(); CelValue cel_map = CelValue::CreateMap(backing_map.get()); EXPECT_TRUE(!CelValueLessThan(cel_map, proto_struct) && !CelValueGreaterThan(cel_map, proto_struct)); } TEST(CelValueLessThan, NestedMap) { Arena arena; ListValue list_value; list_value.add_values()->set_bool_value(true); list_value.add_values()->set_number_value(1.0); list_value.add_values()->set_string_value("test"); std::vector<CelValue> list_values{CelValue::CreateBool(true), CelValue::CreateDouble(1.0), CelValue::CreateStringView("test")}; ContainerBackedListImpl list_backing(list_values); CelValue cel_list = CelValue::CreateList(&list_backing); Struct value_struct; *(value_struct.mutable_fields()->operator[]("field").mutable_list_value()) = list_value; std::vector<std::pair<CelValue, CelValue>> values{ {CelValue::CreateStringView("field"), cel_list}}; auto backing_map = CreateContainerBackedMap(absl::MakeSpan(values)).value(); CelValue cel_map = CelValue::CreateMap(backing_map.get()); CelValue proto_map = CelProtoWrapper::CreateMessage(&value_struct, &arena); EXPECT_TRUE(!CelValueLessThan(cel_map, proto_map) && !CelValueLessThan(proto_map, cel_map)); } } } } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/set_util.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/set_util_test.cc
4552db5798fb0853b131b783d8875794334fae7f
10bb58ac-bb24-4434-b6f2-4ba070e2f308
cpp
tensorflow/tensorflow
reduce_scatter_reassociate
third_party/xla/xla/service/reduce_scatter_reassociate.cc
third_party/xla/xla/service/reduce_scatter_reassociate_test.cc
#include "xla/service/reduce_scatter_reassociate.h" #include <optional> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_query.h" #include "xla/service/all_reduce_key.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/hlo_domain_map.h" #include "tsl/platform/errors.h" namespace xla { namespace { bool AreCompatible(const HloReduceScatterInstruction *rs0, const HloReduceScatterInstruction *rs1, ReductionKind op_kind) { std::optional<AllReduceKey> key0 = GetAllReduceKey(rs0); std::optional<AllReduceKey> key1 = GetAllReduceKey(rs1); auto kind0 = MatchReductionComputation(rs0->to_apply()); auto dims_match = rs0->scatter_dimension() == rs1->scatter_dimension(); return key0 && key1 && kind0 && *key0 == *key1 && kind0 == op_kind && dims_match; } } absl::StatusOr<bool> ReduceScatterReassociate::Run( HloModule *module, const absl::flat_hash_set<absl::string_view> &execution_threads) { if (hlo_query::ContainsLayoutConstrainedCollective( *module, HloOpcode::kReduceScatter)) { VLOG(1) << "Skip ReduceScatterReassociate because the module contains reduce-" "scatter with constrained layouts"; return false; } int64_t next_channel_id = hlo_query::NextChannelId(*module); bool changed = false; for (auto computation : module->computations(execution_threads)) { for (HloInstruction *inst : computation->MakeInstructionPostOrder()) { std::optional<ReductionKind> kind = MatchReductionInstruction(inst); if (!kind || inst->operand(0)->opcode() != HloOpcode::kReduceScatter || inst->operand(1)->opcode() != HloOpcode::kReduceScatter || !inst->shape().IsArray()) { continue; } auto *rs0 = Cast<HloReduceScatterInstruction>(inst->mutable_operand(0)); auto *rs1 = Cast<HloReduceScatterInstruction>(inst->mutable_operand(1)); if (!AreCompatible(rs0, rs1, *kind)) { VLOG(2) << "Reduce-Scatter operations are not compatible, skipping"; continue; } if (rs0->user_count() != 1 || rs1->user_count() != 1) { VLOG(2) << "Reduce-Scatter operations have > 1 users"; continue; } HloInstruction *new_op = computation->AddInstruction(inst->CloneWithNewOperands( rs0->mutable_operand(0)->shape(), {rs0->mutable_operand(0), rs1->mutable_operand(0)})); HloInstruction *new_rs = computation->AddInstruction( rs0->CloneWithNewOperands(inst->shape(), {new_op})); if (new_rs->channel_id()) { new_rs->set_channel_id(next_channel_id++); } TF_RETURN_IF_ERROR(inst->ReplaceAllUsesWith(new_rs)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(inst)); TF_RETURN_IF_ERROR(computation->RemoveInstruction(rs0)); if (rs0 != rs1) { TF_RETURN_IF_ERROR(computation->RemoveInstruction(rs1)); } changed = true; } } return changed; } }
#include "xla/service/reduce_scatter_reassociate.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { namespace m = xla::testing::opcode_matchers; class ReduceScatterReassociateTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, bool expect_change) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module)); auto changed = ReduceScatterReassociate().Run(module.get()); if (!changed.ok()) { return changed.status(); } EXPECT_EQ(changed.value(), expect_change); return absl::StatusOr<std::unique_ptr<HloModule>>(std::move(module)); } size_t ReduceScatterCount(std::unique_ptr<HloModule>& module) { return absl::c_count_if(module->entry_computation()->instructions(), HloPredicateIsOp<HloOpcode::kReduceScatter>); } }; TEST_F(ReduceScatterReassociateTest, Simple) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), m::ReduceScatter(m::Add(m::Parameter(0), m::Parameter(1)))); EXPECT_EQ(ReduceScatterCount(module), 1); } TEST_F(ReduceScatterReassociateTest, SimpleWithConstrainLayout) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, constrain_layout=true, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, constrain_layout=true, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, SimpleChain) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum rs2 = f32[4] reduce-scatter(p2), dimensions={0}, to_apply=sum rs3 = f32[4] reduce-scatter(p3), dimensions={0}, to_apply=sum add0 = f32[4] add(rs0, rs1) add1 = f32[4] add(add0, rs2) ROOT add2 = f32[4] add(add1, rs3) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::ReduceScatter(m::Add( m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Parameter(2)), m::Parameter(3)))); EXPECT_EQ(ReduceScatterCount(module), 1); } TEST_F(ReduceScatterReassociateTest, SimpleTree) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) p2 = f32[8] parameter(2) p3 = f32[8] parameter(3) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum rs2 = f32[4] reduce-scatter(p2), dimensions={0}, to_apply=sum rs3 = f32[4] reduce-scatter(p3), dimensions={0}, to_apply=sum add0 = f32[4] add(rs0, rs1) add1 = f32[4] add(rs2, rs3) ROOT add2 = f32[4] add(add0, add1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); EXPECT_THAT( module->entry_computation()->root_instruction(), m::ReduceScatter(m::Add(m::Add(m::Parameter(0), m::Parameter(1)), m::Add(m::Parameter(2), m::Parameter(3))))); EXPECT_EQ(ReduceScatterCount(module), 1); } TEST_F(ReduceScatterReassociateTest, MismatchOp0) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=max ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchOp1) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } max { a = f32[] parameter(0) b = f32[] parameter(1) ROOT r = f32[] maximum(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=max rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=max ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchDimension) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8,8] parameter(0) p1 = f32[8,8] parameter(1) rs0 = f32[8,8] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[8,8] reduce-scatter(p1), dimensions={1}, to_apply=sum ROOT add = f32[8,8] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchReplicaGroups) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, replica_groups={{0}}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, replica_groups={}, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchHasChannelId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, channel_id=3, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, MismatchUseGlobalDeviceId) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, replica_groups={{0,1}}, channel_id=3, use_global_device_ids=true, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, replica_groups={{0,1}}, channel_id=4, to_apply=sum ROOT add = f32[4] add(rs0, rs1) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, NotSingleUser) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum rs1 = f32[4] reduce-scatter(p1), dimensions={0}, to_apply=sum add = f32[4] add(rs0, rs1) ROOT t = (f32[4], f32[4]) tuple(rs0, add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, false)); } TEST_F(ReduceScatterReassociateTest, DoubleUse) { absl::string_view hlo_string = R"( HloModule m sum { a = f32[] parameter(0) b = f32[] parameter(1) ROOT add.2 = f32[] add(a, b) } ENTRY main { p0 = f32[8] parameter(0) p1 = f32[8] parameter(1) rs0 = f32[4] reduce-scatter(p0), dimensions={0}, to_apply=sum add = f32[4] add(rs0, rs0) ROOT c = f32[4] copy(add) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, true)); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_reassociate.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/reduce_scatter_reassociate_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1c3ea12b-9590-4f05-917c-0adaca0d8b2d
cpp
google/quiche
recording_http2_visitor
quiche/http2/adapter/recording_http2_visitor.cc
quiche/http2/adapter/recording_http2_visitor_test.cc
#include "quiche/http2/adapter/recording_http2_visitor.h" #include "absl/strings/str_format.h" #include "quiche/http2/adapter/http2_protocol.h" #include "quiche/http2/adapter/http2_util.h" namespace http2 { namespace adapter { namespace test { int64_t RecordingHttp2Visitor::OnReadyToSend(absl::string_view serialized) { events_.push_back(absl::StrFormat("OnReadyToSend %d", serialized.size())); return serialized.size(); } Http2VisitorInterface::DataFrameHeaderInfo RecordingHttp2Visitor::OnReadyToSendDataForStream(Http2StreamId stream_id, size_t max_length) { events_.push_back(absl::StrFormat("OnReadyToSendDataForStream %d %d", stream_id, max_length)); return {70000, true, true}; } bool RecordingHttp2Visitor::SendDataFrame(Http2StreamId stream_id, absl::string_view , size_t payload_bytes) { events_.push_back( absl::StrFormat("SendDataFrame %d %d", stream_id, payload_bytes)); return true; } void RecordingHttp2Visitor::OnConnectionError(ConnectionError error) { events_.push_back( absl::StrFormat("OnConnectionError %s", ConnectionErrorToString(error))); } bool RecordingHttp2Visitor::OnFrameHeader(Http2StreamId stream_id, size_t length, uint8_t type, uint8_t flags) { events_.push_back(absl::StrFormat("OnFrameHeader %d %d %d %d", stream_id, length, type, flags)); return true; } void RecordingHttp2Visitor::OnSettingsStart() { events_.push_back("OnSettingsStart"); } void RecordingHttp2Visitor::OnSetting(Http2Setting setting) { events_.push_back(absl::StrFormat( "OnSetting %s %d", Http2SettingsIdToString(setting.id), setting.value)); } void RecordingHttp2Visitor::OnSettingsEnd() { events_.push_back("OnSettingsEnd"); } void RecordingHttp2Visitor::OnSettingsAck() { events_.push_back("OnSettingsAck"); } bool RecordingHttp2Visitor::OnBeginHeadersForStream(Http2StreamId stream_id) { events_.push_back(absl::StrFormat("OnBeginHeadersForStream %d", stream_id)); return true; } Http2VisitorInterface::OnHeaderResult RecordingHttp2Visitor::OnHeaderForStream( Http2StreamId stream_id, absl::string_view name, absl::string_view value) { events_.push_back( absl::StrFormat("OnHeaderForStream %d %s %s", stream_id, name, value)); return HEADER_OK; } bool RecordingHttp2Visitor::OnEndHeadersForStream(Http2StreamId stream_id) { events_.push_back(absl::StrFormat("OnEndHeadersForStream %d", stream_id)); return true; } bool RecordingHttp2Visitor::OnDataPaddingLength(Http2StreamId stream_id, size_t padding_length) { events_.push_back( absl::StrFormat("OnDataPaddingLength %d %d", stream_id, padding_length)); return true; } bool RecordingHttp2Visitor::OnBeginDataForStream(Http2StreamId stream_id, size_t payload_length) { events_.push_back( absl::StrFormat("OnBeginDataForStream %d %d", stream_id, payload_length)); return true; } bool RecordingHttp2Visitor::OnDataForStream(Http2StreamId stream_id, absl::string_view data) { events_.push_back(absl::StrFormat("OnDataForStream %d %s", stream_id, data)); return true; } bool RecordingHttp2Visitor::OnEndStream(Http2StreamId stream_id) { events_.push_back(absl::StrFormat("OnEndStream %d", stream_id)); return true; } void RecordingHttp2Visitor::OnRstStream(Http2StreamId stream_id, Http2ErrorCode error_code) { events_.push_back(absl::StrFormat("OnRstStream %d %s", stream_id, Http2ErrorCodeToString(error_code))); } bool RecordingHttp2Visitor::OnCloseStream(Http2StreamId stream_id, Http2ErrorCode error_code) { events_.push_back(absl::StrFormat("OnCloseStream %d %s", stream_id, Http2ErrorCodeToString(error_code))); return true; } void RecordingHttp2Visitor::OnPriorityForStream(Http2StreamId stream_id, Http2StreamId parent_stream_id, int weight, bool exclusive) { events_.push_back(absl::StrFormat("OnPriorityForStream %d %d %d %d", stream_id, parent_stream_id, weight, exclusive)); } void RecordingHttp2Visitor::OnPing(Http2PingId ping_id, bool is_ack) { events_.push_back(absl::StrFormat("OnPing %d %d", ping_id, is_ack)); } void RecordingHttp2Visitor::OnPushPromiseForStream( Http2StreamId stream_id, Http2StreamId promised_stream_id) { events_.push_back(absl::StrFormat("OnPushPromiseForStream %d %d", stream_id, promised_stream_id)); } bool RecordingHttp2Visitor::OnGoAway(Http2StreamId last_accepted_stream_id, Http2ErrorCode error_code, absl::string_view opaque_data) { events_.push_back( absl::StrFormat("OnGoAway %d %s %s", last_accepted_stream_id, Http2ErrorCodeToString(error_code), opaque_data)); return true; } void RecordingHttp2Visitor::OnWindowUpdate(Http2StreamId stream_id, int window_increment) { events_.push_back( absl::StrFormat("OnWindowUpdate %d %d", stream_id, window_increment)); } int RecordingHttp2Visitor::OnBeforeFrameSent(uint8_t frame_type, Http2StreamId stream_id, size_t length, uint8_t flags) { events_.push_back(absl::StrFormat("OnBeforeFrameSent %d %d %d %d", frame_type, stream_id, length, flags)); return 0; } int RecordingHttp2Visitor::OnFrameSent(uint8_t frame_type, Http2StreamId stream_id, size_t length, uint8_t flags, uint32_t error_code) { events_.push_back(absl::StrFormat("OnFrameSent %d %d %d %d %d", frame_type, stream_id, length, flags, error_code)); return 0; } bool RecordingHttp2Visitor::OnInvalidFrame(Http2StreamId stream_id, InvalidFrameError error) { events_.push_back(absl::StrFormat("OnInvalidFrame %d %s", stream_id, InvalidFrameErrorToString(error))); return true; } void RecordingHttp2Visitor::OnBeginMetadataForStream(Http2StreamId stream_id, size_t payload_length) { events_.push_back(absl::StrFormat("OnBeginMetadataForStream %d %d", stream_id, payload_length)); } bool RecordingHttp2Visitor::OnMetadataForStream(Http2StreamId stream_id, absl::string_view metadata) { events_.push_back( absl::StrFormat("OnMetadataForStream %d %s", stream_id, metadata)); return true; } bool RecordingHttp2Visitor::OnMetadataEndForStream(Http2StreamId stream_id) { events_.push_back(absl::StrFormat("OnMetadataEndForStream %d", stream_id)); return true; } std::pair<int64_t, bool> RecordingHttp2Visitor::PackMetadataForStream( Http2StreamId stream_id, uint8_t* , size_t ) { events_.push_back(absl::StrFormat("PackMetadataForStream %d", stream_id)); return {1, true}; } void RecordingHttp2Visitor::OnErrorDebug(absl::string_view message) { events_.push_back(absl::StrFormat("OnErrorDebug %s", message)); } } } }
#include "quiche/http2/adapter/recording_http2_visitor.h" #include <list> #include <string> #include "quiche/http2/adapter/http2_protocol.h" #include "quiche/http2/adapter/http2_visitor_interface.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace adapter { namespace test { namespace { using ::testing::IsEmpty; TEST(RecordingHttp2VisitorTest, EmptySequence) { RecordingHttp2Visitor chocolate_visitor; RecordingHttp2Visitor vanilla_visitor; EXPECT_THAT(chocolate_visitor.GetEventSequence(), IsEmpty()); EXPECT_THAT(vanilla_visitor.GetEventSequence(), IsEmpty()); EXPECT_EQ(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); chocolate_visitor.OnSettingsStart(); EXPECT_THAT(chocolate_visitor.GetEventSequence(), testing::Not(IsEmpty())); EXPECT_THAT(vanilla_visitor.GetEventSequence(), IsEmpty()); EXPECT_NE(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); chocolate_visitor.Clear(); EXPECT_THAT(chocolate_visitor.GetEventSequence(), IsEmpty()); EXPECT_THAT(vanilla_visitor.GetEventSequence(), IsEmpty()); EXPECT_EQ(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); } TEST(RecordingHttp2VisitorTest, SameEventsProduceSameSequence) { RecordingHttp2Visitor chocolate_visitor; RecordingHttp2Visitor vanilla_visitor; http2::test::Http2Random random; const Http2StreamId stream_id = random.Uniform(kMaxStreamId); const Http2StreamId another_stream_id = random.Uniform(kMaxStreamId); const size_t length = random.Rand16(); const uint8_t type = random.Rand8(); const uint8_t flags = random.Rand8(); const Http2ErrorCode error_code = static_cast<Http2ErrorCode>( random.Uniform(static_cast<int>(Http2ErrorCode::MAX_ERROR_CODE))); const Http2Setting setting = {random.Rand16(), random.Rand32()}; const absl::string_view alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-"; const std::string some_string = random.RandStringWithAlphabet(random.Rand8(), alphabet); const std::string another_string = random.RandStringWithAlphabet(random.Rand8(), alphabet); const uint16_t some_int = random.Rand16(); const bool some_bool = random.OneIn(2); std::list<RecordingHttp2Visitor*> visitors = {&chocolate_visitor, &vanilla_visitor}; for (RecordingHttp2Visitor* visitor : visitors) { visitor->OnConnectionError( Http2VisitorInterface::ConnectionError::kSendError); visitor->OnFrameHeader(stream_id, length, type, flags); visitor->OnSettingsStart(); visitor->OnSetting(setting); visitor->OnSettingsEnd(); visitor->OnSettingsAck(); visitor->OnBeginHeadersForStream(stream_id); visitor->OnHeaderForStream(stream_id, some_string, another_string); visitor->OnEndHeadersForStream(stream_id); visitor->OnBeginDataForStream(stream_id, length); visitor->OnDataForStream(stream_id, some_string); visitor->OnDataForStream(stream_id, another_string); visitor->OnEndStream(stream_id); visitor->OnRstStream(stream_id, error_code); visitor->OnCloseStream(stream_id, error_code); visitor->OnPriorityForStream(stream_id, another_stream_id, some_int, some_bool); visitor->OnPing(some_int, some_bool); visitor->OnPushPromiseForStream(stream_id, another_stream_id); visitor->OnGoAway(stream_id, error_code, some_string); visitor->OnWindowUpdate(stream_id, some_int); visitor->OnBeginMetadataForStream(stream_id, length); visitor->OnMetadataForStream(stream_id, some_string); visitor->OnMetadataForStream(stream_id, another_string); visitor->OnMetadataEndForStream(stream_id); } EXPECT_EQ(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); } TEST(RecordingHttp2VisitorTest, DifferentEventsProduceDifferentSequence) { RecordingHttp2Visitor chocolate_visitor; RecordingHttp2Visitor vanilla_visitor; EXPECT_EQ(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); const Http2StreamId stream_id = 1; const size_t length = 42; chocolate_visitor.OnBeginDataForStream(stream_id, length); vanilla_visitor.OnBeginMetadataForStream(stream_id, length); EXPECT_NE(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); chocolate_visitor.Clear(); vanilla_visitor.Clear(); EXPECT_EQ(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); chocolate_visitor.OnBeginHeadersForStream(stream_id); vanilla_visitor.OnBeginHeadersForStream(stream_id + 2); EXPECT_NE(chocolate_visitor.GetEventSequence(), vanilla_visitor.GetEventSequence()); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/recording_http2_visitor.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/recording_http2_visitor_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
ff66b5ca-2709-4292-b7be-cb7d378338e4
cpp
tensorflow/tensorflow
command_buffer_cmd
third_party/xla/xla/service/gpu/runtime/command_buffer_cmd.cc
third_party/xla/xla/service/gpu/runtime/command_buffer_cmd_test.cc
#include "xla/service/gpu/runtime/command_buffer_cmd.h" #include <cassert> #include <cstddef> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include <string_view> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/optimization.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/debug_options_flags.h" #include "xla/executable_run_options.h" #include "xla/ffi/call_frame.h" #include "xla/ffi/ffi_api.h" #include "xla/service/buffer_assignment.h" #include "xla/service/collective_ops_utils.h" #include "xla/service/computation_placer.h" #include "xla/service/global_device_id.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/runtime/annotation.h" #include "xla/service/gpu/runtime/nccl_all_gather_thunk.h" #include "xla/service/gpu/runtime/nccl_all_reduce_thunk.h" #include "xla/service/gpu/runtime/nccl_all_to_all_thunk.h" #include "xla/service/gpu/runtime/nccl_api.h" #include "xla/service/gpu/runtime/nccl_clique_key.h" #include "xla/service/gpu/runtime/nccl_collective_broadcast_thunk.h" #include "xla/service/gpu/runtime/nccl_collective_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/stream_executor_util.h" #include "xla/service/service_executable_run_options.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/lazy_op_runner.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/trace_command_buffer_factory.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/scoped_annotation.h" #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM #include "xla/service/custom_call_status.h" #include "xla/service/custom_call_status_internal.h" #include "xla/stream_executor/gpu/gpu_stream.h" #include "xla/stream_executor/gpu/gpu_types.h" #endif namespace xla::gpu { namespace { std::optional<se::DeviceMemoryBase> AssignBufferIfNotNull( const BufferAllocations& buffer_allocations, BufferAllocation::Slice& slice) { return slice.allocation() != nullptr ? std::optional<se::DeviceMemoryBase>{buffer_allocations .GetDeviceAddress(slice)} : std::nullopt; } } using ExecutionScopeId = se::CommandBuffer::ExecutionScopeId; using MemoryAccess = CommandBufferCmd::MemoryAccess; std::string CommandBufferCmdString(CommandBufferCmdType type) { switch (type) { #define CASE_CMD_STRING(enum_name, cmd_name, ...) \ case CommandBufferCmdType::enum_name: \ return cmd_name; COMMAND_BUFFER_CMD_LIST(CASE_CMD_STRING) #undef CASE_CMD_STRING default: return "UnknownCmd"; } } static std::string_view ReductionKindString(ReductionKind kind) { switch (kind) { case ReductionKind::MAX: return "max"; case ReductionKind::MIN: return "min"; case ReductionKind::PRODUCT: return "product"; case ReductionKind::SUM: return "sum"; } } static se::CommandBuffer::Builder CreateBuilder( CommandBufferCmdSequence* commands, const Thunk::ExecuteParams* execute_params, const CommandBufferCmd::RecordParams* record_params) { return [=](se::CommandBuffer* command_buffer) { return commands->Record(*execute_params, *record_params, command_buffer, CommandBufferCmdSequence::RecordMode::kConditional); }; } static std::vector<se::CommandBuffer::Builder> CreateBuilders( absl::Span<CommandBufferCmdSequence> commands, const Thunk::ExecuteParams* execute_params, const CommandBufferCmd::RecordParams* record_params) { std::vector<se::CommandBuffer::Builder> builders; for (CommandBufferCmdSequence& cmd : commands) { builders.push_back(CreateBuilder(&cmd, execute_params, record_params)); } return builders; } static se::CommandBuffer::ExecutionScopeBuilder CreateExecutionScopeBuilder( CommandBufferCmdSequence* commands, const Thunk::ExecuteParams* execute_params, const CommandBufferCmd::RecordParams* record_params) { return [=](ExecutionScopeId id, se::CommandBuffer* command_buffer) { CommandBufferCmd::RecordParams params = *record_params; params.execution_scope_id = id; return commands->Record(*execute_params, params, command_buffer, CommandBufferCmdSequence::RecordMode::kConditional); }; } CommandBufferCmd::State* CommandBufferCmd::StateManager::GetOrNull( const CommandBufferCmd* cmd) { if (auto it = state_.find(cmd); it != state_.end()) { return it->second.get(); } return nullptr; } CommandBufferCmd::State* CommandBufferCmd::StateManager::GetOrCreate( const CommandBufferCmd* cmd, absl::FunctionRef<std::unique_ptr<State>()> create) { if (auto it = state_.find(cmd); it != state_.end()) { return it->second.get(); } return state_.try_emplace(cmd, create()).first->second.get(); } se::CommandBuffer::ExecutionScopeId CommandBufferCmd::GetExecutionScope( const RecordParams& record_params, ExecutionStreamId execution_stream_id) const { uint64_t base = record_params.execution_scope_id.value(); uint64_t offset = execution_stream_id.value(); return se::CommandBuffer::ExecutionScopeId(base + offset); } se::CommandBuffer::ExecutionScopeId CommandBufferCmd::GetExecutionScope( const RecordParams& record_params) const { return GetExecutionScope(record_params, execution_stream_id_); } CommandBufferCmdSequence::CommandBufferCmdSequence( SynchronizationMode synchronization_mode) : synchronization_mode_(synchronization_mode) {} void CommandBufferCmdSequence::Append(std::unique_ptr<CommandBufferCmd> cmd) { for (const CommandBufferCmd::BufferUsage& buffer : cmd->buffers()) { buffers_.insert(buffer); allocs_indices_.insert(buffer.slice.index()); } ExecutionStreamId execution_stream_id = cmd->execution_stream_id(); CommandBufferCmd::BufferUsageVector buffers = cmd->buffers(); bool requires_barrier = HasConflicts(execution_stream_id, buffers); if (synchronization_mode_ == SynchronizationMode::kSerialize && !commands_.empty()) { requires_barrier = true; } if (commands_.size() == 1 && commands_.front().cmd->IsNestedCommandBuffer()) { requires_barrier = true; } if (requires_barrier) ClearTrackedBuffers(execution_stream_id); commands_.push_back({std::move(cmd), requires_barrier}); TrackBuffers(execution_stream_id, buffers); } absl::Status CommandBufferCmdSequence::Prepare( const Thunk::PrepareParams& params, Thunk::ResourceRequests& resource_requests) { for (auto& command : commands_) { TF_RETURN_IF_ERROR(command.cmd->Prepare(params, resource_requests)); } return absl::OkStatus(); } absl::Status CommandBufferCmdSequence::Initialize( const Thunk::InitializeParams& params, CommandBufferCmd::StateManager& state) { for (auto& command : commands_) { TF_RETURN_IF_ERROR(command.cmd->Initialize(params, state)); } return absl::OkStatus(); } bool CommandBufferCmdSequence::HasConflicts( ExecutionStreamId execution_stream_id, const CommandBufferCmd::BufferUsageVector& buffers) { auto& rwset = read_write_sets_[execution_stream_id]; auto read_overlap = [&](const BufferAllocation::Slice& slice) { if (rwset.read.contains(slice)) return true; for (auto& read : rwset.read) if (read.OverlapsWith(slice)) return true; return false; }; auto write_overlap = [&](const BufferAllocation::Slice& slice) { if (rwset.write.contains(slice)) return true; for (auto& write : rwset.write) if (write.OverlapsWith(slice)) return true; return false; }; return absl::c_any_of(buffers, [&](const auto& buffer) { return buffer.access == MemoryAccess::kWrite ? write_overlap(buffer.slice) || read_overlap(buffer.slice) : write_overlap(buffer.slice); }); } void CommandBufferCmdSequence::TrackBuffers( ExecutionStreamId execution_stream_id, const CommandBufferCmd::BufferUsageVector& buffers) { auto& rwset = read_write_sets_[execution_stream_id]; for (const CommandBufferCmd::BufferUsage& buffer : buffers) { if (buffer.access == MemoryAccess::kWrite) rwset.write.insert(buffer.slice); if (buffer.access == MemoryAccess::kRead) rwset.read.insert(buffer.slice); } } void CommandBufferCmdSequence::ClearTrackedBuffers( ExecutionStreamId execution_stream_id) { read_write_sets_[execution_stream_id] = ReadWriteSet(); } static std::string_view RecordModeString( CommandBufferCmdSequence::RecordMode mode) { switch (mode) { case CommandBufferCmdSequence::RecordMode::kExclusive: return "exclusive"; case CommandBufferCmdSequence::RecordMode::kConditional: return "conditional"; } } absl::Status CommandBufferCmdSequence::Record( const Thunk::ExecuteParams& execute_params, const CommandBufferCmd::RecordParams& record_params, se::CommandBuffer* command_buffer, RecordMode mode) { VLOG(3) << "Record " << commands_.size() << " commands into command buffer" << "; mode=" << RecordModeString(mode); uint64_t start_micros = tsl::Env::Default()->NowMicros(); if (mode == RecordMode::kExclusive) { if (command_buffer->state() == se::CommandBuffer::State::kFinalized) { TF_RETURN_IF_ERROR(command_buffer->Update()); } } absl::flat_hash_map<ExecutionScopeId, int64_t> num_recorded_commands; for (CommandInfo& command : commands_) { if (execute_params.mock_collectives && dynamic_cast<CollectiveCmd*>(command.cmd.get())) { continue; } ExecutionScopeId execution_scope_id = command.cmd->GetExecutionScope(record_params); std::optional<tsl::profiler::ScopedAnnotation> annotation = GetKernelAnnotation(command.cmd->profile_annotation()); if (command.requires_barrier) { VLOG(3) << "Add command buffer barrier after " << num_recorded_commands[execution_scope_id] << " recorded commands into the execution scope #" << execution_scope_id.value(); TF_RETURN_IF_ERROR(command_buffer->Barrier(execution_scope_id)); num_recorded_commands.erase(execution_scope_id); } VLOG(5) << "Record command buffer with scope id " << execution_scope_id.value(); TF_RETURN_IF_ERROR( command.cmd->Record(execute_params, record_params, command_buffer)); ++num_recorded_commands[execution_scope_id]; } if (mode == RecordMode::kExclusive) { TF_RETURN_IF_ERROR(command_buffer->Finalize()); } uint64_t end_micros = tsl::Env::Default()->NowMicros(); VLOG(3) << "Recorded " << commands_.size() << " commands into command buffer in " << (end_micros - start_micros) << " μs; mode=" << RecordModeString(mode); return absl::OkStatus(); } const absl::flat_hash_set<CommandBufferCmd::BufferUsage>& CommandBufferCmdSequence::buffers() const { return buffers_; } const absl::flat_hash_set<BufferAllocation::Index>& CommandBufferCmdSequence::allocs_indices() const { return allocs_indices_; } std::vector<bool> CommandBufferCmdSequence::barriers() const { std::vector<bool> barriers; absl::c_transform(commands_, std::back_inserter(barriers), [](auto& command) { return command.requires_barrier; }); return barriers; } TracedCommandBuffer::TracedCommandBuffer( const CommandBufferCmd* trace_cmd, CommandBufferCmd::BufferUsageVector buffers, int64_t capacity) : trace_cmd_(trace_cmd), capacity_(capacity), entries_(capacity) { CHECK_GT(capacity, 0) << "capacity must be larger than 0"; absl::flat_hash_set<BufferAllocation::Index> allocs_indices; for (auto& buffer : buffers) allocs_indices.insert(buffer.slice.index()); allocs_indices_.assign(allocs_indices.begin(), allocs_indices.end()); } absl::StatusOr<se::CommandBuffer*> TracedCommandBuffer::GetOrTraceCommandBuffer( const BufferAllocations* buffer_allocation, se::StreamExecutor* executor, se::Stream* stream, absl::FunctionRef<absl::Status(se::Stream*)> trace) { absl::InlinedVector<se::DeviceMemoryBase, 4> allocs; allocs.reserve(allocs_indices_.size()); for (auto& index : allocs_indices_) { allocs.emplace_back(buffer_allocation->GetDeviceAddress(index)); } auto shift_right = [&](size_t i) -> Entry& { if (i == 0) return entries_[0]; Entry entry = std::move(entries_[i]); do { entries_[i] = std::move(entries_[i - 1]); } while (--i > 0); return entries_[0] = std::move(entry); }; for (size_t i = 0; i < capacity_; ++i) { if (ABSL_PREDICT_TRUE(absl::c_equal(entries_[i].recorded_allocs, allocs) && entries_[i].command_buffer)) { VLOG(6) << "Command buffer trace cache hit for command " << trace_cmd_->ToString(); return shift_right(i).command_buffer.get(); } if (entries_[i].command_buffer == nullptr) { TF_ASSIGN_OR_RETURN( entries_[i].command_buffer, se::TraceCommandBufferFactory::Create(executor, stream, trace)); entries_[i].recorded_allocs.assign(allocs.begin(), allocs.end()); VLOG(6) << "Command buffer trace cache create new item for command " << trace_cmd_->ToString(); return shift_right(i).command_buffer.get(); } } TF_ASSIGN_OR_RETURN( entries_[capacity_ - 1].command_buffer, se::TraceCommandBufferFactory::Create(executor, stream, trace)); entries_[capacity_ - 1].recorded_allocs.assign(allocs.begin(), allocs.end()); VLOG(6) << "Command buffer trace cache does replacement for command " << trace_cmd_->ToString(); return shift_right(capacity_ - 1).command_buffer.get(); } TracedCommandBufferCmd::TracedCommandBufferCmd( CommandBufferCmdType cmd_type, ExecutionStreamId execution_stream_id) : CommandBufferCmd(cmd_type, execution_stream_id) {} absl::Status TracedCommandBufferCmd::AddTracedCommandBuffer( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer, absl::FunctionRef<absl::Status(se::Stream*)> trace) { auto traced_cmd = record_params.state.GetOrCreate<TracedCommandBuffer>(this, [&] { const auto& debug_options = xla::GetDebugOptionsFromFlags(); return std::make_unique<TracedCommandBuffer>( this, buffers(), debug_options.xla_cmd_buffer_trace_cache_size()); }); TF_ASSIGN_OR_RETURN( auto nested_cmd, traced_cmd->GetOrTraceCommandBuffer( execute_params.buffer_allocations, execute_params.stream->parent(), execute_params.command_buffer_trace_stream, trace)); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "Add nested command buffer to execution scope: " << execution_scope_id.value(); return command_buffer->AddNestedCommandBuffer(execution_scope_id, *nested_cmd); } inline constexpr std::string_view kMemset32Kernel = R"( .version 4.0 .target sm_50 .address_size 64 .visible .entry memset32( .param .u64 memset32_param_0, .param .u32 memset32_param_1, .param .u64 memset32_param_2 ) { .reg .pred %p<2>; .reg .b32 %r<6>; .reg .b64 %rd<7>; .loc 1 3 0 ld.param.u64 %rd3, [memset32_param_0]; ld.param.u32 %r1, [memset32_param_1]; ld.param.u64 %rd2, [memset32_param_2]; .loc 1 5 3 mov.u32 %r2, %ctaid.x; mov.u32 %r3, %ntid.x; mov.u32 %r4, %tid.x; mad.lo.s32 %r5, %r2, %r3, %r4; .loc 1 6 3 cvt.s64.s32 %rd1, %r5; setp.ge.s64 %p1, %rd1, %rd3; @%p1 bra $L__BB0_2; .loc 1 5 3 cvta.to.global.u64 %rd4, %rd2; .loc 1 6 3 shl.b64 %rd5, %rd1, 2; add.s64 %rd6, %rd4, %rd5; st.global.u32 [%rd6], %r1; $L__BB0_2: .loc 1 7 1 ret; })"; ComputationIdCmd::ComputationIdCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice dest, Kind kind) : CommandBufferCmd(CommandBufferCmdType::kComputationIdCmd, execution_stream_id), dest_(dest), kind_(kind) {} CommandBufferCmd::BufferUsageVector ComputationIdCmd::buffers() { return {{dest_, MemoryAccess::kWrite}}; } absl::Status ComputationIdCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { #if defined(GOOGLE_CUDA) { absl::MutexLock lock(&mutex_); if (memset_kernels_.contains(params.executor)) return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(std::unique_ptr<se::Kernel> kernel, CreateKernel("memset32", 3, kMemset32Kernel, {}, params.executor, 0)); absl::MutexLock lock(&mutex_); memset_kernels_.emplace(params.executor, std::move(kernel)); #endif return absl::OkStatus(); } absl::Status ComputationIdCmd::Record( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase dst = execute_params.buffer_allocations->GetDeviceAddress(dest_); GlobalDeviceId global_device_id = execute_params.collective_params->global_device_id; TF_ASSIGN_OR_RETURN( const DeviceAssignment::LogicalID logical_id, execute_params.collective_params->device_assn->LogicalIdForDevice( global_device_id)); uint32_t value = kind_ == Kind::kReplica ? logical_id.replica_id : logical_id.computation_id; ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "ComputationIdCmd" << ": kind=" << (kind_ == Kind::kReplica ? "replica" : "partition") << "; value=" << value << "; execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " Id: " << dest_ << " (" << dst.opaque() << ")"; #if defined(GOOGLE_CUDA) se::Kernel* memset_kernel = [&] { absl::MutexLock lock(&mutex_); return memset_kernels_[execute_params.stream->parent()].get(); }(); if (memset_kernel == nullptr) { return absl::InternalError( "Memset kernel not loaded on a command buffer executor"); } auto args = se::PackKernelArgs(0, int64_t{1}, value, dst); return command_buffer->Launch(execution_scope_id, se::ThreadDim(1), se::BlockDim(1), *memset_kernel, *args); #else return command_buffer->Memset(execution_scope_id, &dst, value, 1); #endif } LaunchCmd::LaunchCmd(ExecutionStreamId execution_stream_id, std::string kernel_name, absl::Span<const BufferAllocation::Slice> args, absl::Span<const MemoryAccess> args_access, LaunchDimensions dims, int64_t shmem_bytes) : CommandBufferCmd(CommandBufferCmdType::kLaunchCmd, execution_stream_id), kernel_name_(std::move(kernel_name)), args_(args.begin(), args.end()), args_access_(args_access.begin(), args_access.end()), dims_(dims), shmem_bytes_(shmem_bytes) {} absl::Status LaunchCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { { absl::MutexLock lock(&mutex_); if (kernels_.contains(params.executor)) return absl::OkStatus(); } TF_ASSIGN_OR_RETURN( std::unique_ptr<se::Kernel> kernel, CreateKernel(kernel_name_, args_.size(), params.src.text, params.src.binary, params.executor, shmem_bytes_)); absl::MutexLock lock(&mutex_); kernels_.emplace(params.executor, std::move(kernel)); return absl::OkStatus(); } absl::Status LaunchCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "LaunchCmd: kernel=" << kernel_name_ << "; shmem_bytes=" << shmem_bytes_ << "; execution_scope_id=" << execution_scope_id.value(); se::Kernel* kernel = [&] { absl::MutexLock lock(&mutex_); return kernels_[execute_params.stream->parent()].get(); }(); if (kernel == nullptr) { return absl::InternalError(absl::StrCat( "Kernel not loaded on a command buffer executor: ", kernel_name_)); } absl::InlinedVector<se::DeviceMemoryBase, 4> buffers; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = execute_params.buffer_allocations->GetDeviceAddress(arg); VLOG(5) << " Arg: " << arg << ": " << buf.opaque(); buffers.push_back(buf); } TF_ASSIGN_OR_RETURN(auto kernel_args, se::PackKernelArgs(buffers, shmem_bytes_)); return command_buffer->Launch(execution_scope_id, dims_.thread_counts_per_block(), dims_.block_counts(), *kernel, *kernel_args); } CommandBufferCmd::BufferUsageVector LaunchCmd::buffers() { BufferUsageVector buffers; for (int32_t i = 0; i < args_.size(); ++i) { buffers.emplace_back(args_[i], args_access_[i]); } return buffers; } CustomKernelLaunchCmd::CustomKernelLaunchCmd( ExecutionStreamId execution_stream_id, absl::Span<const BufferAllocation::Slice> args, absl::Span<const MemoryAccess> args_access, CustomKernel custom_kernel) : CommandBufferCmd(CommandBufferCmdType::kCustomKernelLaunchCmd, execution_stream_id), args_(args.begin(), args.end()), args_access_(args_access.begin(), args_access.end()), custom_kernel_(std::move(custom_kernel)) {} absl::Status CustomKernelLaunchCmd::Initialize( const Thunk::InitializeParams& params, StateManager& state) { { absl::MutexLock lock(&mutex_); if (kernels_.contains(params.executor)) return absl::OkStatus(); } TF_ASSIGN_OR_RETURN( std::unique_ptr<se::Kernel> kernel, params.executor->LoadKernel(custom_kernel_.kernel_spec())); absl::MutexLock lock(&mutex_); kernels_.emplace(params.executor, std::move(kernel)); return absl::OkStatus(); } absl::Status CustomKernelLaunchCmd::Record( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "CustomKernelLaunchCmd: custom_kernel=" << custom_kernel_.name() << "; execution_scope_id=" << execution_scope_id.value(); se::Kernel* kernel = [&] { absl::MutexLock lock(&mutex_); return kernels_[execute_params.stream->parent()].get(); }(); if (kernel == nullptr) { return absl::InternalError( absl::StrCat("Custom kernel not loaded on a command buffer executor: ", custom_kernel_.name())); } absl::InlinedVector<se::DeviceMemoryBase, 4> buffers; for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = execute_params.buffer_allocations->GetDeviceAddress(arg); VLOG(5) << " Arg: " << arg << ": " << buf.opaque(); buffers.push_back(buf); } se::KernelArgsDeviceMemoryArray kernel_args( buffers, custom_kernel_.shared_memory_bytes()); return command_buffer->Launch( execution_scope_id, custom_kernel_.thread_dims(), custom_kernel_.block_dims(), *kernel, kernel_args); } CommandBufferCmd::BufferUsageVector CustomKernelLaunchCmd::buffers() { BufferUsageVector buffers; for (int32_t i = 0; i < args_.size(); ++i) { buffers.emplace_back(args_[i], args_access_[i]); } return buffers; } MemcpyDeviceToDeviceCmd::MemcpyDeviceToDeviceCmd( ExecutionStreamId execution_stream_id, BufferAllocation::Slice dst, BufferAllocation::Slice src, int64_t num_bytes) : CommandBufferCmd(CommandBufferCmdType::kMemcpyDeviceToDeviceCmd, execution_stream_id), dst_(dst), src_(src), num_bytes_(num_bytes) {} absl::Status MemcpyDeviceToDeviceCmd::Record( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase dst = execute_params.buffer_allocations->GetDeviceAddress(dst_); se::DeviceMemoryBase src = execute_params.buffer_allocations->GetDeviceAddress(src_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "MemcpyDeviceToDeviceCmd: num_bytes = " << num_bytes_ << "; execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " Dst: " << dst_ << " (" << dst.opaque() << ")"; VLOG(5) << " Src: " << src_ << " (" << src.opaque() << ")"; if (num_bytes_ == 0) { VLOG(5) << "Skip recording MemcpyDeviceToDeviceCmd command of 0 bytes"; return absl::OkStatus(); } return command_buffer->MemcpyDeviceToDevice(execution_scope_id, &dst, src, num_bytes_); } CommandBufferCmd::BufferUsageVector MemcpyDeviceToDeviceCmd::buffers() { return {{dst_, MemoryAccess::kWrite}, {src_, MemoryAccess::kRead}}; } MemzeroCmd::MemzeroCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice dst) : CommandBufferCmd(CommandBufferCmdType::kMemzeroCmd, execution_stream_id), dst_(dst) {} absl::Status MemzeroCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase dst = execute_params.buffer_allocations->GetDeviceAddress(dst_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "MemzeroCmd: execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " Dst: " << dst_ << " (" << dst.opaque() << ")"; if (dst_.size() == 0) { VLOG(5) << "Skip recording MemzeroCmd command of 0 bytes"; return absl::OkStatus(); } return command_buffer->Memset(execution_scope_id, &dst, uint8_t{0}, dst_.size()); } CommandBufferCmd::BufferUsageVector MemzeroCmd::buffers() { return {{dst_, MemoryAccess::kWrite}}; } Memset32Cmd::Memset32Cmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice dst, uint32_t bit_pattern) : CommandBufferCmd(CommandBufferCmdType::kMemset32Cmd, execution_stream_id), dst_(dst), bit_pattern_(bit_pattern) {} absl::Status Memset32Cmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase dst = execute_params.buffer_allocations->GetDeviceAddress(dst_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "Memset32Cmd: bit_pattern=" << bit_pattern_ << "; execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " Dst: " << dst_ << " (" << dst.opaque() << ")"; if (dst_.size() == 0) { VLOG(5) << "Skip recording Memset32Cmd command of 0 bytes"; return absl::OkStatus(); } return command_buffer->Memset( execution_scope_id, &dst, bit_pattern_, dst_.size() / sizeof(uint32_t)); } CommandBufferCmd::BufferUsageVector Memset32Cmd::buffers() { return {{dst_, MemoryAccess::kWrite}}; } IfCmd::IfCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice pred, CommandBufferCmdSequence then_commands) : CommandBufferCmd(CommandBufferCmdType::kIfCmd, execution_stream_id), pred_(pred), then_commands_(std::move(then_commands)) {} absl::Status IfCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { return then_commands_.Initialize(params, state); } absl::Status IfCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase pred = execute_params.buffer_allocations->GetDeviceAddress(pred_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "IfCmd: execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " pred: " << pred_ << " (" << pred.opaque() << ")"; return command_buffer->If( execution_scope_id, se::DeviceMemory<bool>(pred), CreateBuilder(&then_commands_, &execute_params, &record_params)); } bool IfCmd::force_update() { return then_commands_.force_update(); } CommandBufferCmd::BufferUsageVector IfCmd::buffers() { absl::flat_hash_set<CommandBufferCmd::BufferUsage> buffers; buffers.emplace(pred_, MemoryAccess::kRead); buffers.insert(then_commands_.buffers().begin(), then_commands_.buffers().end()); return {buffers.begin(), buffers.end()}; } IfElseCmd::IfElseCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice pred, CommandBufferCmdSequence then_commands, CommandBufferCmdSequence else_commands) : CommandBufferCmd(CommandBufferCmdType::kIfElseCmd, execution_stream_id), pred_(pred), then_commands_(std::move(then_commands)), else_commands_(std::move(else_commands)) {} absl::Status IfElseCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { TF_RETURN_IF_ERROR(then_commands_.Initialize(params, state)); TF_RETURN_IF_ERROR(else_commands_.Initialize(params, state)); return absl::OkStatus(); } absl::Status IfElseCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase pred = execute_params.buffer_allocations->GetDeviceAddress(pred_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "IfElseCmd: execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " pred: " << pred_ << " (" << pred.opaque() << ")"; return command_buffer->IfElse( execution_scope_id, se::DeviceMemory<bool>(pred), CreateBuilder(&then_commands_, &execute_params, &record_params), CreateBuilder(&else_commands_, &execute_params, &record_params)); } bool IfElseCmd::force_update() { return (then_commands_.force_update() || else_commands_.force_update()); } CommandBufferCmd::BufferUsageVector IfElseCmd::buffers() { absl::flat_hash_set<CommandBufferCmd::BufferUsage> buffers; buffers.emplace(pred_, MemoryAccess::kRead); buffers.insert(then_commands_.buffers().begin(), then_commands_.buffers().end()); buffers.insert(else_commands_.buffers().begin(), else_commands_.buffers().end()); return {buffers.begin(), buffers.end()}; } CaseCmd::CaseCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice index, std::vector<CommandBufferCmdSequence> branches_commands) : CommandBufferCmd(CommandBufferCmdType::kCaseCmd, execution_stream_id), index_(index), branches_commands_(std::move(branches_commands)) {} absl::Status CaseCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { for (auto& branch : branches_commands_) { TF_RETURN_IF_ERROR(branch.Initialize(params, state)); } return absl::OkStatus(); } absl::Status CaseCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase index = execute_params.buffer_allocations->GetDeviceAddress(index_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "CaseCmd: execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " index: " << index_ << " (" << index.opaque() << ")"; return command_buffer->Case(execution_scope_id, se::DeviceMemory<int32_t>(index), CreateBuilders(absl::MakeSpan(branches_commands_), &execute_params, &record_params)); } bool CaseCmd::force_update() { return absl::c_any_of(branches_commands_, [](const auto& seq) { return seq.force_update(); }); } CommandBufferCmd::BufferUsageVector CaseCmd::buffers() { absl::flat_hash_set<CommandBufferCmd::BufferUsage> buffers; buffers.emplace(index_, MemoryAccess::kRead); for (auto& branch : branches_commands_) { buffers.insert(branch.buffers().begin(), branch.buffers().end()); } return {buffers.begin(), buffers.end()}; } ForCmd::ForCmd(ExecutionStreamId execution_stream_id, int32_t num_iterations, BufferAllocation::Slice loop_counter, CommandBufferCmdSequence body_commands) : CommandBufferCmd(CommandBufferCmdType::kForCmd, execution_stream_id), num_iterations_(num_iterations), loop_counter_(loop_counter), body_commands_(std::move(body_commands)) {} absl::Status ForCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { return body_commands_.Initialize(params, state); } absl::Status ForCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase loop_counter = execute_params.buffer_allocations->GetDeviceAddress(loop_counter_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "ForCmd: num_iterations=" << num_iterations_ << "; body_commands=" << body_commands_.size() << "; execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " loop_counter: " << loop_counter_ << " (" << loop_counter.opaque() << ")"; return command_buffer->For( execution_scope_id, num_iterations_, se::DeviceMemory<int32_t>(loop_counter), CreateBuilder(&body_commands_, &execute_params, &record_params)); } bool ForCmd::force_update() { return body_commands_.force_update(); } CommandBufferCmd::BufferUsageVector ForCmd::buffers() { absl::flat_hash_set<CommandBufferCmd::BufferUsage> buffers; buffers.emplace(loop_counter_, MemoryAccess::kWrite); buffers.insert(body_commands_.buffers().begin(), body_commands_.buffers().end()); return {buffers.begin(), buffers.end()}; } WhileCmd::WhileCmd(ExecutionStreamId execution_stream_id, BufferAllocation::Slice pred, CommandBufferCmdSequence cond_commands, CommandBufferCmdSequence body_commands) : CommandBufferCmd(CommandBufferCmdType::kWhileCmd, execution_stream_id), pred_(pred), cond_commands_(std::move(cond_commands)), body_commands_(std::move(body_commands)) {} absl::Status WhileCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { TF_RETURN_IF_ERROR(cond_commands_.Initialize(params, state)); return body_commands_.Initialize(params, state); } absl::Status WhileCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase pred = execute_params.buffer_allocations->GetDeviceAddress(pred_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "WhileCmd: cond_commands=" << cond_commands_.size() << " body_commands=" << body_commands_.size() << "; execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " pred: " << pred_ << " (" << pred.opaque() << ")"; return command_buffer->While( execution_scope_id, se::DeviceMemory<bool>(pred), CreateExecutionScopeBuilder(&cond_commands_, &execute_params, &record_params), CreateBuilder(&body_commands_, &execute_params, &record_params)); } bool WhileCmd::force_update() { return (cond_commands_.force_update() || body_commands_.force_update()); } CommandBufferCmd::BufferUsageVector WhileCmd::buffers() { absl::flat_hash_set<CommandBufferCmd::BufferUsage> buffers; buffers.emplace(pred_, MemoryAccess::kWrite); buffers.insert(cond_commands_.buffers().begin(), cond_commands_.buffers().end()); buffers.insert(body_commands_.buffers().begin(), body_commands_.buffers().end()); return {buffers.begin(), buffers.end()}; } GemmCmd::GemmCmd(ExecutionStreamId execution_stream_id, GemmConfig config, const BufferAllocation::Slice& lhs_buffer, const BufferAllocation::Slice& rhs_buffer, const BufferAllocation::Slice& output_buffer, const BufferAllocation::Slice& workspace, bool deterministic) : TracedCommandBufferCmd(CommandBufferCmdType::kGemmCmd, execution_stream_id), config_(std::move(config)), lhs_buffer_(lhs_buffer), rhs_buffer_(rhs_buffer), output_buffer_(output_buffer), workspace_(workspace), deterministic_(deterministic) {} absl::Status GemmCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { if (!params.stream->parent()->AsBlas()) { return absl::InternalError("Failed to initialize BLAS support for GemmCmd"); } return absl::OkStatus(); } absl::Status GemmCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { se::DeviceMemoryBase lhs = execute_params.buffer_allocations->GetDeviceAddress(lhs_buffer_); se::DeviceMemoryBase rhs = execute_params.buffer_allocations->GetDeviceAddress(rhs_buffer_); se::DeviceMemoryBase out = execute_params.buffer_allocations->GetDeviceAddress(output_buffer_); se::DeviceMemoryBase workspace = execute_params.buffer_allocations->GetDeviceAddress(workspace_); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "GemmCmd: deterministic=" << deterministic_ << "; execution_scope_id=" << execution_scope_id.value(); VLOG(5) << " Lhs: " << lhs_buffer_ << " (" << lhs.opaque() << ")"; VLOG(5) << " Lhs: " << rhs_buffer_ << " (" << rhs.opaque() << ")"; VLOG(5) << " Out: " << output_buffer_ << " (" << out.opaque() << ")"; VLOG(5) << " Workspace: " << workspace_ << " (" << workspace.opaque() << ")"; return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return RunGemm(config_, lhs, rhs, out, workspace, deterministic_, stream); }); } CommandBufferCmd::BufferUsageVector GemmCmd::buffers() { return {{lhs_buffer_, MemoryAccess::kRead}, {rhs_buffer_, MemoryAccess::kRead}, {output_buffer_, MemoryAccess::kWrite}, {workspace_, MemoryAccess::kWrite}}; } CublasLtCmd::CublasLtCmd( ExecutionStreamId execution_stream_id, GemmConfig gemm_config, se::gpu::BlasLt::Epilogue epilogue, int64_t algorithm_idx, BufferAllocation::Slice a_buffer, BufferAllocation::Slice b_buffer, BufferAllocation::Slice c_buffer, BufferAllocation::Slice d_buffer, BufferAllocation::Slice bias_buffer , BufferAllocation::Slice aux_buffer , BufferAllocation::Slice a_scale_buffer , BufferAllocation::Slice b_scale_buffer , BufferAllocation::Slice c_scale_buffer , BufferAllocation::Slice d_scale_buffer , BufferAllocation::Slice d_amax_buffer , BufferAllocation::Slice workspace_buffer) : TracedCommandBufferCmd(CommandBufferCmdType::kCublasLtCmd, execution_stream_id), gemm_config_(std::move(gemm_config)), epilogue_(epilogue), algorithm_idx_(algorithm_idx), a_buffer_(a_buffer), b_buffer_(b_buffer), c_buffer_(c_buffer), d_buffer_(d_buffer), bias_buffer_(bias_buffer), aux_buffer_(aux_buffer), a_scale_buffer_(a_scale_buffer), b_scale_buffer_(b_scale_buffer), c_scale_buffer_(c_scale_buffer), d_scale_buffer_(d_scale_buffer), d_amax_buffer_(d_amax_buffer), workspace_buffer_(workspace_buffer) {} absl::StatusOr<se::gpu::BlasLt::MatmulPlan*> CublasLtCmd::GetMatmulPlan( const stream_executor::Stream* stream) { auto it = matmul_plans_cache_.find(stream); if (it != matmul_plans_cache_.end()) return it->second.get(); TF_ASSIGN_OR_RETURN(auto plan, se::gpu::BlasLt::GetMatmulPlan( stream, gemm_config_, epilogue_)); auto [it_insert, _] = matmul_plans_cache_.emplace(stream, std::move(plan)); return it_insert->second.get(); } absl::StatusOr<se::gpu::BlasLt::MatmulAlgorithm> CublasLtCmd::GetMatmulAlgorithm(const se::gpu::BlasLt::MatmulPlan* plan, int64_t max_workspace) { auto it = matmul_algorithm_cache_.find(plan); if (it != matmul_algorithm_cache_.end()) return it->second; TF_ASSIGN_OR_RETURN( auto algorithms, plan->GetAlgorithms( 128, max_workspace)); TF_RET_CHECK(algorithm_idx_ >= 0 && algorithm_idx_ < algorithms.size()); auto [it_insert, _] = matmul_algorithm_cache_.emplace(plan, algorithms[algorithm_idx_]); return it_insert->second; } absl::Status CublasLtCmd::Initialize(const Thunk::InitializeParams& params, StateManager& state) { if (!params.stream->parent()->AsBlas()) { return absl::InternalError("Failed to initialize BLAS support for GemmCmd"); } TF_ASSIGN_OR_RETURN(auto plan, GetMatmulPlan(params.stream)); TF_RETURN_IF_ERROR( GetMatmulAlgorithm(plan, workspace_buffer_.size()).status()); return absl::OkStatus(); } absl::Status CublasLtCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { TF_ASSIGN_OR_RETURN(auto plan, GetMatmulPlan(execute_params.stream)); TF_ASSIGN_OR_RETURN(auto algorithm, GetMatmulAlgorithm(plan, workspace_buffer_.size())); const BufferAllocations& allocs = *execute_params.buffer_allocations; se::DeviceMemoryBase bias, a_scale, b_scale, c_scale, d_scale, aux, d_amax; if (bias_buffer_.allocation() != nullptr) { bias = allocs.GetDeviceAddress(bias_buffer_); } if (a_scale_buffer_.allocation() != nullptr) { a_scale = allocs.GetDeviceAddress(a_scale_buffer_); } if (b_scale_buffer_.allocation() != nullptr) { b_scale = allocs.GetDeviceAddress(b_scale_buffer_); } if (c_scale_buffer_.allocation() != nullptr) { c_scale = allocs.GetDeviceAddress(c_scale_buffer_); } if (d_scale_buffer_.allocation() != nullptr) { d_scale = allocs.GetDeviceAddress(d_scale_buffer_); } if (d_amax_buffer_.allocation() != nullptr) { d_amax = allocs.GetDeviceAddress(d_amax_buffer_); } if (aux_buffer_.allocation() != nullptr) { aux = allocs.GetDeviceAddress(aux_buffer_); } ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "CublasLtCmd with execution_scope_id: " << execution_scope_id.value(); VLOG(5) << " a_buffer: " << a_buffer_.ToString(); VLOG(5) << " b_buffer: " << b_buffer_.ToString(); VLOG(5) << " c_buffer: " << c_buffer_.ToString(); VLOG(5) << " d_buffer: " << d_buffer_.ToString(); VLOG(5) << " bias_buffer: " << bias_buffer_.ToString(); VLOG(5) << " aux_buffer: " << aux_buffer_.ToString(); VLOG(5) << " a_scale_buffer: " << a_scale_buffer_.ToString(); VLOG(5) << " b_scale_buffer: " << b_scale_buffer_.ToString(); VLOG(5) << " c_scale_buffer: " << c_scale_buffer_.ToString(); VLOG(5) << " d_scale_buffer: " << d_scale_buffer_.ToString(); VLOG(5) << " d_amax_buffer: " << d_amax_buffer_.ToString(); VLOG(5) << " workspace_buffer: " << workspace_buffer_.ToString(); return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return plan->ExecuteOnStream( stream, allocs.GetDeviceAddress(a_buffer_), allocs.GetDeviceAddress(b_buffer_), allocs.GetDeviceAddress(c_buffer_), allocs.GetDeviceAddress(d_buffer_), bias, aux, a_scale, b_scale, c_scale, d_scale, d_amax, algorithm, allocs.GetDeviceAddress(workspace_buffer_)); }); } CommandBufferCmd::BufferUsageVector CublasLtCmd::buffers() { BufferUsageVector buffer_usage; buffer_usage.reserve(13); buffer_usage.push_back({a_buffer_, MemoryAccess::kRead}); buffer_usage.push_back({b_buffer_, MemoryAccess::kRead}); buffer_usage.push_back({c_buffer_, MemoryAccess::kRead}); buffer_usage.push_back({d_buffer_, MemoryAccess::kWrite}); buffer_usage.push_back({workspace_buffer_, MemoryAccess::kWrite}); if (bias_buffer_.allocation() != nullptr) { buffer_usage.push_back({bias_buffer_, MemoryAccess::kRead}); } if (a_scale_buffer_.allocation() != nullptr) { buffer_usage.push_back({a_scale_buffer_, MemoryAccess::kRead}); } if (b_scale_buffer_.allocation() != nullptr) { buffer_usage.push_back({b_scale_buffer_, MemoryAccess::kRead}); } if (c_scale_buffer_.allocation() != nullptr) { buffer_usage.push_back({c_scale_buffer_, MemoryAccess::kRead}); } if (d_scale_buffer_.allocation() != nullptr) { buffer_usage.push_back({d_scale_buffer_, MemoryAccess::kRead}); } if (aux_buffer_.allocation() != nullptr) { buffer_usage.push_back({aux_buffer_, MemoryAccess::kWrite}); } if (d_amax_buffer_.allocation() != nullptr) { buffer_usage.push_back({d_amax_buffer_, MemoryAccess::kRead}); } return buffer_usage; } CuDnnCmd::CuDnnCmd(ExecutionStreamId execution_stream_id, absl::Span<const BufferAllocation::Slice> args, const std::shared_ptr<se::dnn::LazyDnnGraph> graph) : TracedCommandBufferCmd(CommandBufferCmdType::kCuDnnCmd, execution_stream_id), args_(args.cbegin(), args.cend()), graph_(graph) {} absl::Status CuDnnCmd::Initialize(const Thunk::InitializeParams& params, StateManager&) { if (!params.stream->parent()->AsDnn()) { return absl::InternalError("Failed to initialize DNN support for CuDnnCmd"); } return absl::OkStatus(); } absl::Status CuDnnCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { CHECK(graph_ != nullptr); std::vector<se::DeviceMemoryBase> operands; operands.reserve(args_.size()); for (const BufferAllocation::Slice& arg : args_) { se::DeviceMemoryBase buf = execute_params.buffer_allocations->GetDeviceAddress(arg); VLOG(5) << " Arg: " << arg << ": " << buf.opaque(); operands.push_back(buf); } return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return graph_->get()->Execute( *stream, absl::Span<se::DeviceMemoryBase>(operands), execute_params.collective_params->local_device_ordinal); }); } CommandBufferCmd::BufferUsageVector CuDnnCmd::buffers() { CommandBufferCmd::BufferUsageVector buffer_usage; buffer_usage.reserve(args_.size()); for (int i = 0; i < args_.size() - 1; ++i) { buffer_usage.push_back({args_[i], MemoryAccess::kRead}); } buffer_usage.push_back({args_.back(), MemoryAccess::kWrite}); return buffer_usage; } absl::Status CustomCallCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { if (handler_ == nullptr) { return RecordLegacyCustomCall(execute_params, record_params, command_buffer); } return RecordXlaFfiCall(execute_params, record_params, command_buffer); } absl::Status CustomCallCmd::RecordLegacyCustomCall( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { std::vector<void*> buffers; buffers.reserve(operands_.size() + results_.size()); for (auto& slices : {operands_, results_}) { for (const std::optional<Slice>& slice : slices) { if (!slice.has_value()) { buffers.push_back(nullptr); continue; } if (!slice->slice.allocation()) { return absl::InternalError( "custom call input missing buffer allocation"); } buffers.push_back( execute_params.buffer_allocations->GetDeviceAddress(slice->slice) .opaque()); } } ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "CustomCallCmd: execution_scope_id=" << execution_scope_id.value(); for (int i = 0; i < operands_.size(); ++i) { if (operands_[i].has_value()) { VLOG(5) << " Operand " << i << ": " << operands_[i]->slice << " (" << buffers[i] << ")"; } else { VLOG(5) << " Operand " << i << ": null"; } } for (int i = 0; i < results_.size(); ++i) { if (results_[i].has_value()) { VLOG(5) << " Result " << i << ": " << results_[i]->slice << " (" << buffers[operands_.size() + i] << ")"; } else { VLOG(5) << " Result " << i << ": null"; } } #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TF_ASSIGN_OR_RETURN( auto nested_cmd, se::TraceCommandBufferFactory::Create( execute_params.stream->parent(), execute_params.command_buffer_trace_stream, [&](se::Stream* stream) { se::gpu::GpuStreamHandle gpu_stream = se::gpu::AsGpuStreamValue(stream); XlaCustomCallStatus custom_call_status; call_target_(gpu_stream, buffers.data(), opaque_.data(), opaque_.size(), &custom_call_status); auto message = CustomCallStatusGetMessage(&custom_call_status); if (message) { return absl::InternalError( absl::StrCat("CustomCall failed: ", *message)); } return absl::OkStatus(); })); return command_buffer->AddNestedCommandBuffer(execution_scope_id, *nested_cmd); #else return Unavailable( "Custom calls on GPU are not supported in this configuration. Please " "build with --config=cuda or --config=rocm"); #endif } absl::Status CustomCallCmd::RecordXlaFfiCall( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { ffi::CallFrameBuilder builder(operands_.size(), results_.size()); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "CustomCallCmd: execution_scope_id=" << execution_scope_id.value(); for (int i = 0; i < operands_.size(); ++i) { const std::optional<Slice>& slice = operands_[i]; if (!slice.has_value()) { return Internal("FFI handlers do not support tokens (yet)!"); } if (!slice->slice.allocation()) return Internal("custom call input missing buffer allocation"); se::DeviceMemoryBase buffer = execute_params.buffer_allocations->GetDeviceAddress(slice->slice); VLOG(5) << " Operand " << i << ": " << slice->slice << " (" << buffer.opaque() << ")"; builder.AddBufferArg(buffer, slice->shape.element_type(), slice->shape.dimensions()); } for (int i = 0; i < results_.size(); ++i) { const std::optional<Slice>& slice = results_[i]; if (!slice.has_value()) { return Internal("FFI handlers do not support tokens (yet)!"); } if (!slice->slice.allocation()) return Internal("custom call input missing buffer allocation"); se::DeviceMemoryBase buffer = execute_params.buffer_allocations->GetDeviceAddress(slice->slice); VLOG(5) << " Result " << i << ": " << slice->slice << " (" << buffer.opaque() << ")"; builder.AddBufferArg(buffer, slice->shape.element_type(), slice->shape.dimensions()); } ffi::CallFrameBuilder::AttributesBuilder attrs; attrs.Append(attributes_); builder.AddAttributes(attrs.Build()); ffi::CallFrame call_frame = builder.Build(); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM TF_ASSIGN_OR_RETURN( auto nested_cmd, se::TraceCommandBufferFactory::Create( execute_params.stream->parent(), execute_params.command_buffer_trace_stream, [&](se::Stream* stream) { ffi::CallOptions options = { execute_params.buffer_allocations->device_ordinal(), ffi::CallOptions::GpuOptions{ execute_params.stream, execute_params.buffer_allocations->memory_allocator()}, nullptr, execute_params.ffi_execution_context}; return ffi::Call(handler_, call_frame, options); })); return command_buffer->AddNestedCommandBuffer(execution_scope_id, *nested_cmd); #else return Unavailable( "Custom calls on GPU are not supported in this configuration. Please " "build with --config=cuda or --config=rocm"); #endif } CommandBufferCmd::BufferUsageVector CustomCallCmd::buffers() { CommandBufferCmd::BufferUsageVector buffer_usage; for (auto& slices : {operands_, results_}) { for (const std::optional<Slice>& slice : slices) { if (!slice.has_value()) continue; buffer_usage.push_back({slice->slice, MemoryAccess::kWrite}); } } return buffer_usage; } BarrierCmd::BarrierCmd(ExecutionStreamId execution_stream_id, ExecutionStreamId from_stream_id) : CommandBufferCmd(CommandBufferCmdType::kBarrierCmd, execution_stream_id), from_stream_id_(from_stream_id) {} absl::Status BarrierCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { VLOG(5) << "BarrierCmd from stream " << from_stream_id_.value() << " to stream " << execution_stream_id().value(); if (from_stream_id_ != execution_stream_id()) { TF_RETURN_IF_ERROR(command_buffer->Barrier( CommandBufferCmd::GetExecutionScope(record_params, from_stream_id_), CommandBufferCmd::GetExecutionScope(record_params, execution_stream_id()))); } return absl::OkStatus(); } BarrierCmd::BufferUsageVector BarrierCmd::buffers() { return {}; } CollectiveCmd::CollectiveCmd(CommandBufferCmdType cmd_type, ExecutionStreamId execution_stream_id, ExecutionStreamId async_from_stream_id, NcclApi* nccl_api, NcclCollectiveConfig config) : CommandBufferCmd(cmd_type, execution_stream_id), async_from_stream_id_(async_from_stream_id), nccl_api_(nccl_api), config_(std::move(config)) {} absl::Status CollectiveCmd::BarrierIfAsync( se::CommandBuffer* command_buffer, se::StreamExecutor* executor, const CommandBufferCmd::RecordParams& record_params) { if (IsAsync()) { TF_RETURN_IF_ERROR( command_buffer->Barrier(CommandBufferCmd::GetExecutionScope( record_params, async_from_stream_id_), CommandBufferCmd::GetExecutionScope( record_params, execution_stream_id()))); VLOG(5) << "Insert Async barrier from stream " << async_from_stream_id_.value() << " to stream " << execution_stream_id().value(); } return absl::OkStatus(); } absl::Status CollectiveCmd::Prepare( const Thunk::PrepareParams& params, Thunk::ResourceRequests& resource_requests) { TF_ASSIGN_OR_RETURN( NcclCliqueKey clique_key, GetNcclCliqueKey(*params.collective_params, config().replica_groups, config().group_mode, nccl_stream_id(), GetAsyncStreamKind())); TF_ASSIGN_OR_RETURN( size_t num_local_participants, GetNumLocalParticipants(*params.collective_params, config().replica_groups, config().group_mode)); return resource_requests.AddClique(clique_key, num_local_participants); } absl::Status CollectiveCmd::AddTracedCommandBuffer( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer, absl::FunctionRef<absl::Status(se::Stream*)> trace) { TF_ASSIGN_OR_RETURN(std::unique_ptr<se::CommandBuffer> nested_cmd, se::TraceCommandBufferFactory::Create( execute_params.stream->parent(), execute_params.command_buffer_trace_stream, trace)); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); return command_buffer->AddNestedCommandBuffer(execution_scope_id, *nested_cmd); } AllReduceCmd::AllReduceCmd( ExecutionStreamId execution_stream_id, ExecutionStreamId async_from_stream_id, NcclApi* nccl_api, NcclCollectiveConfig config, ReductionKind reduction_kind, absl::Span<const NcclCollectiveThunk::Buffer> buffers) : CollectiveCmd(CommandBufferCmdType::kAllReduceCmd, execution_stream_id, async_from_stream_id, nccl_api, std::move(config)), reduction_kind_(reduction_kind), buffers_(buffers.begin(), buffers.end()) {} absl::Status AllReduceCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { TF_RETURN_IF_ERROR(BarrierIfAsync( command_buffer, execute_params.stream->parent(), record_params)); TF_ASSIGN_OR_RETURN( std::vector<DeviceBufferPair> device_buffers, ConvertToDeviceBuffers(execute_params.buffer_allocations, buffers_, config().operand_element_type)); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "AllReduceCmd: reduction=" << ReductionKindString(reduction_kind_) << "; execution_scope_id=" << execution_scope_id.value(); for (size_t i = 0; i < device_buffers.size(); ++i) { VLOG(5) << " Src: " << buffers_[i].source_buffer << " (" << device_buffers[i].source_buffer.opaque() << ")"; VLOG(5) << " Dst: " << buffers_[i].destination_buffer << " (" << device_buffers[i].destination_buffer.opaque() << ")"; } if (!execute_params.collective_params || !execute_params.collective_cliques) { return absl::InvalidArgumentError( "AllReduceCmd requires collective parameters and cliques"); } TF_ASSIGN_OR_RETURN( NcclCommHandleWrapper comm_handle, GetNcclComm(*execute_params.collective_params, *execute_params.collective_cliques, config().replica_groups, config().group_mode, nccl_stream_id(), GetAsyncStreamKind())); NcclApi::NcclCommHandle comm = comm_handle.comm_handle; NcclApi::ScopedPersistentPlanAllocator scoped_allocator( comm, tsl::MakeRef<NcclApi::PersistentPlanAllocator>( execute_params.buffer_allocations->device_ordinal(), execute_params.buffer_allocations->memory_allocator(), execute_params.stream)); return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return RunAllReduce(nccl_api(), reduction_kind_, device_buffers, *stream, comm); }); } CommandBufferCmd::BufferUsageVector AllReduceCmd::buffers() { BufferUsageVector buffer_usage; for (auto& buffer : buffers_) { buffer_usage.emplace_back(buffer.source_buffer, MemoryAccess::kRead); buffer_usage.emplace_back(buffer.destination_buffer, MemoryAccess::kWrite); } return buffer_usage; } ReduceScatterCmd::ReduceScatterCmd( ExecutionStreamId execution_stream_id, ExecutionStreamId async_from_stream_id, NcclApi* nccl_api, NcclCollectiveConfig config, ReductionKind reduction_kind, absl::Span<const NcclCollectiveThunk::Buffer> buffers) : CollectiveCmd(CommandBufferCmdType::kReduceScatter, execution_stream_id, async_from_stream_id, nccl_api, std::move(config)), reduction_kind_(reduction_kind), buffers_(buffers.begin(), buffers.end()) {} absl::Status ReduceScatterCmd::Record( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { TF_RETURN_IF_ERROR(BarrierIfAsync( command_buffer, execute_params.stream->parent(), record_params)); TF_ASSIGN_OR_RETURN( std::vector<DeviceBufferPair> device_buffers, ConvertToDeviceBuffers(execute_params.buffer_allocations, buffers_, config().operand_element_type)); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "ReduceScatterCmd: reduction=" << ReductionKindString(reduction_kind_) << "; execution_scope_id=" << execution_scope_id.value(); for (size_t i = 0; i < device_buffers.size(); ++i) { VLOG(5) << " Src: " << buffers_[i].source_buffer << " (" << device_buffers[i].source_buffer.opaque() << ")"; VLOG(5) << " Dst: " << buffers_[i].destination_buffer << " (" << device_buffers[i].destination_buffer.opaque() << ")"; } if (!execute_params.collective_params || !execute_params.collective_cliques) { return absl::InvalidArgumentError( "ReduceScatterCmd requires collective parameters and cliques"); } TF_ASSIGN_OR_RETURN( NcclCommHandleWrapper comm_handle, GetNcclComm(*execute_params.collective_params, *execute_params.collective_cliques, config().replica_groups, config().group_mode, nccl_stream_id(), GetAsyncStreamKind())); NcclApi::NcclCommHandle comm = comm_handle.comm_handle; NcclApi::ScopedPersistentPlanAllocator scoped_allocator( comm, tsl::MakeRef<NcclApi::PersistentPlanAllocator>( execute_params.buffer_allocations->device_ordinal(), execute_params.buffer_allocations->memory_allocator(), execute_params.stream)); return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return RunReduceScatter(nccl_api(), reduction_kind_, device_buffers, *stream, comm); }); } CommandBufferCmd::BufferUsageVector ReduceScatterCmd::buffers() { BufferUsageVector buffer_usage; for (auto& buffer : buffers_) { buffer_usage.emplace_back(buffer.source_buffer, MemoryAccess::kRead); buffer_usage.emplace_back(buffer.destination_buffer, MemoryAccess::kWrite); } return buffer_usage; } AllToAllCmd::AllToAllCmd(ExecutionStreamId execution_stream_id, ExecutionStreamId async_from_stream_id, NcclApi* nccl_api, NcclCollectiveConfig config, bool has_split_dimension, absl::Span<const NcclCollectiveThunk::Buffer> buffers) : CollectiveCmd(CommandBufferCmdType::kAllToAll, execution_stream_id, async_from_stream_id, nccl_api, std::move(config)), has_split_dimension_(has_split_dimension), buffers_(buffers.begin(), buffers.end()) {} absl::Status AllToAllCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { TF_RETURN_IF_ERROR(BarrierIfAsync( command_buffer, execute_params.stream->parent(), record_params)); TF_ASSIGN_OR_RETURN( std::vector<DeviceBufferPair> device_buffers, ConvertToDeviceBuffers(execute_params.buffer_allocations, buffers_, config().operand_element_type)); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "AllToAllCmd, has_split_dimension=" << has_split_dimension_ << ", execution_scope_id=" << execution_scope_id.value(); for (size_t i = 0; i < device_buffers.size(); ++i) { VLOG(5) << " Src: " << buffers_[i].source_buffer << " (" << device_buffers[i].source_buffer.opaque() << ")"; VLOG(5) << " Dst: " << buffers_[i].destination_buffer << " (" << device_buffers[i].destination_buffer.opaque() << ")"; } if (!execute_params.collective_params || !execute_params.collective_cliques) { return absl::InvalidArgumentError( "ReduceScatterCmd requires collective parameters and cliques"); } TF_ASSIGN_OR_RETURN( NcclCommHandleWrapper comm_handle, GetNcclComm(*execute_params.collective_params, *execute_params.collective_cliques, config().replica_groups, config().group_mode, nccl_stream_id(), GetAsyncStreamKind())); NcclApi::NcclCommHandle comm = comm_handle.comm_handle; NcclApi::ScopedPersistentPlanAllocator scoped_allocator( comm, tsl::MakeRef<NcclApi::PersistentPlanAllocator>( execute_params.buffer_allocations->device_ordinal(), execute_params.buffer_allocations->memory_allocator(), execute_params.stream)); return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return RunAllToAll(nccl_api(), has_split_dimension_, device_buffers, *stream, comm); }); } CommandBufferCmd::BufferUsageVector AllToAllCmd::buffers() { BufferUsageVector buffer_usage; for (auto& buffer : buffers_) { buffer_usage.emplace_back(buffer.source_buffer, MemoryAccess::kRead); buffer_usage.emplace_back(buffer.destination_buffer, MemoryAccess::kWrite); } return buffer_usage; } AllGatherCmd::AllGatherCmd( ExecutionStreamId execution_stream_id, ExecutionStreamId async_from_stream_id, NcclApi* nccl_api, NcclCollectiveConfig config, absl::Span<const NcclCollectiveThunk::Buffer> buffers) : CollectiveCmd(CommandBufferCmdType::kAllGatherCmd, execution_stream_id, async_from_stream_id, nccl_api, std::move(config)), buffers_(buffers.begin(), buffers.end()) {} absl::Status AllGatherCmd::Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { TF_RETURN_IF_ERROR(BarrierIfAsync( command_buffer, execute_params.stream->parent(), record_params)); TF_ASSIGN_OR_RETURN( std::vector<DeviceBufferPair> device_buffers, ConvertToDeviceBuffers(execute_params.buffer_allocations, buffers_, config().operand_element_type)); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "AllGatherCmd: execution_scope_id=" << execution_scope_id.value(); for (size_t i = 0; i < device_buffers.size(); ++i) { VLOG(5) << " Src: " << buffers_[i].source_buffer << " (" << device_buffers[i].source_buffer.opaque() << ")"; VLOG(5) << " Dst: " << buffers_[i].destination_buffer << " (" << device_buffers[i].destination_buffer.opaque() << ")"; } if (!execute_params.collective_params || !execute_params.collective_cliques) { return absl::InvalidArgumentError( "AllGatherCmd requires collective parameters and cliques"); } TF_ASSIGN_OR_RETURN( NcclCommHandleWrapper comm_handle, GetNcclComm(*execute_params.collective_params, *execute_params.collective_cliques, config().replica_groups, config().group_mode, nccl_stream_id(), GetAsyncStreamKind())); NcclApi::NcclCommHandle comm = comm_handle.comm_handle; NcclApi::ScopedPersistentPlanAllocator scoped_allocator( comm, tsl::MakeRef<NcclApi::PersistentPlanAllocator>( execute_params.buffer_allocations->device_ordinal(), execute_params.buffer_allocations->memory_allocator(), execute_params.stream)); return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return RunAllGather(nccl_api(), device_buffers, *stream, comm); }); } CommandBufferCmd::BufferUsageVector AllGatherCmd::buffers() { BufferUsageVector buffer_usage; for (auto& buffer : buffers_) { buffer_usage.emplace_back(buffer.source_buffer, MemoryAccess::kRead); buffer_usage.emplace_back(buffer.destination_buffer, MemoryAccess::kWrite); } return buffer_usage; } CollectiveBroadcastCmd::CollectiveBroadcastCmd( ExecutionStreamId execution_stream_id, ExecutionStreamId async_from_stream_id, NcclApi* nccl_api, NcclCollectiveConfig config, absl::Span<const NcclCollectiveThunk::Buffer> buffers) : CollectiveCmd(CommandBufferCmdType::kCollectiveBroadcastCmd, execution_stream_id, async_from_stream_id, nccl_api, std::move(config)), buffers_(buffers.begin(), buffers.end()) {} absl::Status CollectiveBroadcastCmd::Record( const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) { TF_RETURN_IF_ERROR(BarrierIfAsync( command_buffer, execute_params.stream->parent(), record_params)); TF_ASSIGN_OR_RETURN( std::vector<DeviceBufferPair> device_buffers, ConvertToDeviceBuffers(execute_params.buffer_allocations, buffers_, config().operand_element_type)); ExecutionScopeId execution_scope_id = GetExecutionScope(record_params); VLOG(5) << "CollectiveBroadcastCmd: execution_scope_id=" << execution_scope_id.value(); for (size_t i = 0; i < device_buffers.size(); ++i) { VLOG(5) << " Src: " << buffers_[i].source_buffer << " (" << device_buffers[i].source_buffer.opaque() << ")"; VLOG(5) << " Dst: " << buffers_[i].destination_buffer << " (" << device_buffers[i].destination_buffer.opaque() << ")"; } if (!execute_params.collective_params || !execute_params.collective_cliques) { return absl::InvalidArgumentError( "CollectiveBroadcastCmd requires collective parameters and cliques"); } TF_ASSIGN_OR_RETURN( NcclCommHandleWrapper comm_handle, GetNcclComm(*execute_params.collective_params, *execute_params.collective_cliques, config().replica_groups, config().group_mode, nccl_stream_id(), GetAsyncStreamKind())); NcclApi::NcclCommHandle comm = comm_handle.comm_handle; NcclApi::ScopedPersistentPlanAllocator scoped_allocator( comm, tsl::MakeRef<NcclApi::PersistentPlanAllocator>( execute_params.buffer_allocations->device_ordinal(), execute_params.buffer_allocations->memory_allocator(), execute_params.stream)); return AddTracedCommandBuffer( execute_params, record_params, command_buffer, [&](se::Stream* stream) { return RunCollectiveBroadcast(device_buffers, *stream, comm, nccl_api()); }); } CommandBufferCmd::BufferUsageVector CollectiveBroadcastCmd::buffers() { BufferUsageVector buffer_usage; for (auto& buffer : buffers_) { buffer_usage.emplace_back(buffer.source_buffer, MemoryAccess::kRead); buffer_usage.emplace_back(buffer.destination_buffer, MemoryAccess::kWrite); } return buffer_usage; } }
#include "xla/service/gpu/runtime/command_buffer_cmd.h" #include <array> #include <cstdint> #include <vector> #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/launch_dimensions.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/platform_util.h" #include "xla/service/service_executable_run_options.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/gpu/gpu_test_kernels_fatbin.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" namespace xla::gpu { using BufferUsage = CommandBufferCmd::BufferUsage; using BufferUsageVector = CommandBufferCmd::BufferUsageVector; using MemoryAccess = CommandBufferCmd::MemoryAccess; static se::StreamExecutor* GpuExecutor() { auto name = absl::AsciiStrToUpper(PlatformUtil::CanonicalPlatformName("gpu").value()); auto* platform = se::PlatformManager::PlatformWithName(name).value(); return platform->ExecutorForDevice(0).value(); } static constexpr auto s0 = ExecutionStreamId(0); static constexpr auto s1 = ExecutionStreamId(1); struct TestOnlyCommandBufferCmd : public CommandBufferCmd { TestOnlyCommandBufferCmd(ExecutionStreamId execution_stream_id, BufferUsageVector buffer_usage) : CommandBufferCmd(CommandBufferCmdType::kUnknownCmd, execution_stream_id), buffer_usage(buffer_usage) {} absl::Status Record(const Thunk::ExecuteParams&, const RecordParams&, se::CommandBuffer*) override { return absl::OkStatus(); } BufferUsageVector buffers() override { return buffer_usage; } BufferUsageVector buffer_usage; }; class FakeCmd : public CommandBufferCmd { public: FakeCmd(ExecutionStreamId execution_stream_id) : CommandBufferCmd(CommandBufferCmdType::kTracedCommandBufferCmd, execution_stream_id) {} absl::Status Record(const Thunk::ExecuteParams& execute_params, const RecordParams& record_params, se::CommandBuffer* command_buffer) override { return absl::OkStatus(); } BufferUsageVector buffers() override { return BufferUsageVector{}; } }; TEST(CommandBufferCmdTest, SerializeExecution) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice1, MemoryAccess::kRead); CommandBufferCmdSequence commands( CommandBufferCmdSequence::SynchronizationMode::kSerialize); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), true); } TEST(CommandBufferCmdTest, NoReadBarrier) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice1, MemoryAccess::kRead); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); } TEST(CommandBufferCmdTest, NoWriteBarrier) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 200, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kWrite); auto use1 = BufferUsage(slice1, MemoryAccess::kWrite); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); } TEST(CommandBufferCmdTest, WriteConflictBarrier) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice0, MemoryAccess::kRead); auto use2 = BufferUsage(slice1, MemoryAccess::kWrite); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use1}); commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use2}); ASSERT_EQ(commands.barriers().size(), 3); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); EXPECT_EQ(commands.barriers().at(2), true); } TEST(CommandBufferCmdTest, NoWriteConflictsAcrossStreams) { BufferAllocation alloc0(0, 1024, 0); auto slice0 = BufferAllocation::Slice(&alloc0, 0, 100); auto slice1 = BufferAllocation::Slice(&alloc0, 50, 100); auto use0 = BufferUsage(slice0, MemoryAccess::kRead); auto use1 = BufferUsage(slice1, MemoryAccess::kWrite); CommandBufferCmdSequence commands; commands.Emplace<TestOnlyCommandBufferCmd>(s0, BufferUsageVector{use0}); commands.Emplace<TestOnlyCommandBufferCmd>(s1, BufferUsageVector{use1}); ASSERT_EQ(commands.barriers().size(), 2); EXPECT_EQ(commands.barriers().at(0), false); EXPECT_EQ(commands.barriers().at(1), false); } TEST(CommandBufferCmdTest, MemcpyCmd) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); CommandBufferCmdSequence commands; commands.Emplace<MemcpyDeviceToDeviceCmd>(s0, slice_b, slice_a, byte_length); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b}, 0, &allocator); CommandBufferCmd::StateManager state; Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); CommandBufferCmd::RecordParams record_params = {state}; auto command_buffer = executor->CreateCommandBuffer(se::CommandBuffer::Mode::kPrimary).value(); TF_ASSERT_OK(commands.Record(params, record_params, command_buffer.get())); TF_ASSERT_OK(command_buffer->Submit(stream.get())); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42)); } TEST(CommandBufferCmdTest, BarrierCmd) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> c = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> d = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> e = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); TF_ASSERT_OK(stream->MemZero(&d, byte_length)); TF_ASSERT_OK(stream->MemZero(&e, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation alloc_c(2, byte_length, 0); BufferAllocation alloc_d(3, byte_length, 0); BufferAllocation alloc_e(4, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); BufferAllocation::Slice slice_c(&alloc_c, 0, byte_length); BufferAllocation::Slice slice_d(&alloc_d, 0, byte_length); BufferAllocation::Slice slice_e(&alloc_e, 0, byte_length); CommandBufferCmdSequence commands; commands.Emplace<MemcpyDeviceToDeviceCmd>(s0, slice_b, slice_a, byte_length); commands.Emplace<BarrierCmd>(s1, s0); commands.Emplace<MemcpyDeviceToDeviceCmd>(s1, slice_c, slice_b, byte_length); commands.Emplace<BarrierCmd>(s0, s1); commands.Emplace<MemcpyDeviceToDeviceCmd>(s0, slice_d, slice_c, byte_length); commands.Emplace<BarrierCmd>(s1, s0); commands.Emplace<MemcpyDeviceToDeviceCmd>(s1, slice_e, slice_d, byte_length); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b, c, d, e}, 0, &allocator); CommandBufferCmd::StateManager state; Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); CommandBufferCmd::RecordParams record_params = {state}; auto command_buffer = executor->CreateCommandBuffer(se::CommandBuffer::Mode::kPrimary).value(); TF_ASSERT_OK(commands.Record(params, record_params, command_buffer.get())); TF_ASSERT_OK(command_buffer->Submit(stream.get())); std::vector<int32_t> dst_b(4, 0); std::vector<int32_t> dst_c(4, 0); std::vector<int32_t> dst_d(4, 0); std::vector<int32_t> dst_e(4, 0); TF_ASSERT_OK(stream->Memcpy(dst_b.data(), b, byte_length)); TF_ASSERT_OK(stream->Memcpy(dst_c.data(), c, byte_length)); TF_ASSERT_OK(stream->Memcpy(dst_d.data(), d, byte_length)); TF_ASSERT_OK(stream->Memcpy(dst_e.data(), e, byte_length)); ASSERT_EQ(dst_b, std::vector<int32_t>(4, 42)); ASSERT_EQ(dst_c, std::vector<int32_t>(4, 42)); ASSERT_EQ(dst_d, std::vector<int32_t>(4, 42)); ASSERT_EQ(dst_e, std::vector<int32_t>(4, 42)); } TEST(CommandBufferCmdTest, LaunchCmd) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); int64_t length = 4; int64_t byte_length = sizeof(int32_t) * length; se::DeviceMemory<int32_t> a = executor->AllocateArray<int32_t>(length, 0); se::DeviceMemory<int32_t> b = executor->AllocateArray<int32_t>(length, 0); TF_ASSERT_OK(stream->Memset32(&a, 42, byte_length)); TF_ASSERT_OK(stream->MemZero(&b, byte_length)); BufferAllocation alloc_a(0, byte_length, 0); BufferAllocation alloc_b(1, byte_length, 0); BufferAllocation::Slice slice_a(&alloc_a, 0, byte_length); BufferAllocation::Slice slice_b(&alloc_b, 0, byte_length); auto args = {slice_a, slice_a, slice_b}; auto args_access = {MemoryAccess::kRead, MemoryAccess::kRead, MemoryAccess::kWrite}; CommandBufferCmdSequence commands; commands.Emplace<LaunchCmd>(s0, "AddI32", args, args_access, LaunchDimensions(1, 4), 0); TF_ASSERT_OK_AND_ASSIGN(std::vector<uint8_t> fatbin, se::gpu::GetGpuTestKernelsFatbin()); Thunk::ExecutableSource source = {{}, fatbin}; CommandBufferCmd::StateManager state; TF_ASSERT_OK(commands.Initialize({executor, source}, state)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({a, b}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); CommandBufferCmd::RecordParams record_params = {state}; auto command_buffer = executor->CreateCommandBuffer(se::CommandBuffer::Mode::kPrimary).value(); TF_ASSERT_OK(commands.Record(params, record_params, command_buffer.get())); TF_ASSERT_OK(command_buffer->Submit(stream.get())); std::vector<int32_t> dst(4, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), b, byte_length)); ASSERT_EQ(dst, std::vector<int32_t>(4, 42 + 42)); } TEST(CommandBufferCmdStateManageTest, GetOrCreateState) { struct TestState : public CommandBufferCmd::State { int32_t value = 0; }; CommandBufferCmd* cmd = reinterpret_cast<CommandBufferCmd*>(0x1234567); CommandBufferCmd::StateManager state_manager; auto* state0 = state_manager.GetOrNull<TestState>(cmd); ASSERT_EQ(state0, nullptr); auto* state1 = state_manager.GetOrCreate<TestState>(cmd); ASSERT_EQ(state1->value, 0); state1->value += 42; auto* state2 = state_manager.GetOrCreate<TestState>(cmd); ASSERT_EQ(state2->value, 42); ASSERT_EQ(state1, state2); } TEST(TracedCommandBuffer, GetOrUpdateCommandBuffer) { auto run_traced_test = [](int trace_cache_size) { se::StreamExecutor* executor = GpuExecutor(); auto stream = executor->CreateStream().value(); auto traced_cmd = FakeCmd(ExecutionStreamId(0)); BufferAllocation alloc0(0, 1024, 0); BufferAllocation alloc1(1, 1024, 0); CommandBufferCmd::BufferUsageVector buffers = { {BufferAllocation::Slice(&alloc0, 0, 1024), MemoryAccess::kRead}, {BufferAllocation::Slice(&alloc1, 0, 1024), MemoryAccess::kWrite}}; TracedCommandBuffer traced_cmd_buffer(&traced_cmd, buffers, trace_cache_size); se::DeviceMemoryBase mem0(reinterpret_cast<void*>(0x01234567)); se::DeviceMemoryBase mem1(reinterpret_cast<void*>(0x12345670)); se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({mem0, mem1}, 0, &allocator); int64_t num_calls = 0; auto trace = [&](se::Stream*) { num_calls++; return absl::OkStatus(); }; TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer0, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer1, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_EQ(command_buffer0, command_buffer1); EXPECT_EQ(num_calls, 1); se::DeviceMemoryBase mem2(reinterpret_cast<void*>(0x23456701)); allocations = BufferAllocations({mem0, mem2}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer2, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_NE(command_buffer0, command_buffer2); EXPECT_EQ(num_calls, 2); allocations = BufferAllocations({mem0, mem1}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer3, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_EQ(command_buffer0, command_buffer3); EXPECT_EQ(num_calls, 2); allocations = BufferAllocations({mem0, mem0}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer4, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_NE(command_buffer4, command_buffer3); ASSERT_NE(command_buffer4, command_buffer2); EXPECT_EQ(num_calls, 3); allocations = BufferAllocations({mem0, mem1}, 0, &allocator); TF_ASSERT_OK_AND_ASSIGN(auto* command_buffer5, traced_cmd_buffer.GetOrTraceCommandBuffer( &allocations, executor, stream.get(), trace)); ASSERT_EQ(command_buffer0, command_buffer5); EXPECT_EQ(num_calls, 3); }; run_traced_test(2); run_traced_test(3); } static void BM_GetOrTraceCommandBuffer(benchmark::State& state) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); BufferAllocation alloc0(0, 1024, 0); BufferAllocation alloc1(1, 1024, 0); CommandBufferCmd::BufferUsageVector buffers = { {BufferAllocation::Slice(&alloc0, 0, 1024), MemoryAccess::kRead}, {BufferAllocation::Slice(&alloc1, 0, 1024), MemoryAccess::kWrite}}; se::DeviceMemoryBase mem0(reinterpret_cast<void*>(0x01234567)); se::DeviceMemoryBase mem1(reinterpret_cast<void*>(0x12345670)); se::StreamExecutorMemoryAllocator allocator(executor); std::array<BufferAllocations, 4> allocations = { BufferAllocations({mem0, mem1}, 0, &allocator), BufferAllocations({mem1, mem0}, 0, &allocator), BufferAllocations({mem0, mem0}, 0, &allocator), BufferAllocations({mem1, mem1}, 0, &allocator), }; int32_t index = 0; auto traced_cmd = FakeCmd(ExecutionStreamId(0)); TracedCommandBuffer traced_cmd_buffer(&traced_cmd, buffers); auto trace = [](se::Stream*) { return absl::OkStatus(); }; absl::FunctionRef<absl::Status(se::Stream*)> trace_ref(trace); for (auto s : state) { TF_CHECK_OK(traced_cmd_buffer .GetOrTraceCommandBuffer(&allocations[index++ % 4], executor, stream.get(), trace_ref) .status()); } } BENCHMARK(BM_GetOrTraceCommandBuffer); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/command_buffer_cmd.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/command_buffer_cmd_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6a665630-8cc7-44cb-a331-2ac303dc883c
cpp
tensorflow/tensorflow
descriptor_pool_registry
tensorflow/core/util/proto/descriptor_pool_registry.cc
tensorflow/core/util/proto/descriptor_pool_registry_test.cc
#include <string> #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/proto/descriptor_pool_registry.h" namespace tensorflow { DescriptorPoolRegistry* DescriptorPoolRegistry::Global() { static DescriptorPoolRegistry* registry = new DescriptorPoolRegistry; return registry; } DescriptorPoolRegistry::DescriptorPoolFn* DescriptorPoolRegistry::Get( const string& source) { auto found = fns_.find(source); if (found == fns_.end()) return nullptr; return &found->second; } void DescriptorPoolRegistry::Register( const string& source, const DescriptorPoolRegistry::DescriptorPoolFn& pool_fn) { auto existing = Get(source); CHECK_EQ(existing, nullptr) << "descriptor pool for source: " << source << " already registered"; fns_.insert(std::pair<const string&, DescriptorPoolFn>(source, pool_fn)); } }
#include "tensorflow/core/util/proto/descriptor_pool_registry.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { struct Value { static Status Function( tensorflow::protobuf::DescriptorPool const** desc_pool, std::unique_ptr<tensorflow::protobuf::DescriptorPool>* owned_desc_pool) { return absl::OkStatus(); } }; REGISTER_DESCRIPTOR_POOL("TEST POOL 1", Value::Function); REGISTER_DESCRIPTOR_POOL("TEST POOL 2", Value::Function); } TEST(DescriptorPoolRegistryTest, TestBasic) { EXPECT_EQ(DescriptorPoolRegistry::Global()->Get("NON-EXISTENT"), nullptr); auto pool1 = DescriptorPoolRegistry::Global()->Get("TEST POOL 1"); EXPECT_NE(pool1, nullptr); auto pool2 = DescriptorPoolRegistry::Global()->Get("TEST POOL 2"); EXPECT_NE(pool2, nullptr); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/proto/descriptor_pool_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/proto/descriptor_pool_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5657ffe1-80dd-465c-9d29-73c706d6baa7
cpp
tensorflow/tensorflow
delegate_loader
tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.cc
tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader_test.cc
#include "tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.h" #include <dlfcn.h> #include <stdlib.h> #include <string.h> #include <cerrno> #include <string> #include "absl/strings/numbers.h" #include "tensorflow/lite/acceleration/configuration/c/stable_delegate.h" #include "tensorflow/lite/experimental/acceleration/compatibility/android_info.h" #include "tensorflow/lite/tools/logging.h" namespace tflite { namespace delegates { namespace utils { namespace { void setLibraryPathEnvironmentVariable(const std::string& delegate_path) { std::string directory_path = ""; size_t last_slash_index = delegate_path.rfind('/'); if (last_slash_index != std::string::npos) { directory_path = delegate_path.substr(0, last_slash_index); } if (setenv(kTfLiteLibraryPathEnvironmentVariable, directory_path.c_str(), 1) != 0) { TFLITE_LOG(WARN) << "Error setting environment variable " << kTfLiteLibraryPathEnvironmentVariable << " with error: " << strerror(errno); } } } using ::tflite::acceleration::AndroidInfo; using ::tflite::acceleration::RequestAndroidInfo; const TfLiteStableDelegate* LoadDelegateFromSharedLibrary( const std::string& delegate_path) { void* symbol_pointer = LoadSymbolFromSharedLibrary(delegate_path, kTfLiteStableDelegateSymbol); if (!symbol_pointer) { return nullptr; } return reinterpret_cast<const TfLiteStableDelegate*>(symbol_pointer); } void* LoadSymbolFromSharedLibrary(const std::string& delegate_path, const std::string& delegate_symbol) { void* delegate_lib_handle = nullptr; int dlopen_flags = RTLD_NOW | RTLD_LOCAL; int sdk_version; AndroidInfo android_info; if (RequestAndroidInfo(&android_info).ok() && absl::SimpleAtoi(android_info.android_sdk_version, &sdk_version) && sdk_version >= 23) { dlopen_flags |= RTLD_NODELETE; TFLITE_LOG(INFO) << "Android SDK level is " << sdk_version << ", using dlopen with RTLD_NODELETE."; } setLibraryPathEnvironmentVariable(delegate_path); delegate_lib_handle = dlopen(delegate_path.c_str(), dlopen_flags); if (!delegate_lib_handle) { TFLITE_LOG(ERROR) << "Failed to open library " << delegate_path << ": " << dlerror(); return nullptr; } void* symbol_pointer = dlsym(delegate_lib_handle, delegate_symbol.c_str()); if (!symbol_pointer) { TFLITE_LOG(ERROR) << "Failed to find " << delegate_symbol << " symbol: " << dlerror(); dlclose(delegate_lib_handle); return nullptr; } return symbol_pointer; } } } }
#include "tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.h" #include <cstdlib> #include <gtest/gtest.h> #include "tensorflow/lite/acceleration/configuration/c/stable_delegate.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/delegates/utils/experimental/sample_stable_delegate/sample_stable_delegate.h" namespace { using tflite::TFLiteSettings; using tflite::TFLiteSettingsBuilder; using tflite::delegates::utils::LoadDelegateFromSharedLibrary; using tflite::delegates::utils::LoadSymbolFromSharedLibrary; TEST(TfLiteDelegateLoaderUtilsTest, Simple) { const TfLiteStableDelegate* stable_delegate_handle = LoadDelegateFromSharedLibrary( "tensorflow/lite/delegates/utils/experimental/" "sample_stable_delegate/" "libtensorflowlite_sample_stable_delegate.so" ); ASSERT_NE(stable_delegate_handle, nullptr); EXPECT_STREQ(stable_delegate_handle->delegate_abi_version, TFL_STABLE_DELEGATE_ABI_VERSION); EXPECT_STREQ(stable_delegate_handle->delegate_name, tflite::example::kSampleStableDelegateName); EXPECT_STREQ(stable_delegate_handle->delegate_version, tflite::example::kSampleStableDelegateVersion); EXPECT_NE(stable_delegate_handle->delegate_plugin, nullptr); EXPECT_STREQ( getenv(tflite::delegates::utils::kTfLiteLibraryPathEnvironmentVariable), "tensorflow/lite/delegates/utils/experimental/" "sample_stable_delegate"); flatbuffers::FlatBufferBuilder flatbuffer_builder; TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder.Finish(tflite_settings); const TFLiteSettings* settings = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder.GetBufferPointer()); auto delegate = stable_delegate_handle->delegate_plugin->create(settings); ASSERT_NE(delegate, nullptr); EXPECT_EQ( stable_delegate_handle->delegate_plugin->get_delegate_errno(delegate), 0); stable_delegate_handle->delegate_plugin->destroy(delegate); } TEST(TfLiteDelegateLoaderUtilsTest, WrongSymbolReturnsNullptr) { void* symbol_pointer = LoadSymbolFromSharedLibrary( "tensorflow/lite/delegates/utils/experimental/" "sample_stable_delegate/libtensorflowlite_sample_stable_delegate.so", "NOT_REAL_SYMBOL"); EXPECT_EQ(symbol_pointer, nullptr); } TEST(TfLiteDelegateLoaderUtilsTest, MissingLibReturnsNullptr) { const TfLiteStableDelegate* stable_delegate_handle = LoadDelegateFromSharedLibrary("not_real_delegate.so"); EXPECT_EQ(stable_delegate_handle, nullptr); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/utils/experimental/stable_delegate/delegate_loader_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
4ee02b11-1f7f-48c0-be99-6a067fa5e82a
cpp
google/arolla
tuple_qtype
arolla/qtype/tuple_qtype.cc
arolla/qtype/tuple_qtype_test.cc
#include "arolla/qtype/tuple_qtype.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <sstream> #include <string> #include <utility> #include <vector> #include "absl/base/no_destructor.h" #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/derived_qtype.h" #include "arolla/qtype/named_field_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_slot.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/fast_dynamic_downcast_final.h" #include "arolla/util/fingerprint.h" #include "arolla/util/repr.h" #include "arolla/util/string.h" #include "arolla/util/unit.h" namespace arolla { namespace { class Tuple {}; class TupleQType final : public QType { public: static std::unique_ptr<TupleQType> Make( absl::Span<const QTypePtr> field_qtypes) { FrameLayout::Builder layout_builder; std::vector<TypedSlot> fields; fields.reserve(field_qtypes.size()); for (auto field_qtype : field_qtypes) { fields.push_back(AddSlot(field_qtype, &layout_builder)); } bool needTupleTag = true; for (const auto& field : fields) { if (field.byte_offset() == 0 && field.GetType()->type_layout().HasField(0, typeid(Tuple))) { needTupleTag = false; break; } } if (needTupleTag) { auto status = layout_builder.RegisterUnsafeSlot(0, 0, typeid(Tuple)); if (!status.ok()) { LOG(FATAL) << status; } } return std::make_unique<TupleQType>( field_qtypes, std::move(layout_builder).Build(), std::move(fields)); } TupleQType(absl::Span<const QTypePtr> field_qtypes, FrameLayout&& layout, std::vector<TypedSlot>&& fields) : QType(ConstructorArgs{ .name = absl::StrCat("tuple<", JoinTypeNames(field_qtypes), ">"), .type_info = typeid(Tuple), .type_layout = std::move(layout), .type_fields = std::move(fields), .qtype_specialization_key = "::arolla::TupleQType", }), field_qtypes_(field_qtypes.begin(), field_qtypes.end()) {} absl::Span<const QTypePtr> field_qtypes() const { return field_qtypes_; } void UnsafeCopy(const void* source, void* destination) const override { ConstFramePtr source_frame(source, &type_layout()); FramePtr destination_frame(destination, &type_layout()); for (const auto& field : type_fields()) { field.CopyTo(source_frame, field, destination_frame); } } void UnsafeCombineToFingerprintHasher( const void* source, FingerprintHasher* hasher) const override { hasher->Combine(type_fields().size()); for (const auto& field : type_fields()) { field.GetType()->UnsafeCombineToFingerprintHasher( static_cast<const char*>(source) + field.byte_offset(), hasher); } } ReprToken UnsafeReprToken(const void* source) const override { ConstFramePtr frame_ptr(source, &type_layout()); std::ostringstream result; result << "("; bool first = true; for (const auto& field : type_fields()) { result << NonFirstComma(first) << TypedRef::FromSlot(field, frame_ptr).Repr(); } result << ")"; return ReprToken{std::move(result).str()}; } private: std::vector<QTypePtr> field_qtypes_; }; class TupleQTypeRegistry { public: static TupleQTypeRegistry* instance() { static absl::NoDestructor<TupleQTypeRegistry> result; return result.get(); } QTypePtr GetQType(absl::Span<const QTypePtr> field_qtypes) ABSL_LOCKS_EXCLUDED(lock_) { { absl::ReaderMutexLock guard(&lock_); if (const auto it = registry_.find(field_qtypes); it != registry_.end()) { return it->second.get(); } } auto tuple_qtype = TupleQType::Make(field_qtypes); absl::MutexLock guard(&lock_); return registry_ .try_emplace(tuple_qtype->field_qtypes(), std::move(tuple_qtype)) .first->second.get(); } private: absl::Mutex lock_; absl::flat_hash_map<absl::Span<const QTypePtr>, std::unique_ptr<TupleQType>> registry_ ABSL_GUARDED_BY(lock_); }; template <typename T > TypedValue MakeTupleImpl(absl::Span<const T> fields) { std::vector<QTypePtr> field_types; field_types.reserve(fields.size()); for (const auto& field : fields) { field_types.push_back(field.GetType()); } auto status_or_result = TypedValue::FromFields(MakeTupleQType(field_types), fields); DCHECK_OK(status_or_result.status()); return status_or_result.value_or(TypedValue::FromValue(Unit{})); } template <typename T > absl::StatusOr<TypedValue> MakeNamedTupleImpl( absl::Span<const std::string> field_names, absl::Span<const T> fields) { std::vector<QTypePtr> field_qtypes; field_qtypes.reserve(fields.size()); for (const auto& field : fields) { field_qtypes.push_back(field.GetType()); } ASSIGN_OR_RETURN( auto named_tuple_qtype, MakeNamedTupleQType(field_names, MakeTupleQType(field_qtypes))); absl::StatusOr<TypedValue> result = TypedValue::FromFields(named_tuple_qtype, fields); DCHECK_OK(result.status()); return std::move(result).value_or(TypedValue::FromValue(Unit{})); } std::string NamedTupleQTypeName(absl::Span<const std::string> field_names, QTypePtr tuple_qtype) { constexpr size_t kMaxFieldNames = 5; std::ostringstream o; o << "namedtuple<"; size_t fields_to_report = std::min(field_names.size(), kMaxFieldNames); for (size_t i = 0; i != fields_to_report; ++i) { if (i != 0) { o << ","; } o << field_names[i] << "=" << tuple_qtype->type_fields()[i].GetType()->name(); } if (fields_to_report < field_names.size()) { o << ", [" << field_names.size() - fields_to_report << " fields]"; } o << ">"; return o.str(); } class NamedTupleQType final : public BasicDerivedQType, public NamedFieldQTypeInterface { public: NamedTupleQType(absl::Span<const std::string> field_names, QTypePtr tuple_qtype) : BasicDerivedQType(ConstructorArgs{ .name = NamedTupleQTypeName(field_names, tuple_qtype), .base_qtype = tuple_qtype, .qtype_specialization_key = "::arolla::NamedTupleQType", }), field_names_(field_names.begin(), field_names.end()) { name2index_.reserve(field_names.size()); int64_t id = 0; for (const std::string& name : field_names_) { name2index_.emplace(name, id++); } } absl::Span<const std::string> GetFieldNames() const final { return field_names_; } std::optional<int64_t> GetFieldIndexByName( absl::string_view field_name) const final { if (auto it = name2index_.find(field_name); it != name2index_.end()) { return it->second; } return std::nullopt; } private: absl::flat_hash_map<absl::string_view, int64_t> name2index_; std::vector<std::string> field_names_; }; class NamedTupleQTypeRegistry { public: static NamedTupleQTypeRegistry* instance() { static absl::NoDestructor<NamedTupleQTypeRegistry> result; return result.get(); } QTypePtr GetQType(absl::Span<const std::string> field_names, QTypePtr tuple_qtype) ABSL_LOCKS_EXCLUDED(lock_) { { absl::ReaderMutexLock guard(&lock_); if (const auto it = registry_.find({field_names, tuple_qtype}); it != registry_.end()) { return it->second.get(); } } auto named_tuple_qtype = std::make_unique<NamedTupleQType>(field_names, tuple_qtype); absl::MutexLock guard(&lock_); return registry_ .try_emplace({named_tuple_qtype->GetFieldNames(), tuple_qtype}, std::move(named_tuple_qtype)) .first->second.get(); } private: using RegistryKey = std::pair<absl::Span<const std::string>, QTypePtr>; absl::Mutex lock_; absl::flat_hash_map<RegistryKey, std::unique_ptr<NamedTupleQType>> registry_ ABSL_GUARDED_BY(lock_); }; } bool IsTupleQType(const QType* qtype) { return fast_dynamic_downcast_final<const TupleQType*>(qtype) != nullptr; } QTypePtr MakeTupleQType(absl::Span<const QTypePtr> field_qtypes) { return TupleQTypeRegistry::instance()->GetQType(field_qtypes); } TypedValue MakeTuple(absl::Span<const TypedRef> fields) { return MakeTupleImpl(fields); } TypedValue MakeTuple(absl::Span<const TypedValue> fields) { return MakeTupleImpl(fields); } absl::StatusOr<TypedValue> MakeNamedTuple( absl::Span<const std::string> field_names, absl::Span<const TypedRef> fields) { return MakeNamedTupleImpl(field_names, fields); } absl::StatusOr<TypedValue> MakeNamedTuple( absl::Span<const std::string> field_names, absl::Span<const TypedValue> fields) { return MakeNamedTupleImpl(field_names, fields); } bool IsNamedTupleQType(const QType* qtype) { return fast_dynamic_downcast_final<const NamedTupleQType*>(qtype) != nullptr; } absl::StatusOr<QTypePtr> MakeNamedTupleQType( absl::Span<const std::string> field_names, QTypePtr tuple_qtype) { if (!IsTupleQType(tuple_qtype)) { return absl::InvalidArgumentError(absl::StrFormat( "incorrect NamedTupleQType: expected tuple, found %s", tuple_qtype != nullptr ? tuple_qtype->name() : std::string("nullptr"))); } if (field_names.size() != tuple_qtype->type_fields().size()) { return absl::InvalidArgumentError(absl::StrFormat( "incorrect NamedTupleQType #field_names != #fields: %d vs %d", field_names.size(), tuple_qtype->type_fields().size())); } absl::flat_hash_set<absl::string_view> name_set; for (const std::string& name : field_names) { if (!name_set.insert(name).second) { return absl::InvalidArgumentError(absl::StrFormat( "incorrect NamedTupleQType: field name %s is duplicated", name)); } } return NamedTupleQTypeRegistry::instance()->GetQType(field_names, tuple_qtype); } }
#include "arolla/qtype/tuple_qtype.h" #include <cstddef> #include <cstdint> #include <optional> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/derived_qtype.h" #include "arolla/qtype/named_field_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/bytes.h" #include "arolla/util/testing/repr_token_eq.h" namespace arolla::testing { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::arolla::testing::ReprTokenEq; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::MatchesRegex; TEST(TupleQType, Empty) { auto qtype = MakeTupleQType({}); EXPECT_TRUE(IsTupleQType(qtype)); EXPECT_EQ(qtype->name(), "tuple<>"); EXPECT_EQ(qtype->type_layout().AllocSize(), 0); EXPECT_EQ(qtype->type_layout().AllocAlignment().value, 1); auto value = MakeTupleFromFields(); EXPECT_EQ(value.GetType(), qtype); EXPECT_EQ(value.GetFieldCount(), 0); EXPECT_THAT(value.GenReprToken(), ReprTokenEq("()")); } TEST(TupleQType, EmptyRegression) { auto qtype_0 = MakeTupleQType({}); auto qtype_1 = MakeTupleQType({qtype_0, qtype_0}); EXPECT_TRUE(IsTupleQType(qtype_1)); EXPECT_EQ(qtype_1->name(), "tuple<tuple<>,tuple<>>"); EXPECT_EQ(qtype_1->type_layout().AllocSize(), 0); EXPECT_EQ(qtype_1->type_layout().AllocAlignment().value, 1); auto value_0 = MakeTupleFromFields(); auto value_1 = MakeTupleFromFields(value_0, value_0); EXPECT_EQ(value_1.GetType(), qtype_1); auto copy_1 = TypedValue(value_1.AsRef()); EXPECT_EQ(value_1.GetFingerprint(), copy_1.GetFingerprint()); EXPECT_THAT(value_1.GenReprToken(), ReprTokenEq("((), ())")); } TEST(TupleQType, Trivial) { auto qtype = MakeTupleQType( {GetQType<int32_t>(), GetQType<double>(), GetQType<Bytes>()}); EXPECT_TRUE(IsTupleQType(qtype)); EXPECT_EQ(qtype->name(), "tuple<INT32,FLOAT64,BYTES>"); auto value = MakeTupleFromFields(int32_t{34}, double{17}, Bytes("Hello")); EXPECT_EQ(value.GetType(), qtype); EXPECT_EQ(value.GetFieldCount(), 3); EXPECT_THAT(value.GetField(0).As<int32_t>(), IsOkAndHolds(int32_t{34})); EXPECT_THAT(value.GetField(1).As<double>(), IsOkAndHolds(double{17.})); ASSERT_OK_AND_ASSIGN(Bytes bytes, value.GetField(2).As<Bytes>()); EXPECT_THAT(bytes, Eq(Bytes("Hello"))); EXPECT_THAT(value.GenReprToken(), ReprTokenEq("(34, float64{17}, b'Hello')")); } TEST(TupleQType, CopyTo) { auto qtype = MakeTupleQType( {GetQType<int32_t>(), GetQType<double>(), GetQType<Bytes>()}); EXPECT_TRUE(IsTupleQType(qtype)); EXPECT_EQ(qtype->name(), "tuple<INT32,FLOAT64,BYTES>"); auto value = MakeTupleFromFields(int32_t{34}, double{17}, Bytes("Hello")); EXPECT_THAT(value.GetField(0).As<int32_t>(), IsOkAndHolds(int32_t{34})); EXPECT_THAT(value.GetField(1).As<double>(), IsOkAndHolds(double{17.})); auto copy = TypedValue(value.AsRef()); EXPECT_EQ(value.GetFingerprint(), copy.GetFingerprint()); EXPECT_THAT(copy.GenReprToken(), ReprTokenEq("(34, float64{17}, b'Hello')")); } TEST(TupleQType, QValueFromFields) { auto qtype = MakeTupleQType({GetQType<int>(), GetQType<float>()}); { ASSERT_OK_AND_ASSIGN(auto qvalue, TypedValue::FromFields( qtype, {TypedRef::FromValue(2), TypedRef::FromValue(3.14f)})); EXPECT_THAT(qvalue.GetField(0).As<int>(), IsOkAndHolds(2)); EXPECT_THAT(qvalue.GetField(1).As<float>(), IsOkAndHolds(3.14f)); } { ASSERT_OK_AND_ASSIGN( auto qvalue, TypedValue::FromFields( qtype, {TypedValue::FromValue(2), TypedValue::FromValue(3.14f)})); EXPECT_THAT(qvalue.GetField(0).As<int>(), IsOkAndHolds(2)); EXPECT_THAT(qvalue.GetField(1).As<float>(), IsOkAndHolds(3.14f)); } { EXPECT_THAT(TypedValue::FromFields(qtype, {TypedValue::FromValue(2)}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected 2 values, got 1; " "compound_qtype=tuple<INT32,FLOAT32>"))); } { EXPECT_THAT(TypedValue::FromFields(qtype, {TypedValue::FromValue(2), TypedValue::FromValue(3)}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected fields[1]: FLOAT32, got INT32; " "compound_qtype=tuple<INT32,FLOAT32>"))); } } TEST(NamedTupleQType, Empty) { auto tuple_qtype = MakeTupleQType({}); ASSERT_OK_AND_ASSIGN(auto qtype, MakeNamedTupleQType({}, tuple_qtype)); EXPECT_TRUE(IsNamedTupleQType(qtype)); EXPECT_THAT(GetFieldNames(qtype), IsEmpty()); } TEST(NamedTupleQType, Trivial) { auto tuple_qtype = MakeTupleQType( {GetQType<int32_t>(), GetQType<double>(), GetQType<Bytes>()}); ASSERT_OK_AND_ASSIGN(auto qtype, MakeNamedTupleQType({"a", "b", "c"}, tuple_qtype)); EXPECT_TRUE(IsNamedTupleQType(qtype)); EXPECT_EQ(qtype->name(), "namedtuple<a=INT32,b=FLOAT64,c=BYTES>"); EXPECT_EQ(GetFieldIndexByName(nullptr, "a"), std::nullopt); EXPECT_EQ(GetFieldIndexByName(qtype, "a"), 0); EXPECT_EQ(GetFieldIndexByName(qtype, "b"), 1); EXPECT_EQ(GetFieldIndexByName(qtype, "c"), 2); EXPECT_EQ(GetFieldIndexByName(qtype, "d"), std::nullopt); EXPECT_THAT(GetFieldNames(qtype), ElementsAre("a", "b", "c")); EXPECT_EQ(GetFieldQTypeByName(nullptr, "a"), nullptr); EXPECT_EQ(GetFieldQTypeByName(qtype, "a"), GetQType<int32_t>()); EXPECT_EQ(GetFieldQTypeByName(qtype, "b"), GetQType<double>()); EXPECT_EQ(GetFieldQTypeByName(qtype, "c"), GetQType<Bytes>()); EXPECT_EQ(GetFieldQTypeByName(qtype, "d"), nullptr); auto derived_qtype_interface = dynamic_cast<const DerivedQTypeInterface*>(qtype); ASSERT_NE(derived_qtype_interface, nullptr); EXPECT_EQ(derived_qtype_interface->GetBaseQType(), tuple_qtype); { ASSERT_OK_AND_ASSIGN(auto qtype2, MakeNamedTupleQType({"a", "b", "c"}, tuple_qtype)); EXPECT_EQ(qtype, qtype2); EXPECT_THAT(GetFieldNames(qtype2), ElementsAre("a", "b", "c")); } { ASSERT_OK_AND_ASSIGN(auto qtype2, MakeNamedTupleQType({"c", "b", "a"}, tuple_qtype)); EXPECT_EQ(qtype2->name(), "namedtuple<c=INT32,b=FLOAT64,a=BYTES>"); EXPECT_EQ(GetFieldIndexByName(qtype2, "c"), 0); EXPECT_NE(qtype, qtype2); EXPECT_THAT(GetFieldNames(qtype2), ElementsAre("c", "b", "a")); } { auto tuple_qtype2 = MakeTupleQType( {GetQType<int32_t>(), GetQType<double>(), GetQType<int32_t>()}); ASSERT_OK_AND_ASSIGN(auto qtype2, MakeNamedTupleQType({"a", "b", "c"}, tuple_qtype2)); EXPECT_EQ(qtype2->name(), "namedtuple<a=INT32,b=FLOAT64,c=INT32>"); EXPECT_NE(qtype, qtype2); EXPECT_THAT(GetFieldNames(qtype2), ElementsAre("a", "b", "c")); } } TEST(NamedTupleQType, QValueFromFields) { auto tuple_qtype = MakeTupleQType({GetQType<int>(), GetQType<float>()}); ASSERT_OK_AND_ASSIGN(auto qtype, MakeNamedTupleQType({"a", "b"}, tuple_qtype)); { ASSERT_OK_AND_ASSIGN(auto qvalue, TypedValue::FromFields( qtype, {TypedRef::FromValue(2), TypedRef::FromValue(3.14f)})); EXPECT_TRUE(IsNamedTupleQType(qvalue.GetType())); EXPECT_EQ(qvalue.GetType(), qtype); EXPECT_THAT(qvalue.GetField(0).As<int>(), IsOkAndHolds(2)); EXPECT_THAT(qvalue.GetField(1).As<float>(), IsOkAndHolds(3.14f)); } { ASSERT_OK_AND_ASSIGN( auto qvalue, TypedValue::FromFields( qtype, {TypedValue::FromValue(2), TypedValue::FromValue(3.14f)})); EXPECT_TRUE(IsNamedTupleQType(qvalue.GetType())); EXPECT_EQ(qvalue.GetType(), qtype); EXPECT_THAT(qvalue.GetField(0).As<int>(), IsOkAndHolds(2)); EXPECT_THAT(qvalue.GetField(1).As<float>(), IsOkAndHolds(3.14f)); } { EXPECT_THAT( TypedValue::FromFields(qtype, {TypedValue::FromValue(2)}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected 2 values, got 1; " "compound_qtype=namedtuple<a=INT32,b=FLOAT32>"))); } { EXPECT_THAT( TypedValue::FromFields(qtype, {TypedValue::FromValue(2), TypedValue::FromValue(3)}), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected fields[1]: FLOAT32, got INT32; " "compound_qtype=namedtuple<a=INT32,b=FLOAT32>"))); } } TEST(NamedTupleQType, BigTuple) { constexpr size_t kFieldCount = 100; QTypePtr field_qtype = GetQType<int32_t>(); auto tuple_qtype = MakeTupleQType(std::vector<QTypePtr>{kFieldCount, field_qtype}); std::vector<std::string> names; for (size_t i = 0; i != kFieldCount; ++i) { names.push_back(std::to_string(i)); } ASSERT_OK_AND_ASSIGN(auto qtype, MakeNamedTupleQType(names, tuple_qtype)); EXPECT_TRUE(IsNamedTupleQType(qtype)); EXPECT_THAT(GetFieldNames(qtype), ElementsAreArray(names)); EXPECT_EQ(qtype->name(), "namedtuple<0=INT32,1=INT32,2=INT32,3=INT32,4=INT32, [95 fields]>"); } TEST(NamedTupleQType, Errors) { EXPECT_THAT( MakeNamedTupleQType({"a", "b"}, nullptr).status(), StatusIs(absl::StatusCode::kInvalidArgument, MatchesRegex(".*NamedTupleQType.*tuple.*found.*nullptr.*"))); EXPECT_THAT( MakeNamedTupleQType({"a", "b"}, GetQType<int32_t>()).status(), StatusIs(absl::StatusCode::kInvalidArgument, MatchesRegex(".*NamedTupleQType.*tuple.*found.*INT32.*"))); auto tuple_qtype = MakeTupleQType( {GetQType<int32_t>(), GetQType<double>(), GetQType<Bytes>()}); EXPECT_THAT(MakeNamedTupleQType({"a", "b"}, tuple_qtype).status(), StatusIs(absl::StatusCode::kInvalidArgument, MatchesRegex(".*NamedTupleQType.*2 vs 3.*"))); EXPECT_THAT(MakeNamedTupleQType({"a", "b", "a"}, tuple_qtype).status(), StatusIs(absl::StatusCode::kInvalidArgument, MatchesRegex(".*NamedTupleQType.*a.*duplicate.*"))); EXPECT_THAT(GetFieldNames(nullptr), IsEmpty()); EXPECT_THAT(GetFieldNames(GetQType<int32_t>()), IsEmpty()); } TEST(NamedTupleQType, GetFieldByNameAs) { ASSERT_OK_AND_ASSIGN(auto named_tuple, MakeNamedTuple( {"a", "b"}, {TypedRef::FromValue(2.0f), TypedRef::FromValue(3)})); EXPECT_THAT(GetFieldByNameAs<float>(named_tuple.AsRef(), "a"), IsOkAndHolds(2.0f)); EXPECT_THAT(GetFieldByNameAs<float>(named_tuple.AsRef(), "c").status(), StatusIs(absl::StatusCode::kInvalidArgument, MatchesRegex(".*no field named \"c\".*"))); EXPECT_THAT( GetFieldByNameAs<Bytes>(named_tuple.AsRef(), "a").status(), StatusIs( absl::StatusCode::kFailedPrecondition, HasSubstr("type mismatch: expected C++ type `float` (FLOAT32), got " "`arolla::Bytes`; while accessing field \"a\""))); } TEST(NamedTupleQType, MakeNamedTuple) { ASSERT_OK_AND_ASSIGN(auto named_tuple, MakeNamedTuple({"a", "b"}, {TypedRef::FromValue(2.0f), TypedRef::FromValue(3)})); ASSERT_OK_AND_ASSIGN( auto named_tuple_qtype, MakeNamedTupleQType( {"a", "b"}, MakeTupleQType({GetQType<float>(), GetQType<int>()}))); EXPECT_EQ(named_tuple.GetType(), named_tuple_qtype); EXPECT_THAT(named_tuple.GenReprToken(), ReprTokenEq("namedtuple<a=FLOAT32,b=INT32>{(2., 3)}")); EXPECT_EQ(named_tuple.GetFieldCount(), 2); } TEST(NamedTupleQType, MakeEmptyNamedTuple) { ASSERT_OK_AND_ASSIGN(auto named_tuple, MakeNamedTuple({}, absl::Span<const TypedRef>{})); ASSERT_OK_AND_ASSIGN(auto named_tuple_qtype, MakeNamedTupleQType({}, MakeTupleQType({}))); EXPECT_EQ(named_tuple.GetType(), named_tuple_qtype); EXPECT_THAT(named_tuple.GenReprToken(), ReprTokenEq("namedtuple<>{()}")); EXPECT_EQ(named_tuple.GetFieldCount(), 0); } TEST(NamedTupleQtype, MakeNamedTuple_SameFromTypedValueAndTypedRef) { ASSERT_OK_AND_ASSIGN(TypedValue named_tuple_from_values, MakeNamedTuple({"a", "b"}, {TypedValue::FromValue(2.0f), TypedValue::FromValue(3)})); ASSERT_OK_AND_ASSIGN(auto named_tuple_from_refs, MakeNamedTuple({"a", "b"}, {TypedRef::FromValue(2.0f), TypedRef::FromValue(3)})); EXPECT_EQ(named_tuple_from_values.GetFingerprint(), named_tuple_from_refs.GetFingerprint()); } TEST(NamedTupleQType, MakeNamedTuple_Error) { EXPECT_THAT( MakeNamedTuple({"a"}, {TypedValue::FromValue(2.0f), TypedValue::FromValue(3)}), StatusIs( absl::StatusCode::kInvalidArgument, MatchesRegex( "incorrect NamedTupleQType #field_names != #fields: 1 vs 2"))); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/tuple_qtype.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/qtype/tuple_qtype_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
37dcc1c8-b16f-4fd8-a653-6211c63fd914
cpp
tensorflow/tensorflow
auto_shard_dataset_op
tensorflow/core/kernels/data/experimental/auto_shard_dataset_op.cc
tensorflow/core/kernels/data/experimental/auto_shard_dataset_op_test.cc
#include "tensorflow/core/kernels/data/experimental/auto_shard_dataset_op.h" #include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace data { namespace experimental { constexpr const char* const AutoShardDatasetOp::kAutoShardPolicy; constexpr const char* const AutoShardDatasetOp::kDatasetType; constexpr const char* const AutoShardDatasetOp::kInputDataset; constexpr const char* const AutoShardDatasetOp::kNumWorkers; constexpr const char* const AutoShardDatasetOp::kNumReplicas; constexpr const char* const AutoShardDatasetOp::kIndex; constexpr const char* const AutoShardDatasetOp::kOutputTypes; constexpr const char* const AutoShardDatasetOp::kOutputShapes; constexpr char kOptimizerName[] = "tf_auto_shard"; AutoShardDatasetOp::AutoShardDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx), auto_shard_policy_(0) { if (ctx->HasAttr(kAutoShardPolicy)) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kAutoShardPolicy, &auto_shard_policy_)); } if (ctx->HasAttr(kNumReplicas)) { OP_REQUIRES_OK(ctx, ctx->GetAttr(kNumReplicas, &num_replicas_)); } } void AutoShardDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t index, num_workers, auto_shard_policy, num_replicas; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kNumWorkers, &num_workers)); OP_REQUIRES( ctx, num_workers > 0, errors::InvalidArgument("num_workers must be greater than zero.")); OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kIndex, &index)); OP_REQUIRES( ctx, index >= 0 && index < num_workers, errors::InvalidArgument("index must be between 0 and ", num_workers - 1)); auto_shard_policy = auto_shard_policy_; if (input->options().distribute_options().auto_shard_policy() != AutoShardPolicy::AUTO) { auto_shard_policy = input->options().distribute_options().auto_shard_policy(); } num_replicas = num_replicas_; auto config_factory = [num_workers, index, auto_shard_policy, num_replicas]() { return CreateConfig(num_workers, index, auto_shard_policy, num_replicas); }; core::RefCountPtr<DatasetBase> rewritten; OP_REQUIRES_OK(ctx, RewriteDataset(ctx, input, std::move(config_factory), false, &rewritten)); *output = rewritten.release(); } RewriterConfig AutoShardDatasetOp::CreateConfig(int64_t num_workers, int64_t index, int64_t auto_shard_policy, int64_t num_replicas) { RewriterConfig rewriter_config; rewriter_config.set_fail_on_optimizer_errors(true); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE); rewriter_config.add_optimizers(kOptimizerName); auto custom_optimizer = rewriter_config.add_custom_optimizers(); custom_optimizer->set_name(kOptimizerName); const std::array<std::pair<const char* const, int64_t>, 4> attr_pairs = { {{kNumWorkers, num_workers}, {kIndex, index}, {kAutoShardPolicy, auto_shard_policy}, {kNumReplicas, num_replicas}}}; for (const auto& pair : attr_pairs) { AttrValue attr; attr.set_i(pair.second); (*custom_optimizer->mutable_parameter_map())[pair.first] = attr; } return rewriter_config; } namespace { REGISTER_KERNEL_BUILDER(Name("AutoShardDataset").Device(DEVICE_CPU), AutoShardDatasetOp); REGISTER_KERNEL_BUILDER(Name("ExperimentalAutoShardDataset").Device(DEVICE_CPU), AutoShardDatasetOp); } } } }
#include "tensorflow/core/kernels/data/experimental/auto_shard_dataset_op.h" #include <string> #include "tensorflow/core/common_runtime/type_inference.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/kernels/data/shard_dataset_op.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace data { namespace experimental { namespace { constexpr char kNodeName[] = "auto_shard_dataset"; class AutoShardDatasetParams : public DatasetParams { public: template <typename T> AutoShardDatasetParams(T input_dataset_params, int64_t num_workers, int64_t index, int auto_shard_policy, int64_t num_replicas, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), num_workers_(num_workers), num_replicas_(num_replicas), index_(index), auto_shard_policy_(auto_shard_policy) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return CreateTensors<int64_t>(TensorShape({}), {{num_workers_}, {index_}}); } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back(AutoShardDatasetOp::kInputDataset); input_names->emplace_back(AutoShardDatasetOp::kNumWorkers); input_names->emplace_back(AutoShardDatasetOp::kIndex); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); attr_vector->emplace_back(AutoShardDatasetOp::kAutoShardPolicy, auto_shard_policy_); attr_vector->emplace_back(AutoShardDatasetOp::kNumReplicas, num_replicas_); attr_vector->emplace_back(AutoShardDatasetOp::kOutputTypes, output_dtypes_); attr_vector->emplace_back(AutoShardDatasetOp::kOutputShapes, output_shapes_); return absl::OkStatus(); } string dataset_type() const override { return AutoShardDatasetOp::kDatasetType; } private: int64_t num_workers_; int64_t num_replicas_; int64_t index_; int auto_shard_policy_; }; class AutoShardDatasetOpTest : public DatasetOpsTestBase {}; AutoShardDatasetParams AutoShardDatasetParams1() { return AutoShardDatasetParams(RangeDatasetParams(0, 10, 1), 5, 2, 0, 5, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AutoShardDatasetParams AutoShardDatasetParams2() { return AutoShardDatasetParams(RangeDatasetParams(0, 1, 1), 5, 2, 0, 5, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AutoShardDatasetParams AutoShardDatasetParams3() { return AutoShardDatasetParams(RangeDatasetParams(0, 10, 1), 4, 3, 0, 4, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AutoShardDatasetParams AutoShardDatasetParams4() { return AutoShardDatasetParams(RangeDatasetParams(0, 10, 1), 5, 7, 0, 5, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AutoShardDatasetParams AutoShardDatasetParams5() { return AutoShardDatasetParams(RangeDatasetParams(0, 10, 1), 5, -3, 0, 5, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AutoShardDatasetParams AutoShardDatasetParams6() { return AutoShardDatasetParams(RangeDatasetParams(0, 10, 1), -3, 1, 0, 5, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } AutoShardDatasetParams AutoShardDatasetParams7() { return AutoShardDatasetParams(RangeDatasetParams(0, 10, 1), 0, 1, 0, 5, {DT_INT64}, {PartialTensorShape({})}, kNodeName); } std::vector<GetNextTestCase<AutoShardDatasetParams>> GetNextTestCases() { return { {AutoShardDatasetParams1(), CreateTensors<int64_t>(TensorShape{}, {{2}, {7}})}, {AutoShardDatasetParams2(), {}}, {AutoShardDatasetParams3(), CreateTensors<int64_t>(TensorShape{}, {{3}, {7}})}}; } ITERATOR_GET_NEXT_TEST_P(AutoShardDatasetOpTest, AutoShardDatasetParams, GetNextTestCases()) TEST_F(AutoShardDatasetOpTest, InvalidArguments) { std::vector<AutoShardDatasetParams> invalid_dataset_params = { AutoShardDatasetParams4(), AutoShardDatasetParams5(), AutoShardDatasetParams6(), AutoShardDatasetParams7()}; for (const auto& dataset_params : invalid_dataset_params) { EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } REGISTER_OP("AutoShardDatasetOpTest>ConstTypeCtor") .Output("output: dtype") .Attr("value: tensor") .Attr("dtype: type") .SetTypeConstructor(full_type::Unary(TFT_TENSOR, "dtype")); static void add_identity_nodes(Node* node, Graph& graph, std::vector<Node*>& identity_nodes) { for (int i = 0; i < node->num_outputs(); i++) { Node* new_node; std::string name = absl::StrCat("Identity", i); TF_EXPECT_OK(NodeBuilder(name, "Identity") .Attr("T", node->output_type(i)) .Input(node, i) .Finalize(&graph, &new_node)); identity_nodes.push_back(new_node); } } static Status type_inference(Graph& graph) { GraphOptimizationPassOptions opt_options; std::unique_ptr<Graph> graph_ptr(new Graph(OpRegistry::Global())); graph_ptr->Copy(graph); opt_options.graph = &graph_ptr; opt_options.flib_def = graph.mutable_flib_def(); TypeInferencePass pass; return pass.Run(opt_options); } TEST_F(AutoShardDatasetOpTest, AutoShardDatasetTypeInference) { Graph graph(OpRegistry::Global()); Node* input_dataset; Node* num_workers; Node* index; Node* auto_shard_dataset; FullTypeDef input_dataset_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_RAGGED args { type_id: TFT_STRING } } } })pb", &input_dataset_t)); TensorProto tensor_proto; TF_EXPECT_OK(NodeBuilder("input_dataset", "Const") .Attr("value", tensor_proto) .Attr("dtype", DT_VARIANT) .Finalize(&graph, &input_dataset)); (*input_dataset->mutable_def()->mutable_experimental_type()) = input_dataset_t; TF_EXPECT_OK( NodeBuilder("num_workers", "AutoShardDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_INT64) .Finalize(&graph, &num_workers)); TF_EXPECT_OK(NodeBuilder("index", "AutoShardDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_INT64) .Finalize(&graph, &index)); TF_EXPECT_OK(NodeBuilder("AutoShardDataset", "AutoShardDataset") .Attr("output_types", {DT_VARIANT}) .Attr("output_shapes", {TensorShape({1})}) .Input(input_dataset) .Input(num_workers) .Input(index) .Finalize(&graph, &auto_shard_dataset)); std::vector<Node*> identity_nodes; add_identity_nodes(auto_shard_dataset, graph, identity_nodes); TF_EXPECT_OK(type_inference(graph)); EXPECT_TRUE(full_type::IsEqual(identity_nodes[0]->def().experimental_type(), input_dataset_t)) << "fulltype is\n" << identity_nodes[0]->def().experimental_type().DebugString() << "\nexpected\n" << input_dataset_t.DebugString(); } TEST_F(AutoShardDatasetOpTest, RebatchDatasetTypeInference) { Graph graph(OpRegistry::Global()); Node* input_dataset; Node* num_replicas; Node* rebatch_dataset; FullTypeDef input_dataset_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_RAGGED args { type_id: TFT_STRING } } } })pb", &input_dataset_t)); TensorProto tensor_proto; TF_EXPECT_OK(NodeBuilder("input_dataset", "Const") .Attr("value", tensor_proto) .Attr("dtype", DT_VARIANT) .Finalize(&graph, &input_dataset)); (*input_dataset->mutable_def()->mutable_experimental_type()) = input_dataset_t; TF_EXPECT_OK( NodeBuilder("num_replicas", "AutoShardDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_INT64) .Finalize(&graph, &num_replicas)); TF_EXPECT_OK(NodeBuilder("RebatchDataset", "RebatchDataset") .Attr("output_types", {DT_VARIANT}) .Attr("output_shapes", {TensorShape({1})}) .Input(input_dataset) .Input(num_replicas) .Finalize(&graph, &rebatch_dataset)); std::vector<Node*> identity_nodes; add_identity_nodes(rebatch_dataset, graph, identity_nodes); TF_EXPECT_OK(type_inference(graph)); EXPECT_TRUE(full_type::IsEqual(identity_nodes[0]->def().experimental_type(), input_dataset_t)) << "fulltype is\n" << identity_nodes[0]->def().experimental_type().DebugString() << "\nexpected\n" << input_dataset_t.DebugString(); } TEST_F(AutoShardDatasetOpTest, RebatchDatasetV2TypeInference) { Graph graph(OpRegistry::Global()); Node* input_dataset; Node* batch_sizes; Node* drop_remainder; Node* rebatch_dataset_v2; FullTypeDef input_dataset_t; protobuf::TextFormat::Parser parser; CHECK(parser.ParseFromString( R"pb(type_id: TFT_PRODUCT args { type_id: TFT_DATASET args { type_id: TFT_PRODUCT args { type_id: TFT_RAGGED args { type_id: TFT_STRING } } } })pb", &input_dataset_t)); TensorProto tensor_proto; TF_EXPECT_OK(NodeBuilder("input_dataset", "Const") .Attr("value", tensor_proto) .Attr("dtype", DT_VARIANT) .Finalize(&graph, &input_dataset)); (*input_dataset->mutable_def()->mutable_experimental_type()) = input_dataset_t; TF_EXPECT_OK( NodeBuilder("num_replicas", "AutoShardDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_INT64) .Finalize(&graph, &batch_sizes)); TF_EXPECT_OK( NodeBuilder("drop_remainder", "AutoShardDatasetOpTest>ConstTypeCtor") .Attr("value", tensor_proto) .Attr("dtype", DT_BOOL) .Finalize(&graph, &drop_remainder)); TF_EXPECT_OK(NodeBuilder("RebatchDatasetV2", "RebatchDatasetV2") .Attr("output_types", {DT_VARIANT}) .Attr("output_shapes", {TensorShape({1})}) .Input(input_dataset) .Input(batch_sizes) .Input(drop_remainder) .Finalize(&graph, &rebatch_dataset_v2)); std::vector<Node*> identity_nodes; add_identity_nodes(rebatch_dataset_v2, graph, identity_nodes); TF_EXPECT_OK(type_inference(graph)); EXPECT_TRUE(full_type::IsEqual(identity_nodes[0]->def().experimental_type(), input_dataset_t)) << "fulltype is\n" << identity_nodes[0]->def().experimental_type().DebugString() << "\nexpected\n" << input_dataset_t.DebugString(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/auto_shard_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/auto_shard_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dee11806-ee1a-48a5-8587-2f45b172a9ae
cpp
tensorflow/tensorflow
fuse_convolutions
tensorflow/tools/graph_transforms/fuse_convolutions.cc
tensorflow/tools/graph_transforms/fuse_convolutions_test.cc
#include "tensorflow/core/common_runtime/constant_folding.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/graph/subgraph.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/fold_constants_lib.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FuseResizePadAndConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"Conv2D", { {"MirrorPad", { {"ResizeBilinear"}, {"*"} } }, {"*"} } }, [](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& conv_node = match.node; const NodeDef& mirror_pad_node = match.inputs[0].node; const NodeDef& weights_node = match.inputs[1].node; const NodeDef& resize_node = match.inputs[0].inputs[0].node; const NodeDef& pad_dims_node = match.inputs[0].inputs[1].node; new_nodes->push_back(weights_node); new_nodes->push_back(pad_dims_node); NodeDef fused_conv; fused_conv.set_op("FusedResizeAndPadConv2D"); fused_conv.set_name(match.node.name()); AddNodeInput(resize_node.input(0), &fused_conv); AddNodeInput(resize_node.input(1), &fused_conv); AddNodeInput(mirror_pad_node.input(1), &fused_conv); AddNodeInput(conv_node.input(1), &fused_conv); CopyNodeAttr(resize_node, "align_corners", "resize_align_corners", &fused_conv); CopyNodeAttr(mirror_pad_node, "mode", "mode", &fused_conv); CopyNodeAttr(conv_node, "T", "T", &fused_conv); CopyNodeAttr(conv_node, "padding", "padding", &fused_conv); CopyNodeAttr(conv_node, "strides", "strides", &fused_conv); new_nodes->push_back(fused_conv); return OkStatus(); }, {}, &replaced_graph_def)); *output_graph_def = replaced_graph_def; return OkStatus(); } Status FuseResizeAndConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"Conv2D", { {"ResizeBilinear"}, {"*"} } }, [](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& conv_node = match.node; const NodeDef& resize_node = match.inputs[0].node; const NodeDef& weights_node = match.inputs[1].node; new_nodes->push_back(weights_node); NodeDef pad_dims_node; pad_dims_node.set_op("Const"); pad_dims_node.set_name(conv_node.name() + "_dummy_paddings"); SetNodeAttr("dtype", DT_INT32, &pad_dims_node); SetNodeTensorAttr<int32>("value", {4, 2}, {0, 0, 0, 0, 0, 0, 0, 0}, &pad_dims_node); new_nodes->push_back(pad_dims_node); NodeDef fused_conv; fused_conv.set_op("FusedResizeAndPadConv2D"); fused_conv.set_name(match.node.name()); AddNodeInput(resize_node.input(0), &fused_conv); AddNodeInput(resize_node.input(1), &fused_conv); AddNodeInput(pad_dims_node.name(), &fused_conv); AddNodeInput(conv_node.input(1), &fused_conv); CopyNodeAttr(resize_node, "align_corners", "resize_align_corners", &fused_conv); SetNodeAttr("mode", "REFLECT", &fused_conv); CopyNodeAttr(conv_node, "T", "T", &fused_conv); CopyNodeAttr(conv_node, "padding", "padding", &fused_conv); CopyNodeAttr(conv_node, "strides", "strides", &fused_conv); new_nodes->push_back(fused_conv); return OkStatus(); }, {}, &replaced_graph_def)); *output_graph_def = replaced_graph_def; return OkStatus(); } Status FusePadAndConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { GraphDef replaced_graph_def; TF_RETURN_IF_ERROR(ReplaceMatchingOpTypes( input_graph_def, {"Conv2D", { {"MirrorPad", { {"*"}, {"*"}, } }, {"*"} } }, [](const NodeMatch& match, const std::set<string>& input_nodes, const std::set<string>& output_nodes, std::vector<NodeDef>* new_nodes) { const NodeDef& conv_node = match.node; CHECK_EQ("Conv2D", conv_node.op()); const NodeDef& mirror_pad_node = match.inputs[0].node; CHECK_EQ("MirrorPad", mirror_pad_node.op()); const NodeDef& weights_node = match.inputs[1].node; const NodeDef& input_node = match.inputs[0].inputs[0].node; const NodeDef& pad_dims_node = match.inputs[0].inputs[1].node; new_nodes->push_back(weights_node); new_nodes->push_back(input_node); new_nodes->push_back(pad_dims_node); NodeDef fused_conv; fused_conv.set_op("FusedPadConv2D"); fused_conv.set_name(match.node.name()); AddNodeInput(mirror_pad_node.input(0), &fused_conv); AddNodeInput(mirror_pad_node.input(1), &fused_conv); AddNodeInput(conv_node.input(1), &fused_conv); CopyNodeAttr(mirror_pad_node, "mode", "mode", &fused_conv); CopyNodeAttr(conv_node, "T", "T", &fused_conv); CopyNodeAttr(conv_node, "padding", "padding", &fused_conv); CopyNodeAttr(conv_node, "strides", "strides", &fused_conv); new_nodes->push_back(fused_conv); return OkStatus(); }, {}, &replaced_graph_def)); *output_graph_def = replaced_graph_def; return OkStatus(); } REGISTER_GRAPH_TRANSFORM("fuse_resize_pad_and_conv", FuseResizePadAndConv); REGISTER_GRAPH_TRANSFORM("fuse_resize_and_conv", FuseResizeAndConv); REGISTER_GRAPH_TRANSFORM("fuse_pad_and_conv", FusePadAndConv); } }
#include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/sendrecv_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status FuseResizePadAndConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); Status FuseResizeAndConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); Status FusePadAndConv(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); class FuseConvolutionsTest : public ::testing::Test { protected: void TestFuseResizePadAndConv() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 2, 3, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Output resize_op = ResizeBilinear(root.WithOpName("resize_op"), input_op, Const(root.WithOpName("size"), {12, 4}), ResizeBilinear::AlignCorners(false)); Tensor pad_dims_data(DT_INT32, TensorShape({4, 2})); test::FillValues<int32>(&pad_dims_data, {0, 0, 1, 1, 2, 2, 0, 0}); Output pad_dims_op = Const(root.WithOpName("pad_dims_op"), Input::Initializer(pad_dims_data)); Output pad_op = MirrorPad(root.WithOpName("pad_op"), resize_op, pad_dims_op, "REFLECT"); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("output"), pad_op, weights_op, {1, 1, 1, 1}, "VALID"); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FuseResizePadAndConv(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("Conv2D", node.op()); EXPECT_NE("MirrorPad", node.op()); EXPECT_NE("ResizeBilinear", node.op()); } } void TestFuseResizeAndConv() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 2, 3, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Output resize_op = ResizeBilinear(root.WithOpName("resize_op"), input_op, Const(root.WithOpName("size"), {12, 4}), ResizeBilinear::AlignCorners(false)); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("output"), resize_op, weights_op, {1, 1, 1, 1}, "VALID"); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK(FuseResizeAndConv(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("Conv2D", node.op()); EXPECT_NE("ResizeBilinear", node.op()); } } void TestFusePadAndConv() { auto root = tensorflow::Scope::NewRootScope(); using namespace ::tensorflow::ops; Tensor input_data(DT_FLOAT, TensorShape({1, 2, 3, 2})); test::FillValues<float>( &input_data, {1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f, -1.0f, -4.0f, -2.0f, -5.0f, -3.0f, -6.0f}); Output input_op = Const(root.WithOpName("input_op"), Input::Initializer(input_data)); Tensor pad_dims_data(DT_INT32, TensorShape({4, 2})); test::FillValues<int32>(&pad_dims_data, {0, 0, 1, 1, 2, 2, 0, 0}); Output pad_dims_op = Const(root.WithOpName("pad_dims_op"), Input::Initializer(pad_dims_data)); Output pad_op = MirrorPad(root.WithOpName("pad_op"), input_op, pad_dims_op, "REFLECT"); Tensor weights_data(DT_FLOAT, TensorShape({1, 2, 2, 2})); test::FillValues<float>(&weights_data, {1.0f, 2.0f, 3.0f, 4.0f, 0.1f, 0.2f, 0.3f, 0.4f}); Output weights_op = Const(root.WithOpName("weights_op"), Input::Initializer(weights_data)); Output conv_op = Conv2D(root.WithOpName("output"), pad_op, weights_op, {1, 1, 1, 1}, "VALID"); GraphDef original_graph_def; TF_ASSERT_OK(root.ToGraphDef(&original_graph_def)); std::unique_ptr<Session> original_session(NewSession(SessionOptions())); TF_ASSERT_OK(original_session->Create(original_graph_def)); std::vector<Tensor> original_outputs; TF_ASSERT_OK(original_session->Run({}, {"output"}, {}, &original_outputs)); GraphDef fused_graph_def; TF_ASSERT_OK( FusePadAndConv(original_graph_def, {{}, {"output"}}, &fused_graph_def)); std::unique_ptr<Session> fused_session(NewSession(SessionOptions())); TF_ASSERT_OK(fused_session->Create(fused_graph_def)); std::vector<Tensor> fused_outputs; TF_ASSERT_OK(fused_session->Run({}, {"output"}, {}, &fused_outputs)); test::ExpectTensorNear<float>(original_outputs[0], fused_outputs[0], 1e-5); for (const NodeDef& node : fused_graph_def.node()) { EXPECT_NE("Conv2D", node.op()); EXPECT_NE("MirrorPad", node.op()); } } }; TEST_F(FuseConvolutionsTest, TestFuseResizePadAndConv) { TestFuseResizePadAndConv(); } TEST_F(FuseConvolutionsTest, TestFuseResizeAndConv) { TestFuseResizeAndConv(); } TEST_F(FuseConvolutionsTest, TestFusePadAndConv) { TestFusePadAndConv(); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/fuse_convolutions.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/fuse_convolutions_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
518097c4-f474-42d5-b007-433b27b9c447
cpp
google/quiche
chunked_buffer
quiche/http2/adapter/chunked_buffer.cc
quiche/http2/adapter/chunked_buffer_test.cc
#include "quiche/http2/adapter/chunked_buffer.h" #include <algorithm> #include <memory> #include <utility> #include <vector> namespace http2 { namespace adapter { namespace { constexpr size_t kKilobyte = 1024; size_t RoundUpToNearestKilobyte(size_t n) { return ((n - 1) | (kKilobyte - 1)) + 1; } } void ChunkedBuffer::Append(absl::string_view data) { const size_t to_copy = std::min(TailBytesFree(), data.size()); if (to_copy > 0) { chunks_.back().AppendSuffix(data.substr(0, to_copy)); data.remove_prefix(to_copy); } EnsureTailBytesFree(data.size()); chunks_.back().AppendSuffix(data); } void ChunkedBuffer::Append(std::unique_ptr<char[]> data, size_t size) { if (TailBytesFree() >= size) { Chunk& c = chunks_.back(); c.AppendSuffix(absl::string_view(data.get(), size)); return; } while (!chunks_.empty() && chunks_.front().Empty()) { chunks_.pop_front(); } absl::string_view v = {data.get(), size}; chunks_.push_back({std::move(data), size, v}); } absl::string_view ChunkedBuffer::GetPrefix() const { if (chunks_.empty()) { return ""; } return chunks_.front().live; } std::vector<absl::string_view> ChunkedBuffer::Read() const { std::vector<absl::string_view> result; result.reserve(chunks_.size()); for (const Chunk& c : chunks_) { result.push_back(c.live); } return result; } void ChunkedBuffer::RemovePrefix(size_t n) { while (!Empty() && n > 0) { Chunk& c = chunks_.front(); const size_t to_remove = std::min(n, c.live.size()); c.RemovePrefix(to_remove); n -= to_remove; if (c.Empty()) { TrimFirstChunk(); } } } bool ChunkedBuffer::Empty() const { return chunks_.empty() || (chunks_.size() == 1 && chunks_.front().live.empty()); } void ChunkedBuffer::Chunk::RemovePrefix(size_t n) { QUICHE_DCHECK_GE(live.size(), n); live.remove_prefix(n); } void ChunkedBuffer::Chunk::AppendSuffix(absl::string_view to_append) { QUICHE_DCHECK_GE(TailBytesFree(), to_append.size()); if (live.empty()) { std::copy(to_append.begin(), to_append.end(), data.get()); live = absl::string_view(data.get(), to_append.size()); } else { std::copy(to_append.begin(), to_append.end(), const_cast<char*>(live.data()) + live.size()); live = absl::string_view(live.data(), live.size() + to_append.size()); } } size_t ChunkedBuffer::TailBytesFree() const { if (chunks_.empty()) { return 0; } return chunks_.back().TailBytesFree(); } void ChunkedBuffer::EnsureTailBytesFree(size_t n) { if (TailBytesFree() >= n) { return; } const size_t to_allocate = RoundUpToNearestKilobyte(n); auto data = std::unique_ptr<char[]>(new char[to_allocate]); chunks_.push_back({std::move(data), to_allocate, ""}); } void ChunkedBuffer::TrimFirstChunk() { if (chunks_.empty() || (chunks_.size() == 1 && chunks_.front().size == kDefaultChunkSize)) { return; } chunks_.pop_front(); } } }
#include "quiche/http2/adapter/chunked_buffer.h" #include <algorithm> #include <initializer_list> #include <memory> #include <utility> #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace adapter { namespace { constexpr absl::string_view kLoremIpsum = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod " "tempor incididunt ut labore et dolore magna aliqua."; struct DataAndSize { std::unique_ptr<char[]> data; size_t size; }; DataAndSize MakeDataAndSize(absl::string_view source) { auto data = std::unique_ptr<char[]>(new char[source.size()]); std::copy(source.begin(), source.end(), data.get()); return {std::move(data), source.size()}; } TEST(ChunkedBufferTest, Empty) { ChunkedBuffer buffer; EXPECT_TRUE(buffer.Empty()); buffer.Append("some data"); EXPECT_FALSE(buffer.Empty()); buffer.RemovePrefix(9); EXPECT_TRUE(buffer.Empty()); } TEST(ChunkedBufferTest, ReusedAfterEmptied) { ChunkedBuffer buffer; buffer.Append("some data"); buffer.RemovePrefix(9); buffer.Append("different data"); EXPECT_EQ("different data", buffer.GetPrefix()); } TEST(ChunkedBufferTest, LargeAppendAfterEmptied) { ChunkedBuffer buffer; buffer.Append("some data"); EXPECT_THAT(buffer.GetPrefix(), testing::StartsWith("some data")); buffer.RemovePrefix(9); auto more_data = MakeDataAndSize(absl::StrCat("different data", std::string(2048, 'x'))); buffer.Append(std::move(more_data.data), more_data.size); EXPECT_THAT(buffer.GetPrefix(), testing::StartsWith("different data")); } TEST(ChunkedBufferTest, LargeAppends) { ChunkedBuffer buffer; buffer.Append(std::string(500, 'a')); buffer.Append(std::string(2000, 'b')); buffer.Append(std::string(10, 'c')); auto more_data = MakeDataAndSize(std::string(4490, 'd')); buffer.Append(std::move(more_data.data), more_data.size); EXPECT_EQ(500 + 2000 + 10 + 4490, absl::StrJoin(buffer.Read(), "").size()); } TEST(ChunkedBufferTest, RemovePartialPrefix) { ChunkedBuffer buffer; auto data_and_size = MakeDataAndSize(kLoremIpsum); buffer.Append(std::move(data_and_size.data), data_and_size.size); buffer.RemovePrefix(6); EXPECT_THAT(buffer.GetPrefix(), testing::StartsWith("ipsum")); buffer.RemovePrefix(20); EXPECT_THAT(buffer.GetPrefix(), testing::StartsWith(", consectetur")); buffer.Append(" Anday igpay atinlay!"); const std::initializer_list<absl::string_view> parts = { kLoremIpsum.substr(26), " Anday igpay atinlay!"}; EXPECT_EQ(absl::StrJoin(parts, ""), absl::StrJoin(buffer.Read(), "")); } TEST(ChunkedBufferTest, DifferentAppends) { ChunkedBuffer buffer; buffer.Append("Lorem ipsum"); auto more_data = MakeDataAndSize(" dolor sit amet, "); buffer.Append(std::move(more_data.data), more_data.size); buffer.Append("consectetur adipiscing elit, "); more_data = MakeDataAndSize("sed do eiusmod tempor incididunt ut "); buffer.Append(std::move(more_data.data), more_data.size); buffer.Append("labore et dolore magna aliqua."); EXPECT_EQ(kLoremIpsum, absl::StrJoin(buffer.Read(), "")); buffer.RemovePrefix(kLoremIpsum.size()); EXPECT_TRUE(buffer.Empty()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/chunked_buffer.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/adapter/chunked_buffer_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
3e2c2113-a259-4ad9-9ee0-e4be27194ce0
cpp
abseil/abseil-cpp
bind_front
absl/functional/bind_front.h
absl/functional/bind_front_test.cc
#ifndef ABSL_FUNCTIONAL_BIND_FRONT_H_ #define ABSL_FUNCTIONAL_BIND_FRONT_H_ #if defined(__cpp_lib_bind_front) && __cpp_lib_bind_front >= 201907L #include <functional> #endif #include <utility> #include "absl/functional/internal/front_binder.h" #include "absl/utility/utility.h" namespace absl { ABSL_NAMESPACE_BEGIN #if defined(__cpp_lib_bind_front) && __cpp_lib_bind_front >= 201907L using std::bind_front; #else template <class F, class... BoundArgs> constexpr functional_internal::bind_front_t<F, BoundArgs...> bind_front( F&& func, BoundArgs&&... args) { return functional_internal::bind_front_t<F, BoundArgs...>( absl::in_place, std::forward<F>(func), std::forward<BoundArgs>(args)...); } #endif ABSL_NAMESPACE_END } #endif
#include "absl/functional/bind_front.h" #include <stddef.h> #include <functional> #include <memory> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/memory/memory.h" namespace { char CharAt(const char* s, size_t index) { return s[index]; } TEST(BindTest, Basics) { EXPECT_EQ('C', absl::bind_front(CharAt)("ABC", 2)); EXPECT_EQ('C', absl::bind_front(CharAt, "ABC")(2)); EXPECT_EQ('C', absl::bind_front(CharAt, "ABC", 2)()); } TEST(BindTest, Lambda) { auto lambda = [](int x, int y, int z) { return x + y + z; }; EXPECT_EQ(6, absl::bind_front(lambda)(1, 2, 3)); EXPECT_EQ(6, absl::bind_front(lambda, 1)(2, 3)); EXPECT_EQ(6, absl::bind_front(lambda, 1, 2)(3)); EXPECT_EQ(6, absl::bind_front(lambda, 1, 2, 3)()); } struct Functor { std::string operator()() & { return "&"; } std::string operator()() const& { return "const&"; } std::string operator()() && { return "&&"; } std::string operator()() const&& { return "const&&"; } }; TEST(BindTest, PerfectForwardingOfBoundArgs) { auto f = absl::bind_front(Functor()); const auto& cf = f; EXPECT_EQ("&", f()); EXPECT_EQ("const&", cf()); EXPECT_EQ("&&", std::move(f)()); EXPECT_EQ("const&&", std::move(cf)()); } struct ArgDescribe { std::string operator()(int&) const { return "&"; } std::string operator()(const int&) const { return "const&"; } std::string operator()(int&&) const { return "&&"; } std::string operator()(const int&&) const { return "const&&"; } }; TEST(BindTest, PerfectForwardingOfFreeArgs) { ArgDescribe f; int i; EXPECT_EQ("&", absl::bind_front(f)(static_cast<int&>(i))); EXPECT_EQ("const&", absl::bind_front(f)(static_cast<const int&>(i))); EXPECT_EQ("&&", absl::bind_front(f)(static_cast<int&&>(i))); EXPECT_EQ("const&&", absl::bind_front(f)(static_cast<const int&&>(i))); } struct NonCopyableFunctor { NonCopyableFunctor() = default; NonCopyableFunctor(const NonCopyableFunctor&) = delete; NonCopyableFunctor& operator=(const NonCopyableFunctor&) = delete; const NonCopyableFunctor* operator()() const { return this; } }; TEST(BindTest, RefToFunctor) { NonCopyableFunctor ncf; auto bound_ncf = absl::bind_front(std::ref(ncf)); auto bound_ncf_copy = bound_ncf; EXPECT_EQ(&ncf, bound_ncf_copy()); } struct Struct { std::string value; }; TEST(BindTest, StoreByCopy) { Struct s = {"hello"}; auto f = absl::bind_front(&Struct::value, s); auto g = f; EXPECT_EQ("hello", f()); EXPECT_EQ("hello", g()); EXPECT_NE(&s.value, &f()); EXPECT_NE(&s.value, &g()); EXPECT_NE(&g(), &f()); } struct NonCopyable { explicit NonCopyable(const std::string& s) : value(s) {} NonCopyable(const NonCopyable&) = delete; NonCopyable& operator=(const NonCopyable&) = delete; std::string value; }; const std::string& GetNonCopyableValue(const NonCopyable& n) { return n.value; } TEST(BindTest, StoreByRef) { NonCopyable s("hello"); auto f = absl::bind_front(&GetNonCopyableValue, std::ref(s)); EXPECT_EQ("hello", f()); EXPECT_EQ(&s.value, &f()); auto g = std::move(f); EXPECT_EQ("hello", g()); EXPECT_EQ(&s.value, &g()); s.value = "goodbye"; EXPECT_EQ("goodbye", g()); } TEST(BindTest, StoreByCRef) { NonCopyable s("hello"); auto f = absl::bind_front(&GetNonCopyableValue, std::cref(s)); EXPECT_EQ("hello", f()); EXPECT_EQ(&s.value, &f()); auto g = std::move(f); EXPECT_EQ("hello", g()); EXPECT_EQ(&s.value, &g()); s.value = "goodbye"; EXPECT_EQ("goodbye", g()); } const std::string& GetNonCopyableValueByWrapper( std::reference_wrapper<NonCopyable> n) { return n.get().value; } TEST(BindTest, StoreByRefInvokeByWrapper) { NonCopyable s("hello"); auto f = absl::bind_front(GetNonCopyableValueByWrapper, std::ref(s)); EXPECT_EQ("hello", f()); EXPECT_EQ(&s.value, &f()); auto g = std::move(f); EXPECT_EQ("hello", g()); EXPECT_EQ(&s.value, &g()); s.value = "goodbye"; EXPECT_EQ("goodbye", g()); } TEST(BindTest, StoreByPointer) { NonCopyable s("hello"); auto f = absl::bind_front(&NonCopyable::value, &s); EXPECT_EQ("hello", f()); EXPECT_EQ(&s.value, &f()); auto g = std::move(f); EXPECT_EQ("hello", g()); EXPECT_EQ(&s.value, &g()); } int Sink(std::unique_ptr<int> p) { return *p; } std::unique_ptr<int> Factory(int n) { return absl::make_unique<int>(n); } TEST(BindTest, NonCopyableArg) { EXPECT_EQ(42, absl::bind_front(Sink)(absl::make_unique<int>(42))); EXPECT_EQ(42, absl::bind_front(Sink, absl::make_unique<int>(42))()); } TEST(BindTest, NonCopyableResult) { EXPECT_THAT(absl::bind_front(Factory)(42), ::testing::Pointee(42)); EXPECT_THAT(absl::bind_front(Factory, 42)(), ::testing::Pointee(42)); } template <class T> struct FalseCopyable { FalseCopyable() {} FalseCopyable(const FalseCopyable& other) : m(other.m) {} FalseCopyable(FalseCopyable&& other) : m(std::move(other.m)) {} T m; }; int GetMember(FalseCopyable<std::unique_ptr<int>> x) { return *x.m; } TEST(BindTest, WrappedMoveOnly) { FalseCopyable<std::unique_ptr<int>> x; x.m = absl::make_unique<int>(42); auto f = absl::bind_front(&GetMember, std::move(x)); EXPECT_EQ(42, std::move(f)()); } int Plus(int a, int b) { return a + b; } TEST(BindTest, ConstExpr) { constexpr auto f = absl::bind_front(CharAt); EXPECT_EQ(f("ABC", 1), 'B'); static constexpr int five = 5; constexpr auto plus5 = absl::bind_front(Plus, five); EXPECT_EQ(plus5(1), 6); #if !(defined(_MSC_VER) && _MSC_VER < 1910) static constexpr char data[] = "DEF"; constexpr auto g = absl::bind_front(CharAt, data); EXPECT_EQ(g(1), 'E'); #endif } struct ManglingCall { int operator()(int, double, std::string) const { return 0; } }; TEST(BindTest, Mangling) { absl::bind_front(ManglingCall{}, 1, 3.3)("A"); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/functional/bind_front.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/functional/bind_front_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
4318bf3e-f2f8-4868-a881-8c5e2a50ffeb
cpp
tensorflow/tensorflow
repository
tensorflow/core/profiler/convert/repository.cc
tensorflow/core/profiler/convert/repository_test.cc
#include "tensorflow/core/profiler/convert/repository.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "xla/tsl/profiler/utils/file_system_utils.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/statusor.h" #include "tsl/platform/errors.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { std::string GetHostnameByPath(absl::string_view xspace_path) { std::string_view file_name = tensorflow::io::Basename(xspace_path); absl::ConsumeSuffix(&file_name, ".xplane.pb"); return std::string(file_name); } } absl::StatusOr<SessionSnapshot> SessionSnapshot::Create( std::vector<std::string> xspace_paths, std::optional<std::vector<std::unique_ptr<XSpace>>> xspaces) { if (xspace_paths.empty()) { return errors::InvalidArgument("Can not find XSpace path."); } if (xspaces.has_value()) { if (xspaces->size() != xspace_paths.size()) { return errors::InvalidArgument( "The size of the XSpace paths: ", xspace_paths.size(), " is not equal ", "to the size of the XSpace proto: ", xspaces->size()); } for (size_t i = 0; i < xspace_paths.size(); ++i) { auto host_name = GetHostnameByPath(xspace_paths.at(i)); if (xspaces->at(i)->hostnames_size() > 0 && !host_name.empty()) { if (!absl::StrContains(host_name, xspaces->at(i)->hostnames(0))) { return errors::InvalidArgument( "The hostname of xspace path and preloaded xpace don't match at " "index: ", i, ". \nThe host name of xpace path is ", host_name, " but the host name of preloaded xpace is ", xspaces->at(i)->hostnames(0), "."); } } } } return SessionSnapshot(std::move(xspace_paths), std::move(xspaces)); } absl::StatusOr<std::unique_ptr<XSpace>> SessionSnapshot::GetXSpace( size_t index) const { if (index >= xspace_paths_.size()) { return errors::InvalidArgument("Can not get the ", index, "th XSpace. The total number of XSpace is ", xspace_paths_.size()); } if (xspaces_.has_value()) { if (xspaces_->at(index) == nullptr) { return errors::Internal(""); } return std::move(xspaces_->at(index)); } auto xspace_from_file = std::make_unique<XSpace>(); TF_RETURN_IF_ERROR(tensorflow::ReadBinaryProto(tensorflow::Env::Default(), xspace_paths_.at(index), xspace_from_file.get())); return xspace_from_file; } absl::StatusOr<std::unique_ptr<XSpace>> SessionSnapshot::GetXSpaceByName( absl::string_view name) const { if (auto it = hostname_map_.find(name); it != hostname_map_.end()) { return GetXSpace(it->second); } return errors::InvalidArgument("Can not find the XSpace by name: ", name, ". The total number of XSpace is ", xspace_paths_.size()); } std::string SessionSnapshot::GetHostname(size_t index) const { return GetHostnameByPath(xspace_paths_.at(index)); } std::optional<std::string> SessionSnapshot::GetFilePath( absl::string_view toolname, absl::string_view hostname) const { if (!has_accessible_run_dir_) return std::nullopt; std::string file_name = ""; if (toolname == "trace_viewer@") file_name = absl::StrCat(hostname, ".", "SSTABLE"); if (!file_name.empty()) return tensorflow::io::JoinPath(session_run_dir_, file_name); return std::nullopt; } absl::StatusOr<std::string> SessionSnapshot::GetHostDataFileName( const StoredDataType data_type, const std::string host) const { for (const auto& format : *kHostDataSuffixes) { if (data_type == format.first) return absl::StrCat(host, format.second); } return absl::InternalError(&"Unknown StoredDataType: "[data_type]); } absl::StatusOr<std::optional<std::string>> SessionSnapshot::GetHostDataFilePath( const StoredDataType data_type, const std::string host) const { std::vector<std::string> results; TF_RETURN_IF_ERROR(::tsl::Env::Default()->GetChildren( std::string(GetSessionRunDir()), &results)); TF_ASSIGN_OR_RETURN(std::string filename, GetHostDataFileName(data_type, host)); for (const std::string& path : results) { if (absl::EndsWith(path, filename)) { return ::tsl::profiler::ProfilerJoinPath(GetSessionRunDir(), filename); } } return std::nullopt; } absl::StatusOr<std::pair<bool, std::string>> SessionSnapshot::HasCacheFile( const StoredDataType data_type) const { std::optional<std::string> filepath; TF_ASSIGN_OR_RETURN(filepath, GetHostDataFilePath(data_type, kNoHostIdentifier)); if (filepath) { return std::pair<bool, std::string>(true, std::string()); } TF_ASSIGN_OR_RETURN(filepath, GetHostDataFilePath(data_type, kAllHostsIdentifier)); if (filepath) { return std::pair<bool, std::string>(true, filepath.value()); } return std::pair<bool, std::string>(false, std::string()); } } }
#include "tensorflow/core/profiler/convert/repository.h" #include <memory> #include <optional> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/platform/errors.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { namespace { using ::testing::Eq; TEST(Repository, GetHostName) { auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname0.xplane.pb", "log/plugins/profile/hostname1.xplane.pb"}, std::nullopt); TF_CHECK_OK(session_snapshot_or.status()); EXPECT_THAT(session_snapshot_or.value().GetHostname(0), Eq("hostname0")); EXPECT_THAT(session_snapshot_or.value().GetHostname(1), Eq("hostname1")); EXPECT_TRUE(session_snapshot_or.value().HasAccessibleRunDir()); } TEST(Repository, GetHostNameWithPeriods) { auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/127.0.0.1_6009.xplane.pb"}, std::nullopt); TF_CHECK_OK(session_snapshot_or.status()); EXPECT_THAT(session_snapshot_or.value().GetHostname(0), Eq("127.0.0.1_6009")); EXPECT_TRUE(session_snapshot_or.value().HasAccessibleRunDir()); } TEST(Repository, GetSpaceByHostName) { std::vector<std::unique_ptr<XSpace>> xspaces; auto space1 = std::make_unique<XSpace>(); *(space1->add_hostnames()) = "hostname1"; xspaces.push_back(std::move(space1)); auto space0 = std::make_unique<XSpace>(); *(space0->add_hostnames()) = "hostname0"; xspaces.push_back(std::move(space0)); auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname1.xplane.pb", "log/plugins/profile/hostname0.xplane.pb"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); auto xspace0_or = session_snapshot_or.value().GetXSpaceByName("hostname0"); TF_CHECK_OK(xspace0_or.status()); auto xspace1_or = session_snapshot_or.value().GetXSpaceByName("hostname1"); EXPECT_FALSE(session_snapshot_or.value().HasAccessibleRunDir()); TF_CHECK_OK(xspace1_or.status()); EXPECT_THAT(xspace0_or.value()->hostnames(0), Eq("hostname0")); EXPECT_THAT(xspace1_or.value()->hostnames(0), Eq("hostname1")); } TEST(Repository, GetSSTableFile) { auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname0.xplane.pb"}, std::nullopt); TF_CHECK_OK(session_snapshot_or.status()); auto sstable_path = session_snapshot_or.value().GetFilePath("trace_viewer@", "hostname0"); auto not_found_path = session_snapshot_or.value().GetFilePath("memory_viewer", "hostname0"); EXPECT_THAT(sstable_path, Eq("log/plugins/profile/hostname0.SSTABLE")); EXPECT_THAT(not_found_path, Eq(std::nullopt)); } TEST(Repository, GetSSTableFileWithXSpace) { std::vector<std::unique_ptr<XSpace>> xspaces; auto space0 = std::make_unique<XSpace>(); *(space0->add_hostnames()) = "hostname0"; xspaces.push_back(std::move(space0)); auto session_snapshot_or = SessionSnapshot::Create( {"log/plugins/profile/hostname0.xplane.pb"}, std::move(xspaces)); TF_CHECK_OK(session_snapshot_or.status()); auto file_path_init_by_xspace = session_snapshot_or.value().GetFilePath("trace_viewer@", "hostname0"); EXPECT_THAT(file_path_init_by_xspace, Eq(std::nullopt)); } TEST(Repository, MismatchedXSpaceAndPath) { std::vector<std::unique_ptr<XSpace>> xspaces; auto space1 = std::make_unique<XSpace>(); *(space1->add_hostnames()) = "hostname1"; xspaces.push_back(std::move(space1)); auto space0 = std::make_unique<XSpace>(); *(space0->add_hostnames()) = "hostname0"; xspaces.push_back(std::move(space0)); auto session_snapshot_or = SessionSnapshot::Create({"log/plugins/profile/hostname0.xplane.pb", "log/plugins/profile/hostname1.xplane.pb"}, std::move(xspaces)); auto error = R"(The hostname of xspace path and preloaded xpace don't match at index: 0. The host name of xpace path is hostname0 but the host name of preloaded xpace is hostname1.)"; EXPECT_THAT(session_snapshot_or.status(), Eq(errors::InvalidArgument(error))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/repository.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/repository_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9c3fc5bd-4746-4545-bf0f-040ceafb6a90
cpp
google/cel-cpp
flat_expr_builder_extensions
eval/compiler/flat_expr_builder_extensions.cc
eval/compiler/flat_expr_builder_extensions_test.cc
#include "eval/compiler/flat_expr_builder_extensions.h" #include <algorithm> #include <cstddef> #include <iterator> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/base/nullability.h" #include "absl/log/absl_check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "base/ast_internal/expr.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" namespace google::api::expr::runtime { namespace { using Subexpression = google::api::expr::runtime::ProgramBuilder::Subexpression; void MaybeReassignChildRecursiveProgram(Subexpression* parent) { if (parent->IsFlattened() || parent->IsRecursive()) { return; } if (parent->elements().size() != 1) { return; } auto* child_alternative = absl::get_if<std::unique_ptr<Subexpression>>(&parent->elements()[0]); if (child_alternative == nullptr) { return; } auto& child_subexpression = *child_alternative; if (!child_subexpression->IsRecursive()) { return; } auto child_program = child_subexpression->ExtractRecursiveProgram(); parent->set_recursive_program(std::move(child_program.step), child_program.depth); } } Subexpression::Subexpression(const cel::ast_internal::Expr* self, ProgramBuilder* owner) : self_(self), parent_(nullptr), subprogram_map_(owner->subprogram_map_) {} size_t Subexpression::ComputeSize() const { if (IsFlattened()) { return flattened_elements().size(); } else if (IsRecursive()) { return 1; } std::vector<const Subexpression*> to_expand{this}; size_t size = 0; while (!to_expand.empty()) { const auto* expr = to_expand.back(); to_expand.pop_back(); if (expr->IsFlattened()) { size += expr->flattened_elements().size(); continue; } else if (expr->IsRecursive()) { size += 1; continue; } for (const auto& elem : expr->elements()) { if (auto* child = absl::get_if<std::unique_ptr<Subexpression>>(&elem); child != nullptr) { to_expand.push_back(child->get()); } else { size += 1; } } } return size; } absl::optional<int> Subexpression::RecursiveDependencyDepth() const { auto* tree = absl::get_if<TreePlan>(&program_); int depth = 0; if (tree == nullptr) { return absl::nullopt; } for (const auto& element : *tree) { auto* subexpression = absl::get_if<std::unique_ptr<Subexpression>>(&element); if (subexpression == nullptr) { return absl::nullopt; } if (!(*subexpression)->IsRecursive()) { return absl::nullopt; } depth = std::max(depth, (*subexpression)->recursive_program().depth); } return depth; } std::vector<std::unique_ptr<DirectExpressionStep>> Subexpression::ExtractRecursiveDependencies() const { auto* tree = absl::get_if<TreePlan>(&program_); std::vector<std::unique_ptr<DirectExpressionStep>> dependencies; if (tree == nullptr) { return {}; } for (const auto& element : *tree) { auto* subexpression = absl::get_if<std::unique_ptr<Subexpression>>(&element); if (subexpression == nullptr) { return {}; } if (!(*subexpression)->IsRecursive()) { return {}; } dependencies.push_back((*subexpression)->ExtractRecursiveProgram().step); } return dependencies; } Subexpression::~Subexpression() { auto map_ptr = subprogram_map_.lock(); if (map_ptr == nullptr) { return; } auto it = map_ptr->find(self_); if (it != map_ptr->end() && it->second == this) { map_ptr->erase(it); } } std::unique_ptr<Subexpression> Subexpression::ExtractChild( Subexpression* child) { if (IsFlattened()) { return nullptr; } for (auto iter = elements().begin(); iter != elements().end(); ++iter) { Subexpression::Element& element = *iter; if (!absl::holds_alternative<std::unique_ptr<Subexpression>>(element)) { continue; } auto& subexpression_owner = absl::get<std::unique_ptr<Subexpression>>(element); if (subexpression_owner.get() != child) { continue; } std::unique_ptr<Subexpression> result = std::move(subexpression_owner); elements().erase(iter); return result; } return nullptr; } int Subexpression::CalculateOffset(int base, int target) const { ABSL_DCHECK(!IsFlattened()); ABSL_DCHECK(!IsRecursive()); ABSL_DCHECK_GE(base, 0); ABSL_DCHECK_GE(target, 0); ABSL_DCHECK_LE(base, elements().size()); ABSL_DCHECK_LE(target, elements().size()); int sign = 1; if (target <= base) { int tmp = base; base = target - 1; target = tmp + 1; sign = -1; } int sum = 0; for (int i = base + 1; i < target; ++i) { const auto& element = elements()[i]; if (auto* subexpr = absl::get_if<std::unique_ptr<Subexpression>>(&element); subexpr != nullptr) { sum += (*subexpr)->ComputeSize(); } else { sum += 1; } } return sign * sum; } void Subexpression::Flatten() { struct Record { Subexpression* subexpr; size_t offset; }; if (IsFlattened()) { return; } std::vector<std::unique_ptr<const ExpressionStep>> flat; std::vector<Record> flatten_stack; flatten_stack.push_back({this, 0}); while (!flatten_stack.empty()) { Record top = flatten_stack.back(); flatten_stack.pop_back(); size_t offset = top.offset; auto* subexpr = top.subexpr; if (subexpr->IsFlattened()) { absl::c_move(subexpr->flattened_elements(), std::back_inserter(flat)); continue; } else if (subexpr->IsRecursive()) { flat.push_back(std::make_unique<WrappedDirectStep>( std::move(subexpr->ExtractRecursiveProgram().step), subexpr->self_->id())); } size_t size = subexpr->elements().size(); size_t i = offset; for (; i < size; ++i) { auto& element = subexpr->elements()[i]; if (auto* child = absl::get_if<std::unique_ptr<Subexpression>>(&element); child != nullptr) { flatten_stack.push_back({subexpr, i + 1}); flatten_stack.push_back({child->get(), 0}); break; } else if (auto* step = absl::get_if<std::unique_ptr<ExpressionStep>>(&element); step != nullptr) { flat.push_back(std::move(*step)); } } if (i >= size && subexpr != this) { subexpr->program_.emplace<std::vector<Subexpression::Element>>(); } } program_ = std::move(flat); } Subexpression::RecursiveProgram Subexpression::ExtractRecursiveProgram() { ABSL_DCHECK(IsRecursive()); auto result = std::move(absl::get<RecursiveProgram>(program_)); program_.emplace<std::vector<Subexpression::Element>>(); return result; } bool Subexpression::ExtractTo( std::vector<std::unique_ptr<const ExpressionStep>>& out) { if (!IsFlattened()) { return false; } out.reserve(out.size() + flattened_elements().size()); absl::c_move(flattened_elements(), std::back_inserter(out)); program_.emplace<std::vector<Element>>(); return true; } std::vector<std::unique_ptr<const ExpressionStep>> ProgramBuilder::FlattenSubexpression(std::unique_ptr<Subexpression> expr) { std::vector<std::unique_ptr<const ExpressionStep>> out; if (!expr) { return out; } expr->Flatten(); expr->ExtractTo(out); return out; } ProgramBuilder::ProgramBuilder() : root_(nullptr), current_(nullptr), subprogram_map_(std::make_shared<SubprogramMap>()) {} ExecutionPath ProgramBuilder::FlattenMain() { auto out = FlattenSubexpression(std::move(root_)); return out; } std::vector<ExecutionPath> ProgramBuilder::FlattenSubexpressions() { std::vector<ExecutionPath> out; out.reserve(extracted_subexpressions_.size()); for (auto& subexpression : extracted_subexpressions_) { out.push_back(FlattenSubexpression(std::move(subexpression))); } extracted_subexpressions_.clear(); return out; } absl::Nullable<Subexpression*> ProgramBuilder::EnterSubexpression( const cel::ast_internal::Expr* expr) { std::unique_ptr<Subexpression> subexpr = MakeSubexpression(expr); auto* result = subexpr.get(); if (current_ == nullptr) { root_ = std::move(subexpr); current_ = result; return result; } current_->AddSubexpression(std::move(subexpr)); result->parent_ = current_->self_; current_ = result; return result; } absl::Nullable<Subexpression*> ProgramBuilder::ExitSubexpression( const cel::ast_internal::Expr* expr) { ABSL_DCHECK(expr == current_->self_); ABSL_DCHECK(GetSubexpression(expr) == current_); MaybeReassignChildRecursiveProgram(current_); Subexpression* result = GetSubexpression(current_->parent_); ABSL_DCHECK(result != nullptr || current_ == root_.get()); current_ = result; return result; } absl::Nullable<Subexpression*> ProgramBuilder::GetSubexpression( const cel::ast_internal::Expr* expr) { auto it = subprogram_map_->find(expr); if (it == subprogram_map_->end()) { return nullptr; } return it->second; } void ProgramBuilder::AddStep(std::unique_ptr<ExpressionStep> step) { if (current_ == nullptr) { return; } current_->AddStep(std::move(step)); } int ProgramBuilder::ExtractSubexpression(const cel::ast_internal::Expr* expr) { auto it = subprogram_map_->find(expr); if (it == subprogram_map_->end()) { return -1; } auto* subexpression = it->second; auto parent_it = subprogram_map_->find(subexpression->parent_); if (parent_it == subprogram_map_->end()) { return -1; } auto* parent = parent_it->second; std::unique_ptr<Subexpression> subexpression_owner = parent->ExtractChild(subexpression); if (subexpression_owner == nullptr) { return -1; } extracted_subexpressions_.push_back(std::move(subexpression_owner)); return extracted_subexpressions_.size() - 1; } std::unique_ptr<Subexpression> ProgramBuilder::MakeSubexpression( const cel::ast_internal::Expr* expr) { auto* subexpr = new Subexpression(expr, this); (*subprogram_map_)[expr] = subexpr; return absl::WrapUnique(subexpr); } bool PlannerContext::IsSubplanInspectable( const cel::ast_internal::Expr& node) const { return program_builder_.GetSubexpression(&node) != nullptr; } ExecutionPathView PlannerContext::GetSubplan( const cel::ast_internal::Expr& node) { auto* subexpression = program_builder_.GetSubexpression(&node); if (subexpression == nullptr) { return ExecutionPathView(); } subexpression->Flatten(); return subexpression->flattened_elements(); } absl::StatusOr<ExecutionPath> PlannerContext::ExtractSubplan( const cel::ast_internal::Expr& node) { auto* subexpression = program_builder_.GetSubexpression(&node); if (subexpression == nullptr) { return absl::InternalError( "attempted to update program step for untracked expr node"); } subexpression->Flatten(); ExecutionPath out; subexpression->ExtractTo(out); return out; } absl::Status PlannerContext::ReplaceSubplan(const cel::ast_internal::Expr& node, ExecutionPath path) { auto* subexpression = program_builder_.GetSubexpression(&node); if (subexpression == nullptr) { return absl::InternalError( "attempted to update program step for untracked expr node"); } if (!subexpression->IsFlattened()) { subexpression->Flatten(); } subexpression->flattened_elements() = std::move(path); return absl::OkStatus(); } absl::Status PlannerContext::ReplaceSubplan( const cel::ast_internal::Expr& node, std::unique_ptr<DirectExpressionStep> step, int depth) { auto* subexpression = program_builder_.GetSubexpression(&node); if (subexpression == nullptr) { return absl::InternalError( "attempted to update program step for untracked expr node"); } subexpression->set_recursive_program(std::move(step), depth); return absl::OkStatus(); } absl::Status PlannerContext::AddSubplanStep( const cel::ast_internal::Expr& node, std::unique_ptr<ExpressionStep> step) { auto* subexpression = program_builder_.GetSubexpression(&node); if (subexpression == nullptr) { return absl::InternalError( "attempted to update program step for untracked expr node"); } subexpression->AddStep(std::move(step)); return absl::OkStatus(); } }
#include "eval/compiler/flat_expr_builder_extensions.h" #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "base/ast_internal/expr.h" #include "common/memory.h" #include "common/native_type.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "eval/compiler/resolver.h" #include "eval/eval/const_value_step.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/function_step.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "runtime/function_registry.h" #include "runtime/internal/issue_collector.h" #include "runtime/runtime_issue.h" #include "runtime/runtime_options.h" #include "runtime/type_registry.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::StatusIs; using ::cel::RuntimeIssue; using ::cel::ast_internal::Expr; using ::cel::runtime_internal::IssueCollector; using ::testing::ElementsAre; using ::testing::IsEmpty; using ::testing::Optional; using Subexpression = ProgramBuilder::Subexpression; class PlannerContextTest : public testing::Test { public: PlannerContextTest() : type_registry_(), function_registry_(), value_factory_(cel::MemoryManagerRef::ReferenceCounting(), type_registry_.GetComposedTypeProvider()), resolver_("", function_registry_, type_registry_, value_factory_, type_registry_.resolveable_enums()), issue_collector_(RuntimeIssue::Severity::kError) {} protected: cel::TypeRegistry type_registry_; cel::FunctionRegistry function_registry_; cel::RuntimeOptions options_; cel::common_internal::LegacyValueManager value_factory_; Resolver resolver_; IssueCollector issue_collector_; }; MATCHER_P(UniquePtrHolds, ptr, "") { const auto& got = arg; return ptr == got.get(); } struct SimpleTreeSteps { const ExpressionStep* a; const ExpressionStep* b; const ExpressionStep* c; }; absl::StatusOr<SimpleTreeSteps> InitSimpleTree( const Expr& a, const Expr& b, const Expr& c, cel::ValueManager& value_factory, ProgramBuilder& program_builder) { CEL_ASSIGN_OR_RETURN(auto a_step, CreateConstValueStep(value_factory.GetNullValue(), -1)); CEL_ASSIGN_OR_RETURN(auto b_step, CreateConstValueStep(value_factory.GetNullValue(), -1)); CEL_ASSIGN_OR_RETURN(auto c_step, CreateConstValueStep(value_factory.GetNullValue(), -1)); SimpleTreeSteps result{a_step.get(), b_step.get(), c_step.get()}; program_builder.EnterSubexpression(&a); program_builder.EnterSubexpression(&b); program_builder.AddStep(std::move(b_step)); program_builder.ExitSubexpression(&b); program_builder.EnterSubexpression(&c); program_builder.AddStep(std::move(c_step)); program_builder.ExitSubexpression(&c); program_builder.AddStep(std::move(a_step)); program_builder.ExitSubexpression(&a); return result; } TEST_F(PlannerContextTest, GetPlan) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN( auto step_ptrs, InitSimpleTree(a, b, c, value_factory_, program_builder)); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); EXPECT_THAT(context.GetSubplan(b), ElementsAre(UniquePtrHolds(step_ptrs.b))); EXPECT_THAT(context.GetSubplan(c), ElementsAre(UniquePtrHolds(step_ptrs.c))); EXPECT_THAT(context.GetSubplan(a), ElementsAre(UniquePtrHolds(step_ptrs.b), UniquePtrHolds(step_ptrs.c), UniquePtrHolds(step_ptrs.a))); Expr d; EXPECT_FALSE(context.IsSubplanInspectable(d)); EXPECT_THAT(context.GetSubplan(d), IsEmpty()); } TEST_F(PlannerContextTest, ReplacePlan) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN( auto step_ptrs, InitSimpleTree(a, b, c, value_factory_, program_builder)); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); EXPECT_THAT(context.GetSubplan(a), ElementsAre(UniquePtrHolds(step_ptrs.b), UniquePtrHolds(step_ptrs.c), UniquePtrHolds(step_ptrs.a))); ExecutionPath new_a; ASSERT_OK_AND_ASSIGN(auto new_a_step, CreateConstValueStep(value_factory_.GetNullValue(), -1)); const ExpressionStep* new_a_step_ptr = new_a_step.get(); new_a.push_back(std::move(new_a_step)); ASSERT_OK(context.ReplaceSubplan(a, std::move(new_a))); EXPECT_THAT(context.GetSubplan(a), ElementsAre(UniquePtrHolds(new_a_step_ptr))); EXPECT_THAT(context.GetSubplan(b), IsEmpty()); } TEST_F(PlannerContextTest, ExtractPlan) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN(auto plan_steps, InitSimpleTree(a, b, c, value_factory_, program_builder)); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); EXPECT_TRUE(context.IsSubplanInspectable(a)); EXPECT_TRUE(context.IsSubplanInspectable(b)); ASSERT_OK_AND_ASSIGN(ExecutionPath extracted, context.ExtractSubplan(b)); EXPECT_THAT(extracted, ElementsAre(UniquePtrHolds(plan_steps.b))); } TEST_F(PlannerContextTest, ExtractFailsOnReplacedNode) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK(InitSimpleTree(a, b, c, value_factory_, program_builder).status()); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); ASSERT_OK(context.ReplaceSubplan(a, {})); EXPECT_THAT(context.ExtractSubplan(b), StatusIs(absl::StatusCode::kInternal)); } TEST_F(PlannerContextTest, ReplacePlanUpdatesParent) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN(auto plan_steps, InitSimpleTree(a, b, c, value_factory_, program_builder)); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); EXPECT_TRUE(context.IsSubplanInspectable(a)); ASSERT_OK(context.ReplaceSubplan(c, {})); EXPECT_THAT(context.GetSubplan(a), ElementsAre(UniquePtrHolds(plan_steps.b), UniquePtrHolds(plan_steps.a))); EXPECT_THAT(context.GetSubplan(c), IsEmpty()); } TEST_F(PlannerContextTest, ReplacePlanUpdatesSibling) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN(auto plan_steps, InitSimpleTree(a, b, c, value_factory_, program_builder)); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); ExecutionPath new_b; ASSERT_OK_AND_ASSIGN(auto b1_step, CreateConstValueStep(value_factory_.GetNullValue(), -1)); const ExpressionStep* b1_step_ptr = b1_step.get(); new_b.push_back(std::move(b1_step)); ASSERT_OK_AND_ASSIGN(auto b2_step, CreateConstValueStep(value_factory_.GetNullValue(), -1)); const ExpressionStep* b2_step_ptr = b2_step.get(); new_b.push_back(std::move(b2_step)); ASSERT_OK(context.ReplaceSubplan(b, std::move(new_b))); EXPECT_THAT(context.GetSubplan(c), ElementsAre(UniquePtrHolds(plan_steps.c))); EXPECT_THAT(context.GetSubplan(b), ElementsAre(UniquePtrHolds(b1_step_ptr), UniquePtrHolds(b2_step_ptr))); EXPECT_THAT( context.GetSubplan(a), ElementsAre(UniquePtrHolds(b1_step_ptr), UniquePtrHolds(b2_step_ptr), UniquePtrHolds(plan_steps.c), UniquePtrHolds(plan_steps.a))); } TEST_F(PlannerContextTest, ReplacePlanFailsOnUpdatedNode) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN(auto plan_steps, InitSimpleTree(a, b, c, value_factory_, program_builder)); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); EXPECT_THAT(context.GetSubplan(a), ElementsAre(UniquePtrHolds(plan_steps.b), UniquePtrHolds(plan_steps.c), UniquePtrHolds(plan_steps.a))); ASSERT_OK(context.ReplaceSubplan(a, {})); EXPECT_THAT(context.ReplaceSubplan(b, {}), StatusIs(absl::StatusCode::kInternal)); } TEST_F(PlannerContextTest, AddSubplanStep) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN(auto plan_steps, InitSimpleTree(a, b, c, value_factory_, program_builder)); ASSERT_OK_AND_ASSIGN(auto b2_step, CreateConstValueStep(value_factory_.GetNullValue(), -1)); const ExpressionStep* b2_step_ptr = b2_step.get(); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); ASSERT_OK(context.AddSubplanStep(b, std::move(b2_step))); EXPECT_THAT(context.GetSubplan(b), ElementsAre(UniquePtrHolds(plan_steps.b), UniquePtrHolds(b2_step_ptr))); EXPECT_THAT(context.GetSubplan(c), ElementsAre(UniquePtrHolds(plan_steps.c))); EXPECT_THAT( context.GetSubplan(a), ElementsAre(UniquePtrHolds(plan_steps.b), UniquePtrHolds(b2_step_ptr), UniquePtrHolds(plan_steps.c), UniquePtrHolds(plan_steps.a))); } TEST_F(PlannerContextTest, AddSubplanStepFailsOnUnknownNode) { Expr a; Expr b; Expr c; Expr d; ProgramBuilder program_builder; ASSERT_OK(InitSimpleTree(a, b, c, value_factory_, program_builder).status()); ASSERT_OK_AND_ASSIGN(auto b2_step, CreateConstValueStep(value_factory_.GetNullValue(), -1)); PlannerContext context(resolver_, options_, value_factory_, issue_collector_, program_builder); EXPECT_THAT(context.GetSubplan(d), IsEmpty()); EXPECT_THAT(context.AddSubplanStep(d, std::move(b2_step)), StatusIs(absl::StatusCode::kInternal)); } class ProgramBuilderTest : public testing::Test { public: ProgramBuilderTest() : type_registry_(), function_registry_(), value_factory_(cel::MemoryManagerRef::ReferenceCounting(), type_registry_.GetComposedTypeProvider()) {} protected: cel::TypeRegistry type_registry_; cel::FunctionRegistry function_registry_; cel::common_internal::LegacyValueManager value_factory_; }; TEST_F(ProgramBuilderTest, ExtractSubexpression) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN( SimpleTreeSteps step_ptrs, InitSimpleTree(a, b, c, value_factory_, program_builder)); EXPECT_EQ(program_builder.ExtractSubexpression(&c), 0); EXPECT_EQ(program_builder.ExtractSubexpression(&b), 1); EXPECT_THAT(program_builder.FlattenMain(), ElementsAre(UniquePtrHolds(step_ptrs.a))); EXPECT_THAT(program_builder.FlattenSubexpressions(), ElementsAre(ElementsAre(UniquePtrHolds(step_ptrs.c)), ElementsAre(UniquePtrHolds(step_ptrs.b)))); } TEST_F(ProgramBuilderTest, FlattenRemovesChildrenReferences) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; program_builder.EnterSubexpression(&a); program_builder.EnterSubexpression(&b); program_builder.EnterSubexpression(&c); program_builder.ExitSubexpression(&c); program_builder.ExitSubexpression(&b); program_builder.ExitSubexpression(&a); auto subexpr_b = program_builder.GetSubexpression(&b); ASSERT_TRUE(subexpr_b != nullptr); subexpr_b->Flatten(); EXPECT_EQ(program_builder.GetSubexpression(&c), nullptr); } TEST_F(ProgramBuilderTest, ExtractReturnsNullOnFlattendExpr) { Expr a; Expr b; ProgramBuilder program_builder; program_builder.EnterSubexpression(&a); program_builder.EnterSubexpression(&b); program_builder.ExitSubexpression(&b); program_builder.ExitSubexpression(&a); auto* subexpr_a = program_builder.GetSubexpression(&a); auto* subexpr_b = program_builder.GetSubexpression(&b); ASSERT_TRUE(subexpr_a != nullptr); ASSERT_TRUE(subexpr_b != nullptr); subexpr_a->Flatten(); EXPECT_EQ(subexpr_a->ExtractChild(subexpr_b), nullptr); EXPECT_EQ(program_builder.ExtractSubexpression(&b), -1); } TEST_F(ProgramBuilderTest, ExtractReturnsNullOnNonChildren) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; program_builder.EnterSubexpression(&a); program_builder.EnterSubexpression(&b); program_builder.EnterSubexpression(&c); program_builder.ExitSubexpression(&c); program_builder.ExitSubexpression(&b); program_builder.ExitSubexpression(&a); auto* subexpr_a = program_builder.GetSubexpression(&a); auto* subexpr_c = program_builder.GetSubexpression(&c); ASSERT_TRUE(subexpr_a != nullptr); ASSERT_TRUE(subexpr_c != nullptr); EXPECT_EQ(subexpr_a->ExtractChild(subexpr_c), nullptr); } TEST_F(ProgramBuilderTest, ExtractWorks) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; program_builder.EnterSubexpression(&a); program_builder.EnterSubexpression(&b); program_builder.ExitSubexpression(&b); ASSERT_OK_AND_ASSIGN(auto a_step, CreateConstValueStep(value_factory_.GetNullValue(), -1)); program_builder.AddStep(std::move(a_step)); program_builder.EnterSubexpression(&c); program_builder.ExitSubexpression(&c); program_builder.ExitSubexpression(&a); auto* subexpr_a = program_builder.GetSubexpression(&a); auto* subexpr_c = program_builder.GetSubexpression(&c); ASSERT_TRUE(subexpr_a != nullptr); ASSERT_TRUE(subexpr_c != nullptr); EXPECT_THAT(subexpr_a->ExtractChild(subexpr_c), UniquePtrHolds(subexpr_c)); } TEST_F(ProgramBuilderTest, ExtractToRequiresFlatten) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; ASSERT_OK_AND_ASSIGN( SimpleTreeSteps step_ptrs, InitSimpleTree(a, b, c, value_factory_, program_builder)); auto* subexpr_a = program_builder.GetSubexpression(&a); ExecutionPath path; EXPECT_FALSE(subexpr_a->ExtractTo(path)); subexpr_a->Flatten(); EXPECT_TRUE(subexpr_a->ExtractTo(path)); EXPECT_THAT(path, ElementsAre(UniquePtrHolds(step_ptrs.b), UniquePtrHolds(step_ptrs.c), UniquePtrHolds(step_ptrs.a))); } TEST_F(ProgramBuilderTest, Recursive) { Expr a; Expr b; Expr c; ProgramBuilder program_builder; program_builder.EnterSubexpression(&a); program_builder.EnterSubexpression(&b); program_builder.current()->set_recursive_program( CreateConstValueDirectStep(value_factory_.GetNullValue()), 1); program_builder.ExitSubexpression(&b); program_builder.EnterSubexpression(&c); program_builder.current()->set_recursive_program( CreateConstValueDirectStep(value_factory_.GetNullValue()), 1); program_builder.ExitSubexpression(&c); ASSERT_FALSE(program_builder.current()->IsFlattened()); ASSERT_FALSE(program_builder.current()->IsRecursive()); ASSERT_TRUE(program_builder.GetSubexpression(&b)->IsRecursive()); ASSERT_TRUE(program_builder.GetSubexpression(&c)->IsRecursive()); EXPECT_EQ(program_builder.GetSubexpression(&b)->recursive_program().depth, 1); EXPECT_EQ(program_builder.GetSubexpression(&c)->recursive_program().depth, 1); cel::ast_internal::Call call_expr; call_expr.set_function("_==_"); call_expr.mutable_args().emplace_back(); call_expr.mutable_args().emplace_back(); auto max_depth = program_builder.current()->RecursiveDependencyDepth(); EXPECT_THAT(max_depth, Optional(1)); auto deps = program_builder.current()->ExtractRecursiveDependencies(); program_builder.current()->set_recursive_program( CreateDirectFunctionStep(-1, call_expr, std::move(deps), {}), *max_depth + 1); program_builder.ExitSubexpression(&a); auto path = program_builder.FlattenMain(); ASSERT_THAT(path, testing::SizeIs(1)); EXPECT_TRUE(path[0]->GetNativeTypeId() == cel::NativeTypeId::For<WrappedDirectStep>()); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/compiler/flat_expr_builder_extensions.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/compiler/flat_expr_builder_extensions_test.cc
4552db5798fb0853b131b783d8875794334fae7f
73a594f2-3fb4-4581-a0fc-baaa11a9b95c
cpp
tensorflow/tensorflow
hlo_casting_utils
third_party/xla/xla/hlo/ir/hlo_casting_utils.h
third_party/xla/xla/service/hlo_casting_utils_test.cc
#ifndef XLA_HLO_IR_HLO_CASTING_UTILS_H_ #define XLA_HLO_IR_HLO_CASTING_UTILS_H_ #include <type_traits> #include "xla/hlo/ir/hlo_instruction.h" #include "tsl/platform/logging.h" namespace xla { template <class T> using EnableIfDerivedFromHlo = typename std::enable_if<std::is_base_of<HloInstruction, T>::value>::type; template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* Cast(const HloInstruction* instruction) { CHECK(instruction != nullptr); CHECK(T::ClassOf(instruction)) << "Invalid HloInstruction casting. Destination type: " << typeid(T).name() << ". Instruction: " << instruction->name(); const T* casted = static_cast<const T*>(instruction); #ifndef NDEBUG const T* dynamic_casted = dynamic_cast<const T*>(instruction); CHECK(dynamic_casted != nullptr) << "Invalid HloInstruction casting. Destination type: " << typeid(T).name() << ". Instruction: " << instruction->name(); #endif return casted; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* Cast(HloInstruction* instruction) { return const_cast<T*>( Cast<T>(const_cast<const HloInstruction*>(instruction))); } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* CastOrNull(const HloInstruction* instruction) { return instruction != nullptr ? Cast<T>(instruction) : nullptr; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* CastOrNull(HloInstruction* instruction) { return const_cast<T*>( CastOrNull<T>(const_cast<const HloInstruction*>(instruction))); } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* DynCast(const HloInstruction* instruction) { CHECK(instruction != nullptr); const T* casted = T::ClassOf(instruction) ? static_cast<const T*>(instruction) : nullptr; #ifndef NDEBUG CHECK_EQ(casted, dynamic_cast<const T*>(instruction)); #endif return casted; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* DynCast(HloInstruction* instruction) { return const_cast<T*>( DynCast<T>(const_cast<const HloInstruction*>(instruction))); } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> const T* DynCastOrNull(const HloInstruction* instruction) { return instruction != nullptr ? DynCast<T>(instruction) : nullptr; } template <class T, EnableIfDerivedFromHlo<T>* = nullptr> T* DynCastOrNull(HloInstruction* instruction) { return const_cast<T*>( DynCastOrNull<T>(const_cast<const HloInstruction*>(instruction))); } } #endif
#include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_instruction.h" #include "tsl/platform/test.h" namespace xla { namespace { class DummyInstruction : public HloInstruction { public: DummyInstruction() : HloInstruction(HloOpcode::kConstant, ShapeUtil::MakeShape(F32, {})) {} static bool ClassOf(const HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kConstant; } }; class AnotherDummyInstruction : public HloInstruction { public: AnotherDummyInstruction() : HloInstruction(HloOpcode::kParameter, ShapeUtil::MakeShape(F32, {})) {} static bool ClassOf(const HloInstruction* hlo) { return hlo->opcode() == HloOpcode::kParameter; } }; TEST(HloCastingUtilsTest, CastSucceeds) { DummyInstruction instruction; DummyInstruction* casted = Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, CastDiesForWrongType) { AnotherDummyInstruction instruction; ASSERT_DEATH( Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)), ""); } TEST(HloCastingUtilsTest, CastDiesForNullptr) { HloInstruction* null = nullptr; ASSERT_DEATH(Cast<DummyInstruction>(null), ""); } TEST(HloCastingUtilsTest, CastOrNullSucceeds) { DummyInstruction instruction; DummyInstruction* casted = Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, CastOrNullDiesForWrongType) { AnotherDummyInstruction instruction; ASSERT_DEATH( Cast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)), ""); } TEST(HloCastingUtilsTest, CastOrNullReturnsNullptrForNullptr) { HloInstruction* null = nullptr; DummyInstruction* casted = CastOrNull<DummyInstruction>(null); ASSERT_EQ(casted, nullptr); } TEST(HloCastingUtilsTest, DynCastSucceeds) { DummyInstruction instruction; DummyInstruction* casted = DynCast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, DynCastReturnsNullptrForWrongType) { AnotherDummyInstruction instruction; DummyInstruction* casted = DynCast<DummyInstruction>(static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, nullptr); } TEST(HloCastingUtilsTest, DynCastDiesForNullptr) { HloInstruction* null = nullptr; ASSERT_DEATH(DynCast<DummyInstruction>(null), ""); } TEST(HloCastingUtilsTest, DynCastOrNullSucceeds) { DummyInstruction instruction; DummyInstruction* casted = DynCastOrNull<DummyInstruction>( static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, &instruction); } TEST(HloCastingUtilsTest, DynCastOrNullReturnsNullptrForWrongType) { AnotherDummyInstruction instruction; DummyInstruction* casted = DynCastOrNull<DummyInstruction>( static_cast<HloInstruction*>(&instruction)); ASSERT_EQ(casted, nullptr); } TEST(HloCastingUtilsTest, DynCastOrNullReturnsNullptrForNullptr) { HloInstruction* null = nullptr; DummyInstruction* casted = DynCastOrNull<DummyInstruction>(null); ASSERT_EQ(casted, nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/ir/hlo_casting_utils.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_casting_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c59397db-329b-4522-9467-0a871a153527
cpp
tensorflow/tensorflow
all_gather_dynamic_slice_simplifier
third_party/xla/xla/service/gpu/transforms/all_gather_dynamic_slice_simplifier.cc
third_party/xla/xla/service/gpu/transforms/all_gather_dynamic_slice_simplifier_test.cc
#include "xla/service/gpu/transforms/all_gather_dynamic_slice_simplifier.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/service/collective_opt_utils.h" namespace xla { bool AllGatherDynamicSliceSimplifier::InstructionMatchesPattern( HloInstruction* instruction) { if (instruction->opcode() != HloOpcode::kDynamicSlice) { return false; } HloDynamicSliceInstruction* dynamic_slice = Cast<HloDynamicSliceInstruction>(instruction); HloInstruction* operand = dynamic_slice->mutable_operand(0); bool is_reshape = operand->opcode() == HloOpcode::kReshape; bool is_all_gather = operand->opcode() == HloOpcode::kAllGather; if (!is_reshape && !is_all_gather) { return false; } if (is_reshape && operand->operand(0)->opcode() != HloOpcode::kAllGather) { return false; } const HloModuleConfig& config = instruction->GetModule()->config(); HloAllGatherInstruction* all_gather = is_reshape ? Cast<HloAllGatherInstruction>(operand->mutable_operand(0)) : Cast<HloAllGatherInstruction>(operand); bool match = AllGatherDynamicSliceCancellation( all_gather, config.num_partitions(), config.replica_count(), true, true, 1, HloPredicateIsOp<HloOpcode::kPartitionId>, HloPredicateIsOp<HloOpcode::kReplicaId>, false, true); return match; } absl::StatusOr<HloInstruction*> AllGatherDynamicSliceSimplifier::ExpandInstruction( HloInstruction* instruction) { HloDynamicSliceInstruction* dynamic_slice = Cast<HloDynamicSliceInstruction>(instruction); HloInstruction* operand = dynamic_slice->mutable_operand(0); if (operand->opcode() != HloOpcode::kReshape) { return operand->mutable_operand(0); } HloReshapeInstruction* reshape = Cast<HloReshapeInstruction>(operand); HloAllGatherInstruction* all_gather = Cast<HloAllGatherInstruction>(reshape->mutable_operand(0)); HloInstruction* all_gather_input = all_gather->mutable_operand(0); auto* new_reshape = instruction->parent()->AddInstruction( HloInstruction::CreateReshape(dynamic_slice->shape(), all_gather_input)); return new_reshape; } }
#include "xla/service/gpu/transforms/all_gather_dynamic_slice_simplifier.h" #include <cstdint> #include <memory> #include <vector> #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/tests/hlo_test_base.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using ::testing::Matcher; namespace op = xla::testing::opcode_matchers; class AllGatherDynamicSliceSimplifierTest : public HloTestBase { public: absl::StatusOr<std::unique_ptr<HloModule>> RunPass( absl::string_view hlo_module, int64_t num_replicas, int64_t num_partitions, bool expect_change) { HloModuleConfig config = GetModuleConfigForTest( num_replicas, num_partitions); config.set_use_spmd_partitioning(num_partitions > 1); TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_module, config)); auto changed = AllGatherDynamicSliceSimplifier().Run(module.get()); if (!changed.ok()) { return changed.status(); } EXPECT_EQ(changed.value(), expect_change); return std::move(module); } }; TEST_F(AllGatherDynamicSliceSimplifierTest, AllPartitions) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY %AllGather { %param = f32[32,8,128]{2,1,0} parameter(0) %ag = f32[256,8,128]{2,1,0} all-gather(%param), replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, channel_id=1, use_global_device_ids=true %pid = u32[] partition-id() %pid_s32 = s32[] convert(%pid) %slice_size = s32[] constant(32) %offset = s32[] multiply(%pid_s32, %slice_size) %zero = s32[] constant(0) ROOT %ds = f32[32,8,128]{2,1,0} dynamic-slice(%ag, %offset, %zero, %zero), dynamic_slice_sizes={32,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 1, 8, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Parameter(0)); } TEST_F(AllGatherDynamicSliceSimplifierTest, AllReplicasWithReshape) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY %AllGather { %param = f32[32,8,128]{2,1,0} parameter(0) %ag = f32[256,8,128]{2,1,0} all-gather(%param), replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, channel_id=1, use_global_device_ids=true %reshape = f32[256,8,64,2]{3,2,1,0} reshape(%ag) %pid = u32[] partition-id() %pid_s32 = s32[] convert(%pid) %slice_size = s32[] constant(32) %offset = s32[] multiply(%pid_s32, %slice_size) %zero = s32[] constant(0) ROOT %ds = f32[32,8,64,2]{3,2,1,0} dynamic-slice(%reshape, %offset, %zero, %zero, %zero), dynamic_slice_sizes={32,8,64,2} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 1, 8, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Reshape(op::Parameter(0))); } TEST_F(AllGatherDynamicSliceSimplifierTest, AllPartitionsWithReshapeOnSliceDim) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY %AllGather { %param = f32[32,8,128]{2,1,0} parameter(0) %ag = f32[256,8,128]{2,1,0} all-gather(%param), replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, channel_id=1, use_global_device_ids=true %reshape = f32[2048,128]{1,0} reshape(%ag) %pid = u32[] partition-id() %pid_s32 = s32[] convert(%pid) %slice_size = s32[] constant(256) %offset = s32[] multiply(%pid_s32, %slice_size) %zero = s32[] constant(0) ROOT %ds = f32[256,128]{1,0} dynamic-slice(%reshape, %offset, %zero), dynamic_slice_sizes={256,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 1, 8, false)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice( op::Reshape(op::AllGather(op::Parameter(0))), op::Multiply(op::Convert(op::PartitionId()), op::Constant()), op::Constant())); } TEST_F(AllGatherDynamicSliceSimplifierTest, NoAllGather) { absl::string_view hlo_string = R"( HloModule NoAllGather ENTRY %NoAllGather { %param = f32[32,8,128]{2,1,0} parameter(0) %pid = u32[] partition-id() %pid_s32 = s32[] convert(%pid) %slice_size = s32[] constant(32) %offset = s32[] multiply(%pid_s32, %slice_size) %zero = s32[] constant(0) ROOT %ds = f32[32,8,128]{2,1,0} dynamic-slice(%param, %offset, %zero, %zero), dynamic_slice_sizes={32,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 1, 1, false)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice( op::Parameter(0), op::Multiply(op::Convert(op::PartitionId()), op::Constant()), op::Constant(), op::Constant())); } TEST_F(AllGatherDynamicSliceSimplifierTest, IncorrectAllGatherDimension) { absl::string_view hlo_string = R"( HloModule IncorrectAllGatherDimension ENTRY %IncorrectAllGatherDimension { %param = f32[32,8,128]{2,1,0} parameter(0) %ag = f32[32,64,128]{2,1,0} all-gather(%param), replica_groups={}, dimensions={1}, channel_id=1 %pid = u32[] partition-id() %pid_s32 = s32[] convert(%pid) %slice_size = s32[] constant(8) %offset = s32[] multiply(%pid_s32, %slice_size) %zero = s32[] constant(0) ROOT %ds = f32[32,8,128]{2,1,0} dynamic-slice(%ag, %zero, %offset, %zero), dynamic_slice_sizes={32,8,128} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 8, 1, false)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::DynamicSlice( op::AllGather(op::Parameter(0)), op::Constant(), op::Multiply(op::Convert(op::PartitionId()), op::Constant()), op::Constant())); } TEST_F(AllGatherDynamicSliceSimplifierTest, AllReplicasWithReshapeMultipleUsers) { absl::string_view hlo_string = R"( HloModule AllGather ENTRY %AllGather { %param = f32[32,8,128]{2,1,0} parameter(0) %ag = f32[256,8,128]{2,1,0} all-gather(%param), replica_groups={{0,1,2,3,4,5,6,7}}, dimensions={0}, channel_id=1, use_global_device_ids=true %reshape = f32[256,8,64,2]{3,2,1,0} reshape(%ag) %pid = u32[] partition-id() %pid_s32 = s32[] convert(%pid) %slice_size = s32[] constant(32) %offset = s32[] multiply(%pid_s32, %slice_size) %zero = s32[] constant(0) %ds = f32[32,8,64,2]{3,2,1,0} dynamic-slice(%reshape, %offset, %zero, %zero, %zero), dynamic_slice_sizes={32,8,64,2} ROOT %tuple = (f32[32,8,64,2]{3,2,1,0}, f32[256,8,128]{2,1,0}) tuple(%ds, %ag) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, RunPass(hlo_string, 1, 8, true)); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Reshape(op::Parameter(0)), op::AllGather(op::Parameter(0)))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/all_gather_dynamic_slice_simplifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/all_gather_dynamic_slice_simplifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1a3554d7-3320-47c5-846e-3dba1ae4068b
cpp
google/tensorstore
masked_array
tensorstore/internal/masked_array.cc
tensorstore/internal/masked_array_test.cc
#include "tensorstore/internal/masked_array.h" #include <algorithm> #include <cassert> #include <memory> #include <utility> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_interval.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/memory.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_buffer_management.h" #include "tensorstore/internal/nditerable_transformed_array.h" #include "tensorstore/internal/nditerable_util.h" #include "tensorstore/internal/unowned_to_shared.h" #include "tensorstore/rank.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/element_pointer.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal { namespace { struct SetMask { void operator()(bool* x, void*) const { *x = true; } }; struct SetMaskAndCountChanged { Index num_changed = 0; void operator()(bool* x) { if (!*x) { ++num_changed; *x = true; } } }; bool IsHullEqualToUnion(BoxView<> a, BoxView<> b) { assert(a.rank() == b.rank()); Index hull_num_elements = 1, a_num_elements = 1, b_num_elements = 1, intersection_num_elements = 1; for (DimensionIndex i = 0; i < a.rank(); ++i) { IndexInterval a_interval = a[i], b_interval = b[i]; IndexInterval hull = Hull(a_interval, b_interval); IndexInterval intersection = Intersect(a_interval, b_interval); hull_num_elements *= hull.size(); a_num_elements *= a_interval.size(); b_num_elements *= b_interval.size(); intersection_num_elements *= intersection.size(); } return (hull_num_elements == a_num_elements + b_num_elements - intersection_num_elements); } void Hull(BoxView<> a, BoxView<> b, MutableBoxView<> out) { const DimensionIndex rank = out.rank(); assert(a.rank() == rank && b.rank() == rank); for (DimensionIndex i = 0; i < rank; ++i) { out[i] = Hull(a[i], b[i]); } } void Intersect(BoxView<> a, BoxView<> b, MutableBoxView<> out) { const DimensionIndex rank = out.rank(); assert(a.rank() == rank && b.rank() == rank); for (DimensionIndex i = 0; i < rank; ++i) { out[i] = Intersect(a[i], b[i]); } } Index GetRelativeOffset(tensorstore::span<const Index> base, tensorstore::span<const Index> position, tensorstore::span<const Index> strides) { const DimensionIndex rank = base.size(); assert(rank == position.size()); assert(rank == strides.size()); Index result = 0; for (DimensionIndex i = 0; i < rank; ++i) { result = internal::wrap_on_overflow::Add( result, internal::wrap_on_overflow::Multiply( strides[i], internal::wrap_on_overflow::Subtract( position[i], base[i]))); } return result; } void RemoveMaskArrayIfNotNeeded(MaskData* mask) { if (mask->num_masked_elements == mask->region.num_elements()) { mask->mask_array.reset(); } } } MaskData::MaskData(DimensionIndex rank) : region(rank) { region.Fill(IndexInterval::UncheckedSized(0, 0)); } std::unique_ptr<bool[], FreeDeleter> CreateMaskArray( BoxView<> box, BoxView<> mask_region, tensorstore::span<const Index> byte_strides) { std::unique_ptr<bool[], FreeDeleter> result( static_cast<bool*>(std::calloc(box.num_elements(), sizeof(bool)))); ByteStridedPointer<bool> start = result.get(); start += GetRelativeOffset(box.origin(), mask_region.origin(), byte_strides); internal::IterateOverArrays( internal::SimpleElementwiseFunction<SetMask(bool), void*>{}, nullptr, skip_repeated_elements, ArrayView<bool>(start.get(), StridedLayoutView<>(mask_region.shape(), byte_strides))); return result; } void CreateMaskArrayFromRegion(BoxView<> box, MaskData* mask, tensorstore::span<const Index> byte_strides) { assert(mask->num_masked_elements == mask->region.num_elements()); mask->mask_array = CreateMaskArray(box, mask->region, byte_strides); } void UnionMasks(BoxView<> box, MaskData* mask_a, MaskData* mask_b) { assert(mask_a != mask_b); if (mask_a->num_masked_elements == 0) { std::swap(*mask_a, *mask_b); return; } else if (mask_b->num_masked_elements == 0) { return; } const DimensionIndex rank = box.rank(); assert(mask_a->region.rank() == rank); assert(mask_b->region.rank() == rank); if (mask_a->mask_array && mask_b->mask_array) { const Index size = box.num_elements(); mask_a->num_masked_elements = 0; for (Index i = 0; i < size; ++i) { if ((mask_a->mask_array[i] |= mask_b->mask_array[i])) { ++mask_a->num_masked_elements; } } Hull(mask_a->region, mask_b->region, mask_a->region); RemoveMaskArrayIfNotNeeded(mask_a); return; } if (!mask_a->mask_array && !mask_b->mask_array) { if (IsHullEqualToUnion(mask_a->region, mask_b->region)) { Hull(mask_a->region, mask_b->region, mask_a->region); mask_a->num_masked_elements = mask_a->region.num_elements(); return; } } else if (!mask_a->mask_array) { std::swap(*mask_a, *mask_b); } Index byte_strides[kMaxRank]; const tensorstore::span<Index> byte_strides_span(&byte_strides[0], rank); ComputeStrides(ContiguousLayoutOrder::c, sizeof(bool), box.shape(), byte_strides_span); if (!mask_a->mask_array) { CreateMaskArrayFromRegion(box, mask_a, byte_strides_span); } ByteStridedPointer<bool> start = mask_a->mask_array.get(); start += GetRelativeOffset(box.origin(), mask_b->region.origin(), byte_strides_span); IterateOverArrays( [&](bool* ptr) { if (!*ptr) ++mask_a->num_masked_elements; *ptr = true; }, {}, ArrayView<bool>(start.get(), StridedLayoutView<>(mask_b->region.shape(), byte_strides_span))); Hull(mask_a->region, mask_b->region, mask_a->region); RemoveMaskArrayIfNotNeeded(mask_a); } void RebaseMaskedArray(BoxView<> box, ArrayView<const void> source, ArrayView<void> dest, const MaskData& mask) { assert(source.dtype() == dest.dtype()); assert(internal::RangesEqual(box.shape(), source.shape())); assert(internal::RangesEqual(box.shape(), dest.shape())); const Index num_elements = box.num_elements(); if (mask.num_masked_elements == num_elements) return; DataType dtype = source.dtype(); if (mask.num_masked_elements == 0) { [[maybe_unused]] const auto success = internal::IterateOverArrays( {&dtype->copy_assign, nullptr}, nullptr, skip_repeated_elements, source, dest); assert(success); return; } Index mask_byte_strides_storage[kMaxRank]; const tensorstore::span<Index> mask_byte_strides( &mask_byte_strides_storage[0], box.rank()); ComputeStrides(ContiguousLayoutOrder::c, sizeof(bool), box.shape(), mask_byte_strides); std::unique_ptr<bool[], FreeDeleter> mask_owner; bool* mask_array_ptr; if (!mask.mask_array) { mask_owner = CreateMaskArray(box, mask.region, mask_byte_strides); mask_array_ptr = mask_owner.get(); } else { mask_array_ptr = mask.mask_array.get(); } ArrayView<const bool> mask_array( mask_array_ptr, StridedLayoutView<>(box.shape(), mask_byte_strides)); [[maybe_unused]] const auto success = internal::IterateOverArrays( {&dtype->copy_assign_unmasked, nullptr}, nullptr, skip_repeated_elements, source, dest, mask_array); assert(success); } void WriteToMask(MaskData* mask, BoxView<> output_box, IndexTransformView<> input_to_output, Arena* arena) { assert(input_to_output.output_rank() == output_box.rank()); if (input_to_output.domain().box().is_empty()) { return; } const DimensionIndex output_rank = output_box.rank(); Box<dynamic_rank(kNumInlinedDims)> output_range(output_rank); const bool range_is_exact = GetOutputRange(input_to_output, output_range).value(); Intersect(output_range, output_box, output_range); Index mask_byte_strides_storage[kMaxRank]; const tensorstore::span<Index> mask_byte_strides( &mask_byte_strides_storage[0], output_rank); ComputeStrides(ContiguousLayoutOrder::c, sizeof(bool), output_box.shape(), mask_byte_strides); StridedLayoutView<dynamic_rank, offset_origin> mask_layout(output_box, mask_byte_strides); const bool use_mask_array = output_box.rank() != 0 && mask->num_masked_elements != output_box.num_elements() && (static_cast<bool>(mask->mask_array) || (!Contains(mask->region, output_range) && (!range_is_exact || !IsHullEqualToUnion(mask->region, output_range)))); if (use_mask_array && !mask->mask_array) { CreateMaskArrayFromRegion(output_box, mask, mask_byte_strides); } Hull(mask->region, output_range, mask->region); if (use_mask_array) { auto mask_iterable = GetTransformedArrayNDIterable( ArrayView<Shared<bool>, dynamic_rank, offset_origin>( AddByteOffset( SharedElementPointer<bool>( UnownedToShared(mask->mask_array.get())), -IndexInnerProduct(output_box.origin(), tensorstore::span(mask_byte_strides))), mask_layout), input_to_output, arena) .value(); SetMaskAndCountChanged set_mask_context; constexpr ElementwiseFunction<1> set_mask_func = internal::SimpleElementwiseFunction<SetMaskAndCountChanged(bool)>(); auto status = internal::IterateOverNDIterables<1, true>( input_to_output.input_shape(), skip_repeated_elements, {{mask_iterable.get()}}, arena, {&set_mask_func, &set_mask_context}); mask->num_masked_elements += set_mask_context.num_changed; status.IgnoreError(); assert(status.ok()); } else { mask->num_masked_elements = mask->region.num_elements(); } } } }
#include "tensorstore/internal/masked_array.h" #include <memory> #include <type_traits> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/box.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/transformed_array.h" #include "tensorstore/internal/element_copy_function.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/masked_array_testutil.h" #include "tensorstore/rank.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/result.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::ArrayView; using ::tensorstore::Box; using ::tensorstore::BoxView; using ::tensorstore::Dims; using ::tensorstore::dynamic_rank; using ::tensorstore::Index; using ::tensorstore::IndexTransform; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::IndexTransformView; using ::tensorstore::MakeArray; using ::tensorstore::MakeArrayView; using ::tensorstore::MakeOffsetArray; using ::tensorstore::MakeScalarArray; using ::tensorstore::MatchesStatus; using ::tensorstore::offset_origin; using ::tensorstore::SharedArray; using ::tensorstore::StridedLayout; using ::tensorstore::TransformedArray; using ::tensorstore::internal::ElementCopyFunction; using ::tensorstore::internal::MaskData; using ::tensorstore::internal::SimpleElementwiseFunction; class MaskedArrayTester { public: explicit MaskedArrayTester(BoxView<> box) : box_(box), mask_(box.rank()), mask_layout_zero_origin_(tensorstore::ContiguousLayoutOrder::c, sizeof(bool), box.shape()) {} ArrayView<const bool> mask_array() const { if (!mask_.mask_array) return {}; return ArrayView<const bool>(mask_.mask_array.get(), mask_layout_zero_origin_); } Index num_masked_elements() const { return mask_.num_masked_elements; } BoxView<> mask_region() const { return mask_.region; } const MaskData& mask() const { return mask_; } BoxView<> domain() const { return box_; } void Combine(MaskedArrayTester&& other) { UnionMasks(box_, &mask_, &other.mask_); } void Reset() { mask_.Reset(); } protected: Box<> box_; MaskData mask_; StridedLayout<> mask_layout_zero_origin_; }; template <typename T> class MaskedArrayWriteTester : public MaskedArrayTester { public: explicit MaskedArrayWriteTester(BoxView<> box) : MaskedArrayTester(box), dest_(tensorstore::AllocateArray<T>(box, tensorstore::c_order, tensorstore::value_init)), dest_layout_zero_origin_(tensorstore::ContiguousLayoutOrder::c, sizeof(T), box.shape()) {} template <typename CopyFunc> absl::Status Write(IndexTransformView<> dest_transform, TransformedArray<const T> source, CopyFunc&& copy_func) { ElementCopyFunction copy_function = SimpleElementwiseFunction<std::remove_reference_t<CopyFunc>(const T, T), void*>(); return WriteToMaskedArray(dest_.byte_strided_origin_pointer().get(), &mask_, dest_.domain(), dest_transform, source, {&copy_function, &copy_func}); } absl::Status Write(IndexTransformView<> dest_transform, TransformedArray<const T> source) { return Write(dest_transform, source, [](const T* source, T* dest, void*) { *dest = *source; }); } void Rebase(ArrayView<const T> source) { RebaseMaskedArray( box_, source, tensorstore::ArrayOriginCast<tensorstore::zero_origin>(dest_).value(), mask_); } IndexTransform<> transform() const { return tensorstore::IdentityTransform(dest_.domain()); } ArrayView<const T> dest_array() const { return ArrayView<const T>(dest_.byte_strided_origin_pointer().get(), dest_layout_zero_origin_); } private: SharedArray<T, dynamic_rank, offset_origin> dest_; StridedLayout<> dest_layout_zero_origin_; }; TEST(MaskDataTest, Construct) { MaskData mask(3); EXPECT_FALSE(mask.mask_array); EXPECT_EQ(0, mask.num_masked_elements); EXPECT_EQ(0, mask.region.num_elements()); } TEST(WriteToMaskedArrayTest, RankZero) { MaskedArrayWriteTester<int> tester{BoxView<>(0)}; TENSORSTORE_EXPECT_OK(tester.Write(tester.transform(), MakeScalarArray(5))); EXPECT_EQ(1, tester.num_masked_elements()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeScalarArray(5), tester.dest_array()); } TEST(WriteToMaskedArrayTest, RankZeroError) { MaskedArrayWriteTester<int> tester{BoxView<>(0)}; EXPECT_THAT( tester.Write( tester.transform(), MakeScalarArray(5), [](const int* source, int* dest, void* status) { return false; }), MatchesStatus(absl::StatusCode::kUnknown, "Data conversion failure.")); EXPECT_EQ(0, tester.num_masked_elements()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeScalarArray(0), tester.dest_array()); } TEST(WriteToMaskedArrayTest, RankOneNoElementsWritten) { MaskedArrayWriteTester<int> tester{BoxView<>(0)}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).AddNew().SizedInterval(0, 0)).value(), MakeArrayView(tensorstore::span<const int>{}))); EXPECT_EQ(0, tester.num_masked_elements()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeScalarArray(0), tester.dest_array()); } TEST(WriteToMaskedArrayTest, RankOne) { MaskedArrayWriteTester<int> tester{BoxView({1}, {10})}; TENSORSTORE_EXPECT_OK( tester.Write((tester.transform() | Dims(0).SizedInterval(2, 3)).value(), MakeOffsetArray({2}, {1, 2, 3}))); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(BoxView({2}, {3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({0, 1, 2, 3, 0, 0, 0, 0, 0, 0}), tester.dest_array()); TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(5, 2)).value(), MakeArray({4, 5}))); EXPECT_EQ(5, tester.num_masked_elements()); EXPECT_EQ(BoxView({2}, {5}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArrayView({0, 1, 2, 3, 4, 5, 0, 0, 0, 0}), tester.dest_array()); TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(9, 2)).value(), MakeArray({6, 7}))); EXPECT_EQ(7, tester.num_masked_elements()); EXPECT_EQ(BoxView({2}, {9}), tester.mask_region()); EXPECT_EQ(MakeArray<bool>({0, 1, 1, 1, 1, 1, 0, 0, 1, 1}), tester.mask_array()); EXPECT_EQ(MakeArray({0, 1, 2, 3, 4, 5, 0, 0, 6, 7}), tester.dest_array()); } TEST(WriteToMaskedArrayTest, RankOneStrided) { MaskedArrayWriteTester<int> tester{BoxView({1}, {8})}; auto input_to_output = IndexTransformBuilder<>(1, 1) .input_origin({2}) .input_shape({3}) .output_single_input_dimension(0, -2, 2, 0) .Finalize() .value(); TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).SizedInterval(2, 3, 2).TranslateTo(0)) .value(), MakeArray({1, 2, 3}))); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(MakeArray<bool>({0, 1, 0, 1, 0, 1, 0, 0}), tester.mask_array()); EXPECT_EQ(MakeArray({0, 1, 0, 2, 0, 3, 0, 0}), tester.dest_array()); EXPECT_EQ(BoxView({2}, {5}), tester.mask_region()); } TEST(WriteToMaskedArrayTest, RankTwo) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {4, 5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).TranslateSizedInterval({2, 3}, {3, 2})) .value(), MakeArray({ {1, 2}, {3, 4}, {5, 6}, }))); EXPECT_EQ(6, tester.num_masked_elements()); EXPECT_EQ(BoxView({2, 3}, {3, 2}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {0, 0, 0, 0, 0}, {0, 1, 2, 0, 0}, {0, 3, 4, 0, 0}, {0, 5, 6, 0, 0}, }), tester.dest_array()); TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).TranslateSizedInterval({2, 2}, {3, 2})) .value(), MakeArray({ {7, 8}, {9, 0}, {1, 2}, }))); EXPECT_EQ(9, tester.num_masked_elements()); EXPECT_EQ(BoxView({2, 2}, {3, 3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {0, 0, 0, 0, 0}, {7, 8, 2, 0, 0}, {9, 0, 4, 0, 0}, {1, 2, 6, 0, 0}, }), tester.dest_array()); TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).TranslateSizedInterval({3, 5}, {2, 2})) .value(), MakeArray({ {5, 6}, {7, 8}, }))); EXPECT_EQ(13, tester.num_masked_elements()); EXPECT_EQ(BoxView({2, 2}, {3, 5}), tester.mask_region()); EXPECT_EQ(MakeArray<bool>({ {0, 0, 0, 0, 0}, {1, 1, 1, 0, 0}, {1, 1, 1, 1, 1}, {1, 1, 1, 1, 1}, }), tester.mask_array()); EXPECT_EQ(MakeArray({ {0, 0, 0, 0, 0}, {7, 8, 2, 0, 0}, {9, 0, 4, 5, 6}, {1, 2, 6, 7, 8}, }), tester.dest_array()); } TEST(WriteToMaskedArrayTest, RankTwoNonExactContainedInExistingMaskRegion) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {4, 5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).TranslateSizedInterval({2, 3}, {3, 2})) .value(), MakeArray({ {1, 2}, {3, 4}, {5, 6}, }))); EXPECT_EQ(6, tester.num_masked_elements()); EXPECT_EQ(BoxView({2, 3}, {3, 2}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {0, 0, 0, 0, 0}, {0, 1, 2, 0, 0}, {0, 3, 4, 0, 0}, {0, 5, 6, 0, 0}, }), tester.dest_array()); TENSORSTORE_EXPECT_OK( tester.Write((tester.transform() | Dims(0, 1).TranslateSizedInterval({2, 3}, {2, 2}, {2, 1})) .value(), MakeArray({ {7, 8}, {9, 0}, }))); EXPECT_EQ(6, tester.num_masked_elements()); EXPECT_EQ(BoxView({2, 3}, {3, 2}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {0, 0, 0, 0, 0}, {0, 7, 8, 0, 0}, {0, 3, 4, 0, 0}, {0, 9, 0, 0, 0}, }), tester.dest_array()); } TEST(WriteToMaskedArrayTest, RankTwoPartialCopy) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {4, 5})}; EXPECT_THAT( tester.Write((tester.transform() | Dims(0, 1).TranslateSizedInterval({2, 3}, {3, 2})) .value(), MakeArray({ {1, 2}, {3, 4}, {5, 6}, }), [](const int* source, int* dest, void* arg) { if (*source == 4) return false; *dest = *source; return true; }), MatchesStatus(absl::StatusCode::kUnknown, "Data conversion failure.")); EXPECT_EQ(0, tester.num_masked_elements()); } TEST(WriteToMaskedArrayTest, RankTwoIndexArray) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {4, 5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).IndexVectorArraySlice(MakeArray<Index>({ {1, 2}, {1, 4}, {2, 3}, }))) .value(), MakeArray({1, 2, 3}))); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(BoxView({1, 2}, {4, 5}), tester.mask_region()); EXPECT_EQ(MakeArray({ {1, 0, 2, 0, 0}, {0, 3, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }), tester.dest_array()); EXPECT_EQ(MakeArray<bool>({ {1, 0, 1, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }), tester.mask_array()); TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).IndexVectorArraySlice(MakeArray<Index>({ {1, 3}, {1, 4}, {2, 3}, }))) .value(), MakeArray({4, 5, 6}))); EXPECT_EQ(4, tester.num_masked_elements()); EXPECT_EQ(BoxView({1, 2}, {4, 5}), tester.mask_region()); EXPECT_EQ(MakeArray({ {1, 4, 5, 0, 0}, {0, 6, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }), tester.dest_array()); EXPECT_EQ(MakeArray<bool>({ {1, 1, 1, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, }), tester.mask_array()); } TEST(WriteToMaskedArrayTest, IndexArrayLarge) { const Index kSize = 32768; auto index_array = tensorstore::AllocateArray<Index>({kSize}); for (Index i = 0; i < kSize; ++i) { index_array(i) = i; } auto fill_array = tensorstore::BroadcastArray(tensorstore::MakeScalarArray<int>(42), tensorstore::span<const Index>({2, kSize})) .value(); auto mask_array = tensorstore::BroadcastArray(tensorstore::MakeScalarArray<bool>(true), tensorstore::span<const Index>({2, kSize})) .value(); MaskedArrayWriteTester<int> tester{fill_array.domain()}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(1).OuterIndexArraySlice(index_array)).value(), fill_array)); EXPECT_EQ(fill_array.num_elements(), tester.num_masked_elements()); EXPECT_EQ(fill_array.domain(), tester.mask_region()); EXPECT_EQ(fill_array, tester.dest_array()); EXPECT_EQ(mask_array, tester.mask_array()); } TEST(WriteToMaskedArrayTest, RankOneInvalidTransform) { MaskedArrayWriteTester<int> tester{BoxView({1}, {4})}; EXPECT_THAT( tester.Write((tester.transform() | Dims(0).SizedInterval(2, 3)).value(), MakeOffsetArray({1}, {1, 2, 3})), MatchesStatus(absl::StatusCode::kInvalidArgument)); EXPECT_EQ(0, tester.num_masked_elements()); EXPECT_TRUE(tester.mask_region().is_empty()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({0, 0, 0, 0}), tester.dest_array()); } TEST(WriteToMaskedArrayTest, RankOnePartialCopyDefaultError) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; EXPECT_THAT( tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(2, 3)).value(), MakeArray({1, 2, 3}), [](const int* source, int* dest, void* arg) { if (*source == 2) return false; *dest = *source; return true; }), MatchesStatus(absl::StatusCode::kUnknown, "Data conversion failure.")); EXPECT_EQ(0, tester.num_masked_elements()); } TEST(WriteToMaskedArrayTest, RankOnePartialCopyCustomError) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; EXPECT_THAT( tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(2, 3)).value(), MakeArray({1, 2, 3}), [](const int* source, int* dest, void* arg) { auto* status = static_cast<absl::Status*>(arg); if (*source == 2) { *status = absl::UnknownError("My custom error"); return false; } *dest = *source; return true; }), MatchesStatus(absl::StatusCode::kUnknown, "My custom error")); EXPECT_EQ(0, tester.num_masked_elements()); } TEST(RebaseMaskedArrayTest, Empty) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {2, 3})}; tester.Rebase(MakeArray({ {1, 2, 3}, {4, 5, 6}, })); EXPECT_EQ(0, tester.num_masked_elements()); EXPECT_TRUE(tester.mask_region().is_empty()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {1, 2, 3}, {4, 5, 6}, }), tester.dest_array()); } TEST(RebaseMaskedArrayTest, Full) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {2, 3})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).TranslateSizedInterval({1, 2}, {2, 3})) .value(), MakeArray({ {1, 2, 3}, {4, 5, 6}, }))); EXPECT_EQ(6, tester.num_masked_elements()); EXPECT_EQ(BoxView({1, 2}, {2, 3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {1, 2, 3}, {4, 5, 6}, }), tester.dest_array()); tester.Rebase(MakeArray({ {7, 7, 7}, {7, 7, 7}, })); EXPECT_EQ(6, tester.num_masked_elements()); EXPECT_EQ(BoxView({1, 2}, {2, 3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {1, 2, 3}, {4, 5, 6}, }), tester.dest_array()); } TEST(RebaseMaskedArrayTest, NoMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {2, 3})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).TranslateSizedInterval({2, 3}, {1, 2})) .value(), MakeArray({ {1, 2}, }))); EXPECT_EQ(2, tester.num_masked_elements()); EXPECT_EQ(BoxView({2, 3}, {1, 2}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {0, 0, 0}, {0, 1, 2}, }), tester.dest_array()); tester.Rebase(MakeArray({ {3, 4, 5}, {6, 7, 8}, })); EXPECT_EQ(2, tester.num_masked_elements()); EXPECT_EQ(BoxView({2, 3}, {1, 2}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(MakeArray({ {3, 4, 5}, {6, 1, 2}, }), tester.dest_array()); } TEST(RebaseMaskedArrayTest, MaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1, 2}, {2, 3})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0, 1).IndexVectorArraySlice(MakeArray<Index>({ {1, 2}, {1, 4}, }))) .value(), MakeArray({1, 2}))); EXPECT_EQ(2, tester.num_masked_elements()); EXPECT_EQ(BoxView({1, 2}, {2, 3}), tester.mask_region()); EXPECT_EQ(MakeArray({ {1, 0, 2}, {0, 0, 0}, }), tester.dest_array()); EXPECT_EQ(MakeArray<bool>({ {1, 0, 1}, {0, 0, 0}, }), tester.mask_array()); tester.Rebase(MakeArray({ {3, 4, 5}, {6, 7, 8}, })); EXPECT_EQ(2, tester.num_masked_elements()); EXPECT_EQ(BoxView({1, 2}, {2, 3}), tester.mask_region()); EXPECT_EQ(MakeArray({ {1, 4, 2}, {6, 7, 8}, }), tester.dest_array()); EXPECT_EQ(MakeArray<bool>({ {1, 0, 1}, {0, 0, 0}, }), tester.mask_array()); } TEST(UnionMasksTest, FirstEmpty) { MaskedArrayTester tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).TranslateSizedInterval(2, 3)).value(), MakeArray({1, 2, 3}))); tester.Combine(std::move(tester_b)); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(BoxView({2}, {3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); } TEST(UnionMasksTest, SecondEmpty) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayTester tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(2, 3)).value(), MakeArray({1, 2, 3}))); tester.Combine(std::move(tester_b)); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(BoxView({2}, {3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); } TEST(UnionMasksTest, MaskArrayAndMaskArrayEqualsMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).IndexArraySlice(MakeArray<Index>({1, 3}))) .value(), MakeArray({1, 2}))); EXPECT_TRUE(tester.mask_array().valid()); TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).IndexArraySlice(MakeArray<Index>({1, 4}))) .value(), MakeArray({1, 2}))); EXPECT_TRUE(tester_b.mask_array().valid()); tester.Combine(std::move(tester_b)); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(BoxView({1}, {5}), tester.mask_region()); EXPECT_EQ(MakeArray<bool>({1, 0, 1, 1, 0}), tester.mask_array()); } TEST(UnionMasksTest, MaskArrayAndMaskArrayEqualsNoMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(1, 2, 2)).value(), MakeArray({1, 2}))); EXPECT_TRUE(tester.mask_array().valid()); TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).TranslateSizedInterval(2, 2, 2)).value(), MakeArray({1, 2}))); EXPECT_TRUE(tester_b.mask_array().valid()); tester.Combine(std::move(tester_b)); EXPECT_EQ(4, tester.num_masked_elements()); EXPECT_EQ(BoxView({1}, {4}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); } TEST(UnionMasksTest, NoMaskArrayAndNoMaskArrayEqualsNoMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(1, 2)).value(), MakeArray({1, 2}))); TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).TranslateSizedInterval(2, 2)).value(), MakeArray({1, 2}))); tester.Combine(std::move(tester_b)); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(BoxView({1}, {3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); } TEST(UnionMasksTest, NoMaskArrayAndNoMaskArrayEqualsMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(1, 2)).value(), MakeArray({1, 2}))); TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).TranslateSizedInterval(4, 2)).value(), MakeArray({1, 2}))); tester.Combine(std::move(tester_b)); EXPECT_EQ(4, tester.num_masked_elements()); EXPECT_EQ(BoxView({1}, {5}), tester.mask_region()); EXPECT_EQ(MakeArray<bool>({1, 1, 0, 1, 1}), tester.mask_array()); } TEST(UnionMasksTest, MaskArrayAndNoMaskArrayEqualsMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(1, 2, 2)).value(), MakeArray({1, 2}))); EXPECT_TRUE(tester.mask_array().valid()); TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).TranslateSizedInterval(4, 2)).value(), MakeArray({1, 2}))); EXPECT_FALSE(tester_b.mask_array().valid()); tester.Combine(std::move(tester_b)); EXPECT_EQ(4, tester.num_masked_elements()); EXPECT_EQ(BoxView({1}, {5}), tester.mask_region()); EXPECT_EQ(MakeArray<bool>({1, 0, 1, 1, 1}), tester.mask_array()); } TEST(UnionMasksTest, NoMaskArrayAndMaskArrayEqualsMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(4, 2)).value(), MakeArray({1, 2}))); EXPECT_FALSE(tester.mask_array().valid()); TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).TranslateSizedInterval(1, 2, 2)).value(), MakeArray({1, 2}))); EXPECT_TRUE(tester_b.mask_array().valid()); tester.Combine(std::move(tester_b)); EXPECT_EQ(4, tester.num_masked_elements()); EXPECT_EQ(BoxView({1}, {5}), tester.mask_region()); EXPECT_EQ(MakeArray<bool>({1, 0, 1, 1, 1}), tester.mask_array()); } TEST(UnionMasksTest, MaskArrayAndNoMaskArrayEqualsNoMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; MaskedArrayWriteTester<int> tester_b{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(1, 2, 2)).value(), MakeArray({1, 2}))); EXPECT_TRUE(tester.mask_array().valid()); TENSORSTORE_EXPECT_OK(tester_b.Write( (tester_b.transform() | Dims(0).TranslateSizedInterval(1, 2)).value(), MakeArray({1, 2}))); EXPECT_FALSE(tester_b.mask_array().valid()); tester.Combine(std::move(tester_b)); EXPECT_EQ(3, tester.num_masked_elements()); EXPECT_EQ(BoxView({1}, {3}), tester.mask_region()); EXPECT_FALSE(tester.mask_array().valid()); } TEST(ResetTest, NoMaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(4, 2)).value(), MakeArray({1, 2}))); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_EQ(BoxView({4}, {2}), tester.mask_region()); EXPECT_EQ(2, tester.num_masked_elements()); tester.Reset(); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_TRUE(tester.mask_region().is_empty()); EXPECT_EQ(0, tester.num_masked_elements()); } TEST(ResetTest, MaskArray) { MaskedArrayWriteTester<int> tester{BoxView({1}, {5})}; TENSORSTORE_EXPECT_OK(tester.Write( (tester.transform() | Dims(0).TranslateSizedInterval(1, 2, 2)).value(), MakeArray({1, 2}))); EXPECT_TRUE(tester.mask_array().valid()); EXPECT_EQ(BoxView({1}, {3}), tester.mask_region()); EXPECT_EQ(2, tester.num_masked_elements()); tester.Reset(); EXPECT_FALSE(tester.mask_array().valid()); EXPECT_TRUE(tester.mask_region().is_empty()); EXPECT_EQ(0, tester.num_masked_elements()); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/masked_array.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/masked_array_test.cc
4f887a6430414cd6088e1743555015b10f116d50
e130505a-4fdf-4412-8ae6-7a6268b668b5
cpp
google/quiche
quic_versions
quiche/quic/core/quic_versions.cc
quiche/quic/core/quic_versions_test.cc
#include "quiche/quic/core/quic_versions.h" #include <algorithm> #include <ostream> #include <string> #include <vector> #include "absl/base/macros.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "quiche/quic/core/crypto/quic_random.h" #include "quiche/quic/core/quic_tag.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/common/quiche_endian.h" #include "quiche/common/quiche_text_utils.h" namespace quic { namespace { QuicVersionLabel CreateRandomVersionLabelForNegotiation() { QuicVersionLabel result; if (!GetQuicFlag(quic_disable_version_negotiation_grease_randomness)) { QuicRandom::GetInstance()->RandBytes(&result, sizeof(result)); } else { result = MakeVersionLabel(0xd1, 0x57, 0x38, 0x3f); } result &= 0xf0f0f0f0; result |= 0x0a0a0a0a; return result; } void SetVersionFlag(const ParsedQuicVersion& version, bool should_enable) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); const bool enable = should_enable; const bool disable = !should_enable; if (version == ParsedQuicVersion::RFCv2()) { SetQuicReloadableFlag(quic_enable_version_rfcv2, enable); } else if (version == ParsedQuicVersion::RFCv1()) { SetQuicReloadableFlag(quic_disable_version_rfcv1, disable); } else if (version == ParsedQuicVersion::Draft29()) { SetQuicReloadableFlag(quic_disable_version_draft_29, disable); } else if (version == ParsedQuicVersion::Q046()) { SetQuicReloadableFlag(quic_disable_version_q046, disable); } else { QUIC_BUG(quic_bug_10589_1) << "Cannot " << (enable ? "en" : "dis") << "able version " << version; } } } bool ParsedQuicVersion::IsKnown() const { QUICHE_DCHECK(ParsedQuicVersionIsValid(handshake_protocol, transport_version)) << QuicVersionToString(transport_version) << " " << HandshakeProtocolToString(handshake_protocol); return transport_version != QUIC_VERSION_UNSUPPORTED; } bool ParsedQuicVersion::KnowsWhichDecrypterToUse() const { QUICHE_DCHECK(IsKnown()); return transport_version > QUIC_VERSION_46; } bool ParsedQuicVersion::UsesInitialObfuscators() const { QUICHE_DCHECK(IsKnown()); return transport_version > QUIC_VERSION_46; } bool ParsedQuicVersion::AllowsLowFlowControlLimits() const { QUICHE_DCHECK(IsKnown()); return UsesHttp3(); } bool ParsedQuicVersion::HasHeaderProtection() const { QUICHE_DCHECK(IsKnown()); return transport_version > QUIC_VERSION_46; } bool ParsedQuicVersion::SupportsRetry() const { QUICHE_DCHECK(IsKnown()); return transport_version > QUIC_VERSION_46; } bool ParsedQuicVersion::SendsVariableLengthPacketNumberInLongHeader() const { QUICHE_DCHECK(IsKnown()); return transport_version > QUIC_VERSION_46; } bool ParsedQuicVersion::AllowsVariableLengthConnectionIds() const { QUICHE_DCHECK(IsKnown()); return VersionAllowsVariableLengthConnectionIds(transport_version); } bool ParsedQuicVersion::SupportsClientConnectionIds() const { QUICHE_DCHECK(IsKnown()); return transport_version > QUIC_VERSION_46; } bool ParsedQuicVersion::HasLengthPrefixedConnectionIds() const { QUICHE_DCHECK(IsKnown()); return VersionHasLengthPrefixedConnectionIds(transport_version); } bool ParsedQuicVersion::SupportsAntiAmplificationLimit() const { QUICHE_DCHECK(IsKnown()); return UsesHttp3(); } bool ParsedQuicVersion::CanSendCoalescedPackets() const { QUICHE_DCHECK(IsKnown()); return HasLongHeaderLengths() && UsesTls(); } bool ParsedQuicVersion::SupportsGoogleAltSvcFormat() const { QUICHE_DCHECK(IsKnown()); return VersionSupportsGoogleAltSvcFormat(transport_version); } bool ParsedQuicVersion::UsesHttp3() const { QUICHE_DCHECK(IsKnown()); return VersionUsesHttp3(transport_version); } bool ParsedQuicVersion::HasLongHeaderLengths() const { QUICHE_DCHECK(IsKnown()); return QuicVersionHasLongHeaderLengths(transport_version); } bool ParsedQuicVersion::UsesCryptoFrames() const { QUICHE_DCHECK(IsKnown()); return QuicVersionUsesCryptoFrames(transport_version); } bool ParsedQuicVersion::HasIetfQuicFrames() const { QUICHE_DCHECK(IsKnown()); return VersionHasIetfQuicFrames(transport_version); } bool ParsedQuicVersion::UsesLegacyTlsExtension() const { QUICHE_DCHECK(IsKnown()); return UsesTls() && transport_version <= QUIC_VERSION_IETF_DRAFT_29; } bool ParsedQuicVersion::UsesTls() const { QUICHE_DCHECK(IsKnown()); return handshake_protocol == PROTOCOL_TLS1_3; } bool ParsedQuicVersion::UsesQuicCrypto() const { QUICHE_DCHECK(IsKnown()); return handshake_protocol == PROTOCOL_QUIC_CRYPTO; } bool ParsedQuicVersion::UsesV2PacketTypes() const { QUICHE_DCHECK(IsKnown()); return transport_version == QUIC_VERSION_IETF_RFC_V2; } bool ParsedQuicVersion::AlpnDeferToRFCv1() const { QUICHE_DCHECK(IsKnown()); return transport_version == QUIC_VERSION_IETF_RFC_V2; } bool VersionHasLengthPrefixedConnectionIds( QuicTransportVersion transport_version) { QUICHE_DCHECK(transport_version != QUIC_VERSION_UNSUPPORTED); return transport_version > QUIC_VERSION_46; } std::ostream& operator<<(std::ostream& os, const ParsedQuicVersion& version) { os << ParsedQuicVersionToString(version); return os; } std::ostream& operator<<(std::ostream& os, const ParsedQuicVersionVector& versions) { os << ParsedQuicVersionVectorToString(versions); return os; } QuicVersionLabel MakeVersionLabel(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { return MakeQuicTag(d, c, b, a); } std::ostream& operator<<(std::ostream& os, const QuicVersionLabelVector& version_labels) { os << QuicVersionLabelVectorToString(version_labels); return os; } std::ostream& operator<<(std::ostream& os, const QuicTransportVersionVector& transport_versions) { os << QuicTransportVersionVectorToString(transport_versions); return os; } QuicVersionLabel CreateQuicVersionLabel(ParsedQuicVersion parsed_version) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); if (parsed_version == ParsedQuicVersion::RFCv2()) { return MakeVersionLabel(0x6b, 0x33, 0x43, 0xcf); } else if (parsed_version == ParsedQuicVersion::RFCv1()) { return MakeVersionLabel(0x00, 0x00, 0x00, 0x01); } else if (parsed_version == ParsedQuicVersion::Draft29()) { return MakeVersionLabel(0xff, 0x00, 0x00, 29); } else if (parsed_version == ParsedQuicVersion::Q046()) { return MakeVersionLabel('Q', '0', '4', '6'); } else if (parsed_version == ParsedQuicVersion::ReservedForNegotiation()) { return CreateRandomVersionLabelForNegotiation(); } QUIC_BUG(quic_bug_10589_2) << "Unsupported version " << QuicVersionToString(parsed_version.transport_version) << " " << HandshakeProtocolToString(parsed_version.handshake_protocol); return 0; } QuicVersionLabelVector CreateQuicVersionLabelVector( const ParsedQuicVersionVector& versions) { QuicVersionLabelVector out; out.reserve(versions.size()); for (const auto& version : versions) { out.push_back(CreateQuicVersionLabel(version)); } return out; } ParsedQuicVersionVector AllSupportedVersionsWithQuicCrypto() { ParsedQuicVersionVector versions; for (const ParsedQuicVersion& version : AllSupportedVersions()) { if (version.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { versions.push_back(version); } } QUIC_BUG_IF(quic_bug_10589_3, versions.empty()) << "No version with QUIC crypto found."; return versions; } ParsedQuicVersionVector CurrentSupportedVersionsWithQuicCrypto() { ParsedQuicVersionVector versions; for (const ParsedQuicVersion& version : CurrentSupportedVersions()) { if (version.handshake_protocol == PROTOCOL_QUIC_CRYPTO) { versions.push_back(version); } } QUIC_BUG_IF(quic_bug_10589_4, versions.empty()) << "No version with QUIC crypto found."; return versions; } ParsedQuicVersionVector AllSupportedVersionsWithTls() { ParsedQuicVersionVector versions; for (const ParsedQuicVersion& version : AllSupportedVersions()) { if (version.UsesTls()) { versions.push_back(version); } } QUIC_BUG_IF(quic_bug_10589_5, versions.empty()) << "No version with TLS handshake found."; return versions; } ParsedQuicVersionVector CurrentSupportedVersionsWithTls() { ParsedQuicVersionVector versions; for (const ParsedQuicVersion& version : CurrentSupportedVersions()) { if (version.UsesTls()) { versions.push_back(version); } } QUIC_BUG_IF(quic_bug_10589_6, versions.empty()) << "No version with TLS handshake found."; return versions; } ParsedQuicVersionVector ObsoleteSupportedVersions() { return ParsedQuicVersionVector{quic::ParsedQuicVersion::Q046(), quic::ParsedQuicVersion::Draft29()}; } bool IsObsoleteSupportedVersion(ParsedQuicVersion version) { static const ParsedQuicVersionVector obsolete_versions = ObsoleteSupportedVersions(); for (const ParsedQuicVersion& obsolete_version : obsolete_versions) { if (version == obsolete_version) { return true; } } return false; } ParsedQuicVersionVector CurrentSupportedVersionsForClients() { ParsedQuicVersionVector versions; for (const ParsedQuicVersion& version : CurrentSupportedVersionsWithTls()) { QUICHE_DCHECK_EQ(version.handshake_protocol, PROTOCOL_TLS1_3); if (version.transport_version >= QUIC_VERSION_IETF_RFC_V1) { versions.push_back(version); } } QUIC_BUG_IF(quic_bug_10589_8, versions.empty()) << "No supported client versions found."; return versions; } ParsedQuicVersionVector CurrentSupportedHttp3Versions() { ParsedQuicVersionVector versions; for (const ParsedQuicVersion& version : CurrentSupportedVersions()) { if (version.UsesHttp3()) { versions.push_back(version); } } QUIC_BUG_IF(no_version_uses_http3, versions.empty()) << "No version speaking Http3 found."; return versions; } ParsedQuicVersion ParseQuicVersionLabel(QuicVersionLabel version_label) { for (const ParsedQuicVersion& version : AllSupportedVersions()) { if (version_label == CreateQuicVersionLabel(version)) { return version; } } QUIC_DLOG(INFO) << "Unsupported QuicVersionLabel version: " << QuicVersionLabelToString(version_label); return UnsupportedQuicVersion(); } ParsedQuicVersionVector ParseQuicVersionLabelVector( const QuicVersionLabelVector& version_labels) { ParsedQuicVersionVector parsed_versions; for (const QuicVersionLabel& version_label : version_labels) { ParsedQuicVersion parsed_version = ParseQuicVersionLabel(version_label); if (parsed_version.IsKnown()) { parsed_versions.push_back(parsed_version); } } return parsed_versions; } ParsedQuicVersion ParseQuicVersionString(absl::string_view version_string) { if (version_string.empty()) { return UnsupportedQuicVersion(); } const ParsedQuicVersionVector supported_versions = AllSupportedVersions(); for (const ParsedQuicVersion& version : supported_versions) { if (version_string == ParsedQuicVersionToString(version) || (version_string == AlpnForVersion(version) && !version.AlpnDeferToRFCv1()) || (version.handshake_protocol == PROTOCOL_QUIC_CRYPTO && version_string == QuicVersionToString(version.transport_version))) { return version; } } for (const ParsedQuicVersion& version : supported_versions) { if (version.UsesHttp3() && version_string == QuicVersionLabelToString(CreateQuicVersionLabel(version))) { return version; } } int quic_version_number = 0; if (absl::SimpleAtoi(version_string, &quic_version_number) && quic_version_number > 0) { QuicTransportVersion transport_version = static_cast<QuicTransportVersion>(quic_version_number); if (!ParsedQuicVersionIsValid(PROTOCOL_QUIC_CRYPTO, transport_version)) { return UnsupportedQuicVersion(); } ParsedQuicVersion version(PROTOCOL_QUIC_CRYPTO, transport_version); if (std::find(supported_versions.begin(), supported_versions.end(), version) != supported_versions.end()) { return version; } return UnsupportedQuicVersion(); } QUIC_DLOG(INFO) << "Unsupported QUIC version string: \"" << version_string << "\"."; return UnsupportedQuicVersion(); } ParsedQuicVersionVector ParseQuicVersionVectorString( absl::string_view versions_string) { ParsedQuicVersionVector versions; std::vector<absl::string_view> version_strings = absl::StrSplit(versions_string, ','); for (absl::string_view version_string : version_strings) { quiche::QuicheTextUtils::RemoveLeadingAndTrailingWhitespace( &version_string); ParsedQuicVersion version = ParseQuicVersionString(version_string); if (!version.IsKnown() || std::find(versions.begin(), versions.end(), version) != versions.end()) { continue; } versions.push_back(version); } return versions; } QuicTransportVersionVector AllSupportedTransportVersions() { QuicTransportVersionVector transport_versions; for (const ParsedQuicVersion& version : AllSupportedVersions()) { if (std::find(transport_versions.begin(), transport_versions.end(), version.transport_version) == transport_versions.end()) { transport_versions.push_back(version.transport_version); } } return transport_versions; } ParsedQuicVersionVector AllSupportedVersions() { constexpr auto supported_versions = SupportedVersions(); return ParsedQuicVersionVector(supported_versions.begin(), supported_versions.end()); } ParsedQuicVersionVector CurrentSupportedVersions() { return FilterSupportedVersions(AllSupportedVersions()); } ParsedQuicVersionVector FilterSupportedVersions( ParsedQuicVersionVector versions) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); ParsedQuicVersionVector filtered_versions; filtered_versions.reserve(versions.size()); for (const ParsedQuicVersion& version : versions) { if (version == ParsedQuicVersion::RFCv2()) { if (GetQuicReloadableFlag(quic_enable_version_rfcv2)) { filtered_versions.push_back(version); } } else if (version == ParsedQuicVersion::RFCv1()) { if (!GetQuicReloadableFlag(quic_disable_version_rfcv1)) { filtered_versions.push_back(version); } } else if (version == ParsedQuicVersion::Draft29()) { if (!GetQuicReloadableFlag(quic_disable_version_draft_29)) { filtered_versions.push_back(version); } } else if (version == ParsedQuicVersion::Q046()) { if (!GetQuicReloadableFlag(quic_disable_version_q046)) { filtered_versions.push_back(version); } } else { QUIC_BUG(quic_bug_10589_7) << "QUIC version " << version << " has no flag protection"; filtered_versions.push_back(version); } } return filtered_versions; } ParsedQuicVersionVector ParsedVersionOfIndex( const ParsedQuicVersionVector& versions, int index) { ParsedQuicVersionVector version; int version_count = versions.size(); if (index >= 0 && index < version_count) { version.push_back(versions[index]); } else { version.push_back(UnsupportedQuicVersion()); } return version; } std::string QuicVersionLabelToString(QuicVersionLabel version_label) { return QuicTagToString(quiche::QuicheEndian::HostToNet32(version_label)); } ParsedQuicVersion ParseQuicVersionLabelString( absl::string_view version_label_string) { const ParsedQuicVersionVector supported_versions = AllSupportedVersions(); for (const ParsedQuicVersion& version : supported_versions) { if (version_label_string == QuicVersionLabelToString(CreateQuicVersionLabel(version))) { return version; } } return UnsupportedQuicVersion(); } std::string QuicVersionLabelVectorToString( const QuicVersionLabelVector& version_labels, const std::string& separator, size_t skip_after_nth_version) { std::string result; for (size_t i = 0; i < version_labels.size(); ++i) { if (i != 0) { result.append(separator); } if (i > skip_after_nth_version) { result.append("..."); break; } result.append(QuicVersionLabelToString(version_labels[i])); } return result; } #define RETURN_STRING_LITERAL(x) \ case x: \ return #x std::string QuicVersionToString(QuicTransportVersion transport_version) { switch (transport_version) { RETURN_STRING_LITERAL(QUIC_VERSION_46); RETURN_STRING_LITERAL(QUIC_VERSION_IETF_DRAFT_29); RETURN_STRING_LITERAL(QUIC_VERSION_IETF_RFC_V1); RETURN_STRING_LITERAL(QUIC_VERSION_IETF_RFC_V2); RETURN_STRING_LITERAL(QUIC_VERSION_UNSUPPORTED); RETURN_STRING_LITERAL(QUIC_VERSION_RESERVED_FOR_NEGOTIATION); } return absl::StrCat("QUIC_VERSION_UNKNOWN(", static_cast<int>(transport_version), ")"); } std::string HandshakeProtocolToString(HandshakeProtocol handshake_protocol) { switch (handshake_protocol) { RETURN_STRING_LITERAL(PROTOCOL_UNSUPPORTED); RETURN_STRING_LITERAL(PROTOCOL_QUIC_CRYPTO); RETURN_STRING_LITERAL(PROTOCOL_TLS1_3); } return absl::StrCat("PROTOCOL_UNKNOWN(", static_cast<int>(handshake_protocol), ")"); } std::string ParsedQuicVersionToString(ParsedQuicVersion version) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); if (version == UnsupportedQuicVersion()) { return "0"; } else if (version == ParsedQuicVersion::RFCv2()) { QUICHE_DCHECK(version.UsesHttp3()); return "RFCv2"; } else if (version == ParsedQuicVersion::RFCv1()) { QUICHE_DCHECK(version.UsesHttp3()); return "RFCv1"; } else if (version == ParsedQuicVersion::Draft29()) { QUICHE_DCHECK(version.UsesHttp3()); return "draft29"; } return QuicVersionLabelToString(CreateQuicVersionLabel(version)); } std::string QuicTransportVersionVectorToString( const QuicTransportVersionVector& versions) { std::string result = ""; for (size_t i = 0; i < versions.size(); ++i) { if (i != 0) { result.append(","); } result.append(QuicVersionToString(versions[i])); } return result; } std::string ParsedQuicVersionVectorToString( const ParsedQuicVersionVector& versions, const std::string& separator, size_t skip_after_nth_version) { std::string result; for (size_t i = 0; i < versions.size(); ++i) { if (i != 0) { result.append(separator); } if (i > skip_after_nth_version) { result.append("..."); break; } result.append(ParsedQuicVersionToString(versions[i])); } return result; } bool VersionSupportsGoogleAltSvcFormat(QuicTransportVersion transport_version) { return transport_version <= QUIC_VERSION_46; } bool VersionAllowsVariableLengthConnectionIds( QuicTransportVersion transport_version) { QUICHE_DCHECK_NE(transport_version, QUIC_VERSION_UNSUPPORTED); return transport_version > QUIC_VERSION_46; } bool QuicVersionLabelUses4BitConnectionIdLength( QuicVersionLabel version_label) { for (uint8_t c = '3'; c <= '8'; ++c) { if (version_label == MakeVersionLabel('Q', '0', '4', c)) { return true; } } if (version_label == MakeVersionLabel('T', '0', '4', '8')) { return true; } for (uint8_t draft_number = 11; draft_number <= 21; ++draft_number) { if (version_label == MakeVersionLabel(0xff, 0x00, 0x00, draft_number)) { return true; } } return false; } ParsedQuicVersion UnsupportedQuicVersion() { return ParsedQuicVersion::Unsupported(); } ParsedQuicVersion QuicVersionReservedForNegotiation() { return ParsedQuicVersion::ReservedForNegotiation(); } std::string AlpnForVersion(ParsedQuicVersion parsed_version) { if (parsed_version == ParsedQuicVersion::RFCv2()) { return "h3"; } else if (parsed_version == ParsedQuicVersion::RFCv1()) { return "h3"; } else if (parsed_version == ParsedQuicVersion::Draft29()) { return "h3-29"; } return "h3-" + ParsedQuicVersionToString(parsed_version); } void QuicEnableVersion(const ParsedQuicVersion& version) { SetVersionFlag(version, true); } void QuicDisableVersion(const ParsedQuicVersion& version) { SetVersionFlag(version, false); } bool QuicVersionIsEnabled(const ParsedQuicVersion& version) { ParsedQuicVersionVector current = CurrentSupportedVersions(); return std::find(current.begin(), current.end(), version) != current.end(); } #undef RETURN_STRING_LITERAL }
#include "quiche/quic/core/quic_versions.h" #include <cstddef> #include <sstream> #include "absl/algorithm/container.h" #include "absl/base/macros.h" #include "quiche/quic/platform/api/quic_expect_bug.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace test { namespace { using ::testing::ElementsAre; using ::testing::IsEmpty; TEST(QuicVersionsTest, CreateQuicVersionLabelUnsupported) { EXPECT_QUIC_BUG( CreateQuicVersionLabel(UnsupportedQuicVersion()), "Unsupported version QUIC_VERSION_UNSUPPORTED PROTOCOL_UNSUPPORTED"); } TEST(QuicVersionsTest, KnownAndValid) { for (const ParsedQuicVersion& version : AllSupportedVersions()) { EXPECT_TRUE(version.IsKnown()); EXPECT_TRUE(ParsedQuicVersionIsValid(version.handshake_protocol, version.transport_version)); } ParsedQuicVersion unsupported = UnsupportedQuicVersion(); EXPECT_FALSE(unsupported.IsKnown()); EXPECT_TRUE(ParsedQuicVersionIsValid(unsupported.handshake_protocol, unsupported.transport_version)); ParsedQuicVersion reserved = QuicVersionReservedForNegotiation(); EXPECT_TRUE(reserved.IsKnown()); EXPECT_TRUE(ParsedQuicVersionIsValid(reserved.handshake_protocol, reserved.transport_version)); EXPECT_FALSE(ParsedQuicVersionIsValid(PROTOCOL_TLS1_3, QUIC_VERSION_46)); EXPECT_FALSE(ParsedQuicVersionIsValid(PROTOCOL_QUIC_CRYPTO, QUIC_VERSION_IETF_DRAFT_29)); EXPECT_FALSE(ParsedQuicVersionIsValid(PROTOCOL_QUIC_CRYPTO, static_cast<QuicTransportVersion>(33))); EXPECT_FALSE(ParsedQuicVersionIsValid(PROTOCOL_QUIC_CRYPTO, static_cast<QuicTransportVersion>(99))); EXPECT_FALSE(ParsedQuicVersionIsValid(PROTOCOL_TLS1_3, static_cast<QuicTransportVersion>(99))); } TEST(QuicVersionsTest, Features) { ParsedQuicVersion parsed_version_q046 = ParsedQuicVersion::Q046(); ParsedQuicVersion parsed_version_draft_29 = ParsedQuicVersion::Draft29(); EXPECT_TRUE(parsed_version_q046.IsKnown()); EXPECT_FALSE(parsed_version_q046.KnowsWhichDecrypterToUse()); EXPECT_FALSE(parsed_version_q046.UsesInitialObfuscators()); EXPECT_FALSE(parsed_version_q046.AllowsLowFlowControlLimits()); EXPECT_FALSE(parsed_version_q046.HasHeaderProtection()); EXPECT_FALSE(parsed_version_q046.SupportsRetry()); EXPECT_FALSE( parsed_version_q046.SendsVariableLengthPacketNumberInLongHeader()); EXPECT_FALSE(parsed_version_q046.AllowsVariableLengthConnectionIds()); EXPECT_FALSE(parsed_version_q046.SupportsClientConnectionIds()); EXPECT_FALSE(parsed_version_q046.HasLengthPrefixedConnectionIds()); EXPECT_FALSE(parsed_version_q046.SupportsAntiAmplificationLimit()); EXPECT_FALSE(parsed_version_q046.CanSendCoalescedPackets()); EXPECT_TRUE(parsed_version_q046.SupportsGoogleAltSvcFormat()); EXPECT_FALSE(parsed_version_q046.UsesHttp3()); EXPECT_FALSE(parsed_version_q046.HasLongHeaderLengths()); EXPECT_FALSE(parsed_version_q046.UsesCryptoFrames()); EXPECT_FALSE(parsed_version_q046.HasIetfQuicFrames()); EXPECT_FALSE(parsed_version_q046.UsesTls()); EXPECT_TRUE(parsed_version_q046.UsesQuicCrypto()); EXPECT_TRUE(parsed_version_draft_29.IsKnown()); EXPECT_TRUE(parsed_version_draft_29.KnowsWhichDecrypterToUse()); EXPECT_TRUE(parsed_version_draft_29.UsesInitialObfuscators()); EXPECT_TRUE(parsed_version_draft_29.AllowsLowFlowControlLimits()); EXPECT_TRUE(parsed_version_draft_29.HasHeaderProtection()); EXPECT_TRUE(parsed_version_draft_29.SupportsRetry()); EXPECT_TRUE( parsed_version_draft_29.SendsVariableLengthPacketNumberInLongHeader()); EXPECT_TRUE(parsed_version_draft_29.AllowsVariableLengthConnectionIds()); EXPECT_TRUE(parsed_version_draft_29.SupportsClientConnectionIds()); EXPECT_TRUE(parsed_version_draft_29.HasLengthPrefixedConnectionIds()); EXPECT_TRUE(parsed_version_draft_29.SupportsAntiAmplificationLimit()); EXPECT_TRUE(parsed_version_draft_29.CanSendCoalescedPackets()); EXPECT_FALSE(parsed_version_draft_29.SupportsGoogleAltSvcFormat()); EXPECT_TRUE(parsed_version_draft_29.UsesHttp3()); EXPECT_TRUE(parsed_version_draft_29.HasLongHeaderLengths()); EXPECT_TRUE(parsed_version_draft_29.UsesCryptoFrames()); EXPECT_TRUE(parsed_version_draft_29.HasIetfQuicFrames()); EXPECT_TRUE(parsed_version_draft_29.UsesTls()); EXPECT_FALSE(parsed_version_draft_29.UsesQuicCrypto()); } TEST(QuicVersionsTest, ParseQuicVersionLabel) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); EXPECT_EQ(ParsedQuicVersion::Q046(), ParseQuicVersionLabel(MakeVersionLabel('Q', '0', '4', '6'))); EXPECT_EQ(ParsedQuicVersion::Draft29(), ParseQuicVersionLabel(MakeVersionLabel(0xff, 0x00, 0x00, 0x1d))); EXPECT_EQ(ParsedQuicVersion::RFCv1(), ParseQuicVersionLabel(MakeVersionLabel(0x00, 0x00, 0x00, 0x01))); EXPECT_EQ(ParsedQuicVersion::RFCv2(), ParseQuicVersionLabel(MakeVersionLabel(0x6b, 0x33, 0x43, 0xcf))); EXPECT_EQ((ParsedQuicVersionVector{ParsedQuicVersion::RFCv2(), ParsedQuicVersion::RFCv1(), ParsedQuicVersion::Draft29()}), ParseQuicVersionLabelVector(QuicVersionLabelVector{ MakeVersionLabel(0x6b, 0x33, 0x43, 0xcf), MakeVersionLabel(0x00, 0x00, 0x00, 0x01), MakeVersionLabel(0xaa, 0xaa, 0xaa, 0xaa), MakeVersionLabel(0xff, 0x00, 0x00, 0x1d)})); for (const ParsedQuicVersion& version : AllSupportedVersions()) { EXPECT_EQ(version, ParseQuicVersionLabel(CreateQuicVersionLabel(version))); } } TEST(QuicVersionsTest, ParseQuicVersionString) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); EXPECT_EQ(ParsedQuicVersion::Q046(), ParseQuicVersionString("QUIC_VERSION_46")); EXPECT_EQ(ParsedQuicVersion::Q046(), ParseQuicVersionString("46")); EXPECT_EQ(ParsedQuicVersion::Q046(), ParseQuicVersionString("Q046")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionString("")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionString("Q 46")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionString("Q046 ")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionString("99")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionString("70")); EXPECT_EQ(ParsedQuicVersion::Draft29(), ParseQuicVersionString("ff00001d")); EXPECT_EQ(ParsedQuicVersion::Draft29(), ParseQuicVersionString("draft29")); EXPECT_EQ(ParsedQuicVersion::Draft29(), ParseQuicVersionString("h3-29")); EXPECT_EQ(ParsedQuicVersion::RFCv1(), ParseQuicVersionString("00000001")); EXPECT_EQ(ParsedQuicVersion::RFCv1(), ParseQuicVersionString("h3")); for (const ParsedQuicVersion& version : AllSupportedVersions()) { EXPECT_EQ(version, ParseQuicVersionString(ParsedQuicVersionToString(version))); EXPECT_EQ(version, ParseQuicVersionString(QuicVersionLabelToString( CreateQuicVersionLabel(version)))); if (!version.AlpnDeferToRFCv1()) { EXPECT_EQ(version, ParseQuicVersionString(AlpnForVersion(version))); } } } TEST(QuicVersionsTest, ParseQuicVersionVectorString) { ParsedQuicVersion version_q046 = ParsedQuicVersion::Q046(); ParsedQuicVersion version_draft_29 = ParsedQuicVersion::Draft29(); EXPECT_THAT(ParseQuicVersionVectorString(""), IsEmpty()); EXPECT_THAT(ParseQuicVersionVectorString("QUIC_VERSION_46"), ElementsAre(version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("h3-Q046"), ElementsAre(version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("h3-Q046, h3-29"), ElementsAre(version_q046, version_draft_29)); EXPECT_THAT(ParseQuicVersionVectorString("h3-29,h3-Q046,h3-29"), ElementsAre(version_draft_29, version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("h3-29, h3-Q046"), ElementsAre(version_draft_29, version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("QUIC_VERSION_46,h3-29"), ElementsAre(version_q046, version_draft_29)); EXPECT_THAT(ParseQuicVersionVectorString("h3-29,QUIC_VERSION_46"), ElementsAre(version_draft_29, version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("QUIC_VERSION_46, h3-29"), ElementsAre(version_q046, version_draft_29)); EXPECT_THAT(ParseQuicVersionVectorString("h3-29, QUIC_VERSION_46"), ElementsAre(version_draft_29, version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("h3-29,QUIC_VERSION_46"), ElementsAre(version_draft_29, version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("QUIC_VERSION_46,h3-29"), ElementsAre(version_q046, version_draft_29)); EXPECT_THAT(ParseQuicVersionVectorString("QUIC_VERSION_46, QUIC_VERSION_46"), ElementsAre(version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("h3-Q046, h3-Q046"), ElementsAre(version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("h3-Q046, QUIC_VERSION_46"), ElementsAre(version_q046)); EXPECT_THAT(ParseQuicVersionVectorString( "QUIC_VERSION_46, h3-Q046, QUIC_VERSION_46, h3-Q046"), ElementsAre(version_q046)); EXPECT_THAT(ParseQuicVersionVectorString("QUIC_VERSION_46, h3-29, h3-Q046"), ElementsAre(version_q046, version_draft_29)); EXPECT_THAT(ParseQuicVersionVectorString("99"), IsEmpty()); EXPECT_THAT(ParseQuicVersionVectorString("70"), IsEmpty()); EXPECT_THAT(ParseQuicVersionVectorString("h3-01"), IsEmpty()); EXPECT_THAT(ParseQuicVersionVectorString("h3-01,h3-29"), ElementsAre(version_draft_29)); } TEST(QuicVersionsTest, CreateQuicVersionLabel) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); EXPECT_EQ(0x51303436u, CreateQuicVersionLabel(ParsedQuicVersion::Q046())); EXPECT_EQ(0xff00001du, CreateQuicVersionLabel(ParsedQuicVersion::Draft29())); EXPECT_EQ(0x00000001u, CreateQuicVersionLabel(ParsedQuicVersion::RFCv1())); EXPECT_EQ(0x6b3343cfu, CreateQuicVersionLabel(ParsedQuicVersion::RFCv2())); EXPECT_EQ( 0xda5a3a3au & 0x0f0f0f0f, CreateQuicVersionLabel(ParsedQuicVersion::ReservedForNegotiation()) & 0x0f0f0f0f); SetQuicFlag(quic_disable_version_negotiation_grease_randomness, true); EXPECT_EQ(0xda5a3a3au, CreateQuicVersionLabel( ParsedQuicVersion::ReservedForNegotiation())); } TEST(QuicVersionsTest, QuicVersionLabelToString) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); EXPECT_EQ("Q046", QuicVersionLabelToString( CreateQuicVersionLabel(ParsedQuicVersion::Q046()))); EXPECT_EQ("ff00001d", QuicVersionLabelToString(CreateQuicVersionLabel( ParsedQuicVersion::Draft29()))); EXPECT_EQ("00000001", QuicVersionLabelToString(CreateQuicVersionLabel( ParsedQuicVersion::RFCv1()))); EXPECT_EQ("6b3343cf", QuicVersionLabelToString(CreateQuicVersionLabel( ParsedQuicVersion::RFCv2()))); QuicVersionLabelVector version_labels = { MakeVersionLabel('Q', '0', '3', '5'), MakeVersionLabel('T', '0', '3', '8'), MakeVersionLabel(0xff, 0, 0, 7), }; EXPECT_EQ("Q035", QuicVersionLabelToString(version_labels[0])); EXPECT_EQ("T038", QuicVersionLabelToString(version_labels[1])); EXPECT_EQ("ff000007", QuicVersionLabelToString(version_labels[2])); EXPECT_EQ("Q035,T038,ff000007", QuicVersionLabelVectorToString(version_labels)); EXPECT_EQ("Q035:T038:ff000007", QuicVersionLabelVectorToString(version_labels, ":", 2)); EXPECT_EQ("Q035|T038|...", QuicVersionLabelVectorToString(version_labels, "|", 1)); std::ostringstream os; os << version_labels; EXPECT_EQ("Q035,T038,ff000007", os.str()); } TEST(QuicVersionsTest, ParseQuicVersionLabelString) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); EXPECT_EQ(ParsedQuicVersion::Q046(), ParseQuicVersionLabelString("Q046")); EXPECT_EQ(ParsedQuicVersion::Draft29(), ParseQuicVersionLabelString("ff00001d")); EXPECT_EQ(ParsedQuicVersion::RFCv1(), ParseQuicVersionLabelString("00000001")); EXPECT_EQ(ParsedQuicVersion::RFCv2(), ParseQuicVersionLabelString("6b3343cf")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionLabelString("1")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionLabelString("46")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionLabelString("QUIC_VERSION_46")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionLabelString("h3")); EXPECT_EQ(UnsupportedQuicVersion(), ParseQuicVersionLabelString("h3-29")); for (const ParsedQuicVersion& version : AllSupportedVersions()) { EXPECT_EQ(version, ParseQuicVersionLabelString(QuicVersionLabelToString( CreateQuicVersionLabel(version)))); } } TEST(QuicVersionsTest, QuicVersionToString) { EXPECT_EQ("QUIC_VERSION_UNSUPPORTED", QuicVersionToString(QUIC_VERSION_UNSUPPORTED)); QuicTransportVersion single_version[] = {QUIC_VERSION_46}; QuicTransportVersionVector versions_vector; for (size_t i = 0; i < ABSL_ARRAYSIZE(single_version); ++i) { versions_vector.push_back(single_version[i]); } EXPECT_EQ("QUIC_VERSION_46", QuicTransportVersionVectorToString(versions_vector)); QuicTransportVersion multiple_versions[] = {QUIC_VERSION_UNSUPPORTED, QUIC_VERSION_46}; versions_vector.clear(); for (size_t i = 0; i < ABSL_ARRAYSIZE(multiple_versions); ++i) { versions_vector.push_back(multiple_versions[i]); } EXPECT_EQ("QUIC_VERSION_UNSUPPORTED,QUIC_VERSION_46", QuicTransportVersionVectorToString(versions_vector)); for (const ParsedQuicVersion& version : AllSupportedVersions()) { EXPECT_NE("QUIC_VERSION_UNSUPPORTED", QuicVersionToString(version.transport_version)); } std::ostringstream os; os << versions_vector; EXPECT_EQ("QUIC_VERSION_UNSUPPORTED,QUIC_VERSION_46", os.str()); } TEST(QuicVersionsTest, ParsedQuicVersionToString) { EXPECT_EQ("0", ParsedQuicVersionToString(ParsedQuicVersion::Unsupported())); EXPECT_EQ("Q046", ParsedQuicVersionToString(ParsedQuicVersion::Q046())); EXPECT_EQ("draft29", ParsedQuicVersionToString(ParsedQuicVersion::Draft29())); EXPECT_EQ("RFCv1", ParsedQuicVersionToString(ParsedQuicVersion::RFCv1())); EXPECT_EQ("RFCv2", ParsedQuicVersionToString(ParsedQuicVersion::RFCv2())); ParsedQuicVersionVector versions_vector = {ParsedQuicVersion::Q046()}; EXPECT_EQ("Q046", ParsedQuicVersionVectorToString(versions_vector)); versions_vector = {ParsedQuicVersion::Unsupported(), ParsedQuicVersion::Q046()}; EXPECT_EQ("0,Q046", ParsedQuicVersionVectorToString(versions_vector)); EXPECT_EQ("0:Q046", ParsedQuicVersionVectorToString(versions_vector, ":", versions_vector.size())); EXPECT_EQ("0|...", ParsedQuicVersionVectorToString(versions_vector, "|", 0)); for (const ParsedQuicVersion& version : AllSupportedVersions()) { EXPECT_NE("0", ParsedQuicVersionToString(version)); } std::ostringstream os; os << versions_vector; EXPECT_EQ("0,Q046", os.str()); } TEST(QuicVersionsTest, FilterSupportedVersionsAllVersions) { for (const ParsedQuicVersion& version : AllSupportedVersions()) { QuicEnableVersion(version); } ParsedQuicVersionVector expected_parsed_versions; for (const ParsedQuicVersion& version : SupportedVersions()) { expected_parsed_versions.push_back(version); } EXPECT_EQ(expected_parsed_versions, FilterSupportedVersions(AllSupportedVersions())); EXPECT_EQ(expected_parsed_versions, AllSupportedVersions()); } TEST(QuicVersionsTest, FilterSupportedVersionsWithoutFirstVersion) { for (const ParsedQuicVersion& version : AllSupportedVersions()) { QuicEnableVersion(version); } QuicDisableVersion(AllSupportedVersions().front()); ParsedQuicVersionVector expected_parsed_versions; for (const ParsedQuicVersion& version : SupportedVersions()) { expected_parsed_versions.push_back(version); } expected_parsed_versions.erase(expected_parsed_versions.begin()); EXPECT_EQ(expected_parsed_versions, FilterSupportedVersions(AllSupportedVersions())); } TEST(QuicVersionsTest, LookUpParsedVersionByIndex) { ParsedQuicVersionVector all_versions = AllSupportedVersions(); int version_count = all_versions.size(); for (int i = -5; i <= version_count + 1; ++i) { ParsedQuicVersionVector index = ParsedVersionOfIndex(all_versions, i); if (i >= 0 && i < version_count) { EXPECT_EQ(all_versions[i], index[0]); } else { EXPECT_EQ(UnsupportedQuicVersion(), index[0]); } } } TEST(QuicVersionsTest, CheckTransportVersionNumbersForTypos) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); EXPECT_EQ(QUIC_VERSION_46, 46); EXPECT_EQ(QUIC_VERSION_IETF_DRAFT_29, 73); EXPECT_EQ(QUIC_VERSION_IETF_RFC_V1, 80); EXPECT_EQ(QUIC_VERSION_IETF_RFC_V2, 82); } TEST(QuicVersionsTest, AlpnForVersion) { static_assert(SupportedVersions().size() == 4u, "Supported versions out of sync"); EXPECT_EQ("h3-Q046", AlpnForVersion(ParsedQuicVersion::Q046())); EXPECT_EQ("h3-29", AlpnForVersion(ParsedQuicVersion::Draft29())); EXPECT_EQ("h3", AlpnForVersion(ParsedQuicVersion::RFCv1())); EXPECT_EQ("h3", AlpnForVersion(ParsedQuicVersion::RFCv2())); } TEST(QuicVersionsTest, QuicVersionEnabling) { for (const ParsedQuicVersion& version : AllSupportedVersions()) { QuicFlagSaver flag_saver; QuicDisableVersion(version); EXPECT_FALSE(QuicVersionIsEnabled(version)); QuicEnableVersion(version); EXPECT_TRUE(QuicVersionIsEnabled(version)); } } TEST(QuicVersionsTest, ReservedForNegotiation) { EXPECT_EQ(QUIC_VERSION_RESERVED_FOR_NEGOTIATION, QuicVersionReservedForNegotiation().transport_version); for (const ParsedQuicVersion& version : AllSupportedVersions()) { EXPECT_NE(QUIC_VERSION_RESERVED_FOR_NEGOTIATION, version.transport_version); } } TEST(QuicVersionsTest, SupportedVersionsHasCorrectList) { size_t index = 0; for (HandshakeProtocol handshake_protocol : SupportedHandshakeProtocols()) { for (int trans_vers = 255; trans_vers > 0; trans_vers--) { QuicTransportVersion transport_version = static_cast<QuicTransportVersion>(trans_vers); SCOPED_TRACE(index); if (ParsedQuicVersionIsValid(handshake_protocol, transport_version)) { ParsedQuicVersion version = SupportedVersions()[index]; EXPECT_EQ(version, ParsedQuicVersion(handshake_protocol, transport_version)); index++; } } } EXPECT_EQ(SupportedVersions().size(), index); } TEST(QuicVersionsTest, SupportedVersionsAllDistinct) { for (size_t index1 = 0; index1 < SupportedVersions().size(); ++index1) { ParsedQuicVersion version1 = SupportedVersions()[index1]; for (size_t index2 = index1 + 1; index2 < SupportedVersions().size(); ++index2) { ParsedQuicVersion version2 = SupportedVersions()[index2]; EXPECT_NE(version1, version2) << version1 << " " << version2; EXPECT_NE(CreateQuicVersionLabel(version1), CreateQuicVersionLabel(version2)) << version1 << " " << version2; if ((version1 != ParsedQuicVersion::RFCv2()) && (version2 != ParsedQuicVersion::RFCv1())) { EXPECT_NE(AlpnForVersion(version1), AlpnForVersion(version2)) << version1 << " " << version2; } } } } TEST(QuicVersionsTest, CurrentSupportedHttp3Versions) { ParsedQuicVersionVector h3_versions = CurrentSupportedHttp3Versions(); ParsedQuicVersionVector all_current_supported_versions = CurrentSupportedVersions(); for (auto& version : all_current_supported_versions) { bool version_is_h3 = false; for (auto& h3_version : h3_versions) { if (version == h3_version) { EXPECT_TRUE(version.UsesHttp3()); version_is_h3 = true; break; } } if (!version_is_h3) { EXPECT_FALSE(version.UsesHttp3()); } } } TEST(QuicVersionsTest, ObsoleteSupportedVersions) { ParsedQuicVersionVector obsolete_versions = ObsoleteSupportedVersions(); EXPECT_EQ(quic::ParsedQuicVersion::Q046(), obsolete_versions[0]); EXPECT_EQ(quic::ParsedQuicVersion::Draft29(), obsolete_versions[1]); } TEST(QuicVersionsTest, IsObsoleteSupportedVersion) { for (const ParsedQuicVersion& version : AllSupportedVersions()) { bool is_obsolete = version.handshake_protocol != PROTOCOL_TLS1_3 || version.transport_version < QUIC_VERSION_IETF_RFC_V1; EXPECT_EQ(is_obsolete, IsObsoleteSupportedVersion(version)); } } TEST(QuicVersionsTest, CurrentSupportedVersionsForClients) { ParsedQuicVersionVector supported_versions = CurrentSupportedVersions(); ParsedQuicVersionVector client_versions = CurrentSupportedVersionsForClients(); for (auto& version : supported_versions) { const bool is_obsolete = IsObsoleteSupportedVersion(version); const bool is_supported = absl::c_find(client_versions, version) != client_versions.end(); EXPECT_EQ(!is_obsolete, is_supported); } for (auto& version : client_versions) { EXPECT_TRUE(absl::c_find(supported_versions, version) != supported_versions.end()); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_versions.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_versions_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
fc72ca28-1a60-4ddb-be48-f5dd209aa2ef
cpp
tensorflow/tensorflow
ifrt_backend
third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend.cc
third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend_test.cc
#include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include <cstdint> #include <cstring> #include <functional> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <variant> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/cleanup/cleanup.h" #include "absl/container/flat_hash_map.h" #include "absl/functional/bind_front.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "xla/layout.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/compiler.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/program.h" #include "xla/python/ifrt/program_serdes.h" #include "xla/python/ifrt/remap_plan.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt/value.h" #include "xla/python/ifrt_proxy/common/array_util.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/proto_util.h" #include "xla/python/ifrt_proxy/common/types.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/host_callback.h" #include "xla/python/ifrt_proxy/server/version.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/status_macros.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" namespace xla { namespace ifrt { namespace proxy { IfrtBackend::IfrtBackend(IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store) : version_(std::move(version)), session_id_(session_id), client_(std::move(ifrt_client)), host_buffer_store_(std::move(host_buffer_store)), compile_thread_pool_( tsl::Env::Default(), []() { tsl::ThreadOptions options; options.stack_size = 240 * 1024; return options; }(), "IfrtBackend", 32) {} absl::StatusOr<std::unique_ptr<IfrtBackend>> IfrtBackend::Create( IfrtProxyVersion version, uint64_t session_id, std::shared_ptr<xla::ifrt::Client> ifrt_client, std::shared_ptr<HostBufferStore> host_buffer_store) { if (ifrt_client == nullptr) { return absl::InvalidArgumentError("ifrt_client cannot be a nullptr."); } if (version.protocol_version() < kServerMinVersion || version.protocol_version() > kServerMaxVersion) { return absl::FailedPreconditionError(absl::StrCat( "Protocol version ", version.protocol_version(), " is unsupported by IFRT Proxy server; supported versions: [", kServerMinVersion, ",", kServerMaxVersion, "]")); } return absl::WrapUnique<IfrtBackend>( new IfrtBackend(std::move(version), session_id, std::move(ifrt_client), std::move(host_buffer_store))); } IfrtBackend::~IfrtBackend() { { absl::MutexLock lock(&host_callback_queues_mutex_); for (const auto& [key, queue] : host_callback_queues_) { queue->Close(); } } absl::flat_hash_map<uint64_t, RemoteLoadedHostCallbackQueue::ExecutionRequest> host_callback_executions; { absl::MutexLock lock(&host_callback_executions_mutex_); host_callback_executions.swap(host_callback_executions_); } for (auto& [handle, execution_request] : host_callback_executions) { std::move(execution_request) .status.Set(absl::CancelledError("IFRT backend has shut down")); } { auto done = [this]() ABSL_SHARED_LOCKS_REQUIRED(in_flight_count_mutex_) { return in_flight_count_ == 0; }; absl::MutexLock lock(&in_flight_count_mutex_, absl::Condition(&done)); } } Future<BackendInterface::Response> IfrtBackend::Process( std::unique_ptr<IfrtRequest> request) { switch (request->request_case()) { case IfrtRequest::RequestCase::kInitRequest: return Future<Response>(HandleInit(std::move(request))); case IfrtRequest::RequestCase::kCheckFutureRequest: return HandleCheckFutureRequest(std::move(request)); case IfrtRequest::RequestCase::kMakeArrayFromHostBufferRequest: return Future<Response>( HandleMakeArrayFromHostBufferRequest(std::move(request))); case IfrtRequest::RequestCase::kAssembleArrayFromSingleDeviceArraysRequest: return Future<Response>( HandleAssembleArrayFromSingleDeviceArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kRemapArraysRequest: return Future<Response>(HandleRemapArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kCopyToHostBufferRequest: return HandleCopyToHostBufferRequest(std::move(request)); case IfrtRequest::RequestCase::kDisassembleIntoSingleDeviceArraysRequest: return Future<Response>( HandleDisassembleIntoSingleDeviceArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kCheckValueReadyRequest: return Future<Response>(HandleCheckValueReadyRequest(std::move(request))); case IfrtRequest::RequestCase::kCopyArraysRequest: return Future<Response>(HandleCopyArraysRequest(std::move(request))); case IfrtRequest::RequestCase::kReshardRequest: return Future<Response>(HandleReshardRequest(std::move(request))); case IfrtRequest::RequestCase::kFullyReplicatedShardRequest: return Future<Response>( HandleFullyReplicatedShardRequest(std::move(request))); case IfrtRequest::RequestCase::kDeleteArrayRequest: return Future<Response>(HandleDeleteArrayRequest(std::move(request))); case IfrtRequest::RequestCase::kIsArrayDeletedRequest: return Future<Response>(HandleIsArrayDeletedRequest(std::move(request))); case IfrtRequest::RequestCase::kDestructArrayRequest: return Future<Response>(HandleDestructArrayRequest(std::move(request))); case IfrtRequest::RequestCase::kCompileRequest: return Future<Response>(HandleCompileRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableMetadataRequest: return HandleLoadedExecutableMetadataRequest(std::move(request)); case IfrtRequest::RequestCase::kLoadedExecutableExecuteRequest: return Future<Response>( HandleLoadedExecutableExecuteRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableDeleteRequest: return Future<Response>( HandleLoadedExecutableDeleteRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableIsDeletedRequest: return Future<Response>( HandleLoadedExecutableIsDeletedRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedExecutableDestructRequest: return Future<Response>( HandleLoadedExecutableDestructRequest(std::move(request))); case IfrtRequest::RequestCase::kLoadedHostCallbackPollRequest: return HandleLoadedHostCallbackPollRequest(std::move(request)); case IfrtRequest::RequestCase::kLoadedHostCallbackReturnRequest: return Future<Response>( HandleLoadedHostCallbackReturnRequest(std::move(request))); case IfrtRequest::RequestCase::kGetDefaultDeviceAssignmentRequest: return Future<Response>( HandleGetDefaultDeviceAssignmentRequest(std::move(request))); default: LOG(ERROR) << "Got unimplemented request type: " << request->DebugString(); return Future<Response>(absl::UnimplementedError(absl::StrCat( "Got unimplemented request type: ", request->request_case()))); } } uint64_t IfrtBackend::HandleGenerator::New() { absl::MutexLock lock(&mu_); return current_++; } void IfrtBackend::HandleGenerator::BulkNew(absl::Span<uint64_t> handles) { absl::MutexLock lock(&mu_); std::iota(handles.begin(), handles.end(), current_); current_ += handles.size(); } Future<BackendInterface::Response> IfrtBackend::AsyncExecute( std::function<absl::StatusOr<Response>()> handle_fn, tsl::thread::ThreadPool* thread_pool) { { absl::MutexLock lock(&in_flight_count_mutex_); ++in_flight_count_; } auto promise = Future<Response>::CreatePromise(); auto f = [this, promise, handle_fn = std::move(handle_fn)]() mutable { promise.Set(handle_fn()); { absl::MutexLock lock(&in_flight_count_mutex_); --in_flight_count_; } }; if (thread_pool != nullptr) { thread_pool->Schedule(std::move(f)); } else { tsl::Env::Default()->SchedClosure(std::move(f)); } return Future<Response>(std::move(promise)); } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleInit( std::unique_ptr<IfrtRequest> request) { std::unique_ptr<IfrtResponse> response = NewIfrtResponse(request->request_metadata().op_id()); auto* init_resp = response->mutable_init_response(); init_resp->set_session_id(session_id_); init_resp->set_platform_name(AsProtoStringData(client_->platform_name())); init_resp->set_platform_version( AsProtoStringData(client_->platform_version())); init_resp->set_platform_id(client_->platform_id()); init_resp->set_runtime_type(AsProtoStringData(client_->runtime_type())); init_resp->set_process_index(client_->process_index()); for (auto* device : client_->devices()) { InitResponse::Device* d = init_resp->add_devices(); d->set_id(device->Id().value()); d->set_device_kind(AsProtoStringData(device->Kind())); if (auto default_memory = device->DefaultMemory(); default_memory.ok()) { d->set_default_memory_id((*default_memory)->Id().value()); } for (const auto* memory : device->Memories()) { d->add_memory_ids(memory->Id().value()); } d->set_debug_string(AsProtoStringData(device->DebugString())); d->set_to_string(AsProtoStringData(device->ToString())); if (version_.protocol_version() <= 3) { for (const auto& [name, attr] : device->Attributes().map()) { TF_ASSIGN_OR_RETURN( (*d->mutable_deprecated_attributes())[name], std::visit( [&](const auto& attr) { return ToVariantProto(attr.value); }, attr)); } } else { *d->mutable_attributes() = device->Attributes().ToProto(); } } for (auto* addressable_device : client_->addressable_devices()) { init_resp->add_addressable_device_ids(addressable_device->Id().value()); } absl::flat_hash_map<int, xla::ifrt::Memory*> memories; for (auto* device : client_->devices()) { for (xla::ifrt::Memory* memory : device->Memories()) { const auto [it, inserted] = memories.insert({memory->Id().value(), memory}); if (!inserted && it->second != memory) { return absl::FailedPreconditionError(absl::StrCat( "Two memories cannot have the same id: ", memory->ToString(), " vs. ", it->second->ToString())); } } } for (const auto& [id, memory] : memories) { auto* m = init_resp->add_memories(); m->set_id(id); m->set_memory_space_kind(AsProtoStringData(*memory->Kind().memory_kind())); for (const auto* device : memory->Devices()) { m->add_device_ids(device->Id().value()); } m->set_debug_string(AsProtoStringData(memory->DebugString())); m->set_to_string(AsProtoStringData(memory->ToString())); } return response; } Future<BackendInterface::Response> IfrtBackend::HandleCheckFutureRequest( std::unique_ptr<IfrtRequest> request) { const CheckFutureRequest& check_request = request->check_future_request(); Future<> future; { absl::MutexLock lock(&futures_mutex_); const auto it = futures_.find(check_request.future_handle()); if (it == futures_.end()) { return Future<Response>(absl::NotFoundError(absl::StrCat( "Unknown future handle: ", check_request.future_handle()))); } future = std::move(it->second); futures_.erase(it); } auto promise = Future<BackendInterface::Response>::CreatePromise(); future.OnReady([op_id = request->request_metadata().op_id(), promise, hold = future](absl::Status status) mutable { if (!status.ok()) { promise.Set(std::move(status)); return; } auto ifrt_resp = NewIfrtResponse(op_id); ifrt_resp->mutable_check_future_response(); promise.Set(std::move(ifrt_resp)); }); return Future<BackendInterface::Response>(std::move(promise)); } Future<BackendInterface::Response> IfrtBackend::HandleCheckValueReadyRequest( std::unique_ptr<IfrtRequest> request) { std::vector<tsl::RCReference<xla::ifrt::Value>> values; values.reserve(request->check_value_ready_request().value_handles_size()); for (const auto& value_handle : request->check_value_ready_request().value_handles()) { auto array = GetArray(value_handle); if (!array.ok()) { return Future<Response>(array.status()); } values.push_back(*std::move(array)); } auto ifrt_response_promise = Future<BackendInterface::Response>::CreatePromise(); Future<BackendInterface::Response> ifrt_response_future( ifrt_response_promise); client_->GetReadyFuture(values).OnReady( [op_id = request->request_metadata().op_id(), promise = std::move(ifrt_response_promise)]( absl::Status status) mutable -> void { if (!status.ok()) { promise.Set(std::move(status)); return; } auto ifrt_response = NewIfrtResponse(op_id); ifrt_response->mutable_check_value_ready_response(); promise.Set(std::move(ifrt_response)); }); return ifrt_response_future; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleMakeArrayFromHostBufferRequest( std::unique_ptr<IfrtRequest> request) { if (!request->has_make_array_from_host_buffer_request()) { return absl::InternalError( "MakeArrayFromHostBuffer got an IfrtRequest with no " "MakeArrayFromHostBufferRequest in it."); } auto* make_array_request = request->mutable_make_array_from_host_buffer_request(); TF_ASSIGN_OR_RETURN( auto sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), make_array_request->sharding())); const auto byte_strides = [&]() -> std::optional<std::vector<int64_t>> { if (!make_array_request->has_byte_strides()) return std::nullopt; return FromByteStridesProto(make_array_request->byte_strides()); }(); TF_ASSIGN_OR_RETURN(const auto shape, Shape::FromProto(make_array_request->shape())); TF_ASSIGN_OR_RETURN(const auto dtype, DType::FromProto(make_array_request->dtype())); const uint64_t host_buffer_handle = make_array_request->host_buffer_handle(); absl::Cleanup cleanup = [&] { CHECK_OK(host_buffer_store_->Delete(host_buffer_handle)); }; TF_ASSIGN_OR_RETURN(std::shared_ptr<const std::string> host_buffer, host_buffer_store_->Lookup(host_buffer_handle)); std::move(cleanup).Invoke(); TF_ASSIGN_OR_RETURN(const auto mem_region, ArrayMemRegion::FromMinimalMemRegion( *host_buffer, dtype, shape, byte_strides)); TF_ASSIGN_OR_RETURN( auto array, client_->MakeArrayFromHostBuffer( mem_region.zeroth_element(), dtype, std::move(shape), std::move(byte_strides), std::move(sharding), xla::ifrt::Client::HostBufferSemantics:: kImmutableUntilTransferCompletes, [hold = std::move(host_buffer)]() mutable { hold.reset(); })); uint64_t handle = handle_generator_.New(); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({handle, std::move(array)}); } std::unique_ptr<IfrtResponse> response = NewIfrtResponse(request->request_metadata().op_id()); auto* make_array_resp = response->mutable_make_array_from_host_buffer_response(); make_array_resp->set_array_handle(handle); return response; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleAssembleArrayFromSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request) { const auto& assemble_request = request->assemble_array_from_single_device_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : assemble_request.single_device_array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN(Shape shape, Shape::FromProto(assemble_request.shape())); TF_ASSIGN_OR_RETURN( auto sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), assemble_request.sharding())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( assemble_request.copy_semantics())); TF_ASSIGN_OR_RETURN(auto array, client_->AssembleArrayFromSingleDeviceArrays( std::move(shape), std::move(sharding), absl::MakeSpan(arrays), semantics)); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); uint64_t handle = handle_generator_.New(); ifrt_resp->mutable_assemble_array_from_single_device_arrays_response() ->set_array_handle(handle); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({handle, std::move(array)}); } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleRemapArraysRequest(std::unique_ptr<IfrtRequest> request) { const auto& remap_request = request->remap_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : remap_request.array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN( RemapPlan plan, RemapPlan::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), remap_request.plan())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( remap_request.copy_semantics())); TF_ASSIGN_OR_RETURN( auto out_arrays, client_->RemapArrays(plan, absl::MakeSpan(arrays), semantics)); int64_t num_arrays = out_arrays.size(); auto response = NewIfrtResponse(request->request_metadata().op_id()); auto* handles = response->mutable_remap_arrays_response()->mutable_array_handles(); handles->Reserve(num_arrays); uint64_t* handles_buf = handles->AddNAlreadyReserved(num_arrays); handle_generator_.BulkNew(absl::MakeSpan(handles_buf, num_arrays)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < num_arrays; ++i) { arrays_.insert({handles_buf[i], out_arrays[i]}); } } return response; } Future<BackendInterface::Response> IfrtBackend::HandleCopyToHostBufferRequest( std::unique_ptr<IfrtRequest> request) { const CopyToHostBufferRequest& copy_to_host = request->copy_to_host_buffer_request(); auto array = GetArray(copy_to_host.array_handle()); if (!array.ok()) { return Future<Response>(array.status()); } std::optional<int> element_size = (*array)->dtype().byte_size(); if (element_size == std::nullopt) { return Future<Response>( absl::InternalError("Array element size is unknown.")); } int64_t host_buffer_size = (*array)->shape().num_elements() * element_size.value(); auto host_buffer = std::make_unique<std::string>(); host_buffer->resize(host_buffer_size); const auto byte_strides = [&]() -> std::optional<std::vector<int64_t>> { if (!copy_to_host.has_byte_strides()) { return std::nullopt; } return FromByteStridesProto(copy_to_host.byte_strides()); }(); const auto mem_region = ArrayMemRegion::FromMinimalMemRegion( absl::string_view(*host_buffer), (*array)->dtype(), (*array)->shape(), byte_strides); if (!mem_region.ok()) { return Future<Response>(mem_region.status()); } Future<> copy_status = (*array)->CopyToHostBuffer(mem_region->zeroth_element(), byte_strides, ArrayCopySemantics::kAlwaysCopy); auto resp_promise = Future<BackendInterface::Response>::CreatePromise(); Future<BackendInterface::Response> resp_future(resp_promise); auto on_ready = [this, op_id = request->request_metadata().op_id(), host_buffer = std::move(host_buffer), host_buffer_handle = copy_to_host.host_buffer_handle()]( absl::Status status) mutable -> absl::StatusOr<std::unique_ptr<IfrtResponse>> { TF_RETURN_IF_ERROR(status); TF_RETURN_IF_ERROR( host_buffer_store_->Store(host_buffer_handle, *std::move(host_buffer))); std::unique_ptr<IfrtResponse> response = NewIfrtResponse(op_id); response->mutable_copy_to_host_buffer_response(); return response; }; copy_status.OnReady( [promise = std::move(resp_promise), on_ready = std::move(on_ready)]( absl::Status status) mutable { promise.Set(on_ready(status)); }); return resp_future; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleDisassembleIntoSingleDeviceArraysRequest( std::unique_ptr<IfrtRequest> request) { TF_ASSIGN_OR_RETURN( auto array, GetArray(request->disassemble_into_single_device_arrays_request() .array_handle())); TF_ASSIGN_OR_RETURN(auto single_device_arrays, array->DisassembleIntoSingleDeviceArrays( xla::ifrt::ArrayCopySemantics::kAlwaysCopy)); int64_t num_arrays = single_device_arrays.size(); auto response = NewIfrtResponse(request->request_metadata().op_id()); auto* handles = response->mutable_disassemble_into_single_device_arrays_response() ->mutable_single_device_array_handles(); handles->Reserve(num_arrays); uint64_t* handles_buf = handles->AddNAlreadyReserved(num_arrays); handle_generator_.BulkNew(absl::MakeSpan(handles_buf, num_arrays)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < num_arrays; ++i) { arrays_.insert({handles_buf[i], single_device_arrays[i]}); } } return response; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleCopyArraysRequest( std::unique_ptr<IfrtRequest> request) { const auto& copy_arrays_request = request->copy_arrays_request(); std::vector<tsl::RCReference<xla::ifrt::Array>> arrays; arrays.reserve(copy_arrays_request.array_handles_size()); for (const auto& handle : copy_arrays_request.array_handles()) { TF_ASSIGN_OR_RETURN(arrays.emplace_back(), GetArray(handle)); } std::optional<tsl::RCReference<DeviceList>> devices; if (!copy_arrays_request.device_ids().empty()) { BasicDeviceList::Devices ds; for (const auto& device_id : copy_arrays_request.device_ids()) { TF_ASSIGN_OR_RETURN(ds.emplace_back(), client_->LookupDevice(DeviceId(device_id))); } devices.emplace(BasicDeviceList::Create(std::move(ds))); } std::optional<MemoryKind> memory_kind; if (copy_arrays_request.has_memory_kind()) { if (const absl::string_view m = copy_arrays_request.memory_kind(); !m.empty()) { memory_kind.emplace(MemoryKind(m)); } else { memory_kind.emplace(MemoryKind()); } } TF_ASSIGN_OR_RETURN( auto semantics, FromArrayCopySemanticsProto(copy_arrays_request.copy_semantics())); TF_ASSIGN_OR_RETURN( auto new_arrays, client_->CopyArrays(absl::MakeSpan(arrays), std::move(devices), memory_kind, semantics)); std::unique_ptr<IfrtResponse> ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* const copy_arrays_resp = ifrt_resp->mutable_copy_arrays_response(); std::vector<uint64_t> new_handles(new_arrays.size()); handle_generator_.BulkNew(absl::MakeSpan(new_handles)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < new_arrays.size(); ++i) { arrays_.insert({new_handles[i], new_arrays[i]}); copy_arrays_resp->add_array_handles(new_handles[i]); } } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleReshardRequest( std::unique_ptr<IfrtRequest> request) { const auto& reshard_request = request->reshard_request(); TF_ASSIGN_OR_RETURN(auto array, GetArray(reshard_request.array_handle())); TF_ASSIGN_OR_RETURN( std::shared_ptr<const Sharding> sharding, Sharding::FromProto( absl::bind_front(&Client::LookupDevice, client_.get()), reshard_request.sharding())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( reshard_request.copy_semantics())); if (!array->sharding().HasSamePartitioning(*sharding)) { return absl::InvalidArgumentError(absl::StrCat( "IFRT Proxy does not support resharding, but got ", array->sharding().DebugString(), " as the original sharding and ", sharding->DebugString(), " as the target sharding")); } TF_ASSIGN_OR_RETURN( auto copied_arrays, client_->CopyArrays(absl::MakeSpan(&array, 1), sharding->devices(), sharding->memory_kind(), semantics)); uint64_t resharded_array_handle = handle_generator_.New(); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({resharded_array_handle, std::move(copied_arrays[0])}); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_reshard_response()->set_array_handle( resharded_array_handle); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleFullyReplicatedShardRequest( std::unique_ptr<IfrtRequest> request) { const auto& fully_replicated_shard_request = request->fully_replicated_shard_request(); TF_ASSIGN_OR_RETURN(auto array, GetArray(fully_replicated_shard_request.array_handle())); TF_ASSIGN_OR_RETURN(auto semantics, FromArrayCopySemanticsProto( fully_replicated_shard_request.copy_semantics())); TF_ASSIGN_OR_RETURN(auto new_array, array->FullyReplicatedShard(semantics)); uint64_t new_array_handle = handle_generator_.New(); { absl::MutexLock lock(&arrays_mutex_); arrays_.insert({new_array_handle, std::move(new_array)}); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_fully_replicated_shard_response()->set_array_handle( new_array_handle); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleDeleteArrayRequest(std::unique_ptr<IfrtRequest> request) { std::vector<uint64_t> bad_handles; std::vector<Future<>> deletion_futures; auto delete_handle = [&](uint64_t handle) { auto array = GetArray(handle); if (array.ok()) { deletion_futures.push_back(array.value()->Delete()); } else { deletion_futures.push_back(Future<>(array.status())); } }; if (request->delete_array_request().has_array_handle_deprecated()) { delete_handle(request->delete_array_request().array_handle_deprecated()); } for (auto array_handle : request->delete_array_request().array_handle()) { delete_handle(array_handle); } uint64_t future_handle = handle_generator_.New(); { absl::MutexLock lock(&futures_mutex_); futures_.insert({future_handle, JoinFutures(deletion_futures)}); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_delete_array_response()->set_deletion_future_handle( future_handle); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleIsArrayDeletedRequest(std::unique_ptr<IfrtRequest> request) { TF_ASSIGN_OR_RETURN( auto array, GetArray(request->is_array_deleted_request().array_handle())); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_is_array_deleted_response()->set_deleted( array->IsDeleted()); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleDestructArrayRequest(std::unique_ptr<IfrtRequest> request) { std::vector<uint64_t> bad_handles; { absl::MutexLock lock(&arrays_mutex_); for (const uint64_t array_handle : request->destruct_array_request().array_handle()) { if (!arrays_.erase(array_handle)) { bad_handles.push_back(array_handle); } } if (request->destruct_array_request().has_array_handle_deprecated()) { const uint64_t array_handle = request->destruct_array_request().array_handle_deprecated(); if (!arrays_.erase(array_handle)) { bad_handles.push_back(array_handle); } } } if (!bad_handles.empty()) { return absl::NotFoundError(absl::StrCat("Unknown array handle(s): ", absl::StrJoin(bad_handles, ","))); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_destruct_array_response(); return ifrt_resp; } Future<BackendInterface::Response> IfrtBackend::HandleCompileRequest( std::unique_ptr<IfrtRequest> request) { auto f = [this, request = std::shared_ptr<IfrtRequest>( std::move(request))]() -> absl::StatusOr<Response> { const CompileRequest& compile_request = request->compile_request(); auto deserialize_program_options = std::make_unique<DeserializeProgramOptions>( absl::bind_front(&Client::LookupDevice, client_.get())); TF_ASSIGN_OR_RETURN( auto program, Deserialize<xla::ifrt::Program>( compile_request.program(), std::move(deserialize_program_options))); TF_ASSIGN_OR_RETURN(auto options, Deserialize<xla::ifrt::CompileOptions>( compile_request.compile_options(), nullptr)); std::vector<std::shared_ptr<RemoteLoadedHostCallbackQueue>> host_callback_queues; { std::vector<tsl::RCReference<xla::ifrt::LoadedHostCallback>> loaded_host_callbacks; for (int i = 0; i < compile_request.host_callbacks_size(); ++i) { host_callback_queues.emplace_back( std::make_shared<RemoteLoadedHostCallbackQueue>()); TF_ASSIGN_OR_RETURN( loaded_host_callbacks.emplace_back(), RemoteLoadedHostCallback::CreateFromSerialized( client_.get(), compile_request.host_callbacks(i), host_callback_queues.back())); } if (!loaded_host_callbacks.empty()) { if (auto xla_options = llvm::dyn_cast<xla::ifrt::XlaCompileOptions>(options.get())) { xla_options->loaded_host_callbacks = std::move(loaded_host_callbacks); } else { return absl::UnimplementedError( "Host callbacks are supported only for XLA-like IFRT " "implementations using `xla::ifrt::XlaCompileOptions`"); } } } TF_ASSIGN_OR_RETURN(auto executable, client_->GetDefaultCompiler()->Compile( std::move(program), std::move(options))); std::unique_ptr<IfrtResponse> ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* compile_resp = ifrt_resp->mutable_compile_response(); uint64_t handle = handle_generator_.New(); compile_resp->set_loaded_executable_handle(handle); std::vector<uint64_t> host_callback_handles(host_callback_queues.size()); handle_generator_.BulkNew(absl::MakeSpan(host_callback_handles)); compile_resp->mutable_loaded_host_callback_handles()->Add( host_callback_handles.begin(), host_callback_handles.end()); compile_resp->set_name(AsProtoStringData(executable->name())); compile_resp->set_num_devices(executable->num_devices()); for (const auto* device : executable->addressable_devices()) { compile_resp->add_addressable_device_ids(device->Id().value()); } auto fingerprint = executable->Fingerprint(); if (!fingerprint.ok()) { *compile_resp->mutable_fingerprint_error() = tsl::StatusToProto(fingerprint.status()); } else if (fingerprint->has_value()) { compile_resp->set_fingerprint_value(std::move(fingerprint)->value()); } { absl::MutexLock lock(&futures_mutex_); compile_resp->set_ready_future_handle(handle_generator_.New()); futures_.insert( {compile_resp->ready_future_handle(), executable->GetReadyFuture()}); } { absl::MutexLock lock(&executables_mutex_); executables_.insert({handle, std::move(executable)}); } { absl::MutexLock lock(&host_callback_queues_mutex_); for (int i = 0; i < host_callback_queues.size(); ++i) { host_callback_queues_.insert( {host_callback_handles[i], std::move(host_callback_queues[i])}); } } return ifrt_resp; }; return AsyncExecute(std::move(f), &compile_thread_pool_); } Future<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableMetadataRequest( std::unique_ptr<IfrtRequest> request) { return AsyncExecute([this, request = std::shared_ptr<IfrtRequest>(std::move( request))]() -> absl::StatusOr<Response> { const uint64_t handle = request->loaded_executable_metadata_request() .loaded_executable_handle(); TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(handle)); std::unique_ptr<IfrtResponse> ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* metadata_resp = ifrt_resp->mutable_loaded_executable_metadata_response(); if (auto parameter_shardings = executable->GetParameterShardings(); parameter_shardings.has_value()) { metadata_resp->mutable_parameter_shardings()->mutable_shardings()->Add( parameter_shardings->begin(), parameter_shardings->end()); } if (auto output_shardings = executable->GetOutputShardings(); output_shardings.has_value()) { metadata_resp->mutable_output_shardings()->mutable_shardings()->Add( output_shardings->begin(), output_shardings->end()); } if (auto parameter_layouts = executable->GetParameterLayouts(); parameter_layouts.ok()) { auto* const layouts = metadata_resp->mutable_parameter_layouts_list()->mutable_layouts(); for (const std::unique_ptr<xla::PjRtLayout>& parameter_layout : *parameter_layouts) { const xla::PjRtXlaLayout* layout = dynamic_cast<const xla::PjRtXlaLayout*>(parameter_layout.get()); TF_RET_CHECK(layout != nullptr) << "IFRT proxy only supports PjRtXlaLayout, got a different " "subclass"; layouts->Add(layout->xla_layout().ToProto()); } } else { *metadata_resp->mutable_parameter_layouts_error() = tsl::StatusToProto(parameter_layouts.status()); } if (auto output_layouts = executable->GetOutputLayouts(); output_layouts.ok()) { auto* const layouts = metadata_resp->mutable_output_layouts_list()->mutable_layouts(); for (const std::unique_ptr<xla::PjRtLayout>& output_layout : *output_layouts) { const xla::PjRtXlaLayout* layout = dynamic_cast<const xla::PjRtXlaLayout*>(output_layout.get()); TF_RET_CHECK(layout != nullptr) << "IFRT proxy only supports PjRtXlaLayout, got a different " "subclass"; layouts->Add(layout->xla_layout().ToProto()); } } else { *metadata_resp->mutable_output_layouts_error() = tsl::StatusToProto(output_layouts.status()); } auto output_memory_kinds = executable->GetOutputMemoryKinds(); if (output_memory_kinds.ok()) { for (const auto& memory_kinds : *output_memory_kinds) { auto* const list = metadata_resp->mutable_output_memory_kinds() ->add_memory_kind_lists() ->mutable_memory_kinds(); list->Reserve(memory_kinds.size()); list->Add(memory_kinds.begin(), memory_kinds.end()); } } else { *metadata_resp->mutable_output_memory_kinds()->mutable_status() = tsl::StatusToProto(output_memory_kinds.status()); } return ifrt_resp; }); } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableExecuteRequest( std::unique_ptr<IfrtRequest> request) { const LoadedExecutableExecuteRequest& execute = request->loaded_executable_execute_request(); TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(execute.loaded_executable_handle())); std::vector<tsl::RCReference<xla::ifrt::Array>> args; args.reserve(execute.args_handles_size()); { absl::ReaderMutexLock lock(&arrays_mutex_); for (const uint64_t handle : execute.args_handles()) { TF_ASSIGN_OR_RETURN(args.emplace_back(), GetArrayLocked(handle)); } } TF_ASSIGN_OR_RETURN(auto execute_options, xla::ifrt::LoadedExecutable::ExecuteOptions::FromProto( execute.execute_options())); if (version_.protocol_version() < 6) { execute_options.fill_status = true; } std::optional<tsl::RCReference<DeviceList>> devices; if (!execute.device_ids().empty()) { BasicDeviceList::Devices d; d.reserve(execute.device_ids_size()); for (const int32_t device_id : execute.device_ids()) { TF_ASSIGN_OR_RETURN(d.emplace_back(), client_->LookupDevice(DeviceId(device_id))); } devices = BasicDeviceList::Create(std::move(d)); } TF_ASSIGN_OR_RETURN( xla::ifrt::LoadedExecutable::ExecuteResult result, executable->Execute(absl::MakeSpan(args), execute_options, devices)); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); LoadedExecutableExecuteResponse* execute_response = ifrt_resp->mutable_loaded_executable_execute_response(); if (version_.protocol_version() < 6 || execute_options.fill_status) { absl::MutexLock lock(&futures_mutex_); execute_response->set_status_handle(handle_generator_.New()); futures_.insert( {execute_response->status_handle(), std::move(result.status)}); } std::vector<uint64_t> output_handles(result.outputs.size()); handle_generator_.BulkNew(absl::MakeSpan(output_handles)); { absl::MutexLock lock(&arrays_mutex_); for (int i = 0; i < result.outputs.size(); ++i) { tsl::RCReference<xla::ifrt::Array>& array = result.outputs[i]; LoadedExecutableExecuteResponse::Output* output = execute_response->add_outputs(); *output->mutable_dtype() = array->dtype().ToProto(); *output->mutable_shape() = array->shape().ToProto(); TF_ASSIGN_OR_RETURN(*output->mutable_sharding(), array->sharding().ToProto()); output->set_array_handle(output_handles[i]); arrays_.insert({output_handles[i], std::move(array)}); } } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableDeleteRequest( std::unique_ptr<IfrtRequest> request) { const auto& del = request->loaded_executable_delete_request(); TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(del.loaded_executable_handle())); Future<> future = executable->Delete(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* del_response = ifrt_resp->mutable_loaded_executable_delete_response(); { absl::MutexLock lock(&futures_mutex_); del_response->set_future_handle(handle_generator_.New()); futures_.insert({del_response->future_handle(), std::move(future)}); } return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableIsDeletedRequest( std::unique_ptr<IfrtRequest> request) { const auto& is_deleted = request->loaded_executable_is_deleted_request(); TF_ASSIGN_OR_RETURN( std::shared_ptr<xla::ifrt::LoadedExecutable> executable, GetLoadedExecutable(is_deleted.loaded_executable_handle())); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* is_deleted_response = ifrt_resp->mutable_loaded_executable_is_deleted_response(); is_deleted_response->set_is_deleted(executable->IsDeleted()); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedExecutableDestructRequest( std::unique_ptr<IfrtRequest> request) { const auto& destruct = request->loaded_executable_destruct_request(); std::shared_ptr<xla::ifrt::LoadedExecutable> executable; { absl::MutexLock lock(&executables_mutex_); const auto it = executables_.find(destruct.loaded_executable_handle()); if (it == executables_.end()) { return absl::NotFoundError( absl::StrCat("Unknown loaded executable handle: ", destruct.loaded_executable_handle())); } executable = std::move(it->second); executables_.erase(it); } executable.reset(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_loaded_executable_destruct_response(); return ifrt_resp; } Future<BackendInterface::Response> IfrtBackend::HandleLoadedHostCallbackPollRequest( std::unique_ptr<IfrtRequest> request) { return AsyncExecute([this, request = std::shared_ptr<IfrtRequest>(std::move( request))]() -> absl::StatusOr<Response> { const auto& poll = request->loaded_host_callback_poll_request(); const uint64_t handle = poll.loaded_host_callback_handle(); std::shared_ptr<RemoteLoadedHostCallbackQueue> queue; { absl::MutexLock lock(&host_callback_queues_mutex_); auto it = host_callback_queues_.find(handle); if (it == host_callback_queues_.end()) { return absl::NotFoundError( absl::StrCat("Unknown loaded host callback handle: ", handle)); } queue = it->second; } auto execution_request = queue->Pop(); if (!execution_request.has_value()) { { absl::MutexLock lock(&host_callback_queues_mutex_); host_callback_queues_.erase(handle); } auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_loaded_host_callback_poll_response(); return ifrt_resp; } absl::Cleanup cleanup = [&] { std::move(execution_request) ->status.Set(absl::UnknownError( "Unable to enqueue the host callback execution")); }; { std::string buffer; for (const auto& operand : execution_request->operands) { buffer.append(static_cast<const char*>(operand.data), operand.size); } TF_RETURN_IF_ERROR(host_buffer_store_->Store( poll.operand_host_buffer_handle(), std::move(buffer))); } const uint64_t execution_handle = handle_generator_.New(); { absl::MutexLock lock(&host_callback_executions_mutex_); host_callback_executions_.insert( {execution_handle, *std::move(execution_request)}); } std::move(cleanup).Cancel(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); auto* poll_response = ifrt_resp->mutable_loaded_host_callback_poll_response(); poll_response->set_host_callback_execution_handle(execution_handle); return ifrt_resp; }); } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleLoadedHostCallbackReturnRequest( std::unique_ptr<IfrtRequest> request) { const auto& ret = request->loaded_host_callback_return_request(); RemoteLoadedHostCallbackQueue::ExecutionRequest execution_request; { absl::MutexLock lock(&host_callback_executions_mutex_); const auto it = host_callback_executions_.find(ret.host_callback_execution_handle()); if (it == host_callback_executions_.end()) { return absl::NotFoundError( absl::StrCat("Unknown host callback execution: ", ret.host_callback_execution_handle())); } execution_request = std::move(it->second); host_callback_executions_.erase(it); } absl::Cleanup cleanup = [&] { std::move(execution_request) .status.Set(absl::UnknownError( "Unable to process the host callback execution results")); }; absl::Status status; if (ret.has_result_host_buffer_handle()) { TF_ASSIGN_OR_RETURN( std::shared_ptr<const std::string> buffer, host_buffer_store_->Lookup(ret.result_host_buffer_handle())); absl::Cleanup cleanup = [&] { CHECK_OK(host_buffer_store_->Delete(ret.result_host_buffer_handle())); }; int64_t offset = 0; for (const auto& result : execution_request.results) { if (offset + result.size > buffer->size()) { return absl::InternalError( absl::StrCat("Buffer overflow while reading host callback " "execution results; ", "range: [", offset, ", ", offset + result.size, "), ", "buffer size: ", buffer->size())); } std::memcpy(result.data, buffer->data() + offset, result.size); offset += result.size; } if (offset != buffer->size()) { return absl::InternalError( absl::StrCat("Host callback execution did not consume the entire " "result buffer; size: ", buffer->size(), "; consumed: ", offset)); } } else { status = tsl::StatusFromProto(ret.error()); } std::move(execution_request).status.Set(std::move(status)); std::move(cleanup).Cancel(); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); ifrt_resp->mutable_loaded_host_callback_return_response(); return ifrt_resp; } absl::StatusOr<BackendInterface::Response> IfrtBackend::HandleGetDefaultDeviceAssignmentRequest( std::unique_ptr<IfrtRequest> request) { const auto& get_default_device_assignment_request = request->get_default_device_assignment_request(); TF_ASSIGN_OR_RETURN( auto assignment, client_->GetDefaultDeviceAssignment( get_default_device_assignment_request.num_replicas(), get_default_device_assignment_request.num_partitions())); auto ifrt_resp = NewIfrtResponse(request->request_metadata().op_id()); assignment.Serialize( ifrt_resp->mutable_get_default_device_assignment_response() ->mutable_device_assignment()); return ifrt_resp; } absl::StatusOr<std::shared_ptr<xla::ifrt::LoadedExecutable>> IfrtBackend::GetLoadedExecutable(uint64_t handle) { absl::MutexLock lock(&executables_mutex_); auto it = executables_.find(handle); if (it == executables_.end()) { return absl::NotFoundError( absl::StrCat("Unknown loaded executable handle: ", handle)); } return it->second; } absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> IfrtBackend::GetArray( uint64_t array_handle) { absl::ReaderMutexLock lock(&arrays_mutex_); return GetArrayLocked(array_handle); } absl::StatusOr<tsl::RCReference<xla::ifrt::Array>> IfrtBackend::GetArrayLocked( uint64_t array_handle) { auto it = arrays_.find(array_handle); if (it == arrays_.end()) { return absl::NotFoundError( absl::StrCat("Unknown array handle: ", array_handle)); } return it->second; } } } }
#include "xla/python/ifrt_proxy/server/ifrt_backend.h" #include <sys/types.h> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "xla/layout_util.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/pjrt/host_callback.h" #include "xla/pjrt/pjrt_layout.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/attribute_map.h" #include "xla/python/ifrt/compiler.h" #include "xla/python/ifrt/device.h" #include "xla/python/ifrt/device_list.h" #include "xla/python/ifrt/dtype.h" #include "xla/python/ifrt/executable.h" #include "xla/python/ifrt/future.h" #include "xla/python/ifrt/host_callback.h" #include "xla/python/ifrt/memory.h" #include "xla/python/ifrt/mock.h" #include "xla/python/ifrt/program.h" #include "xla/python/ifrt/serdes.h" #include "xla/python/ifrt/shape.h" #include "xla/python/ifrt/sharding.h" #include "xla/python/ifrt_proxy/common/ifrt_service.pb.h" #include "xla/python/ifrt_proxy/common/types.pb.h" #include "xla/python/ifrt_proxy/server/host_buffer.h" #include "xla/python/ifrt_proxy/server/host_callback.h" #include "xla/python/ifrt_proxy/server/version.h" #include "xla/python/pjrt_ifrt/xla_compiler.h" #include "xla/service/computation_placer.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/test.h" #include "xla/tsl/concurrency/ref_count.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/tsl/protobuf/status.pb.h" #include "xla/xla_data.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/status_to_from_proto.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace xla { namespace ifrt { namespace proxy { namespace { using ::testing::_; using ::testing::ByMove; using ::testing::DoAll; using ::testing::ElementsAreArray; using ::testing::HasSubstr; using ::testing::Invoke; using ::testing::Not; using ::testing::NotNull; using ::testing::Optional; using ::testing::Pointee; using ::testing::Return; using ::testing::ReturnRef; using ::testing::SizeIs; using ::testing::StrEq; using ::tsl::protobuf::TextFormat; using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; #if defined(PLATFORM_GOOGLE) using ::testing::EquivToProto; using ::testing::proto::IgnoringRepeatedFieldOrdering; using ::testing::proto::Partially; #endif constexpr uint64_t kSessionId = 12345; class IfrtBackendTest : public ::testing::TestWithParam<int> { protected: IfrtProxyVersion Version() { IfrtProxyVersion version; version.set_protocol_version(GetParam()); return version; } }; std::unique_ptr<IfrtRequest> NewIfrtRequest(uint64_t op_id) { auto ifrt_request = std::make_unique<IfrtRequest>(); auto* request_metadata = ifrt_request->mutable_request_metadata(); request_metadata->set_op_id(op_id); return ifrt_request; } TEST_P(IfrtBackendTest, CreationFailsWithNullIfrtClient) { EXPECT_THAT(IfrtBackend::Create(Version(), kSessionId, nullptr, nullptr), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST_P(IfrtBackendTest, SuccessfulCreation) { auto ifrt_client = std::make_unique<MockClient>(); ASSERT_THAT(IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>()), IsOk()); } TEST_P(IfrtBackendTest, ShutdownSucceeds) { auto ifrt_client = std::make_unique<MockClient>(); TF_ASSERT_OK_AND_ASSIGN( auto ifrt_backend, IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>())); } TEST_P(IfrtBackendTest, ProcessFailsWithNoRequestSet) { auto ifrt_client = std::make_unique<MockClient>(); TF_ASSERT_OK_AND_ASSIGN( auto ifrt_backend, IfrtBackend::Create(Version(), kSessionId, std::move(ifrt_client), std::make_shared<HostBufferStore>())); auto request = std::make_unique<IfrtRequest>(); auto process_status = ifrt_backend->Process(std::move(request)).Await(); ASSERT_THAT(process_status, Not(IsOk())); } INSTANTIATE_TEST_SUITE_P( IfrtBackendTestWithAllVersions, IfrtBackendTest, testing::Range(kServerMinVersion, kServerMaxVersion + 1), [](const testing::TestParamInfo<IfrtBackendTest::ParamType>& info) { return absl::StrCat(info.param); }); struct TestProgram : llvm::RTTIExtends<TestProgram, Program> { static char ID; }; [[maybe_unused]] char TestProgram::ID = 0; class TestProgramSerDes : public llvm::RTTIExtends<TestProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::proxy::TestProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { CHECK(llvm::isa<TestProgram>(serializable)); return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { return std::make_unique<TestProgram>(); } static char ID; }; [[maybe_unused]] char TestProgramSerDes::ID = 0; struct TestCompileOptions : llvm::RTTIExtends<TestCompileOptions, CompileOptions> { static char ID; }; [[maybe_unused]] char TestCompileOptions::ID = 0; class TestCompileOptionsSerDes : public llvm::RTTIExtends<TestCompileOptionsSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::proxy::TestCompileOptions"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { CHECK(llvm::isa<TestCompileOptions>(serializable)); return ""; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions> options) override { return std::make_unique<TestCompileOptions>(); } static char ID; }; [[maybe_unused]] char TestCompileOptionsSerDes::ID = 0; class IfrtBackendHandlerTest : public IfrtBackendTest { protected: static void SetUpTestSuite() { RegisterSerDes<TestProgram>(std::make_unique<TestProgramSerDes>()); RegisterSerDes<TestCompileOptions>( std::make_unique<TestCompileOptionsSerDes>()); } void SetUp() override { auto mock_client = std::make_unique<xla::ifrt::MockClient>(); std::vector<xla::ifrt::Device*> raw_device_ptrs; for (int i = 0; i < 2; ++i) { auto mock_device = std::make_unique<xla::ifrt::MockDevice>(); ON_CALL(*mock_device, Id()).WillByDefault(Return(DeviceId(i))); raw_device_ptrs.push_back(mock_device.get()); mock_devices_.push_back(std::move(mock_device)); } ON_CALL(*mock_client, devices()).WillByDefault(Return(raw_device_ptrs)); ON_CALL(*mock_client, LookupDevice(_)) .WillByDefault( Invoke([this](DeviceId id) -> absl::StatusOr<xla::ifrt::Device*> { if (id.value() < 0 || id.value() >= mock_devices_.size()) { return absl::NotFoundError( absl::StrCat("Unknown device id: ", id.value())); } return mock_devices_[id.value()].get(); })); mock_client_ = mock_client.get(); EXPECT_CALL(*mock_client_, GetDefaultCompiler) .WillRepeatedly(Return(&mock_compiler_)); host_buffer_store_ = std::make_shared<HostBufferStore>(); TF_ASSERT_OK_AND_ASSIGN( backend_, IfrtBackend::Create(Version(), kSessionId, std::move(mock_client), host_buffer_store_)); } absl::StatusOr<std::shared_ptr<IfrtResponse>> CallBackend( std::unique_ptr<IfrtRequest> request) { auto response_future = backend_->Process(std::move(request)); return std::move(response_future).Await(); } uint64_t NewOpId() { absl::MutexLock lock(&mu_); return current_op_id_++; } uint64_t NewHostBufferHandle() { return current_host_buffer_handle_++; } absl::StatusOr<uint64_t> MakeTestArray(tsl::RCReference<Array> mock_array) { EXPECT_CALL(*mock_client_, MakeArrayFromHostBuffer(_, _, _, _, _, _, _)) .WillOnce(Return(std::move(mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); { const uint64_t host_buffer_handle = NewHostBufferHandle(); TF_RETURN_IF_ERROR( host_buffer_store_->Store(host_buffer_handle, "01234567")); auto* make_array = ifrt_request->mutable_make_array_from_host_buffer_request(); make_array->mutable_dtype()->set_kind(DTypeProto::KIND_S32); make_array->mutable_shape()->add_dims(2); make_array->set_host_buffer_handle(host_buffer_handle); TF_ASSIGN_OR_RETURN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSIGN_OR_RETURN( *make_array->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } TF_ASSIGN_OR_RETURN(auto make_array_response, CallBackend(std::move(ifrt_request))); TF_RETURN_IF_ERROR(tsl::StatusFromProto( make_array_response->response_metadata().status())); return make_array_response->make_array_from_host_buffer_response() .array_handle(); } absl::StatusOr<CompileResponse> CompileTestLoadedExecutable( absl::StatusOr<std::unique_ptr<LoadedExecutable>> loaded_executable) { auto request = NewIfrtRequest(NewOpId()); CompileRequest* compile_request = request->mutable_compile_request(); TestProgram program; TF_ASSIGN_OR_RETURN(*compile_request->mutable_program(), Serialize(program)); TestCompileOptions compile_options; TF_ASSIGN_OR_RETURN(*compile_request->mutable_compile_options(), Serialize(compile_options)); EXPECT_CALL(mock_compiler_, Compile(_, _)) .WillOnce(Return(ByMove(std::move(loaded_executable)))); TF_ASSIGN_OR_RETURN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); TF_RET_CHECK(response->has_compile_response()); return response->compile_response(); } absl::Status CheckFuture(uint64_t handle) { if (handle == 0) { return absl::InternalError("Test error, future handle is 0"); } auto request = NewIfrtRequest(NewOpId()); request->mutable_check_future_request()->set_future_handle(handle); TF_ASSIGN_OR_RETURN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); return tsl::StatusFromProto(response->response_metadata().status()); } xla::ifrt::MockClient* mock_client_; xla::ifrt::MockCompiler mock_compiler_; std::vector<std::unique_ptr<xla::ifrt::MockDevice>> mock_devices_; std::shared_ptr<HostBufferStore> host_buffer_store_; private: absl::Mutex mu_; uint64_t current_op_id_ ABSL_GUARDED_BY(mu_) = 1; uint64_t current_host_buffer_handle_ = 1; std::unique_ptr<IfrtBackend> backend_; }; #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, Init) { EXPECT_CALL(*mock_client_, platform_name()) .WillRepeatedly(Return("ifrt_backend")); EXPECT_CALL(*mock_client_, platform_version()).WillRepeatedly(Return("n/a")); EXPECT_CALL(*mock_client_, platform_id()).WillRepeatedly(Return(42)); EXPECT_CALL(*mock_client_, process_index()).WillRepeatedly(Return(1)); EXPECT_CALL(*mock_client_, runtime_type()) .WillRepeatedly(Return("ifrt-service")); std::vector<std::vector<xla::ifrt::Device*>> mock_memory_devices; mock_memory_devices.reserve(mock_devices_.size()); for (const auto& mock_device : mock_devices_) { mock_memory_devices.push_back({mock_device.get()}); } std::vector<MockMemory> mock_memories(mock_devices_.size()); MemoryKind kind("mock"); for (int i = 0; i < mock_memories.size(); ++i) { MockMemory& memory = mock_memories[i]; EXPECT_CALL(memory, Devices()) .WillRepeatedly(Return(mock_memory_devices[i])); EXPECT_CALL(memory, Id()).WillRepeatedly(Return(MemoryId(i))); EXPECT_CALL(memory, Kind()).WillRepeatedly(ReturnRef(kind)); } std::vector<std::vector<Memory*>> device_memories; device_memories.reserve(mock_devices_.size()); for (int i = 0; i < mock_devices_.size(); ++i) { device_memories.push_back({&mock_memories[i]}); } std::vector<AttributeMap> device_attributes; device_attributes.reserve(mock_devices_.size()); for (int i = 0; i < mock_devices_.size(); ++i) { AttributeMap::Map map; map.insert({"name", AttributeMap::StringValue(absl::StrCat("device", i))}); device_attributes.push_back(AttributeMap(std::move(map))); MockDevice& mock_device = *mock_devices_[i]; EXPECT_CALL(mock_device, Kind()).WillRepeatedly(Return("mock")); EXPECT_CALL(mock_device, Memories()) .WillRepeatedly(Return(device_memories[i])); EXPECT_CALL(mock_device, DefaultMemory()) .WillRepeatedly(Return(&mock_memories[i])); EXPECT_CALL(mock_device, Attributes()) .WillRepeatedly(ReturnRef(device_attributes[i])); } auto request = NewIfrtRequest(NewOpId()); request->mutable_init_request(); if (Version().protocol_version() <= 3) { EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee( Partially(IgnoringRepeatedFieldOrdering(EquivToProto(R"pb( init_response { session_id: 12345 platform_name: "ifrt_backend" platform_version: "n/a" platform_id: 42 process_index: 1 runtime_type: "ifrt-service" devices { id: 0 device_kind: "mock" default_memory_id: 0 memory_ids: [ 0 ] deprecated_attributes { key: "name" value { string_value: "device0" } } } devices { id: 1 device_kind: "mock" default_memory_id: 1 memory_ids: [ 1 ] deprecated_attributes { key: "name" value { string_value: "device1" } } } memories { id: 0 memory_space_kind: "mock" device_ids: [ 0 ] } memories { id: 1 memory_space_kind: "mock" device_ids: [ 1 ] } } )pb")))))); } else { EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee( Partially(IgnoringRepeatedFieldOrdering(EquivToProto(R"pb( init_response { session_id: 12345 platform_name: "ifrt_backend" platform_version: "n/a" platform_id: 42 process_index: 1 runtime_type: "ifrt-service" devices { id: 0 device_kind: "mock" default_memory_id: 0 memory_ids: [ 0 ] attributes { attributes { key: "name" value { string_value: "device0" } } } } devices { id: 1 device_kind: "mock" default_memory_id: 1 memory_ids: [ 1 ] attributes { attributes { key: "name" value { string_value: "device1" } } } } memories { id: 0 memory_space_kind: "mock" device_ids: [ 0 ] } memories { id: 1 memory_space_kind: "mock" device_ids: [ 1 ] } } )pb")))))); } } #endif TEST_P(IfrtBackendHandlerTest, DisassembleIntoSingleDeviceArraysSucceeds) { std::vector<tsl::RCReference<xla::ifrt::Array>> single_device_arrays; single_device_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); single_device_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); tsl::RCReference<xla::ifrt::MockArray> source_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*source_mock_array, DisassembleIntoSingleDeviceArrays(_)) .WillOnce(Return(std::move(single_device_arrays))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(source_mock_array))); auto disassemble_request = NewIfrtRequest(NewOpId()); disassemble_request->mutable_disassemble_into_single_device_arrays_request() ->set_array_handle(array_handle); TF_ASSERT_OK_AND_ASSIGN(auto disassemble_response, CallBackend(std::move(disassemble_request))); EXPECT_THAT( disassemble_response->disassemble_into_single_device_arrays_response() .single_device_array_handles(), SizeIs(2)); } TEST_P(IfrtBackendHandlerTest, MakeArrayFromHostBufferSuccess) { const uint64_t kHostBufferHandle = 1234; ASSERT_THAT( host_buffer_store_->Store(kHostBufferHandle, std::string(480, 'a')), IsOk()); auto ifrt_request = NewIfrtRequest(NewOpId()); { auto* make_array = ifrt_request->mutable_make_array_from_host_buffer_request(); ASSERT_TRUE( TextFormat::ParseFromString(R"pb( dtype { kind: KIND_F64 } shape { dims: [ 5, 3, 4 ] } byte_strides { strides: [ 8, 40, 120 ] } )pb", make_array)); make_array->set_host_buffer_handle(kHostBufferHandle); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *make_array->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } const Shape expected_shape({5, 3, 4}); const std::vector<int64_t> expected_byte_strides_vec = {8, 40, 120}; const std::optional<absl::Span<const int64_t>> expected_byte_strides = absl::Span<const int64_t>(expected_byte_strides_vec); tsl::RCReference<xla::ifrt::MockArray> mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_client_, MakeArrayFromHostBuffer(_, DType(DType::kF64), expected_shape, expected_byte_strides, _, _, _)) .WillOnce(Return(std::move(mock_array))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->make_array_from_host_buffer_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, AssembleArrayFromSingleDeviceArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); { ASSERT_TRUE(TextFormat::ParseFromString( R"pb( shape { dims: [ 2, 2 ] } copy_semantics: ARRAY_COPY_SEMANTICS_ALWAYS_COPY )pb", ifrt_request ->mutable_assemble_array_from_single_device_arrays_request())); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request ->mutable_assemble_array_from_single_device_arrays_request() ->mutable_sharding(), SingleDeviceSharding::Create(device, MemoryKind())->ToProto()); } std::vector<tsl::RCReference<xla::ifrt::MockArray>> single_device_arrays; for (int i = 0; i < 2; ++i) { auto array = tsl::MakeRef<xla::ifrt::MockArray>(); single_device_arrays.push_back(array); TF_ASSERT_OK_AND_ASSIGN(uint64_t array_handle, MakeTestArray(array)); ifrt_request->mutable_assemble_array_from_single_device_arrays_request() ->add_single_device_array_handles(array_handle); } tsl::RCReference<xla::ifrt::MockArray> result = tsl::MakeRef<xla::ifrt::MockArray>(); const Shape expected_shape({2, 2}); EXPECT_CALL(*mock_client_, AssembleArrayFromSingleDeviceArrays( expected_shape, _, ElementsAreArray(single_device_arrays), _)) .WillOnce(Return(std::move(result))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->assemble_array_from_single_device_arrays_response() .array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, CopyToHostSuccess) { Shape shape({5, 3, 4}); tsl::RCReference<xla::ifrt::MockArray> array = tsl::MakeRef<xla::ifrt::MockArray>(); ON_CALL(*array, shape()).WillByDefault(ReturnRef(shape)); ON_CALL(*array, dtype()).WillByDefault(Return(DType(DType::kF64))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(array)); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* copy_to_host = ifrt_request->mutable_copy_to_host_buffer_request(); ASSERT_TRUE( TextFormat::ParseFromString(R"pb( byte_strides { strides: [ 8, 40, 120 ] } )pb", copy_to_host)); copy_to_host->set_array_handle(array_handle); const uint64_t host_buffer_handle = NewHostBufferHandle(); copy_to_host->set_host_buffer_handle(host_buffer_handle); const std::vector<int64_t> expected_byte_strides_vec = {8, 40, 120}; const std::optional<absl::Span<const int64_t>> expected_byte_strides = absl::Span<const int64_t>(expected_byte_strides_vec); EXPECT_CALL(*array, CopyToHostBuffer(_, expected_byte_strides, _)) .WillOnce(Return(Future<>(absl::OkStatus()))); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(host_buffer_store_->Lookup(host_buffer_handle), IsOkAndHolds(Pointee(SizeIs(480)))); } TEST_P(IfrtBackendHandlerTest, CopyToHostFailsWithNonExistentArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); ASSERT_TRUE(TextFormat::ParseFromString( R"pb( byte_strides { strides: [ 8, 40, 120 ] } )pb", ifrt_request->mutable_copy_to_host_buffer_request())); ifrt_request->mutable_copy_to_host_buffer_request()->set_array_handle(0); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, DisassembleIntoSingleArrayFailsWhenBackendRuntimeFails) { constexpr absl::string_view kDisassembleErrorMessage = "Some test-injected error message that is unlikely to match other error " "messages - 1234"; tsl::RCReference<xla::ifrt::MockArray> source_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*source_mock_array, DisassembleIntoSingleDeviceArrays(_)) .WillOnce(Return(absl::UnknownError(kDisassembleErrorMessage))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(source_mock_array))); auto disassemble_request = NewIfrtRequest(NewOpId()); disassemble_request->mutable_disassemble_into_single_device_arrays_request() ->set_array_handle(array_handle); ASSERT_THAT( CallBackend(std::move(disassemble_request)), StatusIs(absl::StatusCode::kUnknown, StrEq(kDisassembleErrorMessage))); } MATCHER_P(EqualsDeviceList, device_list, "") { return *arg == *device_list; } TEST_P(IfrtBackendHandlerTest, CopyArrays) { std::vector<tsl::RCReference<xla::ifrt::Array>> src_arrays; src_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); std::vector<tsl::RCReference<xla::ifrt::Array>> copied_arrays; copied_arrays.push_back(tsl::MakeRef<xla::ifrt::MockArray>()); BasicDeviceList::Devices ds; TF_ASSERT_OK_AND_ASSIGN(ds.emplace_back(), mock_client_->LookupDevice(DeviceId(1))); tsl::RCReference<DeviceList> devices = BasicDeviceList::Create(std::move(ds)); MemoryKind memory_kind("device"); EXPECT_CALL(*mock_client_, CopyArrays(ElementsAreArray(src_arrays), Optional(EqualsDeviceList(devices)), Optional(memory_kind), ArrayCopySemantics::kAlwaysCopy)) .WillOnce(Return( std::vector<tsl::RCReference<xla::ifrt::Array>>(copied_arrays))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* copy_arrays_request = ifrt_request->mutable_copy_arrays_request(); for (const auto& src_array : src_arrays) { TF_ASSERT_OK_AND_ASSIGN(auto src_array_handle, MakeTestArray(src_array)); copy_arrays_request->add_array_handles(src_array_handle); } for (const auto& device : devices->devices()) { copy_arrays_request->add_device_ids(device->Id().value()); } copy_arrays_request->set_memory_kind(std::string(*memory_kind.memory_kind())); copy_arrays_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(response->response_metadata().status()), IsOk()); EXPECT_THAT(response->copy_arrays_response().array_handles(), SizeIs(copied_arrays.size())); } TEST_P(IfrtBackendHandlerTest, ReshardSuccess) { auto src_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(0))); auto src_sharding = SingleDeviceSharding::Create(device, MemoryKind()); ON_CALL(*src_mock_array, sharding()).WillByDefault(ReturnRef(*src_sharding)); TF_ASSERT_OK_AND_ASSIGN(auto src_array_handle, MakeTestArray(std::move(src_mock_array))); auto copied_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_client_, CopyArrays(_, _, _, _)) .WillOnce(Return(std::vector<tsl::RCReference<xla::ifrt::Array>>( {copied_mock_array}))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(src_array_handle); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto* new_device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request->mutable_reshard_request()->mutable_sharding(), SingleDeviceSharding::Create(new_device, MemoryKind())->ToProto()); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(response->response_metadata().status()), IsOk()); EXPECT_NE(response->reshard_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, ReshardFailsWhenTheBackendFails) { auto mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto* device, mock_client_->LookupDevice(DeviceId(1))); auto sharding = SingleDeviceSharding::Create(device, MemoryKind()); ON_CALL(*mock_array, sharding()).WillByDefault(ReturnRef(*sharding)); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); EXPECT_CALL(*mock_client_, CopyArrays(_, _, _, _)) .WillOnce(Return(absl::UnknownError("injected error"))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(array_handle); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto* new_device, mock_client_->LookupDevice(DeviceId(1))); TF_ASSERT_OK_AND_ASSIGN( *ifrt_request->mutable_reshard_request()->mutable_sharding(), SingleDeviceSharding::Create(new_device, MemoryKind())->ToProto()); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } TEST_P(IfrtBackendHandlerTest, ReshardFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); auto* reshard_request = ifrt_request->mutable_reshard_request(); reshard_request->set_array_handle(0); reshard_request->set_copy_semantics(proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); reshard_request->mutable_sharding(); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardSuccess) { auto fully_replicated_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); auto resultant_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*fully_replicated_mock_array, FullyReplicatedShard(_)) .WillOnce(Return(std::move(resultant_array))); TF_ASSERT_OK_AND_ASSIGN( auto fully_replicated_array_handle, MakeTestArray(std::move(fully_replicated_mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle( fully_replicated_array_handle); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(ifrt_request))); EXPECT_NE(response->fully_replicated_shard_response().array_handle(), 0); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardFailure) { auto fully_replicated_mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*fully_replicated_mock_array, FullyReplicatedShard(_)) .WillOnce(Return(absl::UnknownError("injected error"))); TF_ASSERT_OK_AND_ASSIGN( auto fully_replicated_array_handle, MakeTestArray(std::move(fully_replicated_mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle( fully_replicated_array_handle); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } TEST_P(IfrtBackendHandlerTest, FullyReplicatedShardFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); auto* fully_replicated_shard_request = ifrt_request->mutable_fully_replicated_shard_request(); fully_replicated_shard_request->set_array_handle(0); fully_replicated_shard_request->set_copy_semantics( proto::ARRAY_COPY_SEMANTICS_ALWAYS_COPY); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, CheckArrayReadyRequestRelaysTheResultFromBackend) { auto mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); EXPECT_CALL(*mock_client_, GetReadyFuture(_)) .WillOnce(Return(Future<>(absl::OkStatus()))) .WillOnce(Return(Future<>(absl::UnknownError("injected error")))); { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_check_value_ready_request()->add_value_handles( array_handle); TF_ASSERT_OK_AND_ASSIGN(auto ifrt_response, CallBackend(std::move(ifrt_request))); EXPECT_THAT(ifrt_response->response_metadata().status().code(), tensorflow::error::OK); EXPECT_TRUE(ifrt_response->has_check_value_ready_response()); } { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_check_value_ready_request()->add_value_handles( array_handle); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } } TEST_P(IfrtBackendHandlerTest, CheckArrayReadyRequestFailsWithNonExistentArrayHandle) { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_check_value_ready_request()->add_value_handles(0); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, DeleteArraySuccess) { auto mock_array1 = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array1, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); auto mock_array2 = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array2, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle1, MakeTestArray(std::move(mock_array1))); TF_ASSERT_OK_AND_ASSIGN(auto array_handle2, MakeTestArray(std::move(mock_array2))); uint64_t op_id = NewOpId(); auto ifrt_request = NewIfrtRequest(op_id); ifrt_request->mutable_delete_array_request()->add_array_handle(array_handle1); ifrt_request->mutable_delete_array_request()->add_array_handle(array_handle2); TF_ASSERT_OK_AND_ASSIGN(auto resp, CallBackend(std::move(ifrt_request))); EXPECT_THAT(tsl::StatusFromProto(resp->response_metadata().status()), IsOk()); TF_EXPECT_OK( CheckFuture(resp->delete_array_response().deletion_future_handle())); } TEST_P(IfrtBackendHandlerTest, DeleteArrayReturnsFutureWithNonExistentArrayHandle) { auto mock_array1 = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array1, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); TF_ASSERT_OK_AND_ASSIGN(auto real_handle, MakeTestArray(std::move(mock_array1))); constexpr int kBadHandle = 400; auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_delete_array_request()->add_array_handle(real_handle); ifrt_request->mutable_delete_array_request()->add_array_handle(kBadHandle); TF_ASSERT_OK_AND_ASSIGN(auto resp, CallBackend(std::move(ifrt_request))); EXPECT_THAT( CheckFuture(resp->delete_array_response().deletion_future_handle()), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, IsDeleteRelaysBackTheReturnValueFromBackendRuntime) { tsl::RCReference<xla::ifrt::MockArray> mock_array = tsl::MakeRef<xla::ifrt::MockArray>(); EXPECT_CALL(*mock_array, IsDeleted()) .WillOnce(Return(true)) .WillOnce(Return(false)); TF_ASSERT_OK_AND_ASSIGN(auto array_handle, MakeTestArray(std::move(mock_array))); auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_is_array_deleted_request()->set_array_handle( array_handle); TF_ASSERT_OK_AND_ASSIGN(auto resp, CallBackend(std::move(ifrt_request))); EXPECT_TRUE(resp->is_array_deleted_response().deleted()); ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_is_array_deleted_request()->set_array_handle( array_handle); TF_ASSERT_OK_AND_ASSIGN(resp, CallBackend(std::move(ifrt_request))); EXPECT_FALSE(resp->is_array_deleted_response().deleted()); } TEST_P(IfrtBackendHandlerTest, IsDeleteFailsForNonExistentArrays) { auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_is_array_deleted_request()->set_array_handle(0); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(IfrtBackendHandlerTest, DestructArrayTest) { tsl::RCReference<xla::ifrt::MockArray> mock_array1 = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto array_handle1, MakeTestArray(std::move(mock_array1))); tsl::RCReference<xla::ifrt::MockArray> mock_array2 = tsl::MakeRef<xla::ifrt::MockArray>(); TF_ASSERT_OK_AND_ASSIGN(auto array_handle2, MakeTestArray(std::move(mock_array2))); auto ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_destruct_array_request()->add_array_handle( array_handle1); ifrt_request->mutable_destruct_array_request()->add_array_handle( array_handle2); TF_ASSERT_OK_AND_ASSIGN(auto ifrt_resp, CallBackend(std::move(ifrt_request))); EXPECT_TRUE(ifrt_resp->has_destruct_array_response()); ifrt_request = NewIfrtRequest(NewOpId()); ifrt_request->mutable_destruct_array_request()->add_array_handle( array_handle1); EXPECT_THAT(CallBackend(std::move(ifrt_request)), StatusIs(absl::StatusCode::kNotFound)); } #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, CompileSuccess) { std::vector<MockDevice> devices(4); for (int i = 0; i < 4; ++i) { EXPECT_CALL(devices[i], Id()).WillOnce(Return(DeviceId(i))); } std::vector<xla::ifrt::Device*> addressable_devices; for (int i = 0; i < 4; ++i) { addressable_devices.push_back(&devices[i]); } auto executable = std::make_unique<MockLoadedExecutable>(); EXPECT_CALL(*executable, name()).WillOnce(Return("executable_name")); EXPECT_CALL(*executable, num_devices()).WillOnce(Return(4)); EXPECT_CALL(*executable, addressable_devices()) .WillOnce(Return(absl::MakeSpan(addressable_devices))); EXPECT_CALL(*executable, Fingerprint()).WillOnce(Return("fingerprint")); EXPECT_CALL(*executable, GetReadyFuture()) .WillOnce(Return(Future<>(absl::OkStatus()))); ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(executable))); EXPECT_THAT(response, Partially(EquivToProto(R"pb( name: "executable_name" num_devices: 4 addressable_device_ids: [ 0, 1, 2, 3 ] fingerprint_value: "fingerprint" )pb"))); TF_EXPECT_OK(CheckFuture(response.ready_future_handle())); } #endif TEST_P(IfrtBackendHandlerTest, CompileFailure) { ASSERT_THAT( CompileTestLoadedExecutable(absl::InternalError("injected error")), StatusIs(absl::StatusCode::kInternal, StrEq("injected error"))); } #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, LoadedExecutableMetadata) { MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } { OpSharding op_sharding1; ASSERT_TRUE( TextFormat::ParseFromString(R"pb(type: REPLICATED)pb", &op_sharding1)); OpSharding op_sharding2; ASSERT_TRUE(TextFormat::ParseFromString( R"pb(type: OTHER tile_shape { element_type: BF16 dimensions: [ 2, 2 ] } tile_assignment_dimensions: [ 0, 1 ])pb", &op_sharding2)); EXPECT_CALL(*executable, GetParameterShardings()) .WillOnce(Return(std::vector<OpSharding>{op_sharding1, op_sharding2})); EXPECT_CALL(*executable, GetOutputShardings()) .WillOnce(Return(std::vector<OpSharding>{op_sharding1})); std::vector<std::unique_ptr<xla::PjRtLayout>> parameter_layouts; parameter_layouts.push_back(std::make_unique<xla::PjRtXlaLayout>( xla::LayoutUtil::MakeDescendingLayout(1))); parameter_layouts.push_back(std::make_unique<xla::PjRtXlaLayout>( xla::LayoutUtil::MakeDescendingLayout(2))); EXPECT_CALL(*executable, GetParameterLayouts()) .WillOnce(Return(std::move(parameter_layouts))); std::vector<std::unique_ptr<xla::PjRtLayout>> output_layouts; output_layouts.push_back(std::make_unique<xla::PjRtXlaLayout>( xla::LayoutUtil::MakeDescendingLayout(2))); EXPECT_CALL(*executable, GetOutputLayouts()) .WillOnce(Return(std::move(output_layouts))); EXPECT_CALL(*executable, GetOutputMemoryKinds()) .WillOnce(Return(std::vector<std::vector<absl::string_view>>{{"foo"}})); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableMetadataRequest* metadata_request = request->mutable_loaded_executable_metadata_request(); metadata_request->set_loaded_executable_handle(handle); EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee(Partially(EquivToProto(R"pb( loaded_executable_metadata_response { parameter_shardings { shardings { type: REPLICATED } shardings { type: OTHER tile_shape { element_type: BF16 dimensions: [ 2, 2 ] } tile_assignment_dimensions: [ 0, 1 ] } } output_shardings { shardings { type: REPLICATED } } parameter_layouts_list { layouts { minor_to_major: 0 } layouts { minor_to_major: [ 1, 0 ] } } output_layouts_list { layouts { minor_to_major: [ 1, 0 ] } } output_memory_kinds { memory_kind_lists { memory_kinds: [ "foo" ] } } } )pb"))))); } { EXPECT_CALL(*executable, GetParameterShardings()) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*executable, GetOutputShardings()) .WillOnce(Return(std::nullopt)); EXPECT_CALL(*executable, GetParameterLayouts()) .WillOnce(Return(absl::UnimplementedError("unimplemented"))); EXPECT_CALL(*executable, GetOutputLayouts()) .WillOnce(Return(absl::UnimplementedError("unimplemented"))); EXPECT_CALL(*executable, GetOutputMemoryKinds()) .WillOnce(Return(std::vector<std::vector<absl::string_view>>{})); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableMetadataRequest* metadata_request = request->mutable_loaded_executable_metadata_request(); metadata_request->set_loaded_executable_handle(handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); const auto& metadata_response = response->loaded_executable_metadata_response(); EXPECT_FALSE(metadata_response.has_parameter_shardings()); EXPECT_FALSE(metadata_response.has_output_shardings()); EXPECT_TRUE(metadata_response.has_parameter_layouts_error()); EXPECT_TRUE(metadata_response.has_output_layouts_error()); } } #endif #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, LoadedExecutableExecute) { MockDevice device; ON_CALL(device, Id()).WillByDefault(Return(DeviceId(0))); MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } constexpr int kNumArgs = 3; constexpr int kNumOutputs = 2; Shape shape({2, 2}); auto sharding = SingleDeviceSharding::Create(&device, MemoryKind()); auto make_array = [&]() { auto array = tsl::MakeRef<MockArray>(); ON_CALL(*array, dtype()).WillByDefault(Return(DType(DType::kF32))); ON_CALL(*array, shape()).WillByDefault(ReturnRef(shape)); ON_CALL(*array, sharding()).WillByDefault(ReturnRef(*sharding)); return array; }; std::vector<tsl::RCReference<Array>> outputs; outputs.reserve(kNumOutputs); for (int i = 0; i < kNumOutputs; ++i) { outputs.push_back(make_array()); } EXPECT_CALL(*executable, Execute(SizeIs(kNumArgs), _, _)) .WillOnce( Invoke([&](absl::Span<tsl::RCReference<Array>> args, const xla::ifrt::LoadedExecutable::ExecuteOptions& options, std::optional<tsl::RCReference<DeviceList>> devices) -> absl::StatusOr<LoadedExecutable::ExecuteResult> { return LoadedExecutable::ExecuteResult{ .status = Future<>(absl::InternalError("injected error")), .outputs = outputs, }; })); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableExecuteRequest* execute_request = request->mutable_loaded_executable_execute_request(); for (int i = 0; i < kNumArgs; ++i) { TF_ASSERT_OK_AND_ASSIGN(uint64_t arg_handle, MakeTestArray(make_array())); execute_request->add_args_handles(arg_handle); } execute_request->set_loaded_executable_handle(handle); xla::ifrt::LoadedExecutable::ExecuteOptions execute_options; execute_options.fill_status = true; TF_ASSERT_OK_AND_ASSIGN(*execute_request->mutable_execute_options(), execute_options.ToProto()); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); EXPECT_THAT(response, Pointee(Partially(EquivToProto(R"pb( loaded_executable_execute_response { outputs { dtype { kind: KIND_F32 } shape { dims: [ 2, 2 ] } } outputs { dtype { kind: KIND_F32 } shape { dims: [ 2, 2 ] } } } )pb")))); TF_ASSERT_OK_AND_ASSIGN( auto sharding_proto, SingleDeviceSharding::Create(&device, MemoryKind())->ToProto()); for (const auto& output : response->loaded_executable_execute_response().outputs()) { EXPECT_THAT(output.sharding(), EquivToProto(sharding_proto)); EXPECT_NE(output.array_handle(), 0); } EXPECT_THAT( CheckFuture( response->loaded_executable_execute_response().status_handle()), StatusIs(absl::StatusCode::kInternal, StrEq("injected error"))); EXPECT_THAT( CheckFuture( response->loaded_executable_execute_response().status_handle()), StatusIs(absl::StatusCode::kNotFound, HasSubstr("Unknown future handle"))); } #endif #if defined(PLATFORM_GOOGLE) TEST_P(IfrtBackendHandlerTest, LoadedExecutableDelete) { MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } { EXPECT_CALL(*executable, Delete()) .WillOnce(Return(Future<>(absl::OkStatus()))); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableDeleteRequest* delete_request = request->mutable_loaded_executable_delete_request(); delete_request->set_loaded_executable_handle(handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_executable_delete_response()); EXPECT_THAT( CheckFuture( response->loaded_executable_delete_response().future_handle()), IsOk()); } { EXPECT_CALL(*executable, IsDeleted()).WillOnce(Return(true)); auto request = NewIfrtRequest(NewOpId()); LoadedExecutableIsDeletedRequest* is_deleted_request = request->mutable_loaded_executable_is_deleted_request(); is_deleted_request->set_loaded_executable_handle(handle); EXPECT_THAT(CallBackend(std::move(request)), IsOkAndHolds(Pointee(Partially(EquivToProto(R"pb( loaded_executable_is_deleted_response { is_deleted: true } )pb"))))); } } #endif TEST_P(IfrtBackendHandlerTest, LoadedExecutableDestruct) { MockLoadedExecutable* executable; uint64_t handle; { auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); TF_ASSERT_OK_AND_ASSIGN(CompileResponse response, CompileTestLoadedExecutable(std::move(e))); handle = response.loaded_executable_handle(); } { auto request = NewIfrtRequest(NewOpId()); LoadedExecutableDestructRequest* destruct_request = request->mutable_loaded_executable_destruct_request(); destruct_request->set_loaded_executable_handle(handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_executable_destruct_response()); } { auto request = NewIfrtRequest(NewOpId()); LoadedExecutableDestructRequest* destruct_request = request->mutable_loaded_executable_destruct_request(); destruct_request->set_loaded_executable_handle(handle); EXPECT_THAT(CallBackend(std::move(request)), StatusIs(absl::StatusCode::kNotFound, HasSubstr("Unknown loaded executable handle"))); } } TEST_P(IfrtBackendHandlerTest, LoadedHostCallbackExecute) { std::vector<xla::HostCallbackArgInfo> hcb_args = {{ .channel_id = 1, .shape = xla::ShapeUtil::MakeShape(xla::F32, {}), }}; std::vector<xla::HostCallbackArgInfo> hcb_results = {{ .channel_id = 2, .shape = xla::ShapeUtil::MakeShape(xla::F32, {}), }}; auto hcb = tsl::MakeRef<RemoteLoadedHostCallback>( mock_client_, std::move(hcb_args), std::move(hcb_results), nullptr); MockLoadedExecutable* executable; tsl::RCReference<xla::ifrt::LoadedHostCallback> loaded_host_callback; uint64_t loaded_host_callback_handle; { auto request = NewIfrtRequest(NewOpId()); CompileRequest* compile_request = request->mutable_compile_request(); TestProgram program; TF_ASSERT_OK_AND_ASSIGN(*compile_request->mutable_program(), Serialize(program)); xla::ifrt::XlaCompileOptions compile_options; TF_ASSERT_OK_AND_ASSIGN(*compile_request->mutable_compile_options(), Serialize(compile_options)); TF_ASSERT_OK_AND_ASSIGN(std::string host_callback_serialized, hcb->Serialize()); compile_request->add_host_callbacks(std::move(host_callback_serialized)); auto e = std::make_unique<MockLoadedExecutable>(); executable = e.get(); EXPECT_CALL(mock_compiler_, Compile(_, _)) .WillOnce(DoAll( Invoke( [&](const std::unique_ptr<xla::ifrt::Program>& program, const std::unique_ptr<xla::ifrt::CompileOptions>& options) { auto* xla_compile_options = llvm::cast<xla::ifrt::XlaCompileOptions>(options.get()); auto& loaded_host_callbacks = xla_compile_options->loaded_host_callbacks; ASSERT_EQ(loaded_host_callbacks.size(), 1); loaded_host_callback = loaded_host_callbacks.front(); }), Return(ByMove(std::move(e))))); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_compile_response()); CompileResponse compile_response = response->compile_response(); loaded_host_callback_handle = compile_response.loaded_host_callback_handles(0); ASSERT_THAT(loaded_host_callback, NotNull()); } auto host_callback_thread = absl::WrapUnique(tsl::Env::Default()->StartThread( tsl::ThreadOptions(), "HostCallback", [&]() { xla::Literal x = xla::LiteralUtil::CreateR0(1.0f); std::vector<void*> operands; operands.push_back(x.untyped_data()); xla::Literal out = xla::LiteralUtil::CreateR0(0.0f); std::vector<void*> results; results.push_back(out.untyped_data()); const xla::HostCallback* xla_host_callback = &llvm::cast<RemoteLoadedHostCallback>(loaded_host_callback.get()) ->host_callback(); ASSERT_THAT( xla_host_callback->callback(results.data(), operands.data()), IsOk()); EXPECT_EQ(out, xla::LiteralUtil::CreateR0(2.0f)); })); uint64_t host_callback_execution_handle; { const uint64_t operand_host_buffer_handle = NewHostBufferHandle(); auto request = NewIfrtRequest(NewOpId()); LoadedHostCallbackPollRequest* poll_request = request->mutable_loaded_host_callback_poll_request(); poll_request->set_loaded_host_callback_handle(loaded_host_callback_handle); poll_request->set_operand_host_buffer_handle(operand_host_buffer_handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_host_callback_poll_response()); const LoadedHostCallbackPollResponse& poll_response = response->loaded_host_callback_poll_response(); host_callback_execution_handle = poll_response.host_callback_execution_handle(); TF_ASSERT_OK_AND_ASSIGN( const std::shared_ptr<const std::string> operands, host_buffer_store_->Lookup(operand_host_buffer_handle)); EXPECT_EQ(xla::BorrowingLiteral(operands->data(), xla::ShapeUtil::MakeShape(xla::F32, {})), xla::LiteralUtil::CreateR0(1.0f)); } { auto result = xla::LiteralUtil::CreateR0(2.0f); std::string result_buffer(absl::string_view( static_cast<const char*>(result.untyped_data()), result.size_bytes())); const uint64_t result_host_buffer_handle = NewHostBufferHandle(); ASSERT_THAT(host_buffer_store_->Store(result_host_buffer_handle, std::move(result_buffer)), IsOk()); auto request = NewIfrtRequest(NewOpId()); LoadedHostCallbackReturnRequest* ret_request = request->mutable_loaded_host_callback_return_request(); ret_request->set_host_callback_execution_handle( host_callback_execution_handle); ret_request->set_result_host_buffer_handle(result_host_buffer_handle); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<IfrtResponse> response, CallBackend(std::move(request))); ASSERT_TRUE(response->has_loaded_host_callback_return_response()); } } TEST_P(IfrtBackendHandlerTest, GetDefaultDeviceAssignmentSuccess) { const int kNumReplicas = 1; const int kNumPartitions = 3; EXPECT_CALL(*mock_client_, GetDefaultDeviceAssignment(kNumReplicas, kNumPartitions)) .WillOnce(Return(xla::DeviceAssignment(kNumReplicas, kNumPartitions))); auto request = NewIfrtRequest(NewOpId()); auto* default_device_assignment_request = request->mutable_get_default_device_assignment_request(); default_device_assignment_request->set_num_replicas(kNumReplicas); default_device_assignment_request->set_num_partitions(kNumPartitions); TF_ASSERT_OK_AND_ASSIGN(auto response, CallBackend(std::move(request))); TF_ASSERT_OK_AND_ASSIGN(auto assignment_got, xla::DeviceAssignment::Deserialize( response->get_default_device_assignment_response() .device_assignment())); EXPECT_EQ(assignment_got->replica_count(), kNumReplicas); EXPECT_EQ(assignment_got->computation_count(), kNumPartitions); } TEST_P(IfrtBackendHandlerTest, GetDefaultDeviceAssignmentFailsIfTheBackendFails) { const int kNumReplicas = 1; const int kNumPartitions = 3; EXPECT_CALL(*mock_client_, GetDefaultDeviceAssignment(kNumReplicas, kNumPartitions)) .WillOnce(Return(absl::UnknownError("injected error"))); auto request = NewIfrtRequest(NewOpId()); auto* default_device_assignment_request = request->mutable_get_default_device_assignment_request(); default_device_assignment_request->set_num_replicas(kNumReplicas); default_device_assignment_request->set_num_partitions(kNumPartitions); EXPECT_THAT(CallBackend(std::move(request)), StatusIs(absl::StatusCode::kUnknown, StrEq("injected error"))); } INSTANTIATE_TEST_SUITE_P( IfrtBackendHandlerTestWithAllVersions, IfrtBackendHandlerTest, testing::Range(kServerMinVersion, kServerMaxVersion + 1), [](const testing::TestParamInfo<IfrtBackendHandlerTest::ParamType>& info) { return absl::StrCat(info.param); }); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt_proxy/server/ifrt_backend_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9a1e9b2d-2600-48e3-99d7-97d71167687b
cpp
google/libaddressinput
region_data
cpp/src/region_data.cc
cpp/test/region_data_test.cc
#include <libaddressinput/region_data.h> #include <cstddef> #include <string> #include <vector> namespace i18n { namespace addressinput { RegionData::RegionData(const std::string& region_code) : key_(region_code), name_(region_code), parent_(nullptr), sub_regions_() {} RegionData::~RegionData() { for (auto ptr : sub_regions_) { delete ptr; } } RegionData* RegionData::AddSubRegion(const std::string& key, const std::string& name) { auto* sub_region = new RegionData(key, name, this); sub_regions_.push_back(sub_region); return sub_region; } RegionData::RegionData(const std::string& key, const std::string& name, RegionData* parent) : key_(key), name_(name), parent_(parent), sub_regions_() {} } }
#include <libaddressinput/region_data.h> #include <cstddef> #include <string> #include <gtest/gtest.h> namespace { using i18n::addressinput::RegionData; TEST(RegionDataTest, NoParentByDefault) { static const std::string kEmpty; RegionData region(kEmpty); EXPECT_FALSE(region.has_parent()); } TEST(RegionDataTest, NoSubRegionsByDefault) { static const std::string kEmpty; RegionData region(kEmpty); EXPECT_TRUE(region.sub_regions().empty()); } TEST(RegionDataTest, SubRegionGetsParent) { static const std::string kEmpty; RegionData region(kEmpty); region.AddSubRegion(kEmpty, kEmpty); ASSERT_EQ(1U, region.sub_regions().size()); ASSERT_TRUE(region.sub_regions()[0] != nullptr); EXPECT_EQ(&region, &region.sub_regions()[0]->parent()); } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/region_data.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/region_data_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
36f85540-8919-4e0b-b082-182c3285944e
cpp
tensorflow/tensorflow
trt_engine_op
tensorflow/compiler/tf2tensorrt/ops/trt_engine_op.cc
tensorflow/compiler/tf2tensorrt/kernels/trt_engine_op_test.cc
#if GOOGLE_CUDA && GOOGLE_TENSORRT #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/tensor_shape.h" namespace tensorflow { REGISTER_OP("TRTEngineOp") .Attr("serialized_segment: string") .Attr("segment_func: func = {}") .Attr("InT: list({bool,int8,float16,float32,int32,resource})") .Attr("OutT: list({bool,int8,float16,float32,int32})") .Attr("input_shapes: list(shape) = []") .Attr("output_shapes: list(shape) = []") .Attr("max_cached_engines_count: int = 1") .Attr("max_batch_size: int = 1") .Attr("workspace_size_bytes: int") .Attr("precision_mode: {'FP32', 'FP16', 'INT8'}") .Attr("calibration_data: string = ''") .Attr("use_calibration: bool = true") .Input("in_tensor: InT") .Output("out_tensor: OutT") .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) { std::vector<tensorflow::PartialTensorShape> output_shapes; TF_RETURN_IF_ERROR(c->GetAttr("output_shapes", &output_shapes)); for (int i = 0; i < output_shapes.size(); i++) { ::tensorflow::shape_inference::ShapeHandle shape; shape_inference::ShapeHandle output_shape_handle; TF_RETURN_IF_ERROR(c->MakeShapeFromPartialTensorShape( output_shapes[i], &output_shape_handle)); c->set_output(i, output_shape_handle); } return OkStatus(); }) .Attr("segment_funcdef_name: string = ''") .Attr("cached_engine_batches: list(int) >= 0 = []") .Attr("fixed_input_size: bool = true") .Attr("static_engine: bool = true") .Attr("profile_strategy: string = ''") .Attr("use_explicit_precision: bool = false"); } #endif
#include <memory> #include <numeric> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/container/inlined_vector.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/compiler/tf2tensorrt/convert/convert_graph.h" #include "tensorflow/compiler/tf2tensorrt/utils/trt_lru_cache.h" #include "xla/tsl/framework/fixedpoint/FixedPoint.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/device_factory.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/resource_mgr.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/refcount.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/public/version.h" #if GOOGLE_CUDA && GOOGLE_TENSORRT namespace tensorflow { namespace tensorrt { using ::absl::StrCat; using ::testing::ElementsAre; struct TestParam { bool static_engine; }; class TRTEngineOpTestBase : public OpsTestBase { public: void AddSimpleTrtOp(DataType dtype, int max_cached_engines_count = 1, PartialTensorShape shape = PartialTensorShape({-1, -1}), bool use_implicit_batch = true, bool allow_build_at_runtime = true, bool static_engine = false) { std::unique_ptr<Device> device( DeviceFactory::NewDevice("GPU", {}, "/job:worker/replica:0/task:0")); Scope s = Scope::NewRootScope(); auto feed = ops::_Arg(s.WithOpName("TensorRTInputPH_0"), dtype, 0); auto add = ops::Add(s.WithOpName("add"), feed, feed); ops::_Retval give_me_a_name(s.WithOpName("TensorRTOutputPH_0"), add, 0); GraphDef graph_def; TF_ASSERT_OK(s.ToGraphDef(&graph_def)); Graph* graph = s.graph(); TF_ASSERT_OK(convert::RegisterGraphToFunctionLibrary(graph_def, graph, std::string(kOpName))); TF_ASSERT_OK(flib_def_->AddLibrary(graph->flib_def())); string segment_string; if (static_engine) { convert::TRTOptimizationPass::ConversionParams params; convert::EngineInfo info; info.segment_graph_def.CopyFrom(graph_def); info.precision_mode = TrtPrecisionMode::FP32; info.max_workspace_size_bytes = 1 << 20; info.engine_name = "TRTEngineOP_000_000"; params.use_implicit_batch = use_implicit_batch; params.trt_logger_name = "DefaultLogger"; TrtShapeOptimizationProfile profile; std::vector<bool> input_mask = {true}; profile.SetInputMask(input_mask); TensorShape my_shape; TF_CHECK_OK( TensorShapeUtils::MakeShape(std::vector<int32>{4, 2}, &my_shape)); profile.AddShape({my_shape, {}}); TF_CHECK_OK( TensorShapeUtils::MakeShape(std::vector<int32>{1, 2}, &my_shape)); profile.AddShape({my_shape, {}}); profile.InitProfiles({shape}, ProfileStrategy::kOptimal); std::vector<PartialTensorShape> shape_vec{shape, {}}; TF_CHECK_OK(convert::CreateStaticEngine( params, info, 1, shape_vec, &profile, &segment_string, nullptr)); } OpsTestBase::SetDevice(DEVICE_GPU, std::move(device)); NameAttrList function; function.set_name(StrCat(std::string(kOpName), "_native_segment")); TF_ASSERT_OK(NodeDefBuilder(std::string(kOpName), "TRTEngineOp") .Input(FakeInput(1, dtype)) .Attr("input_shapes", {shape}) .Attr("output_shapes", {shape}) .Attr("static_engine", static_engine) .Attr("segment_func", function) .Attr("serialized_segment", segment_string) .Attr("calibration_data", "") .Attr("max_cached_engines_count", max_cached_engines_count) .Attr("workspace_size_bytes", 1 << 20) .Attr("precision_mode", "FP32") .Attr("use_calibration", false) .Attr("profile_strategy", "optimal") .Attr("_use_implicit_batch", use_implicit_batch) .Attr("_allow_build_at_runtime", allow_build_at_runtime) .Attr("_allow_soft_placement", false) .Attr("OutT", {dtype}) .Finalize(OpsTestBase::node_def())); TF_ASSERT_OK(InitOpWithFunctionLibrary()); } static const absl::string_view kOpName; template <typename T> void AddSimpleInput(const TensorShape& shape) { std::vector<T> input(shape.num_elements()); std::iota(input.begin(), input.end(), T(0)); OpsTestBase::AddInputFromArray<T>(shape, input); } void ResetInputs() { inputs_.clear(); for (auto& temp : tensors_) { delete temp; } tensors_.clear(); } private: Status InitOpWithFunctionLibrary() { OpKernel* kernel = nullptr; auto flr = pflr_->GetFLR(device_->name()); std::shared_ptr<const NodeProperties> props; Status status = NodeProperties::CreateFromNodeDef( node_def_, flr->GetFunctionLibraryDefinition(), &props); if (status.ok()) { status.Update(CreateOpKernel(device_type_, device_, allocator(), flr, props, TF_GRAPH_DEF_VERSION, &kernel)); } kernel_ = std::unique_ptr<OpKernel>(kernel); if (kernel_ != nullptr) input_types_ = kernel_->input_types(); return status; } }; class TRTEngineOpTestWithParam : public TRTEngineOpTestBase, public ::testing::WithParamInterface<TestParam> { public: TRTEngineOpTestWithParam() : param_(GetParam()) {} protected: TestParam param_; }; const absl::string_view TRTEngineOpTestBase::kOpName = "myop"; constexpr std::array<TestParam, 2> TestParameters{TestParam{false}, TestParam{true}}; INSTANTIATE_TEST_CASE_P(TRTEngineOpTestInstantiation, TRTEngineOpTestWithParam, ::testing::ValuesIn(TestParameters)); TEST_F(TRTEngineOpTestBase, DynamicEngines) { TRTEngineOpTestBase::AddSimpleTrtOp(DT_FLOAT, 4); TRTEngineOpTestBase::AddSimpleInput<float>(TensorShape({2, 2})); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); TRTEngineCacheResource* cache_resource = nullptr; TF_ASSERT_OK(device_->resource_manager()->Lookup( std::string(kTfTrtContainerName), std::string(kOpName), &cache_resource)); core::ScopedUnref sc(cache_resource); auto cache = &cache_resource->cache_; EXPECT_EQ(1, cache->size()); EXPECT_EQ(1, cache->count({TensorShape({2, 2})})); ResetInputs(); TRTEngineOpTestBase::AddSimpleInput<float>(TensorShape({1, 2})); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); EXPECT_EQ(1, cache->size()); EXPECT_EQ(1, cache->count({TensorShape({2, 2})})); ResetInputs(); TRTEngineOpTestBase::AddSimpleInput<float>(TensorShape({3, 2})); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); EXPECT_EQ(2, cache->size()); EXPECT_EQ(1, cache->count({TensorShape({2, 2})})); EXPECT_EQ(1, cache->count({TensorShape({3, 2})})); ResetInputs(); TRTEngineOpTestBase::AddSimpleInput<float>(TensorShape({10, 10})); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); ResetInputs(); TRTEngineOpTestBase::AddSimpleInput<float>(TensorShape({1, 10})); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); EXPECT_EQ(3, cache->size()); EXPECT_EQ(1, cache->count({TensorShape({2, 2})})); EXPECT_EQ(1, cache->count({TensorShape({3, 2})})); EXPECT_EQ(1, cache->count({TensorShape({10, 10})})); } TEST_F(TRTEngineOpTestBase, AllowBuildAtRuntime) { TRTEngineOpTestBase::AddSimpleTrtOp(DT_FLOAT, 1, PartialTensorShape({-1, -1}), true, false); TensorShape input_shape({2, 2}); TRTEngineOpTestBase::AddSimpleInput<float>(input_shape); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); TRTEngineCacheResource* cache_resource = nullptr; TF_ASSERT_OK(device_->resource_manager()->Lookup( std::string(kTfTrtContainerName), std::string(kOpName), &cache_resource)); core::ScopedUnref sc(cache_resource); auto cache = &cache_resource->cache_; EXPECT_EQ(1, cache->size()); ASSERT_EQ(1, cache->count({input_shape})); EngineContext* ectx = cache->at({input_shape}).get(); EXPECT_EQ(ectx->GetCudaEngine(), nullptr); } TEST_P(TRTEngineOpTestWithParam, ExplicitBatch) { TRTEngineOpTestBase::AddSimpleTrtOp(DT_FLOAT, 1, PartialTensorShape({1, 2}), false, true, param_.static_engine); TensorShape input_shape({1, 2}); TRTEngineOpTestBase::AddSimpleInput<float>(input_shape); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); TRTEngineCacheResource* cache_resource = nullptr; TF_ASSERT_OK(device_->resource_manager()->Lookup( std::string(kTfTrtContainerName), std::string(kOpName), &cache_resource)); core::ScopedUnref sc(cache_resource); auto cache = &cache_resource->cache_; EXPECT_EQ(1, cache->size()); ASSERT_EQ(1, cache->count({input_shape})); EngineContext* ectx = cache->at({input_shape}).get(); EXPECT_NE(ectx->GetCudaEngine(), nullptr); } TEST_P(TRTEngineOpTestWithParam, DynamicShapes) { TRTEngineOpTestBase::AddSimpleTrtOp(DT_FLOAT, 1, PartialTensorShape({-1, -1}), false, true, param_.static_engine); TensorShape input_shape({1, 2}); TRTEngineOpTestBase::AddSimpleInput<float>(input_shape); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); TRTEngineCacheResource* cache_resource = nullptr; TF_ASSERT_OK(device_->resource_manager()->Lookup( std::string(kTfTrtContainerName), std::string(kOpName), &cache_resource)); core::ScopedUnref sc(cache_resource); auto cache = &cache_resource->cache_; EXPECT_EQ(1, cache->size()); ASSERT_EQ(1, cache->count({input_shape})); EngineContext* ectx = cache->at({input_shape}).get(); EXPECT_NE(ectx->GetCudaEngine(), nullptr); ResetInputs(); TRTEngineOpTestBase::AddSimpleInput<float>(TensorShape({1, 37})); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); EXPECT_EQ(1, cache->size()); EXPECT_EQ(0, cache->count({TensorShape({1, 37})})); } template <typename T> class TRTEngineOpTest : public TRTEngineOpTestBase {}; using TypeList = ::testing::Types<float, Eigen::half>; TYPED_TEST_SUITE(TRTEngineOpTest, TypeList); TYPED_TEST(TRTEngineOpTest, Basic) { TRTEngineOpTestBase::AddSimpleTrtOp(DataTypeToEnum<TypeParam>::v()); OpsTestBase::AddInputFromArray<TypeParam>(TensorShape({1, 2}), {TypeParam(0.0f), TypeParam(1.0f)}); TF_ASSERT_OK(OpsTestBase::RunOpKernel()); Tensor* output = OpsTestBase::GetOutput(0); EXPECT_THAT( absl::Span<const TypeParam>(output->template flat<TypeParam>().data(), output->NumElements()), ElementsAre(TypeParam(0.0f), TypeParam(2.0f))); } } } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/ops/trt_engine_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2tensorrt/kernels/trt_engine_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
cb0e2bda-0e2c-4bc6-b373-3abf2587c040
cpp
google/tensorstore
image_writer
tensorstore/internal/image/image_writer.h
tensorstore/internal/image/image_writer_test.cc
#ifndef TENSORSTORE_INTERNAL_IMAGE_IMAGE_WRITER_H_ #define TENSORSTORE_INTERNAL_IMAGE_IMAGE_WRITER_H_ #include "absl/status/status.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/image/image_info.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal_image { class ImageWriter { public: virtual ~ImageWriter() = default; virtual absl::Status Initialize(riegeli::Writer*) = 0; virtual absl::Status Encode( const ImageInfo& image, tensorstore::span<const unsigned char> source) = 0; virtual absl::Status Done() = 0; }; } } #endif
#include "tensorstore/internal/image/image_writer.h" #include <stddef.h> #include <stdint.h> #include <any> #include <cmath> #include <functional> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/cord.h" #include "absl/strings/str_cat.h" #include "riegeli/bytes/cord_reader.h" #include "riegeli/bytes/cord_writer.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/image/avif_reader.h" #include "tensorstore/internal/image/avif_writer.h" #include "tensorstore/internal/image/image_info.h" #include "tensorstore/internal/image/image_reader.h" #include "tensorstore/internal/image/image_view.h" #include "tensorstore/internal/image/jpeg_reader.h" #include "tensorstore/internal/image/jpeg_writer.h" #include "tensorstore/internal/image/png_reader.h" #include "tensorstore/internal/image/png_writer.h" #include "tensorstore/internal/image/tiff_reader.h" #include "tensorstore/internal/image/tiff_writer.h" #include "tensorstore/internal/image/webp_reader.h" #include "tensorstore/internal/image/webp_writer.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::internal_image::AvifReader; using ::tensorstore::internal_image::AvifReaderOptions; using ::tensorstore::internal_image::AvifWriter; using ::tensorstore::internal_image::AvifWriterOptions; using ::tensorstore::internal_image::ImageInfo; using ::tensorstore::internal_image::ImageReader; using ::tensorstore::internal_image::ImageView; using ::tensorstore::internal_image::ImageWriter; using ::tensorstore::internal_image::JpegReader; using ::tensorstore::internal_image::JpegWriter; using ::tensorstore::internal_image::JpegWriterOptions; using ::tensorstore::internal_image::PngReader; using ::tensorstore::internal_image::PngWriter; using ::tensorstore::internal_image::PngWriterOptions; using ::tensorstore::internal_image::TiffReader; using ::tensorstore::internal_image::TiffWriter; using ::tensorstore::internal_image::TiffWriterOptions; using ::tensorstore::internal_image::WebPReader; using ::tensorstore::internal_image::WebPReaderOptions; using ::tensorstore::internal_image::WebPWriter; using ::tensorstore::internal_image::WebPWriterOptions; template <typename T> const T* GetPointerFromAny(std::any* any_ptr) { if (!any_ptr->has_value()) { return nullptr; } if (auto opt = std::any_cast<T>(any_ptr); opt != nullptr) { return opt; } if (auto opt = std::any_cast<std::reference_wrapper<T>>(any_ptr); opt != nullptr) { return &(opt->get()); } if (auto opt = std::any_cast<std::reference_wrapper<const T>>(any_ptr); opt != nullptr) { return &(opt->get()); } return nullptr; } double ComputeRMSE(const unsigned char* a, const unsigned char* b, size_t c) { double squared_error = 0; for (size_t i = 0; i < c; ++i) { const int diff = static_cast<double>(a[i]) - static_cast<double>(b[i]); squared_error += diff * diff; } return std::sqrt(squared_error / static_cast<double>(c)); } void MakeTestImage(const ImageInfo& info, tensorstore::span<unsigned char> data) { ImageView image(info, data); uint64_t lcg = info.width * info.height * info.num_components; for (size_t y = 0; y < info.height; ++y) { auto* row = image.data_row(y).data(); for (size_t x = 0; x < info.width; ++x) { double gradient = static_cast<double>(x + y) / static_cast<double>(info.width + info.height); *row++ = static_cast<unsigned char>(gradient * 255); if (info.num_components > 1) { lcg = (lcg * 6364136223846793005) + 1; *row++ = static_cast<unsigned char>(lcg); } if (info.num_components > 2) { *row++ = (y & 1) ? static_cast<unsigned char>((1.0 - gradient) * 255) : static_cast<unsigned char>(x); } if (info.num_components > 3) { *row++ = (y & 1) ? static_cast<unsigned char>(x) : static_cast<unsigned char>(std::abs(128 - gradient * 255)); } } } } struct TestParam { std::any options; ImageInfo image_params; double rmse_error_limit = 0; std::any reader_options; }; [[maybe_unused]] std::string PrintToString(const TestParam& p) { return absl::StrCat(p.image_params.num_components, p.rmse_error_limit != 0 ? "_rmse" : ""); } class WriterTest : public ::testing::TestWithParam<TestParam> { public: WriterTest() { std::any* options = const_cast<std::any*>(&GetParam().options); if (GetPointerFromAny<TiffWriterOptions>(options)) { writer = std::make_unique<TiffWriter>(); reader = std::make_unique<TiffReader>(); } else if (GetPointerFromAny<JpegWriterOptions>(options)) { writer = std::make_unique<JpegWriter>(); reader = std::make_unique<JpegReader>(); } else if (GetPointerFromAny<PngWriterOptions>(options)) { writer = std::make_unique<PngWriter>(); reader = std::make_unique<PngReader>(); } else if (GetPointerFromAny<AvifWriterOptions>(options)) { writer = std::make_unique<AvifWriter>(); reader = std::make_unique<AvifReader>(); } else if (GetPointerFromAny<WebPWriterOptions>(options)) { writer = std::make_unique<WebPWriter>(); reader = std::make_unique<WebPReader>(); } } absl::Status InitializeWithOptions(riegeli::Writer* riegeli_writer) { std::any* options = const_cast<std::any*>(&GetParam().options); if (auto* ptr = GetPointerFromAny<TiffWriterOptions>(options)) { return reinterpret_cast<TiffWriter*>(writer.get()) ->Initialize(riegeli_writer, *ptr); } else if (auto* ptr = GetPointerFromAny<JpegWriterOptions>(options)) { return reinterpret_cast<JpegWriter*>(writer.get()) ->Initialize(riegeli_writer, *ptr); } else if (auto* ptr = GetPointerFromAny<PngWriterOptions>(options)) { return reinterpret_cast<PngWriter*>(writer.get()) ->Initialize(riegeli_writer, *ptr); } else if (auto* ptr = GetPointerFromAny<AvifWriterOptions>(options)) { return reinterpret_cast<AvifWriter*>(writer.get()) ->Initialize(riegeli_writer, *ptr); } else if (auto* ptr = GetPointerFromAny<WebPWriterOptions>(options)) { return reinterpret_cast<WebPWriter*>(writer.get()) ->Initialize(riegeli_writer, *ptr); } return writer->Initialize(riegeli_writer); } absl::Status DecodeWithOptions(tensorstore::span<unsigned char> dest) { std::any* options = const_cast<std::any*>(&GetParam().reader_options); if (auto* ptr = GetPointerFromAny<AvifReaderOptions>(options)) { return reinterpret_cast<AvifReader*>(reader.get())->Decode(dest, *ptr); } return reader->Decode(dest); } std::unique_ptr<ImageWriter> writer; std::unique_ptr<ImageReader> reader; }; TEST_P(WriterTest, RoundTrip) { ASSERT_FALSE(writer == nullptr); ASSERT_FALSE(reader.get() == nullptr); const ImageInfo source_info = GetParam().image_params; std::vector<unsigned char> source(ImageRequiredBytes(source_info)); MakeTestImage(source_info, source); absl::Cord encoded; { riegeli::CordWriter riegeli_writer(&encoded); ASSERT_THAT(InitializeWithOptions(&riegeli_writer), ::tensorstore::IsOk()); ASSERT_THAT(writer->Encode(source_info, source), ::tensorstore::IsOk()); ASSERT_THAT(writer->Done(), ::tensorstore::IsOk()); } ImageInfo decoded_info; std::vector<unsigned char> decoded(source.size()); { riegeli::CordReader cord_reader(&encoded); ASSERT_THAT(reader->Initialize(&cord_reader), ::tensorstore::IsOk()); decoded_info = reader->GetImageInfo(); EXPECT_EQ(decoded_info.width, source_info.width); EXPECT_EQ(decoded_info.height, source_info.height); EXPECT_EQ(decoded_info.num_components, source_info.num_components); EXPECT_THAT(DecodeWithOptions(decoded), ::tensorstore::IsOk()); } double rmse = ComputeRMSE(decoded.data(), source.data(), source.size()); if (GetParam().rmse_error_limit == 0) { EXPECT_EQ(0, rmse) << "\nA: " << source_info << " " << "\nB: " << decoded_info; EXPECT_THAT(decoded, testing::Eq(source)); } else { EXPECT_LT(rmse, GetParam().rmse_error_limit) << decoded_info; } } INSTANTIATE_TEST_SUITE_P( AvifLossless, WriterTest, ::testing::Values( TestParam{AvifWriterOptions{}, ImageInfo{33, 100, 1}, 0}, TestParam{AvifWriterOptions{}, ImageInfo{33, 100, 2}, 0}, TestParam{AvifWriterOptions{}, ImageInfo{33, 100, 3}, 0}, TestParam{AvifWriterOptions{}, ImageInfo{33, 100, 4}, 0})); INSTANTIATE_TEST_SUITE_P( AVifLossy, WriterTest, ::testing::Values( TestParam{AvifWriterOptions{1}, ImageInfo{33, 100, 1}, 0.26}, TestParam{AvifWriterOptions{1}, ImageInfo{33, 100, 2}, 0.5}, TestParam{AvifWriterOptions{1}, ImageInfo{33, 100, 3}, 28.5}, TestParam{AvifWriterOptions{1}, ImageInfo{33, 100, 4}, 24.5})); INSTANTIATE_TEST_SUITE_P( AVifExtended, WriterTest, ::testing::Values( TestParam{AvifWriterOptions{0, 6, false}, ImageInfo{33, 100, 3}, 0, AvifReaderOptions{false}}, TestParam{AvifWriterOptions{0, 6, false}, ImageInfo{33, 100, 4}, 0, AvifReaderOptions{false}}, TestParam{AvifWriterOptions{1, 6, false}, ImageInfo{33, 100, 3}, 0.5, AvifReaderOptions{false}}, TestParam{AvifWriterOptions{1, 6, false}, ImageInfo{33, 100, 4}, 44, AvifReaderOptions{false}})); INSTANTIATE_TEST_SUITE_P( JpegFiles, WriterTest, ::testing::Values( TestParam{JpegWriterOptions{100}, ImageInfo{33, 100, 1}, 0.5}, TestParam{JpegWriterOptions{100}, ImageInfo{33, 100, 3}, 48})); INSTANTIATE_TEST_SUITE_P( PngFiles, WriterTest, ::testing::Values( TestParam{PngWriterOptions{}, ImageInfo{33, 100, 1}, 0}, TestParam{PngWriterOptions{}, ImageInfo{33, 100, 2}, 0}, TestParam{PngWriterOptions{}, ImageInfo{33, 100, 3}, 0}, TestParam{PngWriterOptions{}, ImageInfo{33, 100, 4}, 0})); INSTANTIATE_TEST_SUITE_P( TiffFiles, WriterTest, ::testing::Values( TestParam{TiffWriterOptions{}, ImageInfo{33, 100, 1}, 0}, TestParam{TiffWriterOptions{}, ImageInfo{33, 100, 2}, 0}, TestParam{TiffWriterOptions{}, ImageInfo{33, 100, 3}, 0}, TestParam{TiffWriterOptions{}, ImageInfo{33, 100, 4}, 0})); INSTANTIATE_TEST_SUITE_P( WebPLossless, WriterTest, ::testing::Values( TestParam{WebPWriterOptions{true}, ImageInfo{33, 100, 3}, 0}, TestParam{WebPWriterOptions{true}, ImageInfo{33, 100, 4}, 0})); INSTANTIATE_TEST_SUITE_P( WebPLossy, WriterTest, ::testing::Values( TestParam{WebPWriterOptions{false}, ImageInfo{33, 100, 3}, 47}, TestParam{WebPWriterOptions{false}, ImageInfo{33, 100, 4}, 44})); }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/image/image_writer.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/image/image_writer_test.cc
4f887a6430414cd6088e1743555015b10f116d50
85734204-9025-4511-b9a2-be5a6946b858
cpp
tensorflow/tensorflow
minimum
tensorflow/lite/experimental/shlo/ops/minimum.cc
tensorflow/lite/delegates/xnnpack/minimum_test.cc
#include "tensorflow/lite/experimental/shlo/ops/minimum.h" #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Minimum { template <class T> constexpr auto operator()(const T a, const T b) { return a < b ? a : b; } }; MinimumOp Create(MinimumOp::Attributes) { return {}; } absl::Status Prepare(MinimumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("minimum"), lhs, IsBoolTensor, IsIntTensor, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("minimum"), lhs, output)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("minimum"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(MinimumOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { Minimum minimum; if (IsBoolTensor(lhs) || IsIntTensor(lhs) || IsFloatTensor(lhs)) { DISPATCH_BOOL_INT_FLOAT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), minimum, lhs, rhs, output); } else if (IsQuantizedPerTensorTensor(lhs)) { DISPATCH_QUANTIZED(detail::DequantizeOpQuantizePerTensor, lhs.quantized_per_tensor_element_type().StorageType(), lhs.quantized_per_tensor_element_type().ExpressedType(), minimum, lhs, rhs, output) } return absl::FailedPreconditionError( "stablehlo.minimum: Unsupported tensor type."); } }
#include <cstdint> #include <functional> #include <memory> #include <random> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/delegates/xnnpack/binary_elementwise_tester.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace xnnpack { TEST(Minimum, 4DBy4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DBy2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DBy1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DBy0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, 1, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, 1, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastWidth) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, 1, width, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, 1, width, 1}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastHeight) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastBatch) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, 1, 1, 1}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, 1, 1, 1}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic4DBroadcastHeightWidthChannels) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({1, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({1, height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic3D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({height, width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({width, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 4DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DByStatic2D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({batch, channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DByStatic1D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({channels}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({channels}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, 2DByStatic0D) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({}) .Input2Shape({batch, channels}) .Input1Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, channels}) .Input2Shape({}) .Input2Static(true) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, FP16Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .FP16Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .FP16Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, INT8Weights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8Weights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, INT8ChannelWiseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .INT8ChannelWiseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, SparseWeights) { std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input1Static(true) .SparseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Input2Static(true) .SparseWeights() .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } TEST(Minimum, MultiThreading) { TfLiteXNNPackDelegateOptions delegate_options = TfLiteXNNPackDelegateOptionsDefault(); delegate_options.num_threads = 2; std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)> xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options), TfLiteXNNPackDelegateDelete); std::random_device random_device; auto rng = std::mt19937(random_device()); auto shape_rng = std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng)); const auto batch = shape_rng(); const auto height = shape_rng(); const auto width = shape_rng(); const auto channels = shape_rng(); BinaryElementwiseTester() .Input1Shape({batch, height, width, channels}) .Input2Shape({batch, height, width, channels}) .Test(BuiltinOperator_MINIMUM, xnnpack_delegate.get()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/ops/minimum.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/minimum_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a440b6ec-0039-4608-bdc9-1f4f65da6810
cpp
google/quiche
spdy_frame_builder
quiche/http2/core/spdy_frame_builder.cc
quiche/http2/core/spdy_frame_builder_test.cc
#include "quiche/http2/core/spdy_frame_builder.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstring> #include "absl/strings/string_view.h" #include "quiche/http2/core/spdy_bitmasks.h" #include "quiche/http2/core/spdy_protocol.h" #include "quiche/http2/core/zero_copy_output_buffer.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" namespace spdy { SpdyFrameBuilder::SpdyFrameBuilder(size_t size) : buffer_(new char[size]), capacity_(size), length_(0), offset_(0) {} SpdyFrameBuilder::SpdyFrameBuilder(size_t size, ZeroCopyOutputBuffer* output) : buffer_(output == nullptr ? new char[size] : nullptr), output_(output), capacity_(size), length_(0), offset_(0) {} SpdyFrameBuilder::~SpdyFrameBuilder() = default; char* SpdyFrameBuilder::GetWritableBuffer(size_t length) { if (!CanWrite(length)) { return nullptr; } return buffer_.get() + offset_ + length_; } char* SpdyFrameBuilder::GetWritableOutput(size_t length, size_t* actual_length) { char* dest = nullptr; int size = 0; if (!CanWrite(length)) { return nullptr; } output_->Next(&dest, &size); *actual_length = std::min<size_t>(length, size); return dest; } bool SpdyFrameBuilder::Seek(size_t length) { if (!CanWrite(length)) { return false; } if (output_ == nullptr) { length_ += length; } else { output_->AdvanceWritePtr(length); length_ += length; } return true; } bool SpdyFrameBuilder::BeginNewFrame(SpdyFrameType type, uint8_t flags, SpdyStreamId stream_id) { uint8_t raw_frame_type = SerializeFrameType(type); QUICHE_DCHECK(IsDefinedFrameType(raw_frame_type)); QUICHE_DCHECK_EQ(0u, stream_id & ~kStreamIdMask); bool success = true; if (length_ > 0) { QUICHE_BUG(spdy_bug_73_1) << "SpdyFrameBuilder doesn't have a clean state when BeginNewFrame" << "is called. Leftover length_ is " << length_; offset_ += length_; length_ = 0; } success &= WriteUInt24(capacity_ - offset_ - kFrameHeaderSize); success &= WriteUInt8(raw_frame_type); success &= WriteUInt8(flags); success &= WriteUInt32(stream_id); QUICHE_DCHECK_EQ(kDataFrameMinimumSize, length_); return success; } bool SpdyFrameBuilder::BeginNewFrame(SpdyFrameType type, uint8_t flags, SpdyStreamId stream_id, size_t length) { uint8_t raw_frame_type = SerializeFrameType(type); QUICHE_DCHECK(IsDefinedFrameType(raw_frame_type)); QUICHE_DCHECK_EQ(0u, stream_id & ~kStreamIdMask); QUICHE_BUG_IF(spdy_bug_73_2, length > kSpdyMaxFrameSizeLimit) << "Frame length " << length << " is longer than frame size limit."; return BeginNewFrameInternal(raw_frame_type, flags, stream_id, length); } bool SpdyFrameBuilder::BeginNewUncheckedFrame(uint8_t raw_frame_type, uint8_t flags, SpdyStreamId stream_id, size_t length) { return BeginNewFrameInternal(raw_frame_type, flags, stream_id, length); } bool SpdyFrameBuilder::BeginNewFrameInternal(uint8_t raw_frame_type, uint8_t flags, SpdyStreamId stream_id, size_t length) { QUICHE_DCHECK_EQ(length, length & kLengthMask); bool success = true; offset_ += length_; length_ = 0; success &= WriteUInt24(length); success &= WriteUInt8(raw_frame_type); success &= WriteUInt8(flags); success &= WriteUInt32(stream_id); QUICHE_DCHECK_EQ(kDataFrameMinimumSize, length_); return success; } bool SpdyFrameBuilder::WriteStringPiece32(const absl::string_view value) { if (!WriteUInt32(value.size())) { return false; } return WriteBytes(value.data(), value.size()); } bool SpdyFrameBuilder::WriteBytes(const void* data, uint32_t data_len) { if (!CanWrite(data_len)) { return false; } if (output_ == nullptr) { char* dest = GetWritableBuffer(data_len); memcpy(dest, data, data_len); Seek(data_len); } else { char* dest = nullptr; size_t size = 0; size_t total_written = 0; const char* data_ptr = reinterpret_cast<const char*>(data); while (data_len > 0) { dest = GetWritableOutput(data_len, &size); if (dest == nullptr || size == 0) { return false; } uint32_t to_copy = std::min<uint32_t>(data_len, size); const char* src = data_ptr + total_written; memcpy(dest, src, to_copy); Seek(to_copy); data_len -= to_copy; total_written += to_copy; } } return true; } bool SpdyFrameBuilder::CanWrite(size_t length) const { if (length > kLengthMask) { QUICHE_DCHECK(false); return false; } if (output_ == nullptr) { if (offset_ + length_ + length > capacity_) { QUICHE_DLOG(FATAL) << "Requested: " << length << " capacity: " << capacity_ << " used: " << offset_ + length_; return false; } } else { if (length > output_->BytesFree()) { return false; } } return true; } }
#include "quiche/http2/core/spdy_frame_builder.h" #include <cstddef> #include <cstdint> #include <cstring> #include "absl/strings/string_view.h" #include "quiche/http2/core/array_output_buffer.h" #include "quiche/http2/core/spdy_protocol.h" #include "quiche/http2/test_tools/spdy_test_utils.h" #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/platform/api/quiche_test.h" namespace spdy { namespace test { class QUICHE_EXPORT SpdyFrameBuilderPeer { public: static char* GetWritableBuffer(SpdyFrameBuilder* builder, size_t length) { return builder->GetWritableBuffer(length); } static char* GetWritableOutput(SpdyFrameBuilder* builder, size_t desired_length, size_t* actual_length) { return builder->GetWritableOutput(desired_length, actual_length); } }; namespace { const int64_t kSize = 64 * 1024; char output_buffer[kSize] = ""; } TEST(SpdyFrameBuilderTest, GetWritableBuffer) { const size_t kBuilderSize = 10; SpdyFrameBuilder builder(kBuilderSize); char* writable_buffer = SpdyFrameBuilderPeer::GetWritableBuffer(&builder, kBuilderSize); memset(writable_buffer, ~1, kBuilderSize); EXPECT_TRUE(builder.Seek(kBuilderSize)); SpdySerializedFrame frame(builder.take()); char expected[kBuilderSize]; memset(expected, ~1, kBuilderSize); EXPECT_EQ(absl::string_view(expected, kBuilderSize), frame); } TEST(SpdyFrameBuilderTest, GetWritableOutput) { ArrayOutputBuffer output(output_buffer, kSize); const size_t kBuilderSize = 10; SpdyFrameBuilder builder(kBuilderSize, &output); size_t actual_size = 0; char* writable_buffer = SpdyFrameBuilderPeer::GetWritableOutput( &builder, kBuilderSize, &actual_size); memset(writable_buffer, ~1, kBuilderSize); EXPECT_TRUE(builder.Seek(kBuilderSize)); SpdySerializedFrame frame = MakeSerializedFrame(output.Begin(), kBuilderSize); char expected[kBuilderSize]; memset(expected, ~1, kBuilderSize); EXPECT_EQ(absl::string_view(expected, kBuilderSize), frame); } TEST(SpdyFrameBuilderTest, GetWritableOutputNegative) { size_t small_cap = 1; ArrayOutputBuffer output(output_buffer, small_cap); const size_t kBuilderSize = 10; SpdyFrameBuilder builder(kBuilderSize, &output); size_t actual_size = 0; char* writable_buffer = SpdyFrameBuilderPeer::GetWritableOutput( &builder, kBuilderSize, &actual_size); EXPECT_EQ(0u, actual_size); EXPECT_EQ(nullptr, writable_buffer); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/core/spdy_frame_builder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/core/spdy_frame_builder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
62e61c22-dfcd-4e95-b89f-f33ebb6697b3
cpp
tensorflow/tensorflow
remote_profiler_session_manager
third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager.cc
third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager_test.cc
#include "xla/tsl/profiler/rpc/client/remote_profiler_session_manager.h" #include <cstddef> #include <memory> #include "absl/memory/memory.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/profiler/rpc/client/profiler_client.h" #include "xla/tsl/profiler/utils/time_utils.h" #include "tsl/platform/env_time.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/types.h" namespace tsl { namespace profiler { using tensorflow::ProfileRequest; using tensorflow::RemoteProfilerSessionManagerOptions; std::unique_ptr<RemoteProfilerSessionManager> RemoteProfilerSessionManager::Create( const RemoteProfilerSessionManagerOptions& options, const ProfileRequest& request, absl::Status& out_status, AddressResolver resolver) { VLOG(1) << "Creating a RemoteProfilerSessionManager."; auto session_manager = absl::WrapUnique( new RemoteProfilerSessionManager(options, request, resolver)); out_status = session_manager->Init(); if (!out_status.ok()) { return nullptr; } return session_manager; } RemoteProfilerSessionManager::RemoteProfilerSessionManager( RemoteProfilerSessionManagerOptions options, ProfileRequest request, AddressResolver resolver) : options_(options), request_(request) { if (resolver) { resolver_ = resolver; } else { resolver_ = [](absl::string_view addr) { return std::string(addr); }; } } RemoteProfilerSessionManager::~RemoteProfilerSessionManager() { VLOG(2) << "Destroying RemoteProfilerSessionManager."; } absl::Status RemoteProfilerSessionManager::Init() { mutex_lock lock(mutex_); VLOG(1) << "SessionManager initializing."; const absl::Time session_created_ts = absl::FromUnixNanos(options_.session_creation_timestamp_ns()); const absl::Time deadline = session_created_ts + absl::Milliseconds(options_.max_session_duration_ms()); LOG(INFO) << "Deadline set to " << deadline << " because max_session_duration_ms was " << options_.max_session_duration_ms() << " and session_creation_timestamp_ns was " << options_.session_creation_timestamp_ns() << " [" << session_created_ts << "]"; clients_.reserve(options_.service_addresses_size()); ProfileRequest request = request_; for (auto& service_address : options_.service_addresses()) { std::string resolved_service_address = resolver_(service_address); request.set_host_name(resolved_service_address); auto client = RemoteProfilerSession::Create(resolved_service_address, deadline, request); clients_.push_back(std::move(client)); } LOG(INFO) << "Issued Profile gRPC to " << clients_.size() << " clients"; return absl::OkStatus(); } std::vector<RemoteProfilerSessionManager::Response> RemoteProfilerSessionManager::WaitForCompletion() { mutex_lock lock(mutex_); std::vector<RemoteProfilerSessionManager::Response> remote_responses( clients_.size()); for (int32_t idx = 0; idx < clients_.size(); ++idx) { auto& remote_response = remote_responses[idx]; auto* client = clients_[idx].get(); remote_response.profile_response = client->WaitForCompletion(remote_response.status); remote_response.service_address = std::string(client->GetServiceAddress()); } return remote_responses; } } }
#include "xla/tsl/profiler/rpc/client/remote_profiler_session_manager.h" #include <memory> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "xla/tsl/profiler/rpc/client/profiler_client_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/status.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" #include "tsl/profiler/protobuf/profiler_options.pb.h" #include "tsl/profiler/protobuf/profiler_service.pb.h" namespace tsl { namespace profiler { namespace { using tensorflow::ProfileRequest; using tensorflow::RemoteProfilerSessionManagerOptions; using ::tsl::profiler::test::DurationApproxLess; using ::tsl::profiler::test::DurationNear; using ::tsl::profiler::test::StartServer; using ::tsl::testing::TmpDir; using Response = tsl::profiler::RemoteProfilerSessionManager::Response; constexpr double kGracePeriodSeconds = 10.0; ProfileRequest PopulateProfileRequest( absl::string_view repository_root, absl::string_view session_id, absl::string_view host_name, const RemoteProfilerSessionManagerOptions& options) { constexpr uint64 kMaxEvents = 1000000; const absl::string_view kXPlanePb = "xplane.pb"; ProfileRequest request; request.set_duration_ms(options.profiler_options().duration_ms()); request.set_max_events(kMaxEvents); request.set_repository_root(repository_root.data(), repository_root.size()); request.set_session_id(session_id.data(), session_id.size()); request.set_host_name(host_name.data(), host_name.size()); request.add_tools(kXPlanePb.data(), kXPlanePb.size()); *request.mutable_opts() = options.profiler_options(); return request; } TEST(RemoteProfilerSessionManagerTest, Simple) { absl::Duration duration = absl::Milliseconds(30); RemoteProfilerSessionManagerOptions options; *options.mutable_profiler_options() = tsl::ProfilerSession::DefaultOptions(); options.mutable_profiler_options()->set_duration_ms( absl::ToInt64Milliseconds(duration)); std::string service_address; auto server = StartServer(duration, &service_address); options.add_service_addresses(service_address); absl::Time approx_start = absl::Now(); absl::Duration grace = absl::Seconds(kGracePeriodSeconds); absl::Duration max_duration = duration + grace; options.set_max_session_duration_ms(absl::ToInt64Milliseconds(max_duration)); options.set_session_creation_timestamp_ns(absl::ToUnixNanos(approx_start)); ProfileRequest request = PopulateProfileRequest(TmpDir(), "session_id", service_address, options); absl::Status status; auto sessions = RemoteProfilerSessionManager::Create(options, request, status); EXPECT_TRUE(status.ok()); std::vector<Response> responses = sessions->WaitForCompletion(); absl::Duration elapsed = absl::Now() - approx_start; ASSERT_EQ(responses.size(), 1); EXPECT_TRUE(responses.back().status.ok()); EXPECT_TRUE(responses.back().profile_response->empty_trace()); EXPECT_EQ(responses.back().profile_response->tool_data_size(), 0); EXPECT_THAT(elapsed, DurationApproxLess(max_duration)); } TEST(RemoteProfilerSessionManagerTest, ExpiredDeadline) { absl::Duration duration = absl::Milliseconds(30); RemoteProfilerSessionManagerOptions options; *options.mutable_profiler_options() = tsl::ProfilerSession::DefaultOptions(); options.mutable_profiler_options()->set_duration_ms( absl::ToInt64Milliseconds(duration)); std::string service_address; auto server = StartServer(duration, &service_address); options.add_service_addresses(service_address); absl::Duration grace = absl::Seconds(kGracePeriodSeconds); absl::Duration max_duration = duration + grace; options.set_max_session_duration_ms(absl::ToInt64Milliseconds(max_duration)); options.set_session_creation_timestamp_ns(0); absl::Time approx_start = absl::Now(); ProfileRequest request = PopulateProfileRequest(TmpDir(), "session_id", service_address, options); absl::Status status; auto sessions = RemoteProfilerSessionManager::Create(options, request, status); EXPECT_TRUE(status.ok()); std::vector<Response> responses = sessions->WaitForCompletion(); absl::Duration elapsed = absl::Now() - approx_start; EXPECT_THAT(elapsed, DurationNear(absl::Seconds(0))); ASSERT_EQ(responses.size(), 1); EXPECT_TRUE(absl::IsDeadlineExceeded(responses.back().status)); EXPECT_TRUE(responses.back().profile_response->empty_trace()); EXPECT_EQ(responses.back().profile_response->tool_data_size(), 0); } TEST(RemoteProfilerSessionManagerTest, LongSession) { absl::Duration duration = absl::Seconds(3); RemoteProfilerSessionManagerOptions options; *options.mutable_profiler_options() = tsl::ProfilerSession::DefaultOptions(); options.mutable_profiler_options()->set_duration_ms( absl::ToInt64Milliseconds(duration)); std::string service_address; auto server = StartServer(duration, &service_address); options.add_service_addresses(service_address); absl::Time approx_start = absl::Now(); absl::Duration grace = absl::Seconds(kGracePeriodSeconds); absl::Duration max_duration = duration + grace; options.set_max_session_duration_ms(absl::ToInt64Milliseconds(max_duration)); options.set_session_creation_timestamp_ns(absl::ToUnixNanos(approx_start)); ProfileRequest request = PopulateProfileRequest(TmpDir(), "session_id", service_address, options); absl::Status status; auto sessions = RemoteProfilerSessionManager::Create(options, request, status); EXPECT_TRUE(status.ok()); std::vector<Response> responses = sessions->WaitForCompletion(); absl::Duration elapsed = absl::Now() - approx_start; ASSERT_EQ(responses.size(), 1); EXPECT_TRUE(responses.back().status.ok()); EXPECT_TRUE(responses.back().profile_response->empty_trace()); EXPECT_EQ(responses.back().profile_response->tool_data_size(), 0); EXPECT_THAT(elapsed, DurationApproxLess(max_duration)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/profiler/rpc/client/remote_profiler_session_manager_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
7a805c5c-8d3f-4d0e-b222-6133bf4825b1
cpp
google/tsl
cpu_info
tsl/platform/cpu_info.cc
tsl/platform/cpu_info_test.cc
#include "tsl/platform/cpu_info.h" #include "absl/base/call_once.h" #include "tsl/platform/logging.h" #include "tsl/platform/platform.h" #include "tsl/platform/types.h" #if defined(PLATFORM_IS_X86) #include <mutex> #endif #if defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) #include <sys/auxv.h> #ifndef HWCAP_CPUID #define HWCAP_CPUID (1 << 11) #endif #include <fstream> #endif #ifdef PLATFORM_IS_X86 #ifdef PLATFORM_WINDOWS #define GETCPUID(a, b, c, d, a_inp, c_inp) \ { \ int cpu_info[4] = {-1}; \ __cpuidex(cpu_info, a_inp, c_inp); \ a = cpu_info[0]; \ b = cpu_info[1]; \ c = cpu_info[2]; \ d = cpu_info[3]; \ } #else #define GETCPUID(a, b, c, d, a_inp, c_inp) \ asm("mov %%rbx, %%rdi\n" \ "cpuid\n" \ "xchg %%rdi, %%rbx\n" \ : "=a"(a), "=D"(b), "=c"(c), "=d"(d) \ : "a"(a_inp), "2"(c_inp)) #endif #endif namespace tsl { namespace port { namespace { #ifdef PLATFORM_IS_X86 class CPUIDInfo; void InitCPUIDInfo(); CPUIDInfo *cpuid = nullptr; #ifdef PLATFORM_WINDOWS int GetXCR0EAX() { return _xgetbv(0); } #else int GetXCR0EAX() { int eax, edx; asm("XGETBV" : "=a"(eax), "=d"(edx) : "c"(0)); return eax; } #endif class CPUIDInfo { public: CPUIDInfo() : have_adx_(0), have_aes_(0), have_amx_bf16_(0), have_amx_fp16_(0), have_amx_int8_(0), have_amx_tile_(0), have_avx_(0), have_avx2_(0), have_avx512f_(0), have_avx512cd_(0), have_avx512er_(0), have_avx512pf_(0), have_avx512vl_(0), have_avx512bw_(0), have_avx512dq_(0), have_avx512vbmi_(0), have_avx512ifma_(0), have_avx512_4vnniw_(0), have_avx512_4fmaps_(0), have_avx512_bf16_(0), have_avx512_fp16_(0), have_avx512_vnni_(0), have_avx_vnni_(0), have_avx_vnni_int8_(0), have_avx_ne_convert_(0), have_bmi1_(0), have_bmi2_(0), have_cmov_(0), have_cmpxchg16b_(0), have_cmpxchg8b_(0), have_f16c_(0), have_fma_(0), have_mmx_(0), have_pclmulqdq_(0), have_popcnt_(0), have_prefetchw_(0), have_prefetchwt1_(0), have_rdrand_(0), have_rdseed_(0), have_smap_(0), have_sse_(0), have_sse2_(0), have_sse3_(0), have_sse4_1_(0), have_sse4_2_(0), have_ssse3_(0), have_hypervisor_(0) {} static void Initialize() { CHECK(cpuid == nullptr) << __func__ << " ran more than once"; cpuid = new CPUIDInfo; uint32 eax, ebx, ecx, edx; GETCPUID(eax, ebx, ecx, edx, 0, 0); cpuid->vendor_str_.append(reinterpret_cast<char *>(&ebx), 4); cpuid->vendor_str_.append(reinterpret_cast<char *>(&edx), 4); cpuid->vendor_str_.append(reinterpret_cast<char *>(&ecx), 4); GETCPUID(eax, ebx, ecx, edx, 1, 0); cpuid->model_num_ = static_cast<int>((eax >> 4) & 0xf); cpuid->family_ = static_cast<int>((eax >> 8) & 0xf); cpuid->have_aes_ = (ecx >> 25) & 0x1; cpuid->have_cmov_ = (edx >> 15) & 0x1; cpuid->have_cmpxchg16b_ = (ecx >> 13) & 0x1; cpuid->have_cmpxchg8b_ = (edx >> 8) & 0x1; cpuid->have_mmx_ = (edx >> 23) & 0x1; cpuid->have_pclmulqdq_ = (ecx >> 1) & 0x1; cpuid->have_popcnt_ = (ecx >> 23) & 0x1; cpuid->have_rdrand_ = (ecx >> 30) & 0x1; cpuid->have_sse2_ = (edx >> 26) & 0x1; cpuid->have_sse3_ = ecx & 0x1; cpuid->have_sse4_1_ = (ecx >> 19) & 0x1; cpuid->have_sse4_2_ = (ecx >> 20) & 0x1; cpuid->have_sse_ = (edx >> 25) & 0x1; cpuid->have_ssse3_ = (ecx >> 9) & 0x1; cpuid->have_hypervisor_ = (ecx >> 31) & 1; const uint64 xcr0_xmm_mask = 0x2; const uint64 xcr0_ymm_mask = 0x4; const uint64 xcr0_maskreg_mask = 0x20; const uint64 xcr0_zmm0_15_mask = 0x40; const uint64 xcr0_zmm16_31_mask = 0x80; const uint64 xcr0_avx_mask = xcr0_xmm_mask | xcr0_ymm_mask; const uint64 xcr0_avx512_mask = xcr0_avx_mask | xcr0_maskreg_mask | xcr0_zmm0_15_mask | xcr0_zmm16_31_mask; const bool have_avx = ((ecx >> 27) & 0x1) && ((GetXCR0EAX() & xcr0_avx_mask) == xcr0_avx_mask) && ((ecx >> 28) & 0x1); const bool have_avx512 = ((ecx >> 27) & 0x1) && ((GetXCR0EAX() & xcr0_avx512_mask) == xcr0_avx512_mask); cpuid->have_avx_ = have_avx; cpuid->have_fma_ = have_avx && ((ecx >> 12) & 0x1); cpuid->have_f16c_ = have_avx && ((ecx >> 29) & 0x1); GETCPUID(eax, ebx, ecx, edx, 7, 0); const uint32 kMaxNumSubLeaves = eax; cpuid->have_adx_ = (ebx >> 19) & 0x1; cpuid->have_avx2_ = have_avx && ((ebx >> 5) & 0x1); cpuid->have_bmi1_ = (ebx >> 3) & 0x1; cpuid->have_bmi2_ = (ebx >> 8) & 0x1; cpuid->have_prefetchwt1_ = ecx & 0x1; cpuid->have_rdseed_ = (ebx >> 18) & 0x1; cpuid->have_smap_ = (ebx >> 20) & 0x1; cpuid->have_avx512f_ = have_avx512 && ((ebx >> 16) & 0x1); cpuid->have_avx512cd_ = have_avx512 && ((ebx >> 28) & 0x1); cpuid->have_avx512er_ = have_avx512 && ((ebx >> 27) & 0x1); cpuid->have_avx512pf_ = have_avx512 && ((ebx >> 26) & 0x1); cpuid->have_avx512vl_ = have_avx512 && ((ebx >> 31) & 0x1); cpuid->have_avx512bw_ = have_avx512 && ((ebx >> 30) & 0x1); cpuid->have_avx512dq_ = have_avx512 && ((ebx >> 17) & 0x1); cpuid->have_avx512vbmi_ = have_avx512 && ((ecx >> 1) & 0x1); cpuid->have_avx512ifma_ = have_avx512 && ((ebx >> 21) & 0x1); cpuid->have_avx512_4vnniw_ = have_avx512 && ((edx >> 2) & 0x1); cpuid->have_avx512_4fmaps_ = have_avx512 && ((edx >> 3) & 0x1); cpuid->have_avx512_vnni_ = have_avx512 && ((ecx >> 11) & 0x1); cpuid->have_amx_tile_ = (edx >> 24) & 0x1; cpuid->have_amx_int8_ = (edx >> 25) & 0x1; cpuid->have_amx_bf16_ = (edx >> 22) & 0x1; cpuid->have_avx512_fp16_ = have_avx512 && ((edx >> 23) & 0x1); if (kMaxNumSubLeaves >= 1) { GETCPUID(eax, ebx, ecx, edx, 7, 1); cpuid->have_avx_vnni_ = (eax >> 4) & 0x1; cpuid->have_avx512_bf16_ = have_avx512 && ((eax >> 5) & 0x1); cpuid->have_amx_fp16_ = (eax >> 21) & 0x1; cpuid->have_avx_vnni_int8_ = (edx >> 4) & 0x1; cpuid->have_avx_ne_convert_ = (edx >> 5) & 0x1; } } static bool TestFeature(CPUFeature feature) { InitCPUIDInfo(); switch (feature) { case ADX: return cpuid->have_adx_; case AES: return cpuid->have_aes_; case AMX_BF16: return cpuid->have_amx_bf16_; case AMX_FP16: return cpuid->have_amx_fp16_; case AMX_INT8: return cpuid->have_amx_int8_; case AMX_TILE: return cpuid->have_amx_tile_; case AVX2: return cpuid->have_avx2_; case AVX: return cpuid->have_avx_; case AVX512F: return cpuid->have_avx512f_; case AVX512CD: return cpuid->have_avx512cd_; case AVX512PF: return cpuid->have_avx512pf_; case AVX512ER: return cpuid->have_avx512er_; case AVX512VL: return cpuid->have_avx512vl_; case AVX512BW: return cpuid->have_avx512bw_; case AVX512DQ: return cpuid->have_avx512dq_; case AVX512VBMI: return cpuid->have_avx512vbmi_; case AVX512IFMA: return cpuid->have_avx512ifma_; case AVX512_4VNNIW: return cpuid->have_avx512_4vnniw_; case AVX512_4FMAPS: return cpuid->have_avx512_4fmaps_; case AVX512_BF16: return cpuid->have_avx512_bf16_; case AVX512_FP16: return cpuid->have_avx512_fp16_; case AVX512_VNNI: return cpuid->have_avx512_vnni_; case AVX_VNNI: return cpuid->have_avx_vnni_; case AVX_VNNI_INT8: return cpuid->have_avx_vnni_int8_; case AVX_NE_CONVERT: return cpuid->have_avx_ne_convert_; case BMI1: return cpuid->have_bmi1_; case BMI2: return cpuid->have_bmi2_; case CMOV: return cpuid->have_cmov_; case CMPXCHG16B: return cpuid->have_cmpxchg16b_; case CMPXCHG8B: return cpuid->have_cmpxchg8b_; case F16C: return cpuid->have_f16c_; case FMA: return cpuid->have_fma_; case MMX: return cpuid->have_mmx_; case PCLMULQDQ: return cpuid->have_pclmulqdq_; case POPCNT: return cpuid->have_popcnt_; case PREFETCHW: return cpuid->have_prefetchw_; case PREFETCHWT1: return cpuid->have_prefetchwt1_; case RDRAND: return cpuid->have_rdrand_; case RDSEED: return cpuid->have_rdseed_; case SMAP: return cpuid->have_smap_; case SSE2: return cpuid->have_sse2_; case SSE3: return cpuid->have_sse3_; case SSE4_1: return cpuid->have_sse4_1_; case SSE4_2: return cpuid->have_sse4_2_; case SSE: return cpuid->have_sse_; case SSSE3: return cpuid->have_ssse3_; case HYPERVISOR: return cpuid->have_hypervisor_; default: break; } return false; } string vendor_str() const { return vendor_str_; } int family() const { return family_; } int model_num() { return model_num_; } private: int have_adx_ : 1; int have_aes_ : 1; int have_amx_bf16_ : 1; int have_amx_fp16_ : 1; int have_amx_int8_ : 1; int have_amx_tile_ : 1; int have_avx_ : 1; int have_avx2_ : 1; int have_avx512f_ : 1; int have_avx512cd_ : 1; int have_avx512er_ : 1; int have_avx512pf_ : 1; int have_avx512vl_ : 1; int have_avx512bw_ : 1; int have_avx512dq_ : 1; int have_avx512vbmi_ : 1; int have_avx512ifma_ : 1; int have_avx512_4vnniw_ : 1; int have_avx512_4fmaps_ : 1; int have_avx512_bf16_ : 1; int have_avx512_fp16_ : 1; int have_avx512_vnni_ : 1; int have_avx_vnni_ : 1; int have_avx_vnni_int8_ : 1; int have_avx_ne_convert_ : 1; int have_bmi1_ : 1; int have_bmi2_ : 1; int have_cmov_ : 1; int have_cmpxchg16b_ : 1; int have_cmpxchg8b_ : 1; int have_f16c_ : 1; int have_fma_ : 1; int have_mmx_ : 1; int have_pclmulqdq_ : 1; int have_popcnt_ : 1; int have_prefetchw_ : 1; int have_prefetchwt1_ : 1; int have_rdrand_ : 1; int have_rdseed_ : 1; int have_smap_ : 1; int have_sse_ : 1; int have_sse2_ : 1; int have_sse3_ : 1; int have_sse4_1_ : 1; int have_sse4_2_ : 1; int have_ssse3_ : 1; int have_hypervisor_ : 1; string vendor_str_; int family_; int model_num_; }; absl::once_flag cpuid_once_flag; void InitCPUIDInfo() { absl::call_once(cpuid_once_flag, CPUIDInfo::Initialize); } #endif #if defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) class CPUIDInfo; void InitCPUIDInfo(); CPUIDInfo *cpuid = nullptr; class CPUIDInfo { public: CPUIDInfo() : implementer_(0), variant_(0), cpunum_(0), is_arm_neoverse_v1_(0), is_arm_neoverse_n1_(0) {} static void Initialize() { if (cpuid != nullptr) return; cpuid = new CPUIDInfo; if (!(getauxval(AT_HWCAP) & HWCAP_CPUID)) { return; } int present_cpu = -1; #ifndef PLATFORM_WINDOWS std::ifstream CPUspresent; CPUspresent.open("/sys/devices/system/cpu/present", std::ios::in); if (CPUspresent.is_open()) { std::string line; if (static_cast<bool>(getline(CPUspresent, line))) { auto ending = line.end(); for (auto i = line.begin(); i < line.end(); ++i) { if (*i == '-' || *i == ',') { ending = i; break; } } line.erase(ending, line.end()); present_cpu = std::stoi(line); } } #endif if (present_cpu == -1) { return; } #ifndef PLATFORM_WINDOWS std::stringstream str; str << "/sys/devices/system/cpu/cpu" << present_cpu << "/regs/identification/midr_el1"; std::ifstream midr_el1_file(str.str(), std::ios::in); if (midr_el1_file.is_open()) { std::string line; if (static_cast<bool>(getline(midr_el1_file, line))) { uint32 midr_el1 = std::stoul(line, nullptr, 16); cpuid->implementer_ = (midr_el1 >> 24) & 0xFF; cpuid->variant_ = (midr_el1 >> 20) & 0xF; cpuid->cpunum_ = (midr_el1 >> 4) & 0xFFF; if (cpuid->implementer_ == 0x41) { switch (cpuid->cpunum_) { case 0xd40: cpuid->is_arm_neoverse_v1_ = 1; break; case 0xd0c: cpuid->is_arm_neoverse_n1_ = 1; break; default: break; } } } } #endif } int implementer() const { return implementer_; } int cpunum() const { return cpunum_; } static bool TestAarch64CPU(Aarch64CPU cpu) { InitCPUIDInfo(); switch (cpu) { case ARM_NEOVERSE_V1: return cpuid->is_arm_neoverse_v1_; default: return 0; } } private: int implementer_; int variant_; int cpunum_; int is_arm_neoverse_v1_; int is_arm_neoverse_n1_; }; absl::once_flag cpuid_once_flag; void InitCPUIDInfo() { absl::call_once(cpuid_once_flag, CPUIDInfo::Initialize); } #endif } bool TestCPUFeature(CPUFeature feature) { #ifdef PLATFORM_IS_X86 return CPUIDInfo::TestFeature(feature); #else return false; #endif } bool TestAarch64CPU(Aarch64CPU cpu) { #if defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) return CPUIDInfo::TestAarch64CPU(cpu); #else return false; #endif } std::string CPUVendorIDString() { #ifdef PLATFORM_IS_X86 InitCPUIDInfo(); return cpuid->vendor_str(); #else return ""; #endif } int CPUFamily() { #ifdef PLATFORM_IS_X86 InitCPUIDInfo(); return cpuid->family(); #elif defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) InitCPUIDInfo(); return cpuid->implementer(); #else return 0; #endif } int CPUModelNum() { #ifdef PLATFORM_IS_X86 InitCPUIDInfo(); return cpuid->model_num(); #elif defined(PLATFORM_IS_ARM64) && !defined(__APPLE__) && !defined(__OpenBSD__) InitCPUIDInfo(); return cpuid->cpunum(); #else return 0; #endif } int CPUIDNumSMT() { #ifdef PLATFORM_IS_X86 uint32 eax, ebx, ecx, edx; GETCPUID(eax, ebx, ecx, edx, 0, 0); if (eax >= 11) { GETCPUID(eax, ebx, ecx, edx, 11, 0); if (ebx != 0 && ((ecx & 0xff00) >> 8) == 1) { return 1 << (eax & 0x1f); } } #endif return 0; } } }
#include "tsl/platform/cpu_info.h" #include "tsl/platform/test.h" namespace tsl { TEST(CPUInfo, CommonX86CPU) { if (port::TestCPUFeature(port::CPUFeature::SSE)) { EXPECT_TRUE(port::IsX86CPU()); } } TEST(CPUInfo, Aarch64NeoverseV1CPU) { if (port::TestAarch64CPU(port::Aarch64CPU::ARM_NEOVERSE_V1)) { EXPECT_TRUE(port::IsAarch64CPU()); } } }
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/cpu_info.cc
https://github.com/google/tsl/blob/6d708fdcdd4f40537b7fa273371215a6fa3d4423/tsl/platform/cpu_info_test.cc
6d708fdcdd4f40537b7fa273371215a6fa3d4423