ID
stringlengths
36
36
Language
stringclasses
1 value
Repository Name
stringclasses
13 values
File Name
stringlengths
2
44
File Path in Repository
stringlengths
11
111
File Path for Unit Test
stringlengths
16
116
Code
stringlengths
0
278k
Unit Test - (Ground Truth)
stringlengths
127
663k
Code Url
stringlengths
91
198
Test Code Url
stringlengths
96
203
Commit Hash
stringclasses
13 values
94c058e2-6312-47f4-a0e8-a7bfebcf8345
cpp
google/cel-cpp
namespace_generator
checker/internal/namespace_generator.cc
checker/internal/namespace_generator_test.cc
#include "checker/internal/namespace_generator.h" #include <algorithm> #include <string> #include <utility> #include <vector> #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "internal/lexis.h" namespace cel::checker_internal { namespace { bool FieldSelectInterpretationCandidates( absl::string_view prefix, absl::Span<const std::string> partly_qualified_name, absl::FunctionRef<bool(absl::string_view, int)> callback) { for (int i = 0; i < partly_qualified_name.size(); ++i) { std::string buf; int count = partly_qualified_name.size() - i; auto end_idx = count - 1; auto ident = absl::StrJoin(partly_qualified_name.subspan(0, count), "."); absl::string_view candidate = ident; if (absl::StartsWith(candidate, ".")) { candidate = candidate.substr(1); } if (!prefix.empty()) { buf = absl::StrCat(prefix, ".", candidate); candidate = buf; } if (!callback(candidate, end_idx)) { return false; } } return true; } } absl::StatusOr<NamespaceGenerator> NamespaceGenerator::Create( absl::string_view container) { std::vector<std::string> candidates; if (container.empty()) { return NamespaceGenerator(std::move(candidates)); } if (absl::StartsWith(container, ".")) { return absl::InvalidArgumentError("container must not start with a '.'"); } std::string prefix; for (auto segment : absl::StrSplit(container, '.')) { if (!internal::LexisIsIdentifier(segment)) { return absl::InvalidArgumentError( "container must only contain valid identifier segments"); } if (prefix.empty()) { prefix = segment; } else { absl::StrAppend(&prefix, ".", segment); } candidates.push_back(prefix); } std::reverse(candidates.begin(), candidates.end()); return NamespaceGenerator(std::move(candidates)); } void NamespaceGenerator::GenerateCandidates( absl::string_view unqualified_name, absl::FunctionRef<bool(absl::string_view)> callback) { if (absl::StartsWith(unqualified_name, ".")) { callback(unqualified_name.substr(1)); return; } for (const auto& prefix : candidates_) { std::string candidate = absl::StrCat(prefix, ".", unqualified_name); if (!callback(candidate)) { return; } } callback(unqualified_name); } void NamespaceGenerator::GenerateCandidates( absl::Span<const std::string> partly_qualified_name, absl::FunctionRef<bool(absl::string_view, int)> callback) { if (!partly_qualified_name.empty() && absl::StartsWith(partly_qualified_name[0], ".")) { FieldSelectInterpretationCandidates("", partly_qualified_name, callback); return; } for (const auto& prefix : candidates_) { if (!FieldSelectInterpretationCandidates(prefix, partly_qualified_name, callback)) { return; } } FieldSelectInterpretationCandidates("", partly_qualified_name, callback); } }
#include "checker/internal/namespace_generator.h" #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "internal/testing.h" namespace cel::checker_internal { namespace { using ::absl_testing::StatusIs; using ::testing::ElementsAre; using ::testing::Pair; TEST(NamespaceGeneratorTest, EmptyContainer) { ASSERT_OK_AND_ASSIGN(auto generator, NamespaceGenerator::Create("")); std::vector<std::string> candidates; generator.GenerateCandidates("foo", [&](absl::string_view candidate) { candidates.push_back(std::string(candidate)); return true; }); EXPECT_THAT(candidates, ElementsAre("foo")); } TEST(NamespaceGeneratorTest, MultipleSegments) { ASSERT_OK_AND_ASSIGN(auto generator, NamespaceGenerator::Create("com.example")); std::vector<std::string> candidates; generator.GenerateCandidates("foo", [&](absl::string_view candidate) { candidates.push_back(std::string(candidate)); return true; }); EXPECT_THAT(candidates, ElementsAre("com.example.foo", "com.foo", "foo")); } TEST(NamespaceGeneratorTest, MultipleSegmentsRootNamespace) { ASSERT_OK_AND_ASSIGN(auto generator, NamespaceGenerator::Create("com.example")); std::vector<std::string> candidates; generator.GenerateCandidates(".foo", [&](absl::string_view candidate) { candidates.push_back(std::string(candidate)); return true; }); EXPECT_THAT(candidates, ElementsAre("foo")); } TEST(NamespaceGeneratorTest, InvalidContainers) { EXPECT_THAT(NamespaceGenerator::Create(".com.example"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NamespaceGenerator::Create("com..example"), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(NamespaceGenerator::Create("com.$example"), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(NamespaceGeneratorTest, MultipleSegmentsSelectInterpretation) { ASSERT_OK_AND_ASSIGN(auto generator, NamespaceGenerator::Create("com.example")); std::vector<std::string> qualified_ident = {"foo", "Bar"}; std::vector<std::pair<std::string, int>> candidates; generator.GenerateCandidates( qualified_ident, [&](absl::string_view candidate, int segment_index) { candidates.push_back(std::pair(std::string(candidate), segment_index)); return true; }); EXPECT_THAT( candidates, ElementsAre(Pair("com.example.foo.Bar", 1), Pair("com.example.foo", 0), Pair("com.foo.Bar", 1), Pair("com.foo", 0), Pair("foo.Bar", 1), Pair("foo", 0))); } TEST(NamespaceGeneratorTest, MultipleSegmentsSelectInterpretationRootNamespace) { ASSERT_OK_AND_ASSIGN(auto generator, NamespaceGenerator::Create("com.example")); std::vector<std::string> qualified_ident = {".foo", "Bar"}; std::vector<std::pair<std::string, int>> candidates; generator.GenerateCandidates( qualified_ident, [&](absl::string_view candidate, int segment_index) { candidates.push_back(std::pair(std::string(candidate), segment_index)); return true; }); EXPECT_THAT(candidates, ElementsAre(Pair("foo.Bar", 1), Pair("foo", 0))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/internal/namespace_generator.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/internal/namespace_generator_test.cc
4552db5798fb0853b131b783d8875794334fae7f
a98d044e-9cf9-4514-bd1e-db7503f03570
cpp
tensorflow/tensorflow
range_sampler
tensorflow/core/kernels/range_sampler.cc
tensorflow/core/kernels/range_sampler_test.cc
#include "tensorflow/core/kernels/range_sampler.h" #include <cmath> #include <unordered_set> #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/io/inputbuffer.h" #include "tensorflow/core/lib/strings/numbers.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { using gtl::ArraySlice; using gtl::MutableArraySlice; RangeSampler::~RangeSampler() {} void RangeSampler::SampleBatch(random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch) const { SampleBatchGetExpectedCount(rnd, unique, batch, absl::Span<float>(), absl::Span<const int64_t>(), absl::Span<float>()); } void RangeSampler::SampleBatchGetExpectedCount( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count) const { SampleBatchGetExpectedCountAvoid(rnd, unique, batch, batch_expected_count, extras, extras_expected_count, absl::Span<const int64_t>()); } namespace { static float ExpectedCountHelper(float p, int batch_size, int num_tries) { if (num_tries == batch_size) { return p * batch_size; } return -std::expm1(num_tries * std::log1p(-p)); } } void RangeSampler::SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const { const int batch_size = batch.size(); int num_tries; if (unique) { CHECK_LE(static_cast<int64_t>(batch_size + avoided_values.size()), range_); std::unordered_set<int64_t> used(batch_size); used.insert(avoided_values.begin(), avoided_values.end()); int num_picked = 0; num_tries = 0; while (num_picked < batch_size) { num_tries++; CHECK_LT(num_tries, kint32max); int64_t value = Sample(rnd); if (gtl::InsertIfNotPresent(&used, value)) { batch[num_picked++] = value; } } } else { CHECK_EQ(avoided_values.size(), size_t{0}) << "avoided_values only supported with unique=true"; for (int i = 0; i < batch_size; i++) { batch[i] = Sample(rnd); } num_tries = batch_size; } if (!batch_expected_count.empty()) { CHECK_EQ(batch_size, batch_expected_count.size()); for (int i = 0; i < batch_size; i++) { batch_expected_count[i] = ExpectedCountHelper(Probability(batch[i]), batch_size, num_tries); } } CHECK_EQ(extras.size(), extras_expected_count.size()); for (size_t i = 0; i < extras.size(); i++) { extras_expected_count[i] = ExpectedCountHelper(Probability(extras[i]), batch_size, num_tries); } } AllSampler::AllSampler(int64_t range) : RangeSampler(range) {} void AllSampler::SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const { const int batch_size = batch.size(); CHECK_EQ(range_, batch_size); for (int i = 0; i < batch_size; i++) { batch[i] = i; } if (!batch_expected_count.empty()) { CHECK_EQ(batch_size, batch_expected_count.size()); for (int i = 0; i < batch_size; i++) { batch_expected_count[i] = 1; } } CHECK_EQ(size_t{0}, avoided_values.size()); CHECK_EQ(extras.size(), extras_expected_count.size()); for (size_t i = 0; i < extras.size(); i++) { extras_expected_count[i] = 1; } } UniformSampler::UniformSampler(int64_t range) : RangeSampler(range), inv_range_(1.0 / range) {} int64_t UniformSampler::Sample(random::SimplePhilox* rnd) const { return rnd->Uniform64(range_); } float UniformSampler::Probability(int64_t value) const { return inv_range_; } LogUniformSampler::LogUniformSampler(int64_t range) : RangeSampler(range), log_range_(log1p(range)) {} int64_t LogUniformSampler::Sample(random::SimplePhilox* rnd) const { const int64_t value = static_cast<int64_t>(exp(rnd->RandDouble() * log_range_)) - 1; DCHECK_GE(value, 0); return value % range_; } float LogUniformSampler::Probability(int64_t value) const { return (log((value + 2.0) / (value + 1.0))) / log_range_; } ThreadUnsafeUnigramSampler::ThreadUnsafeUnigramSampler(int64_t range) : RangeSampler(range), picker_(range) { CHECK_LT(range, kint32max); } int64_t ThreadUnsafeUnigramSampler::Sample(random::SimplePhilox* rnd) const { return picker_.Pick(rnd); } float ThreadUnsafeUnigramSampler::Probability(int64_t value) const { return static_cast<float>(picker_.get_weight(value)) / picker_.total_weight(); } void ThreadUnsafeUnigramSampler::Update(absl::Span<const int64_t> values) { int num_updates = std::min(static_cast<int>(values.size()), kint32max - picker_.total_weight()); for (int i = 0; i < num_updates; i++) { const int64_t value = values[i]; picker_.set_weight(value, picker_.get_weight(value) + 1); } } UnigramSampler::UnigramSampler(int64_t range) : RangeSampler(range), unsafe_sampler_(range) { CHECK_LT(range, kint32max); } int64_t UnigramSampler::Sample(random::SimplePhilox* rnd) const { tf_shared_lock lock(mu_); return unsafe_sampler_.Sample(rnd); } float UnigramSampler::Probability(int64_t value) const { tf_shared_lock lock(mu_); return unsafe_sampler_.Probability(value); } void UnigramSampler::SampleBatchGetExpectedCountAvoid( random::SimplePhilox* rnd, bool unique, absl::Span<int64_t> batch, absl::Span<float> batch_expected_count, absl::Span<const int64_t> extras, absl::Span<float> extras_expected_count, absl::Span<const int64_t> avoided_values) const { tf_shared_lock lock(mu_); unsafe_sampler_.SampleBatchGetExpectedCountAvoid( rnd, unique, batch, batch_expected_count, extras, extras_expected_count, avoided_values); } void UnigramSampler::Update(absl::Span<const int64_t> values) { mutex_lock lock(mu_); unsafe_sampler_.Update(values); } FixedUnigramSampler::FixedUnigramSampler(int64_t range, float distortion, int32_t num_reserved_ids, int32_t num_shards, int32_t shard) : RangeSampler(range), total_weight_(0.0), num_shards_(num_shards), shard_(shard), distortion_(distortion) { FillReservedIds(num_reserved_ids); } Status FixedUnigramSampler::SetDistributionSampler(Env* env, const string& vocab_file) { TF_RETURN_IF_ERROR(LoadFromFile(env, vocab_file, distortion_)); if (!TF_PREDICT_TRUE(FixedUnigramSampler::range() == weights_.size())) return (errors::InvalidArgument("range is ", FixedUnigramSampler::range(), " must be equal to weights size ", weights_.size())); dist_sampler_.reset(new random::DistributionSampler(weights_)); return absl::OkStatus(); } Status FixedUnigramSampler::SetDistributionSampler( const std::vector<float>& unigrams) { LoadFromUnigrams(unigrams, distortion_); if (!TF_PREDICT_TRUE(FixedUnigramSampler::range() == weights_.size())) return (errors::InvalidArgument("range is ", FixedUnigramSampler::range(), " must be equal to weights size ", weights_.size())); dist_sampler_.reset(new random::DistributionSampler(weights_)); return absl::OkStatus(); } float FixedUnigramSampler::Probability(int64_t value) const { if (value < 0 || static_cast<size_t>(value) >= weights_.size()) { return 0.0; } return weights_.at(value) / total_weight_; } int64_t FixedUnigramSampler::Sample(random::SimplePhilox* rnd) const { return dist_sampler_->Sample(rnd); } void FixedUnigramSampler::FillReservedIds(int32_t num_reserved_ids) { for (int32_t word_id = 0; word_id < num_reserved_ids; ++word_id) { if (word_id % num_shards_ == shard_) weights_.push_back(0.0); } } Status FixedUnigramSampler::LoadFromFile(Env* env, const string& vocab_file, float distortion) { std::unique_ptr<RandomAccessFile> file; TF_RETURN_IF_ERROR(env->NewRandomAccessFile(vocab_file, &file)); io::InputBuffer in(file.get(), 262144 ); string line; int32_t word_id = weights_.size(); while (in.ReadLine(&line).ok()) { std::vector<string> cols = str_util::Split(line, ','); if (cols.empty()) continue; if (word_id % num_shards_ == shard_) { float w = 0.0; if (!strings::safe_strtof(cols.at(cols.size() - 1), &w)) { return errors::InvalidArgument("Wrong vocabulary format at line: ", line); } w = std::pow(w, distortion); total_weight_ += w; weights_.push_back(w); } ++word_id; } return absl::OkStatus(); } void FixedUnigramSampler::LoadFromUnigrams(const std::vector<float>& unigrams, float distortion) { int32_t word_id = weights_.size(); for (float w : unigrams) { if (word_id % num_shards_ == shard_) { w = std::pow(w, distortion); total_weight_ += w; weights_.push_back(w); } ++word_id; } } }
#include "tensorflow/core/kernels/range_sampler.h" #include <vector> #include "absl/status/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { using gtl::ArraySlice; using gtl::MutableArraySlice; class RangeSamplerTest : public ::testing::Test { protected: void CheckProbabilitiesSumToOne() { double sum = 0; for (int i = 0; i < sampler_->range(); i++) { sum += sampler_->Probability(i); } EXPECT_NEAR(sum, 1.0, 1e-4); } void CheckHistogram(int num_samples, float tolerance) { const int range = sampler_->range(); std::vector<int> h(range); std::vector<int64_t> a(num_samples); random::PhiloxRandom philox(123, 17); random::SimplePhilox rnd(&philox); sampler_->SampleBatch(&rnd, false, absl::MakeSpan(a)); for (int i = 0; i < num_samples; i++) { int64_t val = a[i]; ASSERT_GE(val, 0); ASSERT_LT(val, range); h[val]++; } for (int val = 0; val < range; val++) { EXPECT_NEAR((h[val] + 0.0) / num_samples, sampler_->Probability(val), tolerance); } } void Update1() { std::vector<int64_t> a(10); for (int i = 0; i < 10; i++) { a[i] = 3; } sampler_->Update(a); } void Update2() { int64_t a[10]; for (int i = 0; i < 10; i++) { a[i] = i; } for (int64_t i = 1; i < 10; i++) { sampler_->Update(absl::Span<const int64_t>(a + i, 10 - i)); } } std::unique_ptr<RangeSampler> sampler_; }; TEST_F(RangeSamplerTest, UniformProbabilities) { sampler_.reset(new UniformSampler(10)); for (int i = 0; i < 10; i++) { CHECK_EQ(sampler_->Probability(i), sampler_->Probability(0)); } } TEST_F(RangeSamplerTest, UniformChecksum) { sampler_.reset(new UniformSampler(10)); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, UniformHistogram) { sampler_.reset(new UniformSampler(10)); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, LogUniformProbabilities) { int range = 1000000; sampler_.reset(new LogUniformSampler(range)); for (int i = 100; i < range; i *= 2) { float ratio = sampler_->Probability(i) / sampler_->Probability(i / 2); EXPECT_NEAR(ratio, 0.5, 0.1); } } TEST_F(RangeSamplerTest, LogUniformChecksum) { sampler_.reset(new LogUniformSampler(10)); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, LogUniformHistogram) { sampler_.reset(new LogUniformSampler(10)); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, UnigramProbabilities1) { sampler_.reset(new UnigramSampler(10)); Update1(); EXPECT_NEAR(sampler_->Probability(3), 0.55, 1e-4); for (int i = 0; i < 10; i++) { if (i != 3) { ASSERT_NEAR(sampler_->Probability(i), 0.05, 1e-4); } } } TEST_F(RangeSamplerTest, UnigramProbabilities2) { sampler_.reset(new UnigramSampler(10)); Update2(); for (int i = 0; i < 10; i++) { ASSERT_NEAR(sampler_->Probability(i), (i + 1) / 55.0, 1e-4); } } TEST_F(RangeSamplerTest, UnigramChecksum) { sampler_.reset(new UnigramSampler(10)); Update1(); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, UnigramHistogram) { sampler_.reset(new UnigramSampler(10)); Update1(); CheckHistogram(1000, 0.05); } static const char kVocabContent[] = "w1,1\n" "w2,2\n" "w3,4\n" "w4,8\n" "w5,16\n" "w6,32\n" "w7,64\n" "w8,128\n" "w9,256"; TEST_F(RangeSamplerTest, FixedUnigramProbabilities) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); for (int i = 0; i < 9; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, i * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramNoExistingFilename) { Env* env = Env::Default(); string fname = "NoExistingFile"; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); Status s = test_sampler->SetDistributionSampler(env, fname); sampler_.reset(test_sampler); EXPECT_TRUE(absl::IsNotFound(s)) << s; } TEST_F(RangeSamplerTest, FixedUnigramNoMatchingRangeWeights) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(8, 0.8, 0, 1, 0); Status s = test_sampler->SetDistributionSampler(env, fname); sampler_.reset(test_sampler); EXPECT_TRUE(absl::IsInvalidArgument(s)) << s; } TEST_F(RangeSamplerTest, FixedUnigramChecksum) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, FixedUnigramHistogram) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve1) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(10, 0.8, 1, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); for (int i = 1; i < 10; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 1) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve2) { Env* env = Env::Default(); string fname = io::JoinPath(testing::TmpDir(), "vocab_file"); TF_CHECK_OK(WriteStringToFile(env, fname, kVocabContent)); FixedUnigramSampler* test_sampler = new FixedUnigramSampler(11, 0.8, 2, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(env, fname)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); ASSERT_NEAR(sampler_->Probability(1), 0, 1e-4); for (int i = 2; i < 11; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 2) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesFromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); for (int i = 0; i < 9; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, i * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramChecksumFromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); CheckProbabilitiesSumToOne(); } TEST_F(RangeSamplerTest, FixedUnigramHistogramFromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(9, 0.8, 0, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); CheckHistogram(1000, 0.05); } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve1FromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(10, 0.8, 1, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); for (int i = 1; i < 10; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 1) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, FixedUnigramProbabilitiesReserve2FromVector) { std::vector<float> weights = {1, 2, 4, 8, 16, 32, 64, 128, 256}; FixedUnigramSampler* test_sampler = new FixedUnigramSampler(11, 0.8, 2, 1, 0); TF_CHECK_OK(test_sampler->SetDistributionSampler(weights)); sampler_.reset(test_sampler); ASSERT_NEAR(sampler_->Probability(0), 0, 1e-4); ASSERT_NEAR(sampler_->Probability(1), 0, 1e-4); for (int i = 2; i < 11; i++) { ASSERT_NEAR(sampler_->Probability(i), pow(2, (i - 2) * 0.8) / 197.05, 1e-4); } } TEST_F(RangeSamplerTest, All) { int batch_size = 10; sampler_.reset(new AllSampler(10)); std::vector<int64_t> batch(batch_size); std::vector<float> batch_expected(batch_size); std::vector<int64_t> extras(2); std::vector<float> extras_expected(2); extras[0] = 0; extras[1] = batch_size - 1; sampler_->SampleBatchGetExpectedCount(nullptr, false, absl::MakeSpan(batch), absl::MakeSpan(batch_expected), extras, absl::MakeSpan(extras_expected)); for (int i = 0; i < batch_size; i++) { EXPECT_EQ(i, batch[i]); EXPECT_EQ(1, batch_expected[i]); } EXPECT_EQ(1, extras_expected[0]); EXPECT_EQ(1, extras_expected[1]); } TEST_F(RangeSamplerTest, Unique) { random::PhiloxRandom philox(123, 17); random::SimplePhilox rnd(&philox); const int range = 100; const int batch_size = 50; const int num_batches = 100; sampler_.reset(new LogUniformSampler(range)); std::vector<int> histogram(range); std::vector<int64_t> batch(batch_size); std::vector<int64_t> all_values(range); for (int i = 0; i < range; i++) { all_values[i] = i; } std::vector<float> expected(range); sampler_->SampleBatchGetExpectedCount(&rnd, true, absl::MakeSpan(batch), absl::Span<float>(), all_values, absl::MakeSpan(expected)); std::set<int64_t> s(batch.begin(), batch.end()); CHECK_EQ(batch_size, s.size()); for (int trial = 0; trial < num_batches; trial++) { std::vector<float> trial_expected(range); sampler_->SampleBatchGetExpectedCount(&rnd, true, absl::MakeSpan(batch), absl::Span<float>(), all_values, absl::MakeSpan(trial_expected)); for (int i = 0; i < range; i++) { EXPECT_NEAR(expected[i], trial_expected[i], expected[i] * 0.5); } for (int i = 0; i < batch_size; i++) { histogram[batch[i]]++; } } for (int i = 0; i < range; i++) { const float average_count = static_cast<float>(histogram[i]) / num_batches; EXPECT_NEAR(expected[i], average_count, 0.2); } } TEST_F(RangeSamplerTest, Avoid) { random::PhiloxRandom philox(123, 17); random::SimplePhilox rnd(&philox); sampler_.reset(new LogUniformSampler(100)); std::vector<int64_t> avoided(2); avoided[0] = 17; avoided[1] = 23; std::vector<int64_t> batch(98); sampler_->SampleBatchGetExpectedCountAvoid( &rnd, true, absl::MakeSpan(batch), absl::Span<float>(), absl::Span<const int64_t>(), absl::Span<float>(), avoided); int sum = 0; for (auto val : batch) { sum += val; } const int expected_sum = 100 * 99 / 2 - avoided[0] - avoided[1]; EXPECT_EQ(expected_sum, sum); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/range_sampler.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/range_sampler_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c2d5cdab-c5af-4a62-b278-95f45b56ecde
cpp
tensorflow/tensorflow
sig_node
tensorflow/core/grappler/graph_analyzer/sig_node.cc
tensorflow/core/grappler/graph_analyzer/sig_node_test.cc
#include "tensorflow/core/grappler/graph_analyzer/sig_node.h" #include <algorithm> #include "absl/strings/str_format.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { static constexpr bool debug = false; SigNode::SigNode(const NodeDef* node) : node_(node) {} void SigNode::CopyLinks(const GenNode& from, const TranslationMap& map) { hash_to_link_.clear(); hashed_peers_.clear(); std::map<LinkTag, Link> link_map; CopyLinksPass1(from, map, &link_map); CopyLinksPass2(&link_map); } void SigNode::CopyLinksPass1(const GenNode& from, const TranslationMap& map, std::map<LinkTag, Link>* link_map) { LinkTag::Hasher link_hasher; for (const auto& entry : from.links()) { for (const auto& target : entry.second) { auto nodeit = map.find(target.node); if (nodeit == map.end()) { continue; } LinkTag tag(entry.first, target.port); size_t hval = link_hasher(tag); Link& map_entry = (*link_map)[tag]; if (map_entry.peers.empty()) { map_entry.tag = tag; map_entry.unique_hash = hval; } map_entry.peers.push_back(nodeit->second); } } } void SigNode::CopyLinksPass2(std::map<LinkTag, Link>* link_map) { for (auto& entry : *link_map) { Link* hl_entry_ptr = &hash_to_link_[entry.second.unique_hash]; while (!hl_entry_ptr->peers.empty()) { CombineHash(1, &entry.second.unique_hash); hl_entry_ptr = &hash_to_link_[entry.second.unique_hash]; } for (const auto& peer : entry.second.peers) { hashed_peers_.emplace_back(HashedPeer(entry.second.unique_hash, peer)); } hl_entry_ptr->tag = entry.second.tag; hl_entry_ptr->unique_hash = entry.second.unique_hash; hl_entry_ptr->peers.swap(entry.second.peers); } } void SigNode::ComputeTopoHash0() { topo_hash_.clear(); last_hashed_nodes_ = next_hashed_nodes_ = node_mask_; size_t hval = std::hash<string>()(opcode()); for (const auto& entry : hashed_peers_) { CombineHash(entry.link_hash, &hval); } topo_hash_.push_back(hval); } void SigNode::ComputeTopoHash(int distance) { next_hashed_nodes_ = last_hashed_nodes_; if (debug) { LOG(INFO) << "DEBUG node " << name() << " mask=" << std::hex << next_hashed_nodes_; } if (hash_is_final_) { return; } const int64_t topo_hash_size = topo_hash_.size(); CHECK(topo_hash_size == distance); int prev = distance - 1; size_t hval = topo_hash_[0]; if (!hashed_peers_.empty()) { size_t last_link_hash = hashed_peers_[0].link_hash; size_t comm_hash = 0; for (const auto& entry : hashed_peers_) { if (entry.link_hash != last_link_hash) { CombineHash(last_link_hash, &hval); CombineHash(comm_hash, &hval); comm_hash = 0; last_link_hash = entry.link_hash; } CombineHashCommutative(entry.peer->GetTopoHash(prev), &comm_hash); next_hashed_nodes_ |= entry.peer->last_hashed_nodes_; if (debug) { LOG(INFO) << "DEBUG node " << name() << " += " << entry.peer->name() << " mask=" << std::hex << next_hashed_nodes_; } } CombineHash(last_link_hash, &hval); CombineHash(comm_hash, &hval); } topo_hash_.push_back(hval); } size_t SigNode::GetTopoHash(int distance) const { CHECK(!topo_hash_.empty()); const int64_t topo_hash_size = topo_hash_.size(); if (distance >= topo_hash_size) { CHECK(hash_is_final_); return topo_hash_.back(); } else { return topo_hash_[distance]; } } bool SigNode::operator==(const SigNode& other) const { if (opcode() != other.opcode()) { return false; } if (unique_rank_ != other.unique_rank_) { return false; } if (hashed_peers_.size() != other.hashed_peers_.size()) { return false; } for (auto it1 = hashed_peers_.begin(), it2 = other.hashed_peers_.begin(); it1 != hashed_peers_.end(); ++it1, ++it2) { if (it1->link_hash != it2->link_hash) { return false; } if (it1->peer->unique_rank_ != it2->peer->unique_rank_) { return false; } } return true; } constexpr int Signature::kMaxGraphSize; string Signature::ToString() const { string result; for (size_t n = 0; n < nodes.size(); ++n) { result += absl::StrFormat("%d:%s", n, nodes[n]->opcode()); for (const auto& entry : nodes[n]->hashed_peers_) { const auto& link = nodes[n]->hash_to_link_[entry.link_hash]; if (link.tag.local.IsInbound()) { result += absl::StrFormat("[%s:%s:%d]", string(link.tag.local), string(link.tag.remote), entry.peer->unique_rank_); } } result.push_back(','); } return result; } Status Signature::Compute() { if (map.size() > kMaxGraphSize) { return Status( absl::StatusCode::kInvalidArgument, absl::StrFormat( "A graph of %d nodes is too big for signature computation, " "the maximal supported node count is %d.", map.size(), kMaxGraphSize)); } size_t next_node_id = 0; sig_short = 0; sig_full.resize(0); PrepareNodes(); FindUniqueHashes(&next_node_id); while (next_node_id < map.size()) { ComputeOneRound(next_node_id); FindUniqueHashes(&next_node_id); } OrderLinks(); return absl::OkStatus(); } void Signature::PrepareNodes() { nodes.resize(0); int64_t mask = 1; for (const auto& entry : map) { SigNode* node = entry.second.get(); node->last_hashed_nodes_ = node->node_mask_ = mask; mask <<= 1; node->unique_rank_ = ~0; node->hash_is_final_ = false; node->ComputeTopoHash0(); if (node->GetHighTopoHash() <= map.size()) { node->ReHighTopoHash(); } nodes.emplace_back(node); } } void Signature::FindUniqueHashes(size_t* next_node_id_p) { std::stable_sort(nodes.begin() + *next_node_id_p, nodes.end(), SigNode::NodeOrderLess()); bool found_unique = false; for (size_t n = *next_node_id_p; n < nodes.size(); ++n) { size_t cur_hash = nodes[n]->GetHighTopoHash(); if (n + 1 < nodes.size() && nodes[n + 1]->GetHighTopoHash() == cur_hash) { for (++n; n + 1 < nodes.size() && nodes[n + 1]->GetHighTopoHash() == cur_hash; ++n) { } if (found_unique || n != nodes.size() - 1) { continue; } } found_unique = true; size_t id = (*next_node_id_p)++; nodes[n]->unique_rank_ = id; size_t last_hash = nodes[n]->GetHighTopoHash(); CombineHash(last_hash, &sig_short); sig_full.push_back(last_hash); nodes[n]->topo_hash_.resize(1); nodes[n]->topo_hash_[0] = id + 1; nodes[n]->hash_is_final_ = true; nodes[n]->last_hashed_nodes_ = nodes[n]->node_mask_; if (n != id) { std::swap(nodes[id], nodes[n]); } } } void Signature::ComputeOneRound(size_t next_node_id) { int debug_i = 0; for (auto it = nodes.begin() + next_node_id; it != nodes.end(); ++it) { auto node = *it; node->topo_hash_.resize(1); node->last_hashed_nodes_ = node->node_mask_; node->hash_is_final_ = false; if (debug) { LOG(INFO) << "DEBUG distance=" << 0 << " node " << debug_i++ << " " << node->name() << " mask=" << std::hex << node->last_hashed_nodes_; } } bool stop = false; for (int distance = 1; !stop; ++distance) { for (auto it = nodes.begin() + next_node_id; it != nodes.end(); ++it) { auto node = *it; if (node->hash_is_final_) { continue; } node->ComputeTopoHash(distance); if (node->GetHighTopoHash() <= nodes.size()) { node->ReHighTopoHash(); } } stop = true; debug_i = 0; for (auto it = nodes.begin() + next_node_id; it != nodes.end(); ++it) { auto node = *it; if (debug) { LOG(INFO) << "DEBUG distance=" << distance << " node " << debug_i++ << " " << node->name() << " oldmask=" << std::hex << node->last_hashed_nodes_ << " mask=" << std::hex << node->next_hashed_nodes_; } if (node->last_hashed_nodes_ == node->next_hashed_nodes_) { node->hash_is_final_ = true; } else { node->last_hashed_nodes_ = node->next_hashed_nodes_; stop = false; } } } } void Signature::OrderLinks() { for (const auto& node : nodes) { if (node->hashed_peers_.empty()) { continue; } size_t cur_link_hash = node->hashed_peers_[0].link_hash + 1; int first_idx = -1; int idx; for (idx = 0; idx < static_cast<int64_t>(node->hashed_peers_.size()); ++idx) { auto& entry = node->hashed_peers_[idx]; if (entry.link_hash == cur_link_hash) { continue; } if (idx - first_idx > 1) { std::sort(node->hashed_peers_.begin() + first_idx, node->hashed_peers_.begin() + idx, SigNode::HashedPeer::LessByRank()); } cur_link_hash = entry.link_hash; first_idx = idx; } if (idx - first_idx > 1) { std::sort(node->hashed_peers_.begin() + first_idx, node->hashed_peers_.begin() + idx, SigNode::HashedPeer::LessByRank()); } } } bool Signature::operator==(const Signature& other) const { if (sig_short != other.sig_short) { return false; } if (sig_full.size() != other.sig_full.size()) { return false; } for (auto it1 = sig_full.begin(), it2 = other.sig_full.begin(); it1 != sig_full.end(); ++it1, ++it2) { if (*it1 != *it2) { return false; } } if (nodes.size() != other.nodes.size()) { return false; } for (auto it1 = nodes.begin(), it2 = other.nodes.begin(); it1 != nodes.end(); ++it1, ++it2) { if (**it1 != **it2) { return false; } } return true; } } } }
#include "tensorflow/core/grappler/graph_analyzer/sig_node.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/memory/memory.h" #include "absl/strings/str_format.h" #include "tensorflow/core/grappler/graph_analyzer/subgraph.h" #include "tensorflow/core/grappler/graph_analyzer/test_tools.h" #include "tensorflow/core/grappler/utils.h" namespace tensorflow { namespace grappler { namespace graph_analyzer { namespace test { using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Gt; using ::testing::Ne; using ::testing::SizeIs; TEST(SigNodeLinkTag, Compare) { SigNode::LinkTag a(GenNode::Port(false, 1), GenNode::Port(false, 2)); SigNode::LinkTag b(GenNode::Port(false, 1), GenNode::Port(false, 2)); SigNode::LinkTag c(GenNode::Port(false, 2), GenNode::Port(false, 1)); SigNode::LinkTag d(GenNode::Port(false, 1), GenNode::Port(false, 3)); SigNode::LinkTag e(GenNode::Port(false, 2), GenNode::Port(false, 2)); EXPECT_TRUE(a == b); EXPECT_FALSE(a == c); EXPECT_FALSE(a == e); EXPECT_FALSE(a < b); EXPECT_FALSE(b < a); EXPECT_TRUE(a < c); EXPECT_FALSE(c < a); EXPECT_TRUE(a < d); EXPECT_FALSE(d < a); } class SigBaseTest : public ::testing::Test, protected TestGraphs { protected: void BuildSigMap(const GraphDef& graph) { gen_map_.clear(); sig_.map.clear(); CHECK(GenNode::BuildGraphInMap(graph, &gen_map_).ok()); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); } static void CopyLinksPass2( std::map<SigNode::LinkTag, SigNode::Link>* link_map, SigNode* node) { node->CopyLinksPass2(link_map); } static void ComputeTopoHash0(SigNode* node) { node->ComputeTopoHash0(); } static void ComputeTopoHash(int distance, SigNode* node) { node->ComputeTopoHash(distance); } static size_t GetTopoHash(int distance, SigNode* node) { return node->GetTopoHash(distance); } static size_t GetHighTopoHash(SigNode* node) { return node->GetHighTopoHash(); } static void ReHighTopoHash(SigNode* node) { node->ReHighTopoHash(); } static SigNode::HashedPeerVector& RefHashedPeers(SigNode* node) { return node->hashed_peers_; } static size_t& RefUniqueRank(SigNode* node) { return node->unique_rank_; } static bool& RefHashIsFinal(SigNode* node) { return node->hash_is_final_; } static std::vector<size_t>& RefTopoHash(SigNode* node) { return node->topo_hash_; } static uint64_t& RefNodeMask(SigNode* node) { return node->node_mask_; } static uint64_t& RefLastHashedNodes(SigNode* node) { return node->last_hashed_nodes_; } static uint64_t& RefNextHashedNodes(SigNode* node) { return node->next_hashed_nodes_; } static void PrepareNodes(Signature* signature) { signature->PrepareNodes(); } static void FindUniqueHashes(size_t* next_node_id_p, Signature* signature) { signature->FindUniqueHashes(next_node_id_p); } static void ComputeOneRound(size_t next_node_id, Signature* signature) { signature->ComputeOneRound(next_node_id); } static void OrderLinks(Signature* signature) { signature->OrderLinks(); } GenNodeMap gen_map_; Signature sig_; }; class SigNodeTest : public SigBaseTest {}; TEST_F(SigNodeTest, DuplicateHash) { NodeDef node1 = MakeNodeConst("node1"); NodeDef node2 = MakeNodeConst("node2"); NodeDef node3 = MakeNodeShapeN("node3", "node1", "node2"); SigNode sn1(&node1); SigNode sn2(&node2); SigNode sn3(&node3); constexpr size_t kSameHash = 999; SigNode::Link link1; link1.tag = SigNode::LinkTag(GenNode::Port(true, 0), GenNode::Port(false, 0)); link1.unique_hash = kSameHash; link1.peers.emplace_back(&sn1); SigNode::Link link2; link2.tag = SigNode::LinkTag(GenNode::Port(true, 1), GenNode::Port(false, 0)); link2.unique_hash = kSameHash; link2.peers.emplace_back(&sn2); SigNode::Link link3; link3.tag = SigNode::LinkTag(GenNode::Port(true, 2), GenNode::Port(false, 0)); link3.unique_hash = kSameHash; link3.peers.emplace_back(&sn3); std::map<SigNode::LinkTag, SigNode::Link> link_map; link_map[link1.tag] = link1; link_map[link2.tag] = link2; link_map[link3.tag] = link3; CopyLinksPass2(&link_map, &sn3); auto& hl = sn3.hash_to_link(); EXPECT_THAT(hl, SizeIs(3)); std::map<SigNode::LinkTag, SigNode::Link> rehashed; auto hlit = hl.begin(); ASSERT_THAT(hlit, Ne(hl.end())); EXPECT_THAT(hlit->second.unique_hash, Eq(hlit->first)); rehashed[hlit->second.tag] = hlit->second; ++hlit; ASSERT_THAT(hlit, Ne(hl.end())); EXPECT_THAT(hlit->second.unique_hash, Eq(hlit->first)); rehashed[hlit->second.tag] = hlit->second; ++hlit; ASSERT_THAT(hlit, Ne(hl.end())); EXPECT_THAT(hlit->second.unique_hash, Eq(hlit->first)); rehashed[hlit->second.tag] = hlit->second; ASSERT_THAT(rehashed, SizeIs(3)); auto rhit = rehashed.begin(); ASSERT_THAT(rhit, Ne(rehashed.end())); EXPECT_TRUE(rhit->second.tag == link1.tag); EXPECT_THAT(rhit->second.unique_hash, Eq(kSameHash)); EXPECT_THAT(rhit->second.peers, ElementsAre(&sn1)); ++rhit; ASSERT_THAT(rhit, Ne(rehashed.end())); EXPECT_TRUE(rhit->second.tag == link2.tag); EXPECT_THAT(rhit->second.unique_hash, Ne(kSameHash)); size_t hash2 = rhit->second.unique_hash; EXPECT_THAT(rhit->second.peers, ElementsAre(&sn2)); ++rhit; ASSERT_THAT(rhit, Ne(rehashed.end())); EXPECT_TRUE(rhit->second.tag == link3.tag); EXPECT_THAT(rhit->second.unique_hash, Ne(kSameHash)); EXPECT_THAT(rhit->second.unique_hash, Ne(hash2)); size_t hash3 = rhit->second.unique_hash; EXPECT_THAT(rhit->second.peers, ElementsAre(&sn3)); auto& peers = sn3.hashed_peers(); EXPECT_THAT(peers, SizeIs(3)); auto peerit = peers.begin(); ASSERT_THAT(peerit, Ne(peers.end())); EXPECT_THAT(peerit->link_hash, Eq(kSameHash)); EXPECT_THAT(peerit->peer, Eq(&sn1)); ++peerit; ASSERT_THAT(peerit, Ne(peers.end())); EXPECT_THAT(peerit->link_hash, Eq(hash2)); EXPECT_THAT(peerit->peer, Eq(&sn2)); ++peerit; ASSERT_THAT(peerit, Ne(peers.end())); EXPECT_THAT(peerit->link_hash, Eq(hash3)); EXPECT_THAT(peerit->peer, Eq(&sn3)); } TEST_F(SigNodeTest, GetTopoHash) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(456); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(456)); RefHashIsFinal(&sn1) = true; EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(456)); EXPECT_THAT(GetTopoHash(2, &sn1), Eq(456)); EXPECT_THAT(GetHighTopoHash(&sn1), Eq(456)); } TEST_F(SigNodeTest, ReTopoHash) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(456); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(456)); ReHighTopoHash(&sn1); size_t expected_hash = 456; CombineHash(1, &expected_hash); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(123)); EXPECT_THAT(GetTopoHash(1, &sn1), Eq(expected_hash)); } TEST_F(SigNodeTest, ComputeTopoHash0) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); RefUniqueRank(&sn1) = 10; RefNodeMask(&sn1) = 0x02; RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(456); RefLastHashedNodes(&sn1) = 0xFF; RefNextHashedNodes(&sn1) = 0xFF; RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(1, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(1, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(2, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(3, nullptr)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(3, nullptr)); ComputeTopoHash0(&sn1); EXPECT_THAT(RefLastHashedNodes(&sn1), Eq(0x02)); EXPECT_THAT(RefNextHashedNodes(&sn1), Eq(0x02)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(1)); size_t exp_hval = std::hash<string>()(sn1.opcode()); CombineHash(1, &exp_hval); CombineHash(1, &exp_hval); CombineHash(2, &exp_hval); CombineHash(3, &exp_hval); CombineHash(3, &exp_hval); EXPECT_THAT(GetTopoHash(0, &sn1), Eq(exp_hval)); } TEST_F(SigNodeTest, ComputeTopoHashNotFinal) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); RefUniqueRank(&sn1) = 0; RefNodeMask(&sn1) = 0x01; RefUniqueRank(&sn2) = 0; RefNodeMask(&sn2) = 0x02; RefUniqueRank(&sn3) = 0; RefNodeMask(&sn3) = 0x04; RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(20, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn2)); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(321); RefTopoHash(&sn2).emplace_back(456); RefTopoHash(&sn2).emplace_back(654); RefTopoHash(&sn3).emplace_back(789); RefTopoHash(&sn3).emplace_back(987); RefLastHashedNodes(&sn1) = 0x8; RefLastHashedNodes(&sn2) = 0x10; RefLastHashedNodes(&sn3) = 0x20; RefNextHashedNodes(&sn1) = 0x100; ComputeTopoHash(2, &sn1); EXPECT_THAT(RefLastHashedNodes(&sn1), Eq(0x8)); EXPECT_THAT(RefNextHashedNodes(&sn1), Eq(0x38)); size_t exp_hash = 123; size_t comm_hash; comm_hash = 0; CombineHashCommutative(654, &comm_hash); CombineHashCommutative(987, &comm_hash); CombineHash(10, &exp_hash); CombineHash(comm_hash, &exp_hash); comm_hash = 0; CombineHashCommutative(654, &comm_hash); CombineHash(20, &exp_hash); CombineHash(comm_hash, &exp_hash); comm_hash = 0; CombineHashCommutative(654, &comm_hash); CombineHashCommutative(987, &comm_hash); CombineHash(30, &exp_hash); CombineHash(comm_hash, &exp_hash); EXPECT_THAT(GetTopoHash(2, &sn1), Eq(exp_hash)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(3)); } TEST_F(SigNodeTest, ComputeTopoHashFinal) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); RefUniqueRank(&sn1) = 0; RefNodeMask(&sn1) = 0x01; RefUniqueRank(&sn2) = 0; RefNodeMask(&sn2) = 0x02; RefUniqueRank(&sn3) = 0; RefNodeMask(&sn3) = 0x04; RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(10, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(20, &sn2)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn3)); RefHashedPeers(&sn1).emplace_back(SigNode::HashedPeer(30, &sn2)); RefTopoHash(&sn1).emplace_back(123); RefTopoHash(&sn1).emplace_back(321); RefTopoHash(&sn2).emplace_back(456); RefTopoHash(&sn2).emplace_back(654); RefTopoHash(&sn3).emplace_back(789); RefTopoHash(&sn3).emplace_back(987); RefLastHashedNodes(&sn1) = 0x8; RefLastHashedNodes(&sn2) = 0x10; RefLastHashedNodes(&sn3) = 0x20; RefNextHashedNodes(&sn1) = 0x100; RefHashIsFinal(&sn1) = true; ComputeTopoHash(2, &sn1); EXPECT_THAT(RefLastHashedNodes(&sn1), Eq(0x8)); EXPECT_THAT(RefNextHashedNodes(&sn1), Eq(0x8)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); EXPECT_THAT(GetTopoHash(2, &sn1), Eq(321)); } TEST_F(SigNodeTest, EqualsOpcode) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); EXPECT_TRUE(sn1 == sn2); EXPECT_FALSE(sn1 != sn2); node2.set_op("Mul"); EXPECT_TRUE(sn1 != sn2); EXPECT_FALSE(sn1 == sn2); } TEST_F(SigNodeTest, EqualsRank) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); EXPECT_TRUE(sn1 == sn2); EXPECT_FALSE(sn1 != sn2); RefUniqueRank(&sn1) = 1; RefUniqueRank(&sn2) = 2; EXPECT_TRUE(sn1 != sn2); EXPECT_FALSE(sn1 == sn2); } TEST_F(SigNodeTest, EqualsLinkSize) { GraphDef graph1; (*graph1.add_node()) = MakeNodeConst("node1"); (*graph1.add_node()) = MakeNodeMul("node2", "node1", "node1"); GenNodeMap gen_map1; ASSERT_THAT(GenNode::BuildGraphInMap(graph1, &gen_map1), Eq(absl::OkStatus())); Subgraph::Identity id1; id1.insert(gen_map1["node1"].get()); id1.insert(gen_map1["node2"].get()); Subgraph sg1(id1); SigNodeMap sig_map1; sg1.ExtractForSignature(&sig_map1); GraphDef graph2; (*graph2.add_node()) = MakeNodeConst("node1"); auto node22 = graph2.add_node(); *node22 = MakeNodeMul("node2", "node1", "node1"); node22->add_input("node2"); GenNodeMap gen_map2; ASSERT_THAT(GenNode::BuildGraphInMap(graph2, &gen_map2), Eq(absl::OkStatus())); Subgraph::Identity id2; id2.insert(gen_map2["node1"].get()); id2.insert(gen_map2["node2"].get()); Subgraph sg2(id2); SigNodeMap sig_map2; sg2.ExtractForSignature(&sig_map2); EXPECT_TRUE(*sig_map1["node1"] == *sig_map2["node1"]); EXPECT_FALSE(*sig_map1["node2"] == *sig_map2["node2"]); EXPECT_FALSE(*sig_map2["node2"] == *sig_map1["node2"]); } TEST_F(SigNodeTest, EqualsLinks) { GraphDef graph1; (*graph1.add_node()) = MakeNodeConst("node1"); (*graph1.add_node()) = MakeNodeMul("node2", "node1", "node1"); GenNodeMap gen_map1; ASSERT_THAT(GenNode::BuildGraphInMap(graph1, &gen_map1), Eq(absl::OkStatus())); Subgraph::Identity id1; id1.insert(gen_map1["node1"].get()); id1.insert(gen_map1["node2"].get()); Subgraph sg1(id1); SigNodeMap sig_map1; sg1.ExtractForSignature(&sig_map1); GenNodeMap gen_map2; ASSERT_THAT(GenNode::BuildGraphInMap(graph1, &gen_map2), Eq(absl::OkStatus())); Subgraph::Identity id2; id2.insert(gen_map2["node1"].get()); id2.insert(gen_map2["node2"].get()); Subgraph sg2(id2); SigNodeMap sig_map2; sg2.ExtractForSignature(&sig_map2); EXPECT_TRUE(*sig_map1["node1"] == *sig_map2["node1"]); EXPECT_TRUE(*sig_map1["node2"] == *sig_map2["node2"]); SigNode* sn2 = sig_map2["node2"].get(); ++RefHashedPeers(sn2)[0].link_hash; EXPECT_FALSE(*sig_map1["node2"] == *sig_map2["node2"]); --RefHashedPeers(sn2)[0].link_hash; EXPECT_TRUE(*sig_map1["node2"] == *sig_map2["node2"]); ++RefUniqueRank(sig_map2["node1"].get()); EXPECT_FALSE(*sig_map1["node2"] == *sig_map2["node2"]); } class SignatureTest : public SigBaseTest { protected: static void InitPermutation(size_t size, std::vector<size_t>* plain_permutation, std::vector<size_t>* countdown) { plain_permutation->clear(); countdown->clear(); for (size_t i = 0; i < size; ++i) { plain_permutation->emplace_back(i); countdown->emplace_back(size - 1 - i); } } static void BuildPermutation(const std::vector<size_t>& plain_permutation, const std::vector<size_t>& countdown, std::vector<size_t>* result) { *result = plain_permutation; for (int i = 0; i < result->size(); ++i) { std::swap((*result)[i], (*result)[i + countdown[i]]); } } static bool CountDown(std::vector<size_t>* countdown) { int pos; for (pos = countdown->size() - 2; pos >= 0; --pos) { if ((*countdown)[pos] > 0) { --(*countdown)[pos]; break; } (*countdown)[pos] = (countdown->size() - 1 - pos); } return pos >= 0; } void TestGraphEveryWay(const GraphDef& graph) { size_t graph_size = graph.node_size(); gen_map_.clear(); sig_.map.clear(); Status result = GenNode::BuildGraphInMap(graph, &gen_map_); ASSERT_THAT(result, Eq(absl::OkStatus())); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); std::vector<size_t> plain_permutation; std::vector<size_t> countdown; InitPermutation(graph_size, &plain_permutation, &countdown); std::set<string> signatures; std::vector<size_t> permutation; do { BuildPermutation(plain_permutation, countdown, &permutation); constexpr bool kDebugPermutation = false; if (kDebugPermutation) { string p; for (int i = 0; i < permutation.size(); ++i) { p.push_back('0' + permutation[i]); } LOG(INFO) << "Permutation: " << p; } std::vector<std::unique_ptr<SigNode>> hold(graph_size); int idx; sig_.nodes.clear(); idx = 0; if (kDebugPermutation) { LOG(INFO) << " nodes before permutation:"; } for (auto& entry : sig_.map) { if (kDebugPermutation) { LOG(INFO) << " " << entry.second.get(); } hold[idx++] = std::move(entry.second); } idx = 0; if (kDebugPermutation) { LOG(INFO) << " nodes after permutation:"; } for (auto& entry : sig_.map) { entry.second = std::move(hold[permutation[idx++]]); if (kDebugPermutation) { LOG(INFO) << " " << entry.second.get(); } sig_.nodes.emplace_back(entry.second.get()); RefUniqueRank(entry.second.get()) = idx; } OrderLinks(&sig_); ASSERT_THAT(sig_.Compute(), Eq(absl::OkStatus())); signatures.insert(sig_.ToString()); EXPECT_THAT(sig_.sig_full, SizeIs(graph_size)); size_t hval = 0; for (size_t ih : sig_.sig_full) { EXPECT_THAT(ih, Gt(graph_size)); CombineHash(ih, &hval); } EXPECT_THAT(sig_.sig_short, Eq(hval)); idx = 0; for (auto& entry : sig_.map) { hold[permutation[idx++]] = std::move(entry.second); } idx = 0; if (kDebugPermutation) { LOG(INFO) << " nodes after un-permutation:"; } for (auto& entry : sig_.map) { entry.second = std::move(hold[idx++]); if (kDebugPermutation) { LOG(INFO) << " " << entry.second.get(); } } } while (CountDown(&countdown)); for (const auto& s : signatures) { LOG(INFO) << "Signature: " << s; } EXPECT_THAT(signatures, SizeIs(1)); } }; TEST_F(SignatureTest, PrepareNodes) { NodeDef node1 = MakeNodeConst("node1"); sig_.map["node1"] = std::make_unique<SigNode>(&node1); NodeDef node2 = MakeNodeConst("node2"); sig_.map["node2"] = std::make_unique<SigNode>(&node2); NodeDef node3 = MakeNodeConst("node3"); sig_.map["node3"] = std::make_unique<SigNode>(&node3); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(3)); int idx = 0; for (const auto& entry : sig_.map) { EXPECT_THAT(RefNodeMask(entry.second.get()), Eq(1 << idx)) << " at index " << idx; EXPECT_THAT(RefUniqueRank(entry.second.get()), Eq(static_cast<size_t>(~0))) << " at index " << idx; EXPECT_THAT(RefHashIsFinal(entry.second.get()), false) << " at index " << idx; EXPECT_THAT(RefTopoHash(entry.second.get()), SizeIs(1)) << " at index " << idx; ++idx; } } TEST_F(SignatureTest, FindUniqueHashesAllDifferent) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); NodeDef node4 = MakeNodeConst("node4"); SigNode sn4(&node4); RefTopoHash(&sn1).emplace_back(100); RefTopoHash(&sn1).emplace_back(900); RefTopoHash(&sn2).emplace_back(200); RefTopoHash(&sn2).emplace_back(800); RefTopoHash(&sn3).emplace_back(300); RefTopoHash(&sn3).emplace_back(700); RefTopoHash(&sn4).emplace_back(400); RefTopoHash(&sn4).emplace_back(600); sig_.nodes.emplace_back(&sn1); sig_.nodes.emplace_back(&sn2); sig_.nodes.emplace_back(&sn3); sig_.nodes.emplace_back(&sn4); size_t next = 1; FindUniqueHashes(&next, &sig_); EXPECT_THAT(next, Eq(4)); EXPECT_THAT(sig_.nodes[0], Eq(&sn1)); EXPECT_THAT(sig_.nodes[1], Eq(&sn4)); EXPECT_THAT(sig_.nodes[2], Eq(&sn3)); EXPECT_THAT(sig_.nodes[3], Eq(&sn2)); EXPECT_THAT(RefHashIsFinal(&sn1), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn2), Eq(true)); EXPECT_THAT(RefHashIsFinal(&sn3), Eq(true)); EXPECT_THAT(RefHashIsFinal(&sn4), Eq(true)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); ASSERT_THAT(RefTopoHash(&sn2), SizeIs(1)); ASSERT_THAT(RefTopoHash(&sn3), SizeIs(1)); ASSERT_THAT(RefTopoHash(&sn4), SizeIs(1)); EXPECT_THAT(RefTopoHash(&sn2)[0], Eq(4)); EXPECT_THAT(RefTopoHash(&sn3)[0], Eq(3)); EXPECT_THAT(RefTopoHash(&sn4)[0], Eq(2)); EXPECT_THAT(sig_.sig_full, ElementsAre(600, 700, 800)); size_t exp_short_hash = 0; CombineHash(600, &exp_short_hash); CombineHash(700, &exp_short_hash); CombineHash(800, &exp_short_hash); EXPECT_THAT(sig_.sig_short, Eq(exp_short_hash)); } TEST_F(SignatureTest, FindUniqueHashesDuplicatesExceptOne) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); NodeDef node4 = MakeNodeConst("node4"); SigNode sn4(&node4); NodeDef node5 = MakeNodeConst("node5"); SigNode sn5(&node5); RefTopoHash(&sn1).emplace_back(100); RefTopoHash(&sn1).emplace_back(600); RefTopoHash(&sn2).emplace_back(200); RefTopoHash(&sn2).emplace_back(600); RefTopoHash(&sn3).emplace_back(300); RefTopoHash(&sn3).emplace_back(700); RefTopoHash(&sn4).emplace_back(400); RefTopoHash(&sn4).emplace_back(800); RefTopoHash(&sn5).emplace_back(500); RefTopoHash(&sn5).emplace_back(800); sig_.nodes.emplace_back(&sn1); sig_.nodes.emplace_back(&sn2); sig_.nodes.emplace_back(&sn3); sig_.nodes.emplace_back(&sn4); sig_.nodes.emplace_back(&sn5); size_t next = 0; FindUniqueHashes(&next, &sig_); EXPECT_THAT(next, Eq(1)); EXPECT_THAT(sig_.nodes[0], Eq(&sn3)); EXPECT_THAT(sig_.nodes[1], Eq(&sn2)); EXPECT_THAT(sig_.nodes[2], Eq(&sn1)); EXPECT_THAT(sig_.nodes[3], Eq(&sn4)); EXPECT_THAT(sig_.nodes[4], Eq(&sn5)); EXPECT_THAT(RefHashIsFinal(&sn1), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn2), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn3), Eq(true)); EXPECT_THAT(RefHashIsFinal(&sn4), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn5), Eq(false)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn2), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn3), SizeIs(1)); EXPECT_THAT(RefTopoHash(&sn4), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn5), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn3)[0], Eq(1)); } TEST_F(SignatureTest, FindUniqueHashesDuplicates) { NodeDef node1 = MakeNodeConst("node1"); SigNode sn1(&node1); NodeDef node2 = MakeNodeConst("node2"); SigNode sn2(&node2); NodeDef node3 = MakeNodeConst("node3"); SigNode sn3(&node3); NodeDef node4 = MakeNodeConst("node4"); SigNode sn4(&node4); NodeDef node5 = MakeNodeConst("node5"); SigNode sn5(&node5); RefTopoHash(&sn1).emplace_back(100); RefTopoHash(&sn1).emplace_back(600); RefTopoHash(&sn2).emplace_back(200); RefTopoHash(&sn2).emplace_back(600); RefTopoHash(&sn3).emplace_back(300); RefTopoHash(&sn3).emplace_back(700); RefTopoHash(&sn4).emplace_back(400); RefTopoHash(&sn4).emplace_back(700); RefTopoHash(&sn5).emplace_back(500); RefTopoHash(&sn5).emplace_back(700); sig_.nodes.emplace_back(&sn1); sig_.nodes.emplace_back(&sn2); sig_.nodes.emplace_back(&sn3); sig_.nodes.emplace_back(&sn4); sig_.nodes.emplace_back(&sn5); size_t next = 0; FindUniqueHashes(&next, &sig_); EXPECT_THAT(next, Eq(1)); EXPECT_THAT(sig_.nodes[0], Eq(&sn5)); EXPECT_THAT(sig_.nodes[1], Eq(&sn2)); EXPECT_THAT(sig_.nodes[2], Eq(&sn3)); EXPECT_THAT(sig_.nodes[3], Eq(&sn4)); EXPECT_THAT(sig_.nodes[4], Eq(&sn1)); EXPECT_THAT(RefHashIsFinal(&sn1), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn2), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn3), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn4), Eq(false)); EXPECT_THAT(RefHashIsFinal(&sn5), Eq(true)); EXPECT_THAT(RefTopoHash(&sn1), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn2), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn3), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn4), SizeIs(2)); EXPECT_THAT(RefTopoHash(&sn5), SizeIs(1)); EXPECT_THAT(RefTopoHash(&sn5)[0], Eq(1)); } TEST_F(SignatureTest, ComputeOneRoundCircular) { BuildSigMap(graph_circular_onedir_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); ComputeOneRound(0, &sig_); size_t hval = GetHighTopoHash(sig_.nodes[0]); for (int i = 0; i < 5; ++i) { EXPECT_THAT(GetHighTopoHash(sig_.nodes[i]), Eq(hval)) << " at index " << i; EXPECT_THAT(RefHashIsFinal(sig_.nodes[i]), Eq(true)) << " at index " << i; EXPECT_THAT(RefLastHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; EXPECT_THAT(RefNextHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; EXPECT_THAT(RefTopoHash(sig_.nodes[i]), SizeIs(4)) << " at index " << i; } } TEST_F(SignatureTest, ComputeOneRoundLinear) { BuildSigMap(graph_linear_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); ComputeOneRound(0, &sig_); std::vector<size_t> hash_size; for (int i = 0; i < 5; ++i) { EXPECT_THAT(RefHashIsFinal(sig_.nodes[i]), Eq(true)) << " at index " << i; EXPECT_THAT(RefLastHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; EXPECT_THAT(RefNextHashedNodes(sig_.nodes[i]), Eq(0x1F)) << " at index " << i; hash_size.emplace_back(RefTopoHash(sig_.nodes[i]).size()); } std::sort(hash_size.begin(), hash_size.end()); EXPECT_THAT(hash_size, ElementsAre(4, 5, 5, 6, 6)); } TEST_F(SignatureTest, ComputeOneRoundSplitLinear) { BuildSigMap(graph_linear_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); std::swap(sig_.nodes[0], sig_.nodes[2]); ASSERT_THAT(RefNodeMask(sig_.nodes[0]), Eq(0x04)); ASSERT_THAT(RefLastHashedNodes(sig_.nodes[0]), Eq(0x04)); ASSERT_THAT(RefNextHashedNodes(sig_.nodes[0]), Eq(0x04)); RefHashIsFinal(sig_.nodes[0]) = true; ComputeOneRound(1, &sig_); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[0]), Eq(0x04)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[0]), Eq(0x04)); std::vector<size_t> hash_size; for (int i = 1; i < 5; ++i) { EXPECT_THAT(RefHashIsFinal(sig_.nodes[i]), Eq(true)) << " at index " << i; hash_size.emplace_back(RefTopoHash(sig_.nodes[i]).size()); } std::sort(hash_size.begin(), hash_size.end()); EXPECT_THAT(hash_size, ElementsAre(3, 3, 4, 4)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[1]), Eq(0x07)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[1]), Eq(0x07)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[2]), Eq(0x07)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[2]), Eq(0x07)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[3]), Eq(0x1C)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[3]), Eq(0x1C)); EXPECT_THAT(RefLastHashedNodes(sig_.nodes[4]), Eq(0x1C)); EXPECT_THAT(RefNextHashedNodes(sig_.nodes[4]), Eq(0x1C)); } TEST_F(SignatureTest, OrderLinks) { gen_map_.clear(); sig_.map.clear(); Status result = GenNode::BuildGraphInMap(graph_for_link_order_, &gen_map_); ASSERT_THAT(result, Eq(absl::OkStatus())); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); for (auto it = sig_.map.rbegin(); it != sig_.map.rend(); ++it) { auto& entry = *it; RefUniqueRank(entry.second.get()) = sig_.nodes.size(); sig_.nodes.emplace_back(entry.second.get()); } string before = sig_.ToString(); EXPECT_THAT(before, Eq( "0:Mul[i0:o0:5][i0:o0:4][i0:o1:4][i0:o2:3][i0:o2:2][i0:o3:2]," "1:Mul[i0:o0:5][i0:o0:4][i0:o0:3][i0:o0:2]," "2:Const," "3:Const," "4:Const," "5:Const," )); OrderLinks(&sig_); string after = sig_.ToString(); EXPECT_THAT(after, Eq( "0:Mul[i0:o0:4][i0:o0:5][i0:o1:4][i0:o2:2][i0:o2:3][i0:o3:2]," "1:Mul[i0:o0:2][i0:o0:3][i0:o0:4][i0:o0:5]," "2:Const," "3:Const," "4:Const," "5:Const," )); } TEST_F(SignatureTest, GraphTooBig) { GraphDef graph; for (int i = 0; i <= Signature::kMaxGraphSize; ++i) { (*graph.add_node()) = MakeNodeConst(absl::StrFormat("node%d", i)); } ASSERT_THAT(GenNode::BuildGraphInMap(graph, &gen_map_), Eq(absl::OkStatus())); Subgraph::Identity id; for (const auto& entry : gen_map_) { id.insert(entry.second.get()); } Subgraph sg(id); sg.ExtractForSignature(&sig_.map); ASSERT_THAT(sig_.Compute(), Eq(Status(absl::StatusCode::kInvalidArgument, "A graph of 65 nodes is too big for signature " "computation, the maximal supported node count is " "64."))); } TEST_F(SignatureTest, ToString) { BuildSigMap(graph_circular_onedir_); PrepareNodes(&sig_); ASSERT_THAT(sig_.nodes, SizeIs(5)); for (int i = 0; i < 5; ++i) { RefUniqueRank(sig_.nodes[i]) = i; RefHashIsFinal(sig_.nodes[i]) = true; } string result = sig_.ToString(); ASSERT_THAT(result, Eq( "0:Mul[i0:o0:4][i0:o0:4]," "1:Mul[i0:o0:0][i0:o0:0]," "2:Mul[i0:o0:1][i0:o0:1]," "3:Mul[i0:o0:2][i0:o0:2]," "4:Mul[i0:o0:3][i0:o0:3]," )); } TEST_F(SignatureTest, Permutation) { std::vector<size_t> plain_permutation; std::vector<size_t> countdown; InitPermutation(5, &plain_permutation, &countdown); std::set<string> results; std::vector<size_t> permutation; do { BuildPermutation(plain_permutation, countdown, &permutation); EXPECT_THAT(permutation, SizeIs(5)); string p; for (int i = 0; i < permutation.size(); ++i) { p.push_back('0' + permutation[i]); } LOG(INFO) << "Permutation: " << p; results.insert(p); } while (CountDown(&countdown)); EXPECT_THAT(results, SizeIs(5 * 4 * 3 * 2 * 1)); } TEST_F(SignatureTest, ComputeCircularOneDir) { TestGraphEveryWay(graph_circular_onedir_); } TEST_F(SignatureTest, ComputeCircularBiDir) { TestGraphEveryWay(graph_circular_bidir_); } TEST_F(SignatureTest, ComputeLinear) { TestGraphEveryWay(graph_linear_); } TEST_F(SignatureTest, ComputeMultiInput) { TestGraphEveryWay(graph_multi_input_); } TEST_F(SignatureTest, ComputeAllOrNone) { TestGraphEveryWay(graph_all_or_none_); } TEST_F(SignatureTest, ComputeCross) { TestGraphEveryWay(graph_small_cross_); } TEST_F(SignatureTest, Equals) { GenNodeMap gen_map1; ASSERT_THAT(GenNode::BuildGraphInMap(graph_circular_bidir_, &gen_map1), Eq(absl::OkStatus())); Subgraph::Identity id1; id1.insert(gen_map1["node1"].get()); id1.insert(gen_map1["node2"].get()); Subgraph sg1(id1); Signature sig1; sg1.ExtractForSignature(&sig1.map); ASSERT_THAT(sig1.Compute(), Eq(absl::OkStatus())); GenNodeMap gen_map2; ASSERT_THAT(GenNode::BuildGraphInMap(graph_circular_bidir_, &gen_map2), Eq(absl::OkStatus())); Subgraph::Identity id2; id2.insert(gen_map2["node1"].get()); id2.insert(gen_map2["node2"].get()); Subgraph sg2(id2); Signature sig2; sg2.ExtractForSignature(&sig2.map); ASSERT_THAT(sig2.Compute(), Eq(absl::OkStatus())); EXPECT_TRUE(sig1 == sig2); ++sig2.sig_short; EXPECT_FALSE(sig1 == sig2); --sig2.sig_short; EXPECT_TRUE(sig1 == sig2); ++sig2.sig_full[0]; EXPECT_FALSE(sig1 == sig2); --sig2.sig_full[0]; EXPECT_TRUE(sig1 == sig2); std::swap(sig2.nodes[0], sig2.nodes[1]); EXPECT_FALSE(sig1 == sig2); std::swap(sig2.nodes[0], sig2.nodes[1]); EXPECT_TRUE(sig1 == sig2); sig2.nodes.emplace_back(sig2.nodes[0]); EXPECT_FALSE(sig1 == sig2); EXPECT_FALSE(sig2 == sig1); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/sig_node.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/graph_analyzer/sig_node_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b4d56199-05c4-4fc6-ac2b-3999333517b7
cpp
tensorflow/tensorflow
tensor_slice_set
tensorflow/core/util/tensor_slice_set.cc
tensorflow/core/util/tensor_slice_set_test.cc
#include "tensorflow/core/util/tensor_slice_set.h" #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/tensor_slice_util.h" namespace tensorflow { namespace checkpoint { TensorSliceSet::TensorSliceSet(const TensorShape& shape, DataType type) : shape_(shape), type_(type) {} TensorSliceSet::~TensorSliceSet() = default; Status TensorSliceSet::Register(const TensorSlice& slice, const string& tag) { TensorShape result_shape; TF_RETURN_IF_ERROR(slice.SliceTensorShape(shape_, &result_shape)); string str = slice.DebugString(); if (slices_.empty()) { slices_hull_ = slice; } else { if (slices_hull_.Overlaps(slice)) { for (const auto& x : slices_) { if (slice.Overlaps(x.second.slice)) { return errors::Internal("Overlapping slices: existing slice = ", x.first, ", new slice = ", str); } } } slices_hull_.UpdateToCover(slice); } TensorSliceSet::SliceInfo info = {slice, tag, result_shape.num_elements()}; slices_.insert(std::make_pair(str, info)); return absl::OkStatus(); } bool TensorSliceSet::QueryMeta( const TensorSlice& slice, std::vector<std::pair<TensorSlice, string>>* results) const { results->clear(); Status s; string str = slice.DebugString(); const TensorSliceSet::SliceInfo* info = gtl::FindOrNull(slices_, str); if (info) { results->emplace_back(std::make_pair(info->slice, info->tag)); return true; } else { TensorShape target_shape; Status s; s = slice.SliceTensorShape(shape_, &target_shape); if (!s.ok()) { LOG(WARNING) << s; return false; } int64_t total_size = target_shape.num_elements(); int64_t overlap_size = 0; TensorSlice intersection; TensorShape inter_shape; for (const auto& x : slices_) { if (slice.Intersect(x.second.slice, &intersection)) { s = intersection.SliceTensorShape(shape_, &inter_shape); if (!s.ok()) { LOG(WARNING) << s; return false; } overlap_size += inter_shape.num_elements(); results->emplace_back(std::make_pair(x.second.slice, x.second.tag)); } } if (total_size == overlap_size) { return true; } else { results->clear(); return false; } } } Status RegisterTensorSlice( const string& name, const TensorShape& shape, DataType type, const string& tag, const TensorSlice& slice, std::unordered_map<string, TensorSliceSet*>* tensor_slices) { DCHECK_NE(tensor_slices, nullptr); TensorSliceSet* tss = gtl::FindPtrOrNull(*tensor_slices, name); if (!tss) { tss = new TensorSliceSet(shape, type); tensor_slices->insert(std::make_pair(name, tss)); } else { const TensorShape& tss_shape(tss->shape()); if (!shape.IsSameSize(tss_shape)) { return errors::Internal("Incompatible tensor shapes detected for tensor ", name, ": existing = ", tss_shape.DebugString(), ", new = ", shape.DebugString()); } if (type != tss->type()) { return errors::Internal("Incompatible tensor types detected for tensor ", name, ": existing = ", DataTypeString(tss->type()), ", new = ", DataTypeString(type)); } } return tss->Register(slice, tag); } } }
#include "tensorflow/core/util/tensor_slice_set.h" #include <utility> #include <vector> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { namespace checkpoint { namespace { TEST(TensorSliceSetTest, QueryMetaTwoD) { TensorShape shape({4, 5}); TensorSliceSet tss(shape, DT_INT32); TensorSlice slice_1 = TensorSlice::ParseOrDie("0,2:-"); TF_CHECK_OK(tss.Register(slice_1, "slice_1")); TensorSlice slice_2 = TensorSlice::ParseOrDie("2,2:0,3"); TF_CHECK_OK(tss.Register(slice_2, "slice_2")); TensorSlice slice_3 = TensorSlice::ParseOrDie("3,1:3,2"); TF_CHECK_OK(tss.Register(slice_3, "slice_3")); { TensorSlice s = TensorSlice::ParseOrDie("0,2:-"); std::vector<std::pair<TensorSlice, string>> results; EXPECT_TRUE(tss.QueryMeta(s, &results)); EXPECT_EQ(1, results.size()); EXPECT_EQ("0,2:-", results[0].first.DebugString()); EXPECT_EQ("slice_1", results[0].second); } { TensorSlice s = TensorSlice::ParseOrDie("1,1:-"); std::vector<std::pair<TensorSlice, string>> results; EXPECT_TRUE(tss.QueryMeta(s, &results)); EXPECT_EQ(1, results.size()); EXPECT_EQ("0,2:-", results[0].first.DebugString()); EXPECT_EQ("slice_1", results[0].second); } { TensorSlice s = TensorSlice::ParseOrDie("1,2:0,3"); std::vector<std::pair<TensorSlice, string>> results; EXPECT_TRUE(tss.QueryMeta(s, &results)); EXPECT_EQ(2, results.size()); if (results[0].second == "slice_2") { EXPECT_EQ("2,2:0,3", results[0].first.DebugString()); EXPECT_EQ("slice_2", results[0].second); EXPECT_EQ("0,2:-", results[1].first.DebugString()); EXPECT_EQ("slice_1", results[1].second); } else { EXPECT_EQ("0,2:-", results[0].first.DebugString()); EXPECT_EQ("slice_1", results[0].second); EXPECT_EQ("2,2:0,3", results[1].first.DebugString()); EXPECT_EQ("slice_2", results[1].second); } } { TensorSlice s = TensorSlice::ParseOrDie("1,2:2,3"); std::vector<std::pair<TensorSlice, string>> results; EXPECT_FALSE(tss.QueryMeta(s, &results)); EXPECT_EQ(0, results.size()); } } static void BM_RegisterOneByOne(::testing::benchmark::State& state) { TensorShape shape({static_cast<int>(state.max_iterations), 41}); TensorSliceSet slice_set(shape, DT_INT32); int i = 0; for (auto s : state) { TensorSlice part({{i, 1}, {0, -1}}); TF_CHECK_OK(slice_set.Register(part, part.DebugString())); ++i; } } BENCHMARK(BM_RegisterOneByOne); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/tensor_slice_set.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/tensor_slice_set_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b9f15842-1826-48a4-bfa0-e2fbdeeca04f
cpp
tensorflow/tensorflow
convert_async_collectives_to_sync
third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync.cc
third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync_test.cc
#include "xla/service/gpu/transforms/convert_async_collectives_to_sync.h" #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_schedule.h" #include "xla/service/gpu/backend_configs.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { absl::Status GpuConvertAsyncCollectivesToSync::ConvertAsyncInstructionsToSync( HloComputation* computation, absl::Span<const std::pair<HloInstruction*, HloInstruction*>> async_pairs) const { absl::flat_hash_map<HloInstruction*, HloInstruction*> replaced_ops; CollectiveBackendConfig sync_config; sync_config.set_is_sync(true); for (auto& [async_start, async_done] : async_pairs) { TF_ASSIGN_OR_RETURN(GpuBackendConfig gpu_config, async_start->backend_config<GpuBackendConfig>()); *gpu_config.mutable_collective_backend_config() = sync_config; TF_RETURN_IF_ERROR(async_start->set_backend_config(gpu_config)); replaced_ops[async_start] = nullptr; replaced_ops[async_done] = async_start; } HloModule* module = computation->parent(); const HloInstructionSequence& sequence = module->schedule().sequence(computation); std::vector<HloInstruction*> new_sequence; new_sequence.reserve(sequence.size()); for (HloInstruction* instr : sequence.instructions()) { auto it = replaced_ops.find(instr); if (it == replaced_ops.end()) { new_sequence.push_back(instr); continue; } if (it->second == nullptr) { continue; } new_sequence.push_back(it->second); new_sequence.push_back(instr); } module->schedule().set_sequence(computation, new_sequence); return absl::OkStatus(); } } }
#include "xla/service/gpu/transforms/convert_async_collectives_to_sync.h" #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/tests/hlo_test_base.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/util.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { using ::testing::IsFalse; using ::testing::IsTrue; class GpuConvertAsyncCollectivesToSyncTest : public HloTestBase { public: absl::Status RunPass(HloModule *module, bool expect_change, HloPredicate is_nop = {}) { TF_ASSIGN_OR_RETURN(bool changed, GpuConvertAsyncCollectivesToSync{is_nop}.Run(module)); EXPECT_EQ(changed, expect_change); return absl::OkStatus(); } bool IsSync(HloModule *module, std::string_view name) { const HloInstruction *inst = FindInstruction(module, name); if (inst == nullptr) { return false; } auto backend_config = inst->backend_config<GpuBackendConfig>() .value() .collective_backend_config(); return backend_config.is_sync(); } HloPredicate is_nop_simple_ = HloPredicateIsOp<HloOpcode::kBitcast, HloOpcode::kGetTupleElement, HloOpcode::kParameter>; }; TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduce) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3, replica_groups={{0,1}, {2,3}} id2 = f32[] bitcast(id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true, is_nop_simple_)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleCollectiveBroadcast) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true collective_broadcast { p0 = u32[8] parameter(0) ROOT result = u32[8] collective-broadcast(p0), replica_groups={{0,1}, {2,3}} } ENTRY main { data = u32[8] parameter(0) cb-start = ((u32[8]{0}), u32[8]{0}) async-start(u32[8]{0} %data), calls=collective_broadcast ROOT %ars = u32[8]{0} async-done(((u32[8]{0}), u32[8]{0}) %cb-start), calls=collective_broadcast } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "cb-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllReduceWithNonNop) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 id2 = u32[] add(id, id) ROOT done = u32[] all-reduce-done(start) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), false)); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllGather) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { a1 = u32[1, 2] parameter(0) ags = (u32[1, 2], u32[2, 2]) all-gather-start(a1), dimensions={0}, channel_id=3 ROOT allgather = u32[2,2] all-gather-done(ags) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "ags"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleCollectivePermute) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true ENTRY test_computation { p = u32[2] parameter(0) start = (u32[2], u32[2], u32[], u32[]) collective-permute-start(p), source_target_pairs={{0,1}, {1,0}} ROOT done = u32[2] collective-permute-done(start) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleReduceScatter) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true add { lhs = u32[] parameter(0) rhs = u32[] parameter(1) ROOT add = u32[] add(lhs, rhs) } reduce_scatter { p0 = u32[8] parameter(0) ROOT result = u32[4] reduce-scatter(p0), replica_groups={{0,3}, {1,2}}, dimensions={0}, to_apply=add } ENTRY main { data = u32[8] parameter(0) rs-start = ((u32[8]{0}), u32[4]{0}) async-start(u32[8]{0} %data), calls=reduce_scatter ROOT %ars = u32[4]{0} async-done(((u32[8]{0}), u32[4]{0}) %rs-start), calls=reduce_scatter } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "rs-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, SimpleAllToAll) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true all_to_all { p0 = u32[2] parameter(0) ROOT result = u32[2] all-to-all(p0), dimensions={0}, replica_groups={{0,1},{2,3}} } ENTRY test_computation { a1 = u32[2] parameter(0) a2a-start = ((u32[2]), u32[2]) async-start(u32[2] a1), calls=all_to_all ROOT a2s = u32[2] async-done(a2a-start), calls=all_to_all } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "a2a-start"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, ControlDeps) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 done1 = u32[] all-reduce-done(start1) start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4, control-predecessors={done1} done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightStreaming) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done1 = u32[] all-reduce-done(start1) done2 = u32[] all-reduce-done(start2) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightNested) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsTrue()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } TEST_F(GpuConvertAsyncCollectivesToSyncTest, MultipleInFlightNestedPartial) { const absl::string_view hlo_string = R"( HloModule test, is_scheduled=true apply_op { x = u32[] parameter(0) y = u32[] parameter(1) ROOT apply_op = u32[] add(x, y) } ENTRY test_computation { id = u32[] replica-id() start1 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=3 start2 = u32[] all-reduce-start(id), to_apply=apply_op, channel_id=4 done2 = u32[] all-reduce-done(start2) id2 = u32[] add(done2, done2) done1 = u32[] all-reduce-done(start1) ROOT x = u32[] add(done1, done2) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK(RunPass(module.get(), true)); EXPECT_THAT(IsSync(module.get(), "start1"), IsFalse()); EXPECT_THAT(IsSync(module.get(), "start2"), IsTrue()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/convert_async_collectives_to_sync_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6685bdc8-3ebc-494e-b6e0-36ecd722d50c
cpp
tensorflow/tensorflow
map_util
tensorflow/core/lib/gtl/map_util.h
third_party/xla/xla/tsl/lib/gtl/map_util_test.cc
#ifndef TENSORFLOW_CORE_LIB_GTL_MAP_UTIL_H_ #define TENSORFLOW_CORE_LIB_GTL_MAP_UTIL_H_ #include "xla/tsl/lib/gtl/map_util.h" namespace tensorflow { namespace gtl { using ::tsl::gtl::EraseKeyReturnValuePtr; using ::tsl::gtl::FindOrNull; using ::tsl::gtl::FindPtrOrNull; using ::tsl::gtl::FindWithDefault; using ::tsl::gtl::InsertIfNotPresent; using ::tsl::gtl::InsertOrUpdate; using ::tsl::gtl::LookupOrInsert; using ::tsl::gtl::ReverseMap; } } #endif
#include "xla/tsl/lib/gtl/map_util.h" #include <map> #include <set> #include <string> #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { TEST(MapUtil, Find) { typedef std::map<string, string> Map; Map m; EXPECT_EQ("", gtl::FindWithDefault(m, "foo", "")); m["foo"] = "bar"; EXPECT_EQ("bar", gtl::FindWithDefault(m, "foo", "")); EXPECT_EQ("bar", *gtl::FindOrNull(m, "foo")); EXPECT_TRUE(m.count("foo") > 0); EXPECT_EQ(m["foo"], "bar"); } TEST(MapUtil, LookupOrInsert) { typedef std::map<string, string> Map; Map m; EXPECT_EQ("xyz", gtl::LookupOrInsert(&m, "foo", "xyz")); EXPECT_EQ("xyz", gtl::LookupOrInsert(&m, "foo", "abc")); } TEST(MapUtil, InsertIfNotPresent) { typedef std::set<int> Set; Set s; EXPECT_TRUE(gtl::InsertIfNotPresent(&s, 0)); EXPECT_EQ(s.count(0), 1); EXPECT_FALSE(gtl::InsertIfNotPresent(&s, 0)); EXPECT_EQ(s.count(0), 1); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/lib/gtl/map_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/gtl/map_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe4ae289-cef5-456c-802a-cfe0bf6dd346
cpp
google/libaddressinput
preload_supplier
cpp/src/preload_supplier.cc
cpp/test/preload_supplier_test.cc
#include <libaddressinput/preload_supplier.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/callback.h> #include <libaddressinput/supplier.h> #include <algorithm> #include <cassert> #include <cstddef> #include <map> #include <memory> #include <set> #include <stack> #include <string> #include <vector> #include "lookup_key.h" #include "region_data_constants.h" #include "retriever.h" #include "rule.h" #include "util/json.h" #include "util/size.h" #include "util/string_compare.h" namespace i18n { namespace addressinput { namespace { class IndexLess { public: bool operator()(const std::string& a, const std::string& b) const { static const StringCompare kStringCompare; return kStringCompare.NaturalLess(a, b); } }; } class IndexMap : public std::map<std::string, const Rule*, IndexLess> {}; namespace { class Helper { public: Helper(const Helper&) = delete; Helper& operator=(const Helper&) = delete; Helper(const std::string& region_code, const std::string& key, const PreloadSupplier::Callback& loaded, const Retriever& retriever, std::set<std::string>* pending, IndexMap* rule_index, IndexMap* language_rule_index, std::vector<const Rule*>* rule_storage, std::map<std::string, const Rule*>* region_rules) : region_code_(region_code), loaded_(loaded), pending_(pending), rule_index_(rule_index), language_rule_index_(language_rule_index), rule_storage_(rule_storage), region_rules_(region_rules), retrieved_(BuildCallback(this, &Helper::OnRetrieved)) { assert(pending_ != nullptr); assert(rule_index_ != nullptr); assert(rule_storage_ != nullptr); assert(region_rules_ != nullptr); assert(retrieved_ != nullptr); pending_->insert(key); retriever.Retrieve(key, *retrieved_); } private: ~Helper() = default; void OnRetrieved(bool success, const std::string& key, const std::string& data) { int rule_count = 0; size_t status = pending_->erase(key); assert(status == 1); (void)status; Json json; std::string id; std::vector<const Rule*> sub_rules; auto last_index_it = rule_index_->end(); auto last_latin_it = rule_index_->end(); auto language_index_it = language_rule_index_->end(); auto last_region_it = region_rules_->end(); IndexMap::const_iterator hints[size(LookupKey::kHierarchy) - 1]; std::fill(hints, hints + size(hints), rule_index_->end()); if (!success) { goto callback; } if (!json.ParseObject(data)) { success = false; goto callback; } for (auto ptr : json.GetSubDictionaries()) { assert(ptr != nullptr); if (!ptr->GetStringValueForKey("id", &id)) { success = false; goto callback; } assert(!id.empty()); size_t depth = std::count(id.begin(), id.end(), '/') - 1; assert(depth < size(LookupKey::kHierarchy)); AddressField field = LookupKey::kHierarchy[depth]; auto* rule = new Rule; if (field == COUNTRY) { rule->CopyFrom(Rule::GetDefault()); } rule->ParseJsonRule(*ptr); assert(id == rule->GetId()); rule_storage_->push_back(rule); if (depth > 0) { sub_rules.push_back(rule); } last_index_it = rule_index_->emplace_hint(last_index_it, id, rule); last_region_it = region_rules_->emplace_hint(last_region_it, id, rule); ++rule_count; } for (auto ptr : sub_rules) { assert(ptr != nullptr); std::stack<const Rule*> hierarchy; hierarchy.push(ptr); for (std::string parent_id(ptr->GetId());;) { std::string::size_type pos = parent_id.rfind('/'); if (pos == sizeof "data/ZZ" - 1) { break; } parent_id.resize(pos); IndexMap::const_iterator* const hint = &hints[hierarchy.size() - 1]; if (*hint == rule_index_->end() || (*hint)->first != parent_id) { *hint = rule_index_->find(parent_id); } assert(*hint != rule_index_->end()); hierarchy.push((*hint)->second); } std::string human_id(ptr->GetId().substr(0, sizeof "data/ZZ" - 1)); std::string latin_id(human_id); for (; !hierarchy.empty(); hierarchy.pop()) { const Rule* rule = hierarchy.top(); human_id.push_back('/'); if (!rule->GetName().empty()) { human_id.append(rule->GetName()); } else { const std::string& id = rule->GetId(); std::string::size_type pos = id.rfind('/'); assert(pos != std::string::npos); human_id.append(id.substr(pos + 1)); } if (!rule->GetLatinName().empty()) { latin_id.push_back('/'); latin_id.append(rule->GetLatinName()); } } { const std::string& id = ptr->GetId(); std::string::size_type pos = id.rfind("--"); if (pos != std::string::npos) { language_index_it = language_rule_index_->emplace_hint( language_index_it, human_id, ptr); human_id.append(id, pos, id.size() - pos); } } last_index_it = rule_index_->emplace_hint(last_index_it, human_id, ptr); if (std::count(human_id.begin(), human_id.end(), '/') == std::count(latin_id.begin(), latin_id.end(), '/')) { last_latin_it = rule_index_->emplace_hint(last_latin_it, latin_id, ptr); } } callback: loaded_(success, region_code_, rule_count); delete this; } const std::string region_code_; const PreloadSupplier::Callback& loaded_; std::set<std::string>* const pending_; IndexMap* const rule_index_; IndexMap* const language_rule_index_; std::vector<const Rule*>* const rule_storage_; std::map<std::string, const Rule*>* const region_rules_; const std::unique_ptr<const Retriever::Callback> retrieved_; }; std::string KeyFromRegionCode(const std::string& region_code) { AddressData address; address.region_code = region_code; LookupKey lookup_key; lookup_key.FromAddress(address); return lookup_key.ToKeyString(0); } } PreloadSupplier::PreloadSupplier(const Source* source, Storage* storage) : retriever_(new Retriever(source, storage)), pending_(), rule_index_(new IndexMap), language_rule_index_(new IndexMap), rule_storage_(), region_rules_() {} PreloadSupplier::~PreloadSupplier() { for (auto ptr : rule_storage_) { delete ptr; } } void PreloadSupplier::Supply(const LookupKey& lookup_key, const Supplier::Callback& supplied) { Supplier::RuleHierarchy hierarchy; bool success = GetRuleHierarchy(lookup_key, &hierarchy, false); supplied(success, lookup_key, hierarchy); } void PreloadSupplier::SupplyGlobally(const LookupKey& lookup_key, const Supplier::Callback& supplied) { Supplier::RuleHierarchy hierarchy; bool success = GetRuleHierarchy(lookup_key, &hierarchy, true); supplied(success, lookup_key, hierarchy); } const Rule* PreloadSupplier::GetRule(const LookupKey& lookup_key) const { assert(IsLoaded(lookup_key.GetRegionCode())); Supplier::RuleHierarchy hierarchy; if (!GetRuleHierarchy(lookup_key, &hierarchy, false)) { return nullptr; } return hierarchy.rule[lookup_key.GetDepth()]; } void PreloadSupplier::LoadRules(const std::string& region_code, const Callback& loaded) { const std::string key = KeyFromRegionCode(region_code); if (IsLoadedKey(key)) { loaded(true, region_code, 0); return; } if (IsPendingKey(key)) { return; } new Helper(region_code, key, loaded, *retriever_, &pending_, rule_index_.get(), language_rule_index_.get(), &rule_storage_, &region_rules_[region_code]); } const std::map<std::string, const Rule*>& PreloadSupplier::GetRulesForRegion( const std::string& region_code) const { assert(IsLoaded(region_code)); return region_rules_.find(region_code)->second; } bool PreloadSupplier::IsLoaded(const std::string& region_code) const { return IsLoadedKey(KeyFromRegionCode(region_code)); } bool PreloadSupplier::IsPending(const std::string& region_code) const { return IsPendingKey(KeyFromRegionCode(region_code)); } bool PreloadSupplier::GetRuleHierarchy(const LookupKey& lookup_key, RuleHierarchy* hierarchy, const bool search_globally) const { assert(hierarchy != nullptr); if (RegionDataConstants::IsSupported(lookup_key.GetRegionCode())) { size_t max_depth = std::min( lookup_key.GetDepth(), RegionDataConstants::GetMaxLookupKeyDepth(lookup_key.GetRegionCode())); for (size_t depth = 0; depth <= max_depth; ++depth) { const std::string key = lookup_key.ToKeyString(depth); const Rule* rule = nullptr; auto it = rule_index_->find(key); if (it != rule_index_->end()) { rule = it->second; } else if (search_globally && depth > 0 && !hierarchy->rule[0]->GetLanguages().empty()) { it = language_rule_index_->find(key); if (it != language_rule_index_->end()) { rule = it->second; } } if (rule == nullptr) { return depth > 0; } hierarchy->rule[depth] = rule; } } return true; } size_t PreloadSupplier::GetLoadedRuleDepth( const std::string& region_code) const { const size_t code_size = 7; std::string full_code = region_code.substr(0, code_size); size_t depth = 0; auto it = rule_index_->find(full_code); while (it != rule_index_->end()) { const Rule* rule = it->second; depth++; if (rule->GetSubKeys().empty()) return depth; full_code += "/" + rule->GetSubKeys()[0]; it = rule_index_->find(full_code); } return depth; } bool PreloadSupplier::IsLoadedKey(const std::string& key) const { return rule_index_->find(key) != rule_index_->end(); } bool PreloadSupplier::IsPendingKey(const std::string& key) const { return pending_.find(key) != pending_.end(); } } }
#include <libaddressinput/preload_supplier.h> #include <libaddressinput/address_data.h> #include <libaddressinput/callback.h> #include <libaddressinput/null_storage.h> #include <libaddressinput/supplier.h> #include <cstddef> #include <memory> #include <string> #include <gtest/gtest.h> #include "lookup_key.h" #include "rule.h" #include "testdata_source.h" namespace { using i18n::addressinput::AddressData; using i18n::addressinput::BuildCallback; using i18n::addressinput::LookupKey; using i18n::addressinput::NullStorage; using i18n::addressinput::PreloadSupplier; using i18n::addressinput::Rule; using i18n::addressinput::Supplier; using i18n::addressinput::TestdataSource; class PreloadSupplierTest : public testing::Test { public: PreloadSupplierTest(const PreloadSupplierTest&) = delete; PreloadSupplierTest& operator=(const PreloadSupplierTest&) = delete; protected: PreloadSupplierTest() : supplier_(new TestdataSource(true), new NullStorage), loaded_callback_(BuildCallback(this, &PreloadSupplierTest::OnLoaded)), supplied_callback_( BuildCallback(this, &PreloadSupplierTest::OnSupplied)) {} PreloadSupplier supplier_; const std::unique_ptr<const PreloadSupplier::Callback> loaded_callback_; const std::unique_ptr<const Supplier::Callback> supplied_callback_; Supplier::RuleHierarchy hierarchy_; private: void OnLoaded(bool success, const std::string& region_code, int num_rules) { ASSERT_TRUE(success); ASSERT_FALSE(region_code.empty()); ASSERT_LT(0, num_rules); ASSERT_TRUE(supplier_.IsLoaded(region_code)); } void OnSupplied(bool success, const LookupKey& lookup_key, const Supplier::RuleHierarchy& hierarchy) { ASSERT_TRUE(success); hierarchy_ = hierarchy; } }; TEST_F(PreloadSupplierTest, GetUsRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey us_key; const AddressData us_address{.region_code = "US"}; us_key.FromAddress(us_address); const Rule* rule = supplier_.GetRule(us_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/US", rule->GetId()); } TEST_F(PreloadSupplierTest, GetUsCaRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey ca_key; const AddressData ca_address{ .region_code = "US", .administrative_area = "CA", }; ca_key.FromAddress(ca_address); const Rule* rule = supplier_.GetRule(ca_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/US/CA", rule->GetId()); } TEST_F(PreloadSupplierTest, GetUsCaliforniaRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey ca_key; const AddressData ca_address{ .region_code = "US", .administrative_area = "California", }; ca_key.FromAddress(ca_address); const Rule* rule = supplier_.GetRule(ca_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/US/CA", rule->GetId()); } TEST_F(PreloadSupplierTest, GetZwRule) { supplier_.LoadRules("ZW", *loaded_callback_); LookupKey zw_key; const AddressData zw_address{.region_code = "ZW"}; zw_key.FromAddress(zw_address); const Rule* rule = supplier_.GetRule(zw_key); ASSERT_TRUE(rule != nullptr); EXPECT_EQ("data/ZW", rule->GetId()); } TEST_F(PreloadSupplierTest, GetUnknownRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey unknown_key; const AddressData unknown_address{ .region_code = "US", .administrative_area = "ZZ", }; unknown_key.FromAddress(unknown_address); const Rule* rule = supplier_.GetRule(unknown_key); EXPECT_TRUE(rule == nullptr); } TEST_F(PreloadSupplierTest, GetTooPreciseRule) { supplier_.LoadRules("US", *loaded_callback_); LookupKey precise_key; const AddressData precise_address{ .region_code = "US", .administrative_area = "CA", .locality = "Mountain View", }; precise_key.FromAddress(precise_address); const Rule* rule = supplier_.GetRule(precise_key); EXPECT_TRUE(rule == nullptr); } TEST_F(PreloadSupplierTest, GetRulesForRegion) { supplier_.LoadRules("CN", *loaded_callback_); const auto& rules = supplier_.GetRulesForRegion("CN"); EXPECT_TRUE(rules.find("data/CN") != rules.end()); EXPECT_LT(1U, rules.size()); } TEST_F(PreloadSupplierTest, SupplyRegionCode) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "NB", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionCode) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "NB", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionName) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "New Brunswick", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionName) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "New Brunswick", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameLanguage) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "Nouveau-Brunswick", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); EXPECT_TRUE(hierarchy_.rule[1] == nullptr); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameLanguageSet) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "Nouveau-Brunswick", .language_code = "fr", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB--fr", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionNameLanguage) { supplier_.LoadRules("CA", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CA", .administrative_area = "Nouveau-Brunswick", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CA/NB--fr", hierarchy_.rule[1]->GetId()); EXPECT_TRUE(hierarchy_.rule[2] == nullptr); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameHK) { supplier_.LoadRules("HK", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "HK", .administrative_area = "新界", .locality = "大嶼山石壁", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/HK/新界", hierarchy_.rule[1]->GetId()); ASSERT_TRUE(hierarchy_.rule[2] != nullptr); EXPECT_EQ("data/HK/新界/大嶼山石壁", hierarchy_.rule[2]->GetId()); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyGloballyRegionNameHKEnglish) { supplier_.LoadRules("HK", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "HK", .administrative_area = "New Territories", .locality = "Tsing Yi", }; key.FromAddress(address); supplier_.SupplyGlobally(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/HK/New Territories--en", hierarchy_.rule[1]->GetId()); ASSERT_TRUE(hierarchy_.rule[2] != nullptr); EXPECT_EQ("data/HK/New Territories/Tsing Yi--en", hierarchy_.rule[2]->GetId()); EXPECT_TRUE(hierarchy_.rule[3] == nullptr); } TEST_F(PreloadSupplierTest, SupplyRegionNameAllLevels) { supplier_.LoadRules("CN", *loaded_callback_); LookupKey key; const AddressData address{ .region_code = "CN", .administrative_area = "云南省", .locality = "临沧市", .dependent_locality = "临翔区", }; key.FromAddress(address); supplier_.Supply(key, *supplied_callback_); ASSERT_TRUE(hierarchy_.rule[0] != nullptr); EXPECT_EQ(key.ToKeyString(0), hierarchy_.rule[0]->GetId()); ASSERT_TRUE(hierarchy_.rule[1] != nullptr); EXPECT_EQ("data/CN/云南省", hierarchy_.rule[1]->GetId()); ASSERT_TRUE(hierarchy_.rule[2] != nullptr); EXPECT_EQ("data/CN/云南省/临沧市", hierarchy_.rule[2]->GetId()); ASSERT_TRUE(hierarchy_.rule[3] != nullptr); EXPECT_EQ("data/CN/云南省/临沧市/临翔区", hierarchy_.rule[3]->GetId()); } TEST_F(PreloadSupplierTest, GetLoadedRuleDepth) { supplier_.LoadRules("CA", *loaded_callback_); EXPECT_EQ(2, supplier_.GetLoadedRuleDepth("data/CA")); EXPECT_EQ(0, supplier_.GetLoadedRuleDepth( "data/CN")); supplier_.LoadRules("CN", *loaded_callback_); EXPECT_EQ(4, supplier_.GetLoadedRuleDepth( "data/CN")); EXPECT_EQ( 0, supplier_.GetLoadedRuleDepth("data/PP")); } }
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/src/preload_supplier.cc
https://github.com/google/libaddressinput/blob/2610f7b1043d6784ada41392fc9392d1ea09ea07/cpp/test/preload_supplier_test.cc
2610f7b1043d6784ada41392fc9392d1ea09ea07
d79cc799-2095-4818-baf9-bbf5f8ee9e8a
cpp
google/quiche
oblivious_http_header_key_config
quiche/oblivious_http/common/oblivious_http_header_key_config.cc
quiche/oblivious_http/common/oblivious_http_header_key_config_test.cc
#include "quiche/oblivious_http/common/oblivious_http_header_key_config.h" #include <algorithm> #include <cstdint> #include <functional> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "openssl/base.h" #include "openssl/hpke.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_data_writer.h" #include "quiche/common/quiche_endian.h" namespace quiche { namespace { constexpr size_t kSizeOfHpkeKemId = 2; constexpr size_t kSizeOfSymmetricAlgorithmHpkeKdfId = 2; constexpr size_t kSizeOfSymmetricAlgorithmHpkeAeadId = 2; absl::StatusOr<const EVP_HPKE_KEM*> CheckKemId(uint16_t kem_id) { switch (kem_id) { case EVP_HPKE_DHKEM_X25519_HKDF_SHA256: return EVP_hpke_x25519_hkdf_sha256(); default: return absl::UnimplementedError("No support for this KEM ID."); } } absl::StatusOr<const EVP_HPKE_KDF*> CheckKdfId(uint16_t kdf_id) { switch (kdf_id) { case EVP_HPKE_HKDF_SHA256: return EVP_hpke_hkdf_sha256(); default: return absl::UnimplementedError("No support for this KDF ID."); } } absl::StatusOr<const EVP_HPKE_AEAD*> CheckAeadId(uint16_t aead_id) { switch (aead_id) { case EVP_HPKE_AES_128_GCM: return EVP_hpke_aes_128_gcm(); case EVP_HPKE_AES_256_GCM: return EVP_hpke_aes_256_gcm(); case EVP_HPKE_CHACHA20_POLY1305: return EVP_hpke_chacha20_poly1305(); default: return absl::UnimplementedError("No support for this AEAD ID."); } } } ObliviousHttpHeaderKeyConfig::ObliviousHttpHeaderKeyConfig(uint8_t key_id, uint16_t kem_id, uint16_t kdf_id, uint16_t aead_id) : key_id_(key_id), kem_id_(kem_id), kdf_id_(kdf_id), aead_id_(aead_id) {} absl::StatusOr<ObliviousHttpHeaderKeyConfig> ObliviousHttpHeaderKeyConfig::Create(uint8_t key_id, uint16_t kem_id, uint16_t kdf_id, uint16_t aead_id) { ObliviousHttpHeaderKeyConfig instance(key_id, kem_id, kdf_id, aead_id); auto is_config_ok = instance.ValidateKeyConfig(); if (!is_config_ok.ok()) { return is_config_ok; } return instance; } absl::Status ObliviousHttpHeaderKeyConfig::ValidateKeyConfig() const { auto supported_kem = CheckKemId(kem_id_); if (!supported_kem.ok()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported KEM ID:", kem_id_)); } auto supported_kdf = CheckKdfId(kdf_id_); if (!supported_kdf.ok()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported KDF ID:", kdf_id_)); } auto supported_aead = CheckAeadId(aead_id_); if (!supported_aead.ok()) { return absl::InvalidArgumentError( absl::StrCat("Unsupported AEAD ID:", aead_id_)); } return absl::OkStatus(); } const EVP_HPKE_KEM* ObliviousHttpHeaderKeyConfig::GetHpkeKem() const { auto kem = CheckKemId(kem_id_); QUICHE_CHECK_OK(kem.status()); return kem.value(); } const EVP_HPKE_KDF* ObliviousHttpHeaderKeyConfig::GetHpkeKdf() const { auto kdf = CheckKdfId(kdf_id_); QUICHE_CHECK_OK(kdf.status()); return kdf.value(); } const EVP_HPKE_AEAD* ObliviousHttpHeaderKeyConfig::GetHpkeAead() const { auto aead = CheckAeadId(aead_id_); QUICHE_CHECK_OK(aead.status()); return aead.value(); } std::string ObliviousHttpHeaderKeyConfig::SerializeRecipientContextInfo( absl::string_view request_label) const { uint8_t zero_byte = 0x00; int buf_len = request_label.size() + kHeaderLength + sizeof(zero_byte); std::string info(buf_len, '\0'); QuicheDataWriter writer(info.size(), info.data()); QUICHE_CHECK(writer.WriteStringPiece(request_label)); QUICHE_CHECK(writer.WriteUInt8(zero_byte)); QUICHE_CHECK(writer.WriteUInt8(key_id_)); QUICHE_CHECK(writer.WriteUInt16(kem_id_)); QUICHE_CHECK(writer.WriteUInt16(kdf_id_)); QUICHE_CHECK(writer.WriteUInt16(aead_id_)); return info; } absl::Status ObliviousHttpHeaderKeyConfig::ParseOhttpPayloadHeader( absl::string_view payload_bytes) const { if (payload_bytes.empty()) { return absl::InvalidArgumentError("Empty request payload."); } QuicheDataReader reader(payload_bytes); return ParseOhttpPayloadHeader(reader); } absl::Status ObliviousHttpHeaderKeyConfig::ParseOhttpPayloadHeader( QuicheDataReader& reader) const { uint8_t key_id; if (!reader.ReadUInt8(&key_id)) { return absl::InvalidArgumentError("Failed to read key_id from header."); } if (key_id != key_id_) { return absl::InvalidArgumentError( absl::StrCat("KeyID in request:", static_cast<uint16_t>(key_id), " doesn't match with server's public key " "configuration KeyID:", static_cast<uint16_t>(key_id_))); } uint16_t kem_id; if (!reader.ReadUInt16(&kem_id)) { return absl::InvalidArgumentError("Failed to read kem_id from header."); } if (kem_id != kem_id_) { return absl::InvalidArgumentError( absl::StrCat("Received Invalid kemID:", kem_id, " Expected:", kem_id_)); } uint16_t kdf_id; if (!reader.ReadUInt16(&kdf_id)) { return absl::InvalidArgumentError("Failed to read kdf_id from header."); } if (kdf_id != kdf_id_) { return absl::InvalidArgumentError( absl::StrCat("Received Invalid kdfID:", kdf_id, " Expected:", kdf_id_)); } uint16_t aead_id; if (!reader.ReadUInt16(&aead_id)) { return absl::InvalidArgumentError("Failed to read aead_id from header."); } if (aead_id != aead_id_) { return absl::InvalidArgumentError(absl::StrCat( "Received Invalid aeadID:", aead_id, " Expected:", aead_id_)); } return absl::OkStatus(); } absl::StatusOr<uint8_t> ObliviousHttpHeaderKeyConfig::ParseKeyIdFromObliviousHttpRequestPayload( absl::string_view payload_bytes) { if (payload_bytes.empty()) { return absl::InvalidArgumentError("Empty request payload."); } QuicheDataReader reader(payload_bytes); uint8_t key_id; if (!reader.ReadUInt8(&key_id)) { return absl::InvalidArgumentError("Failed to read key_id from payload."); } return key_id; } std::string ObliviousHttpHeaderKeyConfig::SerializeOhttpPayloadHeader() const { int buf_len = sizeof(key_id_) + sizeof(kem_id_) + sizeof(kdf_id_) + sizeof(aead_id_); std::string hdr(buf_len, '\0'); QuicheDataWriter writer(hdr.size(), hdr.data()); QUICHE_CHECK(writer.WriteUInt8(key_id_)); QUICHE_CHECK(writer.WriteUInt16(kem_id_)); QUICHE_CHECK(writer.WriteUInt16(kdf_id_)); QUICHE_CHECK(writer.WriteUInt16(aead_id_)); return hdr; } namespace { absl::StatusOr<uint16_t> KeyLength(uint16_t kem_id) { auto supported_kem = CheckKemId(kem_id); if (!supported_kem.ok()) { return absl::InvalidArgumentError(absl::StrCat( "Unsupported KEM ID:", kem_id, ". public key length is unknown.")); } return EVP_HPKE_KEM_public_key_len(supported_kem.value()); } absl::StatusOr<std::string> SerializeOhttpKeyWithPublicKey( uint8_t key_id, absl::string_view public_key, const std::vector<ObliviousHttpHeaderKeyConfig>& ohttp_configs) { auto ohttp_config = ohttp_configs[0]; static_assert(sizeof(ohttp_config.GetHpkeKemId()) == kSizeOfHpkeKemId && sizeof(ohttp_config.GetHpkeKdfId()) == kSizeOfSymmetricAlgorithmHpkeKdfId && sizeof(ohttp_config.GetHpkeAeadId()) == kSizeOfSymmetricAlgorithmHpkeAeadId, "Size of HPKE IDs should match RFC specification."); uint16_t symmetric_algs_length = ohttp_configs.size() * (kSizeOfSymmetricAlgorithmHpkeKdfId + kSizeOfSymmetricAlgorithmHpkeAeadId); int buf_len = sizeof(key_id) + kSizeOfHpkeKemId + public_key.size() + sizeof(symmetric_algs_length) + symmetric_algs_length; std::string ohttp_key_configuration(buf_len, '\0'); QuicheDataWriter writer(ohttp_key_configuration.size(), ohttp_key_configuration.data()); if (!writer.WriteUInt8(key_id)) { return absl::InternalError("Failed to serialize OHTTP key.[key_id]"); } if (!writer.WriteUInt16(ohttp_config.GetHpkeKemId())) { return absl::InternalError( "Failed to serialize OHTTP key.[kem_id]"); } if (!writer.WriteStringPiece(public_key)) { return absl::InternalError( "Failed to serialize OHTTP key.[public_key]"); } if (!writer.WriteUInt16(symmetric_algs_length)) { return absl::InternalError( "Failed to serialize OHTTP key.[symmetric_algs_length]"); } for (const auto& item : ohttp_configs) { if (item.GetHpkeKemId() != ohttp_config.GetHpkeKemId()) { QUICHE_BUG(ohttp_key_configs_builder_parser) << "ObliviousHttpKeyConfigs object cannot hold ConfigMap of " "different KEM IDs:[ " << item.GetHpkeKemId() << "," << ohttp_config.GetHpkeKemId() << " ]for a given key_id:" << static_cast<uint16_t>(key_id); } if (!writer.WriteUInt16(item.GetHpkeKdfId())) { return absl::InternalError( "Failed to serialize OHTTP key.[kdf_id]"); } if (!writer.WriteUInt16(item.GetHpkeAeadId())) { return absl::InternalError( "Failed to serialize OHTTP key.[aead_id]"); } } QUICHE_DCHECK_EQ(writer.remaining(), 0u); return ohttp_key_configuration; } std::string GetDebugStringForFailedKeyConfig( const ObliviousHttpKeyConfigs::OhttpKeyConfig& failed_key_config) { std::string debug_string = "[ "; absl::StrAppend(&debug_string, "key_id:", static_cast<uint16_t>(failed_key_config.key_id), " , kem_id:", failed_key_config.kem_id, ". Printing HEX formatted public_key:", absl::BytesToHexString(failed_key_config.public_key)); absl::StrAppend(&debug_string, ", symmetric_algorithms: { "); for (const auto& symmetric_config : failed_key_config.symmetric_algorithms) { absl::StrAppend(&debug_string, "{kdf_id: ", symmetric_config.kdf_id, ", aead_id:", symmetric_config.aead_id, " }"); } absl::StrAppend(&debug_string, " } ]"); return debug_string; } absl::Status StoreKeyConfigIfValid( ObliviousHttpKeyConfigs::OhttpKeyConfig key_config, absl::btree_map<uint8_t, std::vector<ObliviousHttpHeaderKeyConfig>, std::greater<uint8_t>>& configs, absl::flat_hash_map<uint8_t, std::string>& keys) { if (!CheckKemId(key_config.kem_id).ok() || key_config.public_key.size() != KeyLength(key_config.kem_id).value()) { QUICHE_LOG(ERROR) << "Failed to process: " << GetDebugStringForFailedKeyConfig(key_config); return absl::InvalidArgumentError( absl::StrCat("Invalid key_config! [KEM ID:", key_config.kem_id, "]")); } for (const auto& symmetric_config : key_config.symmetric_algorithms) { if (!CheckKdfId(symmetric_config.kdf_id).ok() || !CheckAeadId(symmetric_config.aead_id).ok()) { QUICHE_LOG(ERROR) << "Failed to process: " << GetDebugStringForFailedKeyConfig(key_config); return absl::InvalidArgumentError( absl::StrCat("Invalid key_config! [KDF ID:", symmetric_config.kdf_id, ", AEAD ID:", symmetric_config.aead_id, "]")); } auto ohttp_config = ObliviousHttpHeaderKeyConfig::Create( key_config.key_id, key_config.kem_id, symmetric_config.kdf_id, symmetric_config.aead_id); if (ohttp_config.ok()) { configs[key_config.key_id].emplace_back(std::move(ohttp_config.value())); } } keys.emplace(key_config.key_id, std::move(key_config.public_key)); return absl::OkStatus(); } } absl::StatusOr<ObliviousHttpKeyConfigs> ObliviousHttpKeyConfigs::ParseConcatenatedKeys(absl::string_view key_config) { ConfigMap configs; PublicKeyMap keys; auto reader = QuicheDataReader(key_config); while (!reader.IsDoneReading()) { absl::Status status = ReadSingleKeyConfig(reader, configs, keys); if (!status.ok()) return status; } return ObliviousHttpKeyConfigs(std::move(configs), std::move(keys)); } absl::StatusOr<ObliviousHttpKeyConfigs> ObliviousHttpKeyConfigs::Create( absl::flat_hash_set<ObliviousHttpKeyConfigs::OhttpKeyConfig> ohttp_key_configs) { if (ohttp_key_configs.empty()) { return absl::InvalidArgumentError("Empty input."); } ConfigMap configs_map; PublicKeyMap keys_map; for (auto& ohttp_key_config : ohttp_key_configs) { auto result = StoreKeyConfigIfValid(std::move(ohttp_key_config), configs_map, keys_map); if (!result.ok()) { return result; } } auto oblivious_configs = ObliviousHttpKeyConfigs(std::move(configs_map), std::move(keys_map)); return oblivious_configs; } absl::StatusOr<ObliviousHttpKeyConfigs> ObliviousHttpKeyConfigs::Create( const ObliviousHttpHeaderKeyConfig& single_key_config, absl::string_view public_key) { if (public_key.empty()) { return absl::InvalidArgumentError("Empty input."); } if (auto key_length = KeyLength(single_key_config.GetHpkeKemId()); public_key.size() != key_length.value()) { return absl::InvalidArgumentError(absl::StrCat( "Invalid key. Key size mismatch. Expected:", key_length.value(), " Actual:", public_key.size())); } ConfigMap configs; PublicKeyMap keys; uint8_t key_id = single_key_config.GetKeyId(); keys.emplace(key_id, public_key); configs[key_id].emplace_back(std::move(single_key_config)); return ObliviousHttpKeyConfigs(std::move(configs), std::move(keys)); } absl::StatusOr<std::string> ObliviousHttpKeyConfigs::GenerateConcatenatedKeys() const { std::string concatenated_keys; for (const auto& [key_id, ohttp_configs] : configs_) { auto key = public_keys_.find(key_id); if (key == public_keys_.end()) { return absl::InternalError( "Failed to serialize. No public key found for key_id"); } auto serialized = SerializeOhttpKeyWithPublicKey(key_id, key->second, ohttp_configs); if (!serialized.ok()) { return absl::InternalError("Failed to serialize OHTTP key configs."); } absl::StrAppend(&concatenated_keys, serialized.value()); } return concatenated_keys; } ObliviousHttpHeaderKeyConfig ObliviousHttpKeyConfigs::PreferredConfig() const { return configs_.begin()->second.front(); } absl::StatusOr<absl::string_view> ObliviousHttpKeyConfigs::GetPublicKeyForId( uint8_t key_id) const { auto key = public_keys_.find(key_id); if (key == public_keys_.end()) { return absl::NotFoundError("No public key found for key_id"); } return key->second; } absl::Status ObliviousHttpKeyConfigs::ReadSingleKeyConfig( QuicheDataReader& reader, ConfigMap& configs, PublicKeyMap& keys) { uint8_t key_id; uint16_t kem_id; if (!reader.ReadUInt8(&key_id) || !reader.ReadUInt16(&kem_id)) { return absl::InvalidArgumentError("Invalid key_config!"); } auto maybe_key_length = KeyLength(kem_id); if (!maybe_key_length.ok()) { return maybe_key_length.status(); } const int key_length = maybe_key_length.value(); std::string key_str(key_length, '\0'); if (!reader.ReadBytes(key_str.data(), key_length)) { return absl::InvalidArgumentError("Invalid key_config!"); } if (!keys.insert({key_id, std::move(key_str)}).second) { return absl::InvalidArgumentError("Duplicate key_id's in key_config!"); } absl::string_view alg_bytes; if (!reader.ReadStringPiece16(&alg_bytes)) { return absl::InvalidArgumentError("Invalid key_config!"); } QuicheDataReader sub_reader(alg_bytes); while (!sub_reader.IsDoneReading()) { uint16_t kdf_id; uint16_t aead_id; if (!sub_reader.ReadUInt16(&kdf_id) || !sub_reader.ReadUInt16(&aead_id)) { return absl::InvalidArgumentError("Invalid key_config!"); } absl::StatusOr<ObliviousHttpHeaderKeyConfig> maybe_cfg = ObliviousHttpHeaderKeyConfig::Create(key_id, kem_id, kdf_id, aead_id); if (!maybe_cfg.ok()) { return maybe_cfg.status(); } configs[key_id].emplace_back(std::move(maybe_cfg.value())); } return absl::OkStatus(); } }
#include "quiche/oblivious_http/common/oblivious_http_header_key_config.h" #include <cstdint> #include <string> #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "openssl/hpke.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_data_writer.h" namespace quiche { namespace { using ::testing::AllOf; using ::testing::Property; using ::testing::StrEq; using ::testing::UnorderedElementsAre; using ::testing::UnorderedElementsAreArray; std::string BuildHeader(uint8_t key_id, uint16_t kem_id, uint16_t kdf_id, uint16_t aead_id) { int buf_len = sizeof(key_id) + sizeof(kem_id) + sizeof(kdf_id) + sizeof(aead_id); std::string hdr(buf_len, '\0'); QuicheDataWriter writer(hdr.size(), hdr.data()); EXPECT_TRUE(writer.WriteUInt8(key_id)); EXPECT_TRUE(writer.WriteUInt16(kem_id)); EXPECT_TRUE(writer.WriteUInt16(kdf_id)); EXPECT_TRUE(writer.WriteUInt16(aead_id)); return hdr; } std::string GetSerializedKeyConfig( ObliviousHttpKeyConfigs::OhttpKeyConfig& key_config) { uint16_t symmetric_algs_length = key_config.symmetric_algorithms.size() * (sizeof(key_config.symmetric_algorithms.cbegin()->kdf_id) + sizeof(key_config.symmetric_algorithms.cbegin()->aead_id)); int buf_len = sizeof(key_config.key_id) + sizeof(key_config.kem_id) + key_config.public_key.size() + sizeof(symmetric_algs_length) + symmetric_algs_length; std::string ohttp_key(buf_len, '\0'); QuicheDataWriter writer(ohttp_key.size(), ohttp_key.data()); EXPECT_TRUE(writer.WriteUInt8(key_config.key_id)); EXPECT_TRUE(writer.WriteUInt16(key_config.kem_id)); EXPECT_TRUE(writer.WriteStringPiece(key_config.public_key)); EXPECT_TRUE(writer.WriteUInt16(symmetric_algs_length)); for (const auto& symmetric_alg : key_config.symmetric_algorithms) { EXPECT_TRUE(writer.WriteUInt16(symmetric_alg.kdf_id)); EXPECT_TRUE(writer.WriteUInt16(symmetric_alg.aead_id)); } return ohttp_key; } TEST(ObliviousHttpHeaderKeyConfig, TestSerializeRecipientContextInfo) { uint8_t key_id = 3; uint16_t kem_id = EVP_HPKE_DHKEM_X25519_HKDF_SHA256; uint16_t kdf_id = EVP_HPKE_HKDF_SHA256; uint16_t aead_id = EVP_HPKE_AES_256_GCM; absl::string_view ohttp_req_label = "message/bhttp request"; std::string expected(ohttp_req_label); uint8_t zero_byte = 0x00; int buf_len = ohttp_req_label.size() + sizeof(zero_byte) + sizeof(key_id) + sizeof(kem_id) + sizeof(kdf_id) + sizeof(aead_id); expected.reserve(buf_len); expected.push_back(zero_byte); std::string ohttp_cfg(BuildHeader(key_id, kem_id, kdf_id, aead_id)); expected.insert(expected.end(), ohttp_cfg.begin(), ohttp_cfg.end()); auto instance = ObliviousHttpHeaderKeyConfig::Create(key_id, kem_id, kdf_id, aead_id); ASSERT_TRUE(instance.ok()); EXPECT_EQ(instance.value().SerializeRecipientContextInfo(), expected); } TEST(ObliviousHttpHeaderKeyConfig, TestValidKeyConfig) { auto valid_key_config = ObliviousHttpHeaderKeyConfig::Create( 2, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); ASSERT_TRUE(valid_key_config.ok()); } TEST(ObliviousHttpHeaderKeyConfig, TestInvalidKeyConfig) { auto invalid_kem = ObliviousHttpHeaderKeyConfig::Create( 3, 0, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); EXPECT_EQ(invalid_kem.status().code(), absl::StatusCode::kInvalidArgument); auto invalid_kdf = ObliviousHttpHeaderKeyConfig::Create( 3, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, 0, EVP_HPKE_AES_256_GCM); EXPECT_EQ(invalid_kdf.status().code(), absl::StatusCode::kInvalidArgument); auto invalid_aead = ObliviousHttpHeaderKeyConfig::Create( 3, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, 0); EXPECT_EQ(invalid_kdf.status().code(), absl::StatusCode::kInvalidArgument); } TEST(ObliviousHttpHeaderKeyConfig, TestParsingValidHeader) { auto instance = ObliviousHttpHeaderKeyConfig::Create( 5, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); ASSERT_TRUE(instance.ok()); std::string good_hdr(BuildHeader(5, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM)); ASSERT_TRUE(instance.value().ParseOhttpPayloadHeader(good_hdr).ok()); } TEST(ObliviousHttpHeaderKeyConfig, TestParsingInvalidHeader) { auto instance = ObliviousHttpHeaderKeyConfig::Create( 8, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); ASSERT_TRUE(instance.ok()); std::string keyid_mismatch_hdr( BuildHeader(0, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM)); EXPECT_EQ(instance.value().ParseOhttpPayloadHeader(keyid_mismatch_hdr).code(), absl::StatusCode::kInvalidArgument); std::string invalid_hpke_hdr(BuildHeader(8, 0, 0, 0)); EXPECT_EQ(instance.value().ParseOhttpPayloadHeader(invalid_hpke_hdr).code(), absl::StatusCode::kInvalidArgument); } TEST(ObliviousHttpHeaderKeyConfig, TestParsingKeyIdFromObliviousHttpRequest) { std::string key_id(sizeof(uint8_t), '\0'); QuicheDataWriter writer(key_id.size(), key_id.data()); EXPECT_TRUE(writer.WriteUInt8(99)); auto parsed_key_id = ObliviousHttpHeaderKeyConfig::ParseKeyIdFromObliviousHttpRequestPayload( key_id); ASSERT_TRUE(parsed_key_id.ok()); EXPECT_EQ(parsed_key_id.value(), 99); } TEST(ObliviousHttpHeaderKeyConfig, TestCopyable) { auto obj1 = ObliviousHttpHeaderKeyConfig::Create( 4, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM); ASSERT_TRUE(obj1.ok()); auto copy_obj1_to_obj2 = obj1.value(); EXPECT_EQ(copy_obj1_to_obj2.kHeaderLength, obj1->kHeaderLength); EXPECT_EQ(copy_obj1_to_obj2.SerializeRecipientContextInfo(), obj1->SerializeRecipientContextInfo()); } TEST(ObliviousHttpHeaderKeyConfig, TestSerializeOhttpPayloadHeader) { auto instance = ObliviousHttpHeaderKeyConfig::Create( 7, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM); ASSERT_TRUE(instance.ok()); EXPECT_EQ(instance->SerializeOhttpPayloadHeader(), BuildHeader(7, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM)); } MATCHER_P(HasKeyId, id, "") { *result_listener << "has key_id=" << arg.GetKeyId(); return arg.GetKeyId() == id; } MATCHER_P(HasKemId, id, "") { *result_listener << "has kem_id=" << arg.GetHpkeKemId(); return arg.GetHpkeKemId() == id; } MATCHER_P(HasKdfId, id, "") { *result_listener << "has kdf_id=" << arg.GetHpkeKdfId(); return arg.GetHpkeKdfId() == id; } MATCHER_P(HasAeadId, id, "") { *result_listener << "has aead_id=" << arg.GetHpkeAeadId(); return arg.GetHpkeAeadId() == id; } TEST(ObliviousHttpKeyConfigs, SingleKeyConfig) { std::string key; ASSERT_TRUE(absl::HexStringToBytes( "4b0020f83e0a17cbdb18d2684dd2a9b087a43e5f3fa3fa27a049bc746a6e97a1e0244b00" "0400010002", &key)); auto configs = ObliviousHttpKeyConfigs::ParseConcatenatedKeys(key).value(); EXPECT_THAT(configs, Property(&ObliviousHttpKeyConfigs::NumKeys, 1)); EXPECT_THAT( configs.PreferredConfig(), AllOf(HasKeyId(0x4b), HasKemId(EVP_HPKE_DHKEM_X25519_HKDF_SHA256), HasKdfId(EVP_HPKE_HKDF_SHA256), HasAeadId(EVP_HPKE_AES_256_GCM))); std::string expected_public_key; ASSERT_TRUE(absl::HexStringToBytes( "f83e0a17cbdb18d2684dd2a9b087a43e5f3fa3fa27a049bc746a6e97a1e0244b", &expected_public_key)); EXPECT_THAT( configs.GetPublicKeyForId(configs.PreferredConfig().GetKeyId()).value(), StrEq(expected_public_key)); } TEST(ObliviousHttpKeyConfigs, TwoSimilarKeyConfigs) { std::string key; ASSERT_TRUE(absl::HexStringToBytes( "4b0020f83e0a17cbdb18d2684dd2a9b087a43e5f3fa3fa27a049bc746a6e97a1e0244b00" "0400010002" "4f0020f83e0a17cbdb18d2684dd2a9b087a43e5f3fa3fa27a049bc746a6e97a1e0244b00" "0400010001", &key)); EXPECT_THAT(ObliviousHttpKeyConfigs::ParseConcatenatedKeys(key).value(), Property(&ObliviousHttpKeyConfigs::NumKeys, 2)); EXPECT_THAT( ObliviousHttpKeyConfigs::ParseConcatenatedKeys(key)->PreferredConfig(), AllOf(HasKeyId(0x4f), HasKemId(EVP_HPKE_DHKEM_X25519_HKDF_SHA256), HasKdfId(EVP_HPKE_HKDF_SHA256), HasAeadId(EVP_HPKE_AES_128_GCM))); } TEST(ObliviousHttpKeyConfigs, RFCExample) { std::string key; ASSERT_TRUE(absl::HexStringToBytes( "01002031e1f05a740102115220e9af918f738674aec95f54db6e04eb705aae8e79815500" "080001000100010003", &key)); auto configs = ObliviousHttpKeyConfigs::ParseConcatenatedKeys(key).value(); EXPECT_THAT(configs, Property(&ObliviousHttpKeyConfigs::NumKeys, 1)); EXPECT_THAT( configs.PreferredConfig(), AllOf(HasKeyId(0x01), HasKemId(EVP_HPKE_DHKEM_X25519_HKDF_SHA256), HasKdfId(EVP_HPKE_HKDF_SHA256), HasAeadId(EVP_HPKE_AES_128_GCM))); std::string expected_public_key; ASSERT_TRUE(absl::HexStringToBytes( "31e1f05a740102115220e9af918f738674aec95f54db6e04eb705aae8e798155", &expected_public_key)); EXPECT_THAT( configs.GetPublicKeyForId(configs.PreferredConfig().GetKeyId()).value(), StrEq(expected_public_key)); } TEST(ObliviousHttpKeyConfigs, DuplicateKeyId) { std::string key; ASSERT_TRUE(absl::HexStringToBytes( "4b0020f83e0a17cbdb18d2684dd2a9b087a43e5f3fa3fa27a049bc746a6e97a1e0244b00" "0400010002" "4b0020f83e0a17cbdb18d2684dd2a9b087a43e5f3fa3fb27a049bc746a6e97a1e0244b00" "0400010001", &key)); EXPECT_FALSE(ObliviousHttpKeyConfigs::ParseConcatenatedKeys(key).ok()); } TEST(ObliviousHttpHeaderKeyConfigs, TestCreateWithSingleKeyConfig) { auto instance = ObliviousHttpHeaderKeyConfig::Create( 123, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_CHACHA20_POLY1305); EXPECT_TRUE(instance.ok()); std::string test_public_key( EVP_HPKE_KEM_public_key_len(instance->GetHpkeKem()), 'a'); auto configs = ObliviousHttpKeyConfigs::Create(instance.value(), test_public_key); EXPECT_TRUE(configs.ok()); auto serialized_key = configs->GenerateConcatenatedKeys(); EXPECT_TRUE(serialized_key.ok()); auto ohttp_configs = ObliviousHttpKeyConfigs::ParseConcatenatedKeys(serialized_key.value()); EXPECT_TRUE(ohttp_configs.ok()); ASSERT_EQ(ohttp_configs->PreferredConfig().GetKeyId(), 123); auto parsed_public_key = ohttp_configs->GetPublicKeyForId(123); EXPECT_TRUE(parsed_public_key.ok()); EXPECT_EQ(parsed_public_key.value(), test_public_key); } TEST(ObliviousHttpHeaderKeyConfigs, TestCreateWithWithMultipleKeys) { std::string expected_preferred_public_key(32, 'b'); ObliviousHttpKeyConfigs::OhttpKeyConfig config1 = { 100, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, std::string(32, 'a'), {{EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM}}}; ObliviousHttpKeyConfigs::OhttpKeyConfig config2 = { 200, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, expected_preferred_public_key, {{EVP_HPKE_HKDF_SHA256, EVP_HPKE_CHACHA20_POLY1305}}}; auto configs = ObliviousHttpKeyConfigs::Create({config1, config2}); EXPECT_TRUE(configs.ok()); auto serialized_key = configs->GenerateConcatenatedKeys(); EXPECT_TRUE(serialized_key.ok()); ASSERT_EQ(serialized_key.value(), absl::StrCat(GetSerializedKeyConfig(config2), GetSerializedKeyConfig(config1))); auto ohttp_configs = ObliviousHttpKeyConfigs::ParseConcatenatedKeys(serialized_key.value()); EXPECT_TRUE(ohttp_configs.ok()); ASSERT_EQ(ohttp_configs->NumKeys(), 2); EXPECT_THAT(configs->PreferredConfig(), AllOf(HasKeyId(200), HasKemId(EVP_HPKE_DHKEM_X25519_HKDF_SHA256), HasKdfId(EVP_HPKE_HKDF_SHA256), HasAeadId(EVP_HPKE_CHACHA20_POLY1305))); auto parsed_preferred_public_key = ohttp_configs->GetPublicKeyForId( ohttp_configs->PreferredConfig().GetKeyId()); EXPECT_TRUE(parsed_preferred_public_key.ok()); EXPECT_EQ(parsed_preferred_public_key.value(), expected_preferred_public_key); } TEST(ObliviousHttpHeaderKeyConfigs, TestCreateWithInvalidConfigs) { ASSERT_EQ(ObliviousHttpKeyConfigs::Create({}).status().code(), absl::StatusCode::kInvalidArgument); ASSERT_EQ(ObliviousHttpKeyConfigs::Create( {{100, 2, std::string(32, 'a'), {{2, 3}, {4, 5}}}, {200, 6, std::string(32, 'b'), {{7, 8}, {9, 10}}}}) .status() .code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ( ObliviousHttpKeyConfigs::Create( {{123, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, "invalid key length" , {{EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM}}}}) .status() .code(), absl::StatusCode::kInvalidArgument); } TEST(ObliviousHttpHeaderKeyConfigs, TestCreateSingleKeyConfigWithInvalidConfig) { const auto sample_ohttp_hdr_config = ObliviousHttpHeaderKeyConfig::Create( 123, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM); ASSERT_TRUE(sample_ohttp_hdr_config.ok()); ASSERT_EQ(ObliviousHttpKeyConfigs::Create(sample_ohttp_hdr_config.value(), "" ) .status() .code(), absl::StatusCode::kInvalidArgument); EXPECT_EQ(ObliviousHttpKeyConfigs::Create( sample_ohttp_hdr_config.value(), "invalid key length" ) .status() .code(), absl::StatusCode::kInvalidArgument); } TEST(ObliviousHttpHeaderKeyConfigs, TestHashImplWithObliviousStruct) { absl::flat_hash_set<ObliviousHttpKeyConfigs::SymmetricAlgorithmsConfig> symmetric_algs_set; for (int i = 0; i < 50; ++i) { symmetric_algs_set.insert({EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM}); symmetric_algs_set.insert({EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM}); symmetric_algs_set.insert( {EVP_HPKE_HKDF_SHA256, EVP_HPKE_CHACHA20_POLY1305}); } ASSERT_EQ(symmetric_algs_set.size(), 3); EXPECT_THAT(symmetric_algs_set, UnorderedElementsAreArray< ObliviousHttpKeyConfigs::SymmetricAlgorithmsConfig>({ {EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM}, {EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM}, {EVP_HPKE_HKDF_SHA256, EVP_HPKE_CHACHA20_POLY1305}, })); absl::flat_hash_set<ObliviousHttpKeyConfigs::OhttpKeyConfig> ohttp_key_configs_set; ObliviousHttpKeyConfigs::OhttpKeyConfig expected_key_config{ 100, EVP_HPKE_DHKEM_X25519_HKDF_SHA256, std::string(32, 'c'), {{EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_128_GCM}, {EVP_HPKE_HKDF_SHA256, EVP_HPKE_AES_256_GCM}}}; for (int i = 0; i < 50; ++i) { ohttp_key_configs_set.insert(expected_key_config); } ASSERT_EQ(ohttp_key_configs_set.size(), 1); EXPECT_THAT(ohttp_key_configs_set, UnorderedElementsAre(expected_key_config)); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/oblivious_http/common/oblivious_http_header_key_config.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/oblivious_http/common/oblivious_http_header_key_config_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
46bc99e4-502f-4dcb-8ff3-7a075b7f1f98
cpp
tensorflow/tensorflow
elemental_ir_emitter
third_party/xla/xla/service/gpu/elemental_ir_emitter.cc
third_party/xla/xla/service/elemental_ir_emitter_test.cc
#include "xla/service/gpu/elemental_ir_emitter.h" #include <cstdint> #include <string> #include <vector> #include "absl/log/check.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/ModRef.h" #include "llvm/TargetParser/Triple.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/layout.h" #include "xla/service/elemental_ir_emitter.h" #include "xla/service/gpu/backend_configs.pb.h" #include "xla/service/gpu/ir_emitter_context.h" #include "xla/service/gpu/ir_emitter_nested.h" #include "xla/service/gpu/target_util.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/service/llvm_ir/llvm_util.h" #include "xla/service/llvm_ir/math_ops.h" #include "xla/stream_executor/device_description.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { GpuElementalIrEmitter::GpuElementalIrEmitter( IrEmitterContext& ir_emitter_context, llvm::IRBuilder<>* b) : ElementalIrEmitter(ir_emitter_context.llvm_module(), b), ir_emitter_context_(ir_emitter_context) {} absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitDeviceMathCall( TargetDeviceFunctionID funcid, absl::Span<llvm::Value* const> operands, absl::Span<const PrimitiveType> input_types, PrimitiveType output_type, absl::string_view name) { bool cast_result_to_fp16 = false; std::vector<llvm::Value*> converted_operands(operands.begin(), operands.end()); std::vector<PrimitiveType> converted_input_types(input_types.begin(), input_types.end()); switch (output_type) { case F16: cast_result_to_fp16 = true; for (int64_t i = 0; i < operands.size(); ++i) { if (input_types[i] == F16) { converted_operands[i] = FPCast(converted_operands[i], b()->getFloatTy()); converted_input_types[i] = F32; } } output_type = F32; [[fallthrough]]; case F32: break; case F64: break; default: return Unimplemented("Bad type for device math call: %s", PrimitiveType_Name(output_type)); } const std::string& munged_callee = ObtainDeviceFunctionName( funcid, output_type, llvm::Triple(b()->GetInsertBlock()->getModule()->getTargetTriple())); llvm::Value* result = EmitMathCall(munged_callee, converted_operands, converted_input_types, output_type, name) .value(); if (cast_result_to_fp16) { result = FPCast(result, b()->getHalfTy()); } return result; } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitMathCall( const std::string& callee_name, absl::Span<llvm::Value* const> operands, absl::Span<const PrimitiveType> input_types, PrimitiveType output_type, absl::string_view name) { for (PrimitiveType input_type : input_types) { if (output_type != input_type) { return Unimplemented("Input type != output type: %s != %s", PrimitiveType_Name(input_type), PrimitiveType_Name(output_type)); } } return EmitDeviceFunctionCall(callee_name, operands, input_types, output_type, llvm::AttrBuilder(b()->getContext()) .addMemoryAttr(llvm::MemoryEffects::none()) .addAttribute(llvm::Attribute::NoUnwind), b(), name); } llvm_ir::IrArray::Index GpuElementalIrEmitter::GetSourceIndexOfBitcast( const llvm_ir::IrArray::Index& index, const HloInstruction* hlo) { Shape shape = hlo->shape(); Shape operand_shape = hlo->operand(0)->shape(); auto gpu_config = hlo->backend_config<GpuBackendConfig>(); CHECK_OK(gpu_config); const BitcastBackendConfig& bitcast_config = gpu_config.value().bitcast_backend_config(); if (!bitcast_config.result_layout().minor_to_major().empty()) { *shape.mutable_layout() = xla::Layout::CreateFromProto(bitcast_config.result_layout()); } if (!bitcast_config.source_layout().minor_to_major().empty()) { *operand_shape.mutable_layout() = xla::Layout::CreateFromProto(bitcast_config.source_layout()); } return index.SourceIndexOfBitcast(shape, operand_shape, b()); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitFloatBinaryOp( const HloInstruction* op, llvm::Value* lhs_value, llvm::Value* rhs_value) { PrimitiveType lhs_input_type = op->operand(0)->shape().element_type(); PrimitiveType rhs_input_type = op->operand(1)->shape().element_type(); PrimitiveType output_type = op->shape().element_type(); HloOpcode opcode = op->opcode(); if (ir_emitter_context_.debug_options().xla_gpu_enable_fast_min_max() && (opcode == HloOpcode::kMaximum || opcode == HloOpcode::kMinimum)) { return llvm_ir::EmitCallToIntrinsic( opcode == HloOpcode::kMaximum ? llvm::Intrinsic::maxnum : llvm::Intrinsic::minnum, {lhs_value, rhs_value}, {lhs_value->getType()}, b()); } switch (op->opcode()) { case HloOpcode::kRemainder: { return EmitDeviceMathCall(TargetDeviceFunctionID::kFmod, {lhs_value, rhs_value}, {lhs_input_type, rhs_input_type}, output_type); } case HloOpcode::kPower: { return EmitPowerOp(op, lhs_value, rhs_value); } default: return ElementalIrEmitter::EmitFloatBinaryOp(op, lhs_value, rhs_value); } } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitPowerOp( const HloInstruction* op, llvm::Value* lhs_value, llvm::Value* rhs_value) { CHECK_EQ(op->opcode(), HloOpcode::kPower); PrimitiveType lhs_input_type = op->operand(0)->shape().element_type(); PrimitiveType rhs_input_type = op->operand(1)->shape().element_type(); PrimitiveType output_type = op->shape().element_type(); return EmitDeviceMathCall(TargetDeviceFunctionID::kPow, {lhs_value, rhs_value}, {lhs_input_type, rhs_input_type}, output_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitLog( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kLog, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitLog1p( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kLog1p, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitSin( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kSin, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitCos( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kCos, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitTan( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kTan, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitExp( PrimitiveType prim_type, llvm::Value* value, absl::string_view ) { return EmitDeviceMathCall(TargetDeviceFunctionID::kExp, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitExpm1( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kExpm1, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitPow( PrimitiveType prim_type, llvm::Value* lhs, llvm::Value* rhs, absl::string_view name) { return EmitDeviceMathCall(TargetDeviceFunctionID::kPow, {lhs, rhs}, {prim_type, prim_type}, prim_type, name); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitSqrt( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kSqrt, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitRsqrt( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kRsqrt, {value}, {prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitAtan2( PrimitiveType prim_type, llvm::Value* lhs, llvm::Value* rhs, absl::string_view name) { return EmitDeviceMathCall(TargetDeviceFunctionID::kAtan2, {lhs, rhs}, {prim_type, prim_type}, prim_type, name); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitTanh( PrimitiveType prim_type, llvm::Value* value) { if (prim_type == F64) { return EmitDeviceMathCall(TargetDeviceFunctionID::kTanh, {value}, {prim_type}, prim_type); } llvm::Type* type = prim_type == F16 ? b()->getFloatTy() : value->getType(); llvm::Value* input = FPCast(value, type); constexpr double kMaxValue = 20.0; auto max_value = llvm::ConstantFP::get(type, kMaxValue); llvm::Value* abs_value = llvm_ir::EmitCallToIntrinsic(llvm::Intrinsic::fabs, {input}, {type}, b()); llvm::Value* fast_tanh = llvm_ir::EmitFastTanh(b(), input); auto one = llvm::ConstantFP::get(type, 1.0); auto one_with_sign = llvm_ir::EmitCallToIntrinsic(llvm::Intrinsic::copysign, {one, input}, {type}, b()); return FPCast(Select(FCmpULT(abs_value, max_value), fast_tanh, one_with_sign), value->getType(), "tanh"); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitErf( PrimitiveType prim_type, llvm::Value* value) { if (prim_type == F64) { return EmitDeviceMathCall(TargetDeviceFunctionID::kErf, {value}, {prim_type}, prim_type); } llvm::Type* type = prim_type == F16 ? b()->getFloatTy() : value->getType(); if (type == b()->getFloatTy()) { llvm::Value* x = FPCast(value, type); auto* result = llvm_ir::EmitErfF32(b(), x); return FPCast(result, value->getType()); } return Unimplemented("erf"); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitComplexAbs( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kHypot, {EmitExtractReal(value), EmitExtractImag(value)}, {prim_type, prim_type}, prim_type); } absl::StatusOr<llvm::Value*> GpuElementalIrEmitter::EmitCbrt( PrimitiveType prim_type, llvm::Value* value) { return EmitDeviceMathCall(TargetDeviceFunctionID::kCbrt, {value}, {prim_type}, prim_type); } absl::StatusOr<std::vector<llvm::Value*>> GpuElementalIrEmitter::EmitThreadLocalCall( const HloComputation& callee, absl::Span<llvm::Value* const> parameters, absl::string_view, bool ) { return CallNestedComputationWithScalars(b(), ir_emitter_context_, callee, parameters); } } }
#include "xla/service/elemental_ir_emitter.h" #include <cstdint> #include <memory> #include <optional> #include <string> #include <type_traits> #include <utility> #include <gtest/gtest.h> #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "xla/error_spec.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/literal.h" #include "xla/literal_util.h" #include "xla/service/hlo_module_config.h" #include "xla/service/llvm_ir/ir_array.h" #include "xla/test.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/test_macros.h" #include "xla/types.h" #include "tsl/platform/ml_dtypes.h" #include "tsl/platform/statusor.h" namespace xla { namespace { using std::nullopt; class ElementalIrEmitterExecutionTest : public HloTestBase { protected: void RunTest(const std::string& hlo_text, absl::Span<Literal* const> args) { HloModuleConfig config; config.set_debug_options(GetDebugOptionsForTest()); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(module), args, nullopt)); } void RunTypeConversionTest(absl::string_view hlo_text) { HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } }; class ElementalIrEmitterExecutionTestWithoutFastMinMax : public ElementalIrEmitterExecutionTest { protected: DebugOptions GetDebugOptionsForTest() override { DebugOptions debug_options = ElementalIrEmitterExecutionTest::GetDebugOptionsForTest(); debug_options.set_xla_cpu_enable_fast_min_max(false); debug_options.set_xla_gpu_enable_fast_min_max(false); return debug_options; } }; template <typename T> class ElementalIrEmitterExecutionTypedTest : public ElementalIrEmitterExecutionTest { protected: const std::string& TypeName() { return primitive_util::LowercasePrimitiveTypeName( primitive_util::NativeToPrimitiveType<T>()); } }; using FloatTypes = ::testing::Types<bfloat16, tsl::float8_e5m2, tsl::float8_e5m2fnuz, tsl::float8_e4m3, tsl::float8_e4m3fn, tsl::float8_e4m3fnuz, tsl::float8_e4m3b11fnuz, tsl::float8_e3m4>; TYPED_TEST_SUITE(ElementalIrEmitterExecutionTypedTest, FloatTypes); XLA_TEST_F(ElementalIrEmitterExecutionTest, DotFusion) { const std::string hlo_text = R"( HloModule FusedDot fused_computation { arg0 = s32[1,2,1]{2,1,0} parameter(0) reshape.lhs = s32[2,1]{1,0} reshape(arg0) arg1 = s32[1,2,1]{2,1,0} parameter(1) reshape.rhs = s32[2,1]{1,0} reshape(arg1) ROOT dot = s32[1,1]{1,0} dot(reshape.lhs, reshape.rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY main { entry_arg0 = s32[1,2,1]{2,1,0} parameter(0) entry_arg1 = s32[1,2,1]{2,1,0} parameter(1) ROOT fusion = s32[1,1]{1,0} fusion(entry_arg0, entry_arg1), kind=kLoop, calls=fused_computation } )"; Literal lhs = LiteralUtil::CreateR3<int32_t>({{{1}, {2}}}); Literal rhs = LiteralUtil::CreateR3<int32_t>({{{3}, {4}}}); RunTest(hlo_text, {&lhs, &rhs}); } XLA_TEST_F(ElementalIrEmitterExecutionTest, ScalarDotFusion) { const char* hlo_text = R"( HloModule ScalarDotFusion fused_computation { arg0 = s32[2,2]{1,0} parameter(0) reshape.lhs = s32[4]{0} reshape(arg0) arg1 = s32[2,2]{1,0} parameter(1) reshape.rhs = s32[4]{0} reshape(arg1) ROOT dot = s32[] dot(reshape.lhs, reshape.rhs), lhs_contracting_dims={0}, rhs_contracting_dims={0} } ENTRY main { entry_arg0 = s32[2,2]{1,0} parameter(0) entry_arg1 = s32[2,2]{1,0} parameter(1) ROOT fusion = s32[] fusion(entry_arg0, entry_arg1), kind=kLoop, calls=fused_computation } )"; Literal lhs = LiteralUtil::CreateR2<int32_t>({{1, 2}, {3, 4}}); Literal rhs = LiteralUtil::CreateR2<int32_t>({{10, 20}, {30, 40}}); RunTest(hlo_text, {&lhs, &rhs}); } XLA_TEST_F(ElementalIrEmitterExecutionTest, BatchDot) { const char* hlo_text = R"( HloModule BatchDot fused_computation.1 { param_0 = f64[1,1,8]{2,1,0} parameter(0) r.1 = f64[2,4]{1,0} reshape(param_0) param_1 = f64[1,2,2,2,1]{4,3,2,1,0} parameter(1) r.2 = f64[2,4,1]{2,1,0} reshape(param_1) ROOT dot = f64[2,1]{1,0} dot(r.1, r.2), lhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_batch_dims={0}, rhs_contracting_dims={1} } ENTRY resampler_Resampler.49 { p0 = f64[1,1,8]{2,1,0} parameter(0) p1 = f64[1,2,2,2,1]{4,3,2,1,0} parameter(1) ROOT f = f64[2,1]{1,0} fusion(p0, p1), kind=kLoop, calls=fused_computation.1 } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.add_xla_disable_hlo_passes("layout-assignment"); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{4e-3, 4e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTest, DivideComplexNumbersWithInfiniteNormRhs) { constexpr char hlo_text[] = R"( HloModule DivideComplexNumbers ENTRY DivideComplexNumbers { constant.1 = c64[8]{0} constant({ (1, 1), (1, inf), (1, inf), (nan, 1), (inf, inf), (inf, nan), (nan, nan), (1, 2)}) real = f32[8]{0} constant({nan, nan, inf, inf, inf, 1, inf, 3}) imag = f32[8]{0} constant({inf, inf, inf, inf, 1, inf, inf, 4}) complex.2 = c64[8]{0} complex(real, imag) ROOT divide.1 = c64[8]{0} divide(constant.1, complex.2) } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } XLA_TEST_F(ElementalIrEmitterExecutionTest, DivideComplexNumbersWithFiniteNormRhs) { constexpr char hlo_text[] = R"( HloModule DivideComplexNumbers ENTRY DivideComplexNumbers { constant.1 = c64[5]{0} constant({ (1, inf), (inf, 1), (inf, nan), (inf, inf), (nan, inf)}) real = f32[5]{0} constant({1, 1, 1, 1, 1}) imag = f32[5]{0} constant({1, 1, 1, 1, 1}) complex.2 = c64[5]{0} complex(real, imag) ROOT divide.1 = c64[5]{0} divide(constant.1, complex.2) } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } XLA_TEST_F(ElementalIrEmitterExecutionTest, DivideComplexNumbersWithZeroNormRhs) { constexpr char hlo_text[] = R"( HloModule DivideComplexNumbers ENTRY DivideComplexNumbers { constant.1 = c64[9]{0} constant({ (1, 1), (1, nan), (1, inf), (inf, inf), (inf, 1), (inf, nan), (nan, 1), (nan, inf), (nan, nan)}) real = f32[9]{0} constant({0, 0, 0, 0, 0, 0, 0, 0, 0}) imag = f32[9]{0} constant({0, 0, 0, 0, 0, 0, 0, 0, 0}) complex.2 = c64[9]{0} complex(real, imag) ROOT divide.1 = c64[9]{0} divide(constant.1, complex.2) } )"; HloModuleConfig config; auto debug_options = GetDebugOptionsForTest(); debug_options.set_xla_cpu_fast_math_honor_nans(true); debug_options.set_xla_cpu_fast_math_honor_infs(true); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE(RunAndCompare(std::move(module), ErrorSpec{(0.)})); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatsToFloat) { auto tname = this->TypeName(); if (std::is_same<TypeParam, tsl::float8_e4m3>() || std::is_same<TypeParam, tsl::float8_e4m3fn>() || std::is_same<TypeParam, tsl::float8_e4m3b11fnuz>() || std::is_same<TypeParam, tsl::float8_e3m4>()) { GTEST_SKIP() << "Skipping test for type " << tname; } const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { f16_ = f16[] parameter(0) f32_ = f32[] parameter(1) f64_ = f64[] parameter(2) bf16_ = bf16[] parameter(3) converted_f16 = ${tname}[] convert(f16_) converted_f32 = ${tname}[] convert(f32_) converted_f64 = ${tname}[] convert(f64_) converted_bf16 = ${tname}[] convert(bf16_) ROOT tuple = (${tname}[], ${tname}[], ${tname}[], ${tname}[]) tuple( converted_f16, converted_f32, converted_f64, converted_bf16) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertSignedToFloat) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { s8_ = s8[] parameter(0) s16_ = s16[] parameter(1) s32_ = s32[] parameter(2) s64_ = s64[] parameter(3) converted_s8 = ${tname}[] convert(s8_) converted_s16 = ${tname}[] convert(s16_) converted_s32 = ${tname}[] convert(s32_) converted_s64 = ${tname}[] convert(s64_) ROOT tuple = (${tname}[], ${tname}[], ${tname}[], ${tname}[]) tuple( converted_s8, converted_s16, converted_s32, converted_s64) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertUnsignedToFloat) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { u8_ = u8[] parameter(0) u16_ = u16[] parameter(1) u32_ = u32[] parameter(2) u64_ = u64[] parameter(3) converted_u8 = ${tname}[] convert(u8_) converted_u16 = ${tname}[] convert(u16_) converted_u32 = ${tname}[] convert(u32_) converted_u64 = ${tname}[] convert(u64_) ROOT tuple = (${tname}[], ${tname}[], ${tname}[], ${tname}[]) tuple( converted_u8, converted_u16, converted_u32, converted_u64) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToFloats) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_f16 = ${tname}[] parameter(0) to_f32 = ${tname}[] parameter(1) to_f64 = ${tname}[] parameter(2) to_bf16 = ${tname}[] parameter(3) f16_ = f16[] convert(to_f16) f32_ = f32[] convert(to_f32) f64_ = f64[] convert(to_f64) bf16_ = bf16[] convert(to_f64) ROOT tuple = (f16[], f32[], f64[], bf16[]) tuple(f16_, f32_, f64_, bf16_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToSigned) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_s8 = ${tname}[] parameter(0) to_s16 = ${tname}[] parameter(1) to_s32 = ${tname}[] parameter(2) to_s64 = ${tname}[] parameter(3) s8_ = s8[] convert(to_s8) s16_ = s16[] convert(to_s16) s32_ = s32[] convert(to_s32) s64_ = s64[] convert(to_s64) ROOT tuple = (s8[], s16[], s32[], s64[]) tuple(s8_, s16_, s32_, s64_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToUnsigned) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_u8 = ${tname}[] parameter(0) to_u16 = ${tname}[] parameter(1) to_u32 = ${tname}[] parameter(2) to_u64 = ${tname}[] parameter(3) u8_ = u8[] convert(to_u8) u16_ = u16[] convert(to_u16) u32_ = u32[] convert(to_u32) u64_ = u64[] convert(to_u64) ROOT tuple = (u8[], u16[], u32[], u64[]) tuple(u8_, u16_, u32_, u64_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, ConvertFloatToComplex) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { to_c64 = ${tname}[] parameter(0) to_c128 = ${tname}[] parameter(1) c64_ = c64[] convert(to_c64) c128_ = c128[] convert(to_c128) ROOT tuple = (c64[], c128[]) tuple(c64_, c128_) } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTypeConversionTest(hlo_text); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, CompareFloat) { auto tname = this->TypeName(); if (std::is_same<TypeParam, tsl::float8_e4m3b11fnuz>()) { GTEST_SKIP() << "Skipping test for type " << tname; } const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { p0 = ${tname}[4] parameter(0) p1 = ${tname}[4] parameter(1) ROOT cmp = pred[4] compare(p0, p1), direction=LT })", {{"${tname}", tname}}); Literal lhs = LiteralUtil::CreateR1<TypeParam>( {TypeParam(1.), TypeParam(2.), TypeParam(3.), TypeParam(4.)}); Literal rhs = LiteralUtil::CreateR1<TypeParam>( {TypeParam(4.), TypeParam(4.), TypeParam(2.), TypeParam(1.)}); ElementalIrEmitterExecutionTest::RunTest(hlo_text, {&lhs, &rhs}); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, IotaFloat) { auto tname = this->TypeName(); if (std::is_same<TypeParam, tsl::float8_e5m2>() || std::is_same<TypeParam, tsl::float8_e4m3>() || std::is_same<TypeParam, tsl::float8_e4m3fn>() || std::is_same<TypeParam, tsl::float8_e4m3b11fnuz>() || std::is_same<TypeParam, tsl::float8_e3m4>()) { GTEST_SKIP() << "Skipping test for type " << tname; } const auto hlo_text = absl::StrReplaceAll(R"( HloModule m ENTRY main { ROOT iota_ = ${tname}[4] iota(), iota_dimension=0 } )", {{"${tname}", tname}}); ElementalIrEmitterExecutionTest::RunTest(hlo_text, {}); } TYPED_TEST(ElementalIrEmitterExecutionTypedTest, BatchDotFloat) { auto tname = this->TypeName(); const auto hlo_text = absl::StrReplaceAll(R"( HloModule matmul ENTRY main { x = ${tname}[8,16] parameter(0) y = ${tname}[8,16,32] parameter(1) ROOT dot = ${tname}[8,32] dot(x, y), lhs_batch_dims={0}, rhs_batch_dims={0}, lhs_contracting_dims={1}, rhs_contracting_dims={1} } )", {{"${tname}", tname}}); HloModuleConfig config; DebugOptions debug_options = HloTestBase::GetDebugOptionsForTest(); config.set_debug_options(debug_options); TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloModule> module, HloTestBase::ParseAndReturnVerifiedModule(hlo_text, config)); EXPECT_TRUE( HloTestBase::RunAndCompare(std::move(module), ErrorSpec{1e-5, 1e-5})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MinimumHandlesNaNsOnTheLeft) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT min = f32[5,5] minimum(nans, neg1s) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, DISABLED_MinimumHandlesNaNsOnTheRight) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT min = f32[5,5] minimum(neg1s, nans) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumHandlesNaNsOnTheLeft) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT max = f32[5,5] maximum(nans, neg1s) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumHandlesNaNsOnTheRight) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { neg1 = f32[] constant(-1) neg1s = f32[5,5] broadcast(neg1), dimensions={} nans = f32[5,5] sqrt(neg1s) ROOT max = f32[5,5] maximum(neg1s, nans) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MinimumReturnsLHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT min = f32[5,5] minimum(zeros, ones) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MinimumReturnsRHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT min = f32[5,5] minimum(ones, zeros) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumReturnsLHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT max = f32[5,5] maximum(ones, zeros) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } XLA_TEST_F(ElementalIrEmitterExecutionTestWithoutFastMinMax, MaximumReturnsRHS) { constexpr absl::string_view kHloText = R"( HloModule t ENTRY e { zero = f32[] constant(0) zeros = f32[5,5] broadcast(zero), dimensions={} one = f32[] constant(1) ones = f32[5,5] broadcast(one), dimensions={} ROOT max = f32[5,5] maximum(zeros, ones) })"; EXPECT_TRUE(RunAndCompare(kHloText, ErrorSpec{1e-3, 1e-3})); } class ElementalIrEmitterInternalTest : public HloTestBase {}; XLA_TEST_F(ElementalIrEmitterInternalTest, SparseDotIsUnsupported) { constexpr absl::string_view kHloText = R"( HloModule test ENTRY main { lhs = f16[5,16] parameter(0) rhs = f16[32,10] parameter(1) meta = u16[5,2] parameter(2) ROOT dot = f32[5,10] dot(lhs, rhs, meta), lhs_contracting_dims={1}, rhs_contracting_dims={0}, sparsity=L.1@2:4 })"; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module, ParseAndReturnVerifiedModule(kHloText)); HloInstruction* root = module->entry_computation()->root_instruction(); llvm::LLVMContext llvm_context; llvm::Module llvm_module("", llvm_context); llvm::IRBuilder<> builder(llvm_context); ElementalIrEmitterForTests emitter(&llvm_module, &builder); llvm_ir::IrArray::Index test_index{builder.getInt64Ty()}; auto result = emitter.TestElementalDot(root, test_index); EXPECT_FALSE(result.ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/elemental_ir_emitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/elemental_ir_emitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
05bd909d-de74-41fe-9f9a-bc1cf9746d43
cpp
tensorflow/tensorflow
depthwise_conv
tensorflow/lite/delegates/gpu/gl/kernels/depthwise_conv.cc
tensorflow/lite/delegates/gpu/cl/kernels/depthwise_conv_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/depthwise_conv.h" #include <any> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" #include "tensorflow/lite/delegates/gpu/gl/workgroups/ideal_workgroup_picker.h" namespace tflite { namespace gpu { namespace gl { namespace { class DepthwiseConvolution : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { if (ctx.input_shapes.size() != 1) { return absl::UnimplementedError( "DepthWise Convolution does not support more than 1 runtime tensor"); } const auto& attr = std::any_cast<const DepthwiseConvolution2DAttributes&>(ctx.op_attr); auto weights = attr.weights.shape; const int offsets_count = weights.h * weights.w; const bool offsets_count_too_large = offsets_count > kMaxConstArraySize; std::vector<Variable> parameters; if (offsets_count_too_large) { parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"padding_w", attr.padding.prepended.w}, {"padding_h", attr.padding.prepended.h}, {"dilation_w", attr.dilations.w}, {"dilation_h", attr.dilations.h}, {"kernel_w", weights.w}, {"kernel_h", weights.h}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"channel_multiplier", weights.o}, {"stride", int2(attr.strides.w, attr.strides.h)}, }; } else { std::vector<int2> offsets; for (int h = 0; h < weights.h; ++h) { for (int w = 0; w < weights.w; ++w) { offsets.emplace_back(w * attr.dilations.w - attr.padding.prepended.w, h * attr.dilations.h - attr.padding.prepended.h); } } parameters = { {"input_data_0_h", static_cast<int>(ctx.input_shapes[0][1])}, {"input_data_0_w", static_cast<int>(ctx.input_shapes[0][2])}, {"offsets_count", offsets_count}, {"offsets", offsets}, {"src_depth", DivideRoundUp(weights.i, 4)}, {"channel_multiplier", weights.o}, {"stride", int2(attr.strides.w, attr.strides.h)}, }; } bool non_empty_padding = attr.padding.appended.h != 0 || attr.padding.appended.w != 0 || attr.padding.prepended.h != 0 || attr.padding.prepended.w != 0; std::vector<std::pair<std::string, Object>> objects = { {"weights", MakeReadonlyObject(ConvertToPIOHW4(attr.weights))}}; std::string source; if (offsets_count_too_large) { source = R"( int offsets_count = $kernel_w$ * $kernel_h$; int src_layer_offset = (gid.z % $channel_multiplier$) * 4; int i = 0; for (int ky = 0; ky < $kernel_h$; ky++) { for (int kx = 0; kx < $kernel_w$; kx++, i++) { ivec2 coord = gid.xy * $stride$ + ivec2(kx * $dilation_w$ - $padding_w$, ky * $dilation_h$ - $padding_h$);)"; } else { source = R"( int offsets_count = $offsets_count$; int src_layer_offset = (gid.z % $channel_multiplier$) * 4; for (int i = 0; i < offsets_count; ++i) { ivec2 coord = gid.xy * $stride$ + $offsets[i]$;)"; } if (non_empty_padding) { source += R"( if (coord.x < 0 || coord.y < 0 || coord.x >= $input_data_0_w$ || coord.y >= $input_data_0_h$) { continue; })"; } source += R"( int src_layer = gid.z / $channel_multiplier$; vec4 input_ = $input_data_0[coord.x, coord.y, src_layer]$; vec4 input_shifted = vec4( input_[(src_layer_offset + 0) / $channel_multiplier$], input_[(src_layer_offset + 1) / $channel_multiplier$], input_[(src_layer_offset + 2) / $channel_multiplier$], input_[(src_layer_offset + 3) / $channel_multiplier$] ); value_0 += input_shifted * $weights[gid.z * offsets_count + i]$; } )"; if (offsets_count_too_large) { source += R"( } )"; } if (!attr.bias.data.empty()) { source += "value_0 += $bias[gid.z]$;\n"; objects.push_back({"bias", MakeReadonlyObject(attr.bias.data)}); } *generated_code = { std::move(parameters), std::move(objects), {}, uint3(), GetIdealWorkgroupIfPossible( *ctx.gpu_info, OperationType::DEPTHWISE_CONVOLUTION, HW(attr.weights.shape.h, attr.weights.shape.w), attr.strides, OHWI(attr.weights.shape.o, ctx.input_shapes[0][1], ctx.input_shapes[0][2], ctx.input_shapes[0][3])), std::move(source), IOStructure::ONLY_DEFINITIONS, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewDepthwiseConvolutionNodeShader() { return std::make_unique<DepthwiseConvolution>(); } } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/depthwise_conv_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, DepthwiseConvSimpleWeights) { auto status = DepthwiseConvSimpleWeightsTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, DepthwiseConvNoMultiplier) { auto status = DepthwiseConvNoMultiplierTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, DepthwiseConvMultiplier2) { auto status = DepthwiseConvMultiplier2Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/depthwise_conv.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/depthwise_conv_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
724bea7e-edc7-4246-b9c8-b4da79bb7cdb
cpp
abseil/abseil-cpp
bits
absl/numeric/internal/bits.h
absl/numeric/bits_test.cc
#ifndef ABSL_NUMERIC_INTERNAL_BITS_H_ #define ABSL_NUMERIC_INTERNAL_BITS_H_ #include <cstdint> #include <limits> #include <type_traits> #if defined(_MSC_VER) && !defined(__clang__) #include <intrin.h> #endif #include "absl/base/attributes.h" #include "absl/base/config.h" #if defined(__GNUC__) && !defined(__clang__) #define ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(x) 1 #else #define ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(x) ABSL_HAVE_BUILTIN(x) #endif #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_popcountl) && \ ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_popcountll) #define ABSL_INTERNAL_CONSTEXPR_POPCOUNT constexpr #define ABSL_INTERNAL_HAS_CONSTEXPR_POPCOUNT 1 #else #define ABSL_INTERNAL_CONSTEXPR_POPCOUNT #define ABSL_INTERNAL_HAS_CONSTEXPR_POPCOUNT 0 #endif #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_clz) && \ ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_clzll) #define ABSL_INTERNAL_CONSTEXPR_CLZ constexpr #define ABSL_INTERNAL_HAS_CONSTEXPR_CLZ 1 #else #define ABSL_INTERNAL_CONSTEXPR_CLZ #define ABSL_INTERNAL_HAS_CONSTEXPR_CLZ 0 #endif #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_ctz) && \ ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_ctzll) #define ABSL_INTERNAL_CONSTEXPR_CTZ constexpr #define ABSL_INTERNAL_HAS_CONSTEXPR_CTZ 1 #else #define ABSL_INTERNAL_CONSTEXPR_CTZ #define ABSL_INTERNAL_HAS_CONSTEXPR_CTZ 0 #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace numeric_internal { constexpr bool IsPowerOf2(unsigned int x) noexcept { return x != 0 && (x & (x - 1)) == 0; } template <class T> ABSL_MUST_USE_RESULT ABSL_ATTRIBUTE_ALWAYS_INLINE constexpr T RotateRight( T x, int s) noexcept { static_assert(std::is_unsigned<T>::value, "T must be unsigned"); static_assert(IsPowerOf2(std::numeric_limits<T>::digits), "T must have a power-of-2 size"); return static_cast<T>(x >> (s & (std::numeric_limits<T>::digits - 1))) | static_cast<T>(x << ((-s) & (std::numeric_limits<T>::digits - 1))); } template <class T> ABSL_MUST_USE_RESULT ABSL_ATTRIBUTE_ALWAYS_INLINE constexpr T RotateLeft( T x, int s) noexcept { static_assert(std::is_unsigned<T>::value, "T must be unsigned"); static_assert(IsPowerOf2(std::numeric_limits<T>::digits), "T must have a power-of-2 size"); return static_cast<T>(x << (s & (std::numeric_limits<T>::digits - 1))) | static_cast<T>(x >> ((-s) & (std::numeric_limits<T>::digits - 1))); } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_POPCOUNT inline int Popcount32(uint32_t x) noexcept { #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_popcount) static_assert(sizeof(unsigned int) == sizeof(x), "__builtin_popcount does not take 32-bit arg"); return __builtin_popcount(x); #else x -= ((x >> 1) & 0x55555555); x = ((x >> 2) & 0x33333333) + (x & 0x33333333); return static_cast<int>((((x + (x >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24); #endif } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_POPCOUNT inline int Popcount64(uint64_t x) noexcept { #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_popcountll) static_assert(sizeof(unsigned long long) == sizeof(x), "__builtin_popcount does not take 64-bit arg"); return __builtin_popcountll(x); #else x -= (x >> 1) & 0x5555555555555555ULL; x = ((x >> 2) & 0x3333333333333333ULL) + (x & 0x3333333333333333ULL); return static_cast<int>( (((x + (x >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56); #endif } template <class T> ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_POPCOUNT inline int Popcount(T x) noexcept { static_assert(std::is_unsigned<T>::value, "T must be unsigned"); static_assert(IsPowerOf2(std::numeric_limits<T>::digits), "T must have a power-of-2 size"); static_assert(sizeof(x) <= sizeof(uint64_t), "T is too large"); return sizeof(x) <= sizeof(uint32_t) ? Popcount32(x) : Popcount64(x); } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CLZ inline int CountLeadingZeroes32(uint32_t x) { #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_clz) static_assert(sizeof(unsigned int) == sizeof(x), "__builtin_clz does not take 32-bit arg"); return x == 0 ? 32 : __builtin_clz(x); #elif defined(_MSC_VER) && !defined(__clang__) unsigned long result = 0; if (_BitScanReverse(&result, x)) { return 31 - result; } return 32; #else int zeroes = 28; if (x >> 16) { zeroes -= 16; x >>= 16; } if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; #endif } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CLZ inline int CountLeadingZeroes16(uint16_t x) { #if ABSL_HAVE_BUILTIN(__builtin_clzg) return x == 0 ? 16 : __builtin_clzg(x); #elif ABSL_HAVE_BUILTIN(__builtin_clzs) static_assert(sizeof(unsigned short) == sizeof(x), "__builtin_clzs does not take 16-bit arg"); return x == 0 ? 16 : __builtin_clzs(x); #else return CountLeadingZeroes32(x) - 16; #endif } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CLZ inline int CountLeadingZeroes64(uint64_t x) { #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_clzll) static_assert(sizeof(unsigned long long) == sizeof(x), "__builtin_clzll does not take 64-bit arg"); return x == 0 ? 64 : __builtin_clzll(x); #elif defined(_MSC_VER) && !defined(__clang__) && \ (defined(_M_X64) || defined(_M_ARM64)) unsigned long result = 0; if (_BitScanReverse64(&result, x)) { return 63 - result; } return 64; #elif defined(_MSC_VER) && !defined(__clang__) unsigned long result = 0; if ((x >> 32) && _BitScanReverse(&result, static_cast<unsigned long>(x >> 32))) { return 31 - result; } if (_BitScanReverse(&result, static_cast<unsigned long>(x))) { return 63 - result; } return 64; #else int zeroes = 60; if (x >> 32) { zeroes -= 32; x >>= 32; } if (x >> 16) { zeroes -= 16; x >>= 16; } if (x >> 8) { zeroes -= 8; x >>= 8; } if (x >> 4) { zeroes -= 4; x >>= 4; } return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes; #endif } template <typename T> ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CLZ inline int CountLeadingZeroes(T x) { static_assert(std::is_unsigned<T>::value, "T must be unsigned"); static_assert(IsPowerOf2(std::numeric_limits<T>::digits), "T must have a power-of-2 size"); static_assert(sizeof(T) <= sizeof(uint64_t), "T too large"); return sizeof(T) <= sizeof(uint16_t) ? CountLeadingZeroes16(static_cast<uint16_t>(x)) - (std::numeric_limits<uint16_t>::digits - std::numeric_limits<T>::digits) : (sizeof(T) <= sizeof(uint32_t) ? CountLeadingZeroes32(static_cast<uint32_t>(x)) - (std::numeric_limits<uint32_t>::digits - std::numeric_limits<T>::digits) : CountLeadingZeroes64(x)); } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CTZ inline int CountTrailingZeroesNonzero32(uint32_t x) { #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_ctz) static_assert(sizeof(unsigned int) == sizeof(x), "__builtin_ctz does not take 32-bit arg"); return __builtin_ctz(x); #elif defined(_MSC_VER) && !defined(__clang__) unsigned long result = 0; _BitScanForward(&result, x); return result; #else int c = 31; x &= ~x + 1; if (x & 0x0000FFFF) c -= 16; if (x & 0x00FF00FF) c -= 8; if (x & 0x0F0F0F0F) c -= 4; if (x & 0x33333333) c -= 2; if (x & 0x55555555) c -= 1; return c; #endif } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CTZ inline int CountTrailingZeroesNonzero64(uint64_t x) { #if ABSL_NUMERIC_INTERNAL_HAVE_BUILTIN_OR_GCC(__builtin_ctzll) static_assert(sizeof(unsigned long long) == sizeof(x), "__builtin_ctzll does not take 64-bit arg"); return __builtin_ctzll(x); #elif defined(_MSC_VER) && !defined(__clang__) && \ (defined(_M_X64) || defined(_M_ARM64)) unsigned long result = 0; _BitScanForward64(&result, x); return result; #elif defined(_MSC_VER) && !defined(__clang__) unsigned long result = 0; if (static_cast<uint32_t>(x) == 0) { _BitScanForward(&result, static_cast<unsigned long>(x >> 32)); return result + 32; } _BitScanForward(&result, static_cast<unsigned long>(x)); return result; #else int c = 63; x &= ~x + 1; if (x & 0x00000000FFFFFFFF) c -= 32; if (x & 0x0000FFFF0000FFFF) c -= 16; if (x & 0x00FF00FF00FF00FF) c -= 8; if (x & 0x0F0F0F0F0F0F0F0F) c -= 4; if (x & 0x3333333333333333) c -= 2; if (x & 0x5555555555555555) c -= 1; return c; #endif } ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CTZ inline int CountTrailingZeroesNonzero16(uint16_t x) { #if ABSL_HAVE_BUILTIN(__builtin_ctzg) return __builtin_ctzg(x); #elif ABSL_HAVE_BUILTIN(__builtin_ctzs) static_assert(sizeof(unsigned short) == sizeof(x), "__builtin_ctzs does not take 16-bit arg"); return __builtin_ctzs(x); #else return CountTrailingZeroesNonzero32(x); #endif } template <class T> ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CTZ inline int CountTrailingZeroes(T x) noexcept { static_assert(std::is_unsigned<T>::value, "T must be unsigned"); static_assert(IsPowerOf2(std::numeric_limits<T>::digits), "T must have a power-of-2 size"); static_assert(sizeof(T) <= sizeof(uint64_t), "T too large"); return x == 0 ? std::numeric_limits<T>::digits : (sizeof(T) <= sizeof(uint16_t) ? CountTrailingZeroesNonzero16(static_cast<uint16_t>(x)) : (sizeof(T) <= sizeof(uint32_t) ? CountTrailingZeroesNonzero32( static_cast<uint32_t>(x)) : CountTrailingZeroesNonzero64(x))); } template <class T> ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CLZ inline typename std::enable_if<std::is_unsigned<T>::value, T>::type BitCeilPromotionHelper(T x, T promotion) { return (T{1} << (x + promotion)) >> promotion; } template <class T> ABSL_ATTRIBUTE_ALWAYS_INLINE ABSL_INTERNAL_CONSTEXPR_CLZ inline typename std::enable_if<std::is_unsigned<T>::value, T>::type BitCeilNonPowerOf2(T x) { return BitCeilPromotionHelper( static_cast<T>(std::numeric_limits<T>::digits - CountLeadingZeroes(x)), T{sizeof(T) >= sizeof(unsigned) ? 0 : std::numeric_limits<unsigned>::digits - std::numeric_limits<T>::digits}); } } ABSL_NAMESPACE_END } #endif
#include "absl/numeric/bits.h" #include <limits> #include <type_traits> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/random/random.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace { template <typename IntT> class IntegerTypesTest : public ::testing::Test {}; using OneByteIntegerTypes = ::testing::Types< unsigned char, uint8_t >; TYPED_TEST_SUITE(IntegerTypesTest, OneByteIntegerTypes); TYPED_TEST(IntegerTypesTest, HandlesTypes) { using UIntType = TypeParam; EXPECT_EQ(rotl(UIntType{0x12}, 0), uint8_t{0x12}); EXPECT_EQ(rotr(UIntType{0x12}, -4), uint8_t{0x21}); static_assert(rotl(UIntType{0x12}, 0) == uint8_t{0x12}, ""); static_assert(rotr(UIntType{0x12}, 0) == uint8_t{0x12}, ""); EXPECT_EQ(rotr(UIntType{0x12}, 0), uint8_t{0x12}); #if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ static_assert(countl_zero(UIntType{}) == 8, ""); static_assert(countl_zero(static_cast<UIntType>(-1)) == 0, ""); static_assert(countl_one(UIntType{}) == 0, ""); static_assert(countl_one(static_cast<UIntType>(-1)) == 8, ""); static_assert(countr_zero(UIntType{}) == 8, ""); static_assert(countr_zero(static_cast<UIntType>(-1)) == 0, ""); static_assert(countr_one(UIntType{}) == 0, ""); static_assert(countr_one(static_cast<UIntType>(-1)) == 8, ""); static_assert(popcount(UIntType{}) == 0, ""); static_assert(popcount(UIntType{1}) == 1, ""); static_assert(popcount(static_cast<UIntType>(-1)) == 8, ""); static_assert(bit_width(UIntType{}) == 0, ""); static_assert(bit_width(UIntType{1}) == 1, ""); static_assert(bit_width(UIntType{3}) == 2, ""); static_assert(bit_width(static_cast<UIntType>(-1)) == 8, ""); #endif EXPECT_EQ(countl_zero(UIntType{}), 8); EXPECT_EQ(countl_zero(static_cast<UIntType>(-1)), 0); EXPECT_EQ(countl_one(UIntType{}), 0); EXPECT_EQ(countl_one(static_cast<UIntType>(-1)), 8); EXPECT_EQ(countr_zero(UIntType{}), 8); EXPECT_EQ(countr_zero(static_cast<UIntType>(-1)), 0); EXPECT_EQ(countr_one(UIntType{}), 0); EXPECT_EQ(countr_one(static_cast<UIntType>(-1)), 8); EXPECT_EQ(popcount(UIntType{}), 0); EXPECT_EQ(popcount(UIntType{1}), 1); EXPECT_FALSE(has_single_bit(UIntType{})); EXPECT_FALSE(has_single_bit(static_cast<UIntType>(-1))); EXPECT_EQ(bit_width(UIntType{}), 0); EXPECT_EQ(bit_width(UIntType{1}), 1); EXPECT_EQ(bit_width(UIntType{3}), 2); EXPECT_EQ(bit_width(static_cast<UIntType>(-1)), 8); } TEST(Rotate, Left) { static_assert(rotl(uint8_t{0x12}, 0) == uint8_t{0x12}, ""); static_assert(rotl(uint16_t{0x1234}, 0) == uint16_t{0x1234}, ""); static_assert(rotl(uint32_t{0x12345678UL}, 0) == uint32_t{0x12345678UL}, ""); static_assert(rotl(uint64_t{0x12345678ABCDEF01ULL}, 0) == uint64_t{0x12345678ABCDEF01ULL}, ""); EXPECT_EQ(rotl(uint8_t{0x12}, 0), uint8_t{0x12}); EXPECT_EQ(rotl(uint16_t{0x1234}, 0), uint16_t{0x1234}); EXPECT_EQ(rotl(uint32_t{0x12345678UL}, 0), uint32_t{0x12345678UL}); EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, 0), uint64_t{0x12345678ABCDEF01ULL}); EXPECT_EQ(rotl(uint8_t{0x12}, 8), uint8_t{0x12}); EXPECT_EQ(rotl(uint16_t{0x1234}, 16), uint16_t{0x1234}); EXPECT_EQ(rotl(uint32_t{0x12345678UL}, 32), uint32_t{0x12345678UL}); EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, 64), uint64_t{0x12345678ABCDEF01ULL}); EXPECT_EQ(rotl(uint8_t{0x12}, -8), uint8_t{0x12}); EXPECT_EQ(rotl(uint16_t{0x1234}, -16), uint16_t{0x1234}); EXPECT_EQ(rotl(uint32_t{0x12345678UL}, -32), uint32_t{0x12345678UL}); EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, -64), uint64_t{0x12345678ABCDEF01ULL}); EXPECT_EQ(rotl(uint8_t{0x12}, 4), uint8_t{0x21}); EXPECT_EQ(rotl(uint16_t{0x1234}, 4), uint16_t{0x2341}); EXPECT_EQ(rotl(uint32_t{0x12345678UL}, 4), uint32_t{0x23456781UL}); EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, 4), uint64_t{0x2345678ABCDEF011ULL}); EXPECT_EQ(rotl(uint8_t{0x12}, -4), uint8_t{0x21}); EXPECT_EQ(rotl(uint16_t{0x1234}, -4), uint16_t{0x4123}); EXPECT_EQ(rotl(uint32_t{0x12345678UL}, -4), uint32_t{0x81234567UL}); EXPECT_EQ(rotl(uint64_t{0x12345678ABCDEF01ULL}, -4), uint64_t{0x112345678ABCDEF0ULL}); } TEST(Rotate, Right) { static_assert(rotr(uint8_t{0x12}, 0) == uint8_t{0x12}, ""); static_assert(rotr(uint16_t{0x1234}, 0) == uint16_t{0x1234}, ""); static_assert(rotr(uint32_t{0x12345678UL}, 0) == uint32_t{0x12345678UL}, ""); static_assert(rotr(uint64_t{0x12345678ABCDEF01ULL}, 0) == uint64_t{0x12345678ABCDEF01ULL}, ""); EXPECT_EQ(rotr(uint8_t{0x12}, 0), uint8_t{0x12}); EXPECT_EQ(rotr(uint16_t{0x1234}, 0), uint16_t{0x1234}); EXPECT_EQ(rotr(uint32_t{0x12345678UL}, 0), uint32_t{0x12345678UL}); EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, 0), uint64_t{0x12345678ABCDEF01ULL}); EXPECT_EQ(rotr(uint8_t{0x12}, 8), uint8_t{0x12}); EXPECT_EQ(rotr(uint16_t{0x1234}, 16), uint16_t{0x1234}); EXPECT_EQ(rotr(uint32_t{0x12345678UL}, 32), uint32_t{0x12345678UL}); EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, 64), uint64_t{0x12345678ABCDEF01ULL}); EXPECT_EQ(rotr(uint8_t{0x12}, -8), uint8_t{0x12}); EXPECT_EQ(rotr(uint16_t{0x1234}, -16), uint16_t{0x1234}); EXPECT_EQ(rotr(uint32_t{0x12345678UL}, -32), uint32_t{0x12345678UL}); EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, -64), uint64_t{0x12345678ABCDEF01ULL}); EXPECT_EQ(rotr(uint8_t{0x12}, 4), uint8_t{0x21}); EXPECT_EQ(rotr(uint16_t{0x1234}, 4), uint16_t{0x4123}); EXPECT_EQ(rotr(uint32_t{0x12345678UL}, 4), uint32_t{0x81234567UL}); EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, 4), uint64_t{0x112345678ABCDEF0ULL}); EXPECT_EQ(rotr(uint8_t{0x12}, -4), uint8_t{0x21}); EXPECT_EQ(rotr(uint16_t{0x1234}, -4), uint16_t{0x2341}); EXPECT_EQ(rotr(uint32_t{0x12345678UL}, -4), uint32_t{0x23456781UL}); EXPECT_EQ(rotr(uint64_t{0x12345678ABCDEF01ULL}, -4), uint64_t{0x2345678ABCDEF011ULL}); } TEST(Rotate, Symmetry) { absl::BitGen rng; constexpr int kTrials = 100; for (int i = 0; i < kTrials; ++i) { uint8_t value = absl::Uniform(rng, std::numeric_limits<uint8_t>::min(), std::numeric_limits<uint8_t>::max()); int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint8_t>::digits, 2 * std::numeric_limits<uint8_t>::digits); EXPECT_EQ(rotl(value, shift), rotr(value, -shift)); } for (int i = 0; i < kTrials; ++i) { uint16_t value = absl::Uniform(rng, std::numeric_limits<uint16_t>::min(), std::numeric_limits<uint16_t>::max()); int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint16_t>::digits, 2 * std::numeric_limits<uint16_t>::digits); EXPECT_EQ(rotl(value, shift), rotr(value, -shift)); } for (int i = 0; i < kTrials; ++i) { uint32_t value = absl::Uniform(rng, std::numeric_limits<uint32_t>::min(), std::numeric_limits<uint32_t>::max()); int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint32_t>::digits, 2 * std::numeric_limits<uint32_t>::digits); EXPECT_EQ(rotl(value, shift), rotr(value, -shift)); } for (int i = 0; i < kTrials; ++i) { uint64_t value = absl::Uniform(rng, std::numeric_limits<uint64_t>::min(), std::numeric_limits<uint64_t>::max()); int shift = absl::Uniform(rng, -2 * std::numeric_limits<uint64_t>::digits, 2 * std::numeric_limits<uint64_t>::digits); EXPECT_EQ(rotl(value, shift), rotr(value, -shift)); } } TEST(Counting, LeadingZeroes) { #if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ static_assert(countl_zero(uint8_t{}) == 8, ""); static_assert(countl_zero(static_cast<uint8_t>(-1)) == 0, ""); static_assert(countl_zero(uint16_t{}) == 16, ""); static_assert(countl_zero(static_cast<uint16_t>(-1)) == 0, ""); static_assert(countl_zero(uint32_t{}) == 32, ""); static_assert(countl_zero(~uint32_t{}) == 0, ""); static_assert(countl_zero(uint64_t{}) == 64, ""); static_assert(countl_zero(~uint64_t{}) == 0, ""); #endif EXPECT_EQ(countl_zero(uint8_t{}), 8); EXPECT_EQ(countl_zero(static_cast<uint8_t>(-1)), 0); EXPECT_EQ(countl_zero(uint16_t{}), 16); EXPECT_EQ(countl_zero(static_cast<uint16_t>(-1)), 0); EXPECT_EQ(countl_zero(uint32_t{}), 32); EXPECT_EQ(countl_zero(~uint32_t{}), 0); EXPECT_EQ(countl_zero(uint64_t{}), 64); EXPECT_EQ(countl_zero(~uint64_t{}), 0); for (int i = 0; i < 8; i++) { EXPECT_EQ(countl_zero(static_cast<uint8_t>(1u << i)), 7 - i); } for (int i = 0; i < 16; i++) { EXPECT_EQ(countl_zero(static_cast<uint16_t>(1u << i)), 15 - i); } for (int i = 0; i < 32; i++) { EXPECT_EQ(countl_zero(uint32_t{1} << i), 31 - i); } for (int i = 0; i < 64; i++) { EXPECT_EQ(countl_zero(uint64_t{1} << i), 63 - i); } } TEST(Counting, LeadingOnes) { #if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ static_assert(countl_one(uint8_t{}) == 0, ""); static_assert(countl_one(static_cast<uint8_t>(-1)) == 8, ""); static_assert(countl_one(uint16_t{}) == 0, ""); static_assert(countl_one(static_cast<uint16_t>(-1)) == 16, ""); static_assert(countl_one(uint32_t{}) == 0, ""); static_assert(countl_one(~uint32_t{}) == 32, ""); static_assert(countl_one(uint64_t{}) == 0, ""); static_assert(countl_one(~uint64_t{}) == 64, ""); #endif EXPECT_EQ(countl_one(uint8_t{}), 0); EXPECT_EQ(countl_one(static_cast<uint8_t>(-1)), 8); EXPECT_EQ(countl_one(uint16_t{}), 0); EXPECT_EQ(countl_one(static_cast<uint16_t>(-1)), 16); EXPECT_EQ(countl_one(uint32_t{}), 0); EXPECT_EQ(countl_one(~uint32_t{}), 32); EXPECT_EQ(countl_one(uint64_t{}), 0); EXPECT_EQ(countl_one(~uint64_t{}), 64); } TEST(Counting, TrailingZeroes) { #if ABSL_INTERNAL_HAS_CONSTEXPR_CTZ static_assert(countr_zero(uint8_t{}) == 8, ""); static_assert(countr_zero(static_cast<uint8_t>(-1)) == 0, ""); static_assert(countr_zero(uint16_t{}) == 16, ""); static_assert(countr_zero(static_cast<uint16_t>(-1)) == 0, ""); static_assert(countr_zero(uint32_t{}) == 32, ""); static_assert(countr_zero(~uint32_t{}) == 0, ""); static_assert(countr_zero(uint64_t{}) == 64, ""); static_assert(countr_zero(~uint64_t{}) == 0, ""); #endif EXPECT_EQ(countr_zero(uint8_t{}), 8); EXPECT_EQ(countr_zero(static_cast<uint8_t>(-1)), 0); EXPECT_EQ(countr_zero(uint16_t{}), 16); EXPECT_EQ(countr_zero(static_cast<uint16_t>(-1)), 0); EXPECT_EQ(countr_zero(uint32_t{}), 32); EXPECT_EQ(countr_zero(~uint32_t{}), 0); EXPECT_EQ(countr_zero(uint64_t{}), 64); EXPECT_EQ(countr_zero(~uint64_t{}), 0); } TEST(Counting, TrailingOnes) { #if ABSL_INTERNAL_HAS_CONSTEXPR_CTZ static_assert(countr_one(uint8_t{}) == 0, ""); static_assert(countr_one(static_cast<uint8_t>(-1)) == 8, ""); static_assert(countr_one(uint16_t{}) == 0, ""); static_assert(countr_one(static_cast<uint16_t>(-1)) == 16, ""); static_assert(countr_one(uint32_t{}) == 0, ""); static_assert(countr_one(~uint32_t{}) == 32, ""); static_assert(countr_one(uint64_t{}) == 0, ""); static_assert(countr_one(~uint64_t{}) == 64, ""); #endif EXPECT_EQ(countr_one(uint8_t{}), 0); EXPECT_EQ(countr_one(static_cast<uint8_t>(-1)), 8); EXPECT_EQ(countr_one(uint16_t{}), 0); EXPECT_EQ(countr_one(static_cast<uint16_t>(-1)), 16); EXPECT_EQ(countr_one(uint32_t{}), 0); EXPECT_EQ(countr_one(~uint32_t{}), 32); EXPECT_EQ(countr_one(uint64_t{}), 0); EXPECT_EQ(countr_one(~uint64_t{}), 64); } TEST(Counting, Popcount) { #if ABSL_INTERNAL_HAS_CONSTEXPR_POPCOUNT static_assert(popcount(uint8_t{}) == 0, ""); static_assert(popcount(uint8_t{1}) == 1, ""); static_assert(popcount(static_cast<uint8_t>(-1)) == 8, ""); static_assert(popcount(uint16_t{}) == 0, ""); static_assert(popcount(uint16_t{1}) == 1, ""); static_assert(popcount(static_cast<uint16_t>(-1)) == 16, ""); static_assert(popcount(uint32_t{}) == 0, ""); static_assert(popcount(uint32_t{1}) == 1, ""); static_assert(popcount(~uint32_t{}) == 32, ""); static_assert(popcount(uint64_t{}) == 0, ""); static_assert(popcount(uint64_t{1}) == 1, ""); static_assert(popcount(~uint64_t{}) == 64, ""); #endif EXPECT_EQ(popcount(uint8_t{}), 0); EXPECT_EQ(popcount(uint8_t{1}), 1); EXPECT_EQ(popcount(static_cast<uint8_t>(-1)), 8); EXPECT_EQ(popcount(uint16_t{}), 0); EXPECT_EQ(popcount(uint16_t{1}), 1); EXPECT_EQ(popcount(static_cast<uint16_t>(-1)), 16); EXPECT_EQ(popcount(uint32_t{}), 0); EXPECT_EQ(popcount(uint32_t{1}), 1); EXPECT_EQ(popcount(~uint32_t{}), 32); EXPECT_EQ(popcount(uint64_t{}), 0); EXPECT_EQ(popcount(uint64_t{1}), 1); EXPECT_EQ(popcount(~uint64_t{}), 64); for (int i = 0; i < 8; i++) { EXPECT_EQ(popcount(static_cast<uint8_t>(uint8_t{1} << i)), 1); EXPECT_EQ(popcount(static_cast<uint8_t>(static_cast<uint8_t>(-1) ^ (uint8_t{1} << i))), 7); } for (int i = 0; i < 16; i++) { EXPECT_EQ(popcount(static_cast<uint16_t>(uint16_t{1} << i)), 1); EXPECT_EQ(popcount(static_cast<uint16_t>(static_cast<uint16_t>(-1) ^ (uint16_t{1} << i))), 15); } for (int i = 0; i < 32; i++) { EXPECT_EQ(popcount(uint32_t{1} << i), 1); EXPECT_EQ(popcount(static_cast<uint32_t>(-1) ^ (uint32_t{1} << i)), 31); } for (int i = 0; i < 64; i++) { EXPECT_EQ(popcount(uint64_t{1} << i), 1); EXPECT_EQ(popcount(static_cast<uint64_t>(-1) ^ (uint64_t{1} << i)), 63); } } template <typename T> struct PopcountInput { T value = 0; int expected = 0; }; template <typename T> PopcountInput<T> GeneratePopcountInput(absl::BitGen& gen) { PopcountInput<T> ret; for (int i = 0; i < std::numeric_limits<T>::digits; i++) { bool coin = absl::Bernoulli(gen, 0.2); if (coin) { ret.value |= T{1} << i; ret.expected++; } } return ret; } TEST(Counting, PopcountFuzz) { absl::BitGen rng; constexpr int kTrials = 100; for (int i = 0; i < kTrials; ++i) { auto input = GeneratePopcountInput<uint8_t>(rng); EXPECT_EQ(popcount(input.value), input.expected); } for (int i = 0; i < kTrials; ++i) { auto input = GeneratePopcountInput<uint16_t>(rng); EXPECT_EQ(popcount(input.value), input.expected); } for (int i = 0; i < kTrials; ++i) { auto input = GeneratePopcountInput<uint32_t>(rng); EXPECT_EQ(popcount(input.value), input.expected); } for (int i = 0; i < kTrials; ++i) { auto input = GeneratePopcountInput<uint64_t>(rng); EXPECT_EQ(popcount(input.value), input.expected); } } TEST(IntegralPowersOfTwo, SingleBit) { EXPECT_FALSE(has_single_bit(uint8_t{})); EXPECT_FALSE(has_single_bit(static_cast<uint8_t>(-1))); EXPECT_FALSE(has_single_bit(uint16_t{})); EXPECT_FALSE(has_single_bit(static_cast<uint16_t>(-1))); EXPECT_FALSE(has_single_bit(uint32_t{})); EXPECT_FALSE(has_single_bit(~uint32_t{})); EXPECT_FALSE(has_single_bit(uint64_t{})); EXPECT_FALSE(has_single_bit(~uint64_t{})); static_assert(!has_single_bit(0u), ""); static_assert(has_single_bit(1u), ""); static_assert(has_single_bit(2u), ""); static_assert(!has_single_bit(3u), ""); static_assert(has_single_bit(4u), ""); static_assert(!has_single_bit(1337u), ""); static_assert(has_single_bit(65536u), ""); static_assert(has_single_bit(uint32_t{1} << 30), ""); static_assert(has_single_bit(uint64_t{1} << 42), ""); EXPECT_FALSE(has_single_bit(0u)); EXPECT_TRUE(has_single_bit(1u)); EXPECT_TRUE(has_single_bit(2u)); EXPECT_FALSE(has_single_bit(3u)); EXPECT_TRUE(has_single_bit(4u)); EXPECT_FALSE(has_single_bit(1337u)); EXPECT_TRUE(has_single_bit(65536u)); EXPECT_TRUE(has_single_bit(uint32_t{1} << 30)); EXPECT_TRUE(has_single_bit(uint64_t{1} << 42)); EXPECT_TRUE(has_single_bit( static_cast<uint8_t>(std::numeric_limits<uint8_t>::max() / 2 + 1))); EXPECT_TRUE(has_single_bit( static_cast<uint16_t>(std::numeric_limits<uint16_t>::max() / 2 + 1))); EXPECT_TRUE(has_single_bit( static_cast<uint32_t>(std::numeric_limits<uint32_t>::max() / 2 + 1))); EXPECT_TRUE(has_single_bit( static_cast<uint64_t>(std::numeric_limits<uint64_t>::max() / 2 + 1))); } template <typename T, T arg, T = bit_ceil(arg)> bool IsBitCeilConstantExpression(int) { return true; } template <typename T, T arg> bool IsBitCeilConstantExpression(char) { return false; } TEST(IntegralPowersOfTwo, Ceiling) { #if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ static_assert(bit_ceil(0u) == 1, ""); static_assert(bit_ceil(1u) == 1, ""); static_assert(bit_ceil(2u) == 2, ""); static_assert(bit_ceil(3u) == 4, ""); static_assert(bit_ceil(4u) == 4, ""); static_assert(bit_ceil(1337u) == 2048, ""); static_assert(bit_ceil(65536u) == 65536, ""); static_assert(bit_ceil(65536u - 1337u) == 65536, ""); static_assert(bit_ceil(uint32_t{0x80000000}) == uint32_t{0x80000000}, ""); static_assert(bit_ceil(uint64_t{0x40000000000}) == uint64_t{0x40000000000}, ""); static_assert( bit_ceil(uint64_t{0x8000000000000000}) == uint64_t{0x8000000000000000}, ""); EXPECT_TRUE((IsBitCeilConstantExpression<uint8_t, uint8_t{0x0}>(0))); EXPECT_TRUE((IsBitCeilConstantExpression<uint8_t, uint8_t{0x80}>(0))); EXPECT_FALSE((IsBitCeilConstantExpression<uint8_t, uint8_t{0x81}>(0))); EXPECT_FALSE((IsBitCeilConstantExpression<uint8_t, uint8_t{0xff}>(0))); EXPECT_TRUE((IsBitCeilConstantExpression<uint16_t, uint16_t{0x0}>(0))); EXPECT_TRUE((IsBitCeilConstantExpression<uint16_t, uint16_t{0x8000}>(0))); EXPECT_FALSE((IsBitCeilConstantExpression<uint16_t, uint16_t{0x8001}>(0))); EXPECT_FALSE((IsBitCeilConstantExpression<uint16_t, uint16_t{0xffff}>(0))); EXPECT_TRUE((IsBitCeilConstantExpression<uint32_t, uint32_t{0x0}>(0))); EXPECT_TRUE((IsBitCeilConstantExpression<uint32_t, uint32_t{0x80000000}>(0))); EXPECT_FALSE( (IsBitCeilConstantExpression<uint32_t, uint32_t{0x80000001}>(0))); EXPECT_FALSE( (IsBitCeilConstantExpression<uint32_t, uint32_t{0xffffffff}>(0))); EXPECT_TRUE((IsBitCeilConstantExpression<uint64_t, uint64_t{0x0}>(0))); EXPECT_TRUE( (IsBitCeilConstantExpression<uint64_t, uint64_t{0x8000000000000000}>(0))); EXPECT_FALSE( (IsBitCeilConstantExpression<uint64_t, uint64_t{0x8000000000000001}>(0))); EXPECT_FALSE( (IsBitCeilConstantExpression<uint64_t, uint64_t{0xffffffffffffffff}>(0))); #endif EXPECT_EQ(bit_ceil(0u), 1); EXPECT_EQ(bit_ceil(1u), 1); EXPECT_EQ(bit_ceil(2u), 2); EXPECT_EQ(bit_ceil(3u), 4); EXPECT_EQ(bit_ceil(4u), 4); EXPECT_EQ(bit_ceil(1337u), 2048); EXPECT_EQ(bit_ceil(65536u), 65536); EXPECT_EQ(bit_ceil(65536u - 1337u), 65536); EXPECT_EQ(bit_ceil(uint64_t{0x40000000000}), uint64_t{0x40000000000}); } TEST(IntegralPowersOfTwo, Floor) { #if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ static_assert(bit_floor(0u) == 0, ""); static_assert(bit_floor(1u) == 1, ""); static_assert(bit_floor(2u) == 2, ""); static_assert(bit_floor(3u) == 2, ""); static_assert(bit_floor(4u) == 4, ""); static_assert(bit_floor(1337u) == 1024, ""); static_assert(bit_floor(65536u) == 65536, ""); static_assert(bit_floor(65536u - 1337u) == 32768, ""); static_assert(bit_floor(uint64_t{0x40000000000}) == uint64_t{0x40000000000}, ""); #endif EXPECT_EQ(bit_floor(0u), 0); EXPECT_EQ(bit_floor(1u), 1); EXPECT_EQ(bit_floor(2u), 2); EXPECT_EQ(bit_floor(3u), 2); EXPECT_EQ(bit_floor(4u), 4); EXPECT_EQ(bit_floor(1337u), 1024); EXPECT_EQ(bit_floor(65536u), 65536); EXPECT_EQ(bit_floor(65536u - 1337u), 32768); EXPECT_EQ(bit_floor(uint64_t{0x40000000000}), uint64_t{0x40000000000}); for (int i = 0; i < 8; i++) { uint8_t input = uint8_t{1} << i; EXPECT_EQ(bit_floor(input), input); if (i > 0) { EXPECT_EQ(bit_floor(static_cast<uint8_t>(input + 1)), input); } } for (int i = 0; i < 16; i++) { uint16_t input = uint16_t{1} << i; EXPECT_EQ(bit_floor(input), input); if (i > 0) { EXPECT_EQ(bit_floor(static_cast<uint16_t>(input + 1)), input); } } for (int i = 0; i < 32; i++) { uint32_t input = uint32_t{1} << i; EXPECT_EQ(bit_floor(input), input); if (i > 0) { EXPECT_EQ(bit_floor(input + 1), input); } } for (int i = 0; i < 64; i++) { uint64_t input = uint64_t{1} << i; EXPECT_EQ(bit_floor(input), input); if (i > 0) { EXPECT_EQ(bit_floor(input + 1), input); } } } TEST(IntegralPowersOfTwo, Width) { #if ABSL_INTERNAL_HAS_CONSTEXPR_CLZ static_assert(bit_width(uint8_t{}) == 0, ""); static_assert(bit_width(uint8_t{1}) == 1, ""); static_assert(bit_width(uint8_t{3}) == 2, ""); static_assert(bit_width(static_cast<uint8_t>(-1)) == 8, ""); static_assert(bit_width(uint16_t{}) == 0, ""); static_assert(bit_width(uint16_t{1}) == 1, ""); static_assert(bit_width(uint16_t{3}) == 2, ""); static_assert(bit_width(static_cast<uint16_t>(-1)) == 16, ""); static_assert(bit_width(uint32_t{}) == 0, ""); static_assert(bit_width(uint32_t{1}) == 1, ""); static_assert(bit_width(uint32_t{3}) == 2, ""); static_assert(bit_width(~uint32_t{}) == 32, ""); static_assert(bit_width(uint64_t{}) == 0, ""); static_assert(bit_width(uint64_t{1}) == 1, ""); static_assert(bit_width(uint64_t{3}) == 2, ""); static_assert(bit_width(~uint64_t{}) == 64, ""); #endif EXPECT_EQ(bit_width(uint8_t{}), 0); EXPECT_EQ(bit_width(uint8_t{1}), 1); EXPECT_EQ(bit_width(uint8_t{3}), 2); EXPECT_EQ(bit_width(static_cast<uint8_t>(-1)), 8); EXPECT_EQ(bit_width(uint16_t{}), 0); EXPECT_EQ(bit_width(uint16_t{1}), 1); EXPECT_EQ(bit_width(uint16_t{3}), 2); EXPECT_EQ(bit_width(static_cast<uint16_t>(-1)), 16); EXPECT_EQ(bit_width(uint32_t{}), 0); EXPECT_EQ(bit_width(uint32_t{1}), 1); EXPECT_EQ(bit_width(uint32_t{3}), 2); EXPECT_EQ(bit_width(~uint32_t{}), 32); EXPECT_EQ(bit_width(uint64_t{}), 0); EXPECT_EQ(bit_width(uint64_t{1}), 1); EXPECT_EQ(bit_width(uint64_t{3}), 2); EXPECT_EQ(bit_width(~uint64_t{}), 64); for (int i = 0; i < 8; i++) { EXPECT_EQ(bit_width(static_cast<uint8_t>(uint8_t{1} << i)), i + 1); } for (int i = 0; i < 16; i++) { EXPECT_EQ(bit_width(static_cast<uint16_t>(uint16_t{1} << i)), i + 1); } for (int i = 0; i < 32; i++) { EXPECT_EQ(bit_width(uint32_t{1} << i), i + 1); } for (int i = 0; i < 64; i++) { EXPECT_EQ(bit_width(uint64_t{1} << i), i + 1); } } #if defined(__GNUC__) static_assert(ABSL_INTERNAL_HAS_CONSTEXPR_POPCOUNT, "popcount should be constexpr"); static_assert(ABSL_INTERNAL_HAS_CONSTEXPR_CLZ, "clz should be constexpr"); static_assert(ABSL_INTERNAL_HAS_CONSTEXPR_CTZ, "ctz should be constexpr"); #endif } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/numeric/internal/bits.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/numeric/bits_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
4142408e-4266-428e-ac32-9ee5cf8ea20c
cpp
tensorflow/tensorflow
arg_min_max
tensorflow/lite/kernels/arg_min_max.cc
tensorflow/lite/delegates/hexagon/builders/tests/arg_min_max_test.cc
#include "tensorflow/lite/kernels/internal/reference/arg_min_max.h" #include <stdint.h> #include <functional> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/optimized/optimized_ops.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace arg_min_max { constexpr int kInputTensor = 0; constexpr int kAxis = 1; constexpr int kOutputTensor = 0; TfLiteStatus ResizeOutput(TfLiteContext* context, const TfLiteTensor* input, const TfLiteTensor* axis, TfLiteTensor* output) { int axis_value; if (axis->type == kTfLiteInt64) { axis_value = static_cast<int>(*GetTensorData<int64_t>(axis)); } else { axis_value = *GetTensorData<int>(axis); } if (axis_value < 0) { axis_value += NumDimensions(input); } TF_LITE_ENSURE(context, axis_value >= 0); TF_LITE_ENSURE(context, axis_value < NumDimensions(input)); TfLiteIntArray* output_dims = TfLiteIntArrayCreate(NumDimensions(input) - 1); int j = 0; for (int i = 0; i < NumDimensions(input); ++i) { if (i != axis_value) { output_dims->data[j] = SizeOfDimension(input, i); ++j; } } return context->ResizeTensor(context, output, output_dims); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* axis; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kAxis, &axis)); TF_LITE_ENSURE_EQ(context, NumElements(axis), 1); TF_LITE_ENSURE(context, axis->type == kTfLiteInt32 || axis->type == kTfLiteInt64); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); auto* params = reinterpret_cast<TfLiteArgMaxParams*>(node->builtin_data); switch (params->output_type) { case kTfLiteInt32: output->type = kTfLiteInt32; break; case kTfLiteInt64: output->type = kTfLiteInt64; break; default: TF_LITE_KERNEL_LOG(context, "Unknown index output data type: %d", params->output_type); return kTfLiteError; } switch (input->type) { case kTfLiteFloat32: case kTfLiteUInt8: case kTfLiteInt8: case kTfLiteInt32: case kTfLiteBool: break; default: TF_LITE_KERNEL_LOG(context, "Unknown input type: %d, only float32, int types " "and bool are supported", input->type); return kTfLiteError; } TF_LITE_ENSURE(context, NumDimensions(input) >= 1); if (IsConstantOrPersistentTensor(axis)) { TF_LITE_ENSURE_STATUS(ResizeOutput(context, input, axis, output)); } else { SetTensorToDynamic(output); } return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node, bool is_arg_max) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* axis; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kAxis, &axis)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); if (IsDynamicTensor(output)) { TF_LITE_ENSURE_STATUS(ResizeOutput(context, input, axis, output)); } #define TF_LITE_ARG_MIN_MAX(data_type, axis_type, output_type) \ optimized_ops::ArgMinMax( \ GetTensorShape(input), GetTensorData<data_type>(input), \ GetTensorData<axis_type>(axis), GetTensorShape(output), \ GetTensorData<output_type>(output), is_arg_max) if (axis->type == kTfLiteInt32) { switch (output->type) { case kTfLiteInt32: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int32_t, int32_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int32_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int32_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int32_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int32_t, int32_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; case kTfLiteInt64: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int32_t, int64_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int32_t, int64_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int32_t, int64_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int32_t, int64_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int32_t, int64_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; default: TF_LITE_KERNEL_LOG( context, "Only int32 and int64 are supported currently, got %s.", TfLiteTypeGetName(output->type)); return kTfLiteError; } } else { switch (output->type) { case kTfLiteInt32: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int64_t, int32_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int32_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int64_t, int32_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int32_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int64_t, int32_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; case kTfLiteInt64: { switch (input->type) { case kTfLiteFloat32: TF_LITE_ARG_MIN_MAX(float, int64_t, int64_t); break; case kTfLiteUInt8: TF_LITE_ARG_MIN_MAX(uint8_t, int64_t, int64_t); break; case kTfLiteInt8: TF_LITE_ARG_MIN_MAX(int8_t, int64_t, int64_t); break; case kTfLiteInt32: TF_LITE_ARG_MIN_MAX(int32_t, int64_t, int64_t); break; case kTfLiteBool: TF_LITE_ARG_MIN_MAX(bool, int64_t, int64_t); break; default: TF_LITE_KERNEL_LOG(context, "Only float32, uint8, int8, int32 and bool are " "supported currently, got %s.", TfLiteTypeGetName(input->type)); return kTfLiteError; } } break; default: TF_LITE_KERNEL_LOG( context, "Only int32 and int64 are supported currently, got %s.", TfLiteTypeGetName(output->type)); return kTfLiteError; } } #undef TF_LITE_ARG_MIN_MAX return kTfLiteOk; } TfLiteStatus ArgMinEval(TfLiteContext* context, TfLiteNode* node) { return Eval(context, node, false); } TfLiteStatus ArgMaxEval(TfLiteContext* context, TfLiteNode* node) { return Eval(context, node, true); } } TfLiteRegistration* Register_ARG_MAX() { static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare, arg_min_max::ArgMaxEval}; return &r; } TfLiteRegistration* Register_ARG_MIN() { static TfLiteRegistration r = {nullptr, nullptr, arg_min_max::Prepare, arg_min_max::ArgMinEval}; return &r; } } } }
#include <initializer_list> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/hexagon/builders/tests/hexagon_delegate_op_model.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { using testing::ElementsAreArray; class ArgBaseOpModel : public SingleOpModelWithHexagon { public: explicit ArgBaseOpModel(TensorType input_type) { input_ = AddInput(input_type); output_ = AddOutput(TensorType_INT32); } int input() const { return input_; } std::vector<int> GetInt32Output() const { return ExtractVector<int>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: using SingleOpModelWithHexagon::builder_; int input_; int output_; }; class ArgMinOpModel : public ArgBaseOpModel { public: ArgMinOpModel(std::initializer_list<int> input_shape, TensorType input_type) : ArgBaseOpModel(input_type ), input_shape_(input_shape) {} void Build() { SetBuiltinOp(BuiltinOperator_ARG_MIN, BuiltinOptions_ArgMinOptions, CreateArgMinOptions(builder_, TensorType_INT32 ) .Union()); BuildInterpreter({input_shape_, {1}}); } private: std::vector<int> input_shape_; }; class ArgMaxOpModel : public ArgBaseOpModel { public: ArgMaxOpModel(std::initializer_list<int> input_shape, TensorType input_type) : ArgBaseOpModel(input_type ), input_shape_(input_shape) {} void Build() { SetBuiltinOp(BuiltinOperator_ARG_MAX, BuiltinOptions_ArgMaxOptions, CreateArgMaxOptions(builder_, TensorType_INT32 ) .Union()); BuildInterpreter({input_shape_, {1}}); } private: std::vector<int> input_shape_; }; template <typename integer_type, TensorType tensor_dtype> void ArgMinTestImpl() { ArgMinOpModel model({1, 1, 1, 4}, tensor_dtype); model.AddConstInput(TensorType_INT32, {3}, {1}); model.Build(); if (tensor_dtype == TensorType_UINT8) { model.SymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } else { model.SignedSymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetInt32Output(), ElementsAreArray({2})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 1})); } template <typename integer_type, TensorType tensor_dtype> void ArgMinNegativeTestImpl() { ArgMinOpModel model({1, 1, 2, 4}, tensor_dtype); model.AddConstInput(TensorType_INT32, {-2}, {1}); model.Build(); if (tensor_dtype == TensorType_UINT8) { model.SymmetricQuantizeAndPopulate(model.input(), {1, 2, 7, 8, 1, 9, 7, 3}); } else { model.SignedSymmetricQuantizeAndPopulate(model.input(), {1, 2, 7, 8, 1, 9, 7, 3}); } model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetInt32Output(), ElementsAreArray({0, 0, 0, 1})); EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 1, 4})); } template <typename integer_type, TensorType tensor_dtype> void ArgMaxTestImpl() { ArgMaxOpModel model({1, 1, 1, 4}, tensor_dtype); model.AddConstInput(TensorType_INT32, {3}, {1}); model.Build(); if (tensor_dtype == TensorType_UINT8) { model.SymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } else { model.SignedSymmetricQuantizeAndPopulate(model.input(), {1, 5, 0, 7}); } model.ApplyDelegateAndInvoke(); EXPECT_THAT(model.GetInt32Output(), ElementsAreArray({3})); } TEST(ArgMinTest, GetArgMin_UInt8) { ArgMinTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ArgMinTest, GetArgMin_Int8) { ArgMinTestImpl<int8_t, TensorType_INT8>(); } TEST(ArgMinTest, GetArgMinNegative_UInt8) { ArgMinNegativeTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ArgMinTest, GetArgMinNegative_Int8) { ArgMinNegativeTestImpl<int8_t, TensorType_INT8>(); } TEST(ArgMaxTest, GetArgMax_UInt8) { ArgMaxTestImpl<uint8_t, TensorType_UINT8>(); } TEST(ArgMaxTest, GetArgMax_Int8) { ArgMaxTestImpl<int8_t, TensorType_INT8>(); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/arg_min_max.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/hexagon/builders/tests/arg_min_max_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
856f08f5-e960-4ae4-90cc-7b4516bd8de3
cpp
tensorflow/tensorflow
fingerprint_op
tensorflow/core/kernels/fingerprint_op.cc
tensorflow/core/kernels/fingerprint_op_test.cc
#include <cstddef> #include <string> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/byte_order.h" #include "tensorflow/core/platform/fingerprint.h" namespace tensorflow { namespace { template <typename T> inline void CopyToBuffer(const T& value, uint8* output) { #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ static_assert(port::kLittleEndian, ""); std::memcpy(output, &value, sizeof(value)); #else static_assert(!port::kLittleEndian, ""); std::reverse_copy(reinterpret_cast<const uint8*>(&value), reinterpret_cast<const uint8*>(&value + 1), output); #endif } void FarmhashFingerprint64(TTypes<uint8, 2>::ConstTensor input, TTypes<uint8, 2>::Matrix output) { DCHECK_EQ(output.dimension(0), input.dimension(0)); DCHECK_EQ(output.dimension(1), sizeof(uint64)); for (int64_t i = 0; i < output.dimension(0); ++i) { const uint64 fingerprint = Fingerprint64({reinterpret_cast<const char*>(&input(i, 0)), static_cast<std::size_t>(input.dimension(1))}); CopyToBuffer(fingerprint, &output(i, 0)); } } void FarmhashFingerprint64(TTypes<tstring>::ConstFlat input, TTypes<uint8, 2>::Matrix output) { DCHECK_EQ(output.dimension(0), input.dimension(0)); DCHECK_EQ(output.dimension(1), sizeof(uint64)); for (int64_t i = 0; i < input.dimension(0); ++i) { const uint64 fingerprint = Fingerprint64({input(i).data(), input(i).size()}); CopyToBuffer(fingerprint, &output(i, 0)); } } class FingerprintOp : public OpKernel { public: explicit FingerprintOp(OpKernelConstruction* context) : OpKernel(context) { DataType dtype; OP_REQUIRES_OK(context, context->GetAttr("T", &dtype)); OP_REQUIRES(context, DataTypeCanUseMemcpy(dtype) || dtype == DT_STRING, errors::InvalidArgument("Data type not supported: ", DataTypeString(dtype))); } void Compute(tensorflow::OpKernelContext* context) override { const Tensor& method_tensor = context->input(1); OP_REQUIRES(context, TensorShapeUtils::IsScalar(method_tensor.shape()), errors::InvalidArgument("`method` should be a scalar string: ", method_tensor.shape())); const tstring& method = method_tensor.scalar<tstring>()(); OP_REQUIRES( context, method == "farmhash64", errors::InvalidArgument("Unsupported fingerprint method: ", method)); const Tensor& input = context->input(0); OP_REQUIRES( context, TensorShapeUtils::IsVectorOrHigher(input.shape()), errors::InvalidArgument("`data` should have at least one dimension: ", input.shape())); const int64_t dim0 = input.shape().dim_size(0); int64_t dim1; if (dim0 == 0) { dim1 = 0; } else { dim1 = input.shape().num_elements() / dim0; } Tensor* output; OP_REQUIRES_OK(context, context->allocate_output( 0, TensorShape{dim0, kFingerprintSize}, &output)); if (input.dtype() == DT_STRING) { if (dim1 > 1) { Tensor temp; OP_REQUIRES_OK(context, context->allocate_temp( DT_UINT8, TensorShape{input.shape().num_elements(), kFingerprintSize}, &temp)); FarmhashFingerprint64(input.flat<tstring>(), temp.tensor<uint8, 2>()); FarmhashFingerprint64(static_cast<const Tensor&>(temp).shaped<uint8, 2>( {dim0, dim1 * kFingerprintSize}), output->matrix<uint8>()); } else { FarmhashFingerprint64(input.flat<tstring>(), output->matrix<uint8>()); } } else { auto data = input.bit_casted_shaped<uint8, 2>( {dim0, dim1 * DataTypeSize(input.dtype())}); FarmhashFingerprint64(data, output->matrix<uint8>()); } } private: static constexpr int kFingerprintSize = sizeof(uint64); }; REGISTER_KERNEL_BUILDER(Name("Fingerprint").Device(tensorflow::DEVICE_CPU), FingerprintOp); } }
#include <memory> #include <numeric> #include <vector> #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { Status MakeNodeDef(DataType dtype, NodeDef* node_def) { return NodeDefBuilder("fingerprint", "Fingerprint") .Input(FakeInput(dtype)) .Input(FakeInput(DT_STRING)) .Finalize(node_def); } class FingerprintOpTest : public OpsTestBase { protected: Status MakeFingerprintOp(Tensor* tensor) { return MakeFingerprintOp(tensor, "farmhash64"); } Status MakeFingerprintOp(Tensor* data, const string& method) { TF_RETURN_IF_ERROR(MakeNodeDef(data->dtype(), node_def())); TF_RETURN_IF_ERROR(InitOp()); inputs_.clear(); inputs_.push_back(TensorValue(data)); method_ = Tensor(DT_STRING, TensorShape{}); method_.scalar<tstring>()() = method; inputs_.push_back(TensorValue(&method_)); return absl::OkStatus(); } Tensor batch_dims_; Tensor method_; }; TEST_F(FingerprintOpTest, Empty) { Tensor tensor(DT_UINT8, {0}); TF_ASSERT_OK(MakeFingerprintOp(&tensor)); TF_ASSERT_OK(RunOpKernel()); EXPECT_EQ(GetOutput(0)->shape(), (TensorShape{0, 8})); EXPECT_EQ(GetOutput(0)->tensor_data(), ""); } TEST_F(FingerprintOpTest, GoldenValue) { Tensor tensor(DT_UINT8, {1, 3, 4, 5, 6, 7}); auto buffer = tensor.flat<uint8>(); std::iota(buffer.data(), buffer.data() + buffer.size(), static_cast<uint8>(47)); TF_ASSERT_OK(MakeFingerprintOp(&tensor)); TF_ASSERT_OK(RunOpKernel()); EXPECT_EQ(GetOutput(0)->shape(), (TensorShape{1, 8})); EXPECT_EQ(GetOutput(0)->tensor_data(), "\x2d\x90\xdf\x03\x79\x36\x3c\x43"); } TEST_F(FingerprintOpTest, StringGoldenValue) { Tensor data(DT_STRING, {1, 2, 2}); auto buffer = data.flat<tstring>(); buffer(0).resize(10); buffer(1).resize(7); buffer(2).resize(0); buffer(3).resize(19); std::iota(&buffer(0)[0], &buffer(0)[0] + buffer(0).size(), 0); std::iota(&buffer(1)[0], &buffer(1)[0] + buffer(1).size(), 7); std::iota(&buffer(2)[0], &buffer(2)[0] + buffer(2).size(), 71); std::iota(&buffer(3)[0], &buffer(3)[0] + buffer(3).size(), 41); TF_ASSERT_OK(MakeFingerprintOp(&data)); TF_ASSERT_OK(RunOpKernel()); ASSERT_EQ(GetOutput(0)->shape(), (TensorShape{1, 8})); EXPECT_EQ(GetOutput(0)->tensor_data(), "\x92\x43\x28\x52\xa3\x7c\x48\x18"); ASSERT_TRUE(data.CopyFrom(data, TensorShape{4})); TF_ASSERT_OK(MakeFingerprintOp(&data)); TF_ASSERT_OK(RunOpKernel()); ASSERT_EQ(GetOutput(0)->shape(), (TensorShape{4, 8})); EXPECT_EQ(GetOutput(0)->tensor_data(), "\xea\xff\xd6\xb2\xb2\x4d\x70\x9b" "\x6e\x9d\xed\x21\xc6\x4a\x61\x52" "\x4f\x40\x90\x2f\x3b\x6a\xe1\x9a" "\x0d\x9b\x7f\x63\x23\x14\x1c\xb8"); } TEST_F(FingerprintOpTest, Collision) { const TensorShape shape = {1, 2, 4, 6}; for (DataType dtype : kRealNumberTypes) { const int64_t size = shape.num_elements() * DataTypeSize(dtype); Tensor tensor(dtype, shape); auto buffer = tensor.bit_casted_shaped<uint8, 1>({size}); buffer.setRandom(); TF_ASSERT_OK(MakeFingerprintOp(&tensor)); TF_ASSERT_OK(RunOpKernel()); const Tensor fingerprint0 = *GetOutput(0); const int offset = buffer(0) % buffer.size(); buffer(offset) = ~buffer(offset); TF_ASSERT_OK(MakeFingerprintOp(&tensor)); TF_ASSERT_OK(RunOpKernel()); const Tensor fingerprint1 = *GetOutput(0); EXPECT_NE(fingerprint0.tensor_data(), fingerprint1.tensor_data()); } } TEST_F(FingerprintOpTest, CollisionString) { constexpr int64_t size = 256; Tensor tensor(DT_STRING, {1}); auto& input = tensor.vec<tstring>()(0); input.resize(size); TTypes<uint8>::UnalignedFlat buffer(reinterpret_cast<uint8*>(&input[0]), input.size()); buffer.setRandom(); TF_ASSERT_OK(MakeFingerprintOp(&tensor)); TF_ASSERT_OK(RunOpKernel()); const Tensor fingerprint0 = *GetOutput(0); const int offset = buffer(0) % buffer.size(); buffer(offset) = ~buffer(offset); TF_ASSERT_OK(MakeFingerprintOp(&tensor)); TF_ASSERT_OK(RunOpKernel()); const Tensor fingerprint1 = *GetOutput(0); EXPECT_NE(fingerprint0.tensor_data(), fingerprint1.tensor_data()); } TEST_F(FingerprintOpTest, CompareBytesAndString) { Tensor pods_tensor(DT_FLOAT, {4, 64}); Tensor strings_tensor(DT_STRING, {4}); auto pods = pods_tensor.matrix<float>(); pods.setRandom(); auto strings = strings_tensor.vec<tstring>(); for (int64_t i = 0; i < strings.size(); ++i) { strings(i).assign(reinterpret_cast<const char*>(&pods(i, 0)), pods.dimension(1) * sizeof(pods(i, 0))); } TF_ASSERT_OK(MakeFingerprintOp(&pods_tensor)); TF_ASSERT_OK(RunOpKernel()); Tensor pods_fingerprints = *GetOutput(0); TF_ASSERT_OK(MakeFingerprintOp(&strings_tensor)); TF_ASSERT_OK(RunOpKernel()); Tensor strings_fingerprints = *GetOutput(0); EXPECT_EQ(pods_fingerprints.tensor_data(), strings_fingerprints.tensor_data()); } TEST_F(FingerprintOpTest, SupportedMethods) { Tensor tensor(DT_STRING, TensorShape{1}); TF_ASSERT_OK(MakeFingerprintOp(&tensor, "unsupported_method")); const Status status = RunOpKernel(); EXPECT_FALSE(status.ok()); EXPECT_NE(status.message().find("unsupported_method"), string::npos); } TEST_F(FingerprintOpTest, SupportedTypes) { Tensor input(DT_RESOURCE, TensorShape{1}); EXPECT_FALSE(MakeFingerprintOp(&input).ok()); } TEST(FingerprintOpShapeFnTest, MethodKnownStatically) { ShapeInferenceTestOp op("Fingerprint"); Tensor method(DT_STRING, TensorShape{}); method.scalar<tstring>()() = "farmhash64"; op.input_tensors.assign({nullptr, &method}); TF_ASSERT_OK(MakeNodeDef(DT_UINT8, &op.node_def)); INFER_OK(op, "?;?", "[?,8]"); INFER_ERROR("must be at least rank 1", op, "[];?"); INFER_OK(op, "[?];?", "[d0_0,8]"); INFER_OK(op, "[1,?];?", "[d0_0,8]"); INFER_OK(op, "[?,2,3];?", "[d0_0,8]"); } TEST(FingerprintOpShapeFnTest, MethodUnknownStatically) { ShapeInferenceTestOp op("Fingerprint"); TF_ASSERT_OK(MakeNodeDef(DT_FLOAT, &op.node_def)); INFER_OK(op, "?;?", "[?,?]"); INFER_ERROR("must be at least rank 1", op, "[];?"); INFER_OK(op, "[?];?", "[d0_0,?]"); INFER_OK(op, "[1,?];?", "[d0_0,?]"); INFER_OK(op, "[?,2,3];?", "[d0_0,?]"); } TEST(FingerprintOpShapeFnTest, InvalidMethod) { ShapeInferenceTestOp op("Fingerprint"); INFER_ERROR("must be rank 0", op, "[1];[1]"); Tensor method(DT_STRING, TensorShape{1}); method.vec<tstring>()(0) = "farmhash64"; op.input_tensors.assign({nullptr, &method}); INFER_ERROR("must be rank 0", op, "?;?"); method = Tensor(DT_STRING, TensorShape{}); method.scalar<tstring>()() = "unsupported_method"; op.input_tensors.assign({nullptr, &method}); INFER_ERROR("unsupported_method", op, "?;?"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/fingerprint_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/fingerprint_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d9deaec4-1a4f-4ebb-9b2a-34857a5e3323
cpp
tensorflow/tensorflow
phwc4_to_bhwc
tensorflow/lite/delegates/gpu/gl/converters/phwc4_to_bhwc.cc
tensorflow/lite/delegates/gpu/gl/converters/phwc4_to_bhwc_test.cc
#include "tensorflow/lite/delegates/gpu/gl/converters/phwc4_to_bhwc.h" #include <algorithm> #include <cstdint> #include <string> #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/common/util.h" #include "tensorflow/lite/delegates/gpu/gl/converters/util.h" #include "tensorflow/lite/delegates/gpu/gl/gl_program.h" #include "tensorflow/lite/delegates/gpu/gl/gl_shader.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { absl::Status ConverterPhwc4ToBhwc::Create(ConverterPhwc4ToBhwc* converter) { uint3 workgroup_size = uint3(4, 4, 4); std::string shader_source = GetShaderHeader(workgroup_size) + R"( layout(std430) buffer; precision highp float; layout(binding = 0) readonly buffer B0 { vec4 elements[]; } input_data; layout(binding = 1) writeonly buffer B1 { float elements[]; } output_data; uniform ivec4 sizes_; void main() { ivec3 gid = ivec3(gl_GlobalInvocationID.xyz); if (gid.x >= sizes_.x || gid.y >= sizes_.y || gid.z >= sizes_.z) { return; } output_data.elements[(gid.y * sizes_.x + gid.x) * sizes_.z + gid.z] = input_data.elements[(gid.z / 4 * sizes_.y + gid.y) * sizes_.x + gid.x][gid.z % 4]; })"; GlShader shader; RETURN_IF_ERROR( GlShader::CompileShader(GL_COMPUTE_SHADER, shader_source, &shader)); GlProgram program; RETURN_IF_ERROR(GlProgram::CreateWithShader(shader, &program)); *converter = ConverterPhwc4ToBhwc(std::move(program), workgroup_size); return absl::OkStatus(); } absl::Status ConverterPhwc4ToBhwc::Convert(const BHWC& shape, const GlBuffer& source, CommandQueue* command_queue, GlBuffer* destination) { if (source.bytes_size() < BytesForPHWC4(shape)) { return absl::InvalidArgumentError( "Phwc4ToBhwc: Input data size does not match expected size."); } if (destination->bytes_size() < BytesForBHWC(shape)) { return absl::InvalidArgumentError( "Phwc4ToBhwc: output data size does not match expected size."); } if (shape.b != 1) { return absl::UnimplementedError( "Phwc4ToBhwc: Batch size is not equal to 1."); } uint3 workload = uint3(shape.w, shape.h, shape.c); uint3 num_workgroups = DivideRoundUp(workload, workgroup_size_); RETURN_IF_ERROR(program_.SetParameter( {"sizes_", int4(static_cast<int32_t>(workload.x), static_cast<int32_t>(workload.y), static_cast<int32_t>(workload.z), 0)})); RETURN_IF_ERROR(source.BindToIndex(0)); RETURN_IF_ERROR(destination->BindToIndex(1)); if (command_queue) { return command_queue->Dispatch(program_, num_workgroups); } return program_.Dispatch(num_workgroups); } } } }
#include "tensorflow/lite/delegates/gpu/gl/converters/phwc4_to_bhwc.h" #include <algorithm> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/delegates/gpu/common/convert.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/gl/egl_environment.h" #include "tensorflow/lite/delegates/gpu/gl/gl_buffer.h" #include "tensorflow/lite/delegates/gpu/gl/portable_gl31.h" namespace tflite { namespace gpu { namespace gl { namespace { inline std::vector<float> GenerateFloats(float multiplier, int size) { std::vector<float> v(size); for (int i = 0; i < size; ++i) { v[i] = multiplier * i * (i % 2 == 0 ? -1 : 1); } return v; } absl::Status RunTest(const BHWC& shape) { std::vector<float> input = GenerateFloats(0.01, GetElementsSizeForPHWC4(shape)); std::vector<float> output(shape.DimensionsProduct(), 0); RETURN_IF_ERROR( ConvertFromPHWC4(absl::MakeConstSpan(input.data(), input.size()), shape, absl::MakeSpan(output.data(), output.size()))); std::unique_ptr<EglEnvironment> env; RETURN_IF_ERROR(EglEnvironment::NewEglEnvironment(&env)); GlBuffer input_buffer; RETURN_IF_ERROR(CreateReadOnlyShaderStorageBuffer( absl::MakeConstSpan(input.data(), input.size()), &input_buffer)); GlBuffer output_buffer; RETURN_IF_ERROR(CreateReadWriteShaderStorageBuffer<float>( shape.DimensionsProduct(), &output_buffer)); ConverterPhwc4ToBhwc converter; RETURN_IF_ERROR(ConverterPhwc4ToBhwc::Create(&converter)); RETURN_IF_ERROR( converter.Convert(shape, input_buffer, nullptr, &output_buffer)); std::vector<float> converted_output(output.size(), 0); RETURN_IF_ERROR(output_buffer.Read( absl::MakeSpan(converted_output.data(), converted_output.size()))); if (output != converted_output) { return absl::InternalError("Outputs don't match"); } return absl::OkStatus(); } TEST(Phwc4ToHwc, Smoke) { for (int32_t h : {1, 2, 3, 7, 20}) { for (int32_t w : {1, 2, 4, 5, 11}) { for (int32_t c : {1, 2, 4, 5, 8, 9}) { BHWC shape(1, h, w, c); EXPECT_TRUE(RunTest(shape).ok()) << shape.h << " " << shape.w << " " << shape.c; } } } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/converters/phwc4_to_bhwc.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/converters/phwc4_to_bhwc_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e5e2b254-879d-48d9-939b-833510f208ac
cpp
tensorflow/tensorflow
io_ops
tensorflow/c/experimental/ops/io_ops.cc
tensorflow/core/ops/io_ops_test.cc
#include "tensorflow/c/experimental/ops/io_ops.h" #include "absl/types/span.h" #include "tensorflow/c/eager/abstract_context.h" #include "tensorflow/c/eager/abstract_operation.h" #include "tensorflow/c/eager/abstract_tensor_handle.h" #include "tensorflow/c/eager/tracing_utils.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/status.h" #include "tsl/platform/errors.h" using tensorflow::tracing::MaybeSetOpName; namespace tensorflow { namespace ops { Status RestoreV2(AbstractContext* ctx, AbstractTensorHandle* const prefix, AbstractTensorHandle* const tensor_names, AbstractTensorHandle* const shape_and_slices, absl::Span<AbstractTensorHandle*> tensors, absl::Span<DataType> dtypes, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("RestoreV2", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(prefix)); TF_RETURN_IF_ERROR(op_ptr->AddInput(tensor_names)); TF_RETURN_IF_ERROR(op_ptr->AddInput(shape_and_slices)); TF_RETURN_IF_ERROR( op_ptr->SetAttrTypeList("dtypes", dtypes.data(), dtypes.length())); int num_retvals = tensors.size(); return op_ptr->Execute(tensors, &num_retvals); } Status SaveV2(AbstractContext* ctx, AbstractTensorHandle* const prefix, AbstractTensorHandle* const tensor_names, AbstractTensorHandle* const shape_and_slices, absl::Span<AbstractTensorHandle* const> tensors, const char* name, const char* raw_device_name) { AbstractOperationPtr op_ptr(ctx->CreateOperation()); TF_RETURN_IF_ERROR(op_ptr->Reset("SaveV2", raw_device_name)); TF_RETURN_IF_ERROR(MaybeSetOpName(op_ptr.get(), name)); TF_RETURN_IF_ERROR(op_ptr->AddInput(prefix)); TF_RETURN_IF_ERROR(op_ptr->AddInput(tensor_names)); TF_RETURN_IF_ERROR(op_ptr->AddInput(shape_and_slices)); TF_RETURN_IF_ERROR(op_ptr->AddInputList(tensors)); int num_retvals = 0; std::vector<AbstractTensorHandle*> dummy_outputs; return op_ptr->Execute(absl::MakeSpan(dummy_outputs), &num_retvals); } } }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(IoOpsTest, Save_ShapeFn) { ShapeInferenceTestOp op("Save"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"a", 0, DT_STRING}) .Input({"b", 0, DT_STRING}) .Input({{"c", 0, DT_FLOAT}, {"d", 0, DT_INT64}}) .Attr("T", {DT_FLOAT, DT_INT64}) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?", ""); INFER_OK(op, "[];[2];?;?", ""); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[2,3];?;?"); INFER_ERROR("Dimension must be 2 but is 3", op, "[];[3];?;?"); } TEST(IoOpsTest, SaveSlices_ShapeFn) { ShapeInferenceTestOp op("SaveSlices"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"a", 0, DT_STRING}) .Input({"b", 0, DT_STRING}) .Input({"c", 0, DT_STRING}) .Input({{"d", 0, DT_FLOAT}, {"e", 0, DT_INT64}}) .Attr("T", {DT_FLOAT, DT_INT64}) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?;?;?", ""); INFER_OK(op, "[];[2];[2];?;?", ""); INFER_OK(op, "[];[2];[2];[100,200,300];[4,5]", ""); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];?;?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[2,3];?;?;?"); INFER_ERROR("Dimension must be 2 but is 3", op, "[];[3];?;?;?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[2];[2,3];?;?"); INFER_ERROR("Dimension must be 2 but is 3", op, "[];[2];[3];?;?"); } TEST(IoOpsTest, Restore_ShapeFn) { ShapeInferenceTestOp op("Restore"); INFER_OK(op, "?;?", "?"); INFER_OK(op, "[];[]", "?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?]"); } TEST(IoOpsTest, RestoreV2_ShapeFn) { ShapeInferenceTestOp op("RestoreV2"); TF_ASSERT_OK(NodeDefBuilder("test", op.name) .Input({"prefix", 0, DT_STRING}) .Input({"tensor_names", 0, DT_STRING}) .Input({"shapes_and_slices", 0, DT_STRING}) .Attr("dtypes", {DT_FLOAT, DT_INT64}) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "?;?"); INFER_OK(op, "[];[10];[10]", "?;?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[?,?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[];[?];[?,?]"); INFER_ERROR("in both shapes must be equal", op, "[];[10];[20]"); } TEST(IoOpsTest, RestoreSlice_ShapeFn) { ShapeInferenceTestOp op("RestoreSlice"); INFER_OK(op, "?;?;?", "?"); INFER_OK(op, "[];[];[]", "?"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[];[?]"); } TEST(IoOpsTest, ShardedFilename_ShapeFn) { ShapeInferenceTestOp op("ShardedFilename"); INFER_OK(op, "?;?;?", "[]"); INFER_OK(op, "[];[];[]", "[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[];[?]"); } TEST(IoOpsTest, ShardedFilespec_ShapeFn) { ShapeInferenceTestOp op("ShardedFilespec"); INFER_OK(op, "?;?", "[]"); INFER_OK(op, "[];[]", "[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[];[?]"); } TEST(IoOpsTest, SingleScalarInputAndOutput_ShapeFns) { for (const char* op_name : {"ReadFile"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "[]"); INFER_OK(op, "[]", "[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?]"); } } TEST(IoOpsTest, TwoElementVectorInputsAndScalarOutput_ShapeFns) { for (const char* op_name : {"ReaderNumRecordsProduced", "ReaderNumWorkUnitsCompleted", "ReaderSerializeState"}) { ShapeInferenceTestOp op(op_name); INFER_OK(op, "?", "[]"); INFER_OK(op, "[2]", "[]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); INFER_ERROR("Dimension must be 2 but is 3", op, "[3]"); } } TEST(IoOpsTest, ReaderRead_ShapeFn) { ShapeInferenceTestOp op("ReaderRead"); INFER_OK(op, "?;?", "[];[]"); INFER_OK(op, "[2];[?]", "[];[]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[?,?];[2]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[2];[]"); } TEST(IoOpsTest, ReaderReadUpTo_ShapeFn) { ShapeInferenceTestOp op("ReaderReadUpTo"); INFER_OK(op, "[2];[2];[]", "[?];[?]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[2];[]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[2];[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[2];[2];[?]"); } TEST(IoOpsTest, ReaderReset_ShapeFn) { ShapeInferenceTestOp op("ReaderReset"); INFER_OK(op, "[2]", ""); INFER_OK(op, "[?]", ""); INFER_OK(op, "?", ""); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[]"); } TEST(IoOpsTest, ReaderRestoreState_ShapeFn) { ShapeInferenceTestOp op("ReaderRestoreState"); INFER_OK(op, "?;?", ""); INFER_OK(op, "[2];[]", ""); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];[]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[?];[?]"); } TEST(IoOpsTest, MatchingFiles_ShapeFn) { ShapeInferenceTestOp op("MatchingFiles"); INFER_OK(op, "?", "[?]"); INFER_OK(op, "[]", "[?]"); INFER_OK(op, "[42]", "[?]"); INFER_ERROR("Shape must be at most rank 1 but is rank 2", op, "[?,?]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/io_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/io_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
c3d39c28-8d42-4581-a701-ed09abead87c
cpp
tensorflow/tensorflow
zeros_like
tensorflow/lite/kernels/zeros_like.cc
tensorflow/lite/kernels/zeros_like_test.cc
#include <stdint.h> #include <string.h> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace zeros_like { constexpr int kInputTensor = 0; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); output->type = input->type; return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); const int num_elements = NumElements(input); switch (input->type) { case kTfLiteInt64: memset(GetTensorData<int64_t>(output), 0, num_elements * sizeof(int64_t)); break; case kTfLiteInt32: memset(GetTensorData<int32_t>(output), 0, num_elements * sizeof(int32_t)); break; case kTfLiteFloat32: memset(GetTensorData<float>(output), 0, num_elements * sizeof(float)); break; default: TF_LITE_KERNEL_LOG(context, "ZerosLike only currently supports int64, int32, " "and float32, got %d.", input->type); return kTfLiteError; } return kTfLiteOk; } } TfLiteRegistration* Register_ZEROS_LIKE() { static TfLiteRegistration r = {nullptr, nullptr, zeros_like::Prepare, zeros_like::Eval}; return &r; } } } }
#include <stdint.h> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; class ZerosLikeOpModel : public SingleOpModel { public: explicit ZerosLikeOpModel(const TensorData& input) { input_ = AddInput(input); output_ = AddOutput(input); SetBuiltinOp(BuiltinOperator_ZEROS_LIKE, BuiltinOptions_ZerosLikeOptions, CreateZerosLikeOptions(builder_).Union()); BuildInterpreter({GetShape(input_)}); } int input() { return input_; } int output() { return output_; } protected: int input_; int output_; }; TEST(ZerosLikeOpModel, ZerosLikeFloat) { ZerosLikeOpModel m({TensorType_FLOAT32, {2, 3}}); m.PopulateTensor<float>(m.input(), {-2.0, -1.0, 0.0, 1.0, 2.0, 3.0}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.ExtractVector<float>(m.output()), Pointwise(FloatingPointEq(), {0.0, 0.0, 0.0, 0.0, 0.0, 0.0})); EXPECT_THAT(m.GetTensorShape(m.output()), ElementsAreArray({2, 3})); } TEST(ZerosLikeOpModel, ZerosLikeInt32) { ZerosLikeOpModel m({TensorType_INT32, {1, 2, 2, 1}}); m.PopulateTensor<int32_t>(m.input(), {-2, -1, 0, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.ExtractVector<int32_t>(m.output()), ElementsAreArray({0, 0, 0, 0})); EXPECT_THAT(m.GetTensorShape(m.output()), ElementsAreArray({1, 2, 2, 1})); } TEST(ZerosLikeOpModel, ZerosLikeInt64) { ZerosLikeOpModel m({TensorType_INT64, {1, 2, 2, 1}}); m.PopulateTensor<int64_t>(m.input(), {-2, -1, 0, 3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.ExtractVector<int64_t>(m.output()), ElementsAreArray({0, 0, 0, 0})); EXPECT_THAT(m.GetTensorShape(m.output()), ElementsAreArray({1, 2, 2, 1})); } TEST(ZerosLikeOpModel, InvalidTypeTest) { ZerosLikeOpModel m_uint8({TensorType_UINT8, {1, 1}}); ASSERT_NE(m_uint8.Invoke(), kTfLiteOk) << "ZerosLike only currently supports int64, int32, and float32"; ZerosLikeOpModel m_int16({TensorType_INT16, {1, 1}}); ASSERT_NE(m_int16.Invoke(), kTfLiteOk) << "ZerosLike only currently supports int64, int32, and float32"; ZerosLikeOpModel m_complex({TensorType_COMPLEX64, {1, 1}}); ASSERT_NE(m_complex.Invoke(), kTfLiteOk) << "ZerosLike only currently supports int64, int32, and float32"; ZerosLikeOpModel m_int8({TensorType_INT8, {1, 1}}); ASSERT_NE(m_int8.Invoke(), kTfLiteOk) << "ZerosLike only currently supports int64, int32, and float32"; } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/zeros_like.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/zeros_like_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6916f821-7c75-4936-99fa-2bea3e19eb07
cpp
tensorflow/tensorflow
toco_cmdline_flags
tensorflow/lite/toco/toco_cmdline_flags.cc
tensorflow/lite/toco/toco_cmdline_flags_test.cc
#include "tensorflow/lite/toco/toco_cmdline_flags.h" #include <optional> #include <string> #include <vector> #include "absl/strings/numbers.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/strip.h" #include "absl/types/optional.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/util/command_line_flags.h" #include "tensorflow/lite/toco/toco_port.h" namespace toco { bool ParseTocoFlagsFromCommandLineFlags( int* argc, char* argv[], std::string* msg, ParsedTocoFlags* parsed_toco_flags_ptr) { using tensorflow::Flag; ParsedTocoFlags& parsed_flags = *parsed_toco_flags_ptr; std::vector<tensorflow::Flag> flags = { Flag("input_file", parsed_flags.input_file.bind(), parsed_flags.input_file.default_value(), "Input file (model of any supported format). For Protobuf " "formats, both text and binary are supported regardless of file " "extension."), Flag("savedmodel_directory", parsed_flags.savedmodel_directory.bind(), parsed_flags.savedmodel_directory.default_value(), "Deprecated. Full path to the directory containing the SavedModel."), Flag("output_file", parsed_flags.output_file.bind(), parsed_flags.output_file.default_value(), "Output file. " "For Protobuf formats, the binary format will be used."), Flag("input_format", parsed_flags.input_format.bind(), parsed_flags.input_format.default_value(), "Input file format. One of: TENSORFLOW_GRAPHDEF, TFLITE."), Flag("output_format", parsed_flags.output_format.bind(), parsed_flags.output_format.default_value(), "Output file format. " "One of TENSORFLOW_GRAPHDEF, TFLITE, GRAPHVIZ_DOT."), Flag("savedmodel_tagset", parsed_flags.savedmodel_tagset.bind(), parsed_flags.savedmodel_tagset.default_value(), "Deprecated. Comma-separated set of tags identifying the " "MetaGraphDef within the SavedModel to analyze. All tags in the tag " "set must be specified."), Flag("default_ranges_min", parsed_flags.default_ranges_min.bind(), parsed_flags.default_ranges_min.default_value(), "If defined, will be used as the default value for the min bound " "of min/max ranges used for quantization of uint8 arrays."), Flag("default_ranges_max", parsed_flags.default_ranges_max.bind(), parsed_flags.default_ranges_max.default_value(), "If defined, will be used as the default value for the max bound " "of min/max ranges used for quantization of uint8 arrays."), Flag("default_int16_ranges_min", parsed_flags.default_int16_ranges_min.bind(), parsed_flags.default_int16_ranges_min.default_value(), "If defined, will be used as the default value for the min bound " "of min/max ranges used for quantization of int16 arrays."), Flag("default_int16_ranges_max", parsed_flags.default_int16_ranges_max.bind(), parsed_flags.default_int16_ranges_max.default_value(), "If defined, will be used as the default value for the max bound " "of min/max ranges used for quantization of int16 arrays."), Flag("inference_type", parsed_flags.inference_type.bind(), parsed_flags.inference_type.default_value(), "Target data type of arrays in the output file (for input_arrays, " "this may be overridden by inference_input_type). " "One of FLOAT, QUANTIZED_UINT8."), Flag("inference_input_type", parsed_flags.inference_input_type.bind(), parsed_flags.inference_input_type.default_value(), "Target data type of input arrays. " "If not specified, inference_type is used. " "One of FLOAT, QUANTIZED_UINT8."), Flag("input_type", parsed_flags.input_type.bind(), parsed_flags.input_type.default_value(), "Deprecated ambiguous flag that set both --input_data_types and " "--inference_input_type."), Flag("input_types", parsed_flags.input_types.bind(), parsed_flags.input_types.default_value(), "Deprecated ambiguous flag that set both --input_data_types and " "--inference_input_type. Was meant to be a " "comma-separated list, but this was deprecated before " "multiple-input-types was ever properly supported."), Flag("drop_fake_quant", parsed_flags.drop_fake_quant.bind(), parsed_flags.drop_fake_quant.default_value(), "Ignore and discard FakeQuant nodes. For instance, to " "generate plain float code without fake-quantization from a " "quantized graph."), Flag( "reorder_across_fake_quant", parsed_flags.reorder_across_fake_quant.bind(), parsed_flags.reorder_across_fake_quant.default_value(), "Normally, FakeQuant nodes must be strict boundaries for graph " "transformations, in order to ensure that quantized inference has " "the exact same arithmetic behavior as quantized training --- which " "is the whole point of quantized training and of FakeQuant nodes in " "the first place. " "However, that entails subtle requirements on where exactly " "FakeQuant nodes must be placed in the graph. Some quantized graphs " "have FakeQuant nodes at unexpected locations, that prevent graph " "transformations that are necessary in order to generate inference " "code for these graphs. Such graphs should be fixed, but as a " "temporary work-around, setting this reorder_across_fake_quant flag " "allows TOCO to perform necessary graph transformaitons on them, " "at the cost of no longer faithfully matching inference and training " "arithmetic."), Flag("allow_custom_ops", parsed_flags.allow_custom_ops.bind(), parsed_flags.allow_custom_ops.default_value(), "If true, allow TOCO to create TF Lite Custom operators for all the " "unsupported TensorFlow ops."), Flag("custom_opdefs", parsed_flags.custom_opdefs.bind(), parsed_flags.custom_opdefs.default_value(), "List of strings representing custom ops OpDefs that are included " "in the GraphDef."), Flag("allow_dynamic_tensors", parsed_flags.allow_dynamic_tensors.bind(), parsed_flags.allow_dynamic_tensors.default_value(), "Boolean flag indicating whether the converter should allow models " "with dynamic Tensor shape. When set to False, the converter will " "generate runtime memory offsets for activation Tensors (with 128 " "bits alignment) and error out on models with undetermined Tensor " "shape. (Default: True)"), Flag( "drop_control_dependency", parsed_flags.drop_control_dependency.bind(), parsed_flags.drop_control_dependency.default_value(), "If true, ignore control dependency requirements in input TensorFlow " "GraphDef. Otherwise an error will be raised upon control dependency " "inputs."), Flag("debug_disable_recurrent_cell_fusion", parsed_flags.debug_disable_recurrent_cell_fusion.bind(), parsed_flags.debug_disable_recurrent_cell_fusion.default_value(), "If true, disable fusion of known identifiable cell subgraphs into " "cells. This includes, for example, specific forms of LSTM cell."), Flag("propagate_fake_quant_num_bits", parsed_flags.propagate_fake_quant_num_bits.bind(), parsed_flags.propagate_fake_quant_num_bits.default_value(), "If true, use FakeQuant* operator num_bits attributes to adjust " "array data_types."), Flag("allow_nudging_weights_to_use_fast_gemm_kernel", parsed_flags.allow_nudging_weights_to_use_fast_gemm_kernel.bind(), parsed_flags.allow_nudging_weights_to_use_fast_gemm_kernel .default_value(), "Some fast uint8 GEMM kernels require uint8 weights to avoid the " "value 0. This flag allows nudging them to 1 to allow proceeding, " "with moderate inaccuracy."), Flag("dedupe_array_min_size_bytes", parsed_flags.dedupe_array_min_size_bytes.bind(), parsed_flags.dedupe_array_min_size_bytes.default_value(), "Minimum size of constant arrays to deduplicate; arrays smaller " "will not be deduplicated."), Flag("split_tflite_lstm_inputs", parsed_flags.split_tflite_lstm_inputs.bind(), parsed_flags.split_tflite_lstm_inputs.default_value(), "Split the LSTM inputs from 5 tensors to 18 tensors for TFLite. " "Ignored if the output format is not TFLite."), Flag("quantize_to_float16", parsed_flags.quantize_to_float16.bind(), parsed_flags.quantize_to_float16.default_value(), "Used in conjunction with post_training_quantize. Specifies that " "the weights should be quantized to fp16 instead of the default " "(int8)"), Flag("quantize_weights", parsed_flags.quantize_weights.bind(), parsed_flags.quantize_weights.default_value(), "Deprecated. Please use --post_training_quantize instead."), Flag("post_training_quantize", parsed_flags.post_training_quantize.bind(), parsed_flags.post_training_quantize.default_value(), "Boolean indicating whether to quantize the weights of the " "converted float model. Model size will be reduced and there will " "be latency improvements (at the cost of accuracy)."), Flag("enable_select_tf_ops", parsed_flags.enable_select_tf_ops.bind(), parsed_flags.enable_select_tf_ops.default_value(), ""), Flag("force_select_tf_ops", parsed_flags.force_select_tf_ops.bind(), parsed_flags.force_select_tf_ops.default_value(), ""), Flag("unfold_batchmatmul", parsed_flags.unfold_batchmatmul.bind(), parsed_flags.unfold_batchmatmul.default_value(), ""), Flag("accumulation_type", parsed_flags.accumulation_type.bind(), parsed_flags.accumulation_type.default_value(), "Accumulation type to use with quantize_to_float16"), Flag("allow_bfloat16", parsed_flags.allow_bfloat16.bind(), parsed_flags.allow_bfloat16.default_value(), "")}; bool asked_for_help = *argc == 2 && (!strcmp(argv[1], "--help") || !strcmp(argv[1], "-help")); if (asked_for_help) { *msg += tensorflow::Flags::Usage(argv[0], flags); return false; } else { return tensorflow::Flags::Parse(argc, argv, flags); } } namespace { enum class FlagRequirement { kNone, kMustBeSpecified, kMustNotBeSpecified, kUseDefault, }; template <typename T> void EnforceFlagRequirement(const T& flag, const std::string& flag_name, FlagRequirement requirement) { if (requirement == FlagRequirement::kMustBeSpecified) { QCHECK(flag.specified()) << "Missing required flag " << flag_name; } if (requirement == FlagRequirement::kMustNotBeSpecified) { QCHECK(!flag.specified()) << "Given other flags, this flag should not have been specified: " << flag_name; } } template <typename T> std::optional<T> GetFlagValue(const Arg<T>& flag, FlagRequirement requirement) { if (flag.specified()) return flag.value(); if (requirement == FlagRequirement::kUseDefault) return flag.default_value(); return std::optional<T>(); } } void ReadTocoFlagsFromCommandLineFlags(const ParsedTocoFlags& parsed_toco_flags, TocoFlags* toco_flags) { namespace port = toco::port; port::CheckInitGoogleIsDone("InitGoogle is not done yet"); #define READ_TOCO_FLAG(name, requirement) \ do { \ EnforceFlagRequirement(parsed_toco_flags.name, #name, requirement); \ auto flag_value = GetFlagValue(parsed_toco_flags.name, requirement); \ if (flag_value.has_value()) { \ toco_flags->set_##name(flag_value.value()); \ } \ } while (false) #define PARSE_TOCO_FLAG(Type, name, requirement) \ do { \ EnforceFlagRequirement(parsed_toco_flags.name, #name, requirement); \ auto flag_value = GetFlagValue(parsed_toco_flags.name, requirement); \ if (flag_value.has_value()) { \ Type x; \ QCHECK(Type##_Parse(flag_value.value(), &x)) \ << "Unrecognized " << #Type << " value " \ << parsed_toco_flags.name.value(); \ toco_flags->set_##name(x); \ } \ } while (false) PARSE_TOCO_FLAG(FileFormat, input_format, FlagRequirement::kUseDefault); PARSE_TOCO_FLAG(FileFormat, output_format, FlagRequirement::kUseDefault); PARSE_TOCO_FLAG(IODataType, inference_type, FlagRequirement::kNone); PARSE_TOCO_FLAG(IODataType, inference_input_type, FlagRequirement::kNone); READ_TOCO_FLAG(default_ranges_min, FlagRequirement::kNone); READ_TOCO_FLAG(default_ranges_max, FlagRequirement::kNone); READ_TOCO_FLAG(default_int16_ranges_min, FlagRequirement::kNone); READ_TOCO_FLAG(default_int16_ranges_max, FlagRequirement::kNone); READ_TOCO_FLAG(drop_fake_quant, FlagRequirement::kNone); READ_TOCO_FLAG(reorder_across_fake_quant, FlagRequirement::kNone); READ_TOCO_FLAG(allow_custom_ops, FlagRequirement::kNone); READ_TOCO_FLAG(drop_control_dependency, FlagRequirement::kNone); READ_TOCO_FLAG(debug_disable_recurrent_cell_fusion, FlagRequirement::kNone); READ_TOCO_FLAG(propagate_fake_quant_num_bits, FlagRequirement::kNone); READ_TOCO_FLAG(allow_nudging_weights_to_use_fast_gemm_kernel, FlagRequirement::kNone); READ_TOCO_FLAG(dedupe_array_min_size_bytes, FlagRequirement::kNone); READ_TOCO_FLAG(split_tflite_lstm_inputs, FlagRequirement::kNone); READ_TOCO_FLAG(quantize_weights, FlagRequirement::kNone); READ_TOCO_FLAG(quantize_to_float16, FlagRequirement::kNone); READ_TOCO_FLAG(post_training_quantize, FlagRequirement::kNone); READ_TOCO_FLAG(enable_select_tf_ops, FlagRequirement::kNone); READ_TOCO_FLAG(force_select_tf_ops, FlagRequirement::kNone); READ_TOCO_FLAG(unfold_batchmatmul, FlagRequirement::kNone); PARSE_TOCO_FLAG(IODataType, accumulation_type, FlagRequirement::kNone); READ_TOCO_FLAG(allow_bfloat16, FlagRequirement::kNone); if (parsed_toco_flags.force_select_tf_ops.value() && !parsed_toco_flags.enable_select_tf_ops.value()) { LOG(WARNING) << "--force_select_tf_ops should always be used with " "--enable_select_tf_ops."; } if (parsed_toco_flags.input_type.specified()) { LOG(WARNING) << "--input_type is deprecated. It was an ambiguous flag that set both " "--input_data_types and --inference_input_type. If you are trying " "to complement the input file with information about the type of " "input arrays, use --input_data_type. If you are trying to control " "the quantization/dequantization of real-numbers input arrays in " "the output file, use --inference_input_type."; toco::IODataType input_type; QCHECK(toco::IODataType_Parse(parsed_toco_flags.input_type.value(), &input_type)); toco_flags->set_inference_input_type(input_type); } if (parsed_toco_flags.input_types.specified()) { LOG(WARNING) << "--input_types is deprecated. It was an ambiguous flag that set " "both --input_data_types and --inference_input_type. If you are " "trying to complement the input file with information about the " "type of input arrays, use --input_data_type. If you are trying to " "control the quantization/dequantization of real-numbers input " "arrays in the output file, use --inference_input_type."; std::vector<std::string> input_types = absl::StrSplit(parsed_toco_flags.input_types.value(), ','); QCHECK(!input_types.empty()); for (size_t i = 1; i < input_types.size(); i++) { QCHECK_EQ(input_types[i], input_types[0]); } toco::IODataType input_type; QCHECK(toco::IODataType_Parse(input_types[0], &input_type)); toco_flags->set_inference_input_type(input_type); } if (parsed_toco_flags.quantize_weights.value()) { LOG(WARNING) << "--quantize_weights is deprecated. Falling back to " "--post_training_quantize. Please switch --post_training_quantize."; toco_flags->set_post_training_quantize( parsed_toco_flags.quantize_weights.value()); } if (parsed_toco_flags.quantize_weights.value()) { if (toco_flags->inference_type() == IODataType::QUANTIZED_UINT8) { LOG(WARNING) << "--post_training_quantize quantizes a graph of inference_type " "FLOAT. Overriding inference type QUANTIZED_UINT8 to FLOAT."; toco_flags->set_inference_type(IODataType::FLOAT); } } #undef READ_TOCO_FLAG #undef PARSE_TOCO_FLAG } }
#include "tensorflow/lite/toco/toco_cmdline_flags.h" #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/testing/util.h" namespace toco { namespace { TEST(TocoCmdlineFlagsTest, DefaultValue) { int argc = 1; const char* args[] = {"toco", nullptr}; std::string message; ParsedTocoFlags result_flags; EXPECT_TRUE(ParseTocoFlagsFromCommandLineFlags( &argc, const_cast<char**>(args), &message, &result_flags)); EXPECT_EQ(result_flags.allow_dynamic_tensors.value(), true); } TEST(TocoCmdlineFlagsTest, ParseFlags) { int argc = 2; const char* args[] = {"toco", "--allow_dynamic_tensors=false", nullptr}; std::string message; ParsedTocoFlags result_flags; EXPECT_TRUE(ParseTocoFlagsFromCommandLineFlags( &argc, const_cast<char**>(args), &message, &result_flags)); EXPECT_EQ(result_flags.allow_dynamic_tensors.value(), false); } } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/toco_cmdline_flags.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/toco_cmdline_flags_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
67d9e88d-80b3-4696-a5ac-0ca0737cf6fa
cpp
tensorflow/tensorflow
cuda_collectives
third_party/xla/xla/stream_executor/cuda/cuda_collectives.cc
third_party/xla/xla/stream_executor/cuda/cuda_collectives_test.cc
#include "xla/stream_executor/cuda/cuda_collectives.h" #include <cstdint> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "third_party/nccl/nccl.h" #include "xla/stream_executor/gpu/context.h" #include "xla/stream_executor/gpu/scoped_activate_context.h" #include "tsl/platform/logging.h" #include "tsl/platform/numbers.h" namespace stream_executor::gpu { absl::StatusOr<void*> CudaCollectives::CollectiveMemoryAllocate( Context* context, uint64_t bytes) { if (bytes == 0) return nullptr; ScopedActivateContext activated(context); void* ptr = nullptr; ncclResult_t res = ncclMemAlloc(&ptr, bytes); if (res != ncclSuccess) { return absl::InternalError(absl::StrFormat( "failed to allocate %s (%llu bytes) from device collective memory: %s, " "Last NCCL warning(error) log entry (may be unrelated): %s", tsl::strings::HumanReadableNumBytes(bytes), bytes, ncclGetErrorString(res), ncclGetLastError(nullptr))); } VLOG(2) << "Allocated collective memory " << ptr << " for context " << context << " of " << bytes << " bytes"; return ptr; } absl::Status CudaCollectives::CollectiveMemoryDeallocate( Context* context, void* location) { ScopedActivateContext activation(context); ncclResult_t res = ncclMemFree(location); if (res != ncclSuccess) { return absl::InternalError(absl::StrFormat( "failed to free device collective memory at %p; result: %s, Last NCCL " "warning(error) log entry (may be unrelated): %s", location, ncclGetErrorString(res), ncclGetLastError(nullptr))); } VLOG(2) << "Deallocated collective memory " << location << " for context " << context; return absl::OkStatus(); } }
#include "xla/stream_executor/cuda/cuda_collectives.h" #include <cstddef> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "xla/service/gpu/runtime/nccl_api.h" #include "xla/stream_executor/gpu/gpu_executor.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor::gpu { namespace { using ::tsl::testing::IsOk; using ::tsl::testing::IsOkAndHolds; TEST(CudaCollectivesTest, CollectiveMemoryAllocation) { if (!xla::gpu::NcclApi::HasNcclSupport()) { GTEST_SKIP() << "Compiled without NCCL support"; } TF_ASSERT_OK_AND_ASSIGN(Platform * platform, PlatformManager::PlatformWithName("CUDA")); TF_ASSERT_OK_AND_ASSIGN(StreamExecutor * executor, platform->ExecutorForDevice(0)); GpuExecutor* gpu_executor = ExtractGpuExecutor(executor); constexpr size_t kAllocateSize = 1024; TF_ASSERT_OK_AND_ASSIGN(void* memory, CudaCollectives::CollectiveMemoryAllocate( gpu_executor->gpu_context(), kAllocateSize)); EXPECT_THAT(gpu_executor->GetPointerMemorySpace(memory), IsOkAndHolds(MemoryType::kDevice)); EXPECT_THAT(CudaCollectives::CollectiveMemoryDeallocate( gpu_executor->gpu_context(), memory), IsOk()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/cuda_collectives.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/stream_executor/cuda/cuda_collectives_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5b441f45-3775-471c-b737-9ebb2a54c496
cpp
google/cel-cpp
type_checker_builder
checker/type_checker_builder.cc
checker/type_checker_builder_test.cc
#include "checker/type_checker_builder.h" #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "checker/internal/type_check_env.h" #include "checker/internal/type_checker_impl.h" #include "checker/type_checker.h" #include "common/decl.h" #include "common/type_introspector.h" namespace cel { absl::StatusOr<std::unique_ptr<TypeChecker>> TypeCheckerBuilder::Build() && { if (env_.type_providers().empty() && env_.parent() == nullptr) { env_.AddTypeProvider(std::make_unique<TypeIntrospector>()); } return std::make_unique<checker_internal::TypeCheckerImpl>(std::move(env_)); } absl::Status TypeCheckerBuilder::AddLibrary(CheckerLibrary library) { if (!library.id.empty() && !library_ids_.insert(library.id).second) { return absl::AlreadyExistsError( absl::StrCat("library '", library.id, "' already exists")); } absl::Status status = library.options(*this); libraries_.push_back(std::move(library)); return status; } absl::Status TypeCheckerBuilder::AddVariable(const VariableDecl& decl) { bool inserted = env_.InsertVariableIfAbsent(decl); if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("variable '", decl.name(), "' already exists")); } return absl::OkStatus(); } absl::Status TypeCheckerBuilder::AddFunction(const FunctionDecl& decl) { bool inserted = env_.InsertFunctionIfAbsent(decl); if (!inserted) { return absl::AlreadyExistsError( absl::StrCat("function '", decl.name(), "' already exists")); } return absl::OkStatus(); } void TypeCheckerBuilder::AddTypeProvider( std::unique_ptr<TypeIntrospector> provider) { env_.AddTypeProvider(std::move(provider)); } void TypeCheckerBuilder::set_container(absl::string_view container) { env_.set_container(std::string(container)); } }
#include "checker/type_checker_builder.h" #include <utility> #include "absl/status/status.h" #include "absl/status/status_matchers.h" #include "checker/internal/test_ast_helpers.h" #include "checker/validation_result.h" #include "common/decl.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { using ::absl_testing::IsOk; using ::absl_testing::StatusIs; using ::cel::checker_internal::MakeTestParsedAst; using ::testing::HasSubstr; TEST(TypeCheckerBuilderTest, AddVariable) { TypeCheckerBuilder builder; ASSERT_THAT(builder.AddVariable(MakeVariableDecl("x", IntType())), IsOk()); ASSERT_OK_AND_ASSIGN(auto checker, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("x")); ASSERT_OK_AND_ASSIGN(ValidationResult result, checker->Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); } TEST(TypeCheckerBuilderTest, AddVariableRedeclaredError) { TypeCheckerBuilder builder; ASSERT_THAT(builder.AddVariable(MakeVariableDecl("x", IntType())), IsOk()); EXPECT_THAT(builder.AddVariable(MakeVariableDecl("x", IntType())), StatusIs(absl::StatusCode::kAlreadyExists)); } TEST(TypeCheckerBuilderTest, AddFunction) { TypeCheckerBuilder builder; ASSERT_OK_AND_ASSIGN( auto fn_decl, MakeFunctionDecl( "add", MakeOverloadDecl("add_int", IntType(), IntType(), IntType()))); ASSERT_THAT(builder.AddFunction(fn_decl), IsOk()); ASSERT_OK_AND_ASSIGN(auto checker, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("add(1, 2)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, checker->Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); } TEST(TypeCheckerBuilderTest, AddFunctionRedeclaredError) { TypeCheckerBuilder builder; ASSERT_OK_AND_ASSIGN( auto fn_decl, MakeFunctionDecl( "add", MakeOverloadDecl("add_int", IntType(), IntType(), IntType()))); ASSERT_THAT(builder.AddFunction(fn_decl), IsOk()); EXPECT_THAT(builder.AddFunction(fn_decl), StatusIs(absl::StatusCode::kAlreadyExists)); } TEST(TypeCheckerBuilderTest, AddLibrary) { TypeCheckerBuilder builder; ASSERT_OK_AND_ASSIGN( auto fn_decl, MakeFunctionDecl( "add", MakeOverloadDecl("add_int", IntType(), IntType(), IntType()))); ASSERT_THAT(builder.AddLibrary({"", [&](TypeCheckerBuilder& b) { return builder.AddFunction(fn_decl); }}), IsOk()); ASSERT_OK_AND_ASSIGN(auto checker, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(auto ast, MakeTestParsedAst("add(1, 2)")); ASSERT_OK_AND_ASSIGN(ValidationResult result, checker->Check(std::move(ast))); EXPECT_TRUE(result.IsValid()); } TEST(TypeCheckerBuilderTest, AddLibraryRedeclaredError) { TypeCheckerBuilder builder; ASSERT_OK_AND_ASSIGN( auto fn_decl, MakeFunctionDecl( "add", MakeOverloadDecl("add_int", IntType(), IntType(), IntType()))); ASSERT_THAT(builder.AddLibrary({"testlib", [&](TypeCheckerBuilder& b) { return builder.AddFunction(fn_decl); }}), IsOk()); EXPECT_THAT(builder.AddLibrary({"testlib", [&](TypeCheckerBuilder& b) { return builder.AddFunction(fn_decl); }}), StatusIs(absl::StatusCode::kAlreadyExists, HasSubstr("testlib"))); } TEST(TypeCheckerBuilderTest, AddLibraryForwardsErrors) { TypeCheckerBuilder builder; ASSERT_OK_AND_ASSIGN( auto fn_decl, MakeFunctionDecl( "add", MakeOverloadDecl("add_int", IntType(), IntType(), IntType()))); ASSERT_THAT(builder.AddLibrary({"", [&](TypeCheckerBuilder& b) { return builder.AddFunction(fn_decl); }}), IsOk()); EXPECT_THAT(builder.AddLibrary({"", [](TypeCheckerBuilder& b) { return absl::InternalError("test error"); }}), StatusIs(absl::StatusCode::kInternal, HasSubstr("test error"))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/type_checker_builder.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/checker/type_checker_builder_test.cc
4552db5798fb0853b131b783d8875794334fae7f
857b14e6-046b-4b50-97f4-1f1c2b59df7d
cpp
abseil/abseil-cpp
cord_rep_btree_reader
absl/strings/internal/cord_rep_btree_reader.cc
absl/strings/internal/cord_rep_btree_reader_test.cc
#include "absl/strings/internal/cord_rep_btree_reader.h" #include <cassert> #include "absl/base/config.h" #include "absl/strings/internal/cord_data_edge.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_btree.h" #include "absl/strings/internal/cord_rep_btree_navigator.h" #include "absl/strings/internal/cord_rep_flat.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { absl::string_view CordRepBtreeReader::Read(size_t n, size_t chunk_size, CordRep*& tree) { assert(chunk_size <= navigator_.Current()->length); CordRep* edge = chunk_size ? navigator_.Current() : navigator_.Next(); const size_t offset = chunk_size ? edge->length - chunk_size : 0; ReadResult result = navigator_.Read(offset, n); tree = result.tree; if (n < chunk_size) return EdgeData(edge).substr(result.n); const size_t consumed_by_read = n - chunk_size - result.n; if (consumed_by_read >= remaining_) { remaining_ = 0; return {}; } edge = navigator_.Current(); remaining_ -= consumed_by_read + edge->length; return EdgeData(edge).substr(result.n); } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/cord_rep_btree_reader.h" #include <iostream> #include <random> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/strings/cord.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_btree.h" #include "absl/strings/internal/cord_rep_test_util.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { namespace { using ::testing::Eq; using ::testing::IsEmpty; using ::testing::Ne; using ::testing::Not; using ::absl::cordrep_testing::CordRepBtreeFromFlats; using ::absl::cordrep_testing::MakeFlat; using ::absl::cordrep_testing::CordToString; using ::absl::cordrep_testing::CreateFlatsFromString; using ::absl::cordrep_testing::CreateRandomString; using ReadResult = CordRepBtreeReader::ReadResult; TEST(CordRepBtreeReaderTest, Next) { constexpr size_t kChars = 3; const size_t cap = CordRepBtree::kMaxCapacity; size_t counts[] = {1, 2, cap, cap * cap, cap * cap + 1, cap * cap * 2 + 17}; for (size_t count : counts) { std::string data = CreateRandomString(count * kChars); std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars); CordRepBtree* node = CordRepBtreeFromFlats(flats); CordRepBtreeReader reader; size_t remaining = data.length(); absl::string_view chunk = reader.Init(node); EXPECT_THAT(chunk, Eq(data.substr(0, chunk.length()))); remaining -= chunk.length(); EXPECT_THAT(reader.remaining(), Eq(remaining)); while (remaining > 0) { const size_t offset = data.length() - remaining; chunk = reader.Next(); EXPECT_THAT(chunk, Eq(data.substr(offset, chunk.length()))); remaining -= chunk.length(); EXPECT_THAT(reader.remaining(), Eq(remaining)); } EXPECT_THAT(reader.remaining(), Eq(0u)); EXPECT_THAT(reader.Next(), testing::IsEmpty()); CordRep::Unref(node); } } TEST(CordRepBtreeReaderTest, Skip) { constexpr size_t kChars = 3; const size_t cap = CordRepBtree::kMaxCapacity; size_t counts[] = {1, 2, cap, cap * cap, cap * cap + 1, cap * cap * 2 + 17}; for (size_t count : counts) { std::string data = CreateRandomString(count * kChars); std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars); CordRepBtree* node = CordRepBtreeFromFlats(flats); for (size_t skip1 = 0; skip1 < data.length() - kChars; ++skip1) { for (size_t skip2 = 0; skip2 < data.length() - kChars; ++skip2) { CordRepBtreeReader reader; size_t remaining = data.length(); absl::string_view chunk = reader.Init(node); remaining -= chunk.length(); chunk = reader.Skip(skip1); size_t offset = data.length() - remaining; ASSERT_THAT(chunk, Eq(data.substr(offset + skip1, chunk.length()))); remaining -= chunk.length() + skip1; ASSERT_THAT(reader.remaining(), Eq(remaining)); if (remaining == 0) continue; size_t skip = std::min(remaining - 1, skip2); chunk = reader.Skip(skip); offset = data.length() - remaining; ASSERT_THAT(chunk, Eq(data.substr(offset + skip, chunk.length()))); } } CordRep::Unref(node); } } TEST(CordRepBtreeReaderTest, SkipBeyondLength) { CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc")); tree = CordRepBtree::Append(tree, MakeFlat("def")); CordRepBtreeReader reader; reader.Init(tree); EXPECT_THAT(reader.Skip(100), IsEmpty()); EXPECT_THAT(reader.remaining(), Eq(0u)); CordRep::Unref(tree); } TEST(CordRepBtreeReaderTest, Seek) { constexpr size_t kChars = 3; const size_t cap = CordRepBtree::kMaxCapacity; size_t counts[] = {1, 2, cap, cap * cap, cap * cap + 1, cap * cap * 2 + 17}; for (size_t count : counts) { std::string data = CreateRandomString(count * kChars); std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars); CordRepBtree* node = CordRepBtreeFromFlats(flats); for (size_t seek = 0; seek < data.length() - 1; ++seek) { CordRepBtreeReader reader; reader.Init(node); absl::string_view chunk = reader.Seek(seek); ASSERT_THAT(chunk, Not(IsEmpty())); ASSERT_THAT(chunk, Eq(data.substr(seek, chunk.length()))); ASSERT_THAT(reader.remaining(), Eq(data.length() - seek - chunk.length())); } CordRep::Unref(node); } } TEST(CordRepBtreeReaderTest, SeekBeyondLength) { CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc")); tree = CordRepBtree::Append(tree, MakeFlat("def")); CordRepBtreeReader reader; reader.Init(tree); EXPECT_THAT(reader.Seek(6), IsEmpty()); EXPECT_THAT(reader.remaining(), Eq(0u)); EXPECT_THAT(reader.Seek(100), IsEmpty()); EXPECT_THAT(reader.remaining(), Eq(0u)); CordRep::Unref(tree); } TEST(CordRepBtreeReaderTest, Read) { std::string data = "abcdefghijklmno"; std::vector<CordRep*> flats = CreateFlatsFromString(data, 5); CordRepBtree* node = CordRepBtreeFromFlats(flats); CordRep* tree; CordRepBtreeReader reader; absl::string_view chunk; chunk = reader.Init(node); chunk = reader.Read(0, chunk.length(), tree); EXPECT_THAT(tree, Eq(nullptr)); EXPECT_THAT(chunk, Eq("abcde")); EXPECT_THAT(reader.remaining(), Eq(10u)); EXPECT_THAT(reader.Next(), Eq("fghij")); chunk = reader.Init(node); chunk = reader.Read(15, chunk.length(), tree); EXPECT_THAT(tree, Ne(nullptr)); EXPECT_THAT(CordToString(tree), Eq("abcdefghijklmno")); EXPECT_THAT(chunk, Eq("")); EXPECT_THAT(reader.remaining(), Eq(0u)); CordRep::Unref(tree); chunk = reader.Init(node); chunk = reader.Read(3, chunk.length(), tree); ASSERT_THAT(tree, Ne(nullptr)); EXPECT_THAT(CordToString(tree), Eq("abc")); EXPECT_THAT(chunk, Eq("de")); EXPECT_THAT(reader.remaining(), Eq(10u)); EXPECT_THAT(reader.Next(), Eq("fghij")); CordRep::Unref(tree); chunk = reader.Init(node); chunk = reader.Read(2, chunk.length() - 2, tree); ASSERT_THAT(tree, Ne(nullptr)); EXPECT_THAT(CordToString(tree), Eq("cd")); EXPECT_THAT(chunk, Eq("e")); EXPECT_THAT(reader.remaining(), Eq(10u)); EXPECT_THAT(reader.Next(), Eq("fghij")); CordRep::Unref(tree); chunk = reader.Init(node); chunk = reader.Read(3, 0, tree); ASSERT_THAT(tree, Ne(nullptr)); EXPECT_THAT(CordToString(tree), Eq("fgh")); EXPECT_THAT(chunk, Eq("ij")); EXPECT_THAT(reader.remaining(), Eq(5u)); EXPECT_THAT(reader.Next(), Eq("klmno")); CordRep::Unref(tree); chunk = reader.Init(node); chunk = reader.Read(12, chunk.length() - 2, tree); ASSERT_THAT(tree, Ne(nullptr)); EXPECT_THAT(CordToString(tree), Eq("cdefghijklmn")); EXPECT_THAT(chunk, Eq("o")); EXPECT_THAT(reader.remaining(), Eq(0u)); CordRep::Unref(tree); chunk = reader.Init(node); chunk = reader.Read(10 - 2, chunk.length() - 2, tree); ASSERT_THAT(tree, Ne(nullptr)); EXPECT_THAT(CordToString(tree), Eq("cdefghij")); EXPECT_THAT(chunk, Eq("klmno")); EXPECT_THAT(reader.remaining(), Eq(0u)); CordRep::Unref(tree); CordRep::Unref(node); } TEST(CordRepBtreeReaderTest, ReadExhaustive) { constexpr size_t kChars = 3; const size_t cap = CordRepBtree::kMaxCapacity; size_t counts[] = {1, 2, cap, cap * cap + 1, cap * cap * cap * 2 + 17}; for (size_t count : counts) { std::string data = CreateRandomString(count * kChars); std::vector<CordRep*> flats = CreateFlatsFromString(data, kChars); CordRepBtree* node = CordRepBtreeFromFlats(flats); for (size_t read_size : {kChars - 1, kChars, kChars + 7, cap * cap}) { CordRepBtreeReader reader; absl::string_view chunk = reader.Init(node); size_t consumed = 0; size_t remaining = data.length(); while (remaining > 0) { CordRep* tree; size_t n = (std::min)(remaining, read_size); chunk = reader.Read(n, chunk.length(), tree); EXPECT_THAT(tree, Ne(nullptr)); if (tree) { EXPECT_THAT(CordToString(tree), Eq(data.substr(consumed, n))); CordRep::Unref(tree); } consumed += n; remaining -= n; EXPECT_THAT(reader.remaining(), Eq(remaining - chunk.length())); if (remaining > 0) { ASSERT_FALSE(chunk.empty()); ASSERT_THAT(chunk, Eq(data.substr(consumed, chunk.length()))); } else { ASSERT_TRUE(chunk.empty()) << chunk; } } } CordRep::Unref(node); } } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_rep_btree_reader.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_rep_btree_reader_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
9b61f2fd-dae2-47fa-a877-b61df3b15a36
cpp
tensorflow/tensorflow
libc_handle
tensorflow/lite/experimental/acceleration/mini_benchmark/libc_handle.cc
tensorflow/lite/experimental/acceleration/mini_benchmark/libc_handle_test.cc
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/libc_handle.h" #ifdef __ANDROID__ #include <dlfcn.h> #endif #include <stdio.h> #include "tensorflow/lite/experimental/acceleration/mini_benchmark/decode_jpeg_status.h" namespace tflite { namespace acceleration { namespace decode_jpeg_kernel { LibCHandle LibCHandle::Create(Status &status) { #ifndef __ANDROID__ #ifndef _WIN32 return LibCHandle(nullptr, ::fmemopen); #else status = {kTfLiteError, "Windows not supported."}; return LibCHandle(nullptr, nullptr); #endif #else void *libc = nullptr; FmemopenPtr fmemopen_ptr = nullptr; if (!(libc = dlopen("libc.so", RTLD_NOW | RTLD_LOCAL))) { status = {kTfLiteError, "Failed to load the libc dynamic shared object library."}; return LibCHandle(nullptr, nullptr); } if (!(fmemopen_ptr = reinterpret_cast<FmemopenPtr>(dlsym(libc, "fmemopen")))) { status = {kTfLiteError, "Failed to dynamically load the method: fmemopen"}; return LibCHandle(nullptr, nullptr); } status = {kTfLiteOk, ""}; return LibCHandle(libc, fmemopen_ptr); #endif } FILE *LibCHandle::fmemopen(void *buf, size_t size, const char *mode) const { return fmemopen_(buf, size, mode); } } } }
#include "tensorflow/lite/experimental/acceleration/mini_benchmark/libc_handle.h" #include <gmock/gmock.h> #include <gtest/gtest.h> namespace tflite { namespace acceleration { namespace decode_jpeg_kernel { namespace { TEST(LibCHandleTest, LoadingSucceedsAndroidPlatforms) { Status status; LibCHandle handle = LibCHandle::Create(status); EXPECT_EQ(status.error_message, ""); EXPECT_EQ(status.code, kTfLiteOk); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/libc_handle.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/acceleration/mini_benchmark/libc_handle_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
60f20ad5-af5f-44be-868d-f9539a658eb7
cpp
google/quiche
quic_path_validator
quiche/quic/core/quic_path_validator.cc
quiche/quic/core/quic_path_validator_test.cc
#include "quiche/quic/core/quic_path_validator.h" #include <memory> #include <ostream> #include <utility> #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_socket_address.h" namespace quic { class RetryAlarmDelegate : public QuicAlarm::DelegateWithContext { public: explicit RetryAlarmDelegate(QuicPathValidator* path_validator, QuicConnectionContext* context) : QuicAlarm::DelegateWithContext(context), path_validator_(path_validator) {} RetryAlarmDelegate(const RetryAlarmDelegate&) = delete; RetryAlarmDelegate& operator=(const RetryAlarmDelegate&) = delete; void OnAlarm() override { path_validator_->OnRetryTimeout(); } private: QuicPathValidator* path_validator_; }; std::ostream& operator<<(std::ostream& os, const QuicPathValidationContext& context) { return os << " from " << context.self_address_ << " to " << context.peer_address_; } QuicPathValidator::QuicPathValidator(QuicAlarmFactory* alarm_factory, QuicConnectionArena* arena, SendDelegate* send_delegate, QuicRandom* random, const QuicClock* clock, QuicConnectionContext* context) : send_delegate_(send_delegate), random_(random), clock_(clock), retry_timer_(alarm_factory->CreateAlarm( arena->New<RetryAlarmDelegate>(this, context), arena)), retry_count_(0u) {} void QuicPathValidator::OnPathResponse(const QuicPathFrameBuffer& probing_data, QuicSocketAddress self_address) { if (!HasPendingPathValidation()) { return; } QUIC_DVLOG(1) << "Match PATH_RESPONSE received on " << self_address; QUIC_BUG_IF(quic_bug_12402_1, !path_context_->self_address().IsInitialized()) << "Self address should have been known by now"; if (self_address != path_context_->self_address()) { QUIC_DVLOG(1) << "Expect the response to be received on " << path_context_->self_address(); return; } for (auto it = probing_data_.begin(); it != probing_data_.end(); ++it) { if (it->frame_buffer == probing_data) { result_delegate_->OnPathValidationSuccess(std::move(path_context_), it->send_time); ResetPathValidation(); return; } } QUIC_DVLOG(1) << "PATH_RESPONSE with payload " << probing_data.data() << " doesn't match the probing data."; } void QuicPathValidator::StartPathValidation( std::unique_ptr<QuicPathValidationContext> context, std::unique_ptr<ResultDelegate> result_delegate, PathValidationReason reason) { QUICHE_DCHECK(context); QUIC_DLOG(INFO) << "Start validating path " << *context << " via writer: " << context->WriterToUse(); if (path_context_ != nullptr) { QUIC_BUG(quic_bug_10876_1) << "There is an on-going validation on path " << *path_context_; ResetPathValidation(); } reason_ = reason; path_context_ = std::move(context); result_delegate_ = std::move(result_delegate); SendPathChallengeAndSetAlarm(); } void QuicPathValidator::ResetPathValidation() { path_context_ = nullptr; result_delegate_ = nullptr; retry_timer_->Cancel(); retry_count_ = 0; reason_ = PathValidationReason::kReasonUnknown; } void QuicPathValidator::CancelPathValidation() { if (path_context_ == nullptr) { return; } QUIC_DVLOG(1) << "Cancel validation on path" << *path_context_; result_delegate_->OnPathValidationFailure(std::move(path_context_)); ResetPathValidation(); } bool QuicPathValidator::HasPendingPathValidation() const { return path_context_ != nullptr; } QuicPathValidationContext* QuicPathValidator::GetContext() const { return path_context_.get(); } std::unique_ptr<QuicPathValidationContext> QuicPathValidator::ReleaseContext() { auto ret = std::move(path_context_); ResetPathValidation(); return ret; } const QuicPathFrameBuffer& QuicPathValidator::GeneratePathChallengePayload() { probing_data_.emplace_back(clock_->Now()); random_->RandBytes(probing_data_.back().frame_buffer.data(), sizeof(QuicPathFrameBuffer)); return probing_data_.back().frame_buffer; } void QuicPathValidator::OnRetryTimeout() { ++retry_count_; if (retry_count_ > kMaxRetryTimes) { CancelPathValidation(); return; } QUIC_DVLOG(1) << "Send another PATH_CHALLENGE on path " << *path_context_; SendPathChallengeAndSetAlarm(); } void QuicPathValidator::SendPathChallengeAndSetAlarm() { bool should_continue = send_delegate_->SendPathChallenge( GeneratePathChallengePayload(), path_context_->self_address(), path_context_->peer_address(), path_context_->effective_peer_address(), path_context_->WriterToUse()); if (!should_continue) { CancelPathValidation(); return; } retry_timer_->Set(send_delegate_->GetRetryTimeout( path_context_->peer_address(), path_context_->WriterToUse())); } bool QuicPathValidator::IsValidatingPeerAddress( const QuicSocketAddress& effective_peer_address) { return path_context_ != nullptr && path_context_->effective_peer_address() == effective_peer_address; } void QuicPathValidator::MaybeWritePacketToAddress( const char* buffer, size_t buf_len, const QuicSocketAddress& peer_address) { if (!HasPendingPathValidation() || path_context_->peer_address() != peer_address) { return; } QUIC_DVLOG(1) << "Path validator is sending packet of size " << buf_len << " from " << path_context_->self_address() << " to " << path_context_->peer_address(); path_context_->WriterToUse()->WritePacket( buffer, buf_len, path_context_->self_address().host(), path_context_->peer_address(), nullptr, QuicPacketWriterParams()); } }
#include "quiche/quic/core/quic_path_validator.h" #include <memory> #include "quiche/quic/core/frames/quic_path_challenge_frame.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" #include "quiche/quic/test_tools/mock_random.h" #include "quiche/quic/test_tools/quic_path_validator_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" using testing::_; using testing::Invoke; using testing::Return; namespace quic { namespace test { class MockSendDelegate : public QuicPathValidator::SendDelegate { public: MOCK_METHOD(bool, SendPathChallenge, (const QuicPathFrameBuffer&, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*), (override)); MOCK_METHOD(QuicTime, GetRetryTimeout, (const QuicSocketAddress&, QuicPacketWriter*), (const, override)); }; class QuicPathValidatorTest : public QuicTest { public: QuicPathValidatorTest() : path_validator_(&alarm_factory_, &arena_, &send_delegate_, &random_, &clock_, nullptr), context_(new MockQuicPathValidationContext( self_address_, peer_address_, effective_peer_address_, &writer_)), result_delegate_( new testing::StrictMock<MockQuicPathValidationResultDelegate>()) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); ON_CALL(send_delegate_, GetRetryTimeout(_, _)) .WillByDefault( Return(clock_.ApproximateNow() + 3 * QuicTime::Delta::FromMilliseconds(kInitialRttMs))); } protected: quic::test::MockAlarmFactory alarm_factory_; MockSendDelegate send_delegate_; MockRandom random_; MockClock clock_; QuicConnectionArena arena_; QuicPathValidator path_validator_; QuicSocketAddress self_address_{QuicIpAddress::Any4(), 443}; QuicSocketAddress peer_address_{QuicIpAddress::Loopback4(), 443}; QuicSocketAddress effective_peer_address_{QuicIpAddress::Loopback4(), 12345}; MockPacketWriter writer_; MockQuicPathValidationContext* context_; MockQuicPathValidationResultDelegate* result_delegate_; }; TEST_F(QuicPathValidatorTest, PathValidationSuccessOnFirstRound) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)); const QuicTime expected_start_time = clock_.Now(); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); EXPECT_TRUE(path_validator_.HasPendingPathValidation()); EXPECT_EQ(PathValidationReason::kMultiPort, path_validator_.GetPathValidationReason()); EXPECT_TRUE(path_validator_.IsValidatingPeerAddress(effective_peer_address_)); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, _)) .WillOnce( Invoke([=, this](std::unique_ptr<QuicPathValidationContext> context, QuicTime start_time) { EXPECT_EQ(context.get(), context_); EXPECT_EQ(start_time, expected_start_time); })); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(kInitialRttMs)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } TEST_F(QuicPathValidatorTest, RespondWithDifferentSelfAddress) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)); const QuicTime expected_start_time = clock_.Now(); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); const QuicSocketAddress kAlternativeSelfAddress(QuicIpAddress::Any6(), 54321); EXPECT_NE(kAlternativeSelfAddress, self_address_); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(kInitialRttMs)); path_validator_.OnPathResponse(challenge_data, kAlternativeSelfAddress); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, _)) .WillOnce( Invoke([=, this](std::unique_ptr<QuicPathValidationContext> context, QuicTime start_time) { EXPECT_EQ(context->self_address(), self_address_); EXPECT_EQ(start_time, expected_start_time); })); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(kInitialRttMs)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } TEST_F(QuicPathValidatorTest, RespondAfter1stRetry) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { EXPECT_NE(payload, challenge_data); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(2u); const QuicTime start_time = clock_.Now(); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); random_.ChangeValue(); alarm_factory_.FireAlarm( QuicPathValidatorPeer::retry_timer(&path_validator_)); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, start_time)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); } TEST_F(QuicPathValidatorTest, RespondToRetryChallenge) { QuicPathFrameBuffer challenge_data; EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })) .WillOnce(Invoke([&](const QuicPathFrameBuffer& payload, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { EXPECT_NE(challenge_data, payload); memcpy(challenge_data.data(), payload.data(), payload.size()); return true; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(2u); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); const QuicTime start_time = clock_.Now(); random_.ChangeValue(); alarm_factory_.FireAlarm( QuicPathValidatorPeer::retry_timer(&path_validator_)); EXPECT_CALL(*result_delegate_, OnPathValidationSuccess(_, start_time)); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); } TEST_F(QuicPathValidatorTest, ValidationTimeOut) { EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .Times(3u) .WillRepeatedly(Return(true)); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(3u); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); QuicPathFrameBuffer challenge_data; memset(challenge_data.data(), 'a', challenge_data.size()); path_validator_.OnPathResponse(challenge_data, self_address_); EXPECT_CALL(*result_delegate_, OnPathValidationFailure(_)) .WillOnce( Invoke([=, this](std::unique_ptr<QuicPathValidationContext> context) { EXPECT_EQ(context_, context.get()); })); for (size_t i = 0; i <= QuicPathValidator::kMaxRetryTimes; ++i) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(3 * kInitialRttMs)); alarm_factory_.FireAlarm( QuicPathValidatorPeer::retry_timer(&path_validator_)); } EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } TEST_F(QuicPathValidatorTest, SendPathChallengeError) { EXPECT_CALL(send_delegate_, SendPathChallenge(_, self_address_, peer_address_, effective_peer_address_, &writer_)) .WillOnce(Invoke([&](const QuicPathFrameBuffer&, const QuicSocketAddress&, const QuicSocketAddress&, const QuicSocketAddress&, QuicPacketWriter*) { path_validator_.CancelPathValidation(); return false; })); EXPECT_CALL(send_delegate_, GetRetryTimeout(peer_address_, &writer_)) .Times(0u); EXPECT_CALL(*result_delegate_, OnPathValidationFailure(_)); path_validator_.StartPathValidation( std::unique_ptr<QuicPathValidationContext>(context_), std::unique_ptr<MockQuicPathValidationResultDelegate>(result_delegate_), PathValidationReason::kMultiPort); EXPECT_FALSE(path_validator_.HasPendingPathValidation()); EXPECT_FALSE(QuicPathValidatorPeer::retry_timer(&path_validator_)->IsSet()); EXPECT_EQ(PathValidationReason::kReasonUnknown, path_validator_.GetPathValidationReason()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_path_validator.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_path_validator_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
7a29b9d1-1578-444f-adeb-b1e9b5c2583e
cpp
tensorflow/tensorflow
flexbuffers_util
tensorflow/lite/delegates/xnnpack/flexbuffers_util.h
tensorflow/lite/delegates/xnnpack/flexbuffers_util_test.cc
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_FLEXBUFFERS_UTIL_H_ #define TENSORFLOW_LITE_DELEGATES_XNNPACK_FLEXBUFFERS_UTIL_H_ #include "flatbuffers/base.h" #include "flatbuffers/flexbuffers.h" namespace tflite::xnnpack { struct FloatPointer { const float* ptr = nullptr; }; } namespace flexbuffers { template <> tflite::xnnpack::FloatPointer inline flexbuffers::Reference::As< tflite::xnnpack::FloatPointer>() const { #if !FLATBUFFERS_LITTLEENDIAN return nullptr; #else return {IsFloat() ? reinterpret_cast<const float*>(data_) : nullptr}; #endif } } #endif
#include "tensorflow/lite/delegates/xnnpack/flexbuffers_util.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flexbuffers.h" namespace tflite::xnnpack { namespace { using ::testing::Pointee; TEST(FlexbuffersUtilTest, FloatPointer) { constexpr float kAValue = 3.14; constexpr float kBValue = 56; flexbuffers::Builder fbb; fbb.Map([&] { fbb.Float("a", kAValue); fbb.Float("b", kBValue); }); fbb.Finish(); const flexbuffers::Map map = flexbuffers::GetRoot(fbb.GetBuffer()).AsMap(); const flexbuffers::Reference a = map["a"]; EXPECT_TRUE(a.IsFloat()); EXPECT_THAT(a.As<FloatPointer>().ptr, Pointee(kAValue)); const flexbuffers::Reference b = map["b"]; EXPECT_TRUE(b.IsFloat()); EXPECT_THAT(b.As<FloatPointer>().ptr, Pointee(kBValue)); const flexbuffers::Reference c = map["c"]; ASSERT_TRUE(c.IsNull()); EXPECT_EQ(c.As<FloatPointer>().ptr, nullptr); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/flexbuffers_util.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/xnnpack/flexbuffers_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
acb6e25d-5035-4121-96bc-58bf96d1e10c
cpp
tensorflow/tensorflow
graph_executor
tensorflow/core/tfrt/graph_executor/graph_executor.cc
tensorflow/core/tfrt/graph_executor/graph_executor_test.cc
#include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include <algorithm> #include <array> #include <cstdint> #include <functional> #include <memory> #include <numeric> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/Extensions/AllExtensions.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_saved_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tfrt/transforms/mlrt/import_model.h" #include "tensorflow/compiler/mlir/tfrt/transforms/update_op_cost_in_tfrt_mlir.h" #include "tensorflow/compiler/mlir/tfrt/translate/import_model.h" #include "tensorflow/compiler/mlir/tfrt/translate/tfrt_compile_options.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "xla/tsl/lib/monitoring/sampler.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/common_runtime/rendezvous_mgr.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/rendezvous.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/monitoring/gauge.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/tstring.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/version.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_compat_request_state.h" #include "tensorflow/core/runtime_fallback/kernel/kernel_fallback_utils.h" #include "tensorflow/core/tfrt/common/metrics.h" #include "tensorflow/core/tfrt/fallback/cost_recorder.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/fallback/op_kernel_runner.h" #include "tensorflow/core/tfrt/graph_executor/executable_context.h" #include "tensorflow/core/tfrt/graph_executor/export_mlir.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/graph_executor/sync_resource_state.h" #include "tensorflow/core/tfrt/mlrt/bytecode/bytecode.h" #include "tensorflow/core/tfrt/mlrt/bytecode/executable.h" #include "tensorflow/core/tfrt/mlrt/bytecode/function.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/execute.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include "tensorflow/core/tfrt/mlrt/kernel/context.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/runtime/step_id.h" #include "tensorflow/core/tfrt/runtime/stream.h" #include "tensorflow/core/tfrt/runtime/work_queue_interface.h" #include "tensorflow/core/tfrt/stubs/tfrt_native_lowering_stub.h" #include "tensorflow/core/tfrt/utils/fallback_tensor.h" #include "tensorflow/core/tfrt/utils/tfrt_graph_execution_state.h" #include "tensorflow/core/tfrt/utils/utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/refcount.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" #include "tfrt/bef/bef_buffer.h" #include "tfrt/bef_converter/mlir_to_bef.h" #include "tfrt/core_runtime/core_runtime.h" #include "tfrt/host_context/async_dispatch.h" #include "tfrt/host_context/async_value.h" #include "tfrt/host_context/async_value_ref.h" #include "tfrt/host_context/chain.h" #include "tfrt/host_context/concurrent_work_queue.h" #include "tfrt/host_context/execution_context.h" #include "tfrt/host_context/function.h" #include "tfrt/host_context/host_context.h" #include "tfrt/host_context/request_deadline_tracker.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/support/forward_decls.h" #include "tfrt/support/ref_count.h" #include "tfrt/support/string_util.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr char kDeadlineExceededMessage[] = "Deadline exceeded."; constexpr char kTensorNameJoiningDelimiter[] = "-"; constexpr char kArgumentTypeJoiningDelimiter[] = "^"; constexpr char kFallbackInitFunction[] = "_tfrt_fallback_init"; constexpr char kResourceInitFunction[] = "_tfrt_resource_init"; StepId GetNextStepId() { static StepIdGenerator gen; return gen.GetNextStepId(); } auto* graph_executor_mode = monitoring::Gauge<std::string, 2>::New( "/tfrt/graph_executor/mode", "Record the total number of imported savedmodel using different graph " "executor modes (BEF vs MLRT interpreter)", "model_name", "model_version"); } tensorflow::Status RunMlrtFunction( mlrt::bc::Function function, const mlrt::LoadedExecutable& loaded_executable, const tsl::RCReference<tfrt::RequestContext>& request_context, tfrt::ConcurrentWorkQueue& work_queue, absl::Span<const tensorflow::Tensor> inputs, std::vector<tensorflow::Tensor>* outputs, SyncResourceState* sync_resource_state) { DCHECK(function); const auto* fallback_request_state = request_context->GetDataIfExists<tfd::KernelFallbackCompatRequestState>(); DCHECK(fallback_request_state); mlrt::ExecutionContext execution_context(&loaded_executable); execution_context.set_work_queue(&work_queue); tfrt::ExecutionContext exec_ctx(request_context); AddSyncContext(execution_context, *request_context->host(), sync_resource_state); execution_context.AddUserContext(std::make_unique<tf_mlrt::Context>( fallback_request_state, request_context->resource_context(), request_context->cancellation_context().get())); execution_context.AddUserErrorLogger( [fallback_request_state](absl::Status status) { if (fallback_request_state) { LOG(ERROR) << "Model " << fallback_request_state->session_metadata().name() << " version " << fallback_request_state->session_metadata().version() << " has error: " << status; } }); absl::InlinedVector<mlrt::Value, 4> mlrt_inputs; mlrt_inputs.reserve(inputs.size()); for (const auto& input : inputs) { mlrt_inputs.emplace_back(FallbackTensor(input)); } absl::InlinedVector<mlrt::Value, 4> mlrt_outputs( function.output_regs().size()); tsl::RCReference<tsl::AsyncValue> chain = tsl::MakeConstructedAsyncValueRef<tsl::Chain>(); execution_context.set_exit_handler( [chain = chain.get()]() { chain->SetStateConcrete(); }); execution_context.CallByMove(function, absl::MakeSpan(mlrt_inputs), absl::MakeSpan(mlrt_outputs)); work_queue.AddTask( [&execution_context]() { mlrt::Execute(execution_context); }); work_queue.Await(chain); if (!execution_context.status().ok()) { outputs->resize(mlrt_outputs.size(), tensorflow::Tensor()); return execution_context.status(); } for (auto& mlrt_output : mlrt_outputs) { DCHECK(mlrt_output.HasValue()); outputs->push_back(std::move(mlrt_output.Get<FallbackTensor>().tensor())); } return absl::OkStatus(); } absl::StatusOr<std::unique_ptr<RequestInfo>> CreateRequestInfo( const GraphExecutionOptions& options, const GraphExecutionRunOptions& run_options, tensorflow::tfrt_stub::WorkQueueInterface* work_queue, tfrt::ResourceContext* resource_context, tfrt::ResourceContext* client_graph_resource_context, OpKernelRunnerTable* runner_table, tfd::FallbackResourceArray* resource_array, tensorflow::tfrt_stub::FallbackState& fallback_state, const tensorflow::ProcessFunctionLibraryRuntime& process_function_library_runtime, CostRecorder* cost_recorder) { auto request_info = std::make_unique<RequestInfo>(); DCHECK(options.runtime); const Runtime& runtime = *options.runtime; int64_t request_id = 0; if (work_queue != nullptr) { request_id = work_queue->id(); if (request_id == 0) request_id = GetNextStepId().id; request_info->request_queue = work_queue; } else { request_id = GetNextStepId().id; TF_ASSIGN_OR_RETURN(request_info->request_queue_owner, runtime.CreateRequestQueue(request_id)); request_info->request_queue = request_info->request_queue_owner.get(); } auto* request_queue = request_info->request_queue; request_info->runner = [request_queue](std::function<void()> f) { request_queue->AddTask(std::move(f)); }; tfrt::RequestContextBuilder request_context_builder( runtime.core_runtime()->GetHostContext(), resource_context, request_id); DCHECK(runner_table); DCHECK(resource_array); auto& fallback_request_state = request_context_builder.context_data() .emplace<tfd::KernelFallbackCompatRequestState>( &request_info->runner, &fallback_state.device_manager(), request_context_builder.id(), runner_table, resource_array, request_queue->GetIntraOpThreadPool(), options.model_metadata, &process_function_library_runtime); fallback_request_state.set_cost_recorder(cost_recorder); fallback_request_state.set_client_graph_resource_context( client_graph_resource_context); fallback_request_state.set_runtime_config(&options.runtime_config); fallback_request_state.set_cancellation_manager( &request_info->cancellation_manager); tfrt::RequestOptions request_options; request_options.priority = run_options.priority; request_context_builder.set_request_options(request_options); auto expected_req_ctx = std::move(request_context_builder).build(); if (!expected_req_ctx) { return tensorflow::errors::Internal( tfrt::StrCat(expected_req_ctx.takeError())); } request_info->tfrt_request_context = std::move(expected_req_ctx.get()); return request_info; } tensorflow::Status GraphExecutionRunOnFunction( const GraphExecutionOptions& options, const GraphExecutionRunOptions& run_options, absl::string_view signature_name, const SymbolUids& symbol_uids, const tfrt::Function* func, const mlrt::LoadedExecutable* loaded_executable, absl::Span<const tensorflow::Tensor> inputs, std::vector<tensorflow::Tensor>* outputs, tfrt::ResourceContext* resource_context, tfrt::ResourceContext* client_graph_resource_context, OpKernelRunnerTable* runner_table, tfd::FallbackResourceArray* resource_array, const Runtime& runtime, FallbackState& fallback_state, const tensorflow::ProcessFunctionLibraryRuntime& process_function_library_runtime, tfrt::RequestDeadlineTracker* req_deadline_tracker, std::optional<StreamCallbackId> stream_callback_id, CostRecorder* cost_recorder) { TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo(options, run_options, run_options.work_queue, resource_context, client_graph_resource_context, runner_table, resource_array, fallback_state, process_function_library_runtime, cost_recorder)); int64_t request_id = request_info->tfrt_request_context->id(); tsl::profiler::TraceMe traceme( [request_id, signature_name, &options, symbol_uids] { return tsl::profiler::TraceMeEncode( "TfrtModelRun", {{"_r", 1}, {"id", request_id}, {"signature", signature_name}, {"model_id", absl::StrCat(options.model_metadata.name(), ":", options.model_metadata.version())}, {"tf_symbol_uid", symbol_uids.tf_symbol_uid}, {"tfrt_symbol_uid", symbol_uids.tfrt_symbol_uid}}); }); if (run_options.deadline.has_value()) { auto deadline = run_options.deadline.value(); if (absl::ToChronoTime(absl::Now()) > deadline) { return tensorflow::errors::DeadlineExceeded(kDeadlineExceededMessage); } if (req_deadline_tracker == nullptr) { return tensorflow::errors::InvalidArgument( "req_deadline_tracker must be non-null"); } req_deadline_tracker->CancelRequestOnDeadline( deadline, request_info->tfrt_request_context); } ScopedStreamCallback scoped_stream_callback; if (run_options.streamed_output_callback && !stream_callback_id.has_value()) { return absl::InvalidArgumentError(absl::StrCat( "Signature '", signature_name, "' does not support streaming.")); } if (stream_callback_id.has_value()) { if (!run_options.streamed_output_callback) { return absl::InvalidArgumentError( absl::StrCat("Signature '", signature_name, "' contains streaming ops but is called using Predict " "without the streamed callback.")); } } if (run_options.streamed_output_callback) { if (!stream_callback_id.has_value()) { return absl::InvalidArgumentError(absl::StrCat( "Signature ", signature_name, " does not support streaming.")); } auto streamed_output_callback = run_options.streamed_output_callback; TF_ASSIGN_OR_RETURN( scoped_stream_callback, GetGlobalStreamCallbackRegistry().Register( options.model_metadata.name(), *stream_callback_id, StepId(request_id), std::move(streamed_output_callback))); } if (loaded_executable) { auto function = loaded_executable->GetFunction(signature_name); if (!function) { return errors::InvalidArgument(absl::StrCat( "Function not found in MLRT executable: ", signature_name)); } return RunMlrtFunction(function, *loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, inputs, outputs, nullptr); } DCHECK(func); tfrt::ExecutionContext exec_ctx{request_info->tfrt_request_context}; if (run_options.work_queue) { exec_ctx.set_work_queue(run_options.work_queue); } else if (request_info->request_queue) { exec_ctx.set_work_queue(request_info->request_queue); } else { exec_ctx.set_work_queue(runtime.work_queue()); } llvm::SmallVector<tfrt::AsyncValue*, 4> arguments; auto cleanup = tensorflow::gtl::MakeCleanup([&]() { for (auto* argument : arguments) argument->DropRef(); }); arguments.push_back(tfrt::GetReadyChain().release()); for (const auto& input : inputs) { arguments.push_back( tfrt::MakeAvailableAsyncValueRef<FallbackTensor>(input).release()); } if (arguments.size() != func->argument_types().size()) return tensorflow::errors::Internal("incorrect number of inputs."); llvm::SmallVector<tfrt::RCReference<tfrt::AsyncValue>, 4> chain_and_results; chain_and_results.resize(func->result_types().size()); std::array<tfrt::RCReference<tfrt::AsyncValue>, 1> executed = { EnqueueWork(exec_ctx, [&]() -> tfrt::Chain { func->Execute(exec_ctx, arguments, chain_and_results); return {}; })}; exec_ctx.work_queue().Await(executed); exec_ctx.work_queue().Await(chain_and_results); DCHECK(!chain_and_results.empty()); tfrt::RCReference<tfrt::AsyncValue>& chain = chain_and_results[0]; auto results = llvm::drop_begin(chain_and_results, 1); tensorflow::StatusGroup status_group; if (chain->IsError()) { status_group.Update(chain->GetError()); } for (tfrt::RCReference<tfrt::AsyncValue>& result : results) { DCHECK(result->IsAvailable()); if (result->IsError()) { status_group.Update(result->GetError()); outputs->push_back(tensorflow::Tensor()); continue; } DCHECK(result->IsType<FallbackTensor>()); const auto& host_tensor = result->get<FallbackTensor>().tensor(); outputs->push_back(host_tensor); } if (request_info->tfrt_request_context->IsCancelled()) { return tensorflow::errors::DeadlineExceeded(kDeadlineExceededMessage); } return status_group.as_summary_status(); } GraphExecutor::GraphExecutor( Options options, std::unique_ptr<FallbackState> fallback_state, std::unique_ptr<tfrt::ResourceContext> resource_context, std::unique_ptr<tensorflow::tfrt_stub::TfrtGraphExecutionState> graph_execution_state, std::unique_ptr<mlrt::KernelRegistry> kernel_registry) : options_(std::move(options)), fallback_state_(std::move(fallback_state)), graph_execution_state_(std::move(graph_execution_state)), req_deadline_tracker_(options_.runtime->core_runtime()->GetHostContext()), kernel_registry_(std::move(kernel_registry)), resource_context_(std::move(resource_context)) { DCHECK(resource_context_); SetSessionCreatedMetric(); } absl::StatusOr<std::unique_ptr<GraphExecutor>> GraphExecutor::Create( Options options, std::unique_ptr<FallbackState> fallback_state, std::unique_ptr<tfrt::ResourceContext> resource_context, tensorflow::GraphDef graph_def, std::unique_ptr<mlrt::KernelRegistry> kernel_registry) { if (options.runtime == nullptr) { return errors::InvalidArgument("options.runtime must be non-null "); } if (options.enable_online_cost_analysis) { options.cost_analysis_options.version = Options::CostAnalysisOptions::kOnce; } TfrtGraphExecutionState::Options graph_execution_state_options; graph_execution_state_options.run_placer_grappler_on_functions = options.run_placer_grappler_on_functions; options.compile_options.fuse_get_resource_ops_in_hoisting = !options.enable_mlrt; graph_executor_mode ->GetCell(options.model_metadata.name(), absl::StrCat(options.model_metadata.version())) ->Set(options.enable_mlrt ? "mlrt" : "bef"); TF_ASSIGN_OR_RETURN( auto graph_execution_state, TfrtGraphExecutionState::Create(graph_execution_state_options, std::move(graph_def), *fallback_state)); return std::make_unique<GraphExecutor>( std::move(options), std::move(fallback_state), std::move(resource_context), std::move(graph_execution_state), std::move(kernel_registry)); } namespace { void CreateSortedNamesAndOriginalIndices(absl::Span<const std::string> names, std::vector<std::string>& sorted_names, std::vector<int>& original_indices) { DCHECK(sorted_names.empty()); DCHECK(original_indices.empty()); original_indices.resize(names.size()); std::iota(original_indices.begin(), original_indices.end(), 0); std::sort(original_indices.begin(), original_indices.end(), [&](int x, int y) { return names[x] < names[y]; }); sorted_names.reserve(names.size()); for (int original_index : original_indices) { DCHECK_LT(original_index, names.size()); sorted_names.push_back(names[original_index]); } } } tensorflow::Status GraphExecutor::Run( const RunOptions& run_options, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names, std::vector<tensorflow::Tensor>* outputs) { std::vector<std::string> input_names; input_names.reserve(inputs.size()); for (const auto& p : inputs) input_names.push_back(p.first); std::vector<std::string> sorted_input_names; std::vector<int> input_original_indices; CreateSortedNamesAndOriginalIndices(input_names, sorted_input_names, input_original_indices); std::vector<tensorflow::DataType> sorted_input_dtypes; sorted_input_dtypes.reserve(inputs.size()); for (int original_index : input_original_indices) { sorted_input_dtypes.push_back(inputs.at(original_index).second.dtype()); } std::vector<std::string> sorted_output_names; std::vector<int> output_original_indices; CreateSortedNamesAndOriginalIndices(output_tensor_names, sorted_output_names, output_original_indices); std::vector<std::string> sorted_target_node_names(target_tensor_names.begin(), target_tensor_names.end()); std::sort(sorted_target_node_names.begin(), sorted_target_node_names.end()); TF_ASSIGN_OR_RETURN( LoadedClientGraph & loaded_client_graph, GetOrCreateLoadedClientGraph( run_options, sorted_input_names, sorted_input_dtypes, sorted_output_names, sorted_target_node_names, run_options.work_queue, {}, inputs)); auto executable_context = loaded_client_graph.executable_context(); const mlrt::LoadedExecutable* loaded_executable = nullptr; const tfrt::Function* func = nullptr; if (executable_context->IsForMlrt()) { loaded_executable = executable_context->bytecode_executable.get(); } else { func = executable_context->bef_file->GetFunction(loaded_client_graph.name()); } DCHECK(func || loaded_executable); std::vector<tensorflow::Tensor> flat_inputs; if (!loaded_client_graph.is_restore()) { flat_inputs.reserve(inputs.size()); for (int original_index : input_original_indices) { flat_inputs.push_back(inputs.at(original_index).second); } } auto now = absl::Now() + simulated_duration_; bool do_recompilation; CostRecorder* cost_recorder = loaded_client_graph.MaybeGetCostRecorder(now, &do_recompilation); std::vector<tensorflow::Tensor> flat_outputs; TF_RETURN_IF_ERROR(GraphExecutionRunOnFunction( options_, run_options, loaded_client_graph.name(), loaded_client_graph.symbol_uids(), func, loaded_executable, flat_inputs, &flat_outputs, resource_context_.get(), &executable_context->resource_context, &loaded_client_graph.runner_table(), &loaded_client_graph.resource_array(), runtime(), fallback_state(), loaded_client_graph.process_function_library_runtime(), &req_deadline_tracker_, loaded_client_graph.stream_callback_id(), cost_recorder)); if (do_recompilation) { TF_RETURN_IF_ERROR( loaded_client_graph.UpdateCost(*cost_recorder, runtime())); tensorflow::mutex_lock l(num_recompilations_mu_); num_recompilations_ += 1; } if (cost_recorder != nullptr) { loaded_client_graph.UpdateCostAnalysisData(now, do_recompilation); } auto flat_output_iter = flat_outputs.begin(); outputs->resize(flat_outputs.size()); for (int original_index : output_original_indices) { (*outputs)[original_index] = std::move(*flat_output_iter); ++flat_output_iter; } absl::Time end = absl::Now() + simulated_duration_; absl::Duration elapsed_duration = end - now; loaded_client_graph.latency_sampler()->Add( absl::ToDoubleMicroseconds(elapsed_duration)); return absl::OkStatus(); } tensorflow::Status GraphExecutor::Extend(const GraphDef& graph) { return graph_execution_state_->Extend(graph); } absl::StatusOr<std::unique_ptr<GraphExecutor::LoadedClientGraph>> GraphExecutor::ImportAndCompileClientGraph( const GraphExecutor::ClientGraph& client_graph, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs) { auto import_start_time = absl::Now(); mlir::DialectRegistry registry; RegisterMlirDialect(registry, options_.compile_options.backend_compiler); auto context = std::make_unique<mlir::MLIRContext>( registry, mlir::MLIRContext::Threading::DISABLED); context->loadAllAvailableDialects(); ASSIGN_OR_RETURN_IN_IMPORT( auto flib_def_and_module, ImportClientGraphToMlirModule(client_graph, context.get())); auto& [flib_def, module] = flib_def_and_module; std::string checkpoint_path; if (options_.compile_options.backend_compiler && mlir::tf_saved_model::IsRestoreGraph(module.get())) { if (inputs.size() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected 1 input for restore graph, but got ", inputs.size(), ".")); } const tensorflow::Tensor& input = inputs[0].second; if (input.dtype() != tensorflow::DT_STRING) { return absl::InvalidArgumentError( absl::StrCat("Expected string input for restore graph, but got ", input.dtype(), ".")); } checkpoint_path = input.scalar<tstring>()(); } TF_ASSIGN_OR_RETURN( auto stream_callback_id, CreateStreamCallbackId(options().model_metadata.name(), module.get())); SymbolUids symbol_uids; symbol_uids.tf_symbol_uid = MaybeUploadMlirToXsymbol(module.get()); auto import_duration = absl::Now() - import_start_time; LOG(INFO) << "TFRT finished importing client graph (" << &client_graph << "). Took " << absl::ToInt64Milliseconds(import_duration) << " ms. Client graph name: " << client_graph.name; auto compile_start_time = absl::Now(); mlir::OwningOpRef<mlir::ModuleOp> module_with_op_keys; std::shared_ptr<ExecutableContext> executable_context = nullptr; ModelRuntimeContext model_context(&options_, options_.compile_options.saved_model_dir, resource_context_.get()); if (checkpoint_path.empty()) { model_context.set_function_library_definition(&flib_def); } model_context.set_checkpoint_path(checkpoint_path); if (options_.compile_options.compile_to_sync_tfrt_dialect) { if (kernel_registry_ == nullptr) { return tensorflow::errors::Internal("Missing kernel registry in MLRT."); } ASSIGN_OR_RETURN_IN_COMPILE( executable_context, tfrt::BuildExecutableContext(module.get(), *kernel_registry_)); } else if (options_.enable_mlrt) { if (kernel_registry_ == nullptr) { return tensorflow::errors::Internal("Missing kernel registry in MLRT."); } ASSIGN_OR_RETURN_IN_COMPILE( auto bytecode_buffer, tensorflow::mlrt_compiler::ConvertTfMlirToBytecode( options_.compile_options, fallback_state(), module.get(), model_context, &module_with_op_keys)); mlrt::bc::Executable executable(bytecode_buffer.data()); auto bytecode_executable = std::make_unique<mlrt::LoadedExecutable>(executable, *kernel_registry_); executable_context = std::make_shared<ExecutableContext>( std::move(bytecode_buffer), std::move(bytecode_executable)); } else { tfrt::BefBuffer bef; TF_RETURN_IF_ERROR( tensorflow::ConvertTfMlirToBef(options_.compile_options, module.get(), &bef, model_context, &fallback_state())); ASSIGN_OR_RETURN_IN_COMPILE( auto bef_file, tfrt::CreateBefFileFromBefBuffer(runtime(), bef)); executable_context = std::make_shared<ExecutableContext>( std::move(bef), std::move(bef_file)); } symbol_uids.tfrt_symbol_uid = MaybeUploadMlirToXsymbol(module.get()); auto compile_duration = absl::Now() - compile_start_time; LOG(INFO) << "TFRT finished compiling client graph (" << &client_graph << "). Took " << absl::ToInt64Milliseconds(compile_duration) << " ms. Client graph name: " << client_graph.name; auto* latency_sampler = tensorflow::tfrt_metrics::GetTfrtGraphExecutorLatencySampler( options_.model_metadata.name(), options_.model_metadata.version(), client_graph.name); return std::make_unique<LoadedClientGraph>( client_graph.name, std::move(symbol_uids), this, std::move(context), std::move(module_with_op_keys), std::move(module), std::move(executable_context), stream_callback_id, !checkpoint_path.empty(), std::move(flib_def), latency_sampler); } absl::StatusOr<std::unique_ptr<GraphExecutor::LoadedClientGraph>> GraphExecutor::LoadClientGraph( const GraphExecutor::ClientGraph& client_graph, tensorflow::tfrt_stub::WorkQueueInterface* work_queue, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs) { LOG(INFO) << "TFRT loading client graph (" << &client_graph << ") " << client_graph.name; TF_ASSIGN_OR_RETURN(auto loaded_client_graph, ImportAndCompileClientGraph(client_graph, inputs)); auto init_start_time = absl::Now(); if (loaded_client_graph->executable_context()->IsForMlrt()) { RETURN_IF_ERROR_IN_INIT(InitBytecode(loaded_client_graph.get())); } else { RETURN_IF_ERROR_IN_INIT(InitBef(loaded_client_graph.get(), work_queue)); } auto init_duration = absl::Now() - init_start_time; LOG(INFO) << "TFRT finished initializing client graph (" << &client_graph << "). Took " << absl::ToInt64Milliseconds(init_duration) << " ms. Client graph name: " << client_graph.name; return loaded_client_graph; } absl::StatusOr< std::pair<FunctionLibraryDefinition, mlir::OwningOpRef<mlir::ModuleOp>>> GraphExecutor::ImportClientGraphToMlirModule( const GraphExecutor::ClientGraph& client_graph, mlir::MLIRContext* context) const { tensorflow::GraphImportConfig graph_import_config; graph_import_config.graph_func_name = client_graph.name; graph_import_config.prune_unused_nodes = true; graph_import_config.enable_shape_inference = false; graph_import_config.inputs = client_graph.input_nodes; graph_import_config.outputs = client_graph.output_nodes; graph_import_config.control_outputs = client_graph.target_nodes; graph_import_config.set_original_tf_func_name = true; TF_ASSIGN_OR_RETURN( auto optimized_graph, graph_execution_state_->CreateOptimizedGraph(graph_import_config)); LOG(INFO) << "TFRT import client graph (" << &client_graph << "): Functionalization took " << absl::ToInt64Milliseconds( optimized_graph.functionalization_duration) << " ms. Client graph name: " << client_graph.name; LOG(INFO) << "TFRT import client graph (" << &client_graph << "): Grappler took " << absl::ToInt64Milliseconds(optimized_graph.grappler_duration) << " ms. Client graph name: " << client_graph.name; TF_ASSIGN_OR_RETURN( auto module, tensorflow::ConvertGraphToMlir(*optimized_graph.graph, {}, optimized_graph.graph->flib_def(), graph_import_config, context)); return std::make_pair(std::move(*optimized_graph.graph->mutable_flib_def()), std::move(module)); } tensorflow::Status GraphExecutor::InitBef( LoadedClientGraph* loaded_client_graph, tensorflow::tfrt_stub::WorkQueueInterface* work_queue) { auto* bef_file = loaded_client_graph->executable_context()->bef_file.get(); TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo( options_, {}, work_queue, resource_context_.get(), nullptr, &loaded_client_graph->runner_table(), &loaded_client_graph->resource_array(), fallback_state(), loaded_client_graph->process_function_library_runtime())); tfrt::ExecutionContext exec_ctx(request_info->tfrt_request_context); TF_RETURN_IF_ERROR( RunRuntimeInitializer(exec_ctx, bef_file, kFallbackInitFunction)); TF_RETURN_IF_ERROR( RunRuntimeInitializer(exec_ctx, bef_file, kResourceInitFunction)); return absl::OkStatus(); } tensorflow::Status GraphExecutor::InitBytecode( LoadedClientGraph* loaded_graph) { TF_ASSIGN_OR_RETURN( auto request_info, CreateRequestInfo(options_, {}, options_.runtime->work_queue(), resource_context_.get(), nullptr, &loaded_graph->runner_table(), &loaded_graph->resource_array(), fallback_state(), loaded_graph->process_function_library_runtime())); const auto* loaded_executable = loaded_graph->executable_context()->bytecode_executable.get(); DCHECK(loaded_executable); std::vector<tensorflow::Tensor> outputs; if (auto function = loaded_executable->GetFunction(kFallbackInitFunction)) { TF_RETURN_IF_ERROR(RunMlrtFunction( function, *loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, {}, &outputs, &loaded_graph->sync_resource_state())); } if (auto function = loaded_executable->GetFunction(kResourceInitFunction)) { TF_RETURN_IF_ERROR(RunMlrtFunction( function, *loaded_executable, request_info->tfrt_request_context, *request_info->request_queue, {}, &outputs, &loaded_graph->sync_resource_state())); } return absl::OkStatus(); } absl::StatusOr<std::reference_wrapper<GraphExecutor::LoadedClientGraph>> GraphExecutor::GetOrCreateLoadedClientGraph( const RunOptions& run_options, absl::Span<const std::string> input_tensor_names, absl::Span<const tensorflow::DataType> input_tensor_dtypes, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names, tensorflow::tfrt_stub::WorkQueueInterface* work_queue, absl::string_view graph_name, absl::Span<const std::pair<std::string, tensorflow::Tensor>> inputs) { const std::string joined_name = !graph_name.empty() ? std::string(graph_name) : absl::StrCat( absl::StrJoin(input_tensor_names, kTensorNameJoiningDelimiter), kArgumentTypeJoiningDelimiter, absl::StrJoin(output_tensor_names, kTensorNameJoiningDelimiter), kArgumentTypeJoiningDelimiter, absl::StrJoin(target_tensor_names, kTensorNameJoiningDelimiter)); tensorflow::mutex_lock l(loaded_client_graphs_mu_); const auto iter = loaded_client_graphs_.find(joined_name); if (iter != loaded_client_graphs_.end()) return {*iter->second}; if (run_options.disable_compilation) { return tensorflow::errors::InvalidArgument( absl::StrCat("GraphExecutor: compilation is disabled in execution but " "the compiled graph is not found for ", joined_name)); } tensorflow::GraphImportConfig::InputArrays input_nodes; DCHECK_EQ(input_tensor_names.size(), input_tensor_dtypes.size()); for (int i = 0; i < input_tensor_names.size(); ++i) { const auto& input_name = input_tensor_names[i]; auto input_dtype = input_tensor_dtypes[i]; tensorflow::ArrayInfo array_info; array_info.imported_dtype = input_dtype; array_info.shape.set_unknown_rank(true); input_nodes[input_name] = array_info; } ClientGraph client_graph{ run_options.name.empty() ? joined_name : run_options.name, std::move(input_nodes), {output_tensor_names.begin(), output_tensor_names.end()}, {target_tensor_names.begin(), target_tensor_names.end()}}; TF_ASSIGN_OR_RETURN(auto loaded_client_graph, LoadClientGraph(client_graph, work_queue, inputs)); auto* loaded_client_graph_ptr = loaded_client_graph.get(); loaded_client_graphs_[joined_name] = std::move(loaded_client_graph); return {*loaded_client_graph_ptr}; } tensorflow::Status GraphExecutor::RunWithSyncInterpreter( const std::string& graph_name, absl::Span<mlrt::Value> input_values, absl::Span<const std::string> input_names, absl::Span<const tensorflow::DataType> input_dtypes, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names, absl::Span<mlrt::Value> outputs) { TF_ASSIGN_OR_RETURN( LoadedClientGraph & loaded_client_graph, GetOrCreateLoadedClientGraph( {}, input_names, input_dtypes, output_tensor_names, target_tensor_names, nullptr, graph_name.empty() ? output_tensor_names[0] : graph_name)); auto executable_context = loaded_client_graph.executable_context(); mlrt::ExecutionContext execution_context( executable_context->bytecode_executable.get()); AddSyncContext(execution_context, *options_.runtime->core_runtime()->GetHostContext(), &loaded_client_graph.sync_resource_state()); tensorflow::tfd::KernelFallbackCompatRequestState kernel_fallback_state( tfd::GetDefaultRunner(), &fallback_state().device_manager(), 0, &loaded_client_graph.runner_table(), &loaded_client_graph.resource_array(), nullptr, std::nullopt, &loaded_client_graph.process_function_library_runtime()); auto tf_context = std::make_unique<tensorflow::tf_mlrt::Context>( &kernel_fallback_state, resource_context_.get()); execution_context.AddUserContext(std::move(tf_context)); auto serving_function = executable_context->bytecode_executable->GetFunction( loaded_client_graph.name()); DCHECK(serving_function); execution_context.CallByMove(serving_function, input_values, outputs); mlrt::Execute(execution_context); return execution_context.status(); } CostRecorder* GraphExecutor::LoadedClientGraph::MaybeGetCostRecorder( absl::Time now, bool* do_recompilation) { *do_recompilation = false; tensorflow::mutex_lock l(cost_analysis_data_.mu); if (!cost_analysis_data_.is_available) { return nullptr; } const auto& options = graph_executor_->options().cost_analysis_options; absl::Duration elapsed_duration = now - cost_analysis_data_.start_time; double intended_num_updates = absl::ToDoubleSeconds(elapsed_duration) / absl::ToDoubleSeconds(options.reset_interval) * options.updates_per_interval; if (intended_num_updates - cost_analysis_data_.num_cost_updates >= 1) { cost_analysis_data_.is_available = false; *do_recompilation = 1 + cost_analysis_data_.num_cost_updates >= options.updates_per_interval; return cost_analysis_data_.cost_recorder.get(); } return nullptr; } Status GraphExecutor::LoadedClientGraph::UpdateCost( const CostRecorder& cost_recorder, const Runtime& runtime) { LOG(INFO) << "TFRT updating op costs of loaded client graph (" << this << ") " << name_; std::shared_ptr<ExecutableContext> new_executable_context = nullptr; if (executable_context()->IsForMlrt()) { auto tf_mlir_with_op_keys = ::mlir::OwningOpRef<mlir::ModuleOp>( cost_analysis_data_.tf_mlir_with_op_keys.get().clone()); TF_ASSIGN_OR_RETURN( auto bytecode_buffer, tensorflow::mlrt_compiler::ConvertTfMlirWithOpKeysToBytecode( graph_executor_->options().compile_options, graph_executor_->fallback_state(), tf_mlir_with_op_keys.get(), cost_recorder)); mlrt::bc::Executable executable(bytecode_buffer.data()); auto bytecode_executable = std::make_unique<mlrt::LoadedExecutable>( executable, *graph_executor_->kernel_registry_); new_executable_context = std::make_shared<ExecutableContext>( std::move(bytecode_buffer), std::move(bytecode_executable)); } else { auto tfrt_mlir = ::mlir::OwningOpRef<mlir::ModuleOp>( cost_analysis_data_.tfrt_mlir.get().clone()); mlir::StatusScopedDiagnosticHandler diag_handler( tfrt_mlir.get().getContext()); tfrt_compiler::UpdateOpCostInTfrtMlir(tfrt_mlir.get(), cost_recorder); auto bef = tfrt::ConvertMLIRToBEF(tfrt_mlir.get(), true); if (bef.empty()) { return diag_handler.Combine( tensorflow::errors::Internal("failed to convert MLIR to BEF.")); } bef.shrink_to_fit(); TF_ASSIGN_OR_RETURN(auto bef_file, tfrt::CreateBefFileFromBefBuffer(runtime, bef)); new_executable_context = std::make_shared<ExecutableContext>( std::move(bef), std::move(bef_file)); } { tensorflow::mutex_lock lock(executable_context_mu_); executable_context_ = std::move(new_executable_context); } return absl::OkStatus(); } GraphExecutor::LoadedClientGraph::LoadedClientGraph( std::string name, SymbolUids symbol_uids, GraphExecutor* graph_executor, std::unique_ptr<mlir::MLIRContext> mlir_context, mlir::OwningOpRef<mlir::ModuleOp> tf_mlir_with_op_keys, mlir::OwningOpRef<mlir::ModuleOp> tfrt_mlir, std::shared_ptr<ExecutableContext> executable_context, std::optional<StreamCallbackId> stream_callback_id, bool is_restore, FunctionLibraryDefinition flib_def, tsl::monitoring::SamplerCell* latency_sampler) : name_(std::move(name)), symbol_uids_(std::move(symbol_uids)), graph_executor_(graph_executor), mlir_context_(std::move(mlir_context)), executable_context_(std::move(executable_context)), stream_callback_id_(stream_callback_id), is_restore_(is_restore), flib_def_(std::move(flib_def)), pflr_(&graph_executor->fallback_state().device_manager(), graph_executor->fallback_state().session_options().env, &graph_executor->fallback_state().session_options().config, TF_GRAPH_DEF_VERSION, &flib_def_, graph_executor->fallback_state() .session_options() .config.graph_options() .optimizer_options(), nullptr, nullptr, nullptr, Rendezvous::Factory{[](int64_t, const DeviceMgr* device_mgr, tsl::core::RefCountPtr<Rendezvous>* r) { *r = tsl::core::RefCountPtr<Rendezvous>( new IntraProcessRendezvous(device_mgr)); return absl::OkStatus(); }}), latency_sampler_(latency_sampler) { const auto& options = graph_executor_->options().cost_analysis_options; if (options.version != Options::CostAnalysisOptions::kDisabled) { cost_analysis_data_.start_time = absl::Now() - options.reset_interval; cost_analysis_data_.is_available = true; cost_analysis_data_.num_cost_updates = options.updates_per_interval - 1; cost_analysis_data_.cost_recorder = std::make_unique<CostRecorder>(); if (executable_context_->IsForMlrt()) { cost_analysis_data_.tf_mlir_with_op_keys = std::move(tf_mlir_with_op_keys); } else { cost_analysis_data_.tfrt_mlir = std::move(tfrt_mlir); } } } void GraphExecutor::LoadedClientGraph::UpdateCostAnalysisData( absl::Time now, bool do_recompilation) { tensorflow::mutex_lock lock(cost_analysis_data_.mu); if (!do_recompilation) { cost_analysis_data_.num_cost_updates += 1; cost_analysis_data_.is_available = true; return; } if (graph_executor_->options().cost_analysis_options.version == Options::CostAnalysisOptions::kOnce) { cost_analysis_data_.is_available = false; cost_analysis_data_.tfrt_mlir = nullptr; cost_analysis_data_.tf_mlir_with_op_keys = nullptr; cost_analysis_data_.cost_recorder = nullptr; } else { cost_analysis_data_.cost_recorder = std::make_unique<CostRecorder>(); cost_analysis_data_.is_available = true; cost_analysis_data_.start_time = now; cost_analysis_data_.num_cost_updates = 0; } } tensorflow::Status GraphExecutor::CompileGraph( const std::string& graph_name, absl::Span<const std::string> input_tensor_names, absl::Span<const tensorflow::DataType> input_tensor_dtypes, absl::Span<const std::string> output_tensor_names, absl::Span<const std::string> target_tensor_names) { return GetOrCreateLoadedClientGraph( {}, input_tensor_names, input_tensor_dtypes, output_tensor_names, target_tensor_names, nullptr, graph_name) .status(); } void RegisterMlirDialect(mlir::DialectRegistry& registry, tensorflow::BackendCompiler* backend_compiler) { registry.insert<mlir::BuiltinDialect, mlir::func::FuncDialect>(); mlir::RegisterAllTensorFlowDialects(registry); if (backend_compiler) { backend_compiler->GetDependentDialects(registry); } } } }
#include "tensorflow/core/tfrt/graph_executor/graph_executor.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <vector> #include "learning/brain/experimental/tfrt/native_lowering/kernels/math_kernels.h" #include "learning/brain/experimental/tfrt/native_lowering/kernels/sync_fallback_kernels.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/const_op.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/platform/mutex.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" #include "tensorflow/core/tfrt/fallback/fallback_state.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/mlrt/interpreter/context.h" #include "tensorflow/core/tfrt/mlrt/interpreter/value.h" #include "tensorflow/core/tfrt/mlrt/kernel/kernel.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tsl/platform/statusor.h" #include "tfrt/cpp_tests/test_util.h" #include "tfrt/host_context/resource_context.h" #include "tfrt/tensor/dense_host_tensor.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::testing::status::StatusIs; class GraphExecutorForTestingCostAnalysis : public GraphExecutor { public: int num_recompilations() { tensorflow::mutex_lock lock(num_recompilations_mu_); return num_recompilations_; } void AdvanceTime(absl::Duration duration) { simulated_duration_ = simulated_duration_ + duration; } }; class GraphExecutorTest : public ::testing::TestWithParam<bool> {}; tensorflow::Status GetSimpleGraphDef(GraphDef& graph_def) { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); return scope.ToGraphDef(&graph_def); } std::unique_ptr<mlrt::KernelRegistry> GetKernelRegistry() { auto kernel_registry = std::make_unique<mlrt::KernelRegistry>(); tensorflow::tf_mlrt::RegisterTfMlrtKernels(*kernel_registry); tfrt::cpu::RegisterMlrtMathKernels(kernel_registry.get()); tfrt::cpu::RegisterMlrtFallbackCompatKernels(kernel_registry.get()); return kernel_registry; } TEST_P(GraphExecutorTest, Vanilla) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())) auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_P(GraphExecutorTest, OnlineCostAnalysisOptionsOverrideToOnce) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.enable_online_cost_analysis = true; options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kDisabled; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; EXPECT_EQ(graph_executor->num_recompilations(), 0); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); EXPECT_EQ(graph_executor->num_recompilations(), 1); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); EXPECT_EQ(graph_executor->num_recompilations(), 1); } TEST_P(GraphExecutorTest, OnlineCostAnalysisEveryTime) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kPeriodic; options.cost_analysis_options.reset_interval = absl::ZeroDuration(); options.cost_analysis_options.updates_per_interval = 1; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; for (int i = 0; i < 10; ++i) { TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); EXPECT_EQ(graph_executor->num_recompilations(), i + 1); } } TEST_P(GraphExecutorTest, OnlineCostAnalysisDisabled) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kDisabled; options.cost_analysis_options.reset_interval = absl::ZeroDuration(); options.cost_analysis_options.updates_per_interval = 1; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 0); } TEST_P(GraphExecutorTest, OnlineCostAnalysisPeriodic) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.cost_analysis_options.version = GraphExecutionOptions::CostAnalysisOptions::kPeriodic; options.cost_analysis_options.reset_interval = absl::Minutes(10); options.cost_analysis_options.updates_per_interval = 5; options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor_base, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); auto graph_executor = std::unique_ptr<GraphExecutorForTestingCostAnalysis>( static_cast<GraphExecutorForTestingCostAnalysis*>( graph_executor_base.release())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 1); for (int i = 0; i < 10; ++i) { TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 1); } for (int i = 0; i < 4; ++i) { graph_executor->AdvanceTime(absl::Minutes(2)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 1); } graph_executor->AdvanceTime(absl::Minutes(2)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 2); for (int i = 0; i < 4; ++i) { graph_executor->AdvanceTime(absl::Minutes(1000)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 2); } graph_executor->AdvanceTime(absl::Minutes(1000)); TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); EXPECT_EQ(graph_executor->num_recompilations(), 3); } REGISTER_OP("TestCancel") .Input("x: T") .Output("z: T") .Attr("T: {int32}") .SetShapeFn(::tensorflow::shape_inference::UnchangedShape); class TestCancelKernel : public OpKernel { public: explicit TestCancelKernel(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* ctx) override { auto status = absl::CancelledError(); ctx->cancellation_manager()->StartCancelWithStatus(status); ctx->SetStatus(status); } }; REGISTER_KERNEL_BUILDER(Name("TestCancel").Device(DEVICE_CPU), TestCancelKernel); REGISTER_OP("TestIsCancelled").Output("z: T").Attr("T: {bool}").SetIsStateful(); class TestIsCancelledKernel : public OpKernel { public: explicit TestIsCancelledKernel(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* ctx) override { ctx->set_output( 0, tensorflow::Tensor(ctx->cancellation_manager()->IsCancelled())); } }; REGISTER_KERNEL_BUILDER(Name("TestIsCancelled").Device(DEVICE_CPU), TestIsCancelledKernel); TEST_P(GraphExecutorTest, Cancellation) { GraphDef graph_def; tensorflow::GraphDefBuilder builder( tensorflow::GraphDefBuilder::kFailImmediately); const tensorflow::TensorShape tensor_shape({10, 9}); tensorflow::Node* input = tensorflow::ops::SourceOp( "Placeholder", builder.opts() .WithName("input") .WithAttr("dtype", tensorflow::DT_INT32) .WithAttr("shape", tensor_shape)); tensorflow::ops::SourceOp("TestIsCancelled", builder.opts() .WithName("is_cancelled") .WithAttr("T", tensorflow::DT_BOOL)); tensorflow::ops::UnaryOp("TestCancel", input, builder.opts() .WithName("test_cancel") .WithAttr("T", tensorflow::DT_INT32)); TF_ASSERT_OK(builder.ToGraphDef(&graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.enable_mlrt = GetParam(); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())) auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); { std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; EXPECT_THAT(graph_executor->Run({}, inputs, {"test_cancel:0"}, {}, &outputs), StatusIs(absl::StatusCode::kCancelled)); } { std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, {}, {"is_cancelled:0"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<bool>(outputs[0]), ::testing::ElementsAreArray({false})); } } INSTANTIATE_TEST_SUITE_P(GraphExecutorTestSuite, GraphExecutorTest, ::testing::Bool()); TEST_F(GraphExecutorTest, Extend) { GraphDef graph_def; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); Output a = ops::Const(scope.WithOpName("a"), 0.0f, {10, 10}); Output b = ops::Const(scope.WithControlDependencies(a).WithOpName("b"), 0.0f, {10, 10}); Output c = ops::Identity(scope.WithOpName("c"), b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); } auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); auto session_options = CreateDefaultSessionOptions(options); session_options.config.mutable_experimental() ->set_disable_optimize_for_static_graph(true); TF_ASSERT_OK_AND_ASSIGN(auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( session_options, graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); GraphDef extension; { auto scope = tensorflow::Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input = ops::Placeholder(scope.WithOpName("input"), DT_INT32); auto rank = ops::Rank(scope.WithOpName("rank"), input); TF_ASSERT_OK(scope.ToGraphDef(&extension)); } TF_ASSERT_OK(graph_executor->Extend(extension)); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(graph_executor->Run({}, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_F(GraphExecutorTest, DisableCompilation) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); std::vector<std::pair<std::string, tensorflow::Tensor>> inputs; inputs.push_back({"input", CreateTfTensor<int32_t>( {1, 3}, {1, 1, 1})}); std::vector<tensorflow::Tensor> outputs; GraphExecutor::RunOptions run_options; run_options.disable_compilation = true; auto status = graph_executor->Run(run_options, inputs, {"rank"}, {}, &outputs); ASSERT_FALSE(status.ok()); EXPECT_THAT( status.ToString(), ::testing::HasSubstr("GraphExecutor: compilation is disabled in " "execution but the compiled graph is not found")); run_options.disable_compilation = false; TF_ASSERT_OK(graph_executor->Run(run_options, inputs, {"rank"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({2})); } TEST_F(GraphExecutorTest, SyncExecute) { GraphDef graph_def; TF_ASSERT_OK(GetSimpleGraphDef(graph_def)); auto runtime = DefaultTfrtRuntime(1); GraphExecutor::Options options(runtime.get()); options.compile_options.compile_to_sync_tfrt_dialect = true; TF_ASSERT_OK_AND_ASSIGN( auto fallback_state, tensorflow::tfrt_stub::FallbackState::Create( CreateDefaultSessionOptions(options), graph_def.library())); auto resource_context = std::make_unique<tfrt::ResourceContext>(); TF_ASSERT_OK_AND_ASSIGN( auto graph_executor, GraphExecutor::Create(std::move(options), std::move(fallback_state), std::move(resource_context), graph_def, GetKernelRegistry())); std::vector<mlrt::Value> inputs; tfrt::DenseHostTensor dht = tfrt::CreateTensorFromValues<int32_t>({1, 3}, {1, 1, 1}); inputs.emplace_back(std::move(dht)); std::vector<mlrt::Value> results; results.resize(1); TF_ASSERT_OK(graph_executor->RunWithSyncInterpreter( "test_graph", absl::Span<mlrt::Value>(inputs), {"input"}, {DT_INT32}, {"rank"}, {}, absl::Span<mlrt::Value>(results))); tfrt::DenseHostTensor expected = tfrt::CreateTensorFromValues<int32_t>({}, {2}); EXPECT_EQ(expected, results[0].Get<tfrt::DenseHostTensor>()); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/graph_executor/graph_executor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/graph_executor/graph_executor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
967a66dc-1c0b-4779-ba8f-04e0591f8900
cpp
abseil/abseil-cpp
flat_hash_set
absl/container/flat_hash_set.h
absl/container/flat_hash_set_test.cc
#ifndef ABSL_CONTAINER_FLAT_HASH_SET_H_ #define ABSL_CONTAINER_FLAT_HASH_SET_H_ #include <cstddef> #include <memory> #include <type_traits> #include <utility> #include "absl/algorithm/container.h" #include "absl/base/attributes.h" #include "absl/base/macros.h" #include "absl/container/hash_container_defaults.h" #include "absl/container/internal/container_memory.h" #include "absl/container/internal/raw_hash_set.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template <typename T> struct FlatHashSetPolicy; } template <class T, class Hash = DefaultHashContainerHash<T>, class Eq = DefaultHashContainerEq<T>, class Allocator = std::allocator<T>> class ABSL_ATTRIBUTE_OWNER flat_hash_set : public absl::container_internal::raw_hash_set< absl::container_internal::FlatHashSetPolicy<T>, Hash, Eq, Allocator> { using Base = typename flat_hash_set::raw_hash_set; public: flat_hash_set() {} using Base::Base; using Base::begin; using Base::cbegin; using Base::cend; using Base::end; using Base::capacity; using Base::empty; using Base::max_size; using Base::size; using Base::clear; using Base::erase; using Base::insert; using Base::emplace; using Base::emplace_hint; using Base::extract; using Base::merge; using Base::swap; using Base::rehash; using Base::reserve; using Base::contains; using Base::count; using Base::equal_range; using Base::find; using Base::bucket_count; using Base::load_factor; using Base::max_load_factor; using Base::get_allocator; using Base::hash_function; using Base::key_eq; }; template <typename T, typename H, typename E, typename A, typename Predicate> typename flat_hash_set<T, H, E, A>::size_type erase_if( flat_hash_set<T, H, E, A>& c, Predicate pred) { return container_internal::EraseIf(pred, &c); } template <typename T, typename H, typename E, typename A> void swap(flat_hash_set<T, H, E, A>& x, flat_hash_set<T, H, E, A>& y) noexcept(noexcept(x.swap(y))) { return x.swap(y); } namespace container_internal { template <typename T, typename H, typename E, typename A, typename Function> decay_t<Function> c_for_each_fast(const flat_hash_set<T, H, E, A>& c, Function&& f) { container_internal::ForEach(f, &c); return f; } template <typename T, typename H, typename E, typename A, typename Function> decay_t<Function> c_for_each_fast(flat_hash_set<T, H, E, A>& c, Function&& f) { container_internal::ForEach(f, &c); return f; } template <typename T, typename H, typename E, typename A, typename Function> decay_t<Function> c_for_each_fast(flat_hash_set<T, H, E, A>&& c, Function&& f) { container_internal::ForEach(f, &c); return f; } } namespace container_internal { template <class T> struct FlatHashSetPolicy { using slot_type = T; using key_type = T; using init_type = T; using constant_iterators = std::true_type; template <class Allocator, class... Args> static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { absl::allocator_traits<Allocator>::construct(*alloc, slot, std::forward<Args>(args)...); } template <class Allocator> static auto destroy(Allocator* alloc, slot_type* slot) { absl::allocator_traits<Allocator>::destroy(*alloc, slot); return IsDestructionTrivial<Allocator, slot_type>(); } static T& element(slot_type* slot) { return *slot; } template <class F, class... Args> static decltype(absl::container_internal::DecomposeValue( std::declval<F>(), std::declval<Args>()...)) apply(F&& f, Args&&... args) { return absl::container_internal::DecomposeValue( std::forward<F>(f), std::forward<Args>(args)...); } static size_t space_used(const T*) { return 0; } template <class Hash> static constexpr HashSlotFn get_hash_slot_fn() { return &TypeErasedApplyToSlotFn<Hash, T>; } }; } namespace container_algorithm_internal { template <class Key, class Hash, class KeyEqual, class Allocator> struct IsUnorderedContainer<absl::flat_hash_set<Key, Hash, KeyEqual, Allocator>> : std::true_type {}; } ABSL_NAMESPACE_END } #endif
#include "absl/container/flat_hash_set.h" #include <cstddef> #include <cstdint> #include <memory> #include <type_traits> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/container/hash_container_defaults.h" #include "absl/container/internal/container_memory.h" #include "absl/container/internal/hash_generator_testing.h" #include "absl/container/internal/test_allocator.h" #include "absl/container/internal/unordered_set_constructor_test.h" #include "absl/container/internal/unordered_set_lookup_test.h" #include "absl/container/internal/unordered_set_members_test.h" #include "absl/container/internal/unordered_set_modifiers_test.h" #include "absl/hash/hash.h" #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { namespace { using ::absl::container_internal::hash_internal::Enum; using ::absl::container_internal::hash_internal::EnumClass; using ::testing::IsEmpty; using ::testing::Pointee; using ::testing::UnorderedElementsAre; using ::testing::UnorderedElementsAreArray; struct BeforeMain { BeforeMain() { absl::flat_hash_set<int> x; x.insert(1); CHECK(!x.contains(0)) << "x should not contain 0"; CHECK(x.contains(1)) << "x should contain 1"; } }; const BeforeMain before_main; template <class T> using Set = absl::flat_hash_set<T, StatefulTestingHash, StatefulTestingEqual, Alloc<T>>; using SetTypes = ::testing::Types<Set<int>, Set<std::string>, Set<Enum>, Set<EnumClass>>; INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashSet, ConstructorTest, SetTypes); INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashSet, LookupTest, SetTypes); INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashSet, MembersTest, SetTypes); INSTANTIATE_TYPED_TEST_SUITE_P(FlatHashSet, ModifiersTest, SetTypes); TEST(FlatHashSet, EmplaceString) { std::vector<std::string> v = {"a", "b"}; absl::flat_hash_set<absl::string_view> hs(v.begin(), v.end()); EXPECT_THAT(hs, UnorderedElementsAreArray(v)); } TEST(FlatHashSet, BitfieldArgument) { union { int n : 1; }; n = 0; absl::flat_hash_set<int> s = {n}; s.insert(n); s.insert(s.end(), n); s.insert({n}); s.erase(n); s.count(n); s.prefetch(n); s.find(n); s.contains(n); s.equal_range(n); } TEST(FlatHashSet, MergeExtractInsert) { struct Hash { size_t operator()(const std::unique_ptr<int>& p) const { return *p; } }; struct Eq { bool operator()(const std::unique_ptr<int>& a, const std::unique_ptr<int>& b) const { return *a == *b; } }; absl::flat_hash_set<std::unique_ptr<int>, Hash, Eq> set1, set2; set1.insert(absl::make_unique<int>(7)); set1.insert(absl::make_unique<int>(17)); set2.insert(absl::make_unique<int>(7)); set2.insert(absl::make_unique<int>(19)); EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17))); EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(19))); set1.merge(set2); EXPECT_THAT(set1, UnorderedElementsAre(Pointee(7), Pointee(17), Pointee(19))); EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7))); auto node = set1.extract(absl::make_unique<int>(7)); EXPECT_TRUE(node); EXPECT_THAT(node.value(), Pointee(7)); EXPECT_THAT(set1, UnorderedElementsAre(Pointee(17), Pointee(19))); auto insert_result = set2.insert(std::move(node)); EXPECT_FALSE(node); EXPECT_FALSE(insert_result.inserted); EXPECT_TRUE(insert_result.node); EXPECT_THAT(insert_result.node.value(), Pointee(7)); EXPECT_EQ(**insert_result.position, 7); EXPECT_NE(insert_result.position->get(), insert_result.node.value().get()); EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7))); node = set1.extract(absl::make_unique<int>(17)); EXPECT_TRUE(node); EXPECT_THAT(node.value(), Pointee(17)); EXPECT_THAT(set1, UnorderedElementsAre(Pointee(19))); node.value() = absl::make_unique<int>(23); insert_result = set2.insert(std::move(node)); EXPECT_FALSE(node); EXPECT_TRUE(insert_result.inserted); EXPECT_FALSE(insert_result.node); EXPECT_EQ(**insert_result.position, 23); EXPECT_THAT(set2, UnorderedElementsAre(Pointee(7), Pointee(23))); } bool IsEven(int k) { return k % 2 == 0; } TEST(FlatHashSet, EraseIf) { { flat_hash_set<int> s = {1, 2, 3, 4, 5}; EXPECT_EQ(erase_if(s, [](int) { return true; }), 5); EXPECT_THAT(s, IsEmpty()); } { flat_hash_set<int> s = {1, 2, 3, 4, 5}; EXPECT_EQ(erase_if(s, [](int) { return false; }), 0); EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5)); } { flat_hash_set<int> s = {1, 2, 3, 4, 5}; EXPECT_EQ(erase_if(s, [](int k) { return k % 2 == 1; }), 3); EXPECT_THAT(s, UnorderedElementsAre(2, 4)); } { flat_hash_set<int> s = {1, 2, 3, 4, 5}; EXPECT_EQ(erase_if(s, IsEven), 2); EXPECT_THAT(s, UnorderedElementsAre(1, 3, 5)); } { flat_hash_set<int> s = {1, 2, 3, 4, 5}; EXPECT_EQ(erase_if(s, &IsEven), 2); EXPECT_THAT(s, UnorderedElementsAre(1, 3, 5)); } } TEST(FlatHashSet, CForEach) { using ValueType = std::pair<int, int>; flat_hash_set<ValueType> s; std::vector<ValueType> expected; for (int i = 0; i < 100; ++i) { { SCOPED_TRACE("mutable object iteration"); std::vector<ValueType> v; absl::container_internal::c_for_each_fast( s, [&v](const ValueType& p) { v.push_back(p); }); ASSERT_THAT(v, UnorderedElementsAreArray(expected)); } { SCOPED_TRACE("const object iteration"); std::vector<ValueType> v; const flat_hash_set<ValueType>& cs = s; absl::container_internal::c_for_each_fast( cs, [&v](const ValueType& p) { v.push_back(p); }); ASSERT_THAT(v, UnorderedElementsAreArray(expected)); } { SCOPED_TRACE("temporary object iteration"); std::vector<ValueType> v; absl::container_internal::c_for_each_fast( flat_hash_set<ValueType>(s), [&v](const ValueType& p) { v.push_back(p); }); ASSERT_THAT(v, UnorderedElementsAreArray(expected)); } s.emplace(i, i); expected.emplace_back(i, i); } } class PoisonSoo { int64_t data_; public: explicit PoisonSoo(int64_t d) : data_(d) { SanitizerPoisonObject(&data_); } PoisonSoo(const PoisonSoo& that) : PoisonSoo(*that) {} ~PoisonSoo() { SanitizerUnpoisonObject(&data_); } int64_t operator*() const { SanitizerUnpoisonObject(&data_); const int64_t ret = data_; SanitizerPoisonObject(&data_); return ret; } template <typename H> friend H AbslHashValue(H h, const PoisonSoo& pi) { return H::combine(std::move(h), *pi); } bool operator==(const PoisonSoo& rhs) const { return **this == *rhs; } }; TEST(FlatHashSet, PoisonSooBasic) { PoisonSoo a(0), b(1); flat_hash_set<PoisonSoo> set; set.insert(a); EXPECT_THAT(set, UnorderedElementsAre(a)); set.insert(b); EXPECT_THAT(set, UnorderedElementsAre(a, b)); set.erase(a); EXPECT_THAT(set, UnorderedElementsAre(b)); set.rehash(0); EXPECT_THAT(set, UnorderedElementsAre(b)); } TEST(FlatHashSet, PoisonSooMoveConstructSooToSoo) { PoisonSoo a(0); flat_hash_set<PoisonSoo> set; set.insert(a); flat_hash_set<PoisonSoo> set2(std::move(set)); EXPECT_THAT(set2, UnorderedElementsAre(a)); } TEST(FlatHashSet, PoisonSooAllocMoveConstructSooToSoo) { PoisonSoo a(0); flat_hash_set<PoisonSoo> set; set.insert(a); flat_hash_set<PoisonSoo> set2(std::move(set), std::allocator<PoisonSoo>()); EXPECT_THAT(set2, UnorderedElementsAre(a)); } TEST(FlatHashSet, PoisonSooMoveAssignFullSooToEmptySoo) { PoisonSoo a(0); flat_hash_set<PoisonSoo> set, set2; set.insert(a); set2 = std::move(set); EXPECT_THAT(set2, UnorderedElementsAre(a)); } TEST(FlatHashSet, PoisonSooMoveAssignFullSooToFullSoo) { PoisonSoo a(0), b(1); flat_hash_set<PoisonSoo> set, set2; set.insert(a); set2.insert(b); set2 = std::move(set); EXPECT_THAT(set2, UnorderedElementsAre(a)); } TEST(FlatHashSet, FlatHashSetPolicyDestroyReturnsTrue) { EXPECT_TRUE((decltype(FlatHashSetPolicy<int>::destroy<std::allocator<int>>( nullptr, nullptr))())); EXPECT_FALSE( (decltype(FlatHashSetPolicy<int>::destroy<CountingAllocator<int>>( nullptr, nullptr))())); EXPECT_FALSE((decltype(FlatHashSetPolicy<std::unique_ptr<int>>::destroy< std::allocator<int>>(nullptr, nullptr))())); } struct HashEqInvalidOnMove { HashEqInvalidOnMove() = default; HashEqInvalidOnMove(const HashEqInvalidOnMove& rhs) = default; HashEqInvalidOnMove(HashEqInvalidOnMove&& rhs) { rhs.moved = true; } HashEqInvalidOnMove& operator=(const HashEqInvalidOnMove& rhs) = default; HashEqInvalidOnMove& operator=(HashEqInvalidOnMove&& rhs) { rhs.moved = true; return *this; } size_t operator()(int x) const { CHECK(!moved); return absl::HashOf(x); } bool operator()(int x, int y) const { CHECK(!moved); return x == y; } bool moved = false; }; TEST(FlatHashSet, MovedFromCleared_HashMustBeValid) { flat_hash_set<int, HashEqInvalidOnMove> s1, s2; s2 = std::move(s1); s1.clear(); s1.insert(2); EXPECT_THAT(s1, UnorderedElementsAre(2)); } TEST(FlatHashSet, MovedFromCleared_EqMustBeValid) { flat_hash_set<int, DefaultHashContainerHash<int>, HashEqInvalidOnMove> s1, s2; s2 = std::move(s1); s1.clear(); s1.insert(2); EXPECT_THAT(s1, UnorderedElementsAre(2)); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/flat_hash_set.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/container/flat_hash_set_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
f83f267d-434a-4484-9e69-3ad4689bb579
cpp
tensorflow/tensorflow
stream_ops_util
tensorflow/core/tfrt/kernels/stream_ops_util.cc
tensorflow/core/tfrt/kernels/stream_ops_util_test.cc
#include "tensorflow/core/tfrt/kernels/stream_ops_util.h" #include <cstdint> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/span.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/tfrt/kernels/stream_ops_util_constants.h" namespace tensorflow { namespace tfrt_stub { absl::StatusOr<std::vector<std::pair<int64_t, std::vector<tensorflow::Tensor>>>> UnbatchStreamResults(const tensorflow::Tensor& step_ids, absl::Span<const tensorflow::Tensor> tensors) { std::vector<std::pair<int64_t, std::vector<tensorflow::Tensor>>> responses; if (step_ids.dims() > 0) { if (step_ids.dtype() != tensorflow::DT_INT64 || step_ids.dims() != 1) { return absl::InvalidArgumentError(absl::StrCat( "Expected a 1-D int64 tensor for batched step ids but got dtype=", tensorflow::DataTypeString(step_ids.dtype()), " shape=", step_ids.shape().DebugString())); } const int batch_size = step_ids.dim_size(0); for (int i = 0; i < tensors.size(); ++i) { const tensorflow::TensorShape& shape = tensors[i].shape(); if (shape.dims() < 1 || shape.dim_size(0) != batch_size) { return absl::InvalidArgumentError(absl::StrCat( "All inputs to PwStreamResults inside tf.batch_function are " "required to be batched (batch_size=", batch_size, ") but input #", i, " has shape ", shape.DebugString())); } } std::vector<int> sizes; absl::flat_hash_set<int64_t> unique_step_ids; for (int i = 0; i < step_ids.NumElements(); ++i) { const int64_t request_id = step_ids.flat<int64_t>()(i); const int64_t step_id = static_cast<uint64_t>(request_id) >> (64 - kStepIdBitSize); VLOG(1) << "PwStreamResults op is unbatching request_id=" << request_id << ", step_id=" << step_id; if (step_id <= 0) { return absl::InternalError( absl::StrCat("Invalid step id=", step_id, "; this usually indicates that `PwStreamResults` " "was called from an unsupported nested context")); } if (i != 0 && request_id == step_ids.flat<int64_t>()(0)) { break; } if (!responses.empty() && responses.back().first == step_id) { sizes.back()++; } else { responses.push_back({step_id, {}}); sizes.push_back(1); const bool inserted = unique_step_ids.insert(step_id).second; if (!inserted) { return absl::InternalError(absl::StrCat( "Non-contiguous step ids found in the step id batch: ", step_ids.DebugString(batch_size))); } } } int offset = 0; for (int i = 0; i < responses.size(); ++i) { auto& outputs = responses[i].second; outputs.resize(tensors.size()); const int limit = offset + sizes[i]; for (int j = 0; j < tensors.size(); ++j) { outputs[j] = tensors[j].Slice(offset, limit); } offset = limit; } } else { const int64_t step_id = step_ids.flat<int64_t>()(0); if (step_id <= 0) { return absl::InternalError( "Invalid step id; this usually indicates that `PwStreamResults` was " "called from an unsupported nested context"); } responses.push_back({step_id, std::vector<tensorflow::Tensor>( tensors.begin(), tensors.end())}); } return responses; } } }
#include "tensorflow/core/tfrt/kernels/stream_ops_util.h" #include <cstdint> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/tfrt/kernels/stream_ops_util_constants.h" namespace tensorflow { namespace tfrt_stub { namespace { using ::tensorflow::test::AsScalar; using ::tensorflow::test::AsTensor; using ::tensorflow::test::TensorEq; using ::testing::ElementsAre; using ::testing::Pair; using ::testing::UnorderedElementsAre; using ::testing::status::IsOkAndHolds; int64_t RequestId(int64_t step_id, uint32_t id) { return (step_id << kStepIdBitSize) | id; } TEST(UnbatchStreamResultsTest, ScalarStepId) { const tensorflow::Tensor step_ids = AsScalar<int64_t>(1); const std::vector<tensorflow::Tensor> tensors = { AsScalar<int32_t>(1), AsTensor<int32_t>({2, 3}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsScalar<int32_t>(1)), TensorEq(AsTensor<int32_t>({2, 3}))))))); } TEST(UnbatchStreamResultsTest, Batched) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(1, 0), RequestId(1, 1), RequestId(2, 0), RequestId(3, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({1, 2, 3, 4}), AsTensor<int32_t>({5, 6, 7, 8}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({1, 2})), TensorEq(AsTensor<int32_t>({5, 6})))), Pair(2, ElementsAre(TensorEq(AsTensor<int32_t>({3})), TensorEq(AsTensor<int32_t>({7})))), Pair(3, ElementsAre(TensorEq(AsTensor<int32_t>({4})), TensorEq(AsTensor<int32_t>({8}))))))); } TEST(UnbatchStreamResultsTest, BatchedUnordered) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(2, 0), RequestId(1, 0), RequestId(1, 1), RequestId(3, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({20, 10, 10, 30}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({10, 10})))), Pair(2, ElementsAre(TensorEq(AsTensor<int32_t>({20})))), Pair(3, ElementsAre(TensorEq(AsTensor<int32_t>({30}))))))); } TEST(UnbatchStreamResultsTest, PaddingOneExample) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(1, 0), RequestId(1, 0), RequestId(1, 0), RequestId(1, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({10, 10, 10, 10}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({10}))))))); } TEST(UnbatchStreamResultsTest, PaddingMultipleExamples) { const tensorflow::Tensor step_ids = AsTensor<int64_t>( {RequestId(1, 0), RequestId(1, 1), RequestId(2, 0), RequestId(1, 0)}); const std::vector<tensorflow::Tensor> tensors = { AsTensor<int32_t>({10, 20, 30, 10}), }; EXPECT_THAT(UnbatchStreamResults(step_ids, tensors), IsOkAndHolds(UnorderedElementsAre( Pair(1, ElementsAre(TensorEq(AsTensor<int32_t>({10, 20})))), Pair(2, ElementsAre(TensorEq(AsTensor<int32_t>({30}))))))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/kernels/stream_ops_util.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/kernels/stream_ops_util_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
08a67a1f-f0f3-4b9c-a899-9e6205fa1417
cpp
google/cel-cpp
container_access_step
eval/eval/container_access_step.cc
eval/eval/container_access_step_test.cc
#include "eval/eval/container_access_step.h" #include <cstdint> #include <memory> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "base/ast_internal/expr.h" #include "base/attribute.h" #include "base/kind.h" #include "common/casting.h" #include "common/native_type.h" #include "common/value.h" #include "common/value_kind.h" #include "eval/eval/attribute_trail.h" #include "eval/eval/attribute_utility.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/expression_step_base.h" #include "eval/internal/errors.h" #include "internal/casts.h" #include "internal/number.h" #include "internal/status_macros.h" #include "runtime/internal/errors.h" namespace google::api::expr::runtime { namespace { using ::cel::AttributeQualifier; using ::cel::BoolValue; using ::cel::Cast; using ::cel::DoubleValue; using ::cel::ErrorValue; using ::cel::InstanceOf; using ::cel::IntValue; using ::cel::ListValue; using ::cel::MapValue; using ::cel::StringValue; using ::cel::UintValue; using ::cel::Value; using ::cel::ValueKind; using ::cel::ValueKindToString; using ::cel::internal::Number; using ::cel::runtime_internal::CreateNoSuchKeyError; inline constexpr int kNumContainerAccessArguments = 2; absl::optional<Number> CelNumberFromValue(const Value& value) { switch (value->kind()) { case ValueKind::kInt64: return Number::FromInt64(value.GetInt().NativeValue()); case ValueKind::kUint64: return Number::FromUint64(value.GetUint().NativeValue()); case ValueKind::kDouble: return Number::FromDouble(value.GetDouble().NativeValue()); default: return absl::nullopt; } } absl::Status CheckMapKeyType(const Value& key) { ValueKind kind = key->kind(); switch (kind) { case ValueKind::kString: case ValueKind::kInt64: case ValueKind::kUint64: case ValueKind::kBool: return absl::OkStatus(); default: return absl::InvalidArgumentError(absl::StrCat( "Invalid map key type: '", ValueKindToString(kind), "'")); } } AttributeQualifier AttributeQualifierFromValue(const Value& v) { switch (v->kind()) { case ValueKind::kString: return AttributeQualifier::OfString(v.GetString().ToString()); case ValueKind::kInt64: return AttributeQualifier::OfInt(v.GetInt().NativeValue()); case ValueKind::kUint64: return AttributeQualifier::OfUint(v.GetUint().NativeValue()); case ValueKind::kBool: return AttributeQualifier::OfBool(v.GetBool().NativeValue()); default: return AttributeQualifier(); } } void LookupInMap(const MapValue& cel_map, const Value& key, ExecutionFrameBase& frame, Value& result) { if (frame.options().enable_heterogeneous_equality) { absl::optional<Number> number = CelNumberFromValue(key); if (number.has_value()) { if (key->Is<UintValue>()) { auto lookup = cel_map.Find(frame.value_manager(), key, result); if (!lookup.ok()) { result = frame.value_manager().CreateErrorValue( std::move(lookup).status()); return; } if (*lookup) { return; } } if (number->LosslessConvertibleToInt()) { auto lookup = cel_map.Find( frame.value_manager(), frame.value_manager().CreateIntValue(number->AsInt()), result); if (!lookup.ok()) { result = frame.value_manager().CreateErrorValue( std::move(lookup).status()); return; } if (*lookup) { return; } } if (number->LosslessConvertibleToUint()) { auto lookup = cel_map.Find( frame.value_manager(), frame.value_manager().CreateUintValue(number->AsUint()), result); if (!lookup.ok()) { result = frame.value_manager().CreateErrorValue( std::move(lookup).status()); return; } if (*lookup) { return; } } result = frame.value_manager().CreateErrorValue( CreateNoSuchKeyError(key->DebugString())); return; } } absl::Status status = CheckMapKeyType(key); if (!status.ok()) { result = frame.value_manager().CreateErrorValue(std::move(status)); return; } absl::Status lookup = cel_map.Get(frame.value_manager(), key, result); if (!lookup.ok()) { result = frame.value_manager().CreateErrorValue(std::move(lookup)); } } void LookupInList(const ListValue& cel_list, const Value& key, ExecutionFrameBase& frame, Value& result) { absl::optional<int64_t> maybe_idx; if (frame.options().enable_heterogeneous_equality) { auto number = CelNumberFromValue(key); if (number.has_value() && number->LosslessConvertibleToInt()) { maybe_idx = number->AsInt(); } } else if (InstanceOf<IntValue>(key)) { maybe_idx = key.GetInt().NativeValue(); } if (!maybe_idx.has_value()) { result = frame.value_manager().CreateErrorValue(absl::UnknownError( absl::StrCat("Index error: expected integer type, got ", cel::KindToString(ValueKindToKind(key->kind()))))); return; } int64_t idx = *maybe_idx; auto size = cel_list.Size(); if (!size.ok()) { result = frame.value_manager().CreateErrorValue(size.status()); return; } if (idx < 0 || idx >= *size) { result = frame.value_manager().CreateErrorValue(absl::UnknownError( absl::StrCat("Index error: index=", idx, " size=", *size))); return; } absl::Status lookup = cel_list.Get(frame.value_manager(), idx, result); if (!lookup.ok()) { result = frame.value_manager().CreateErrorValue(std::move(lookup)); } } void LookupInContainer(const Value& container, const Value& key, ExecutionFrameBase& frame, Value& result) { switch (container.kind()) { case ValueKind::kMap: { LookupInMap(Cast<MapValue>(container), key, frame, result); return; } case ValueKind::kList: { LookupInList(Cast<ListValue>(container), key, frame, result); return; } default: result = frame.value_manager().CreateErrorValue(absl::InvalidArgumentError( absl::StrCat("Invalid container type: '", ValueKindToString(container->kind()), "'"))); return; } } void PerformLookup(ExecutionFrameBase& frame, const Value& container, const Value& key, const AttributeTrail& container_trail, bool enable_optional_types, Value& result, AttributeTrail& trail) { if (frame.unknown_processing_enabled()) { AttributeUtility::Accumulator unknowns = frame.attribute_utility().CreateAccumulator(); unknowns.MaybeAdd(container); unknowns.MaybeAdd(key); if (!unknowns.IsEmpty()) { result = std::move(unknowns).Build(); return; } trail = container_trail.Step(AttributeQualifierFromValue(key)); if (frame.attribute_utility().CheckForUnknownExact(trail)) { result = frame.attribute_utility().CreateUnknownSet(trail.attribute()); return; } } if (InstanceOf<ErrorValue>(container)) { result = container; return; } if (InstanceOf<ErrorValue>(key)) { result = key; return; } if (enable_optional_types && cel::NativeTypeId::Of(container) == cel::NativeTypeId::For<cel::OptionalValueInterface>()) { const auto& optional_value = *cel::internal::down_cast<const cel::OptionalValueInterface*>( cel::Cast<cel::OpaqueValue>(container).operator->()); if (!optional_value.HasValue()) { result = cel::OptionalValue::None(); return; } LookupInContainer(optional_value.Value(), key, frame, result); if (auto error_value = cel::As<cel::ErrorValue>(result); error_value && cel::IsNoSuchKey(*error_value)) { result = cel::OptionalValue::None(); return; } result = cel::OptionalValue::Of(frame.value_manager().GetMemoryManager(), std::move(result)); return; } LookupInContainer(container, key, frame, result); } class ContainerAccessStep : public ExpressionStepBase { public: ContainerAccessStep(int64_t expr_id, bool enable_optional_types) : ExpressionStepBase(expr_id), enable_optional_types_(enable_optional_types) {} absl::Status Evaluate(ExecutionFrame* frame) const override; private: bool enable_optional_types_; }; absl::Status ContainerAccessStep::Evaluate(ExecutionFrame* frame) const { if (!frame->value_stack().HasEnough(kNumContainerAccessArguments)) { return absl::Status( absl::StatusCode::kInternal, "Insufficient arguments supplied for ContainerAccess-type expression"); } Value result; AttributeTrail result_trail; auto args = frame->value_stack().GetSpan(kNumContainerAccessArguments); const AttributeTrail& container_trail = frame->value_stack().GetAttributeSpan(kNumContainerAccessArguments)[0]; PerformLookup(*frame, args[0], args[1], container_trail, enable_optional_types_, result, result_trail); frame->value_stack().PopAndPush(kNumContainerAccessArguments, std::move(result), std::move(result_trail)); return absl::OkStatus(); } class DirectContainerAccessStep : public DirectExpressionStep { public: DirectContainerAccessStep( std::unique_ptr<DirectExpressionStep> container_step, std::unique_ptr<DirectExpressionStep> key_step, bool enable_optional_types, int64_t expr_id) : DirectExpressionStep(expr_id), container_step_(std::move(container_step)), key_step_(std::move(key_step)), enable_optional_types_(enable_optional_types) {} absl::Status Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& trail) const override; private: std::unique_ptr<DirectExpressionStep> container_step_; std::unique_ptr<DirectExpressionStep> key_step_; bool enable_optional_types_; }; absl::Status DirectContainerAccessStep::Evaluate(ExecutionFrameBase& frame, Value& result, AttributeTrail& trail) const { Value container; Value key; AttributeTrail container_trail; AttributeTrail key_trail; CEL_RETURN_IF_ERROR( container_step_->Evaluate(frame, container, container_trail)); CEL_RETURN_IF_ERROR(key_step_->Evaluate(frame, key, key_trail)); PerformLookup(frame, container, key, container_trail, enable_optional_types_, result, trail); return absl::OkStatus(); } } std::unique_ptr<DirectExpressionStep> CreateDirectContainerAccessStep( std::unique_ptr<DirectExpressionStep> container_step, std::unique_ptr<DirectExpressionStep> key_step, bool enable_optional_types, int64_t expr_id) { return std::make_unique<DirectContainerAccessStep>( std::move(container_step), std::move(key_step), enable_optional_types, expr_id); } absl::StatusOr<std::unique_ptr<ExpressionStep>> CreateContainerAccessStep( const cel::ast_internal::Call& call, int64_t expr_id, bool enable_optional_types) { int arg_count = call.args().size() + (call.has_target() ? 1 : 0); if (arg_count != kNumContainerAccessArguments) { return absl::InvalidArgumentError(absl::StrCat( "Invalid argument count for index operation: ", arg_count)); } return std::make_unique<ContainerAccessStep>(expr_id, enable_optional_types); } }
#include "eval/eval/container_access_step.h" #include <memory> #include <string> #include <tuple> #include <utility> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "google/protobuf/struct.pb.h" #include "absl/status/status.h" #include "base/builtins.h" #include "base/type_provider.h" #include "eval/eval/cel_expression_flat_impl.h" #include "eval/eval/direct_expression_step.h" #include "eval/eval/evaluator_core.h" #include "eval/eval/ident_step.h" #include "eval/public/activation.h" #include "eval/public/cel_attribute.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_expression.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "eval/public/testing/matchers.h" #include "eval/public/unknown_set.h" #include "internal/testing.h" #include "parser/parser.h" #include "google/protobuf/arena.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::StatusIs; using ::cel::TypeProvider; using ::cel::ast_internal::Expr; using ::cel::ast_internal::SourceInfo; using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::protobuf::Struct; using ::testing::_; using ::testing::AllOf; using ::testing::HasSubstr; using TestParamType = std::tuple<bool, bool, bool>; CelValue EvaluateAttributeHelper( google::protobuf::Arena* arena, CelValue container, CelValue key, bool use_recursive_impl, bool receiver_style, bool enable_unknown, const std::vector<CelAttributePattern>& patterns) { ExecutionPath path; Expr expr; SourceInfo source_info; auto& call = expr.mutable_call_expr(); call.set_function(cel::builtin::kIndex); call.mutable_args().reserve(2); Expr& container_expr = (receiver_style) ? call.mutable_target() : call.mutable_args().emplace_back(); Expr& key_expr = call.mutable_args().emplace_back(); container_expr.mutable_ident_expr().set_name("container"); key_expr.mutable_ident_expr().set_name("key"); if (use_recursive_impl) { path.push_back(std::make_unique<WrappedDirectStep>( CreateDirectContainerAccessStep(CreateDirectIdentStep("container", 1), CreateDirectIdentStep("key", 2), false, 3), 3)); } else { path.push_back( std::move(CreateIdentStep(container_expr.ident_expr(), 1).value())); path.push_back( std::move(CreateIdentStep(key_expr.ident_expr(), 2).value())); path.push_back(std::move(CreateContainerAccessStep(call, 3).value())); } cel::RuntimeOptions options; options.unknown_processing = cel::UnknownProcessingOptions::kAttributeOnly; options.enable_heterogeneous_equality = false; CelExpressionFlatImpl cel_expr( FlatExpression(std::move(path), 0, TypeProvider::Builtin(), options)); Activation activation; activation.InsertValue("container", container); activation.InsertValue("key", key); activation.set_unknown_attribute_patterns(patterns); auto result = cel_expr.Evaluate(activation, arena); return *result; } class ContainerAccessStepTest : public ::testing::Test { protected: ContainerAccessStepTest() = default; void SetUp() override {} CelValue EvaluateAttribute( CelValue container, CelValue key, bool receiver_style, bool enable_unknown, bool use_recursive_impl = false, const std::vector<CelAttributePattern>& patterns = {}) { return EvaluateAttributeHelper(&arena_, container, key, receiver_style, enable_unknown, use_recursive_impl, patterns); } google::protobuf::Arena arena_; }; class ContainerAccessStepUniformityTest : public ::testing::TestWithParam<TestParamType> { protected: ContainerAccessStepUniformityTest() = default; void SetUp() override {} bool receiver_style() { TestParamType params = GetParam(); return std::get<0>(params); } bool enable_unknown() { TestParamType params = GetParam(); return std::get<1>(params); } bool use_recursive_impl() { TestParamType params = GetParam(); return std::get<2>(params); } CelValue EvaluateAttribute( CelValue container, CelValue key, bool receiver_style, bool enable_unknown, bool use_recursive_impl = false, const std::vector<CelAttributePattern>& patterns = {}) { return EvaluateAttributeHelper(&arena_, container, key, receiver_style, enable_unknown, use_recursive_impl, patterns); } google::protobuf::Arena arena_; }; TEST_P(ContainerAccessStepUniformityTest, TestListIndexAccess) { ContainerBackedListImpl cel_list({CelValue::CreateInt64(1), CelValue::CreateInt64(2), CelValue::CreateInt64(3)}); CelValue result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateInt64(1), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsInt64()); ASSERT_EQ(result.Int64OrDie(), 2); } TEST_P(ContainerAccessStepUniformityTest, TestListIndexAccessOutOfBounds) { ContainerBackedListImpl cel_list({CelValue::CreateInt64(1), CelValue::CreateInt64(2), CelValue::CreateInt64(3)}); CelValue result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateInt64(0), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsInt64()); result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateInt64(2), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsInt64()); result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateInt64(-1), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsError()); result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateInt64(3), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsError()); } TEST_P(ContainerAccessStepUniformityTest, TestListIndexAccessNotAnInt) { ContainerBackedListImpl cel_list({CelValue::CreateInt64(1), CelValue::CreateInt64(2), CelValue::CreateInt64(3)}); CelValue result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateUint64(1), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsError()); } TEST_P(ContainerAccessStepUniformityTest, TestMapKeyAccess) { const std::string kKey0 = "testkey0"; const std::string kKey1 = "testkey1"; const std::string kKey2 = "testkey2"; Struct cel_struct; (*cel_struct.mutable_fields())[kKey0].set_string_value("value0"); (*cel_struct.mutable_fields())[kKey1].set_string_value("value1"); (*cel_struct.mutable_fields())[kKey2].set_string_value("value2"); CelValue result = EvaluateAttribute( CelProtoWrapper::CreateMessage(&cel_struct, &arena_), CelValue::CreateString(&kKey0), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsString()); ASSERT_EQ(result.StringOrDie().value(), "value0"); } TEST_P(ContainerAccessStepUniformityTest, TestBoolKeyType) { CelMapBuilder cel_map; ASSERT_OK(cel_map.Add(CelValue::CreateBool(true), CelValue::CreateStringView("value_true"))); CelValue result = EvaluateAttribute(CelValue::CreateMap(&cel_map), CelValue::CreateBool(true), receiver_style(), enable_unknown()); ASSERT_THAT(result, test::IsCelString("value_true")); } TEST_P(ContainerAccessStepUniformityTest, TestMapKeyAccessNotFound) { const std::string kKey0 = "testkey0"; const std::string kKey1 = "testkey1"; Struct cel_struct; (*cel_struct.mutable_fields())[kKey0].set_string_value("value0"); CelValue result = EvaluateAttribute( CelProtoWrapper::CreateMessage(&cel_struct, &arena_), CelValue::CreateString(&kKey1), receiver_style(), enable_unknown()); ASSERT_TRUE(result.IsError()); EXPECT_THAT(*result.ErrorOrDie(), StatusIs(absl::StatusCode::kNotFound, AllOf(HasSubstr("Key not found in map : "), HasSubstr("testkey1")))); } TEST_F(ContainerAccessStepTest, TestInvalidReceiverCreateContainerAccessStep) { Expr expr; auto& call = expr.mutable_call_expr(); call.set_function(cel::builtin::kIndex); Expr& container_expr = call.mutable_target(); container_expr.mutable_ident_expr().set_name("container"); call.mutable_args().reserve(2); Expr& key_expr = call.mutable_args().emplace_back(); key_expr.mutable_ident_expr().set_name("key"); Expr& extra_arg = call.mutable_args().emplace_back(); extra_arg.mutable_const_expr().set_bool_value(true); EXPECT_THAT(CreateContainerAccessStep(call, 0).status(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Invalid argument count"))); } TEST_F(ContainerAccessStepTest, TestInvalidGlobalCreateContainerAccessStep) { Expr expr; auto& call = expr.mutable_call_expr(); call.set_function(cel::builtin::kIndex); call.mutable_args().reserve(3); Expr& container_expr = call.mutable_args().emplace_back(); container_expr.mutable_ident_expr().set_name("container"); Expr& key_expr = call.mutable_args().emplace_back(); key_expr.mutable_ident_expr().set_name("key"); Expr& extra_arg = call.mutable_args().emplace_back(); extra_arg.mutable_const_expr().set_bool_value(true); EXPECT_THAT(CreateContainerAccessStep(call, 0).status(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Invalid argument count"))); } TEST_F(ContainerAccessStepTest, TestListIndexAccessUnknown) { ContainerBackedListImpl cel_list({CelValue::CreateInt64(1), CelValue::CreateInt64(2), CelValue::CreateInt64(3)}); CelValue result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateInt64(1), true, true, {}); ASSERT_TRUE(result.IsInt64()); ASSERT_EQ(result.Int64OrDie(), 2); std::vector<CelAttributePattern> patterns = {CelAttributePattern( "container", {CreateCelAttributeQualifierPattern(CelValue::CreateInt64(1))})}; result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateInt64(1), true, true, false, patterns); ASSERT_TRUE(result.IsUnknownSet()); } TEST_F(ContainerAccessStepTest, TestListUnknownKey) { ContainerBackedListImpl cel_list({CelValue::CreateInt64(1), CelValue::CreateInt64(2), CelValue::CreateInt64(3)}); UnknownSet unknown_set; CelValue result = EvaluateAttribute(CelValue::CreateList(&cel_list), CelValue::CreateUnknownSet(&unknown_set), true, true); ASSERT_TRUE(result.IsUnknownSet()); } TEST_F(ContainerAccessStepTest, TestMapInvalidKey) { const std::string kKey0 = "testkey0"; const std::string kKey1 = "testkey1"; const std::string kKey2 = "testkey2"; Struct cel_struct; (*cel_struct.mutable_fields())[kKey0].set_string_value("value0"); (*cel_struct.mutable_fields())[kKey1].set_string_value("value1"); (*cel_struct.mutable_fields())[kKey2].set_string_value("value2"); CelValue result = EvaluateAttribute(CelProtoWrapper::CreateMessage(&cel_struct, &arena_), CelValue::CreateDouble(1.0), true, true); ASSERT_TRUE(result.IsError()); EXPECT_THAT(*result.ErrorOrDie(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Invalid map key type: 'double'"))); } TEST_F(ContainerAccessStepTest, TestMapUnknownKey) { const std::string kKey0 = "testkey0"; const std::string kKey1 = "testkey1"; const std::string kKey2 = "testkey2"; Struct cel_struct; (*cel_struct.mutable_fields())[kKey0].set_string_value("value0"); (*cel_struct.mutable_fields())[kKey1].set_string_value("value1"); (*cel_struct.mutable_fields())[kKey2].set_string_value("value2"); UnknownSet unknown_set; CelValue result = EvaluateAttribute(CelProtoWrapper::CreateMessage(&cel_struct, &arena_), CelValue::CreateUnknownSet(&unknown_set), true, true); ASSERT_TRUE(result.IsUnknownSet()); } TEST_F(ContainerAccessStepTest, TestUnknownContainer) { UnknownSet unknown_set; CelValue result = EvaluateAttribute(CelValue::CreateUnknownSet(&unknown_set), CelValue::CreateInt64(1), true, true); ASSERT_TRUE(result.IsUnknownSet()); } TEST_F(ContainerAccessStepTest, TestInvalidContainerType) { CelValue result = EvaluateAttribute(CelValue::CreateInt64(1), CelValue::CreateInt64(0), true, true); ASSERT_TRUE(result.IsError()); EXPECT_THAT(*result.ErrorOrDie(), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("Invalid container type: 'int"))); } INSTANTIATE_TEST_SUITE_P( CombinedContainerTest, ContainerAccessStepUniformityTest, testing::Combine( testing::Bool(), testing::Bool(), testing::Bool())); class ContainerAccessHeterogeneousLookupsTest : public testing::Test { public: ContainerAccessHeterogeneousLookupsTest() { options_.enable_heterogeneous_equality = true; builder_ = CreateCelExpressionBuilder(options_); } protected: InterpreterOptions options_; std::unique_ptr<CelExpressionBuilder> builder_; google::protobuf::Arena arena_; Activation activation_; }; TEST_F(ContainerAccessHeterogeneousLookupsTest, DoubleMapKeyInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2}[1.0]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelInt64(2)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, DoubleMapKeyNotAnInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2}[1.1]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, DoubleMapKeyUint) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1u: 2u}[1.0]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelUint64(2)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, DoubleListIndex) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("[1, 2, 3][1.0]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelInt64(2)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, DoubleListIndexNotAnInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("[1, 2, 3][1.1]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, UintKeyAsUint) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1u: 2u, 1: 2}[1u]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelUint64(2)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, UintKeyAsInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2}[1u]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelInt64(2)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, IntKeyAsUint) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1u: 2u}[1]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelUint64(2)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, UintListIndex) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("[1, 2, 3][2u]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelInt64(3)); } TEST_F(ContainerAccessHeterogeneousLookupsTest, StringKeyUnaffected) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2, '1': 3}['1']")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelInt64(3)); } class ContainerAccessHeterogeneousLookupsDisabledTest : public testing::Test { public: ContainerAccessHeterogeneousLookupsDisabledTest() { options_.enable_heterogeneous_equality = false; builder_ = CreateCelExpressionBuilder(options_); } protected: InterpreterOptions options_; std::unique_ptr<CelExpressionBuilder> builder_; google::protobuf::Arena arena_; Activation activation_; }; TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, DoubleMapKeyInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2}[1.0]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, DoubleMapKeyNotAnInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2}[1.1]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, DoubleMapKeyUint) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1u: 2u}[1.0]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, DoubleListIndex) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("[1, 2, 3][1.0]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, DoubleListIndexNotAnInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("[1, 2, 3][1.1]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, UintKeyAsUint) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1u: 2u, 1: 2}[1u]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelUint64(2)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, UintKeyAsInt) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2}[1u]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, IntKeyAsUint) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1u: 2u}[1]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, UintListIndex) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("[1, 2, 3][2u]")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelError(_)); } TEST_F(ContainerAccessHeterogeneousLookupsDisabledTest, StringKeyUnaffected) { ASSERT_OK_AND_ASSIGN(ParsedExpr expr, parser::Parse("{1: 2, '1': 3}['1']")); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder_->CreateExpression( &expr.expr(), &expr.source_info())); ASSERT_OK_AND_ASSIGN(CelValue result, cel_expr->Evaluate(activation_, &arena_)); EXPECT_THAT(result, test::IsCelInt64(3)); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/container_access_step.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/eval/container_access_step_test.cc
4552db5798fb0853b131b783d8875794334fae7f
ea72a9d2-860f-466d-ac49-7b322bc3a955
cpp
google/quiche
hpack_block_decoder
quiche/http2/hpack/decoder/hpack_block_decoder.cc
quiche/http2/hpack/decoder/hpack_block_decoder_test.cc
#include "quiche/http2/hpack/decoder/hpack_block_decoder.h" #include <cstdint> #include <ostream> #include <string> #include "absl/strings/str_cat.h" #include "quiche/common/platform/api/quiche_flag_utils.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { DecodeStatus HpackBlockDecoder::Decode(DecodeBuffer* db) { if (!before_entry_) { QUICHE_DVLOG(2) << "HpackBlockDecoder::Decode resume entry, db->Remaining=" << db->Remaining(); DecodeStatus status = entry_decoder_.Resume(db, listener_); switch (status) { case DecodeStatus::kDecodeDone: before_entry_ = true; break; case DecodeStatus::kDecodeInProgress: QUICHE_DCHECK_EQ(0u, db->Remaining()); return DecodeStatus::kDecodeInProgress; case DecodeStatus::kDecodeError: QUICHE_CODE_COUNT_N(decompress_failure_3, 1, 23); return DecodeStatus::kDecodeError; } } QUICHE_DCHECK(before_entry_); while (db->HasData()) { QUICHE_DVLOG(2) << "HpackBlockDecoder::Decode start entry, db->Remaining=" << db->Remaining(); DecodeStatus status = entry_decoder_.Start(db, listener_); switch (status) { case DecodeStatus::kDecodeDone: continue; case DecodeStatus::kDecodeInProgress: QUICHE_DCHECK_EQ(0u, db->Remaining()); before_entry_ = false; return DecodeStatus::kDecodeInProgress; case DecodeStatus::kDecodeError: QUICHE_CODE_COUNT_N(decompress_failure_3, 2, 23); return DecodeStatus::kDecodeError; } QUICHE_DCHECK(false); } QUICHE_DCHECK(before_entry_); return DecodeStatus::kDecodeDone; } std::string HpackBlockDecoder::DebugString() const { return absl::StrCat( "HpackBlockDecoder(", entry_decoder_.DebugString(), ", listener@", absl::Hex(reinterpret_cast<intptr_t>(listener_)), (before_entry_ ? ", between entries)" : ", in an entry)")); } std::ostream& operator<<(std::ostream& out, const HpackBlockDecoder& v) { return out << v.DebugString(); } }
#include "quiche/http2/hpack/decoder/hpack_block_decoder.h" #include <cstdint> #include <sstream> #include <string> #include "absl/strings/string_view.h" #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/hpack/http2_hpack_constants.h" #include "quiche/http2/test_tools/hpack_block_builder.h" #include "quiche/http2/test_tools/hpack_block_collector.h" #include "quiche/http2/test_tools/hpack_example.h" #include "quiche/http2/test_tools/http2_random.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/common/platform/api/quiche_expect_bug.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { class HpackBlockDecoderTest : public RandomDecoderTest { protected: HpackBlockDecoderTest() : listener_(&collector_), decoder_(&listener_) { stop_decode_on_done_ = false; decoder_.Reset(); std::ostringstream strm; strm << decoder_; } DecodeStatus StartDecoding(DecodeBuffer* db) override { collector_.Clear(); decoder_.Reset(); return ResumeDecoding(db); } DecodeStatus ResumeDecoding(DecodeBuffer* db) override { DecodeStatus status = decoder_.Decode(db); std::ostringstream strm; strm << decoder_; return status; } AssertionResult DecodeAndValidateSeveralWays(DecodeBuffer* db, const Validator& validator) { bool return_non_zero_on_first = false; return RandomDecoderTest::DecodeAndValidateSeveralWays( db, return_non_zero_on_first, validator); } AssertionResult DecodeAndValidateSeveralWays(const HpackBlockBuilder& hbb, const Validator& validator) { DecodeBuffer db(hbb.buffer()); return DecodeAndValidateSeveralWays(&db, validator); } AssertionResult DecodeHpackExampleAndValidateSeveralWays( absl::string_view hpack_example, Validator validator) { std::string input = HpackExampleToStringOrDie(hpack_example); DecodeBuffer db(input); return DecodeAndValidateSeveralWays(&db, validator); } uint8_t Rand8() { return Random().Rand8(); } std::string Rand8String() { return Random().RandString(Rand8()); } HpackBlockCollector collector_; HpackEntryDecoderVLoggingListener listener_; HpackBlockDecoder decoder_; }; TEST_F(HpackBlockDecoderTest, SpecExample_C_2_1) { auto do_check = [this]() { return collector_.ValidateSoleLiteralNameValueHeader( HpackEntryType::kIndexedLiteralHeader, false, "custom-key", false, "custom-header"); }; const char hpack_example[] = R"( 40 | == Literal indexed == 0a | Literal name (len = 10) 6375 7374 6f6d 2d6b 6579 | custom-key 0d | Literal value (len = 13) 6375 7374 6f6d 2d68 6561 6465 72 | custom-header | -> custom-key: | custom-header )"; EXPECT_TRUE(DecodeHpackExampleAndValidateSeveralWays( hpack_example, ValidateDoneAndEmpty(do_check))); EXPECT_TRUE(do_check()); } TEST_F(HpackBlockDecoderTest, SpecExample_C_2_2) { auto do_check = [this]() { return collector_.ValidateSoleLiteralValueHeader( HpackEntryType::kUnindexedLiteralHeader, 4, false, "/sample/path"); }; const char hpack_example[] = R"( 04 | == Literal not indexed == | Indexed name (idx = 4) | :path 0c | Literal value (len = 12) 2f73 616d 706c 652f 7061 7468 | /sample/path | -> :path: /sample/path )"; EXPECT_TRUE(DecodeHpackExampleAndValidateSeveralWays( hpack_example, ValidateDoneAndEmpty(do_check))); EXPECT_TRUE(do_check()); } TEST_F(HpackBlockDecoderTest, SpecExample_C_2_3) { auto do_check = [this]() { return collector_.ValidateSoleLiteralNameValueHeader( HpackEntryType::kNeverIndexedLiteralHeader, false, "password", false, "secret"); }; const char hpack_example[] = R"( 10 | == Literal never indexed == 08 | Literal name (len = 8) 7061 7373 776f 7264 | password 06 | Literal value (len = 6) 7365 6372 6574 | secret | -> password: secret )"; EXPECT_TRUE(DecodeHpackExampleAndValidateSeveralWays( hpack_example, ValidateDoneAndEmpty(do_check))); EXPECT_TRUE(do_check()); } TEST_F(HpackBlockDecoderTest, SpecExample_C_2_4) { auto do_check = [this]() { return collector_.ValidateSoleIndexedHeader(2); }; const char hpack_example[] = R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET )"; EXPECT_TRUE(DecodeHpackExampleAndValidateSeveralWays( hpack_example, ValidateDoneAndEmpty(do_check))); EXPECT_TRUE(do_check()); } TEST_F(HpackBlockDecoderTest, SpecExample_C_3_1) { std::string example = R"( 82 | == Indexed - Add == | idx = 2 | -> :method: GET 86 | == Indexed - Add == | idx = 6 | -> :scheme: http 84 | == Indexed - Add == | idx = 4 | -> :path: / 41 | == Literal indexed == | Indexed name (idx = 1) | :authority 0f | Literal value (len = 15) 7777 772e 6578 616d 706c 652e 636f 6d | www.example.com | -> :authority: | www.example.com )"; HpackBlockCollector expected; expected.ExpectIndexedHeader(2); expected.ExpectIndexedHeader(6); expected.ExpectIndexedHeader(4); expected.ExpectNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 1, false, "www.example.com"); EXPECT_TRUE(DecodeHpackExampleAndValidateSeveralWays( example, ValidateDoneAndEmpty([&] { return collector_.VerifyEq(expected); }))); EXPECT_TRUE(collector_.VerifyEq(expected)); } TEST_F(HpackBlockDecoderTest, SpecExample_C_5_1) { std::string example = R"( 48 | == Literal indexed == | Indexed name (idx = 8) | :status 03 | Literal value (len = 3) 3330 32 | 302 | -> :status: 302 58 | == Literal indexed == | Indexed name (idx = 24) | cache-control 07 | Literal value (len = 7) 7072 6976 6174 65 | private | -> cache-control: private 61 | == Literal indexed == | Indexed name (idx = 33) | date 1d | Literal value (len = 29) 4d6f 6e2c 2032 3120 4f63 7420 3230 3133 | Mon, 21 Oct 2013 2032 303a 3133 3a32 3120 474d 54 | 20:13:21 GMT | -> date: Mon, 21 Oct 2013 | 20:13:21 GMT 6e | == Literal indexed == | Indexed name (idx = 46) | location 17 | Literal value (len = 23) 6874 7470 733a 2f2f 7777 772e 6578 616d | https: 706c 652e 636f 6d | ple.com | -> location: | https: )"; HpackBlockCollector expected; expected.ExpectNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 8, false, "302"); expected.ExpectNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 24, false, "private"); expected.ExpectNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 33, false, "Mon, 21 Oct 2013 20:13:21 GMT"); expected.ExpectNameIndexAndLiteralValue(HpackEntryType::kIndexedLiteralHeader, 46, false, "https: EXPECT_TRUE(DecodeHpackExampleAndValidateSeveralWays( example, ValidateDoneAndEmpty([&] { return collector_.VerifyEq(expected); }))); EXPECT_TRUE(collector_.VerifyEq(expected)); } TEST_F(HpackBlockDecoderTest, Computed) { HpackBlockCollector expected; expected.ExpectIndexedHeader(0); expected.ExpectIndexedHeader(1); expected.ExpectIndexedHeader(126); expected.ExpectIndexedHeader(127); expected.ExpectIndexedHeader(128); expected.ExpectDynamicTableSizeUpdate(0); expected.ExpectDynamicTableSizeUpdate(1); expected.ExpectDynamicTableSizeUpdate(14); expected.ExpectDynamicTableSizeUpdate(15); expected.ExpectDynamicTableSizeUpdate(30); expected.ExpectDynamicTableSizeUpdate(31); expected.ExpectDynamicTableSizeUpdate(4095); expected.ExpectDynamicTableSizeUpdate(4096); expected.ExpectDynamicTableSizeUpdate(8192); for (auto type : {HpackEntryType::kIndexedLiteralHeader, HpackEntryType::kUnindexedLiteralHeader, HpackEntryType::kNeverIndexedLiteralHeader}) { for (bool value_huffman : {false, true}) { expected.ExpectNameIndexAndLiteralValue(type, Rand8() + 1, value_huffman, Rand8String()); expected.ExpectLiteralNameAndValue(type, false, Rand8String(), value_huffman, Rand8String()); expected.ExpectLiteralNameAndValue(type, true, Rand8String(), value_huffman, Rand8String()); } } expected.ShuffleEntries(RandomPtr()); HpackBlockBuilder hbb; expected.AppendToHpackBlockBuilder(&hbb); EXPECT_TRUE(DecodeAndValidateSeveralWays( hbb, ValidateDoneAndEmpty([&] { return collector_.VerifyEq(expected); }))); EXPECT_TRUE(collector_.VerifyEq(expected)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_block_decoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/hpack/decoder/hpack_block_decoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
1f1ddcd6-b16e-4419-83c4-75e3931b8b8d
cpp
tensorflow/tensorflow
save_op
tensorflow/core/kernels/save_op.cc
tensorflow/core/kernels/save_op_test.cc
#include "tensorflow/core/kernels/save_restore_tensor.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/array_slice.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/util/tensor_slice_writer.h" namespace tensorflow { class SaveOp : public OpKernel { public: explicit SaveOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { SaveTensors(context, &checkpoint::CreateTableTensorSliceBuilder, false); } }; REGISTER_KERNEL_BUILDER(Name("Save").Device(DEVICE_CPU), SaveOp); class SaveSlicesOp : public OpKernel { public: explicit SaveSlicesOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { SaveTensors(context, &checkpoint::CreateTableTensorSliceBuilder, true); } }; REGISTER_KERNEL_BUILDER(Name("SaveSlices").Device(DEVICE_CPU), SaveSlicesOp); class ShardedFilenameOp : public OpKernel { public: explicit ShardedFilenameOp(OpKernelConstruction* ctx) : OpKernel(ctx) {} void Compute(OpKernelContext* ctx) override { static const char* input_names[3] = {"basename", "shard", "num_shards"}; for (int i = 0; i < ctx->num_inputs(); ++i) { OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(ctx->input(i).shape()), errors::InvalidArgument(input_names[i], " must be a scalar, got shape ", ctx->input(i).shape().DebugString())); } Tensor* out = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &out)); out->scalar<tstring>()() = strings::Printf( "%s-%05d-of-%05d", ctx->input(0).scalar<tstring>()().c_str(), ctx->input(1).scalar<int32>()(), ctx->input(2).scalar<int32>()()); } }; REGISTER_KERNEL_BUILDER(Name("ShardedFilename").Device(DEVICE_CPU), ShardedFilenameOp); class ShardedFilespecOp : public OpKernel { public: explicit ShardedFilespecOp(OpKernelConstruction* ctx) : OpKernel(ctx) {} void Compute(OpKernelContext* ctx) override { static const char* input_names[2] = {"basename", "num_shards"}; for (int i = 0; i < ctx->num_inputs(); ++i) { OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(ctx->input(i).shape()), errors::InvalidArgument(input_names[i], " must be a scalar, got shape ", ctx->input(i).shape().DebugString())); } Tensor* out = nullptr; OP_REQUIRES_OK(ctx, ctx->allocate_output(0, TensorShape({}), &out)); out->scalar<tstring>()() = strings::Printf( "%s-\?\?\?\?\?-of-%05d", ctx->input(0).scalar<tstring>()().c_str(), ctx->input(1).scalar<int32>()()); } }; REGISTER_KERNEL_BUILDER(Name("ShardedFilespec").Device(DEVICE_CPU), ShardedFilespecOp); }
#include <functional> #include <memory> #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/io_ops.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/tensor_slice_reader.h" namespace tensorflow { namespace { class SaveOpTest : public OpsTestBase { protected: void MakeOp() { TF_ASSERT_OK( NodeDefBuilder("myop", "Save") .Input(FakeInput()) .Input(FakeInput()) .Input(FakeInput({DT_BOOL, DT_INT32, DT_FLOAT, DT_DOUBLE, DT_QINT8, DT_QINT32, DT_UINT8, DT_INT8, DT_INT16, DT_INT64, DT_STRING, DT_COMPLEX64, DT_COMPLEX128, DT_HALF})) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SaveOpTest, Simple) { const string filename = io::JoinPath(testing::TmpDir(), "tensor_simple"); const string tensornames[] = { "tensor_bool", "tensor_int", "tensor_float", "tensor_double", "tensor_qint8", "tensor_qint32", "tensor_uint8", "tensor_int8", "tensor_int16", "tensor_int64", "tensor_string", "tensor_complex64", "tensor_complex128", "tensor_half"}; MakeOp(); AddInput<tstring>(TensorShape({}), [&filename](int x) -> tstring { return filename; }); AddInput<tstring>(TensorShape({14}), [&tensornames](int x) -> tstring { return tensornames[x]; }); AddInput<bool>(TensorShape({2}), [](int x) -> bool { return x != 0; }); AddInput<int32>(TensorShape({10}), [](int x) -> int32 { return x + 1; }); AddInput<float>(TensorShape({2, 4}), [](int x) -> float { return static_cast<float>(x) / 10; }); AddInput<double>(TensorShape({2, 4}), [](int x) -> double { return static_cast<double>(x) / 20; }); AddInput<qint8>(TensorShape({3, 2}), [](int x) -> qint8 { return *reinterpret_cast<qint8*>(&x); }); AddInput<qint32>(TensorShape({2, 3}), [](int x) -> qint32 { return *reinterpret_cast<qint32*>(&x) * qint8(2); }); AddInput<uint8>(TensorShape({11}), [](int x) -> uint8 { return x + 1; }); AddInput<int8>(TensorShape({7}), [](int x) -> int8 { return x - 7; }); AddInput<int16>(TensorShape({7}), [](int x) -> int16 { return x - 8; }); AddInput<int64_t>(TensorShape({9}), [](int x) -> int64 { return x - 9; }); AddInput<tstring>(TensorShape({2}), [](int x) -> tstring { return x ? "yes" : "no"; }); AddInput<complex64>(TensorShape({2, 3}), [](int x) -> complex64 { return complex64(100 + x, 200 + x); }); AddInput<complex128>(TensorShape({2, 3}), [](int x) -> complex128 { return complex128(100 + x, 200 + x); }); AddInput<Eigen::half>(TensorShape({2, 4}), [](int x) -> Eigen::half { return static_cast<Eigen::half>(x) / Eigen::half(2); }); TF_ASSERT_OK(RunOpKernel()); checkpoint::TensorSliceReader reader(filename, checkpoint::OpenTableTensorSliceReader); TF_EXPECT_OK(reader.status()); { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_bool", &shape, &type)); TensorShape expected({2}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_BOOL, type); TensorSlice s = TensorSlice::ParseOrDie("-"); bool data[2]; std::fill_n(data, 2, false); EXPECT_TRUE(reader.CopySliceData("tensor_bool", s, data)); for (int i = 0; i < 2; ++i) { EXPECT_EQ((i != 0), data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_int", &shape, &type)); TensorShape expected({10}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_INT32, type); TensorSlice s = TensorSlice::ParseOrDie("-"); int data[10]; std::fill_n(data, 10, 0); EXPECT_TRUE(reader.CopySliceData("tensor_int", s, data)); for (int i = 0; i < 10; ++i) { EXPECT_EQ(i + 1, data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_float", &shape, &type)); TensorShape expected({2, 4}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_FLOAT, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); float data[8]; std::fill_n(data, 8, 0); EXPECT_TRUE(reader.CopySliceData("tensor_float", s, data)); for (int i = 0; i < 8; ++i) { EXPECT_EQ(static_cast<float>(i) / 10, data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_double", &shape, &type)); TensorShape expected({2, 4}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_DOUBLE, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); double data[8]; std::fill_n(data, 8, 0); EXPECT_TRUE(reader.CopySliceData("tensor_double", s, data)); for (int i = 0; i < 8; ++i) { EXPECT_EQ(static_cast<double>(i) / 20, data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_qint8", &shape, &type)); TensorShape expected({3, 2}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_QINT8, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); qint8 data[6]; EXPECT_TRUE(reader.CopySliceData("tensor_qint8", s, data)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(*reinterpret_cast<qint8*>(&i), data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_qint32", &shape, &type)); TensorShape expected({2, 3}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_QINT32, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); qint32 data[6]; EXPECT_TRUE(reader.CopySliceData("tensor_qint32", s, data)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(*reinterpret_cast<qint32*>(&i) * qint8(2), data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_uint8", &shape, &type)); TensorShape expected({11}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_UINT8, type); TensorSlice s = TensorSlice::ParseOrDie("-"); uint8 data[11]; EXPECT_TRUE(reader.CopySliceData("tensor_uint8", s, data)); for (int i = 0; i < 11; ++i) { EXPECT_EQ(i + 1, data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_int8", &shape, &type)); TensorShape expected({7}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_INT8, type); TensorSlice s = TensorSlice::ParseOrDie("-"); int8 data[7]; EXPECT_TRUE(reader.CopySliceData("tensor_int8", s, data)); for (int i = 0; i < 7; ++i) { EXPECT_EQ(i - 7, data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_int16", &shape, &type)); TensorShape expected({7}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_INT16, type); TensorSlice s = TensorSlice::ParseOrDie("-"); int16 data[7]; EXPECT_TRUE(reader.CopySliceData("tensor_int16", s, data)); for (int i = 0; i < 7; ++i) { EXPECT_EQ(i - 8, data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_int64", &shape, &type)); TensorShape expected({9}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_INT64, type); TensorSlice s = TensorSlice::ParseOrDie("-"); int64_t data[9]; EXPECT_TRUE(reader.CopySliceData("tensor_int64", s, data)); for (int i = 0; i < 9; ++i) { EXPECT_EQ(i - 9, data[i]); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_string", &shape, &type)); TensorShape expected({2}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_STRING, type); TensorSlice s = TensorSlice::ParseOrDie("-"); tstring data[2]; EXPECT_TRUE(reader.CopySliceData("tensor_string", s, data)); EXPECT_EQ("no", data[0]); EXPECT_EQ("yes", data[1]); } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_complex64", &shape, &type)); TensorShape expected({2, 3}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_COMPLEX64, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); complex64 data[6]; EXPECT_TRUE(reader.CopySliceData("tensor_complex64", s, data)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(100 + i, data[i].real()); EXPECT_EQ(200 + i, data[i].imag()); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_complex128", &shape, &type)); TensorShape expected({2, 3}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_COMPLEX128, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); complex128 data[6]; EXPECT_TRUE(reader.CopySliceData("tensor_complex128", s, data)); for (int i = 0; i < 6; ++i) { EXPECT_EQ(100 + i, data[i].real()); EXPECT_EQ(200 + i, data[i].imag()); } } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_half", &shape, &type)); TensorShape expected({2, 4}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_HALF, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); Eigen::half data[8]; std::fill_n(data, 8, Eigen::half(0)); EXPECT_TRUE(reader.CopySliceData("tensor_half", s, data)); for (int i = 0; i < 8; ++i) { EXPECT_EQ(static_cast<Eigen::half>(i) / Eigen::half(2), data[i]); } } } class SaveSlicesOpTest : public OpsTestBase { protected: void MakeOp() { TF_ASSERT_OK(NodeDefBuilder("myop", "SaveSlices") .Input(FakeInput()) .Input(FakeInput()) .Input(FakeInput()) .Input(FakeInput( {DT_INT32, DT_FLOAT, DT_DOUBLE, DT_QINT8, DT_QINT32})) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SaveSlicesOpTest, Slices) { const string filename = io::JoinPath(testing::TmpDir(), "tensor_slices"); const string tensornames[] = {"tensor_int", "tensor_float", "tensor_double", "tensor_qint8", "tensor_qint32"}; const string tensorshapes[] = { "10 -", "2 4 -:0,2", "2 4 0,1:2,2", "3 2 -:-", "2 3 1,1:2,1" }; MakeOp(); AddInput<tstring>(TensorShape({}), [&filename](int x) -> tstring { return filename; }); AddInput<tstring>(TensorShape({5}), [&tensornames](int x) -> tstring { return tensornames[x]; }); AddInput<tstring>(TensorShape({5}), [&tensorshapes](int x) -> tstring { return tensorshapes[x]; }); AddInput<int32>(TensorShape({10}), [](int x) -> int32 { return x + 1; }); AddInput<float>(TensorShape({2, 2}), [](int x) -> float { return static_cast<float>(x) / 10; }); AddInput<double>(TensorShape({1, 2}), [](int x) -> double { return static_cast<double>(x) / 20; }); AddInput<qint8>(TensorShape({3, 2}), [](int x) -> qint8 { return *reinterpret_cast<qint8*>(&x); }); AddInput<qint32>(TensorShape({1, 1}), [](int x) -> qint32 { return *reinterpret_cast<qint32*>(&x) * qint8(2); }); TF_ASSERT_OK(RunOpKernel()); checkpoint::TensorSliceReader reader(filename, checkpoint::OpenTableTensorSliceReader); TF_EXPECT_OK(reader.status()); { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_int", &shape, &type)); TensorShape expected({10}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_INT32, type); TensorSlice s = TensorSlice::ParseOrDie("-"); int data[10]; EXPECT_TRUE(reader.CopySliceData("tensor_int", s, data)); } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_float", &shape, &type)); TensorShape expected({2, 4}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_FLOAT, type); TensorSlice full_slice = TensorSlice::ParseOrDie("-:-"); TensorSlice saved_slice = TensorSlice::ParseOrDie("-:0,2"); float data[8]; EXPECT_FALSE(reader.CopySliceData("tensor_float", full_slice, data)); EXPECT_TRUE(reader.CopySliceData("tensor_float", saved_slice, data)); } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_double", &shape, &type)); TensorShape expected({2, 4}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_DOUBLE, type); TensorSlice full_slice = TensorSlice::ParseOrDie("-:-"); TensorSlice saved_slice = TensorSlice::ParseOrDie("0,1:2,2"); double data[8]; EXPECT_FALSE(reader.CopySliceData("tensor_double", full_slice, data)); EXPECT_TRUE(reader.CopySliceData("tensor_double", saved_slice, data)); } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_qint8", &shape, &type)); TensorShape expected({3, 2}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_QINT8, type); TensorSlice s = TensorSlice::ParseOrDie("-:-"); qint8 data[6]; EXPECT_TRUE(reader.CopySliceData("tensor_qint8", s, data)); } { TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("tensor_qint32", &shape, &type)); TensorShape expected({2, 3}); EXPECT_TRUE(shape.IsSameSize(expected)); EXPECT_EQ(DT_QINT32, type); TensorSlice s = TensorSlice::ParseOrDie("1,1:2,1"); TensorSlice full_slice = TensorSlice::ParseOrDie("-:-"); TensorSlice saved_slice = TensorSlice::ParseOrDie("1,1:2,1"); qint32 data[6]; EXPECT_FALSE(reader.CopySliceData("tensor_qint32", full_slice, data)); EXPECT_TRUE(reader.CopySliceData("tensor_qint32", saved_slice, data)); } } class SaveOpSlices2Test : public OpsTestBase { protected: void MakeOp() { TF_ASSERT_OK(NodeDefBuilder("myop", "SaveSlices") .Input(FakeInput()) .Input(FakeInput()) .Input(FakeInput()) .Input(FakeInput({DT_INT32, DT_INT32, DT_FLOAT})) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); } }; TEST_F(SaveOpSlices2Test, TwoSlices) { const string filename = io::JoinPath(testing::TmpDir(), "three_slices"); const string tensornames[] = {"four_by_sixteen", "four_by_sixteen", "small"}; const string tensorshapes[] = { "4 16 0,2:-", "4 16 2,2:-", "" }; MakeOp(); AddInput<tstring>(TensorShape({}), [&filename](int x) -> tstring { return filename; }); AddInput<tstring>(TensorShape({3}), [&tensornames](int x) -> tstring { return tensornames[x]; }); AddInput<tstring>(TensorShape({3}), [&tensorshapes](int x) -> tstring { return tensorshapes[x]; }); AddInput<int32>(TensorShape({2, 16}), [](int x) -> int32 { return x + 1; }); AddInput<int32>(TensorShape({2, 16}), [](int x) -> int32 { return 10 * (x + 1); }); AddInput<float>(TensorShape({2, 4}), [](int x) -> float { return static_cast<float>(x) / 10; }); TF_ASSERT_OK(RunOpKernel()); checkpoint::TensorSliceReader reader(filename, checkpoint::OpenTableTensorSliceReader); TF_EXPECT_OK(reader.status()); { Tensor reloaded(DT_INT32, {4, 16}); TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("four_by_sixteen", &shape, &type)); EXPECT_TRUE(shape.IsSameSize(reloaded.shape())); EXPECT_EQ(type, reloaded.dtype()); EXPECT_TRUE(reader.CopySliceData("four_by_sixteen", TensorSlice(reloaded.dims()), reloaded.flat<int>().data())); { auto slice = reloaded.Slice(0, 2).flat<int>(); for (int i = 0; i < slice.size(); ++i) { EXPECT_EQ(i + 1, slice(i)); } } { auto slice = reloaded.Slice(2, 4).flat<int>(); for (int i = 0; i < slice.size(); ++i) { EXPECT_EQ(10 * (i + 1), slice(i)); } } } { Tensor reloaded(DT_FLOAT, {2, 4}); TensorShape shape; DataType type; EXPECT_TRUE(reader.HasTensor("small", &shape, &type)); EXPECT_TRUE(shape.IsSameSize(reloaded.shape())); EXPECT_EQ(DT_FLOAT, reloaded.dtype()); EXPECT_TRUE(reader.CopySliceData("small", TensorSlice(reloaded.dims()), reloaded.flat<float>().data())); for (int64_t i = 0; i < reloaded.NumElements(); ++i) { EXPECT_EQ(static_cast<float>(i) / 10, reloaded.flat<float>().data()[i]); } } } void BM_LargeTensorWrite(::testing::benchmark::State& state) { const int num_elements = state.range(0); Tensor tensor(DT_FLOAT, TensorShape({num_elements})); tensor.flat<float>().setZero(); const tstring temp_filename = io::JoinPath(testing::TmpDir(), "benchmark_checkpoint"); auto root = Scope::NewRootScope().ExitOnError(); const tstring tensor_name = "my_tensor"; ops::Save give_me_a_name(root, temp_filename, {tensor_name}, {{tensor}}); SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_opt_level(tensorflow::OptimizerOptions::L0); TF_CHECK_OK(root.status()); Graph* g = new Graph(OpRegistry::Global()); TF_CHECK_OK(root.ToGraph(g)); VLOG(1) << "Save op's output path: " << temp_filename; VLOG(1) << "# nodes in Graph: " << g->num_nodes(); test::Benchmark("cpu", g, &session_options, nullptr, nullptr, "", false) .Run(state); } BENCHMARK(BM_LargeTensorWrite)->Arg((1 << 30) / 4 ); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/save_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/save_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
dc72981d-1b15-4aa9-9f6b-e243a84e6ac8
cpp
google/tensorstore
nditerable_array
tensorstore/internal/nditerable_array.cc
tensorstore/internal/nditerable_array_test.cc
#include "tensorstore/internal/nditerable_array.h" #include <stddef.h> #include <cassert> #include <vector> #include "absl/status/status.h" #include "tensorstore/array.h" #include "tensorstore/data_type.h" #include "tensorstore/index.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_array_util.h" #include "tensorstore/internal/nditerable_util.h" #include "tensorstore/internal/unique_with_intrusive_allocator.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal { namespace { Index ComputeIteratorBaseOffsetAndByteStrides( NDIterable::IterationLayoutView layout, tensorstore::span<const Index> orig_byte_strides, Index* byte_strides) { assert(layout.full_rank() == orig_byte_strides.size()); Index base_offset = 0; for (DimensionIndex dim = 0; dim < layout.full_rank(); ++dim) { const int dir = layout.directions[dim]; if (dir == -1) { base_offset = wrap_on_overflow::Add( base_offset, wrap_on_overflow::Multiply(layout.shape[dim] - 1, orig_byte_strides[dim])); } } for (DimensionIndex i = 0; i < layout.iteration_rank(); ++i) { const DimensionIndex dim = layout.iteration_dimensions[i]; if (dim == -1) { byte_strides[i] = 0; } else { byte_strides[i] = orig_byte_strides[dim] * layout.directions[dim]; } } return base_offset; } template <DimensionIndex Rank> class StridedIteratorImpl; template <DimensionIndex Rank = -1> class StridedIteratorImplBase : public NDIterator::Base<StridedIteratorImpl<Rank>> { public: explicit StridedIteratorImplBase(DimensionIndex rank, ArenaAllocator<> allocator) : allocator_(allocator) {} ArenaAllocator<> get_allocator() const override { return allocator_; } protected: ArenaAllocator<> allocator_; std::array<Index, Rank> byte_strides_; }; template <> class StridedIteratorImplBase<-1> : public NDIterator::Base<StridedIteratorImpl<-1>> { public: explicit StridedIteratorImplBase(DimensionIndex rank, ArenaAllocator<> allocator) : byte_strides_(rank, allocator) {} ArenaAllocator<> get_allocator() const override { return byte_strides_.get_allocator(); } protected: std::vector<Index, ArenaAllocator<Index>> byte_strides_; }; template <DimensionIndex Rank = -1> class StridedIteratorImpl : public StridedIteratorImplBase<Rank> { using Base = StridedIteratorImplBase<Rank>; using Base::byte_strides_; public: StridedIteratorImpl(ByteStridedPointer<void> data, tensorstore::span<const Index> orig_byte_strides, NDIterable::IterationLayoutView layout, ArenaAllocator<> allocator) : Base(layout.iteration_rank(), allocator) { data_ = data + ComputeIteratorBaseOffsetAndByteStrides( layout, orig_byte_strides, byte_strides_.data()); } bool GetBlock(tensorstore::span<const Index> indices, IterationBufferShape block_shape, IterationBufferPointer* pointer, absl::Status* status) override { Index offset; if constexpr (Rank == -1) { offset = IndexInnerProduct(indices.size(), byte_strides_.data(), indices.data()); } else { offset = IndexInnerProduct<Rank>(byte_strides_.data(), indices.data()); } *pointer = IterationBufferPointer{data_ + offset, byte_strides_[byte_strides_.size() - 2], byte_strides_[byte_strides_.size() - 1]}; return true; } private: ByteStridedPointer<void> data_; }; class IndexedIteratorImpl : public NDIterator::Base<IndexedIteratorImpl> { public: IndexedIteratorImpl(ByteStridedPointer<void> data, tensorstore::span<const Index> orig_byte_strides, NDIterable::IterationBufferLayoutView layout, ArenaAllocator<> allocator) : block_inner_size_(layout.block_shape[1]), buffer_(layout.iteration_rank() + layout.block_shape[0] * layout.block_shape[1], allocator) { data_ = data + ComputeIteratorBaseOffsetAndByteStrides( layout, orig_byte_strides, buffer_.data()); FillOffsetsArrayFromStride(buffer_[layout.iteration_rank() - 2], buffer_[layout.iteration_rank() - 1], layout.block_shape[0], layout.block_shape[1], buffer_.data() + layout.iteration_rank()); } ArenaAllocator<> get_allocator() const override { return buffer_.get_allocator(); } bool GetBlock(tensorstore::span<const Index> indices, IterationBufferShape block_shape, IterationBufferPointer* pointer, absl::Status* status) override { *pointer = IterationBufferPointer{ data_ + IndexInnerProduct(indices.size(), buffer_.data(), indices.data()), block_inner_size_, buffer_.data() + indices.size()}; return true; } private: ByteStridedPointer<void> data_; Index block_inner_size_; std::vector<Index, ArenaAllocator<Index>> buffer_; }; class ArrayIterableImpl : public NDIterable::Base<ArrayIterableImpl> { public: ArrayIterableImpl(SharedOffsetArrayView<const void> array, ArenaAllocator<> allocator) : dtype_(array.dtype()), byte_strides_(array.byte_strides().begin(), array.byte_strides().end(), allocator) { void* origin_pointer = const_cast<void*>(array.byte_strided_origin_pointer().get()); data_ = std::shared_ptr<void>(std::move(array.pointer()), origin_pointer); } ArenaAllocator<> get_allocator() const override { return byte_strides_.get_allocator(); } int GetDimensionOrder(DimensionIndex dim_i, DimensionIndex dim_j) const override { return GetDimensionOrderFromByteStrides(byte_strides_[dim_i], byte_strides_[dim_j]); } void UpdateDirectionPrefs(NDIterable::DirectionPref* prefs) const override { UpdateDirectionPrefsFromByteStrides(byte_strides_, prefs); } bool CanCombineDimensions(DimensionIndex dim_i, int dir_i, DimensionIndex dim_j, int dir_j, Index size_j) const override { return CanCombineStridedArrayDimensions( byte_strides_[dim_i], dir_i, byte_strides_[dim_j], dir_j, size_j); } DataType dtype() const override { return dtype_; } IterationBufferConstraint GetIterationBufferConstraint( IterationLayoutView layout) const override { const DimensionIndex last_dim = layout.iteration_dimensions.back(); return {(last_dim == -1 || (byte_strides_[last_dim] * layout.directions[last_dim] == dtype_->size)) ? IterationBufferKind::kContiguous : IterationBufferKind::kStrided, false}; } std::ptrdiff_t GetWorkingMemoryBytesPerElement( IterationLayoutView layout, IterationBufferKind buffer_kind) const override { return buffer_kind == IterationBufferKind::kIndexed ? sizeof(Index) : 0; } NDIterator::Ptr GetIterator( IterationBufferKindLayoutView layout) const override { if (layout.buffer_kind == IterationBufferKind::kIndexed) { return MakeUniqueWithVirtualIntrusiveAllocator<IndexedIteratorImpl>( get_allocator(), data_.get(), byte_strides_, layout); } const auto make_strided_iterator = [&](auto rank) { return MakeUniqueWithVirtualIntrusiveAllocator< StridedIteratorImpl<decltype(rank)::value>>( get_allocator(), data_.get(), byte_strides_, layout); }; switch (layout.iteration_rank()) { #ifndef TENSORSTORE_NDITERABLE_DISABLE_ARRAY_OPTIMIZE case 2: return make_strided_iterator( std::integral_constant<DimensionIndex, 2>{}); case 3: return make_strided_iterator( std::integral_constant<DimensionIndex, 3>{}); #endif default: assert(layout.iteration_rank() > 1); return make_strided_iterator( std::integral_constant<DimensionIndex, -1>{}); } } private: std::shared_ptr<void> data_; DataType dtype_; std::vector<Index, ArenaAllocator<Index>> byte_strides_; }; } NDIterable::Ptr GetArrayNDIterable(SharedOffsetArrayView<const void> array, Arena* arena) { return MakeUniqueWithVirtualIntrusiveAllocator<ArrayIterableImpl>( ArenaAllocator<>(arena), std::move(array)); } } }
#include "tensorstore/internal/nditerable_array.h" #include <cstdint> #include <memory> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/array.h" #include "tensorstore/contiguous_layout.h" #include "tensorstore/index.h" #include "tensorstore/internal/arena.h" #include "tensorstore/internal/elementwise_function.h" #include "tensorstore/internal/nditerable.h" #include "tensorstore/internal/nditerable_buffer_management.h" #include "tensorstore/internal/nditerable_util.h" #include "tensorstore/strided_layout.h" #include "tensorstore/util/byte_strided_pointer.h" #include "tensorstore/util/iterate.h" #include "tensorstore/util/span.h" #include "tensorstore/util/status.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::Array; using ::tensorstore::DimensionIndex; using ::tensorstore::Index; using ::tensorstore::StridedLayout; using ::tensorstore::internal::Arena; using ::tensorstore::internal::GetArrayNDIterable; using ::tensorstore::internal::IterationBufferKind; using ::tensorstore::internal::IterationBufferPointer; using ::tensorstore::internal::MultiNDIterator; using ::tensorstore::internal::NDIterable; using DirectionPref = NDIterable::DirectionPref; TEST(NDIterableArrayTest, Direct) { uint8_t data[1000]; Array<uint8_t> array(data + 500, StridedLayout<>({6, 3, 4, 5}, {-1, -6, 0, 3})); Arena arena; auto iterable = GetArrayNDIterable(UnownedToShared(array), &arena); { std::vector<DirectionPref> direction_prefs(4, DirectionPref::kCanSkip); iterable->UpdateDirectionPrefs(direction_prefs.data()); EXPECT_THAT(direction_prefs, ::testing::ElementsAre( DirectionPref::kBackward, DirectionPref::kBackward, DirectionPref::kCanSkip, DirectionPref::kForward)); } EXPECT_GT(iterable->GetDimensionOrder(0, 1), 0); EXPECT_LT(iterable->GetDimensionOrder(0, 2), 0); EXPECT_GT(iterable->GetDimensionOrder(0, 3), 0); EXPECT_LT(iterable->GetDimensionOrder(1, 0), 0); EXPECT_LT(iterable->GetDimensionOrder(1, 2), 0); EXPECT_LT(iterable->GetDimensionOrder(1, 3), 0); EXPECT_GT(iterable->GetDimensionOrder(2, 0), 0); EXPECT_GT(iterable->GetDimensionOrder(2, 1), 0); EXPECT_LT(iterable->GetDimensionOrder(1, 3), 0); EXPECT_LT(iterable->GetDimensionOrder(3, 0), 0); EXPECT_GT(iterable->GetDimensionOrder(3, 1), 0); EXPECT_LT(iterable->GetDimensionOrder(3, 2), 0); EXPECT_TRUE(iterable->CanCombineDimensions(1, 1, 0, 1, 6)); EXPECT_TRUE(iterable->CanCombineDimensions(1, -1, 0, -1, 6)); EXPECT_FALSE(iterable->CanCombineDimensions(1, 1, 0, -1, 6)); EXPECT_FALSE(iterable->CanCombineDimensions(1, 1, 0, 1, 5)); EXPECT_TRUE(iterable->CanCombineDimensions(3, 1, 0, -1, 3)); EXPECT_TRUE(iterable->CanCombineDimensions(3, -1, 0, 1, 3)); EXPECT_TRUE(iterable->CanCombineDimensions(1, -1, 3, 1, 2)); { auto c = iterable->GetIterationBufferConstraint( {tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({1, 1, 1, 1}), tensorstore::span<const DimensionIndex>({0, 1, 2, 3}), tensorstore::span<const Index>({6, 3, 4, 5})}); EXPECT_EQ(IterationBufferKind::kStrided, c.min_buffer_kind); EXPECT_FALSE(c.external); } { auto c = iterable->GetIterationBufferConstraint( {tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({1, 1, 1, 1}), tensorstore::span<const DimensionIndex>({1, 3, 0}), tensorstore::span<const Index>({3, 5, 6})}); EXPECT_EQ(IterationBufferKind::kStrided, c.min_buffer_kind); EXPECT_FALSE(c.external); } { auto c = iterable->GetIterationBufferConstraint( {tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({-1, -1, 0, 1}), tensorstore::span<const DimensionIndex>({1, 3, 0}), tensorstore::span<const Index>({3, 5, 6})}); EXPECT_EQ(IterationBufferKind::kContiguous, c.min_buffer_kind); EXPECT_FALSE(c.external); } EXPECT_EQ( 0, iterable->GetWorkingMemoryBytesPerElement( {tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({-1, -1, 0, 1}), tensorstore::span<const DimensionIndex>({1, 3, 0}), tensorstore::span<const Index>({3, 5, 6})}, IterationBufferKind::kContiguous)); EXPECT_EQ( 0, iterable->GetWorkingMemoryBytesPerElement( {tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({-1, -1, 0, 1}), tensorstore::span<const DimensionIndex>({1, 3, 0}), tensorstore::span<const Index>({3, 5, 6})}, IterationBufferKind::kStrided)); EXPECT_EQ( sizeof(Index), iterable->GetWorkingMemoryBytesPerElement( {tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({-1, -1, 0, 1}), tensorstore::span<const DimensionIndex>({1, 3, 0}), tensorstore::span<const Index>({3, 5, 6})}, IterationBufferKind::kIndexed)); { auto iterator = iterable->GetIterator( {{{tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({-1, -1, 0, 1}), tensorstore::span<const DimensionIndex>({1, 3, 0}), tensorstore::span<const Index>({3, 5, 6})}, {1, 3}}, IterationBufferKind::kContiguous}); IterationBufferPointer pointer; absl::Status status; EXPECT_TRUE(iterator->GetBlock(tensorstore::span<const Index>({2, 3, 1}), {1, 3}, &pointer, &status)); EXPECT_EQ(&array((6 - 1) - 1, (3 - 1) - 2, 0, 3), pointer.pointer.get()); EXPECT_EQ(1, pointer.inner_byte_stride); EXPECT_EQ(absl::OkStatus(), status); } { auto iterator = iterable->GetIterator( {{{tensorstore::span<const Index>({6, 3, 4, 5}), tensorstore::span<const int>({-1, -1, 0, 1}), tensorstore::span<const DimensionIndex>({1, 3, 0}), tensorstore::span<const Index>({3, 5, 6})}, {1, 3}}, IterationBufferKind::kIndexed}); IterationBufferPointer pointer; absl::Status status; EXPECT_TRUE(iterator->GetBlock(tensorstore::span<const Index>({2, 3, 1}), {1, 3}, &pointer, &status)); EXPECT_EQ(&array((6 - 1) - 1, (3 - 1) - 2, 0, 3), pointer.pointer.get()); EXPECT_THAT(tensorstore::span<const Index>(pointer.byte_offsets, 3), ::testing::ElementsAre(0, 1, 2)); EXPECT_EQ(absl::OkStatus(), status); } } TEST(NDIterableArrayTest, RankZero) { auto array = tensorstore::MakeScalarArray<int>(5); Arena arena; auto iterable = GetArrayNDIterable(array, &arena); MultiNDIterator<1, true> multi_iterator( tensorstore::span<const Index>{}, {}, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(-1, -1)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre()); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre()); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(1, 1)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre()); EXPECT_EQ(IterationBufferKind::kContiguous, multi_iterator.buffer_kind); EXPECT_EQ(false, multi_iterator.empty); EXPECT_THAT(multi_iterator.block_shape, ::testing::ElementsAre(1, 1)); EXPECT_THAT(multi_iterator.ResetAtBeginning(), ::testing::ElementsAre(1, 1)); absl::Status status; EXPECT_TRUE(multi_iterator.GetBlock({1, 1}, &status)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(0, 0)); TENSORSTORE_EXPECT_OK(status); EXPECT_EQ(array.data(), multi_iterator.block_pointers()[0].pointer); EXPECT_EQ(0, multi_iterator.block_pointers()[0].inner_byte_stride); EXPECT_THAT(multi_iterator.StepForward({1, 1}), ::testing::ElementsAre(0, 1)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(1, 0)); } #ifndef TENSORSTORE_INTERNAL_NDITERABLE_TEST_UNIT_BLOCK_SIZE constexpr Index ExpectedBlockSize(Index block_size) { return block_size; } #else constexpr Index ExpectedBlockSize(Index block_size) { return 1; } #endif TEST(NDIterableArrayTest, RankOne) { auto array = tensorstore::MakeArray<int>({1, 2, 3, 4, 5}); Arena arena; auto iterable = GetArrayNDIterable(array, &arena); MultiNDIterator<1, true> multi_iterator( tensorstore::span<const Index>({5}), {}, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(5)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(-1, 0)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(1)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(1, 5)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(0)); EXPECT_EQ(IterationBufferKind::kContiguous, multi_iterator.buffer_kind); EXPECT_EQ(false, multi_iterator.empty); EXPECT_THAT(multi_iterator.block_shape, ::testing::ElementsAre(1, ExpectedBlockSize(5))); EXPECT_THAT(multi_iterator.ResetAtBeginning(), ::testing::ElementsAre(1, ExpectedBlockSize(5))); absl::Status status; EXPECT_TRUE(multi_iterator.GetBlock({1, ExpectedBlockSize(5)}, &status)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(0, 0)); EXPECT_EQ(absl::OkStatus(), status); EXPECT_EQ(array.data(), multi_iterator.block_pointers()[0].pointer); EXPECT_EQ(sizeof(int), multi_iterator.block_pointers()[0].inner_byte_stride); EXPECT_THAT(multi_iterator.StepForward({1, 5}), ::testing::ElementsAre(0, 5)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(1, 0)); } TEST(NDIterableArrayTest, RankTwoContiguous) { auto array = tensorstore::MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); Arena arena; auto iterable = GetArrayNDIterable(array, &arena); MultiNDIterator<1, true> multi_iterator(array.shape(), {}, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(2, 3)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(-1, 1)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(1, 1)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(1, 6)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(0, 1)); EXPECT_EQ(IterationBufferKind::kContiguous, multi_iterator.buffer_kind); EXPECT_EQ(false, multi_iterator.empty); EXPECT_THAT(multi_iterator.block_shape, ::testing::ElementsAre(1, ExpectedBlockSize(6))); EXPECT_THAT(multi_iterator.ResetAtBeginning(), ::testing::ElementsAre(1, ExpectedBlockSize(6))); absl::Status status; EXPECT_TRUE(multi_iterator.GetBlock({1, ExpectedBlockSize(6)}, &status)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(0, 0)); EXPECT_EQ(absl::OkStatus(), status); EXPECT_EQ(array.data(), multi_iterator.block_pointers()[0].pointer); EXPECT_EQ(sizeof(int), multi_iterator.block_pointers()[0].inner_byte_stride); EXPECT_THAT(multi_iterator.StepForward({1, 6}), ::testing::ElementsAre(0, 6)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(1, 0)); } TEST(NDIterableArrayTest, RankTwoTranspose) { auto array = tensorstore::MakeArray<int>({{1, 2, 3}, {4, 5, 6}}); Arena arena; auto iterable = GetArrayNDIterable(array, &arena); MultiNDIterator<1, true> multi_iterator( array.shape(), tensorstore::fortran_order, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(2, 3)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(1, 0)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(1, 1)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(3, 2)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(1, 0)); EXPECT_EQ(IterationBufferKind::kStrided, multi_iterator.buffer_kind); EXPECT_EQ(false, multi_iterator.empty); EXPECT_THAT( multi_iterator.block_shape, ::testing::ElementsAre(ExpectedBlockSize(3), ExpectedBlockSize(2))); EXPECT_THAT( multi_iterator.ResetAtBeginning(), ::testing::ElementsAre(ExpectedBlockSize(3), ExpectedBlockSize(2))); absl::Status status; EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(0, 0)); #ifdef TENSORSTORE_INTERNAL_NDITERABLE_TEST_UNIT_BLOCK_SIZE GTEST_SKIP(); #endif EXPECT_TRUE(multi_iterator.GetBlock({3, 2}, &status)); EXPECT_EQ(absl::OkStatus(), status); EXPECT_EQ(&array(0, 0), multi_iterator.block_pointers()[0].pointer); EXPECT_EQ(sizeof(int) * 3, multi_iterator.block_pointers()[0].inner_byte_stride); EXPECT_THAT(multi_iterator.StepForward({3, 2}), ::testing::ElementsAre(0, 2)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(3, 0)); } TEST(NDIterableArrayTest, SkipSize1Dimension) { unsigned char data[300]; Arena arena; Array<unsigned char> array = {&data[150], StridedLayout<>({2, 1, 3}, {5, 10, -20})}; auto iterable = GetArrayNDIterable(UnownedToShared(array), &arena); MultiNDIterator<1, true> multi_iterator(array.shape(), {}, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(2, 1, 3)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(2, 0)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(1, 0, -1)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(3, 2)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(1, 2, 0)); } TEST(NDIterableArrayTest, SkipZeroByteStride) { unsigned char data[300]; Arena arena; Array<unsigned char> array = {&data[150], StridedLayout<>({2, 3}, {5, 0})}; auto iterable = GetArrayNDIterable(UnownedToShared(array), &arena); MultiNDIterator<1, true> multi_iterator( array.shape(), tensorstore::skip_repeated_elements, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(2, 3)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(-1, 0)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(1, 0)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(1, 2)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(1, 0)); } TEST(NDIterableArrayTest, FortranOrderArray) { auto array = tensorstore::AllocateArray<int>({2, 3}, tensorstore::fortran_order); Arena arena; auto iterable = GetArrayNDIterable(array, &arena); MultiNDIterator<1, true> multi_iterator( array.shape(), tensorstore::skip_repeated_elements, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(2, 3)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(-1, 0)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(1, 1)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(1, 6)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(1, 0)); } TEST(NDIterableArrayTest, ReversedDimensions) { auto orig_array = tensorstore::AllocateArray<int>({3, 4, 5}); auto orig_shape = orig_array.shape(); auto orig_strides = orig_array.byte_strides(); Array<int> array( &orig_array(0, 4 - 1, 5 - 1), StridedLayout<>({orig_shape[2], orig_shape[0], orig_shape[1]}, {-orig_strides[2], orig_strides[0], -orig_strides[1]})); Arena arena; auto iterable = GetArrayNDIterable(UnownedToShared(array), &arena); MultiNDIterator<1, true> multi_iterator( array.shape(), tensorstore::skip_repeated_elements, {{iterable.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(5, 3, 4)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(-1, 0)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(-1, 1, -1)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(1, 3 * 4 * 5)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(1, 2, 0)); EXPECT_EQ(IterationBufferKind::kContiguous, multi_iterator.buffer_kind); EXPECT_EQ(false, multi_iterator.empty); EXPECT_THAT(multi_iterator.block_shape, ::testing::ElementsAre(1, ExpectedBlockSize(3 * 4 * 5))); EXPECT_THAT(multi_iterator.ResetAtBeginning(), ::testing::ElementsAre(1, ExpectedBlockSize(3 * 4 * 5))); absl::Status status; EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(0, 0)); EXPECT_TRUE( multi_iterator.GetBlock({1, ExpectedBlockSize(3 * 4 * 5)}, &status)); EXPECT_EQ(absl::OkStatus(), status); EXPECT_EQ(orig_array.byte_strided_pointer(), multi_iterator.block_pointers()[0].pointer); EXPECT_EQ(sizeof(int), multi_iterator.block_pointers()[0].inner_byte_stride); } TEST(NDIterableArrayTest, MultipleArrays) { auto array_a = tensorstore::AllocateArray<int>({2, 3}, tensorstore::c_order); auto array_b = tensorstore::AllocateArray<int>({2, 3}, tensorstore::fortran_order); Arena arena; auto iterable_a = GetArrayNDIterable(array_a, &arena); auto iterable_b = GetArrayNDIterable(array_b, &arena); MultiNDIterator<2, true> multi_iterator( array_a.shape(), tensorstore::skip_repeated_elements, {{iterable_a.get(), iterable_b.get()}}, &arena); EXPECT_THAT(multi_iterator.shape, ::testing::ElementsAre(2, 3)); EXPECT_THAT(multi_iterator.iteration_dimensions, ::testing::ElementsAre(0, 1)); EXPECT_THAT(multi_iterator.directions, ::testing::ElementsAre(1, 1)); EXPECT_THAT(multi_iterator.iteration_shape, ::testing::ElementsAre(2, 3)); EXPECT_THAT(multi_iterator.full_iteration_dimensions, ::testing::ElementsAre(0, 1)); EXPECT_EQ(IterationBufferKind::kStrided, multi_iterator.buffer_kind); EXPECT_EQ(false, multi_iterator.empty); EXPECT_THAT( multi_iterator.block_shape, ::testing::ElementsAre(ExpectedBlockSize(2), ExpectedBlockSize(3))); EXPECT_THAT( multi_iterator.ResetAtBeginning(), ::testing::ElementsAre(ExpectedBlockSize(2), ExpectedBlockSize(3))); absl::Status status; EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(0, 0)); #ifdef TENSORSTORE_INTERNAL_NDITERABLE_TEST_UNIT_BLOCK_SIZE GTEST_SKIP(); #endif EXPECT_TRUE(multi_iterator.GetBlock({2, 3}, &status)); EXPECT_EQ(absl::OkStatus(), status); EXPECT_EQ(&array_a(0, 0), multi_iterator.block_pointers()[0].pointer); EXPECT_EQ(&array_b(0, 0), multi_iterator.block_pointers()[1].pointer); EXPECT_EQ(sizeof(int), multi_iterator.block_pointers()[0].inner_byte_stride); EXPECT_EQ(sizeof(int) * 2, multi_iterator.block_pointers()[1].inner_byte_stride); EXPECT_THAT(multi_iterator.StepForward({2, 3}), ::testing::ElementsAre(0, 3)); EXPECT_THAT(multi_iterator.position(), ::testing::ElementsAre(2, 0)); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/nditerable_array.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/nditerable_array_test.cc
4f887a6430414cd6088e1743555015b10f116d50
7b28c983-e40f-40d6-8d0d-bb13ca2bdef9
cpp
google/arolla
oblivious
arolla/decision_forest/pointwise_evaluation/oblivious.cc
arolla/decision_forest/pointwise_evaluation/oblivious_test.cc
#include "arolla/decision_forest/pointwise_evaluation/oblivious.h" #include <cstddef> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/log/check.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/split_condition.h" namespace arolla { namespace { bool IsPowerOf2(size_t x) { return (x & (x - 1)) == 0; } struct StackEntry { DecisionTreeNodeId node_id; int depth; }; template <typename CallbackFn> bool TraverseTree(const DecisionTree& tree, CallbackFn callback) { std::vector<StackEntry> stack; stack.reserve(32); stack.push_back(StackEntry{GetTreeRootId(tree), 0}); while (!stack.empty()) { auto [node_id, depth] = stack.back(); stack.pop_back(); if (!callback(node_id, depth)) { return false; } if (!node_id.is_leaf()) { const auto& node = tree.split_nodes[node_id.split_node_index()]; stack.push_back(StackEntry{node.child_if_true, depth + 1}); stack.push_back(StackEntry{node.child_if_false, depth + 1}); } } return true; } } std::optional<ObliviousDecisionTree> ToObliviousTree(const DecisionTree& tree) { size_t region_count = tree.adjustments.size(); if (!IsPowerOf2(region_count)) { return std::nullopt; } size_t depth = region_count ? __builtin_ctz(region_count) : 0; std::vector<std::shared_ptr<const SplitCondition>> layer_splits; layer_splits.reserve(depth); std::vector<float> adjustments; adjustments.reserve(region_count); auto process_node = [&](DecisionTreeNodeId node_id, int current_depth) { if (node_id.is_leaf()) { if (current_depth != depth) { return false; } adjustments.push_back(tree.adjustments[node_id.adjustment_index()] * tree.weight); } else { if (current_depth >= depth) { return false; } const auto& node = tree.split_nodes[node_id.split_node_index()]; if (layer_splits.size() == current_depth) { layer_splits.push_back(node.condition); } else { DCHECK_LT(current_depth, layer_splits.size()); if (*layer_splits[current_depth] != *node.condition) { return false; } } } return true; }; if (!TraverseTree(tree, process_node)) { return std::nullopt; } return ObliviousDecisionTree{tree.tag, std::move(layer_splits), std::move(adjustments)}; } }
#include "arolla/decision_forest/pointwise_evaluation/oblivious.h" #include <limits> #include <memory> #include <optional> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/split_condition.h" #include "arolla/decision_forest/split_conditions/interval_split_condition.h" namespace arolla { namespace { using ::testing::ElementsAre; constexpr auto S = DecisionTreeNodeId::SplitNodeId; constexpr auto A = DecisionTreeNodeId::AdjustmentId; constexpr float inf = std::numeric_limits<float>::infinity(); std::shared_ptr<SplitCondition> Cond(int input_id, float left, float right) { return std::make_shared<IntervalSplitCondition>(input_id, left, right); } TEST(ObliviousTest, Errors) { { DecisionTree tree; tree.split_nodes = {{A(0), S(1), Cond(0, -inf, 1.0)}, {A(1), A(2), Cond(0, -1.0, inf)}}; tree.adjustments = {0.0, 1.0, 2.0}; EXPECT_EQ(ToObliviousTree(tree), std::nullopt); } { DecisionTree tree; tree.split_nodes = {{A(0), S(1), Cond(0, -inf, 1.0)}, {S(2), A(2), Cond(0, -1.0, inf)}, {A(1), A(3), Cond(0, -1.0, inf)}}; tree.adjustments = {0.0, 1.0, 2.0, 3.0}; EXPECT_EQ(ToObliviousTree(tree), std::nullopt); } { DecisionTree tree; tree.split_nodes = {{S(2), S(1), Cond(0, -inf, 1.0)}, {A(1), A(2), Cond(0, -1.0, inf)}, {A(0), A(3), Cond(0, 1.0, inf)}}; tree.adjustments = {0.0, 1.0, 2.0, 3.0}; EXPECT_EQ(ToObliviousTree(tree), std::nullopt); } } TEST(ObliviousTest, Ok) { { DecisionTree tree; tree.adjustments = {2.0}; tree.weight = 0.5; auto oblivious_tree = ToObliviousTree(tree); ASSERT_TRUE(oblivious_tree.has_value()); EXPECT_THAT(oblivious_tree->layer_splits, ElementsAre()); EXPECT_THAT(oblivious_tree->adjustments, ElementsAre(1.0)); } { DecisionTree tree; tree.split_nodes = {{A(0), A(1), Cond(0, -inf, 1.0)}}; tree.adjustments = {7.0, 3.0}; tree.weight = 2.0; auto oblivious_tree = ToObliviousTree(tree); ASSERT_TRUE(oblivious_tree.has_value()); EXPECT_EQ(oblivious_tree->layer_splits.size(), 1); EXPECT_EQ(*oblivious_tree->layer_splits[0], *Cond(0, -inf, 1.0)); EXPECT_THAT(oblivious_tree->adjustments, ElementsAre(14.0, 6.0)); } { DecisionTree tree; tree.split_nodes = {{S(2), S(1), Cond(0, -inf, 1.0)}, {A(1), A(2), Cond(0, -1.0, inf)}, {A(0), A(3), Cond(0, -1.0, inf)}}; tree.adjustments = {0.0, 1.0, 2.0, 3.0}; auto oblivious_tree = ToObliviousTree(tree); ASSERT_TRUE(oblivious_tree.has_value()); EXPECT_EQ(oblivious_tree->layer_splits.size(), 2); EXPECT_EQ(*oblivious_tree->layer_splits[0], *Cond(0, -inf, 1.0)); EXPECT_EQ(*oblivious_tree->layer_splits[1], *Cond(0, -1.0, inf)); EXPECT_THAT(oblivious_tree->adjustments, ElementsAre(0.0, 3.0, 1.0, 2.0)); } } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/pointwise_evaluation/oblivious.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/decision_forest/pointwise_evaluation/oblivious_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
0cabf035-1484-418d-8410-4cd1d9607b33
cpp
google/quiche
qpack_send_stream
quiche/quic/core/qpack/qpack_send_stream.cc
quiche/quic/core/qpack/qpack_send_stream_test.cc
#include "quiche/quic/core/qpack/qpack_send_stream.h" #include "absl/base/macros.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_session.h" namespace quic { QpackSendStream::QpackSendStream(QuicStreamId id, QuicSession* session, uint64_t http3_stream_type) : QuicStream(id, session, true, WRITE_UNIDIRECTIONAL), http3_stream_type_(http3_stream_type), stream_type_sent_(false) {} void QpackSendStream::OnStreamReset(const QuicRstStreamFrame& ) { QUIC_BUG(quic_bug_10805_1) << "OnStreamReset() called for write unidirectional stream."; } bool QpackSendStream::OnStopSending(QuicResetStreamError ) { stream_delegate()->OnStreamError( QUIC_HTTP_CLOSED_CRITICAL_STREAM, "STOP_SENDING received for QPACK send stream"); return false; } void QpackSendStream::WriteStreamData(absl::string_view data) { QuicConnection::ScopedPacketFlusher flusher(session()->connection()); MaybeSendStreamType(); WriteOrBufferData(data, false, nullptr); } uint64_t QpackSendStream::NumBytesBuffered() const { return QuicStream::BufferedDataBytes(); } void QpackSendStream::MaybeSendStreamType() { if (!stream_type_sent_) { char type[sizeof(http3_stream_type_)]; QuicDataWriter writer(ABSL_ARRAYSIZE(type), type); writer.WriteVarInt62(http3_stream_type_); WriteOrBufferData(absl::string_view(writer.data(), writer.length()), false, nullptr); stream_type_sent_ = true; } } }
#include "quiche/quic/core/qpack/qpack_send_stream.h" #include <memory> #include <string> #include <vector> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/crypto/null_encrypter.h" #include "quiche/quic/core/http/http_constants.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_config_peer.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_spdy_session_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { namespace { using ::testing::_; using ::testing::AnyNumber; using ::testing::Invoke; using ::testing::StrictMock; struct TestParams { TestParams(const ParsedQuicVersion& version, Perspective perspective) : version(version), perspective(perspective) { QUIC_LOG(INFO) << "TestParams: version: " << ParsedQuicVersionToString(version) << ", perspective: " << perspective; } TestParams(const TestParams& other) : version(other.version), perspective(other.perspective) {} ParsedQuicVersion version; Perspective perspective; }; std::string PrintToString(const TestParams& tp) { return absl::StrCat( ParsedQuicVersionToString(tp.version), "_", (tp.perspective == Perspective::IS_CLIENT ? "client" : "server")); } std::vector<TestParams> GetTestParams() { std::vector<TestParams> params; ParsedQuicVersionVector all_supported_versions = AllSupportedVersions(); for (const auto& version : AllSupportedVersions()) { if (!VersionUsesHttp3(version.transport_version)) { continue; } for (Perspective p : {Perspective::IS_SERVER, Perspective::IS_CLIENT}) { params.emplace_back(version, p); } } return params; } class QpackSendStreamTest : public QuicTestWithParam<TestParams> { public: QpackSendStreamTest() : connection_(new StrictMock<MockQuicConnection>( &helper_, &alarm_factory_, perspective(), SupportedVersions(GetParam().version))), session_(connection_) { EXPECT_CALL(session_, OnCongestionWindowChange(_)).Times(AnyNumber()); session_.Initialize(); connection_->SetEncrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<NullEncrypter>(connection_->perspective())); if (connection_->version().SupportsAntiAmplificationLimit()) { QuicConnectionPeer::SetAddressValidated(connection_); } QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow( session_.config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesUnidirectional( session_.config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedMaxUnidirectionalStreams(session_.config(), 3); session_.OnConfigNegotiated(); qpack_send_stream_ = QuicSpdySessionPeer::GetQpackDecoderSendStream(&session_); ON_CALL(session_, WritevData(_, _, _, _, _, _)) .WillByDefault(Invoke(&session_, &MockQuicSpdySession::ConsumeData)); } Perspective perspective() const { return GetParam().perspective; } MockQuicConnectionHelper helper_; MockAlarmFactory alarm_factory_; StrictMock<MockQuicConnection>* connection_; StrictMock<MockQuicSpdySession> session_; QpackSendStream* qpack_send_stream_; }; INSTANTIATE_TEST_SUITE_P(Tests, QpackSendStreamTest, ::testing::ValuesIn(GetTestParams()), ::testing::PrintToStringParamName()); TEST_P(QpackSendStreamTest, WriteStreamTypeOnlyFirstTime) { std::string data = "data"; EXPECT_CALL(session_, WritevData(_, 1, _, _, _, _)); EXPECT_CALL(session_, WritevData(_, data.length(), _, _, _, _)); qpack_send_stream_->WriteStreamData(absl::string_view(data)); EXPECT_CALL(session_, WritevData(_, data.length(), _, _, _, _)); qpack_send_stream_->WriteStreamData(absl::string_view(data)); EXPECT_CALL(session_, WritevData(_, _, _, _, _, _)).Times(0); qpack_send_stream_->MaybeSendStreamType(); } TEST_P(QpackSendStreamTest, StopSendingQpackStream) { EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_CLOSED_CRITICAL_STREAM, _, _)); qpack_send_stream_->OnStopSending( QuicResetStreamError::FromInternal(QUIC_STREAM_CANCELLED)); } TEST_P(QpackSendStreamTest, ReceiveDataOnSendStream) { QuicStreamFrame frame(qpack_send_stream_->id(), false, 0, "test"); EXPECT_CALL( *connection_, CloseConnection(QUIC_DATA_RECEIVED_ON_WRITE_UNIDIRECTIONAL_STREAM, _, _)); qpack_send_stream_->OnStreamFrame(frame); } TEST_P(QpackSendStreamTest, GetSendWindowSizeFromSession) { EXPECT_NE(session_.GetFlowControlSendWindowSize(qpack_send_stream_->id()), std::numeric_limits<QuicByteCount>::max()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_send_stream.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_send_stream_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
2bc2b96f-d502-4c20-9eae-a838f751e478
cpp
google/libphonenumber
logger
cpp/src/phonenumbers/logger.cc
cpp/test/phonenumbers/logger_test.cc
#include "phonenumbers/logger.h" #include <cstddef> namespace i18n { namespace phonenumbers { Logger* Logger::impl_ = NULL; } }
#include <string> #include <gtest/gtest.h> #include "phonenumbers/base/memory/scoped_ptr.h" #include "phonenumbers/default_logger.h" #include "phonenumbers/logger.h" namespace i18n { namespace phonenumbers { class StringLogger : public Logger { public: virtual ~StringLogger() {} const string& message() const { return msg_; } virtual void WriteMessage(const string& msg) { msg_ += msg; } private: string msg_; }; class LoggerTest : public ::testing::Test { protected: virtual void SetUp() { test_logger_.reset(new StringLogger()); test_logger_->set_level(LOG_INFO); old_logger_ = Logger::mutable_logger_impl(); Logger::set_logger_impl(test_logger_.get()); } virtual void TearDown() { Logger::set_logger_impl(old_logger_); } scoped_ptr<StringLogger> test_logger_; Logger* old_logger_; }; TEST_F(LoggerTest, LoggerIgnoresHigherVerbosity) { LOG(LOG_DEBUG) << "Hello"; EXPECT_EQ("", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsNewline) { LOG(LOG_INFO) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerLogsEqualVerbosity) { LOG(LOG_INFO) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerLogsMoreSeriousMessages) { LOG(LOG_WARNING) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerConcatenatesMessages) { LOG(LOG_INFO) << "Hello"; ASSERT_EQ("Hello\n", test_logger_->message()); LOG(LOG_INFO) << " World"; EXPECT_EQ("Hello\n World\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerHandlesDifferentTypes) { LOG(LOG_INFO) << "Hello " << 42; EXPECT_EQ("Hello 42\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerIgnoresVerboseLogs) { VLOG(1) << "Hello"; EXPECT_EQ("", test_logger_->message()); VLOG(0) << "Hello"; EXPECT_EQ("", test_logger_->message()); test_logger_->set_level(LOG_DEBUG); VLOG(1) << "Hello"; EXPECT_EQ("", test_logger_->message()); VLOG(0) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerShowsDebugLogsAtDebugLevel) { test_logger_->set_level(LOG_DEBUG); LOG(LOG_DEBUG) << "Debug hello"; EXPECT_EQ("Debug hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsDebugLogsWhenVerbositySet) { int verbose_log_level = 2; test_logger_->set_verbosity_level(verbose_log_level); LOG(LOG_DEBUG) << "Debug hello"; EXPECT_EQ("Debug hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsErrorLogsWhenVerbositySet) { int verbose_log_level = 2; test_logger_->set_verbosity_level(verbose_log_level); LOG(ERROR) << "Error hello"; EXPECT_EQ("Error hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsLogsAccordingToVerbosity) { int verbose_log_level = 2; test_logger_->set_verbosity_level(verbose_log_level); VLOG(verbose_log_level + 1) << "Hello 3"; EXPECT_EQ("", test_logger_->message()); VLOG(verbose_log_level - 1) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); VLOG(verbose_log_level) << "Hello 2"; EXPECT_EQ("Hello\nHello 2\n", test_logger_->message()); } } }
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/src/phonenumbers/logger.cc
https://github.com/google/libphonenumber/blob/9aa9aaa39ad8098aef56071d2df4f6f8d251c98b/cpp/test/phonenumbers/logger_test.cc
9aa9aaa39ad8098aef56071d2df4f6f8d251c98b
c75468e1-4f67-47b9-82b2-6d1dc12cb6bb
cpp
google/glog
logging
src/logging.cc
src/logging_unittest.cc
#define _GNU_SOURCE 1 #include "glog/logging.h" #include <algorithm> #include <cassert> #include <chrono> #include <cstddef> #include <cstdint> #include <iomanip> #include <iterator> #include <memory> #include <mutex> #include <shared_mutex> #include <string> #include <thread> #include <tuple> #include <type_traits> #include <utility> #include "config.h" #include "glog/platform.h" #include "glog/raw_logging.h" #include "stacktrace.h" #include "utilities.h" #ifdef GLOG_OS_WINDOWS # include "windows/dirent.h" #else # include <dirent.h> #endif #include <fcntl.h> #include <sys/stat.h> #include <cctype> #include <cerrno> #include <climits> #include <cstdarg> #include <cstdio> #include <cstdlib> #include <ctime> #include <regex> #include <sstream> #include <vector> #ifdef HAVE__CHSIZE_S # include <io.h> #endif #ifdef HAVE_PWD_H # include <pwd.h> #endif #ifdef HAVE_SYS_UTSNAME_H # include <sys/utsname.h> #endif #ifdef HAVE_SYSLOG_H # include <syslog.h> #endif #ifdef HAVE_SYS_TYPES_H # include <sys/types.h> #endif #ifdef HAVE_UNISTD_H # include <unistd.h> #endif #ifndef HAVE_MODE_T typedef int mode_t; #endif using std::dec; using std::hex; using std::min; using std::ostream; using std::ostringstream; using std::setfill; using std::setw; using std::string; using std::vector; using std::fclose; using std::fflush; using std::FILE; using std::fprintf; using std::fwrite; using std::perror; #ifdef __QNX__ using std::fdopen; #endif #define EXCLUSIVE_LOCKS_REQUIRED(mu) enum { PATH_SEPARATOR = '/' }; #ifndef HAVE_PREAD static ssize_t pread(int fd, void* buf, size_t count, off_t offset) { off_t orig_offset = lseek(fd, 0, SEEK_CUR); if (orig_offset == (off_t)-1) return -1; if (lseek(fd, offset, SEEK_CUR) == (off_t)-1) return -1; ssize_t len = read(fd, buf, count); if (len < 0) return len; if (lseek(fd, orig_offset, SEEK_SET) == (off_t)-1) return -1; return len; } #endif #ifndef HAVE_PWRITE static ssize_t pwrite(int fd, void* buf, size_t count, off_t offset) { off_t orig_offset = lseek(fd, 0, SEEK_CUR); if (orig_offset == (off_t)-1) return -1; if (lseek(fd, offset, SEEK_CUR) == (off_t)-1) return -1; ssize_t len = write(fd, buf, count); if (len < 0) return len; if (lseek(fd, orig_offset, SEEK_SET) == (off_t)-1) return -1; return len; } #endif static void GetHostName(string* hostname) { #if defined(HAVE_SYS_UTSNAME_H) struct utsname buf; if (uname(&buf) < 0) { *buf.nodename = '\0'; } *hostname = buf.nodename; #elif defined(GLOG_OS_WINDOWS) char buf[MAX_COMPUTERNAME_LENGTH + 1]; DWORD len = MAX_COMPUTERNAME_LENGTH + 1; if (GetComputerNameA(buf, &len)) { *hostname = buf; } else { hostname->clear(); } #else # warning There is no way to retrieve the host name. *hostname = "(unknown)"; #endif } static bool TerminalSupportsColor() { bool term_supports_color = false; #ifdef GLOG_OS_WINDOWS term_supports_color = true; #else const char* const term = getenv("TERM"); if (term != nullptr && term[0] != '\0') { term_supports_color = !strcmp(term, "xterm") || !strcmp(term, "xterm-color") || !strcmp(term, "xterm-256color") || !strcmp(term, "screen-256color") || !strcmp(term, "konsole") || !strcmp(term, "konsole-16color") || !strcmp(term, "konsole-256color") || !strcmp(term, "screen") || !strcmp(term, "linux") || !strcmp(term, "cygwin"); } #endif return term_supports_color; } #if defined(__cpp_lib_unreachable) && (__cpp_lib_unreachable >= 202202L) # define GLOG_UNREACHABLE std::unreachable() #elif !defined(NDEBUG) # define GLOG_UNREACHABLE assert(false) #else # if defined(_MSC_VER) # define GLOG_UNREACHABLE __assume(false) # elif defined(__has_builtin) # if __has_builtin(unreachable) # define GLOG_UNREACHABLE __builtin_unreachable() # endif # endif # if !defined(GLOG_UNREACHABLE) && defined(__GNUG__) # define GLOG_UNREACHABLE __builtin_unreachable() # endif # if !defined(GLOG_UNREACHABLE) # define GLOG_UNREACHABLE # endif #endif namespace google { GLOG_NO_EXPORT std::string StrError(int err); enum GLogColor { COLOR_DEFAULT, COLOR_RED, COLOR_GREEN, COLOR_YELLOW }; static GLogColor SeverityToColor(LogSeverity severity) { switch (severity) { case GLOG_INFO: return COLOR_DEFAULT; case GLOG_WARNING: return COLOR_YELLOW; case GLOG_ERROR: case GLOG_FATAL: return COLOR_RED; } GLOG_UNREACHABLE; } #ifdef GLOG_OS_WINDOWS static WORD GetColorAttribute(GLogColor color) { switch (color) { case COLOR_RED: return FOREGROUND_RED; case COLOR_GREEN: return FOREGROUND_GREEN; case COLOR_YELLOW: return FOREGROUND_RED | FOREGROUND_GREEN; case COLOR_DEFAULT: break; } return 0; } #else static const char* GetAnsiColorCode(GLogColor color) { switch (color) { case COLOR_RED: return "1"; case COLOR_GREEN: return "2"; case COLOR_YELLOW: return "3"; case COLOR_DEFAULT: return ""; }; return nullptr; } #endif static uint32 MaxLogSize() { return (FLAGS_max_log_size > 0 && FLAGS_max_log_size < 4096 ? FLAGS_max_log_size : 1); } const size_t LogMessage::kMaxLogMessageLen = 30000; namespace logging { namespace internal { struct LogMessageData { LogMessageData(); int preserved_errno_; char message_text_[LogMessage::kMaxLogMessageLen + 1]; LogMessage::LogStream stream_; LogSeverity severity_; int line_; void (LogMessage::*send_method_)(); union { LogSink* sink_; std::vector<std::string>* outvec_; std::string* message_; }; size_t num_prefix_chars_; size_t num_chars_to_log_; size_t num_chars_to_syslog_; const char* basename_; const char* fullname_; bool has_been_flushed_; bool first_fatal_; std::thread::id thread_id_; LogMessageData(const LogMessageData&) = delete; LogMessageData& operator=(const LogMessageData&) = delete; }; } } static std::mutex log_mutex; int64 LogMessage::num_messages_[NUM_SEVERITIES] = {0, 0, 0, 0}; static bool stop_writing = false; const char* const LogSeverityNames[] = {"INFO", "WARNING", "ERROR", "FATAL"}; static bool exit_on_dfatal = true; const char* GetLogSeverityName(LogSeverity severity) { return LogSeverityNames[severity]; } static bool SendEmailInternal(const char* dest, const char* subject, const char* body, bool use_logging); base::Logger::~Logger() = default; namespace { constexpr std::intmax_t kSecondsInDay = 60 * 60 * 24; constexpr std::intmax_t kSecondsInWeek = kSecondsInDay * 7; class PrefixFormatter { public: PrefixFormatter(PrefixFormatterCallback callback, void* data) noexcept : version{V2}, callback_v2{callback}, data{data} {} void operator()(std::ostream& s, const LogMessage& message) const { switch (version) { case V2: callback_v2(s, message, data); break; } } PrefixFormatter(const PrefixFormatter& other) = delete; PrefixFormatter& operator=(const PrefixFormatter& other) = delete; private: enum Version { V2 } version; union { PrefixFormatterCallback callback_v2; }; void* data; }; std::unique_ptr<PrefixFormatter> g_prefix_formatter; class LogFileObject : public base::Logger { public: LogFileObject(LogSeverity severity, const char* base_filename); ~LogFileObject() override; void Write(bool force_flush, const std::chrono::system_clock::time_point& timestamp, const char* message, size_t message_len) override; void SetBasename(const char* basename); void SetExtension(const char* ext); void SetSymlinkBasename(const char* symlink_basename); void Flush() override; uint32 LogSize() override { std::lock_guard<std::mutex> l{mutex_}; return file_length_; } void FlushUnlocked(const std::chrono::system_clock::time_point& now); private: static const uint32 kRolloverAttemptFrequency = 0x20; std::mutex mutex_; bool base_filename_selected_; string base_filename_; string symlink_basename_; string filename_extension_; std::unique_ptr<FILE> file_; LogSeverity severity_; uint32 bytes_since_flush_{0}; uint32 dropped_mem_length_{0}; uint32 file_length_{0}; unsigned int rollover_attempt_; std::chrono::system_clock::time_point next_flush_time_; std::chrono::system_clock::time_point start_time_; bool CreateLogfile(const string& time_pid_string); }; class LogCleaner { public: LogCleaner(); void Enable(const std::chrono::minutes& overdue); void Disable(); void Run(const std::chrono::system_clock::time_point& current_time, bool base_filename_selected, const string& base_filename, const string& filename_extension); bool enabled() const { return enabled_; } private: vector<string> GetOverdueLogNames( string log_directory, const std::chrono::system_clock::time_point& current_time, const string& base_filename, const string& filename_extension) const; bool IsLogFromCurrentProject(const string& filepath, const string& base_filename, const string& filename_extension) const; bool IsLogLastModifiedOver( const string& filepath, const std::chrono::system_clock::time_point& current_time) const; bool enabled_{false}; std::chrono::minutes overdue_{ std::chrono::duration<int, std::ratio<kSecondsInWeek>>{1}}; std::chrono::system_clock::time_point next_cleanup_time_; }; LogCleaner log_cleaner; } class LogDestination { public: friend class LogMessage; friend void ReprintFatalMessage(); friend base::Logger* base::GetLogger(LogSeverity); friend void base::SetLogger(LogSeverity, base::Logger*); static void SetLogDestination(LogSeverity severity, const char* base_filename); static void SetLogSymlink(LogSeverity severity, const char* symlink_basename); static void AddLogSink(LogSink* destination); static void RemoveLogSink(LogSink* destination); static void SetLogFilenameExtension(const char* filename_extension); static void SetStderrLogging(LogSeverity min_severity); static void SetEmailLogging(LogSeverity min_severity, const char* addresses); static void LogToStderr(); static void FlushLogFiles(int min_severity); static void FlushLogFilesUnsafe(int min_severity); static const int kNetworkBytes = 1400; static const string& hostname(); static const bool& terminal_supports_color() { return terminal_supports_color_; } static void DeleteLogDestinations(); LogDestination(LogSeverity severity, const char* base_filename); private: #if defined(__cpp_lib_shared_mutex) && (__cpp_lib_shared_mutex >= 201505L) using SinkMutex = std::shared_mutex; using SinkLock = std::lock_guard<SinkMutex>; #else using SinkMutex = std::shared_timed_mutex; using SinkLock = std::unique_lock<SinkMutex>; #endif friend std::default_delete<LogDestination>; ~LogDestination(); static void MaybeLogToStderr(LogSeverity severity, const char* message, size_t message_len, size_t prefix_len); static void MaybeLogToEmail(LogSeverity severity, const char* message, size_t len); static void MaybeLogToLogfile( LogSeverity severity, const std::chrono::system_clock::time_point& timestamp, const char* message, size_t len); static void LogToAllLogfiles( LogSeverity severity, const std::chrono::system_clock::time_point& timestamp, const char* message, size_t len); static void LogToSinks(LogSeverity severity, const char* full_filename, const char* base_filename, int line, const LogMessageTime& time, const char* message, size_t message_len); static void WaitForSinks(logging::internal::LogMessageData* data); static LogDestination* log_destination(LogSeverity severity); base::Logger* GetLoggerImpl() const { return logger_; } void SetLoggerImpl(base::Logger* logger); void ResetLoggerImpl() { SetLoggerImpl(&fileobject_); } LogFileObject fileobject_; base::Logger* logger_; static std::unique_ptr<LogDestination> log_destinations_[NUM_SEVERITIES]; static std::underlying_type_t<LogSeverity> email_logging_severity_; static string addresses_; static string hostname_; static bool terminal_supports_color_; static std::unique_ptr<vector<LogSink*>> sinks_; static SinkMutex sink_mutex_; LogDestination(const LogDestination&) = delete; LogDestination& operator=(const LogDestination&) = delete; }; std::underlying_type_t<LogSeverity> LogDestination::email_logging_severity_ = 99999; string LogDestination::addresses_; string LogDestination::hostname_; std::unique_ptr<vector<LogSink*>> LogDestination::sinks_; LogDestination::SinkMutex LogDestination::sink_mutex_; bool LogDestination::terminal_supports_color_ = TerminalSupportsColor(); const string& LogDestination::hostname() { if (hostname_.empty()) { GetHostName(&hostname_); if (hostname_.empty()) { hostname_ = "(unknown)"; } } return hostname_; } LogDestination::LogDestination(LogSeverity severity, const char* base_filename) : fileobject_(severity, base_filename), logger_(&fileobject_) {} LogDestination::~LogDestination() { ResetLoggerImpl(); } void LogDestination::SetLoggerImpl(base::Logger* logger) { if (logger_ == logger) { return; } if (logger_ && logger_ != &fileobject_) { delete logger_; } logger_ = logger; } inline void LogDestination::FlushLogFilesUnsafe(int min_severity) { std::for_each(std::next(std::begin(log_destinations_), min_severity), std::end(log_destinations_), [now = std::chrono::system_clock::now()]( std::unique_ptr<LogDestination>& log) { if (log != nullptr) { log->fileobject_.FlushUnlocked(now); } }); } inline void LogDestination::FlushLogFiles(int min_severity) { std::lock_guard<std::mutex> l{log_mutex}; for (int i = min_severity; i < NUM_SEVERITIES; i++) { LogDestination* log = log_destination(static_cast<LogSeverity>(i)); if (log != nullptr) { log->logger_->Flush(); } } } inline void LogDestination::SetLogDestination(LogSeverity severity, const char* base_filename) { std::lock_guard<std::mutex> l{log_mutex}; log_destination(severity)->fileobject_.SetBasename(base_filename); } inline void LogDestination::SetLogSymlink(LogSeverity severity, const char* symlink_basename) { CHECK_GE(severity, 0); CHECK_LT(severity, NUM_SEVERITIES); std::lock_guard<std::mutex> l{log_mutex}; log_destination(severity)->fileobject_.SetSymlinkBasename(symlink_basename); } inline void LogDestination::AddLogSink(LogSink* destination) { SinkLock l{sink_mutex_}; if (sinks_ == nullptr) sinks_ = std::make_unique<std::vector<LogSink*>>(); sinks_->push_back(destination); } inline void LogDestination::RemoveLogSink(LogSink* destination) { SinkLock l{sink_mutex_}; if (sinks_) { sinks_->erase(std::remove(sinks_->begin(), sinks_->end(), destination), sinks_->end()); } } inline void LogDestination::SetLogFilenameExtension(const char* ext) { std::lock_guard<std::mutex> l{log_mutex}; for (int severity = 0; severity < NUM_SEVERITIES; ++severity) { log_destination(static_cast<LogSeverity>(severity)) ->fileobject_.SetExtension(ext); } } inline void LogDestination::SetStderrLogging(LogSeverity min_severity) { std::lock_guard<std::mutex> l{log_mutex}; FLAGS_stderrthreshold = min_severity; } inline void LogDestination::LogToStderr() { SetStderrLogging(GLOG_INFO); for (int i = 0; i < NUM_SEVERITIES; ++i) { SetLogDestination(static_cast<LogSeverity>(i), ""); } } inline void LogDestination::SetEmailLogging(LogSeverity min_severity, const char* addresses) { std::lock_guard<std::mutex> l{log_mutex}; LogDestination::email_logging_severity_ = min_severity; LogDestination::addresses_ = addresses; } static void ColoredWriteToStderrOrStdout(FILE* output, LogSeverity severity, const char* message, size_t len) { bool is_stdout = (output == stdout); const GLogColor color = (LogDestination::terminal_supports_color() && ((!is_stdout && FLAGS_colorlogtostderr) || (is_stdout && FLAGS_colorlogtostdout))) ? SeverityToColor(severity) : COLOR_DEFAULT; if (COLOR_DEFAULT == color) { fwrite(message, len, 1, output); return; } #ifdef GLOG_OS_WINDOWS const HANDLE output_handle = GetStdHandle(is_stdout ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE); CONSOLE_SCREEN_BUFFER_INFO buffer_info; GetConsoleScreenBufferInfo(output_handle, &buffer_info); const WORD old_color_attrs = buffer_info.wAttributes; fflush(output); SetConsoleTextAttribute(output_handle, GetColorAttribute(color) | FOREGROUND_INTENSITY); fwrite(message, len, 1, output); fflush(output); SetConsoleTextAttribute(output_handle, old_color_attrs); #else fprintf(output, "\033[0;3%sm", GetAnsiColorCode(color)); fwrite(message, len, 1, output); fprintf(output, "\033[m"); #endif } static void ColoredWriteToStdout(LogSeverity severity, const char* message, size_t len) { FILE* output = stdout; if (severity >= FLAGS_stderrthreshold) { output = stderr; } ColoredWriteToStderrOrStdout(output, severity, message, len); } static void ColoredWriteToStderr(LogSeverity severity, const char* message, size_t len) { ColoredWriteToStderrOrStdout(stderr, severity, message, len); } static void WriteToStderr(const char* message, size_t len) { fwrite(message, len, 1, stderr); } inline void LogDestination::MaybeLogToStderr(LogSeverity severity, const char* message, size_t message_len, size_t prefix_len) { if ((severity >= FLAGS_stderrthreshold) || FLAGS_alsologtostderr) { ColoredWriteToStderr(severity, message, message_len); AlsoErrorWrite(severity, glog_internal_namespace_::ProgramInvocationShortName(), message + prefix_len); } } inline void LogDestination::MaybeLogToEmail(LogSeverity severity, const char* message, size_t len) { if (severity >= email_logging_severity_ || severity >= FLAGS_logemaillevel) { string to(FLAGS_alsologtoemail); if (!addresses_.empty()) { if (!to.empty()) { to += ","; } to += addresses_; } const string subject( string("[LOG] ") + LogSeverityNames[severity] + ": " + glog_internal_namespace_::ProgramInvocationShortName()); string body(hostname()); body += "\n\n"; body.append(message, len); SendEmailInternal(to.c_str(), subject.c_str(), body.c_str(), false); } } inline void LogDestination::MaybeLogToLogfile( LogSeverity severity, const std::chrono::system_clock::time_point& timestamp, const char* message, size_t len) { const bool should_flush = severity > FLAGS_logbuflevel; LogDestination* destination = log_destination(severity); destination->logger_->Write(should_flush, timestamp, message, len); } inline void LogDestination::LogToAllLogfiles( LogSeverity severity, const std::chrono::system_clock::time_point& timestamp, const char* message, size_t len) { if (FLAGS_logtostdout) { ColoredWriteToStdout(severity, message, len); } else if (FLAGS_logtostderr) { ColoredWriteToStderr(severity, message, len); } else { for (int i = severity; i >= 0; --i) { LogDestination::MaybeLogToLogfile(static_cast<LogSeverity>(i), timestamp, message, len); } } } inline void LogDestination::LogToSinks(LogSeverity severity, const char* full_filename, const char* base_filename, int line, const LogMessageTime& time, const char* message, size_t message_len) { std::shared_lock<SinkMutex> l{sink_mutex_}; if (sinks_) { for (size_t i = sinks_->size(); i-- > 0;) { (*sinks_)[i]->send(severity, full_filename, base_filename, line, time, message, message_len); } } } inline void LogDestination::WaitForSinks( logging::internal::LogMessageData* data) { std::shared_lock<SinkMutex> l{sink_mutex_}; if (sinks_) { for (size_t i = sinks_->size(); i-- > 0;) { (*sinks_)[i]->WaitTillSent(); } } const bool send_to_sink = (data->send_method_ == &LogMessage::SendToSink) || (data->send_method_ == &LogMessage::SendToSinkAndLog); if (send_to_sink && data->sink_ != nullptr) { data->sink_->WaitTillSent(); } } std::unique_ptr<LogDestination> LogDestination::log_destinations_[NUM_SEVERITIES]; inline LogDestination* LogDestination::log_destination(LogSeverity severity) { if (log_destinations_[severity] == nullptr) { log_destinations_[severity] = std::make_unique<LogDestination>(severity, nullptr); } return log_destinations_[severity].get(); } void LogDestination::DeleteLogDestinations() { for (auto& log_destination : log_destinations_) { log_destination.reset(); } SinkLock l{sink_mutex_}; sinks_.reset(); } namespace { std::string g_application_fingerprint; } void SetApplicationFingerprint(const std::string& fingerprint) { g_application_fingerprint = fingerprint; } namespace { #ifdef GLOG_OS_WINDOWS const char possible_dir_delim[] = {'\\', '/'}; #else const char possible_dir_delim[] = {'/'}; #endif string PrettyDuration(const std::chrono::duration<int>& secs) { std::stringstream result; int mins = secs.count() / 60; int hours = mins / 60; mins = mins % 60; int s = secs.count() % 60; result.fill('0'); result << hours << ':' << setw(2) << mins << ':' << setw(2) << s; return result.str(); } LogFileObject::LogFileObject(LogSeverity severity, const char* base_filename) : base_filename_selected_(base_filename != nullptr), base_filename_((base_filename != nullptr) ? base_filename : ""), symlink_basename_(glog_internal_namespace_::ProgramInvocationShortName()), filename_extension_(), severity_(severity), rollover_attempt_(kRolloverAttemptFrequency - 1), start_time_(std::chrono::system_clock::now()) {} LogFileObject::~LogFileObject() { std::lock_guard<std::mutex> l{mutex_}; file_ = nullptr; } void LogFileObject::SetBasename(const char* basename) { std::lock_guard<std::mutex> l{mutex_}; base_filename_selected_ = true; if (base_filename_ != basename) { if (file_ != nullptr) { file_ = nullptr; rollover_attempt_ = kRolloverAttemptFrequency - 1; } base_filename_ = basename; } } void LogFileObject::SetExtension(const char* ext) { std::lock_guard<std::mutex> l{mutex_}; if (filename_extension_ != ext) { if (file_ != nullptr) { file_ = nullptr; rollover_attempt_ = kRolloverAttemptFrequency - 1; } filename_extension_ = ext; } } void LogFileObject::SetSymlinkBasename(const char* symlink_basename) { std::lock_guard<std::mutex> l{mutex_}; symlink_basename_ = symlink_basename; } void LogFileObject::Flush() { std::lock_guard<std::mutex> l{mutex_}; FlushUnlocked(std::chrono::system_clock::now()); } void LogFileObject::FlushUnlocked( const std::chrono::system_clock::time_point& now) { if (file_ != nullptr) { fflush(file_.get()); bytes_since_flush_ = 0; } next_flush_time_ = now + std::chrono::duration_cast<std::chrono::system_clock::duration>( std::chrono::duration<int32>{FLAGS_logbufsecs}); } bool LogFileObject::CreateLogfile(const string& time_pid_string) { string string_filename = base_filename_; if (FLAGS_timestamp_in_logfile_name) { string_filename += time_pid_string; } string_filename += filename_extension_; const char* filename = string_filename.c_str(); int flags = O_WRONLY | O_CREAT; if (FLAGS_timestamp_in_logfile_name) { flags = flags | O_EXCL; } FileDescriptor fd{ open(filename, flags, static_cast<mode_t>(FLAGS_logfile_mode))}; if (!fd) return false; #ifdef HAVE_FCNTL fcntl(fd.get(), F_SETFD, FD_CLOEXEC); static struct flock w_lock; w_lock.l_type = F_WRLCK; w_lock.l_start = 0; w_lock.l_whence = SEEK_SET; w_lock.l_len = 0; int wlock_ret = fcntl(fd.get(), F_SETLK, &w_lock); if (wlock_ret == -1) { return false; } #endif file_.reset(fdopen(fd.release(), "a")); if (file_ == nullptr) { if (FLAGS_timestamp_in_logfile_name) { unlink(filename); } return false; } #ifdef GLOG_OS_WINDOWS if (!FLAGS_timestamp_in_logfile_name) { if (fseek(file_.get(), 0, SEEK_END) != 0) { return false; } } #endif if (!symlink_basename_.empty()) { const char* slash = strrchr(filename, PATH_SEPARATOR); const string linkname = symlink_basename_ + '.' + LogSeverityNames[severity_]; string linkpath; if (slash) linkpath = string( filename, static_cast<size_t>(slash - filename + 1)); linkpath += linkname; unlink(linkpath.c_str()); #if defined(GLOG_OS_WINDOWS) #elif defined(HAVE_UNISTD_H) const char* linkdest = slash ? (slash + 1) : filename; if (symlink(linkdest, linkpath.c_str()) != 0) { } if (!FLAGS_log_link.empty()) { linkpath = FLAGS_log_link + "/" + linkname; unlink(linkpath.c_str()); if (symlink(filename, linkpath.c_str()) != 0) { } } #endif } return true; } void LogFileObject::Write( bool force_flush, const std::chrono::system_clock::time_point& timestamp, const char* message, size_t message_len) { std::lock_guard<std::mutex> l{mutex_}; if (base_filename_selected_ && base_filename_.empty()) { return; } auto cleanupLogs = [this, current_time = timestamp] { if (log_cleaner.enabled()) { log_cleaner.Run(current_time, base_filename_selected_, base_filename_, filename_extension_); } }; ScopedExit<decltype(cleanupLogs)> cleanupAtEnd{cleanupLogs}; if (file_length_ >> 20U >= MaxLogSize() || PidHasChanged()) { file_ = nullptr; file_length_ = bytes_since_flush_ = dropped_mem_length_ = 0; rollover_attempt_ = kRolloverAttemptFrequency - 1; } if (file_ == nullptr) { if (++rollover_attempt_ != kRolloverAttemptFrequency) return; rollover_attempt_ = 0; struct ::tm tm_time; std::time_t t = std::chrono::system_clock::to_time_t(timestamp); if (FLAGS_log_utc_time) { gmtime_r(&t, &tm_time); } else { localtime_r(&t, &tm_time); } ostringstream time_pid_stream; time_pid_stream.fill('0'); time_pid_stream << 1900 + tm_time.tm_year << setw(2) << 1 + tm_time.tm_mon << setw(2) << tm_time.tm_mday << '-' << setw(2) << tm_time.tm_hour << setw(2) << tm_time.tm_min << setw(2) << tm_time.tm_sec << '.' << GetMainThreadPid(); const string& time_pid_string = time_pid_stream.str(); if (base_filename_selected_) { if (!CreateLogfile(time_pid_string)) { perror("Could not create log file"); fprintf(stderr, "COULD NOT CREATE LOGFILE '%s'!\n", time_pid_string.c_str()); return; } } else { string stripped_filename( glog_internal_namespace_::ProgramInvocationShortName()); string hostname; GetHostName(&hostname); string uidname = MyUserName(); if (uidname.empty()) uidname = "invalid-user"; stripped_filename = stripped_filename + '.' + hostname + '.' + uidname + ".log." + LogSeverityNames[severity_] + '.'; const vector<string>& log_dirs = GetLoggingDirectories(); bool success = false; for (const auto& log_dir : log_dirs) { base_filename_ = log_dir + "/" + stripped_filename; if (CreateLogfile(time_pid_string)) { success = true; break; } } if (success == false) { perror("Could not create logging file"); fprintf(stderr, "COULD NOT CREATE A LOGGINGFILE %s!", time_pid_string.c_str()); return; } } if (FLAGS_log_file_header) { ostringstream file_header_stream; file_header_stream.fill('0'); file_header_stream << "Log file created at: " << 1900 + tm_time.tm_year << '/' << setw(2) << 1 + tm_time.tm_mon << '/' << setw(2) << tm_time.tm_mday << ' ' << setw(2) << tm_time.tm_hour << ':' << setw(2) << tm_time.tm_min << ':' << setw(2) << tm_time.tm_sec << (FLAGS_log_utc_time ? " UTC\n" : "\n") << "Running on machine: " << LogDestination::hostname() << '\n'; if (!g_application_fingerprint.empty()) { file_header_stream << "Application fingerprint: " << g_application_fingerprint << '\n'; } const char* const date_time_format = FLAGS_log_year_in_prefix ? "yyyymmdd hh:mm:ss.uuuuuu" : "mmdd hh:mm:ss.uuuuuu"; file_header_stream << "Running duration (h:mm:ss): " << PrettyDuration( std::chrono::duration_cast<std::chrono::duration<int>>( timestamp - start_time_)) << '\n' << "Log line format: [IWEF]" << date_time_format << " " << "threadid file:line] msg" << '\n'; const string& file_header_string = file_header_stream.str(); const size_t header_len = file_header_string.size(); fwrite(file_header_string.data(), 1, header_len, file_.get()); file_length_ += header_len; bytes_since_flush_ += header_len; } } if (!stop_writing) { errno = 0; fwrite(message, 1, message_len, file_.get()); if (FLAGS_stop_logging_if_full_disk && errno == ENOSPC) { stop_writing = true; return; } else { file_length_ += message_len; bytes_since_flush_ += message_len; } } else { if (timestamp >= next_flush_time_) { stop_writing = false; } return; } if (force_flush || (bytes_since_flush_ >= 1000000) || (timestamp >= next_flush_time_)) { FlushUnlocked(timestamp); #ifdef GLOG_OS_LINUX if (FLAGS_drop_log_memory && file_length_ >= (3U << 20U)) { uint32 total_drop_length = (file_length_ & ~((1U << 20U) - 1U)) - (1U << 20U); uint32 this_drop_length = total_drop_length - dropped_mem_length_; if (this_drop_length >= (2U << 20U)) { # if defined(HAVE_POSIX_FADVISE) posix_fadvise( fileno(file_.get()), static_cast<off_t>(dropped_mem_length_), static_cast<off_t>(this_drop_length), POSIX_FADV_DONTNEED); # endif dropped_mem_length_ = total_drop_length; } } #endif } } LogCleaner::LogCleaner() = default; void LogCleaner::Enable(const std::chrono::minutes& overdue) { enabled_ = true; overdue_ = overdue; } void LogCleaner::Disable() { enabled_ = false; } void LogCleaner::Run(const std::chrono::system_clock::time_point& current_time, bool base_filename_selected, const string& base_filename, const string& filename_extension) { assert(enabled_); assert(!base_filename_selected || !base_filename.empty()); if (current_time < next_cleanup_time_) { return; } next_cleanup_time_ = current_time + std::chrono::duration_cast<std::chrono::system_clock::duration>( std::chrono::duration<int32>{FLAGS_logcleansecs}); vector<string> dirs; if (!base_filename_selected) { dirs = GetLoggingDirectories(); } else { size_t pos = base_filename.find_last_of(possible_dir_delim, string::npos, sizeof(possible_dir_delim)); if (pos != string::npos) { string dir = base_filename.substr(0, pos + 1); dirs.push_back(dir); } else { dirs.emplace_back("."); } } for (const std::string& dir : dirs) { vector<string> logs = GetOverdueLogNames(dir, current_time, base_filename, filename_extension); for (const std::string& log : logs) { int result = unlink(log.c_str()); if (result != 0) { perror(("Could not remove overdue log " + log).c_str()); } } } } vector<string> LogCleaner::GetOverdueLogNames( string log_directory, const std::chrono::system_clock::time_point& current_time, const string& base_filename, const string& filename_extension) const { vector<string> overdue_log_names; DIR* dir; struct dirent* ent; if ((dir = opendir(log_directory.c_str()))) { while ((ent = readdir(dir))) { if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) { continue; } string filepath = ent->d_name; const char* const dir_delim_end = possible_dir_delim + sizeof(possible_dir_delim); if (!log_directory.empty() && std::find(possible_dir_delim, dir_delim_end, log_directory[log_directory.size() - 1]) != dir_delim_end) { filepath = log_directory + filepath; } if (IsLogFromCurrentProject(filepath, base_filename, filename_extension) && IsLogLastModifiedOver(filepath, current_time)) { overdue_log_names.push_back(filepath); } } closedir(dir); } return overdue_log_names; } bool LogCleaner::IsLogFromCurrentProject( const string& filepath, const string& base_filename, const string& filename_extension) const { string cleaned_base_filename; const char* const dir_delim_end = possible_dir_delim + sizeof(possible_dir_delim); size_t real_filepath_size = filepath.size(); for (char c : base_filename) { if (cleaned_base_filename.empty()) { cleaned_base_filename += c; } else if (std::find(possible_dir_delim, dir_delim_end, c) == dir_delim_end || (!cleaned_base_filename.empty() && c != cleaned_base_filename[cleaned_base_filename.size() - 1])) { cleaned_base_filename += c; } } if (filepath.find(cleaned_base_filename) != 0) { return false; } if (!filename_extension.empty()) { if (cleaned_base_filename.size() >= real_filepath_size) { return false; } string ext = filepath.substr(cleaned_base_filename.size(), filename_extension.size()); if (ext == filename_extension) { cleaned_base_filename += filename_extension; } else { if (filename_extension.size() >= real_filepath_size) { return false; } real_filepath_size = filepath.size() - filename_extension.size(); if (filepath.substr(real_filepath_size) != filename_extension) { return false; } } } for (size_t i = cleaned_base_filename.size(); i < real_filepath_size; i++) { const char& c = filepath[i]; if (i <= cleaned_base_filename.size() + 7) { if (c < '0' || c > '9') { return false; } } else if (i == cleaned_base_filename.size() + 8) { if (c != '-') { return false; } } else if (i <= cleaned_base_filename.size() + 14) { if (c < '0' || c > '9') { return false; } } else if (i == cleaned_base_filename.size() + 15) { if (c != '.') { return false; } } else if (i >= cleaned_base_filename.size() + 16) { if (c < '0' || c > '9') { return false; } } } return true; } bool LogCleaner::IsLogLastModifiedOver( const string& filepath, const std::chrono::system_clock::time_point& current_time) const { struct stat file_stat; if (stat(filepath.c_str(), &file_stat) == 0) { const auto last_modified_time = std::chrono::system_clock::from_time_t(file_stat.st_mtime); const auto diff = current_time - last_modified_time; return diff >= overdue_; } return false; } } static std::mutex fatal_msg_lock; static logging::internal::CrashReason crash_reason; static bool fatal_msg_exclusive = true; static logging::internal::LogMessageData fatal_msg_data_exclusive; static logging::internal::LogMessageData fatal_msg_data_shared; #ifdef GLOG_THREAD_LOCAL_STORAGE static thread_local bool thread_data_available = true; # if defined(__cpp_lib_byte) && __cpp_lib_byte >= 201603L alignas(logging::internal::LogMessageData) static thread_local std::byte thread_msg_data[sizeof(logging::internal::LogMessageData)]; # else static thread_local std::aligned_storage< sizeof(logging::internal::LogMessageData), alignof(logging::internal::LogMessageData)>::type thread_msg_data; # endif #endif logging::internal::LogMessageData::LogMessageData() : stream_(message_text_, LogMessage::kMaxLogMessageLen, 0) {} LogMessage::LogMessage(const char* file, int line, LogSeverity severity, int64 ctr, void (LogMessage::*send_method)()) : allocated_(nullptr) { Init(file, line, severity, send_method); data_->stream_.set_ctr(ctr); } LogMessage::LogMessage(const char* file, int line, const logging::internal::CheckOpString& result) : allocated_(nullptr) { Init(file, line, GLOG_FATAL, &LogMessage::SendToLog); stream() << "Check failed: " << (*result.str_) << " "; } LogMessage::LogMessage(const char* file, int line) : allocated_(nullptr) { Init(file, line, GLOG_INFO, &LogMessage::SendToLog); } LogMessage::LogMessage(const char* file, int line, LogSeverity severity) : allocated_(nullptr) { Init(file, line, severity, &LogMessage::SendToLog); } LogMessage::LogMessage(const char* file, int line, LogSeverity severity, LogSink* sink, bool also_send_to_log) : allocated_(nullptr) { Init(file, line, severity, also_send_to_log ? &LogMessage::SendToSinkAndLog : &LogMessage::SendToSink); data_->sink_ = sink; } LogMessage::LogMessage(const char* file, int line, LogSeverity severity, vector<string>* outvec) : allocated_(nullptr) { Init(file, line, severity, &LogMessage::SaveOrSendToLog); data_->outvec_ = outvec; } LogMessage::LogMessage(const char* file, int line, LogSeverity severity, string* message) : allocated_(nullptr) { Init(file, line, severity, &LogMessage::WriteToStringAndLog); data_->message_ = message; } void LogMessage::Init(const char* file, int line, LogSeverity severity, void (LogMessage::*send_method)()) { allocated_ = nullptr; if (severity != GLOG_FATAL || !exit_on_dfatal) { #ifdef GLOG_THREAD_LOCAL_STORAGE if (thread_data_available) { thread_data_available = false; data_ = new (&thread_msg_data) logging::internal::LogMessageData; } else { allocated_ = new logging::internal::LogMessageData(); data_ = allocated_; } #else allocated_ = new logging::internal::LogMessageData(); data_ = allocated_; #endif data_->first_fatal_ = false; } else { std::lock_guard<std::mutex> l{fatal_msg_lock}; if (fatal_msg_exclusive) { fatal_msg_exclusive = false; data_ = &fatal_msg_data_exclusive; data_->first_fatal_ = true; } else { data_ = &fatal_msg_data_shared; data_->first_fatal_ = false; } } data_->preserved_errno_ = errno; data_->severity_ = severity; data_->line_ = line; data_->send_method_ = send_method; data_->sink_ = nullptr; data_->outvec_ = nullptr; const auto now = std::chrono::system_clock::now(); time_ = LogMessageTime(now); data_->num_chars_to_log_ = 0; data_->num_chars_to_syslog_ = 0; data_->basename_ = const_basename(file); data_->fullname_ = file; data_->has_been_flushed_ = false; data_->thread_id_ = std::this_thread::get_id(); if (FLAGS_log_prefix && (line != kNoLogPrefix)) { std::ios saved_fmt(nullptr); saved_fmt.copyfmt(stream()); stream().fill('0'); if (g_prefix_formatter == nullptr) { stream() << LogSeverityNames[severity][0]; if (FLAGS_log_year_in_prefix) { stream() << setw(4) << 1900 + time_.year(); } stream() << setw(2) << 1 + time_.month() << setw(2) << time_.day() << ' ' << setw(2) << time_.hour() << ':' << setw(2) << time_.min() << ':' << setw(2) << time_.sec() << "." << setw(6) << time_.usec() << ' ' << setfill(' ') << setw(5) << data_->thread_id_ << setfill('0') << ' ' << data_->basename_ << ':' << data_->line_ << "] "; } else { (*g_prefix_formatter)(stream(), *this); stream() << " "; } stream().copyfmt(saved_fmt); } data_->num_prefix_chars_ = data_->stream_.pcount(); if (!FLAGS_log_backtrace_at.empty()) { char fileline[128]; std::snprintf(fileline, sizeof(fileline), "%s:%d", data_->basename_, line); #ifdef HAVE_STACKTRACE if (FLAGS_log_backtrace_at == fileline) { string stacktrace = GetStackTrace(); stream() << " (stacktrace:\n" << stacktrace << ") "; } #endif } } LogSeverity LogMessage::severity() const noexcept { return data_->severity_; } int LogMessage::line() const noexcept { return data_->line_; } const std::thread::id& LogMessage::thread_id() const noexcept { return data_->thread_id_; } const char* LogMessage::fullname() const noexcept { return data_->fullname_; } const char* LogMessage::basename() const noexcept { return data_->basename_; } const LogMessageTime& LogMessage::time() const noexcept { return time_; } LogMessage::~LogMessage() noexcept(false) { Flush(); bool fail = data_->severity_ == GLOG_FATAL && exit_on_dfatal; #ifdef GLOG_THREAD_LOCAL_STORAGE if (data_ == static_cast<void*>(&thread_msg_data)) { data_->~LogMessageData(); thread_data_available = true; } else { delete allocated_; } #else delete allocated_; #endif if (fail) { const char* message = "*** Check failure stack trace: ***\n"; if (write(fileno(stderr), message, strlen(message)) < 0) { } AlsoErrorWrite(GLOG_FATAL, glog_internal_namespace_::ProgramInvocationShortName(), message); #if defined(__cpp_lib_uncaught_exceptions) && \ (__cpp_lib_uncaught_exceptions >= 201411L) if (std::uncaught_exceptions() == 0) #else if (!std::uncaught_exception()) #endif { Fail(); } } } int LogMessage::preserved_errno() const { return data_->preserved_errno_; } ostream& LogMessage::stream() { return data_->stream_; } void LogMessage::Flush() { if (data_->has_been_flushed_ || data_->severity_ < FLAGS_minloglevel) { return; } data_->num_chars_to_log_ = data_->stream_.pcount(); data_->num_chars_to_syslog_ = data_->num_chars_to_log_ - data_->num_prefix_chars_; bool append_newline = (data_->message_text_[data_->num_chars_to_log_ - 1] != '\n'); char original_final_char = '\0'; if (append_newline) { original_final_char = data_->message_text_[data_->num_chars_to_log_]; data_->message_text_[data_->num_chars_to_log_++] = '\n'; } data_->message_text_[data_->num_chars_to_log_] = '\0'; { std::lock_guard<std::mutex> l{log_mutex}; (this->*(data_->send_method_))(); ++num_messages_[static_cast<int>(data_->severity_)]; } LogDestination::WaitForSinks(data_); if (append_newline) { data_->message_text_[data_->num_chars_to_log_ - 1] = original_final_char; } if (data_->preserved_errno_ != 0) { errno = data_->preserved_errno_; } data_->has_been_flushed_ = true; } static std::chrono::system_clock::time_point fatal_time; static char fatal_message[256]; void ReprintFatalMessage() { if (fatal_message[0]) { const size_t n = strlen(fatal_message); if (!FLAGS_logtostderr) { WriteToStderr(fatal_message, n); } LogDestination::LogToAllLogfiles(GLOG_ERROR, fatal_time, fatal_message, n); } } void LogMessage::SendToLog() EXCLUSIVE_LOCKS_REQUIRED(log_mutex) { static bool already_warned_before_initgoogle = false; RAW_DCHECK(data_->num_chars_to_log_ > 0 && data_->message_text_[data_->num_chars_to_log_ - 1] == '\n', ""); if (!already_warned_before_initgoogle && !IsGoogleLoggingInitialized()) { const char w[] = "WARNING: Logging before InitGoogleLogging() is " "written to STDERR\n"; WriteToStderr(w, strlen(w)); already_warned_before_initgoogle = true; } if (FLAGS_logtostderr || FLAGS_logtostdout || !IsGoogleLoggingInitialized()) { if (FLAGS_logtostdout) { ColoredWriteToStdout(data_->severity_, data_->message_text_, data_->num_chars_to_log_); } else { ColoredWriteToStderr(data_->severity_, data_->message_text_, data_->num_chars_to_log_); } LogDestination::LogToSinks( data_->severity_, data_->fullname_, data_->basename_, data_->line_, time_, data_->message_text_ + data_->num_prefix_chars_, (data_->num_chars_to_log_ - data_->num_prefix_chars_ - 1)); } else { LogDestination::LogToAllLogfiles(data_->severity_, time_.when(), data_->message_text_, data_->num_chars_to_log_); LogDestination::MaybeLogToStderr(data_->severity_, data_->message_text_, data_->num_chars_to_log_, data_->num_prefix_chars_); LogDestination::MaybeLogToEmail(data_->severity_, data_->message_text_, data_->num_chars_to_log_); LogDestination::LogToSinks( data_->severity_, data_->fullname_, data_->basename_, data_->line_, time_, data_->message_text_ + data_->num_prefix_chars_, (data_->num_chars_to_log_ - data_->num_prefix_chars_ - 1)); } if (data_->severity_ == GLOG_FATAL && exit_on_dfatal) { if (data_->first_fatal_) { RecordCrashReason(&crash_reason); SetCrashReason(&crash_reason); const size_t copy = min(data_->num_chars_to_log_, sizeof(fatal_message) - 1); memcpy(fatal_message, data_->message_text_, copy); fatal_message[copy] = '\0'; fatal_time = time_.when(); } if (!FLAGS_logtostderr && !FLAGS_logtostdout) { for (auto& log_destination : LogDestination::log_destinations_) { if (log_destination) { log_destination->logger_->Write( true, std::chrono::system_clock::time_point{}, "", 0); } } } LogDestination::WaitForSinks(data_); } } void LogMessage::RecordCrashReason(logging::internal::CrashReason* reason) { reason->filename = fatal_msg_data_exclusive.fullname_; reason->line_number = fatal_msg_data_exclusive.line_; reason->message = fatal_msg_data_exclusive.message_text_ + fatal_msg_data_exclusive.num_prefix_chars_; #ifdef HAVE_STACKTRACE reason->depth = GetStackTrace(reason->stack, ARRAYSIZE(reason->stack), 4); #else reason->depth = 0; #endif } GLOG_NO_EXPORT logging_fail_func_t g_logging_fail_func = reinterpret_cast<logging_fail_func_t>(&abort); NullStream::NullStream() : LogMessage::LogStream(message_buffer_, 2, 0) {} NullStream::NullStream(const char* , int , const logging::internal::CheckOpString& ) : LogMessage::LogStream(message_buffer_, 2, 0) {} NullStream& NullStream::stream() { return *this; } NullStreamFatal::~NullStreamFatal() { std::abort(); } logging_fail_func_t InstallFailureFunction(logging_fail_func_t fail_func) { return std::exchange(g_logging_fail_func, fail_func); } void LogMessage::Fail() { g_logging_fail_func(); } void LogMessage::SendToSink() EXCLUSIVE_LOCKS_REQUIRED(log_mutex) { if (data_->sink_ != nullptr) { RAW_DCHECK(data_->num_chars_to_log_ > 0 && data_->message_text_[data_->num_chars_to_log_ - 1] == '\n', ""); data_->sink_->send( data_->severity_, data_->fullname_, data_->basename_, data_->line_, time_, data_->message_text_ + data_->num_prefix_chars_, (data_->num_chars_to_log_ - data_->num_prefix_chars_ - 1)); } } void LogMessage::SendToSinkAndLog() EXCLUSIVE_LOCKS_REQUIRED(log_mutex) { SendToSink(); SendToLog(); } void LogMessage::SaveOrSendToLog() EXCLUSIVE_LOCKS_REQUIRED(log_mutex) { if (data_->outvec_ != nullptr) { RAW_DCHECK(data_->num_chars_to_log_ > 0 && data_->message_text_[data_->num_chars_to_log_ - 1] == '\n', ""); const char* start = data_->message_text_ + data_->num_prefix_chars_; size_t len = data_->num_chars_to_log_ - data_->num_prefix_chars_ - 1; data_->outvec_->push_back(string(start, len)); } else { SendToLog(); } } void LogMessage::WriteToStringAndLog() EXCLUSIVE_LOCKS_REQUIRED(log_mutex) { if (data_->message_ != nullptr) { RAW_DCHECK(data_->num_chars_to_log_ > 0 && data_->message_text_[data_->num_chars_to_log_ - 1] == '\n', ""); const char* start = data_->message_text_ + data_->num_prefix_chars_; size_t len = data_->num_chars_to_log_ - data_->num_prefix_chars_ - 1; data_->message_->assign(start, len); } SendToLog(); } void LogMessage::SendToSyslogAndLog() { #ifdef HAVE_SYSLOG_H static bool openlog_already_called = false; if (!openlog_already_called) { openlog(glog_internal_namespace_::ProgramInvocationShortName(), LOG_CONS | LOG_NDELAY | LOG_PID, LOG_USER); openlog_already_called = true; } const int SEVERITY_TO_LEVEL[] = {LOG_INFO, LOG_WARNING, LOG_ERR, LOG_EMERG}; syslog(LOG_USER | SEVERITY_TO_LEVEL[static_cast<int>(data_->severity_)], "%.*s", static_cast<int>(data_->num_chars_to_syslog_), data_->message_text_ + data_->num_prefix_chars_); SendToLog(); #else LOG(ERROR) << "No syslog support: message=" << data_->message_text_; #endif } base::Logger* base::GetLogger(LogSeverity severity) { std::lock_guard<std::mutex> l{log_mutex}; return LogDestination::log_destination(severity)->GetLoggerImpl(); } void base::SetLogger(LogSeverity severity, base::Logger* logger) { std::lock_guard<std::mutex> l{log_mutex}; LogDestination::log_destination(severity)->SetLoggerImpl(logger); } int64 LogMessage::num_messages(int severity) { std::lock_guard<std::mutex> l{log_mutex}; return num_messages_[severity]; } ostream& operator<<(ostream& os, const Counter_t&) { #ifdef DISABLE_RTTI LogMessage::LogStream* log = static_cast<LogMessage::LogStream*>(&os); #else auto* log = dynamic_cast<LogMessage::LogStream*>(&os); #endif CHECK(log && log == log->self()) << "You must not use COUNTER with non-glog ostream"; os << log->ctr(); return os; } ErrnoLogMessage::ErrnoLogMessage(const char* file, int line, LogSeverity severity, int64 ctr, void (LogMessage::*send_method)()) : LogMessage(file, line, severity, ctr, send_method) {} ErrnoLogMessage::~ErrnoLogMessage() { stream() << ": " << StrError(preserved_errno()) << " [" << preserved_errno() << "]"; } void FlushLogFiles(LogSeverity min_severity) { LogDestination::FlushLogFiles(min_severity); } void FlushLogFilesUnsafe(LogSeverity min_severity) { LogDestination::FlushLogFilesUnsafe(min_severity); } void SetLogDestination(LogSeverity severity, const char* base_filename) { LogDestination::SetLogDestination(severity, base_filename); } void SetLogSymlink(LogSeverity severity, const char* symlink_basename) { LogDestination::SetLogSymlink(severity, symlink_basename); } LogSink::~LogSink() = default; void LogSink::WaitTillSent() { } string LogSink::ToString(LogSeverity severity, const char* file, int line, const LogMessageTime& time, const char* message, size_t message_len) { ostringstream stream; stream.fill('0'); stream << LogSeverityNames[severity][0]; if (FLAGS_log_year_in_prefix) { stream << setw(4) << 1900 + time.year(); } stream << setw(2) << 1 + time.month() << setw(2) << time.day() << ' ' << setw(2) << time.hour() << ':' << setw(2) << time.min() << ':' << setw(2) << time.sec() << '.' << setw(6) << time.usec() << ' ' << setfill(' ') << setw(5) << std::this_thread::get_id() << setfill('0') << ' ' << file << ':' << line << "] "; (stream.write)(message, static_cast<std::streamsize>(message_len)); return stream.str(); } void AddLogSink(LogSink* destination) { LogDestination::AddLogSink(destination); } void RemoveLogSink(LogSink* destination) { LogDestination::RemoveLogSink(destination); } void SetLogFilenameExtension(const char* ext) { LogDestination::SetLogFilenameExtension(ext); } void SetStderrLogging(LogSeverity min_severity) { LogDestination::SetStderrLogging(min_severity); } void SetEmailLogging(LogSeverity min_severity, const char* addresses) { LogDestination::SetEmailLogging(min_severity, addresses); } void LogToStderr() { LogDestination::LogToStderr(); } namespace base { namespace internal { bool GetExitOnDFatal(); bool GetExitOnDFatal() { std::lock_guard<std::mutex> l{log_mutex}; return exit_on_dfatal; } void SetExitOnDFatal(bool value); void SetExitOnDFatal(bool value) { std::lock_guard<std::mutex> l{log_mutex}; exit_on_dfatal = value; } } } #ifndef GLOG_OS_EMSCRIPTEN static const char kDontNeedShellEscapeChars[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+-_.=/:,@"; static string ShellEscape(const string& src) { string result; if (!src.empty() && src.find_first_not_of(kDontNeedShellEscapeChars) == string::npos) { result.assign(src); } else if (src.find_first_of('\'') == string::npos) { result.assign("'"); result.append(src); result.append("'"); } else { result.assign("\""); for (size_t i = 0; i < src.size(); ++i) { switch (src[i]) { case '\\': case '$': case '"': case '`': result.append("\\"); } result.append(src, i, 1); } result.append("\""); } return result; } static inline void trim(std::string& s) { const auto toRemove = [](char ch) { return std::isspace(ch) == 0; }; s.erase(s.begin(), std::find_if(s.begin(), s.end(), toRemove)); s.erase(std::find_if(s.rbegin(), s.rend(), toRemove).base(), s.end()); } #endif static bool SendEmailInternal(const char* dest, const char* subject, const char* body, bool use_logging) { #ifndef GLOG_OS_EMSCRIPTEN if (dest && *dest) { std::istringstream ss(dest); std::ostringstream sanitized_dests; std::string s; while (std::getline(ss, s, ',')) { trim(s); if (s.empty()) { continue; } if (!std::regex_match( s, std::regex("^[a-zA-Z0-9]" "[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]*@[a-zA-Z0-9]" "(?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\\.[a-zA-Z0-9]" "(?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$"))) { if (use_logging) { VLOG(1) << "Invalid destination email address:" << s; } else { fprintf(stderr, "Invalid destination email address: %s\n", s.c_str()); } return false; } if (!sanitized_dests.str().empty()) { sanitized_dests << ","; } sanitized_dests << s; } const std::string& tmp = sanitized_dests.str(); dest = tmp.c_str(); if (use_logging) { VLOG(1) << "Trying to send TITLE:" << subject << " BODY:" << body << " to " << dest; } else { fprintf(stderr, "Trying to send TITLE: %s BODY: %s to %s\n", subject, body, dest); } string logmailer; if (FLAGS_logmailer.empty()) { logmailer = "/bin/mail"; } else { logmailer = ShellEscape(FLAGS_logmailer); } string cmd = logmailer + " -s" + ShellEscape(subject) + " " + ShellEscape(dest); if (use_logging) { VLOG(4) << "Mailing command: " << cmd; } FILE* pipe = popen(cmd.c_str(), "w"); if (pipe != nullptr) { if (body) { fwrite(body, sizeof(char), strlen(body), pipe); } bool ok = pclose(pipe) != -1; if (!ok) { if (use_logging) { LOG(ERROR) << "Problems sending mail to " << dest << ": " << StrError(errno); } else { fprintf(stderr, "Problems sending mail to %s: %s\n", dest, StrError(errno).c_str()); } } return ok; } else { if (use_logging) { LOG(ERROR) << "Unable to send mail to " << dest; } else { fprintf(stderr, "Unable to send mail to %s\n", dest); } } } #else (void)dest; (void)subject; (void)body; (void)use_logging; LOG(WARNING) << "Email support not available; not sending message"; #endif return false; } bool SendEmail(const char* dest, const char* subject, const char* body) { return SendEmailInternal(dest, subject, body, true); } static void GetTempDirectories(vector<string>& list) { list.clear(); #ifdef GLOG_OS_WINDOWS char tmp[MAX_PATH]; if (GetTempPathA(MAX_PATH, tmp)) list.push_back(tmp); list.push_back("C:\\TMP\\"); list.push_back("C:\\TEMP\\"); #else const char* candidates[] = { getenv("TEST_TMPDIR"), getenv("TMPDIR"), getenv("TMP"), "/tmp", }; for (auto d : candidates) { if (!d) continue; string dstr = d; if (dstr[dstr.size() - 1] != '/') { dstr += "/"; } list.push_back(dstr); struct stat statbuf; if (!stat(d, &statbuf) && S_ISDIR(statbuf.st_mode)) { return; } } #endif } static std::unique_ptr<std::vector<std::string>> logging_directories_list; const vector<string>& GetLoggingDirectories() { if (logging_directories_list == nullptr) { logging_directories_list = std::make_unique<std::vector<std::string>>(); if (!FLAGS_log_dir.empty()) { if (std::find(std::begin(possible_dir_delim), std::end(possible_dir_delim), FLAGS_log_dir.back()) == std::end(possible_dir_delim)) { logging_directories_list->push_back(FLAGS_log_dir + "/"); } else { logging_directories_list->push_back(FLAGS_log_dir); } } else { GetTempDirectories(*logging_directories_list); #ifdef GLOG_OS_WINDOWS char tmp[MAX_PATH]; if (GetWindowsDirectoryA(tmp, MAX_PATH)) logging_directories_list->push_back(tmp); logging_directories_list->push_back(".\\"); #else logging_directories_list->push_back("./"); #endif } } return *logging_directories_list; } GLOG_NO_EXPORT void GetExistingTempDirectories(vector<string>& list) { GetTempDirectories(list); auto i_dir = list.begin(); while (i_dir != list.end()) { if (access(i_dir->c_str(), 0)) { i_dir = list.erase(i_dir); } else { ++i_dir; } } } void TruncateLogFile(const char* path, uint64 limit, uint64 keep) { #if defined(HAVE_UNISTD_H) || defined(HAVE__CHSIZE_S) struct stat statbuf; const int kCopyBlockSize = 8 << 10; char copybuf[kCopyBlockSize]; off_t read_offset, write_offset; int flags = O_RDWR; # ifdef GLOG_OS_LINUX const char* procfd_prefix = "/proc/self/fd/"; if (strncmp(procfd_prefix, path, strlen(procfd_prefix))) flags |= O_NOFOLLOW; # endif FileDescriptor fd{open(path, flags)}; if (!fd) { if (errno == EFBIG) { # ifdef HAVE__CHSIZE_S if (_chsize_s(fd.get(), 0) != 0) { # else if (truncate(path, 0) == -1) { # endif PLOG(ERROR) << "Unable to truncate " << path; } else { LOG(ERROR) << "Truncated " << path << " due to EFBIG error"; } } else { PLOG(ERROR) << "Unable to open " << path; } return; } if (fstat(fd.get(), &statbuf) == -1) { PLOG(ERROR) << "Unable to fstat()"; return; } if (!S_ISREG(statbuf.st_mode)) return; if (statbuf.st_size <= static_cast<off_t>(limit)) return; if (statbuf.st_size <= static_cast<off_t>(keep)) return; LOG(INFO) << "Truncating " << path << " to " << keep << " bytes"; read_offset = statbuf.st_size - static_cast<off_t>(keep); write_offset = 0; ssize_t bytesin, bytesout; while ((bytesin = pread(fd.get(), copybuf, sizeof(copybuf), read_offset)) > 0) { bytesout = pwrite(fd.get(), copybuf, static_cast<size_t>(bytesin), write_offset); if (bytesout == -1) { PLOG(ERROR) << "Unable to write to " << path; break; } else if (bytesout != bytesin) { LOG(ERROR) << "Expected to write " << bytesin << ", wrote " << bytesout; } read_offset += bytesin; write_offset += bytesout; } if (bytesin == -1) PLOG(ERROR) << "Unable to read from " << path; # ifdef HAVE__CHSIZE_S if (_chsize_s(fd.get(), write_offset) != 0) { # else if (ftruncate(fd.get(), write_offset) == -1) { # endif PLOG(ERROR) << "Unable to truncate " << path; } #else LOG(ERROR) << "No log truncation support."; #endif } void TruncateStdoutStderr() { #ifdef HAVE_UNISTD_H uint64 limit = MaxLogSize() << 20U; uint64 keep = 1U << 20U; TruncateLogFile("/proc/self/fd/1", limit, keep); TruncateLogFile("/proc/self/fd/2", limit, keep); #else LOG(ERROR) << "No log truncation support."; #endif } namespace logging { namespace internal { #define DEFINE_CHECK_STROP_IMPL(name, func, expected) \ std::unique_ptr<string> Check##func##expected##Impl( \ const char* s1, const char* s2, const char* names) { \ bool equal = s1 == s2 || (s1 && s2 && !func(s1, s2)); \ if (equal == (expected)) \ return nullptr; \ else { \ ostringstream ss; \ if (!s1) s1 = ""; \ if (!s2) s2 = ""; \ ss << #name " failed: " << names << " (" << s1 << " vs. " << s2 << ")"; \ return std::make_unique<std::string>(ss.str()); \ } \ } DEFINE_CHECK_STROP_IMPL(CHECK_STREQ, strcmp, true) DEFINE_CHECK_STROP_IMPL(CHECK_STRNE, strcmp, false) DEFINE_CHECK_STROP_IMPL(CHECK_STRCASEEQ, strcasecmp, true) DEFINE_CHECK_STROP_IMPL(CHECK_STRCASENE, strcasecmp, false) #undef DEFINE_CHECK_STROP_IMPL } } GLOG_NO_EXPORT int posix_strerror_r(int err, char* buf, size_t len) { if (buf == nullptr || len <= 0) { errno = EINVAL; return -1; } buf[0] = '\000'; int old_errno = errno; errno = 0; char* rc = reinterpret_cast<char*>(strerror_r(err, buf, len)); if (errno) { buf[0] = '\000'; return -1; } errno = old_errno; buf[len - 1] = '\000'; if (!rc) { return 0; } else { if (rc == buf) { return 0; } else { buf[0] = '\000'; #if defined(GLOG_OS_MACOSX) || defined(GLOG_OS_FREEBSD) || \ defined(GLOG_OS_OPENBSD) if (reinterpret_cast<intptr_t>(rc) < sys_nerr) { return -1; } #endif strncat(buf, rc, len - 1); return 0; } } } string StrError(int err) { char buf[100]; int rc = posix_strerror_r(err, buf, sizeof(buf)); if ((rc < 0) || (buf[0] == '\000')) { std::snprintf(buf, sizeof(buf), "Error number %d", err); } return buf; } LogMessageFatal::LogMessageFatal(const char* file, int line) : LogMessage(file, line, GLOG_FATAL) {} LogMessageFatal::LogMessageFatal(const char* file, int line, const logging::internal::CheckOpString& result) : LogMessage(file, line, result) {} LogMessageFatal::~LogMessageFatal() noexcept(false) { Flush(); LogMessage::Fail(); } namespace logging { namespace internal { CheckOpMessageBuilder::CheckOpMessageBuilder(const char* exprtext) : stream_(new ostringstream) { *stream_ << exprtext << " ("; } CheckOpMessageBuilder::~CheckOpMessageBuilder() { delete stream_; } ostream* CheckOpMessageBuilder::ForVar2() { *stream_ << " vs. "; return stream_; } std::unique_ptr<string> CheckOpMessageBuilder::NewString() { *stream_ << ")"; return std::make_unique<std::string>(stream_->str()); } template <> void MakeCheckOpValueString(std::ostream* os, const char& v) { if (v >= 32 && v <= 126) { (*os) << "'" << v << "'"; } else { (*os) << "char value " << static_cast<short>(v); } } template <> void MakeCheckOpValueString(std::ostream* os, const signed char& v) { if (v >= 32 && v <= 126) { (*os) << "'" << v << "'"; } else { (*os) << "signed char value " << static_cast<short>(v); } } template <> void MakeCheckOpValueString(std::ostream* os, const unsigned char& v) { if (v >= 32 && v <= 126) { (*os) << "'" << v << "'"; } else { (*os) << "unsigned char value " << static_cast<unsigned short>(v); } } template <> void MakeCheckOpValueString(std::ostream* os, const std::nullptr_t& ) { (*os) << "nullptr"; } } } void InitGoogleLogging(const char* argv0) { InitGoogleLoggingUtilities(argv0); } void InstallPrefixFormatter(PrefixFormatterCallback callback, void* data) { if (callback != nullptr) { g_prefix_formatter = std::make_unique<PrefixFormatter>(callback, data); } else { g_prefix_formatter = nullptr; } } void ShutdownGoogleLogging() { ShutdownGoogleLoggingUtilities(); LogDestination::DeleteLogDestinations(); logging_directories_list = nullptr; g_prefix_formatter = nullptr; } void EnableLogCleaner(unsigned int overdue_days) { log_cleaner.Enable(std::chrono::duration_cast<std::chrono::minutes>( std::chrono::duration<unsigned, std::ratio<kSecondsInDay>>{ overdue_days})); } void EnableLogCleaner(const std::chrono::minutes& overdue) { log_cleaner.Enable(overdue); } void DisableLogCleaner() { log_cleaner.Disable(); } LogMessageTime::LogMessageTime() = default; namespace { template <class... Args> struct void_impl { using type = void; }; template <class... Args> using void_t = typename void_impl<Args...>::type; template <class T, class E = void> struct has_member_tm_gmtoff : std::false_type {}; template <class T> struct has_member_tm_gmtoff<T, void_t<decltype(&T::tm_gmtoff)>> : std::true_type {}; template <class T = std::tm> auto Breakdown(const std::chrono::system_clock::time_point& now) -> std::enable_if_t<!has_member_tm_gmtoff<T>::value, std::tuple<std::tm, std::time_t, std::chrono::hours>> { std::time_t timestamp = std::chrono::system_clock::to_time_t(now); std::tm tm_local; std::tm tm_utc; int isdst = 0; if (FLAGS_log_utc_time) { gmtime_r(&timestamp, &tm_local); localtime_r(&timestamp, &tm_utc); isdst = tm_utc.tm_isdst; tm_utc = tm_local; } else { localtime_r(&timestamp, &tm_local); isdst = tm_local.tm_isdst; gmtime_r(&timestamp, &tm_utc); } std::time_t gmt_sec = std::mktime(&tm_utc); using namespace std::chrono_literals; const auto gmtoffset = std::chrono::duration_cast<std::chrono::hours>( now - std::chrono::system_clock::from_time_t(gmt_sec) + (isdst ? 1h : 0h)); return std::make_tuple(tm_local, timestamp, gmtoffset); } template <class T = std::tm> auto Breakdown(const std::chrono::system_clock::time_point& now) -> std::enable_if_t<has_member_tm_gmtoff<T>::value, std::tuple<std::tm, std::time_t, std::chrono::hours>> { std::time_t timestamp = std::chrono::system_clock::to_time_t(now); T tm; if (FLAGS_log_utc_time) { gmtime_r(&timestamp, &tm); } else { localtime_r(&timestamp, &tm); } const auto gmtoffset = std::chrono::duration_cast<std::chrono::hours>( std::chrono::seconds{tm.tm_gmtoff}); return std::make_tuple(tm, timestamp, gmtoffset); } } LogMessageTime::LogMessageTime(std::chrono::system_clock::time_point now) : timestamp_{now} { std::time_t timestamp; std::tie(tm_, timestamp, gmtoffset_) = Breakdown(now); usecs_ = std::chrono::duration_cast<std::chrono::microseconds>( now - std::chrono::system_clock::from_time_t(timestamp)); } }
#include <fcntl.h> #include <chrono> #include <cstdio> #include <cstdlib> #include <fstream> #include <iomanip> #include <iostream> #include <memory> #include <mutex> #include <queue> #include <sstream> #include <stdexcept> #include <string> #include <thread> #include <vector> #include "config.h" #ifdef HAVE_GLOB_H # include <glob.h> #endif #include <sys/stat.h> #ifdef HAVE_UNISTD_H # include <unistd.h> #endif #ifdef HAVE_SYS_WAIT_H # include <sys/wait.h> #endif #include "base/commandlineflags.h" #include "glog/logging.h" #include "glog/raw_logging.h" #include "googletest.h" #include "stacktrace.h" #include "utilities.h" #ifdef GLOG_USE_GFLAGS # include <gflags/gflags.h> using namespace GFLAGS_NAMESPACE; #endif #ifdef HAVE_LIB_GMOCK # include <gmock/gmock.h> # include "mock-log.h" using google::glog_testing::ScopedMockLog; using testing::_; using testing::AllOf; using testing::AnyNumber; using testing::HasSubstr; using testing::InitGoogleMock; using testing::StrictMock; using testing::StrNe; #endif using namespace std; using namespace google; namespace google { namespace base { namespace internal { bool GetExitOnDFatal(); void SetExitOnDFatal(bool value); } } } static void TestLogging(bool check_counts); static void TestRawLogging(); static void LogWithLevels(int v, int severity, bool err, bool alsoerr); static void TestLoggingLevels(); static void TestVLogModule(); static void TestLogString(); static void TestLogSink(); static void TestLogToString(); static void TestLogSinkWaitTillSent(); static void TestCHECK(); static void TestDCHECK(); static void TestSTREQ(); static void TestBasename(); static void TestBasenameAppendWhenNoTimestamp(); static void TestTwoProcessesWrite(); static void TestSymlink(); static void TestExtension(); static void TestWrapper(); static void TestErrno(); static void TestTruncate(); static void TestCustomLoggerDeletionOnShutdown(); static void TestLogPeriodically(); static int x = -1; static void BM_Check1(int n) { while (n-- > 0) { CHECK_GE(n, x); CHECK_GE(n, x); CHECK_GE(n, x); CHECK_GE(n, x); CHECK_GE(n, x); CHECK_GE(n, x); CHECK_GE(n, x); CHECK_GE(n, x); } } BENCHMARK(BM_Check1) static void CheckFailure(int a, int b, const char* file, int line, const char* msg); static void BM_Check3(int n) { while (n-- > 0) { if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); if (n < x) CheckFailure(n, x, __FILE__, __LINE__, "n < x"); } } BENCHMARK(BM_Check3) static void BM_Check2(int n) { if (n == 17) { x = 5; } while (n-- > 0) { CHECK(n >= x); CHECK(n >= x); CHECK(n >= x); CHECK(n >= x); CHECK(n >= x); CHECK(n >= x); CHECK(n >= x); CHECK(n >= x); } } BENCHMARK(BM_Check2) static void CheckFailure(int, int, const char* , int , const char* ) {} static void BM_logspeed(int n) { while (n-- > 0) { LOG(INFO) << "test message"; } } BENCHMARK(BM_logspeed) static void BM_vlog(int n) { while (n-- > 0) { VLOG(1) << "test message"; } } BENCHMARK(BM_vlog) namespace { void PrefixAttacher(std::ostream& s, const LogMessage& m, void* data) { if (data == nullptr || *static_cast<string*>(data) != "good data") { return; } s << GetLogSeverityName(m.severity())[0] << setw(4) << 1900 + m.time().year() << setw(2) << 1 + m.time().month() << setw(2) << m.time().day() << ' ' << setw(2) << m.time().hour() << ':' << setw(2) << m.time().min() << ':' << setw(2) << m.time().sec() << "." << setw(6) << m.time().usec() << ' ' << setfill(' ') << setw(5) << m.thread_id() << setfill('0') << ' ' << m.basename() << ':' << m.line() << "]"; } } int main(int argc, char** argv) { FLAGS_colorlogtostderr = false; FLAGS_timestamp_in_logfile_name = true; setbuf(stderr, nullptr); CaptureTestStderr(); LogWithLevels(FLAGS_v, FLAGS_stderrthreshold, FLAGS_logtostderr, FLAGS_alsologtostderr); LogWithLevels(0, 0, false, false); const string early_stderr = GetCapturedTestStderr(); EXPECT_FALSE(IsGoogleLoggingInitialized()); string prefix_attacher_data = "good data"; InitGoogleLogging(argv[0]); InstallPrefixFormatter(&PrefixAttacher, &prefix_attacher_data); EXPECT_TRUE(IsGoogleLoggingInitialized()); RunSpecifiedBenchmarks(); FLAGS_logtostderr = true; InitGoogleTest(&argc, argv); #ifdef HAVE_LIB_GMOCK InitGoogleMock(&argc, argv); #endif #ifdef GLOG_USE_GFLAGS ParseCommandLineFlags(&argc, &argv, true); #endif CHECK_EQ(RUN_ALL_TESTS(), 0); CaptureTestStderr(); LogMessage("dummy", LogMessage::kNoLogPrefix, GLOG_INFO).stream() << early_stderr; TestLogging(true); TestRawLogging(); TestLoggingLevels(); TestVLogModule(); TestLogString(); TestLogSink(); TestLogToString(); TestLogSinkWaitTillSent(); TestCHECK(); TestDCHECK(); TestSTREQ(); EXPECT_TRUE( MungeAndDiffTestStderr(FLAGS_test_srcdir + "/src/logging_unittest.err")); FLAGS_logtostderr = false; FLAGS_logtostdout = true; FLAGS_stderrthreshold = NUM_SEVERITIES; CaptureTestStdout(); TestRawLogging(); TestLoggingLevels(); TestLogString(); TestLogSink(); TestLogToString(); TestLogSinkWaitTillSent(); TestCHECK(); TestDCHECK(); TestSTREQ(); EXPECT_TRUE( MungeAndDiffTestStdout(FLAGS_test_srcdir + "/src/logging_unittest.out")); FLAGS_logtostdout = false; TestBasename(); TestBasenameAppendWhenNoTimestamp(); TestTwoProcessesWrite(); TestSymlink(); TestExtension(); TestWrapper(); TestErrno(); TestTruncate(); TestCustomLoggerDeletionOnShutdown(); TestLogPeriodically(); fprintf(stdout, "PASS\n"); return 0; } void TestLogging(bool check_counts) { int64 base_num_infos = LogMessage::num_messages(GLOG_INFO); int64 base_num_warning = LogMessage::num_messages(GLOG_WARNING); int64 base_num_errors = LogMessage::num_messages(GLOG_ERROR); LOG(INFO) << string("foo ") << "bar " << 10 << ' ' << 3.4; for (int i = 0; i < 10; ++i) { int old_errno = errno; errno = i; PLOG_EVERY_N(ERROR, 2) << "Plog every 2, iteration " << COUNTER; errno = old_errno; LOG_EVERY_N(ERROR, 3) << "Log every 3, iteration " << COUNTER << endl; LOG_EVERY_N(ERROR, 4) << "Log every 4, iteration " << COUNTER << endl; LOG_IF_EVERY_N(WARNING, true, 5) << "Log if every 5, iteration " << COUNTER; LOG_IF_EVERY_N(WARNING, false, 3) << "Log if every 3, iteration " << COUNTER; LOG_IF_EVERY_N(INFO, true, 1) << "Log if every 1, iteration " << COUNTER; LOG_IF_EVERY_N(ERROR, (i < 3), 2) << "Log if less than 3 every 2, iteration " << COUNTER; } LOG_IF(WARNING, true) << "log_if this"; LOG_IF(WARNING, false) << "don't log_if this"; char s[] = "array"; LOG(INFO) << s; const char const_s[] = "const array"; LOG(INFO) << const_s; int j = 1000; LOG(ERROR) << string("foo") << ' ' << j << ' ' << setw(10) << j << " " << setw(1) << hex << j; LOG(INFO) << "foo " << std::setw(10) << 1.0; { google::LogMessage outer(__FILE__, __LINE__, GLOG_ERROR); outer.stream() << "outer"; LOG(ERROR) << "inner"; } LogMessage("foo", LogMessage::kNoLogPrefix, GLOG_INFO).stream() << "no prefix"; if (check_counts) { CHECK_EQ(base_num_infos + 15, LogMessage::num_messages(GLOG_INFO)); CHECK_EQ(base_num_warning + 3, LogMessage::num_messages(GLOG_WARNING)); CHECK_EQ(base_num_errors + 17, LogMessage::num_messages(GLOG_ERROR)); } } static void NoAllocNewHook() { LOG(FATAL) << "unexpected new"; } struct NewHook { NewHook() { g_new_hook = &NoAllocNewHook; } ~NewHook() { g_new_hook = nullptr; } }; namespace { int* allocInt() { return new int; } } TEST(DeathNoAllocNewHook, logging) { NewHook new_hook; (void)&allocInt; ASSERT_DEATH({ allocInt(); }, "unexpected new"); } void TestRawLogging() { auto* foo = new string("foo "); string huge_str(50000, 'a'); FlagSaver saver; NewHook new_hook; RAW_LOG(INFO, "%s%s%d%c%f", foo->c_str(), "bar ", 10, ' ', 3.4); char s[] = "array"; RAW_LOG(WARNING, "%s", s); const char const_s[] = "const array"; RAW_LOG(INFO, "%s", const_s); void* p = reinterpret_cast<void*>(PTR_TEST_VALUE); RAW_LOG(INFO, "ptr %p", p); p = nullptr; RAW_LOG(INFO, "ptr %p", p); int j = 1000; RAW_LOG(ERROR, "%s%d%c%010d%s%1x", foo->c_str(), j, ' ', j, " ", j); RAW_VLOG(0, "foo %d", j); #if defined(NDEBUG) RAW_LOG(INFO, "foo %d", j); #else RAW_DLOG(INFO, "foo %d", j); #endif RAW_LOG(WARNING, "Huge string: %s", huge_str.c_str()); RAW_VLOG(0, "Huge string: %s", huge_str.c_str()); FLAGS_v = 0; RAW_LOG(INFO, "log"); RAW_VLOG(0, "vlog 0 on"); RAW_VLOG(1, "vlog 1 off"); RAW_VLOG(2, "vlog 2 off"); RAW_VLOG(3, "vlog 3 off"); FLAGS_v = 2; RAW_LOG(INFO, "log"); RAW_VLOG(1, "vlog 1 on"); RAW_VLOG(2, "vlog 2 on"); RAW_VLOG(3, "vlog 3 off"); #if defined(NDEBUG) RAW_DCHECK(1 == 2, " RAW_DCHECK's shouldn't be compiled in normal mode"); #endif RAW_CHECK(1 == 1, "should be ok"); RAW_DCHECK(true, "should be ok"); delete foo; } void LogWithLevels(int v, int severity, bool err, bool alsoerr) { RAW_LOG(INFO, "Test: v=%d stderrthreshold=%d logtostderr=%d alsologtostderr=%d", v, severity, err, alsoerr); FlagSaver saver; FLAGS_v = v; FLAGS_stderrthreshold = severity; FLAGS_logtostderr = err; FLAGS_alsologtostderr = alsoerr; RAW_VLOG(-1, "vlog -1"); RAW_VLOG(0, "vlog 0"); RAW_VLOG(1, "vlog 1"); RAW_LOG(INFO, "log info"); RAW_LOG(WARNING, "log warning"); RAW_LOG(ERROR, "log error"); VLOG(-1) << "vlog -1"; VLOG(0) << "vlog 0"; VLOG(1) << "vlog 1"; LOG(INFO) << "log info"; LOG(WARNING) << "log warning"; LOG(ERROR) << "log error"; VLOG_IF(-1, true) << "vlog_if -1"; VLOG_IF(-1, false) << "don't vlog_if -1"; VLOG_IF(0, true) << "vlog_if 0"; VLOG_IF(0, false) << "don't vlog_if 0"; VLOG_IF(1, true) << "vlog_if 1"; VLOG_IF(1, false) << "don't vlog_if 1"; LOG_IF(INFO, true) << "log_if info"; LOG_IF(INFO, false) << "don't log_if info"; LOG_IF(WARNING, true) << "log_if warning"; LOG_IF(WARNING, false) << "don't log_if warning"; LOG_IF(ERROR, true) << "log_if error"; LOG_IF(ERROR, false) << "don't log_if error"; int c; c = 1; VLOG_IF(100, c -= 2) << "vlog_if 100 expr"; EXPECT_EQ(c, -1); c = 1; VLOG_IF(0, c -= 2) << "vlog_if 0 expr"; EXPECT_EQ(c, -1); c = 1; LOG_IF(INFO, c -= 2) << "log_if info expr"; EXPECT_EQ(c, -1); c = 1; LOG_IF(ERROR, c -= 2) << "log_if error expr"; EXPECT_EQ(c, -1); c = 2; VLOG_IF(0, c -= 2) << "don't vlog_if 0 expr"; EXPECT_EQ(c, 0); c = 2; LOG_IF(ERROR, c -= 2) << "don't log_if error expr"; EXPECT_EQ(c, 0); c = 3; LOG_IF_EVERY_N(INFO, c -= 4, 1) << "log_if info every 1 expr"; EXPECT_EQ(c, -1); c = 3; LOG_IF_EVERY_N(ERROR, c -= 4, 1) << "log_if error every 1 expr"; EXPECT_EQ(c, -1); c = 4; LOG_IF_EVERY_N(ERROR, c -= 4, 3) << "don't log_if info every 3 expr"; EXPECT_EQ(c, 0); c = 4; LOG_IF_EVERY_N(ERROR, c -= 4, 3) << "don't log_if error every 3 expr"; EXPECT_EQ(c, 0); c = 5; VLOG_IF_EVERY_N(0, c -= 4, 1) << "vlog_if 0 every 1 expr"; EXPECT_EQ(c, 1); c = 5; VLOG_IF_EVERY_N(100, c -= 4, 3) << "vlog_if 100 every 3 expr"; EXPECT_EQ(c, 1); c = 6; VLOG_IF_EVERY_N(0, c -= 6, 1) << "don't vlog_if 0 every 1 expr"; EXPECT_EQ(c, 0); c = 6; VLOG_IF_EVERY_N(100, c -= 6, 3) << "don't vlog_if 100 every 1 expr"; EXPECT_EQ(c, 0); } void TestLoggingLevels() { LogWithLevels(0, GLOG_INFO, false, false); LogWithLevels(1, GLOG_INFO, false, false); LogWithLevels(-1, GLOG_INFO, false, false); LogWithLevels(0, GLOG_WARNING, false, false); LogWithLevels(0, GLOG_ERROR, false, false); LogWithLevels(0, GLOG_FATAL, false, false); LogWithLevels(0, GLOG_FATAL, true, false); LogWithLevels(0, GLOG_FATAL, false, true); LogWithLevels(1, GLOG_WARNING, false, false); LogWithLevels(1, GLOG_FATAL, false, true); } int TestVlogHelper() { if (VLOG_IS_ON(1)) { return 1; } return 0; } void TestVLogModule() { int c = TestVlogHelper(); EXPECT_EQ(0, c); #if defined(__GNUC__) EXPECT_EQ(0, SetVLOGLevel("logging_unittest", 1)); c = TestVlogHelper(); EXPECT_EQ(1, c); #endif } TEST(DeathRawCHECK, logging) { ASSERT_DEATH(RAW_CHECK(false, "failure 1"), "RAW: Check false failed: failure 1"); ASSERT_DEBUG_DEATH(RAW_DCHECK(1 == 2, "failure 2"), "RAW: Check 1 == 2 failed: failure 2"); } void TestLogString() { vector<string> errors; vector<string>* no_errors = nullptr; LOG_STRING(INFO, &errors) << "LOG_STRING: " << "collected info"; LOG_STRING(WARNING, &errors) << "LOG_STRING: " << "collected warning"; LOG_STRING(ERROR, &errors) << "LOG_STRING: " << "collected error"; LOG_STRING(INFO, no_errors) << "LOG_STRING: " << "reported info"; LOG_STRING(WARNING, no_errors) << "LOG_STRING: " << "reported warning"; LOG_STRING(ERROR, nullptr) << "LOG_STRING: " << "reported error"; for (auto& error : errors) { LOG(INFO) << "Captured by LOG_STRING: " << error; } } void TestLogToString() { string error; string* no_error = nullptr; LOG_TO_STRING(INFO, &error) << "LOG_TO_STRING: " << "collected info"; LOG(INFO) << "Captured by LOG_TO_STRING: " << error; LOG_TO_STRING(WARNING, &error) << "LOG_TO_STRING: " << "collected warning"; LOG(INFO) << "Captured by LOG_TO_STRING: " << error; LOG_TO_STRING(ERROR, &error) << "LOG_TO_STRING: " << "collected error"; LOG(INFO) << "Captured by LOG_TO_STRING: " << error; LOG_TO_STRING(INFO, no_error) << "LOG_TO_STRING: " << "reported info"; LOG_TO_STRING(WARNING, no_error) << "LOG_TO_STRING: " << "reported warning"; LOG_TO_STRING(ERROR, nullptr) << "LOG_TO_STRING: " << "reported error"; } class TestLogSinkImpl : public LogSink { public: vector<string> errors; void send(LogSeverity severity, const char* , const char* base_filename, int line, const LogMessageTime& logmsgtime, const char* message, size_t message_len) override { errors.push_back(ToString(severity, base_filename, line, logmsgtime, message, message_len)); } }; void TestLogSink() { TestLogSinkImpl sink; LogSink* no_sink = nullptr; LOG_TO_SINK(&sink, INFO) << "LOG_TO_SINK: " << "collected info"; LOG_TO_SINK(&sink, WARNING) << "LOG_TO_SINK: " << "collected warning"; LOG_TO_SINK(&sink, ERROR) << "LOG_TO_SINK: " << "collected error"; LOG_TO_SINK(no_sink, INFO) << "LOG_TO_SINK: " << "reported info"; LOG_TO_SINK(no_sink, WARNING) << "LOG_TO_SINK: " << "reported warning"; LOG_TO_SINK(nullptr, ERROR) << "LOG_TO_SINK: " << "reported error"; LOG_TO_SINK_BUT_NOT_TO_LOGFILE(&sink, INFO) << "LOG_TO_SINK_BUT_NOT_TO_LOGFILE: " << "collected info"; LOG_TO_SINK_BUT_NOT_TO_LOGFILE(&sink, WARNING) << "LOG_TO_SINK_BUT_NOT_TO_LOGFILE: " << "collected warning"; LOG_TO_SINK_BUT_NOT_TO_LOGFILE(&sink, ERROR) << "LOG_TO_SINK_BUT_NOT_TO_LOGFILE: " << "collected error"; LOG_TO_SINK_BUT_NOT_TO_LOGFILE(no_sink, INFO) << "LOG_TO_SINK_BUT_NOT_TO_LOGFILE: " << "thrashed info"; LOG_TO_SINK_BUT_NOT_TO_LOGFILE(no_sink, WARNING) << "LOG_TO_SINK_BUT_NOT_TO_LOGFILE: " << "thrashed warning"; LOG_TO_SINK_BUT_NOT_TO_LOGFILE(nullptr, ERROR) << "LOG_TO_SINK_BUT_NOT_TO_LOGFILE: " << "thrashed error"; LOG(INFO) << "Captured by LOG_TO_SINK:"; for (auto& error : sink.errors) { LogMessage("foo", LogMessage::kNoLogPrefix, GLOG_INFO).stream() << error; } } enum { CASE_A, CASE_B }; void TestCHECK() { CHECK(1 == 1); CHECK_EQ(1, 1); CHECK_NE(1, 2); CHECK_GE(1, 1); CHECK_GE(2, 1); CHECK_LE(1, 1); CHECK_LE(1, 2); CHECK_GT(2, 1); CHECK_LT(1, 2); #if !defined(GLOG_OS_MACOSX) CHECK_EQ(CASE_A, CASE_A); CHECK_NE(CASE_A, CASE_B); CHECK_GE(CASE_A, CASE_A); CHECK_GE(CASE_B, CASE_A); CHECK_LE(CASE_A, CASE_A); CHECK_LE(CASE_A, CASE_B); CHECK_GT(CASE_B, CASE_A); CHECK_LT(CASE_A, CASE_B); #endif } void TestDCHECK() { #if defined(NDEBUG) DCHECK(1 == 2) << " DCHECK's shouldn't be compiled in normal mode"; #endif DCHECK(1 == 1); DCHECK_EQ(1, 1); DCHECK_NE(1, 2); DCHECK_GE(1, 1); DCHECK_GE(2, 1); DCHECK_LE(1, 1); DCHECK_LE(1, 2); DCHECK_GT(2, 1); DCHECK_LT(1, 2); auto* orig_ptr = new int64; int64* ptr = DCHECK_NOTNULL(orig_ptr); CHECK_EQ(ptr, orig_ptr); delete orig_ptr; } void TestSTREQ() { CHECK_STREQ("this", "this"); CHECK_STREQ(nullptr, nullptr); CHECK_STRCASEEQ("this", "tHiS"); CHECK_STRCASEEQ(nullptr, nullptr); CHECK_STRNE("this", "tHiS"); CHECK_STRNE("this", nullptr); CHECK_STRCASENE("this", "that"); CHECK_STRCASENE(nullptr, "that"); CHECK_STREQ((string("a") + "b").c_str(), "ab"); CHECK_STREQ(string("test").c_str(), (string("te") + string("st")).c_str()); } TEST(DeathSTREQ, logging) { ASSERT_DEATH(CHECK_STREQ(nullptr, "this"), ""); ASSERT_DEATH(CHECK_STREQ("this", "siht"), ""); ASSERT_DEATH(CHECK_STRCASEEQ(nullptr, "siht"), ""); ASSERT_DEATH(CHECK_STRCASEEQ("this", "siht"), ""); ASSERT_DEATH(CHECK_STRNE(nullptr, nullptr), ""); ASSERT_DEATH(CHECK_STRNE("this", "this"), ""); ASSERT_DEATH(CHECK_STREQ((string("a") + "b").c_str(), "abc"), ""); } TEST(CheckNOTNULL, Simple) { int64 t; void* ptr = static_cast<void*>(&t); void* ref = CHECK_NOTNULL(ptr); EXPECT_EQ(ptr, ref); CHECK_NOTNULL(reinterpret_cast<char*>(ptr)); CHECK_NOTNULL(reinterpret_cast<unsigned char*>(ptr)); CHECK_NOTNULL(reinterpret_cast<int*>(ptr)); CHECK_NOTNULL(reinterpret_cast<int64*>(ptr)); } TEST(DeathCheckNN, Simple) { ASSERT_DEATH(CHECK_NOTNULL(static_cast<void*>(nullptr)), ""); } static void GetFiles(const string& pattern, vector<string>* files) { files->clear(); #if defined(HAVE_GLOB_H) glob_t g; const int r = glob(pattern.c_str(), 0, nullptr, &g); CHECK((r == 0) || (r == GLOB_NOMATCH)) << ": error matching " << pattern; for (size_t i = 0; i < g.gl_pathc; i++) { files->push_back(string(g.gl_pathv[i])); } globfree(&g); #elif defined(GLOG_OS_WINDOWS) WIN32_FIND_DATAA data; HANDLE handle = FindFirstFileA(pattern.c_str(), &data); size_t index = pattern.rfind('\\'); if (index == string::npos) { LOG(FATAL) << "No directory separator."; } const string dirname = pattern.substr(0, index + 1); if (handle == INVALID_HANDLE_VALUE) { return; } do { files->push_back(dirname + data.cFileName); } while (FindNextFileA(handle, &data)); if (!FindClose(handle)) { LOG_SYSRESULT(GetLastError()); } #else # error There is no way to do glob. #endif } static void DeleteFiles(const string& pattern) { vector<string> files; GetFiles(pattern, &files); for (auto& file : files) { CHECK(unlink(file.c_str()) == 0) << ": " << strerror(errno); } } static void CheckFile(const string& name, const string& expected_string, const bool checkInFileOrNot = true) { vector<string> files; GetFiles(name + "*", &files); CHECK_EQ(files.size(), 1UL); std::unique_ptr<std::FILE> file{fopen(files[0].c_str(), "r")}; CHECK(file != nullptr) << ": could not open " << files[0]; char buf[1000]; while (fgets(buf, sizeof(buf), file.get()) != nullptr) { char* first = strstr(buf, expected_string.c_str()); if (checkInFileOrNot != (first == nullptr)) { return; } } LOG(FATAL) << "Did " << (checkInFileOrNot ? "not " : "") << "find " << expected_string << " in " << files[0]; } static void TestBasename() { fprintf(stderr, "==== Test setting log file basename\n"); const string dest = FLAGS_test_tmpdir + "/logging_test_basename"; DeleteFiles(dest + "*"); SetLogDestination(GLOG_INFO, dest.c_str()); LOG(INFO) << "message to new base"; FlushLogFiles(GLOG_INFO); CheckFile(dest, "message to new base"); LogToStderr(); DeleteFiles(dest + "*"); } static void TestBasenameAppendWhenNoTimestamp() { fprintf(stderr, "==== Test setting log file basename without timestamp and appending " "properly\n"); const string dest = FLAGS_test_tmpdir + "/logging_test_basename_append_when_no_timestamp"; DeleteFiles(dest + "*"); ofstream out(dest.c_str()); out << "test preexisting content" << endl; out.close(); CheckFile(dest, "test preexisting content"); FLAGS_timestamp_in_logfile_name = false; SetLogDestination(GLOG_INFO, dest.c_str()); LOG(INFO) << "message to new base, appending to preexisting file"; FlushLogFiles(GLOG_INFO); FLAGS_timestamp_in_logfile_name = true; CheckFile(dest, "test preexisting content"); CheckFile(dest, "message to new base, appending to preexisting file"); LogToStderr(); DeleteFiles(dest + "*"); } static void TestTwoProcessesWrite() { #if defined(HAVE_SYS_WAIT_H) && defined(HAVE_UNISTD_H) && defined(HAVE_FCNTL) fprintf(stderr, "==== Test setting log file basename and two processes writing - " "second should fail\n"); const string dest = FLAGS_test_tmpdir + "/logging_test_basename_two_processes_writing"; DeleteFiles(dest + "*"); FLAGS_timestamp_in_logfile_name = false; SetLogDestination(GLOG_INFO, dest.c_str()); LOG(INFO) << "message to new base, parent"; FlushLogFiles(GLOG_INFO); pid_t pid = fork(); CHECK_ERR(pid); if (pid == 0) { LOG(INFO) << "message to new base, child - should only appear on STDERR " "not on the file"; ShutdownGoogleLogging(); exit(EXIT_SUCCESS); } else if (pid > 0) { wait(nullptr); } FLAGS_timestamp_in_logfile_name = true; CheckFile(dest, "message to new base, parent"); CheckFile(dest, "message to new base, child - should only appear on STDERR not on " "the file", false); LogToStderr(); DeleteFiles(dest + "*"); #endif } static void TestSymlink() { #ifndef GLOG_OS_WINDOWS fprintf(stderr, "==== Test setting log file symlink\n"); string dest = FLAGS_test_tmpdir + "/logging_test_symlink"; string sym = FLAGS_test_tmpdir + "/symlinkbase"; DeleteFiles(dest + "*"); DeleteFiles(sym + "*"); SetLogSymlink(GLOG_INFO, "symlinkbase"); SetLogDestination(GLOG_INFO, dest.c_str()); LOG(INFO) << "message to new symlink"; FlushLogFiles(GLOG_INFO); CheckFile(sym, "message to new symlink"); DeleteFiles(dest + "*"); DeleteFiles(sym + "*"); #endif } static void TestExtension() { fprintf(stderr, "==== Test setting log file extension\n"); string dest = FLAGS_test_tmpdir + "/logging_test_extension"; DeleteFiles(dest + "*"); SetLogDestination(GLOG_INFO, dest.c_str()); SetLogFilenameExtension("specialextension"); LOG(INFO) << "message to new extension"; FlushLogFiles(GLOG_INFO); CheckFile(dest, "message to new extension"); vector<string> filenames; GetFiles(dest + "*", &filenames); CHECK_EQ(filenames.size(), 1UL); CHECK(strstr(filenames[0].c_str(), "specialextension") != nullptr); LogToStderr(); DeleteFiles(dest + "*"); } struct MyLogger : public base::Logger { string data; explicit MyLogger(bool* set_on_destruction) : set_on_destruction_(set_on_destruction) {} ~MyLogger() override { *set_on_destruction_ = true; } void Write(bool , const std::chrono::system_clock::time_point& , const char* message, size_t length) override { data.append(message, length); } void Flush() override {} uint32 LogSize() override { return static_cast<uint32>(data.length()); } private: bool* set_on_destruction_; }; static void TestWrapper() { fprintf(stderr, "==== Test log wrapper\n"); bool custom_logger_deleted = false; auto* my_logger = new MyLogger(&custom_logger_deleted); base::Logger* old_logger = base::GetLogger(GLOG_INFO); base::SetLogger(GLOG_INFO, my_logger); LOG(INFO) << "Send to wrapped logger"; CHECK(strstr(my_logger->data.c_str(), "Send to wrapped logger") != nullptr); FlushLogFiles(GLOG_INFO); EXPECT_FALSE(custom_logger_deleted); base::SetLogger(GLOG_INFO, old_logger); EXPECT_TRUE(custom_logger_deleted); } static void TestErrno() { fprintf(stderr, "==== Test errno preservation\n"); errno = ENOENT; TestLogging(false); CHECK_EQ(errno, ENOENT); } static void TestOneTruncate(const char* path, uint64 limit, uint64 keep, size_t dsize, size_t ksize, size_t expect) { FileDescriptor fd{open(path, O_RDWR | O_CREAT | O_TRUNC, 0600)}; CHECK_ERR(fd); const char *discardstr = "DISCARDME!", *keepstr = "KEEPME!"; const size_t discard_size = strlen(discardstr), keep_size = strlen(keepstr); size_t written = 0; while (written < dsize) { size_t bytes = min(dsize - written, discard_size); CHECK_ERR(write(fd.get(), discardstr, bytes)); written += bytes; } written = 0; while (written < ksize) { size_t bytes = min(ksize - written, keep_size); CHECK_ERR(write(fd.get(), keepstr, bytes)); written += bytes; } TruncateLogFile(path, limit, keep); struct stat statbuf; CHECK_ERR(fstat(fd.get(), &statbuf)); CHECK_EQ(static_cast<size_t>(statbuf.st_size), expect); CHECK_ERR(lseek(fd.get(), 0, SEEK_SET)); const size_t buf_size = static_cast<size_t>(statbuf.st_size) + 1; std::vector<char> buf(buf_size); CHECK_ERR(read(fd.get(), buf.data(), buf_size)); const char* p = buf.data(); size_t checked = 0; while (checked < expect) { size_t bytes = min(expect - checked, keep_size); CHECK(!memcmp(p, keepstr, bytes)); checked += bytes; } } static void TestTruncate() { #ifdef HAVE_UNISTD_H fprintf(stderr, "==== Test log truncation\n"); string path = FLAGS_test_tmpdir + "/truncatefile"; TestOneTruncate(path.c_str(), 10, 10, 10, 10, 10); TestOneTruncate(path.c_str(), 2U << 20U, 4U << 10U, 3U << 20U, 4U << 10U, 4U << 10U); TestOneTruncate(path.c_str(), 10, 20, 0, 20, 20); TestOneTruncate(path.c_str(), 10, 0, 0, 0, 0); TestOneTruncate(path.c_str(), 10, 50, 0, 10, 10); TestOneTruncate(path.c_str(), 50, 100, 0, 30, 30); # if !defined(GLOG_OS_MACOSX) && !defined(GLOG_OS_WINDOWS) string linkname = path + ".link"; unlink(linkname.c_str()); CHECK_ERR(symlink(path.c_str(), linkname.c_str())); TestOneTruncate(linkname.c_str(), 10, 10, 0, 30, 30); # endif # if defined(GLOG_OS_LINUX) int fd; CHECK_ERR(fd = open(path.c_str(), O_APPEND | O_WRONLY)); char fdpath[64]; std::snprintf(fdpath, sizeof(fdpath), "/proc/self/fd/%d", fd); TestOneTruncate(fdpath, 10, 10, 10, 10, 10); # endif #endif } struct RecordDeletionLogger : public base::Logger { RecordDeletionLogger(bool* set_on_destruction, base::Logger* wrapped_logger) : set_on_destruction_(set_on_destruction), wrapped_logger_(wrapped_logger) { *set_on_destruction_ = false; } ~RecordDeletionLogger() override { *set_on_destruction_ = true; } void Write(bool force_flush, const std::chrono::system_clock::time_point& timestamp, const char* message, size_t length) override { wrapped_logger_->Write(force_flush, timestamp, message, length); } void Flush() override { wrapped_logger_->Flush(); } uint32 LogSize() override { return wrapped_logger_->LogSize(); } private: bool* set_on_destruction_; base::Logger* wrapped_logger_; }; static void TestCustomLoggerDeletionOnShutdown() { bool custom_logger_deleted = false; base::SetLogger(GLOG_INFO, new RecordDeletionLogger(&custom_logger_deleted, base::GetLogger(GLOG_INFO))); EXPECT_TRUE(IsGoogleLoggingInitialized()); ShutdownGoogleLogging(); EXPECT_TRUE(custom_logger_deleted); EXPECT_FALSE(IsGoogleLoggingInitialized()); } namespace LogTimes { constexpr int64_t LOG_PERIOD_NS = 10000000; constexpr int64_t LOG_PERIOD_TOL_NS = 500000; constexpr size_t MAX_CALLS = 10; } struct LogTimeRecorder { LogTimeRecorder() = default; size_t m_streamTimes{0}; std::chrono::steady_clock::time_point m_callTimes[LogTimes::MAX_CALLS]; }; std::ostream& operator<<(std::ostream& stream, LogTimeRecorder& t) { t.m_callTimes[t.m_streamTimes++] = std::chrono::steady_clock::now(); return stream; } int64 elapsedTime_ns(const std::chrono::steady_clock::time_point& begin, const std::chrono::steady_clock::time_point& end) { return std::chrono::duration_cast<std::chrono::nanoseconds>((end - begin)) .count(); } static void TestLogPeriodically() { fprintf(stderr, "==== Test log periodically\n"); LogTimeRecorder timeLogger; constexpr double LOG_PERIOD_SEC = LogTimes::LOG_PERIOD_NS * 1e-9; while (timeLogger.m_streamTimes < LogTimes::MAX_CALLS) { LOG_EVERY_T(INFO, LOG_PERIOD_SEC) << timeLogger << "Timed Message #" << timeLogger.m_streamTimes; } int64 nsBetweenCalls[LogTimes::MAX_CALLS - 1]; for (size_t i = 1; i < LogTimes::MAX_CALLS; ++i) { nsBetweenCalls[i - 1] = elapsedTime_ns(timeLogger.m_callTimes[i - 1], timeLogger.m_callTimes[i]); } for (long time_ns : nsBetweenCalls) { EXPECT_NEAR(time_ns, LogTimes::LOG_PERIOD_NS, LogTimes::LOG_PERIOD_TOL_NS); } } namespace google { inline namespace glog_internal_namespace_ { extern bool SafeFNMatch_(const char* pattern, size_t patt_len, const char* str, size_t str_len); } } static bool WrapSafeFNMatch(string pattern, string str) { pattern += "abc"; str += "defgh"; return SafeFNMatch_(pattern.data(), pattern.size() - 3, str.data(), str.size() - 5); } TEST(SafeFNMatch, logging) { CHECK(WrapSafeFNMatch("foo", "foo")); CHECK(!WrapSafeFNMatch("foo", "bar")); CHECK(!WrapSafeFNMatch("foo", "fo")); CHECK(!WrapSafeFNMatch("foo", "foo2")); CHECK(WrapSafeFNMatch("bar/foo.ext", "bar/foo.ext")); CHECK(WrapSafeFNMatch("*ba*r/fo*o.ext*", "bar/foo.ext")); CHECK(!WrapSafeFNMatch("bar/foo.ext", "bar/baz.ext")); CHECK(!WrapSafeFNMatch("bar/foo.ext", "bar/foo")); CHECK(!WrapSafeFNMatch("bar/foo.ext", "bar/foo.ext.zip")); CHECK(WrapSafeFNMatch("ba?, const char* base_filename, int line, const LogMessageTime& logmsgtime, const char* message, size_t message_len) override { if (tid_ == std::this_thread::get_id()) { writer_.Buffer(ToString(severity, base_filename, line, logmsgtime, message, message_len)); } } void WaitTillSent() override { if (tid_ == std::this_thread::get_id()) writer_.Wait(); } private: std::thread::id tid_; TestLogSinkWriter writer_; }; static void TestLogSinkWaitTillSent() { global_messages.clear(); { using namespace std::chrono_literals; TestWaitingLogSink sink; LOG(INFO) << "Message 1"; std::this_thread::sleep_for(60ms); LOG(ERROR) << "Message 2"; std::this_thread::sleep_for(60ms); LOG(WARNING) << "Message 3"; std::this_thread::sleep_for(60ms); } for (auto& global_message : global_messages) { LOG(INFO) << "Sink capture: " << global_message; } CHECK_EQ(global_messages.size(), 3UL); } TEST(Strerror, logging) { int errcode = EINTR; std::string msg = strerror(errcode); const size_t buf_size = msg.size() + 1; std::vector<char> buf(buf_size); CHECK_EQ(posix_strerror_r(errcode, nullptr, 0), -1); buf[0] = 'A'; CHECK_EQ(posix_strerror_r(errcode, buf.data(), 0), -1); CHECK_EQ(buf[0], 'A'); CHECK_EQ(posix_strerror_r(errcode, nullptr, buf_size), -1); #if defined(GLOG_OS_MACOSX) || defined(GLOG_OS_FREEBSD) || \ defined(GLOG_OS_OPENBSD) CHECK_EQ(posix_strerror_r(errcode, buf.data(), 1), -1); #else CHECK_EQ(posix_strerror_r(errcode, buf.data(), 1), 0); #endif CHECK_STREQ(buf.data(), ""); CHECK_EQ(posix_strerror_r(errcode, buf.data(), buf_size), 0); CHECK_STREQ(buf.data(), msg.c_str()); CHECK_EQ(msg, StrError(errcode)); } #ifdef HAVE_LIB_GMOCK TEST(DVLog, Basic) { ScopedMockLog log; # if defined(NDEBUG) EXPECT_CALL(log, Log(_, _, _)).Times(0); # else EXPECT_CALL(log, Log(GLOG_INFO, __FILE__, "debug log")); # endif FLAGS_v = 1; DVLOG(1) << "debug log"; } TEST(DVLog, V0) { ScopedMockLog log; EXPECT_CALL(log, Log(_, _, _)).Times(0); FLAGS_v = 0; DVLOG(1) << "debug log"; } TEST(LogAtLevel, Basic) { ScopedMockLog log; EXPECT_CALL(log, Log(GLOG_WARNING, StrNe(__FILE__), "function version")); EXPECT_CALL(log, Log(GLOG_INFO, __FILE__, "macro version")); LogSeverity severity = GLOG_WARNING; LogAtLevel(severity, "function version"); severity = GLOG_INFO; LOG_AT_LEVEL(severity) << "macro" << ' ' << "version"; } TEST(TestExitOnDFatal, ToBeOrNotToBe) { EXPECT_TRUE(base::internal::GetExitOnDFatal()); base::internal::SetExitOnDFatal(false); EXPECT_FALSE(base::internal::GetExitOnDFatal()); { ScopedMockLog log; const LogSeverity severity = # if defined(NDEBUG) GLOG_ERROR; # else GLOG_FATAL; # endif EXPECT_CALL(log, Log(severity, __FILE__, "This should not be fatal")); LOG(DFATAL) << "This should not be fatal"; } base::internal::SetExitOnDFatal(true); EXPECT_TRUE(base::internal::GetExitOnDFatal()); # ifdef GTEST_HAS_DEATH_TEST EXPECT_DEBUG_DEATH({ LOG(DFATAL) << "This should be fatal in debug mode"; }, "This should be fatal in debug mode"); # endif } # ifdef HAVE_STACKTRACE static void BacktraceAtHelper() { LOG(INFO) << "Not me"; LOG(INFO) << "Backtrace me"; } static int kBacktraceAtLine = __LINE__ - 2; TEST(LogBacktraceAt, DoesNotBacktraceWhenDisabled) { StrictMock<ScopedMockLog> log; FLAGS_log_backtrace_at = ""; EXPECT_CALL(log, Log(_, _, "Backtrace me")); EXPECT_CALL(log, Log(_, _, "Not me")); BacktraceAtHelper(); } TEST(LogBacktraceAt, DoesBacktraceAtRightLineWhenEnabled) { StrictMock<ScopedMockLog> log; char where[100]; std::snprintf(where, 100, "%s:%d", const_basename(__FILE__), kBacktraceAtLine); FLAGS_log_backtrace_at = where; EXPECT_CALL( log, Log(_, _, AllOf(HasSubstr("stacktrace:"), HasSubstr("BacktraceAtHelper"), HasSubstr("main"), HasSubstr("Backtrace me")))); EXPECT_CALL(log, Log(_, _, "Not me")); BacktraceAtHelper(); } # endif #endif struct UserDefinedClass { bool operator==(const UserDefinedClass&) const { return true; } }; inline ostream& operator<<(ostream& out, const UserDefinedClass&) { out << "OK"; return out; } TEST(UserDefinedClass, logging) { UserDefinedClass u; vector<string> buf; LOG_STRING(INFO, &buf) << u; CHECK_EQ(1UL, buf.size()); CHECK(buf[0].find("OK") != string::npos); CHECK_EQ(u, u); } TEST(LogMsgTime, gmtoff) { google::LogMessage log_obj(__FILE__, __LINE__); std::chrono::seconds gmtoff = log_obj.time().gmtoffset(); using namespace std::chrono_literals; constexpr std::chrono::hours utc_min_offset = -12h; constexpr std::chrono::hours utc_max_offset = +14h; EXPECT_TRUE((gmtoff >= utc_min_offset) && (gmtoff <= utc_max_offset)); } TEST(EmailLogging, ValidAddress) { FlagSaver saver; FLAGS_logmailer = "/usr/bin/true"; EXPECT_TRUE( SendEmail("[email protected]", "Example subject", "Example body")); } TEST(EmailLogging, MultipleAddresses) { FlagSaver saver; FLAGS_logmailer = "/usr/bin/true"; EXPECT_TRUE(SendEmail("[email protected],[email protected]", "Example subject", "Example body")); } TEST(EmailLogging, InvalidAddress) { FlagSaver saver; FLAGS_logmailer = "/usr/bin/true"; EXPECT_FALSE(SendEmail("hello world@foo", "Example subject", "Example body")); } TEST(EmailLogging, MaliciousAddress) { FlagSaver saver; FLAGS_logmailer = "/usr/bin/true"; EXPECT_FALSE( SendEmail("!/bin/[email protected]", "Example subject", "Example body")); } TEST(Logging, FatalThrow) { auto const fail_func = InstallFailureFunction(+[]() #if defined(__has_attribute) # if __has_attribute(noreturn) __attribute__((noreturn)) # endif #endif { throw std::logic_error{"fail"}; }); auto restore_fail = [fail_func] { InstallFailureFunction(fail_func); }; ScopedExit<decltype(restore_fail)> restore{restore_fail}; EXPECT_THROW({ LOG(FATAL) << "must throw to fail"; }, std::logic_error); }
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/logging.cc
https://github.com/google/glog/blob/de309c08c05382fee0792380de7df1bd65332da2/src/logging_unittest.cc
de309c08c05382fee0792380de7df1bd65332da2
f41932d8-4e64-4b72-807e-e6ff75eaddc7
cpp
tensorflow/tensorflow
colorspace_op
tensorflow/core/kernels/image/colorspace_op.cc
tensorflow/core/kernels/image/colorspace_op_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/kernels/image/colorspace_op.h" #include <algorithm> #include <cmath> #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; template <typename Device, typename T> class RGBToHSVOp : public OpKernel { public: explicit RGBToHSVOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { const Tensor& input = context->input(0); OP_REQUIRES(context, input.dims() >= 1, errors::InvalidArgument("input must be at least 1D", input.shape().DebugString())); auto channels = input.dim_size(input.dims() - 1); OP_REQUIRES(context, channels == 3, errors::FailedPrecondition( "input must have 3 channels but input only has ", channels, " channels.")); Tensor* output = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, input.shape(), &output)); typename TTypes<T, 2>::ConstTensor input_data = input.flat_inner_dims<T>(); typename TTypes<T, 2>::Tensor output_data = output->flat_inner_dims<T>(); Tensor trange; OP_REQUIRES_OK( context, context->allocate_temp(DataTypeToEnum<T>::value, TensorShape({input_data.dimension(0)}), &trange)); typename TTypes<T, 1>::Tensor range(trange.tensor<T, 1>()); functor::RGBToHSV<Device, T>()(context->eigen_device<Device>(), input_data, range, output_data); } }; template <typename Device, typename T> class HSVToRGBOp : public OpKernel { public: explicit HSVToRGBOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { const Tensor& input = context->input(0); OP_REQUIRES(context, input.dims() >= 1, errors::InvalidArgument("input must be at least 1D", input.shape().DebugString())); auto channels = input.dim_size(input.dims() - 1); OP_REQUIRES(context, channels == 3, errors::FailedPrecondition( "input must have 3 channels but input only has ", channels, " channels.")); Tensor* output = nullptr; OP_REQUIRES_OK(context, context->allocate_output(0, input.shape(), &output)); typename TTypes<T, 2>::ConstTensor input_data = input.flat_inner_dims<T>(); typename TTypes<T, 2>::Tensor output_data = output->flat_inner_dims<T>(); functor::HSVToRGB<Device, T>()(context->eigen_device<Device>(), input_data, output_data); } }; #define REGISTER_CPU(T) \ REGISTER_KERNEL_BUILDER( \ Name("RGBToHSV").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ RGBToHSVOp<CPUDevice, T>); \ template class RGBToHSVOp<CPUDevice, T>; \ REGISTER_KERNEL_BUILDER( \ Name("HSVToRGB").Device(DEVICE_CPU).TypeConstraint<T>("T"), \ HSVToRGBOp<CPUDevice, T>); \ template class HSVToRGBOp<CPUDevice, T>; TF_CALL_float(REGISTER_CPU); TF_CALL_double(REGISTER_CPU); TF_CALL_half(REGISTER_CPU); TF_CALL_bfloat16(REGISTER_CPU); #if (defined(GOOGLE_CUDA) && GOOGLE_CUDA) || \ (defined(TENSORFLOW_USE_ROCM) && TENSORFLOW_USE_ROCM) namespace functor { #define DECLARE_GPU(T) \ template <> \ void RGBToHSV<GPUDevice, T>::operator()( \ const GPUDevice& d, TTypes<T, 2>::ConstTensor input_data, \ TTypes<T, 1>::Tensor range, TTypes<T, 2>::Tensor output_data); \ extern template struct RGBToHSV<GPUDevice, T>; \ template <> \ void HSVToRGB<GPUDevice, T>::operator()( \ const GPUDevice& d, TTypes<T, 2>::ConstTensor input_data, \ TTypes<T, 2>::Tensor output_data); \ extern template struct HSVToRGB<GPUDevice, T>; TF_CALL_float(DECLARE_GPU); TF_CALL_double(DECLARE_GPU); } #define REGISTER_GPU(T) \ REGISTER_KERNEL_BUILDER( \ Name("RGBToHSV").Device(DEVICE_GPU).TypeConstraint<T>("T"), \ RGBToHSVOp<GPUDevice, T>); \ REGISTER_KERNEL_BUILDER( \ Name("HSVToRGB").Device(DEVICE_GPU).TypeConstraint<T>("T"), \ HSVToRGBOp<GPUDevice, T>); TF_CALL_float(REGISTER_GPU); TF_CALL_double(REGISTER_GPU); #endif }
#include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { template <typename T> class RGBToHSVOpTest : public OpsTestBase { protected: void MakeOp(DataType data_type) { TF_EXPECT_OK(NodeDefBuilder("rgb_to_hsv_op", "RGBToHSV") .Input(FakeInput(data_type)) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); } void CheckBlack(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {0, 0, 0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {0.0, 0.0, 0.0}); test::ExpectTensorEqual<T>(expected, *GetOutput(0)); } void CheckGray(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {.5, .5, .5}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {0.0, 0.0, .5}); test::ExpectTensorEqual<T>(expected, *GetOutput(0)); } void CheckWhite(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {1, 1, 1}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {0.0, 0.0, 1.0}); test::ExpectTensorEqual<T>(expected, *GetOutput(0)); } void CheckRedMax(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {.8f, .4f, .2f}); TF_ASSERT_OK(RunOpKernel()); T expected_h = 1. / 6. * .2 / .6; T expected_s = .6 / .8; T expected_v = .8 / 1.; Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {expected_h, expected_s, expected_v}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } void CheckGreenMax(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {.2f, .8f, .4f}); TF_ASSERT_OK(RunOpKernel()); T expected_h = 1. / 6. * (2.0 + (.2 / .6)); T expected_s = .6 / .8; T expected_v = .8 / 1.; Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {expected_h, expected_s, expected_v}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } void CheckBlueMax(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {.4f, .2f, .8f}); TF_ASSERT_OK(RunOpKernel()); T expected_h = 1. / 6. * (4.0 + (.2 / .6)); T expected_s = .6 / .8; T expected_v = .8 / 1.; Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {expected_h, expected_s, expected_v}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } void CheckNegativeDifference(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {0, .1f, .2f}); TF_ASSERT_OK(RunOpKernel()); T expected_h = 1. / 6. * (4.0 + (-.1 / .2)); T expected_s = .2 / .2; T expected_v = .2 / 1.; Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {expected_h, expected_s, expected_v}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } }; template <typename T> class HSVToRGBOpTest : public OpsTestBase { protected: void MakeOp(DataType data_type) { TF_EXPECT_OK(NodeDefBuilder("hsv_to_rgb_op", "HSVToRGB") .Input(FakeInput(data_type)) .Finalize(node_def())); TF_EXPECT_OK(InitOp()); } void CheckBlack(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {0.0, 0.0, 0.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {0, 0, 0}); test::ExpectTensorEqual<T>(expected, *GetOutput(0)); } void CheckGray(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {0.0, 0.0, .5}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {.5, .5, .5}); test::ExpectTensorEqual<T>(expected, *GetOutput(0)); } void CheckWhite(DataType data_type) { AddInputFromArray<T>(TensorShape({3}), {0.0, 0.0, 1.0}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {1, 1, 1}); test::ExpectTensorEqual<T>(expected, *GetOutput(0)); } void CheckRedMax(DataType data_type) { T expected_h = 1. / 6. * .2 / .6; T expected_s = .6 / .8; T expected_v = .8 / 1.; AddInputFromArray<T>(TensorShape({3}), {expected_h, expected_s, expected_v}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {.8, .4, .2}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } void CheckGreenMax(DataType data_type) { T expected_h = 1. / 6. * (2.0 + (.2 / .6)); T expected_s = .6 / .8; T expected_v = .8 / 1.; AddInputFromArray<T>(TensorShape({3}), {expected_h, expected_s, expected_v}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {.2, .8, .4}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } void CheckBlueMax(DataType data_type) { T expected_h = 1. / 6. * (4.0 + (.2 / .6)); T expected_s = .6 / .8; T expected_v = .8 / 1.0; AddInputFromArray<T>(TensorShape({3}), {expected_h, expected_s, expected_v}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {.4, .2, .8}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } void CheckNegativeDifference(DataType data_type) { T expected_h = 1. / 6. * (4.0 + (-.1 / .2)); T expected_s = .2 / .2; T expected_v = .2 / 1.; AddInputFromArray<T>(TensorShape({3}), {expected_h, expected_s, expected_v}); TF_ASSERT_OK(RunOpKernel()); Tensor expected(allocator(), data_type, TensorShape({3})); test::FillValues<T>(&expected, {0, .1f, .2f}); test::ExpectTensorNear<T>(expected, *GetOutput(0), 1e-6); } }; #define TEST_COLORSPACE(test, dt) \ TEST_F(test, CheckBlack) { \ MakeOp(dt); \ CheckBlack(dt); \ } \ TEST_F(test, CheckGray) { \ MakeOp(dt); \ CheckGray(dt); \ } \ TEST_F(test, CheckWhite) { \ MakeOp(dt); \ CheckWhite(dt); \ } \ TEST_F(test, CheckRedMax) { \ MakeOp(dt); \ CheckRedMax(dt); \ } \ TEST_F(test, CheckGreenMax) { \ MakeOp(dt); \ CheckGreenMax(dt); \ } \ TEST_F(test, CheckBlueMax) { \ MakeOp(dt); \ CheckBlueMax(dt); \ } \ TEST_F(test, CheckNegativeDifference) { \ MakeOp(dt); \ CheckNegativeDifference(dt); \ } typedef RGBToHSVOpTest<float> rgb_to_hsv_float; typedef RGBToHSVOpTest<double> rgb_to_hsv_double; TEST_COLORSPACE(rgb_to_hsv_float, DT_FLOAT); TEST_COLORSPACE(rgb_to_hsv_double, DT_DOUBLE); typedef HSVToRGBOpTest<float> hsv_to_rgb_float; typedef HSVToRGBOpTest<double> hsv_to_rgb_double; TEST_COLORSPACE(hsv_to_rgb_float, DT_FLOAT); TEST_COLORSPACE(hsv_to_rgb_double, DT_DOUBLE); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/image/colorspace_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/image/colorspace_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
0bf94df6-92bc-41e0-9aff-4d9ce0fb735c
cpp
tensorflow/tensorflow
sparse_xent_op
tensorflow/core/kernels/sparse_xent_op.cc
tensorflow/core/kernels/sparse_xent_op_test.cc
#define EIGEN_USE_THREADS #include "tensorflow/core/kernels/sparse_xent_op.h" #include "unsupported/Eigen/CXX11/Tensor" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_types.h" #include "tensorflow/core/util/determinism.h" #include "tensorflow/core/util/env_var.h" namespace tensorflow { typedef Eigen::ThreadPoolDevice CPUDevice; typedef Eigen::GpuDevice GPUDevice; template <typename Index> Status CheckInvalidLabelIndex(const Tensor& labels, int64_t max_index) { if (labels.NumElements() == 0) return absl::OkStatus(); const auto label_values = labels.vec<Index>(); int64_t bad_index; auto min_max_dim_value = std::minmax_element( label_values.data(), label_values.data() + label_values.size()); if (*min_max_dim_value.first < 0 || *min_max_dim_value.second >= max_index) { bad_index = (*min_max_dim_value.first < 0) ? *min_max_dim_value.first : *min_max_dim_value.second; return errors::InvalidArgument( "Received a label value of ", bad_index, " which is outside the valid range of [0, ", max_index, "). Label values: ", labels.SummarizeValue(labels.NumElements())); } return absl::OkStatus(); } template <typename Device, typename T, typename Index> class SparseSoftmaxXentWithLogitsOp : public OpKernel { public: explicit SparseSoftmaxXentWithLogitsOp(OpKernelConstruction* context) : OpKernel(context) {} void Compute(OpKernelContext* context) override { const Tensor& logits = context->input(0); const Tensor& labels = context->input(1); OP_REQUIRES(context, TensorShapeUtils::IsMatrix(logits.shape()), errors::InvalidArgument("logits must be 2-D, but got shape ", logits.shape().DebugString())); OP_REQUIRES(context, TensorShapeUtils::IsVector(labels.shape()), errors::InvalidArgument("labels must be 1-D, but got shape ", labels.shape().DebugString())); OP_REQUIRES(context, logits.dim_size(0) == labels.dim_size(0), errors::InvalidArgument( "logits and labels must have the same first dimension, " "got logits shape ", logits.shape().DebugString(), " and labels shape ", labels.shape().DebugString())); OP_REQUIRES(context, logits.dim_size(1) > 0, errors::InvalidArgument( "Must have at least one class, but got logits shape ", logits.shape().DebugString())); if (std::is_same<Device, GPUDevice>::value) { OP_REQUIRES( context, !OpDeterminismRequired(), errors::Unimplemented( "The GPU implementation of SparseSoftmaxCrossEntropyWithLogits" " that would have been executed is not deterministic. Note that" " the Python API uses an alternative, deterministic," " GPU-accelerated path when determinsim is enabled.")); } Tensor scratch; OP_REQUIRES_OK(context, context->allocate_temp(DataTypeToEnum<T>::value, labels.shape(), &scratch)); Tensor* loss_out = nullptr; OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {1}, 0, labels.shape(), &loss_out)); Tensor* back_out = nullptr; OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {0}, 1, logits.shape(), &back_out)); if (logits.dim_size(0) > 0) { if (std::is_same<Device, CPUDevice>::value) { OP_REQUIRES_OK( context, CheckInvalidLabelIndex<Index>(labels, logits.dim_size(1))); } functor::SparseXentFunctor<Device, T, Index> functor; functor(context, logits.matrix<T>(), labels.vec<Index>(), scratch.vec<T>(), loss_out->vec<T>(), back_out->matrix<T>()); } } }; namespace functor { template <typename T, typename Index> struct SparseXentFunctor<CPUDevice, T, Index> { void operator()(OpKernelContext* ctx, typename TTypes<T>::ConstMatrix logits, typename TTypes<Index>::ConstVec labels, typename TTypes<T>::Vec scratch, typename TTypes<T>::Vec loss, typename TTypes<T>::Matrix backprop) { SparseXentEigenImpl<CPUDevice, T, Index>::Compute(ctx, logits, labels, scratch, loss, backprop); } }; } #define REGISTER(Dev, T, Index) \ REGISTER_KERNEL_BUILDER( \ Name("SparseSoftmaxCrossEntropyWithLogits") \ .Device(DEVICE_##Dev) \ .TypeConstraint<T>("T") \ .TypeConstraint<Index>("Tlabels"), \ SparseSoftmaxXentWithLogitsOp<Dev##Device, T, Index>); REGISTER(CPU, float, int32) REGISTER(CPU, float, int64_t) REGISTER(CPU, double, int32) REGISTER(CPU, double, int64_t) REGISTER(CPU, Eigen::half, int32) REGISTER(CPU, Eigen::half, int64_t) REGISTER(CPU, bfloat16, int32) REGISTER(CPU, bfloat16, int64_t) #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM REGISTER(GPU, float, int32) REGISTER(GPU, float, int64_t) REGISTER(GPU, Eigen::half, int32) REGISTER(GPU, Eigen::half, int64_t) REGISTER(GPU, Eigen::bfloat16, int32) REGISTER(GPU, Eigen::bfloat16, int64_t) #endif #undef REGISTER }
#include <random> #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/kernels/xent_op.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" namespace tensorflow { template <class T> static Graph* SparseXent(int batch_size, int num_classes, DataType type) { Graph* g = new Graph(OpRegistry::Global()); Tensor logits(type, TensorShape({batch_size, num_classes})); logits.flat<T>().setRandom(); Tensor labels(DT_INT64, TensorShape({batch_size})); std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution<> dist(0, num_classes - 1); auto labels_t = labels.flat<int64_t>(); for (int i = 0; i < batch_size; ++i) { labels_t(i) = dist(gen); } test::graph::Binary(g, "SparseSoftmaxCrossEntropyWithLogits", test::graph::Constant(g, logits), test::graph::Constant(g, labels)); return g; } #define BM_SparseXentDev(BATCH, CLASS, DEVICE, C_TYPE, TF_TYPE) \ static void BM_SparseXent##_##BATCH##_##CLASS##_##DEVICE##_##C_TYPE( \ ::testing::benchmark::State& state) { \ test::Benchmark(#DEVICE, SparseXent<C_TYPE>(BATCH, CLASS, TF_TYPE), \ false) \ .Run(state); \ const int64_t tot = \ static_cast<int64_t>(state.iterations()) * BATCH * CLASS; \ state.SetItemsProcessed(tot); \ state.SetBytesProcessed(tot * sizeof(C_TYPE)); \ } \ BENCHMARK(BM_SparseXent##_##BATCH##_##CLASS##_##DEVICE##_##C_TYPE); #if GOOGLE_CUDA || TENSORFLOW_USE_ROCM BM_SparseXentDev(8, 1000000, gpu, float, DT_FLOAT); BM_SparseXentDev(16, 10000, gpu, float, DT_FLOAT); BM_SparseXentDev(16, 30000, gpu, float, DT_FLOAT); BM_SparseXentDev(16, 100000, gpu, float, DT_FLOAT); BM_SparseXentDev(32, 10000, gpu, float, DT_FLOAT); BM_SparseXentDev(32, 30000, gpu, float, DT_FLOAT); BM_SparseXentDev(32, 100000, gpu, float, DT_FLOAT); BM_SparseXentDev(64, 10000, gpu, float, DT_FLOAT); BM_SparseXentDev(64, 30000, gpu, float, DT_FLOAT); BM_SparseXentDev(64, 100000, gpu, float, DT_FLOAT); #endif #define BM_SparseXentDev_CPU(C_TYPE, TF_TYPE) \ BM_SparseXentDev(8, 1000000, cpu, C_TYPE, TF_TYPE); \ BM_SparseXentDev(16, 10000, cpu, C_TYPE, TF_TYPE); \ BM_SparseXentDev(16, 100000, cpu, C_TYPE, TF_TYPE); \ BM_SparseXentDev(32, 10000, cpu, C_TYPE, TF_TYPE); \ BM_SparseXentDev(32, 100000, cpu, C_TYPE, TF_TYPE); \ BM_SparseXentDev(64, 10000, cpu, C_TYPE, TF_TYPE); \ BM_SparseXentDev(64, 100000, cpu, C_TYPE, TF_TYPE); BM_SparseXentDev_CPU(float, DT_FLOAT); BM_SparseXentDev_CPU(bfloat16, DT_BFLOAT16); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_xent_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/sparse_xent_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
eab9cf0e-5b44-4116-a994-bad172501059
cpp
google/tensorstore
arena
tensorstore/internal/arena.h
tensorstore/internal/arena_test.cc
#ifndef TENSORSTORE_INTERNAL_ARENA_H_ #define TENSORSTORE_INTERNAL_ARENA_H_ #include <stddef.h> #include <memory> #include <new> #include <utility> #include "tensorstore/internal/exception_macros.h" #include "tensorstore/internal/integer_overflow.h" #include "tensorstore/util/span.h" namespace tensorstore { namespace internal { class Arena { public: Arena() : remaining_bytes_(0) {} explicit Arena(tensorstore::span<unsigned char> initial_buffer) : initial_buffer_(initial_buffer), remaining_bytes_(initial_buffer.size()) {} template <typename T = unsigned char> T* allocate(size_t n, size_t alignment = alignof(T)) { size_t num_bytes; if (MulOverflow(n, sizeof(T), &num_bytes)) { TENSORSTORE_THROW_BAD_ALLOC; } void* ptr = static_cast<void*>(initial_buffer_.end() - remaining_bytes_); if (std::align(alignment, num_bytes, ptr, remaining_bytes_)) { remaining_bytes_ -= num_bytes; } else { ptr = ::operator new(num_bytes, std::align_val_t(alignment)); } return static_cast<T*>(ptr); } template <typename T> void deallocate(T* p, size_t n, size_t alignment = alignof(T)) { if (static_cast<void*>(p) >= static_cast<void*>(initial_buffer_.data()) && static_cast<void*>(p + n) <= static_cast<void*>(initial_buffer_.data() + initial_buffer_.size())) { return; } ::operator delete(static_cast<void*>(p), n * sizeof(T), std::align_val_t(alignment)); } private: tensorstore::span<unsigned char> initial_buffer_; size_t remaining_bytes_; }; template <typename T = unsigned char> class ArenaAllocator { public: using value_type = T; using pointer = T*; using void_pointer = void*; using const_void_pointer = const void*; using reference = T&; using const_pointer = const T*; using const_reference = const T&; using size_type = size_t; using difference_type = ptrdiff_t; template <typename U> struct rebind { using other = ArenaAllocator<U>; }; ArenaAllocator(Arena* arena) : arena_(arena) {} template <typename U> ArenaAllocator(ArenaAllocator<U> other) : arena_(other.arena()) {} T* allocate(size_t n) const { return arena_->allocate<T>(n); } void deallocate(T* p, size_t n) const { arena_->deallocate(p, n); } template <typename... Arg> void construct(T* p, Arg&&... arg) { new (p) T(std::forward<Arg>(arg)...); } void destroy(T* p) { p->~T(); } Arena* arena() const { return arena_; } friend bool operator==(ArenaAllocator a, ArenaAllocator b) { return a.arena_ == b.arena_; } friend bool operator!=(ArenaAllocator a, ArenaAllocator b) { return a.arena_ != b.arena_; } Arena* arena_; }; } } #endif
#include "tensorstore/internal/arena.h" #include <algorithm> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/util/span.h" namespace { using ::tensorstore::internal::Arena; using ::tensorstore::internal::ArenaAllocator; bool Contains(tensorstore::span<const unsigned char> buffer, void* ptr) { return ptr >= buffer.data() && ptr < buffer.data() + buffer.size(); } TEST(ArenaTest, Small) { unsigned char buffer[1024]; Arena arena(buffer); std::vector<int, ArenaAllocator<int>> vec(100, &arena); EXPECT_EQ(&arena, vec.get_allocator().arena()); std::fill(vec.begin(), vec.end(), 5); EXPECT_TRUE(Contains(buffer, vec.data())); } TEST(ArenaTest, Alignment) { alignas(16) unsigned char buffer[1024]; for (int x = 1; x <= 16; x *= 2) { Arena arena(buffer); unsigned char* ptr1 = arena.allocate(1, 1); EXPECT_EQ(&buffer[0], ptr1); unsigned char* ptr2 = arena.allocate(1, x); EXPECT_EQ(0u, reinterpret_cast<std::uintptr_t>(ptr2) % x); EXPECT_EQ(&buffer[x], ptr2); arena.deallocate(ptr1, 1, 1); arena.deallocate(ptr2, 1, x); } { Arena arena(buffer); unsigned char* ptr = arena.allocate(2000, 16); EXPECT_EQ(0u, reinterpret_cast<std::uintptr_t>(ptr) % 16); arena.deallocate(ptr, 2000, 16); } } TEST(ArenaTest, Large) { unsigned char buffer[1024]; Arena arena(buffer); std::vector<int, ArenaAllocator<int>> vec(&arena); vec.resize(2000); std::fill(vec.begin(), vec.end(), 7); EXPECT_FALSE(Contains(buffer, vec.data())); } TEST(ArenaTest, MultipleSmall) { unsigned char buffer[1024]; Arena arena(buffer); std::vector<std::int32_t, ArenaAllocator<int>> vec(100, &arena); EXPECT_EQ(&arena, vec.get_allocator().arena()); std::fill(vec.begin(), vec.end(), 5); EXPECT_TRUE(Contains(buffer, vec.data())); std::vector<std::int32_t, ArenaAllocator<int>> vec2(100, &arena); std::fill(vec2.begin(), vec2.end(), 6); EXPECT_TRUE(Contains(buffer, vec2.data())); std::vector<std::int32_t, ArenaAllocator<int>> vec3(100, &arena); std::fill(vec3.begin(), vec3.end(), 7); EXPECT_FALSE(Contains(buffer, vec3.data())); std::vector<std::int32_t, ArenaAllocator<int>> vec4(5, &arena); std::fill(vec4.begin(), vec4.end(), 8); EXPECT_TRUE(Contains(buffer, vec4.data())); EXPECT_THAT(vec, ::testing::ElementsAreArray(std::vector<std::int32_t>(100, 5))); EXPECT_THAT(vec2, ::testing::ElementsAreArray(std::vector<std::int32_t>(100, 6))); EXPECT_THAT(vec3, ::testing::ElementsAreArray(std::vector<std::int32_t>(100, 7))); EXPECT_THAT(vec4, ::testing::ElementsAreArray(std::vector<std::int32_t>(5, 8))); } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/arena.h
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/arena_test.cc
4f887a6430414cd6088e1743555015b10f116d50
21b3e2ff-cbf9-4303-875a-b4942003e6eb
cpp
abseil/abseil-cpp
chi_square
absl/random/internal/chi_square.cc
absl/random/internal/chi_square_test.cc
#include "absl/random/internal/chi_square.h" #include <cmath> #include "absl/random/internal/distribution_test_util.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { namespace { #if defined(__EMSCRIPTEN__) inline double fma(double x, double y, double z) { return (x * y) + z; } #endif template <typename T, unsigned N> inline T EvaluatePolynomial(T x, const T (&poly)[N]) { #if !defined(__EMSCRIPTEN__) using std::fma; #endif T p = poly[N - 1]; for (unsigned i = 2; i <= N; i++) { p = fma(p, x, poly[N - i]); } return p; } static constexpr int kLargeDOF = 150; double POZ(double z) { static constexpr double kP1[] = { 0.797884560593, -0.531923007300, 0.319152932694, -0.151968751364, 0.059054035642, -0.019198292004, 0.005198775019, -0.001075204047, 0.000124818987, }; static constexpr double kP2[] = { 0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108, -0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214, -0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986, -0.000019538132, 0.000152529290, -0.000045255659, }; const double kZMax = 6.0; if (z == 0.0) { return 0.5; } double x; double y = 0.5 * std::fabs(z); if (y >= (kZMax * 0.5)) { x = 1.0; } else if (y < 1.0) { double w = y * y; x = EvaluatePolynomial(w, kP1) * y * 2.0; } else { y -= 2.0; x = EvaluatePolynomial(y, kP2); } return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5); } double normal_survival(double z) { static constexpr double kR[] = { 1.0, 0.196854, 0.115194, 0.000344, 0.019527, }; double r = EvaluatePolynomial(z, kR); r *= r; return 0.5 / (r * r); } } double ChiSquareValue(int dof, double p) { static constexpr double kChiEpsilon = 0.000001; static constexpr double kChiMax = 99999.0; const double p_value = 1.0 - p; if (dof < 1 || p_value > 1.0) { return 0.0; } if (dof > kLargeDOF) { const double z = InverseNormalSurvival(p_value); const double mean = 1 - 2.0 / (9 * dof); const double variance = 2.0 / (9 * dof); if (variance != 0) { double term = z * std::sqrt(variance) + mean; return dof * (term * term * term); } } if (p_value <= 0.0) return kChiMax; double min_chisq = 0.0; double max_chisq = kChiMax; double current = dof / std::sqrt(p_value); while ((max_chisq - min_chisq) > kChiEpsilon) { if (ChiSquarePValue(current, dof) < p_value) { max_chisq = current; } else { min_chisq = current; } current = (max_chisq + min_chisq) * 0.5; } return current; } double ChiSquarePValue(double chi_square, int dof) { static constexpr double kLogSqrtPi = 0.5723649429247000870717135; static constexpr double kInverseSqrtPi = 0.5641895835477562869480795; if (dof > kLargeDOF) { const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3); const double mean = 1 - 2.0 / (9 * dof); const double variance = 2.0 / (9 * dof); if (variance != 0) { const double z = (chi_square_scaled - mean) / std::sqrt(variance); if (z > 0) { return normal_survival(z); } else if (z < 0) { return 1.0 - normal_survival(-z); } else { return 0.5; } } } if (chi_square <= 0.0) return 1.0; if (dof < 1) return 0; auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); }; static constexpr double kBigX = 20; double a = 0.5 * chi_square; const bool even = !(dof & 1); const double y = capped_exp(-a); double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square))); if (dof <= 2) { return s; } chi_square = 0.5 * (dof - 1.0); double z = (even ? 1.0 : 0.5); if (a > kBigX) { double e = (even ? 0.0 : kLogSqrtPi); double c = std::log(a); while (z <= chi_square) { e = std::log(z) + e; s += capped_exp(c * z - a - e); z += 1.0; } return s; } double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a))); double c = 0.0; while (z <= chi_square) { e = e * (a / z); c = c + e; z += 1.0; } return c * y + s; } } ABSL_NAMESPACE_END }
#include "absl/random/internal/chi_square.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <iterator> #include <numeric> #include <vector> #include "gtest/gtest.h" #include "absl/base/macros.h" using absl::random_internal::ChiSquare; using absl::random_internal::ChiSquarePValue; using absl::random_internal::ChiSquareValue; using absl::random_internal::ChiSquareWithExpected; namespace { TEST(ChiSquare, Value) { struct { int line; double chi_square; int df; double confidence; } const specs[] = { {__LINE__, 0, 0, 0.01}, {__LINE__, 0.00016, 1, 0.01}, {__LINE__, 1.64650, 8, 0.01}, {__LINE__, 5.81221, 16, 0.01}, {__LINE__, 156.4319, 200, 0.01}, {__LINE__, 1121.3784, 1234, 0.01}, {__LINE__, 53557.1629, 54321, 0.01}, {__LINE__, 651662.6647, 654321, 0.01}, {__LINE__, 0, 0, 0.99}, {__LINE__, 6.635, 1, 0.99}, {__LINE__, 20.090, 8, 0.99}, {__LINE__, 32.000, 16, 0.99}, {__LINE__, 249.4456, 200, 0.99}, {__LINE__, 1131.1573, 1023, 0.99}, {__LINE__, 1352.5038, 1234, 0.99}, {__LINE__, 55090.7356, 54321, 0.99}, {__LINE__, 656985.1514, 654321, 0.99}, {__LINE__, 16.2659, 3, 0.999}, {__LINE__, 22.4580, 6, 0.999}, {__LINE__, 267.5409, 200, 0.999}, {__LINE__, 1168.5033, 1023, 0.999}, {__LINE__, 55345.1741, 54321, 0.999}, {__LINE__, 657861.7284, 654321, 0.999}, {__LINE__, 51.1772, 24, 0.999}, {__LINE__, 59.7003, 30, 0.999}, {__LINE__, 37.6984, 15, 0.999}, {__LINE__, 29.5898, 10, 0.999}, {__LINE__, 27.8776, 9, 0.999}, {__LINE__, 0.000157088, 1, 0.01}, {__LINE__, 5.31852, 2, 0.93}, {__LINE__, 1.92256, 4, 0.25}, {__LINE__, 10.7709, 13, 0.37}, {__LINE__, 26.2514, 17, 0.93}, {__LINE__, 36.4799, 29, 0.84}, {__LINE__, 25.818, 31, 0.27}, {__LINE__, 63.3346, 64, 0.50}, {__LINE__, 196.211, 128, 0.9999}, {__LINE__, 215.21, 243, 0.10}, {__LINE__, 285.393, 256, 0.90}, {__LINE__, 984.504, 1024, 0.1923}, {__LINE__, 2043.85, 2048, 0.4783}, {__LINE__, 48004.6, 48273, 0.194}, }; for (const auto& spec : specs) { SCOPED_TRACE(spec.line); const double val = ChiSquareValue(spec.df, spec.confidence); const double err = std::max(5e-6, spec.chi_square / 5e3); EXPECT_NEAR(spec.chi_square, val, err) << spec.line; } EXPECT_NEAR(49.2680, ChiSquareValue(100, 1e-6), 5); EXPECT_NEAR(123.499, ChiSquareValue(200, 1e-6), 5); EXPECT_NEAR(149.449, ChiSquareValue(100, 0.999), 0.01); EXPECT_NEAR(161.318, ChiSquareValue(100, 0.9999), 0.01); EXPECT_NEAR(172.098, ChiSquareValue(100, 0.99999), 0.01); EXPECT_NEAR(381.426, ChiSquareValue(300, 0.999), 0.05); EXPECT_NEAR(399.756, ChiSquareValue(300, 0.9999), 0.1); EXPECT_NEAR(416.126, ChiSquareValue(300, 0.99999), 0.2); } TEST(ChiSquareTest, PValue) { struct { int line; double pval; double chi_square; int df; } static const specs[] = { {__LINE__, 1, 0, 0}, {__LINE__, 0, 0.001, 0}, {__LINE__, 1.000, 0, 453}, {__LINE__, 0.134471, 7972.52, 7834}, {__LINE__, 0.203922, 28.32, 23}, {__LINE__, 0.737171, 48274, 48472}, {__LINE__, 0.444146, 583.1234, 579}, {__LINE__, 0.294814, 138.2, 130}, {__LINE__, 0.0816532, 12.63, 7}, {__LINE__, 0, 682.32, 67}, {__LINE__, 0.49405, 999, 999}, {__LINE__, 1.000, 0, 9999}, {__LINE__, 0.997477, 0.00001, 1}, {__LINE__, 0, 5823.21, 5040}, }; for (const auto& spec : specs) { SCOPED_TRACE(spec.line); const double pval = ChiSquarePValue(spec.chi_square, spec.df); EXPECT_NEAR(spec.pval, pval, 1e-3); } } TEST(ChiSquareTest, CalcChiSquare) { struct { int line; std::vector<int> expected; std::vector<int> actual; } const specs[] = { {__LINE__, {56, 234, 76, 1, 546, 1, 87, 345, 1, 234}, {2, 132, 4, 43, 234, 8, 345, 8, 236, 56}}, {__LINE__, {123, 36, 234, 367, 345, 2, 456, 567, 234, 567}, {123, 56, 2345, 8, 345, 8, 2345, 23, 48, 267}}, {__LINE__, {123, 234, 345, 456, 567, 678, 789, 890, 98, 76}, {123, 234, 345, 456, 567, 678, 789, 890, 98, 76}}, {__LINE__, {3, 675, 23, 86, 2, 8, 2}, {456, 675, 23, 86, 23, 65, 2}}, {__LINE__, {1}, {23}}, }; for (const auto& spec : specs) { SCOPED_TRACE(spec.line); double chi_square = 0; for (int i = 0; i < spec.expected.size(); ++i) { const double diff = spec.actual[i] - spec.expected[i]; chi_square += (diff * diff) / spec.expected[i]; } EXPECT_NEAR(chi_square, ChiSquare(std::begin(spec.actual), std::end(spec.actual), std::begin(spec.expected), std::end(spec.expected)), 1e-5); } } TEST(ChiSquareTest, CalcChiSquareInt64) { const int64_t data[3] = {910293487, 910292491, 910216780}; double sum = std::accumulate(std::begin(data), std::end(data), double{0}); size_t n = std::distance(std::begin(data), std::end(data)); double a = ChiSquareWithExpected(std::begin(data), std::end(data), sum / n); EXPECT_NEAR(4.254101, a, 1e-6); double b = ChiSquareWithExpected(std::begin(data), std::end(data), 910267586.0); EXPECT_NEAR(4.254101, b, 1e-6); } TEST(ChiSquareTest, TableData) { const double data[100][5] = { {2.706, 3.841, 5.024, 6.635, 10.828}, {4.605, 5.991, 7.378, 9.210, 13.816}, {6.251, 7.815, 9.348, 11.345, 16.266}, {7.779, 9.488, 11.143, 13.277, 18.467}, {9.236, 11.070, 12.833, 15.086, 20.515}, {10.645, 12.592, 14.449, 16.812, 22.458}, {12.017, 14.067, 16.013, 18.475, 24.322}, {13.362, 15.507, 17.535, 20.090, 26.125}, {14.684, 16.919, 19.023, 21.666, 27.877}, {15.987, 18.307, 20.483, 23.209, 29.588}, {17.275, 19.675, 21.920, 24.725, 31.264}, {18.549, 21.026, 23.337, 26.217, 32.910}, {19.812, 22.362, 24.736, 27.688, 34.528}, {21.064, 23.685, 26.119, 29.141, 36.123}, {22.307, 24.996, 27.488, 30.578, 37.697}, {23.542, 26.296, 28.845, 32.000, 39.252}, {24.769, 27.587, 30.191, 33.409, 40.790}, {25.989, 28.869, 31.526, 34.805, 42.312}, {27.204, 30.144, 32.852, 36.191, 43.820}, {28.412, 31.410, 34.170, 37.566, 45.315}, {29.615, 32.671, 35.479, 38.932, 46.797}, {30.813, 33.924, 36.781, 40.289, 48.268}, {32.007, 35.172, 38.076, 41.638, 49.728}, {33.196, 36.415, 39.364, 42.980, 51.179}, {34.382, 37.652, 40.646, 44.314, 52.620}, {35.563, 38.885, 41.923, 45.642, 54.052}, {36.741, 40.113, 43.195, 46.963, 55.476}, {37.916, 41.337, 44.461, 48.278, 56.892}, {39.087, 42.557, 45.722, 49.588, 58.301}, {40.256, 43.773, 46.979, 50.892, 59.703}, {41.422, 44.985, 48.232, 52.191, 61.098}, {42.585, 46.194, 49.480, 53.486, 62.487}, {43.745, 47.400, 50.725, 54.776, 63.870}, {44.903, 48.602, 51.966, 56.061, 65.247}, {46.059, 49.802, 53.203, 57.342, 66.619}, {47.212, 50.998, 54.437, 58.619, 67.985}, {48.363, 52.192, 55.668, 59.893, 69.347}, {49.513, 53.384, 56.896, 61.162, 70.703}, {50.660, 54.572, 58.120, 62.428, 72.055}, {51.805, 55.758, 59.342, 63.691, 73.402}, {52.949, 56.942, 60.561, 64.950, 74.745}, {54.090, 58.124, 61.777, 66.206, 76.084}, {55.230, 59.304, 62.990, 67.459, 77.419}, {56.369, 60.481, 64.201, 68.710, 78.750}, {57.505, 61.656, 65.410, 69.957, 80.077}, {58.641, 62.830, 66.617, 71.201, 81.400}, {59.774, 64.001, 67.821, 72.443, 82.720}, {60.907, 65.171, 69.023, 73.683, 84.037}, {62.038, 66.339, 70.222, 74.919, 85.351}, {63.167, 67.505, 71.420, 76.154, 86.661}, {64.295, 68.669, 72.616, 77.386, 87.968}, {65.422, 69.832, 73.810, 78.616, 89.272}, {66.548, 70.993, 75.002, 79.843, 90.573}, {67.673, 72.153, 76.192, 81.069, 91.872}, {68.796, 73.311, 77.380, 82.292, 93.168}, {69.919, 74.468, 78.567, 83.513, 94.461}, {71.040, 75.624, 79.752, 84.733, 95.751}, {72.160, 76.778, 80.936, 85.950, 97.039}, {73.279, 77.931, 82.117, 87.166, 98.324}, {74.397, 79.082, 83.298, 88.379, 99.607}, {75.514, 80.232, 84.476, 89.591, 100.888}, {76.630, 81.381, 85.654, 90.802, 102.166}, {77.745, 82.529, 86.830, 92.010, 103.442}, {78.860, 83.675, 88.004, 93.217, 104.716}, {79.973, 84.821, 89.177, 94.422, 105.988}, {81.085, 85.965, 90.349, 95.626, 107.258}, {82.197, 87.108, 91.519, 96.828, 108.526}, {83.308, 88.250, 92.689, 98.028, 109.791}, {84.418, 89.391, 93.856, 99.228, 111.055}, {85.527, 90.531, 95.023, 100.425, 112.317}, {86.635, 91.670, 96.189, 101.621, 113.577}, {87.743, 92.808, 97.353, 102.816, 114.835}, {88.850, 93.945, 98.516, 104.010, 116.092}, {89.956, 95.081, 99.678, 105.202, 117.346}, {91.061, 96.217, 100.839, 106.393, 118.599}, {92.166, 97.351, 101.999, 107.583, 119.850}, {93.270, 98.484, 103.158, 108.771, 121.100}, {94.374, 99.617, 104.316, 109.958, 122.348}, {95.476, 100.749, 105.473, 111.144, 123.594}, {96.578, 101.879, 106.629, 112.329, 124.839}, {97.680, 103.010, 107.783, 113.512, 126.083}, {98.780, 104.139, 108.937, 114.695, 127.324}, {99.880, 105.267, 110.090, 115.876, 128.565}, {100.980, 106.395, 111.242, 117.057, 129.804}, {102.079, 107.522, 112.393, 118.236, 131.041}, {103.177, 108.648, 113.544, 119.414, 132.277}, {104.275, 109.773, 114.693, 120.591, 133.512}, {105.372, 110.898, 115.841, 121.767, 134.746}, {106.469, 112.022, 116.989, 122.942, 135.978}, {107.565, 113.145, 118.136, 124.116, 137.208}, {108.661, 114.268, 119.282, 125.289, 138.438}, {109.756, 115.390, 120.427, 126.462, 139.666}, {110.850, 116.511, 121.571, 127.633, 140.893}, {111.944, 117.632, 122.715, 128.803, 142.119}, {113.038, 118.752, 123.858, 129.973, 143.344}, {114.131, 119.871, 125.000, 131.141, 144.567}, {115.223, 120.990, 126.141, 132.309, 145.789}, {116.315, 122.108, 127.282, 133.476, 147.010}, {117.407, 123.225, 128.422, 134.642, 148.230}, {118.498, 124.342, 129.561, 135.807, 149.449} }; for (int i = 0; i < ABSL_ARRAYSIZE(data); i++) { const double E = 0.0001; EXPECT_NEAR(ChiSquarePValue(data[i][0], i + 1), 0.10, E) << i << " " << data[i][0]; EXPECT_NEAR(ChiSquarePValue(data[i][1], i + 1), 0.05, E) << i << " " << data[i][1]; EXPECT_NEAR(ChiSquarePValue(data[i][2], i + 1), 0.025, E) << i << " " << data[i][2]; EXPECT_NEAR(ChiSquarePValue(data[i][3], i + 1), 0.01, E) << i << " " << data[i][3]; EXPECT_NEAR(ChiSquarePValue(data[i][4], i + 1), 0.001, E) << i << " " << data[i][4]; const double F = 0.1; EXPECT_NEAR(ChiSquareValue(i + 1, 0.90), data[i][0], F) << i; EXPECT_NEAR(ChiSquareValue(i + 1, 0.95), data[i][1], F) << i; EXPECT_NEAR(ChiSquareValue(i + 1, 0.975), data[i][2], F) << i; EXPECT_NEAR(ChiSquareValue(i + 1, 0.99), data[i][3], F) << i; EXPECT_NEAR(ChiSquareValue(i + 1, 0.999), data[i][4], F) << i; } } TEST(ChiSquareTest, ChiSquareTwoIterator) { const int counts[10] = {6, 6, 18, 33, 38, 38, 28, 21, 9, 3}; const double expected[10] = {4.6, 8.8, 18.4, 30.0, 38.2, 38.2, 30.0, 18.4, 8.8, 4.6}; double chi_square = ChiSquare(std::begin(counts), std::end(counts), std::begin(expected), std::end(expected)); EXPECT_NEAR(chi_square, 2.69, 0.001); const int dof = 7; double p_value_05 = ChiSquarePValue(14.067, dof); EXPECT_NEAR(p_value_05, 0.05, 0.001); double p_actual = ChiSquarePValue(chi_square, dof); EXPECT_GT(p_actual, 0.05); } TEST(ChiSquareTest, DiceRolls) { const int rolls[6] = {22, 11, 17, 14, 20, 18}; double sum = std::accumulate(std::begin(rolls), std::end(rolls), double{0}); size_t n = std::distance(std::begin(rolls), std::end(rolls)); double a = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), sum / n); EXPECT_NEAR(a, 4.70588, 1e-5); EXPECT_LT(a, ChiSquareValue(4, 0.95)); double p_a = ChiSquarePValue(a, 4); EXPECT_NEAR(p_a, 0.318828, 1e-5); double b = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), 17.0); EXPECT_NEAR(b, 4.70588, 1e-5); EXPECT_LT(b, ChiSquareValue(5, 0.95)); double p_b = ChiSquarePValue(b, 5); EXPECT_NEAR(p_b, 0.4528180, 1e-5); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/chi_square.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/chi_square_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
b607fa56-9dba-4632-8c78-0e876e514ba2
cpp
tensorflow/tensorflow
random_ops
tensorflow/compiler/tf2xla/kernels/random_ops.cc
tensorflow/lite/kernels/random_ops_test.cc
#include <vector> #include "absl/log/log.h" #include "absl/status/statusor.h" #include "tensorflow/compiler/tf2xla/lib/broadcast.h" #include "tensorflow/compiler/tf2xla/lib/random.h" #include "tensorflow/compiler/tf2xla/mlir_xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "tensorflow/compiler/tf2xla/xla_op_kernel.h" #include "tensorflow/compiler/tf2xla/xla_op_registry.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/dynamic_shaped_ops.h" #include "xla/hlo/builder/value_inference.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/op_requires.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { class RandomUniformOp : public XlaOpKernel { public: explicit RandomUniformOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape( 0, &shape, xla::ValueInferenceMode::kUpperBound)); const DataType dtype = output_type(0); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); xla::XlaBuilder* b = ctx->builder(); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.uniform with XLA compilation will ignore " "seeds; consider using tf.random.stateless_uniform instead if " "reproducible behavior is desired. " << name(); xla::XlaOp result = xla::RngUniform(XlaHelpers::Zero(b, dtype), XlaHelpers::One(b, dtype), xla_shape); auto result_status_or = SetAllDimensionSizes(&ctx->value_inference(), result, ctx->Input(0)); OP_REQUIRES_OK(ctx, result_status_or.status()); result = result_status_or.value(); ctx->SetOutput(0, result); } private: RandomUniformOp(const RandomUniformOp&) = delete; void operator=(const RandomUniformOp&) = delete; }; REGISTER_XLA_OP(Name("RandomUniform").CompileTimeConstantInput("shape"), RandomUniformOp); REGISTER_XLA_OP(Name("RandomShuffle"), MlirXlaOpKernel); class RandomUniformIntOp : public XlaOpKernel { public: explicit RandomUniformIntOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(input_type(1), shape, &xla_shape)); const TensorShape minval_shape = ctx->InputShape(1); const TensorShape maxval_shape = ctx->InputShape(2); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(minval_shape), errors::InvalidArgument("minval must be 0-D, got shape ", minval_shape.DebugString())); OP_REQUIRES(ctx, TensorShapeUtils::IsScalar(maxval_shape), errors::InvalidArgument("maxval must be 0-D, got shape ", maxval_shape.DebugString())); auto minval = ctx->Input(1); auto maxval = ctx->Input(2); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.uniform with XLA compilation will ignore " "seeds; consider using tf.random.stateless_uniform instead if " "reproducible behavior is desired. " << name(); ctx->SetOutput(0, xla::RngUniform(minval, maxval, xla_shape)); } private: RandomUniformIntOp(const RandomUniformIntOp&) = delete; void operator=(const RandomUniformIntOp&) = delete; }; REGISTER_XLA_OP(Name("RandomUniformInt").CompileTimeConstantInput("shape"), RandomUniformIntOp); class RandomStandardNormalOp : public XlaOpKernel { public: explicit RandomStandardNormalOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const DataType dtype = output_type(0); TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape( 0, &shape, xla::ValueInferenceMode::kUpperBound)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); xla::XlaBuilder* b = ctx->builder(); xla::XlaOp result = xla::RngNormal(XlaHelpers::Zero(b, dtype), XlaHelpers::One(b, dtype), xla_shape); auto result_status_or = SetAllDimensionSizes(&ctx->value_inference(), result, ctx->Input(0)); OP_REQUIRES_OK(ctx, result_status_or.status()); result = result_status_or.value(); ctx->SetOutput(0, result); } private: RandomStandardNormalOp(const RandomStandardNormalOp&) = delete; void operator=(const RandomStandardNormalOp&) = delete; }; REGISTER_XLA_OP(Name("RandomStandardNormal").CompileTimeConstantInput("shape"), RandomStandardNormalOp); class TruncatedNormalOp : public XlaOpKernel { public: explicit TruncatedNormalOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const DataType dtype = output_type(0); TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); xla::XlaBuilder* b = ctx->builder(); xla::XlaOp one = xla::One(b, xla_shape.element_type()); xla::XlaOp min_positive = xla::MinPositiveNormalValue(b, xla_shape.element_type()); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.truncated_normal with XLA " "compilation will ignore seeds; consider using " "tf.random.stateless_truncated_normal instead if " "reproducible behavior is desired. " << name(); auto uniform = xla::RngUniform(min_positive, one, xla_shape); ctx->SetOutput(0, TruncatedNormal(uniform)); } }; REGISTER_XLA_OP(Name("TruncatedNormal") .CompileTimeConstantInput("shape") .TypeConstraint("dtype", {DT_FLOAT, DT_DOUBLE}), TruncatedNormalOp); static absl::StatusOr<xla::XlaOp> BroadcastParameters( xla::XlaOp params, TensorShape& output_shape) { int rank = output_shape.dims(); std::vector<int64_t> bcast_shape; for (int i = 1; i < rank; ++i) { bcast_shape.push_back(output_shape.dim_size(i)); } bcast_shape.push_back(output_shape.dim_size(0)); TF_ASSIGN_OR_RETURN(xla::XlaOp bcast_params, BroadcastTo(params, bcast_shape)); std::vector<int64_t> permutation; permutation.push_back(rank - 1); for (int i = 0; i < rank - 1; ++i) { permutation.push_back(i); } return xla::Transpose(bcast_params, permutation); } class ParameterizedTruncatedNormalOp : public XlaOpKernel { public: explicit ParameterizedTruncatedNormalOp(OpKernelConstruction* ctx) : XlaOpKernel(ctx) {} void Compile(XlaOpKernelContext* ctx) override { const DataType dtype = output_type(0); TensorShape shape; OP_REQUIRES_OK(ctx, ctx->ConstantInputAsShape(0, &shape)); xla::Shape xla_shape; OP_REQUIRES_OK(ctx, TensorShapeToXLAShape(dtype, shape, &xla_shape)); OP_REQUIRES(ctx, xla_shape.rank() >= 1, errors::InvalidArgument( "shape parameter must have rank >= 1, received (", xla::ShapeUtil::HumanString(xla_shape), ")")); xla::XlaBuilder* b = ctx->builder(); xla::XlaOp one = xla::One(b, xla_shape.element_type()); xla::XlaOp min_positive = xla::MinPositiveNormalValue(b, xla_shape.element_type()); LOG_FIRST_N(WARNING, 1) << "Warning: Using tf.random.truncated_normal with XLA " "compilation will ignore seeds; consider using " "tf.random.stateless_truncated_normal instead if " "reproducible behavior is desired. " << name(); xla::XlaOp uniform = xla::RngUniform(min_positive, one, xla_shape); auto result = b->ReportErrorOrReturn([&]() -> absl::StatusOr<xla::XlaOp> { TF_ASSIGN_OR_RETURN(xla::XlaOp means, BroadcastParameters(ctx->Input(1), shape)); TF_ASSIGN_OR_RETURN(xla::XlaOp stddevs, BroadcastParameters(ctx->Input(2), shape)); TF_ASSIGN_OR_RETURN(xla::XlaOp minvals, BroadcastParameters(ctx->Input(3), shape)); TF_ASSIGN_OR_RETURN(xla::XlaOp maxvals, BroadcastParameters(ctx->Input(4), shape)); return ParameterizedTruncatedNormal(uniform, means, stddevs, minvals, maxvals); }); ctx->SetOutput(0, result); } }; REGISTER_XLA_OP(Name("ParameterizedTruncatedNormal") .CompileTimeConstantInput("shape") .TypeConstraint("dtype", {DT_FLOAT, DT_DOUBLE}), ParameterizedTruncatedNormalOp); } }
#include <algorithm> #include <initializer_list> #include <vector> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { enum class InputType { kConst = 0, kDynamic = 1, }; class RandomOpModel : public SingleOpModel { public: RandomOpModel(BuiltinOperator op_code, InputType input_type, const std::initializer_list<int32_t>& shape, int32_t seed = 0, int32_t seed2 = 0) { bool is_input_const = (input_type == InputType::kConst); if (is_input_const) { input_ = AddConstInput(TensorType_INT32, shape, {static_cast<int32_t>(shape.size())}); } else { input_ = AddInput({TensorType_INT32, {static_cast<int32_t>(shape.size())}}); } output_ = AddOutput({TensorType_FLOAT32, {}}); SetBuiltinOp(op_code, BuiltinOptions_RandomOptions, CreateRandomOptions(builder_, seed, seed2).Union()); BuildInterpreter({GetShape(input_)}); if (!is_input_const) { PopulateTensor<int32_t>(input_, std::vector<int32_t>(shape)); } } int input() { return input_; } int output() { return output_; } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } private: int input_; int output_; }; class MultinomialOpModel : public SingleOpModel { public: MultinomialOpModel(InputType input_type, const std::initializer_list<float>& logits, int num_batches, int num_classes, int num_samples, int32_t seed = 0, int32_t seed2 = 0, tflite::TensorType output_type = TensorType_INT64) { bool is_input_const = (input_type == InputType::kConst); auto logits_shape = {num_batches, num_classes}; if (is_input_const) { logits_ = AddConstInput(TensorType_FLOAT32, logits, logits_shape); } else { logits_ = AddInput({TensorType_FLOAT32, logits_shape}); } num_samples_ = AddConstInput(TensorType_INT32, {num_samples}, {}); output_ = AddOutput({output_type, {}}); SetBuiltinOp(BuiltinOperator_MULTINOMIAL, BuiltinOptions_RandomOptions, CreateRandomOptions(builder_, seed, seed2).Union()); BuildInterpreter({GetShape(logits_), GetShape(num_samples_)}); if (!is_input_const) { PopulateTensor<float>(logits_, std::vector<float>(logits)); } } int logits() { return logits_; } int num_samples() { return num_samples_; } int output() { return output_; } std::vector<int64_t> GetOutput() { return ExtractVector<int64_t>(output_); } std::vector<int32_t> GetInt32Output() { return ExtractVector<int32_t>(output_); } private: int logits_; int num_samples_; int output_; }; class TestSuite : public testing::TestWithParam<std::tuple< BuiltinOperator, InputType>> { }; TEST_P(TestSuite, NonDeterministicOutputWithSeedsEqualToZero) { BuiltinOperator op_code = std::get<0>(GetParam()); InputType input_type = std::get<1>(GetParam()); RandomOpModel m1(op_code, input_type, {100, 50, 5}, 0, 0); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), 100 * 50 * 5); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1b = m1.GetOutput(); EXPECT_NE(output1a, output1b); RandomOpModel m2(op_code, input_type, {100, 50, 5}, 0, 0); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), 100 * 50 * 5); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2b = m2.GetOutput(); EXPECT_NE(output2a, output2b); EXPECT_NE(output1a, output2a); EXPECT_NE(output1b, output2b); } TEST_P(TestSuite, DeterministicOutputWithNonZeroSeeds) { BuiltinOperator op_code = std::get<0>(GetParam()); InputType input_type = std::get<1>(GetParam()); RandomOpModel m1(op_code, input_type, {100, 50, 5}, 1234, 5678); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), 100 * 50 * 5); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<float> output1b = m1.GetOutput(); EXPECT_NE(output1a, output1b); RandomOpModel m2(op_code, input_type, {100, 50, 5}, 1234, 5678); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), 100 * 50 * 5); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<float> output2b = m2.GetOutput(); EXPECT_NE(output2a, output2b); EXPECT_EQ(output1a, output2a); EXPECT_EQ(output1b, output2b); } INSTANTIATE_TEST_SUITE_P( RandomOpTest, TestSuite, testing::Combine( testing::Values(BuiltinOperator_RANDOM_UNIFORM, BuiltinOperator_RANDOM_STANDARD_NORMAL), testing::Values(InputType::kConst, InputType::kDynamic)), [](const testing::TestParamInfo<TestSuite::ParamType>& info) { std::string name = absl::StrCat( std::get<0>(info.param) == BuiltinOperator_RANDOM_UNIFORM ? "_RandomUniformOp" : "_RandomStandardNormalOp", std::get<1>(info.param) == InputType::kConst ? "_ConstInput" : "_DynamicInput"); return name; } ); TEST(RandomUniformOpTest, OutputMeanAndVariance) { RandomOpModel m(BuiltinOperator_RANDOM_UNIFORM, InputType::kConst, {100, 50, 5}, 1234, 5678); const std::vector<float> output_data(100 * 50 * 5, std::numeric_limits<float>::infinity()); m.PopulateTensor(m.output(), output_data); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), 100 * 50 * 5); double sum = 0; for (const auto r : output) { sum += r; } double mean = sum / output.size(); ASSERT_LT(std::abs(mean - 0.5), 0.05); double sum_squared = 0; for (const auto r : output) { sum_squared += std::pow(r - mean, 2); } double var = sum_squared / output.size(); EXPECT_LT(std::abs(1. / 12 - var), 0.05); } TEST(RandomStandardNormalOpTest, OutputMeanAndVariance) { RandomOpModel m(BuiltinOperator_RANDOM_STANDARD_NORMAL, InputType::kConst, {100, 50, 5}, 1234, 5678); const std::vector<float> output_data(100 * 50 * 5, std::numeric_limits<float>::infinity()); m.PopulateTensor(m.output(), output_data); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), 100 * 50 * 5); double sum = 0; for (const auto r : output) { sum += r; } double mean = sum / output.size(); ASSERT_LT(std::abs(mean), 0.05); double sum_squared = 0; for (const auto r : output) { sum_squared += std::pow(r - mean, 2); } double var = sum_squared / output.size(); EXPECT_LT(std::abs(1.0 - var), 0.05); } class MultinomialOpTestSuite : public testing::TestWithParam<InputType> {}; TEST_P(MultinomialOpTestSuite, NonDeterministicOutputWithSeedsEqualToZero) { const std::initializer_list<float> kLogits = {logf(0.3f), logf(0.7f)}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 30; MultinomialOpModel m1(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 0, 0); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), kNumSamples); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1b = m1.GetOutput(); EXPECT_NE(output1a, output1b); MultinomialOpModel m2(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 0, 0); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), kNumSamples); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2b = m2.GetOutput(); EXPECT_NE(output2a, output2b); EXPECT_NE(output1a, output2a); EXPECT_NE(output1b, output2b); } TEST_P(MultinomialOpTestSuite, DeterministicOutputWithNonZeroSeeds) { const std::initializer_list<float> kLogits = {logf(0.3f), logf(0.7f)}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 30; MultinomialOpModel m1(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 123, 456); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1a = m1.GetOutput(); EXPECT_EQ(output1a.size(), kNumBatches * kNumSamples); ASSERT_EQ(m1.Invoke(), kTfLiteOk); std::vector<int64_t> output1b = m1.GetOutput(); EXPECT_EQ(output1b.size(), kNumBatches * kNumSamples); EXPECT_NE(output1a, output1b); MultinomialOpModel m2(GetParam(), kLogits, kNumBatches, kNumClasses, kNumSamples, 123, 456); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2a = m2.GetOutput(); EXPECT_EQ(output2a.size(), kNumBatches * kNumSamples); ASSERT_EQ(m2.Invoke(), kTfLiteOk); std::vector<int64_t> output2b = m2.GetOutput(); EXPECT_EQ(output2b.size(), kNumBatches * kNumSamples); EXPECT_NE(output2a, output2b); EXPECT_EQ(output1a, output2a); EXPECT_EQ(output1b, output2b); } INSTANTIATE_TEST_SUITE_P( RandomOpTest2, MultinomialOpTestSuite, testing::Values(InputType::kConst, InputType::kDynamic), [](const testing::TestParamInfo<MultinomialOpTestSuite::ParamType>& info) { std::string name = absl::StrCat( "_MultinomialOp", info.param == InputType::kConst ? "_ConstInput" : "_DynamicInput"); return name; }); TEST(MultinomialTest, ValidateTFLiteOutputisTheSameAsTFOutput_OutputTypeInt32) { const std::initializer_list<float> kLogits = {-1.2039728, -0.35667497}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 10; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678, TensorType_INT32); const std::vector<std::vector<int32_t>> expected_outputs = { {1, 0, 1, 0, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 0, 1, 1, 0, 0, 0, 1}, {0, 1, 1, 0, 1, 1, 1, 1, 0, 1}, {1, 1, 1, 0, 1, 0, 0, 0, 1, 0}}; for (int i = 0; i < expected_outputs.size(); i++) { ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetInt32Output(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); EXPECT_EQ(expected_outputs[i], output); } } TEST(MultinomialTest, ValidateTFLiteOutputisTheSameAsTFOutput) { const std::initializer_list<float> kLogits = {-1.609438, -1.2039728, -0.6931472}; const int kNumBatches = 1; const int kNumClasses = 3; const int kNumSamples = 15; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 5678, 1234); const std::vector<std::vector<int64_t>> expected_outputs = { {1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2}, {1, 2, 0, 0, 2, 1, 2, 0, 1, 0, 2, 2, 0, 2, 2}, {1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 0, 0, 2, 2, 2}, {0, 1, 1, 1, 2, 0, 1, 2, 1, 1, 2, 2, 1, 2, 2}, {0, 2, 2, 0, 2, 0, 2, 0, 1, 1, 2, 2, 0, 0, 1}}; for (int i = 0; i < expected_outputs.size(); i++) { ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); EXPECT_EQ(expected_outputs[i], output); } } TEST(MultinomialTest, ValidateTFLiteOutputisTheSameAsTFOutput_MultiBatchMultiInvoke) { const std::vector<float> kProb = {0.1f, 0.2f, 0.7f, 0.2f, 0.3f, 0.5f, 0.1f, 0.1f, 0.8f}; const std::initializer_list<float> kLogits = { logf(0.1f), logf(0.2f), logf(0.7f), logf(0.2f), logf(0.3f), logf(0.5f), logf(0.1f), logf(0.1f), logf(0.8f)}; const int kNumBatches = 3; const int kNumClasses = 3; const int kNumSamples = 10; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678); const std::vector<std::vector<int64_t>> expected_output = { {2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2}, {2, 2, 2, 0, 2, 1, 0, 0, 2, 0, 2, 0, 2, 1, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2}, {2, 0, 0, 0, 1, 2, 1, 2, 0, 0, 2, 2, 2, 2, 0, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2}}; for (int i = 0; i < 3; i++) { ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); EXPECT_EQ(expected_output[i], output); } } TEST(MultinomialTest, ValidateClassProbabilities) { const std::vector<float> kProb = {0.1f, 0.9f, 0.2f, 0.8f, 0.3f, 0.7f, 0.4f, 0.6f, 0.5f, 0.5f}; const std::initializer_list<float> kLogits = { logf(0.1f), logf(0.9f), logf(0.2f), logf(0.8f), logf(0.3f), logf(0.7f), logf(0.4f), logf(0.6f), logf(0.5f), logf(0.5f)}; const int kNumBatches = 5; const int kNumClasses = 2; const int kNumSamples = 10000; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); int total_count = 0; for (int i = 0; i < kNumBatches; i++) { for (int j = 0; j < kNumClasses; j++) { int idx = i * kNumClasses + j; const int expected_count = static_cast<int>(kProb[idx] * kNumSamples); const int allowed_misses = static_cast<int>(expected_count / 20); int actual_count = std::count(output.begin() + i * kNumSamples, output.begin() + (i + 1) * kNumSamples, j); EXPECT_LE(abs(actual_count - expected_count), allowed_misses); total_count += actual_count; } } EXPECT_EQ(total_count, kNumBatches * kNumSamples); } TEST(MultinomialTest, ValidatePreciseOutput) { const std::initializer_list<float> kLogits = {1000.0f, 1001.0f}; const int kNumBatches = 1; const int kNumClasses = 2; const int kNumSamples = 1000; MultinomialOpModel m(InputType::kConst, kLogits, kNumBatches, kNumClasses, kNumSamples, 1234, 5678); ASSERT_EQ(m.Invoke(), kTfLiteOk); auto output = m.GetOutput(); EXPECT_EQ(output.size(), kNumBatches * kNumSamples); int c0 = std::count(output.begin(), output.end(), 0); int c1 = std::count(output.begin(), output.end(), 1); double p0 = static_cast<double>(c0) / (c0 + c1); EXPECT_LT(std::abs(p0 - 0.26894142137), 0.01); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/tf2xla/kernels/random_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/random_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
31b643bb-7a3b-4dc4-9c36-efa9bd166423
cpp
abseil/abseil-cpp
nonsecure_base
absl/random/internal/nonsecure_base.h
absl/random/internal/nonsecure_base_test.cc
#ifndef ABSL_RANDOM_INTERNAL_NONSECURE_BASE_H_ #define ABSL_RANDOM_INTERNAL_NONSECURE_BASE_H_ #include <algorithm> #include <cstdint> #include <iterator> #include <type_traits> #include <utility> #include <vector> #include "absl/base/macros.h" #include "absl/container/inlined_vector.h" #include "absl/meta/type_traits.h" #include "absl/random/internal/pool_urbg.h" #include "absl/random/internal/salted_seed_seq.h" #include "absl/random/internal/seed_material.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { class RandenPoolSeedSeq { private: struct ContiguousTag {}; struct BufferTag {}; template <typename Contiguous> void generate_impl(ContiguousTag, Contiguous begin, Contiguous end) { const size_t n = static_cast<size_t>(std::distance(begin, end)); auto* a = &(*begin); RandenPool<uint8_t>::Fill( absl::MakeSpan(reinterpret_cast<uint8_t*>(a), sizeof(*a) * n)); } template <typename RandomAccessIterator> void generate_impl(BufferTag, RandomAccessIterator begin, RandomAccessIterator end) { const size_t n = std::distance(begin, end); absl::InlinedVector<uint32_t, 8> data(n, 0); RandenPool<uint32_t>::Fill(absl::MakeSpan(data.begin(), data.end())); std::copy(std::begin(data), std::end(data), begin); } public: using result_type = uint32_t; size_t size() { return 0; } template <typename OutIterator> void param(OutIterator) const {} template <typename RandomAccessIterator> void generate(RandomAccessIterator begin, RandomAccessIterator end) { if (begin != end) { using U = typename std::iterator_traits<RandomAccessIterator>::value_type; using TagType = absl::conditional_t< (std::is_pointer<RandomAccessIterator>::value || std::is_same<RandomAccessIterator, typename std::vector<U>::iterator>::value), ContiguousTag, BufferTag>; generate_impl(TagType{}, begin, end); } } }; template <typename URBG, typename Seeder = RandenPoolSeedSeq> class NonsecureURBGBase { public: using result_type = typename URBG::result_type; NonsecureURBGBase() : urbg_(ConstructURBG()) {} NonsecureURBGBase(const NonsecureURBGBase&) = delete; NonsecureURBGBase& operator=(const NonsecureURBGBase&) = delete; NonsecureURBGBase(NonsecureURBGBase&&) = default; NonsecureURBGBase& operator=(NonsecureURBGBase&&) = default; template <class SSeq, typename = typename absl::enable_if_t< !std::is_same<SSeq, NonsecureURBGBase>::value>> explicit NonsecureURBGBase(SSeq&& seq) : urbg_(ConstructURBG(std::forward<SSeq>(seq))) {} static constexpr result_type(min)() { return (URBG::min)(); } static constexpr result_type(max)() { return (URBG::max)(); } result_type operator()() { return urbg_(); } void discard(unsigned long long values) { urbg_.discard(values); } bool operator==(const NonsecureURBGBase& other) const { return urbg_ == other.urbg_; } bool operator!=(const NonsecureURBGBase& other) const { return !(urbg_ == other.urbg_); } private: static URBG ConstructURBG() { Seeder seeder; return URBG(seeder); } template <typename SSeq> static URBG ConstructURBG(SSeq&& seq) { auto salted_seq = random_internal::MakeSaltedSeedSeq(std::forward<SSeq>(seq)); return URBG(salted_seq); } URBG urbg_; }; } ABSL_NAMESPACE_END } #endif
#include "absl/random/internal/nonsecure_base.h" #include <algorithm> #include <cstdint> #include <iostream> #include <memory> #include <random> #include <sstream> #include "gtest/gtest.h" #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" namespace { using ExampleNonsecureURBG = absl::random_internal::NonsecureURBGBase<std::mt19937>; template <typename T> void Use(const T&) {} } TEST(NonsecureURBGBase, DefaultConstructorIsValid) { ExampleNonsecureURBG urbg; } TEST(RecommendedTemplates, CanBeConstructed) { absl::BitGen default_generator; absl::InsecureBitGen insecure_generator; } TEST(RecommendedTemplates, CanDiscardValues) { absl::BitGen default_generator; absl::InsecureBitGen insecure_generator; default_generator.discard(5); insecure_generator.discard(5); } TEST(NonsecureURBGBase, StandardInterface) { using E = absl::random_internal::NonsecureURBGBase<std::minstd_rand>; using T = typename E::result_type; static_assert(!std::is_copy_constructible<E>::value, "NonsecureURBGBase should not be copy constructible"); static_assert(!absl::is_copy_assignable<E>::value, "NonsecureURBGBase should not be copy assignable"); static_assert(std::is_move_constructible<E>::value, "NonsecureURBGBase should be move constructible"); static_assert(absl::is_move_assignable<E>::value, "NonsecureURBGBase should be move assignable"); static_assert(std::is_same<decltype(std::declval<E>()()), T>::value, "return type of operator() must be result_type"); { const E x, y; Use(x); Use(y); static_assert(std::is_same<decltype(x == y), bool>::value, "return type of operator== must be bool"); static_assert(std::is_same<decltype(x != y), bool>::value, "return type of operator== must be bool"); } E e; std::seed_seq q{1, 2, 3}; E{}; E{q}; { E tmp(q); E m = std::move(tmp); E n(std::move(m)); EXPECT_TRUE(e != n); } { E a(q); E b(q); EXPECT_TRUE(a != e); EXPECT_TRUE(a == b); a(); EXPECT_TRUE(a != b); } unsigned long long z = 1; e.discard(z); } TEST(NonsecureURBGBase, SeedSeqConstructorIsValid) { std::seed_seq seq; ExampleNonsecureURBG rbg(seq); } TEST(NonsecureURBGBase, CompatibleWithDistributionUtils) { ExampleNonsecureURBG rbg; absl::Uniform(rbg, 0, 100); absl::Uniform(rbg, 0.5, 0.7); absl::Poisson<uint32_t>(rbg); absl::Exponential<float>(rbg); } TEST(NonsecureURBGBase, CompatibleWithStdDistributions) { ExampleNonsecureURBG rbg; static_cast<void>(std::uniform_int_distribution<uint32_t>(0, 100)(rbg)); static_cast<void>(std::uniform_real_distribution<float>()(rbg)); static_cast<void>(std::bernoulli_distribution(0.2)(rbg)); } TEST(NonsecureURBGBase, ConsecutiveDefaultInstancesYieldUniqueVariates) { const size_t kNumSamples = 128; ExampleNonsecureURBG rbg1; ExampleNonsecureURBG rbg2; for (size_t i = 0; i < kNumSamples; i++) { EXPECT_NE(rbg1(), rbg2()); } } TEST(NonsecureURBGBase, EqualSeedSequencesYieldEqualVariates) { std::seed_seq seq; ExampleNonsecureURBG rbg1(seq); ExampleNonsecureURBG rbg2(seq); for (uint32_t i = 0; i < 1000; i++) { EXPECT_EQ(rbg1(), rbg2()); } rbg1.discard(100); rbg2.discard(100); for (uint32_t i = 0; i < 1000; i++) { EXPECT_EQ(rbg1(), rbg2()); } } TEST(RandenPoolSeedSeqTest, SeederWorksForU32) { absl::random_internal::RandenPoolSeedSeq seeder; uint32_t state[2] = {0, 0}; seeder.generate(std::begin(state), std::end(state)); EXPECT_FALSE(state[0] == 0 && state[1] == 0); } TEST(RandenPoolSeedSeqTest, SeederWorksForU64) { absl::random_internal::RandenPoolSeedSeq seeder; uint64_t state[2] = {0, 0}; seeder.generate(std::begin(state), std::end(state)); EXPECT_FALSE(state[0] == 0 && state[1] == 0); EXPECT_FALSE((state[0] >> 32) == 0 && (state[1] >> 32) == 0); } TEST(RandenPoolSeedSeqTest, SeederWorksForS32) { absl::random_internal::RandenPoolSeedSeq seeder; int32_t state[2] = {0, 0}; seeder.generate(std::begin(state), std::end(state)); EXPECT_FALSE(state[0] == 0 && state[1] == 0); } TEST(RandenPoolSeedSeqTest, SeederWorksForVector) { absl::random_internal::RandenPoolSeedSeq seeder; std::vector<uint32_t> state(2); seeder.generate(std::begin(state), std::end(state)); EXPECT_FALSE(state[0] == 0 && state[1] == 0); }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/nonsecure_base.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/nonsecure_base_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
282aa471-5c12-4468-8a0c-38230ff0f653
cpp
tensorflow/tensorflow
broadcast_in_dim
tensorflow/lite/experimental/shlo/legacy/src/broadcast_in_dim.cc
tensorflow/lite/experimental/shlo/legacy/test/broadcast_in_dim_test.cc
#include <algorithm> #include <iterator> #include <type_traits> #include <vector> #include "absl/status/status.h" #include "absl/types/span.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/dispatch.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/src/util.h" namespace stablehlo { namespace { bool IsUnique(absl::Span<const DimensionSize> span) { std::vector<DimensionSize> temp(span.begin(), span.end()); auto i = std::unique(temp.begin(), temp.end()); return std::distance(temp.begin(), i) == span.size(); } template <typename Value> absl::Status CheckParameters( const Value& operand, absl::Span<const DimensionSize> broadcast_dimensions, Value& result) { if (!operand.is_per_axis_quantized()) { if (!(result.element_type() == operand.element_type())) { return absl::InvalidArgumentError( "Constraint violation: element_type(result) = element_type(operand) " "if !is_per_axis_quantized(operand)"); } } if (!(broadcast_dimensions.size() == operand.rank())) { return absl::InvalidArgumentError( "Constraint violation: size(broadcast_dimensions) = rank(operand)"); } else if (!(*std::min_element(broadcast_dimensions.begin(), broadcast_dimensions.end()) >= 0 and *std::max_element(broadcast_dimensions.begin(), broadcast_dimensions.end()) < result.rank())) { return absl::InvalidArgumentError( "Constraint violation: 0 <= broadcast_dimensions < rank(result)"); } else if (!(IsUnique(broadcast_dimensions))) { return absl::InvalidArgumentError( "Constraint violation: is_unique(broadcast_dimensions)"); } else { for (auto d : operand.axes()) { if (!(operand.dim(d) == 1 or operand.dim(d) == result.dim(broadcast_dimensions[d]))) { return absl::InvalidArgumentError( "Constraint violation: dim(operand, d) = 1 or dim(operand, d) = " "dim(result, broadcast_dimensions[d])"); } } } if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (operand.is_per_axis_quantized()) { if (!(operand.is_per_axis_quantized() and result.storage_type() == operand.storage_type() and result.expressed_type() == operand.expressed_type() and result.storage_min() == operand.storage_min() and result.storage_max() == operand.storage_max())) { return absl::InvalidArgumentError( "Constraint violation: element_type(result) = " "element_type(operand) with exceptions if " "is_per_axis_quantized(operand)"); } } if (result.is_per_axis_quantized()) { if (!(*result.quantized_dimension() == broadcast_dimensions[*operand.quantized_dimension()])) { return absl::InvalidArgumentError( "quantization_dimension(result) = " "broadcast_dimensions[quantization_dimension(operand)]"); } if (operand.dim(*operand.quantized_dimension()) == 1) { auto n = result.dim(*result.quantized_dimension()); for (auto i = 0; i < n; ++i) { if (!(result.scales(i) == operand.scales(0) and result.zero_points(i) == operand.zero_points(0))) { return absl::InvalidArgumentError( "If dim(operand, quantization_dimension(operand)) = 1, then " "scales(result)[i] = scales(operand)[0] and " "zero_points(result)[i] = zero_points(operand)[0] for i in " "range(dim(result, quantization_dimension(result)))"); } } } } } if (operand.layout().has_strides() || result.layout().has_strides()) { return absl::InvalidArgumentError("Stides not supported yet"); } return absl::OkStatus(); } template <ElementType storage_type, ElementType expressed_type, typename Value> absl::Status BroadcastInDim( const Value& operand, absl::Span<const DimensionSize> broadcast_dimensions, Value& result) { if (auto check = CheckParameters(operand, broadcast_dimensions, result); !check.ok()) { return check; } using S = Storage<storage_type>; auto operand_buffer = operand.buffer(); auto result_buffer = result.buffer(); if constexpr (std::is_same_v<Value, Tensor>) { if (storage_type != operand.element_type()) { return absl::InvalidArgumentError("Unexpected tensor element type"); } TensorIndex operand_index(operand.shape()); for (TensorIndexIterator result_index_iter{result.shape()}; result_index_iter.has_next(); ++result_index_iter) { for (auto d = 0; d < operand.rank(); ++d) { if (operand.dim(d) == 1) { operand_index.set(d, 0); } else { auto b = broadcast_dimensions[d]; operand_index.set(d, (*result_index_iter)[b]); } } auto linearized_operand_index = operand_index.linearize(); auto linearized_result_index = result_index_iter->linearize(); auto value = S::Get(operand_buffer, linearized_operand_index); S::Set(result_buffer, linearized_result_index, value); } } else if constexpr (std::is_same_v<Value, QuantizedTensor>) { if (storage_type != result.storage_type()) { return absl::InvalidArgumentError("Unexpected storage type"); } else if (expressed_type != result.expressed_type()) { return absl::InvalidArgumentError("Unexpected expressed type"); } if (!(operand.is_per_tensor_quantized() and result.is_per_tensor_quantized())) { return absl::InvalidArgumentError( "Only per-tensor quantization is currently supported"); } using ET = typename Storage<expressed_type>::Type; const QuantizedParameter& operand_quant_param = operand.type().element_type().parameters(0); const QuantizedParameter& result_quant_param = result.type().element_type().parameters(0); ET result_scale_inv = ET(1.0) / static_cast<ET>(result_quant_param.scale); TensorIndex operand_index(operand.shape()); for (TensorIndexIterator result_index_iter{result.shape()}; result_index_iter.has_next(); ++result_index_iter) { for (auto d = 0; d < operand.rank(); ++d) { if (operand.dim(d) == 1) { operand_index.set(d, 0); } else { auto b = broadcast_dimensions[d]; operand_index.set(d, (*result_index_iter)[b]); } } auto linearized_operand_index = operand_index.linearize(); auto linearized_result_index = result_index_iter->linearize(); auto operand_storage = S::Get(operand_buffer, linearized_operand_index); auto result_storage = DequantizeOpQuantizePartial<storage_type, expressed_type>( operand_storage, operand_quant_param, result_scale_inv, result_quant_param.zero_point, [](auto x) { return x; }); S::Set(result_buffer, linearized_result_index, result_storage); } if (auto status = CompleteQuantization<storage_type>(result); !status.ok()) { return status; } } return absl::OkStatus(); } } absl::Status BroadcastInDim( const Tensor& operand, absl::Span<const DimensionSize> broadcast_dimensions, Tensor& result) { DISPATCH_BOOL_INT_FLOAT(BroadcastInDim, result.element_type(), operand, broadcast_dimensions, result); } absl::Status BroadcastInDim( const QuantizedTensor& operand, absl::Span<const DimensionSize> broadcast_dimensions, QuantizedTensor& result) { DISPATCH_QUANTIZED(BroadcastInDim, result.storage_type(), result.expressed_type(), operand, broadcast_dimensions, result); } }
#include <initializer_list> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/span.h" #include "tensorflow/lite/experimental/shlo/legacy/include/shlo.h" #include "tensorflow/lite/experimental/shlo/legacy/src/debug.h" #include "tensorflow/lite/experimental/shlo/legacy/src/storage.h" #include "tensorflow/lite/experimental/shlo/legacy/test/util.h" namespace stablehlo { namespace testing { template <ElementType element_type> void test(std::initializer_list<DimensionSize>&& operand_shape, std::vector<typename Storage<element_type>::Type>&& operand_values, std::initializer_list<DimensionSize>&& broadcast_dimensions_values, std::initializer_list<DimensionSize>&& result_shape, std::vector<typename Storage<element_type>::Type>&& expected_values) { Tensor operand(TensorType(Shape(operand_shape), element_type), operand_values.data()); Tensor expected(TensorType(Shape(result_shape), element_type), expected_values.data()); std::vector<typename Storage<element_type>::Type> result_values( expected_values.size()); Tensor result(TensorType(Shape(result_shape), element_type), result_values.data()); absl::Span<const DimensionSize> broadcast_dimensions( broadcast_dimensions_values); ASSERT_OK(BroadcastInDim(operand, broadcast_dimensions, result)); EXPECT_EQ(result, expected) << "operand: " << operand << "\nbroadcast_dimensions: " << ToString(broadcast_dimensions); } template <ElementType storage_type, ElementType expressed_type> void test( QuantizedParameter&& quantized_parameter, std::initializer_list<DimensionSize>&& operand_shape, std::vector<typename Storage<expressed_type>::Type>&& operand_values, std::initializer_list<DimensionSize>&& broadcast_dimensions_values, std::initializer_list<DimensionSize>&& result_shape, std::vector<typename Storage<expressed_type>::Type>&& expected_values) { auto operand_quant_values = QuantizeVector<storage_type, expressed_type>( operand_values, quantized_parameter); auto expected_quant_values = QuantizeVector<storage_type, expressed_type>( expected_values, quantized_parameter); std::vector<typename Storage<storage_type>::Type> result_quant_values( expected_quant_values.size()); QuantizedTensorElementType element_type(storage_type, expressed_type, std::move(quantized_parameter)); QuantizedTensor operand( QuantizedTensorType(Shape(operand_shape), QuantizedTensorElementType(element_type)), operand_quant_values.data()); QuantizedTensor expected( QuantizedTensorType(Shape(result_shape), QuantizedTensorElementType(element_type)), expected_quant_values.data()); QuantizedTensor result( QuantizedTensorType(Shape(result_shape), QuantizedTensorElementType(element_type)), result_quant_values.data()); absl::Span<const DimensionSize> broadcast_dimensions( broadcast_dimensions_values); auto res = BroadcastInDim(operand, broadcast_dimensions, result); ASSERT_OK(BroadcastInDim(operand, broadcast_dimensions, result)); EXPECT_EQ(result, expected) << "operand: " << operand << "\nbroadcast_dimensions: " << ToString(broadcast_dimensions); } TEST(BroadcastInDim, Unquantized) { test<ElementType::kI1>({1, 3}, {true, false, true}, {2, 1}, {2, 3, 2}, {true, true, false, false, true, true, true, true, false, false, true, true}); test<ElementType::kSI8>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kBF16>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kF16>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kF32>({1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); } TEST(BroadcastInDim, Quantized) { test<ElementType::kSI8, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI8, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI8, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI16, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32, ElementType::kBF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32, ElementType::kF16>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); test<ElementType::kSI32, ElementType::kF32>( {.scale = 0.1, .zero_point = 0}, {1, 3}, {1, 2, 3}, {2, 1}, {2, 3, 2}, {1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3}); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/src/broadcast_in_dim.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/legacy/test/broadcast_in_dim_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
70594a59-cbf4-48c5-b398-788d2ee64d20
cpp
google/leveldb
arena
util/arena.cc
util/arena_test.cc
#include "util/arena.h" namespace leveldb { static const int kBlockSize = 4096; Arena::Arena() : alloc_ptr_(nullptr), alloc_bytes_remaining_(0), memory_usage_(0) {} Arena::~Arena() { for (size_t i = 0; i < blocks_.size(); i++) { delete[] blocks_[i]; } } char* Arena::AllocateFallback(size_t bytes) { if (bytes > kBlockSize / 4) { char* result = AllocateNewBlock(bytes); return result; } alloc_ptr_ = AllocateNewBlock(kBlockSize); alloc_bytes_remaining_ = kBlockSize; char* result = alloc_ptr_; alloc_ptr_ += bytes; alloc_bytes_remaining_ -= bytes; return result; } char* Arena::AllocateAligned(size_t bytes) { const int align = (sizeof(void*) > 8) ? sizeof(void*) : 8; static_assert((align & (align - 1)) == 0, "Pointer size should be a power of 2"); size_t current_mod = reinterpret_cast<uintptr_t>(alloc_ptr_) & (align - 1); size_t slop = (current_mod == 0 ? 0 : align - current_mod); size_t needed = bytes + slop; char* result; if (needed <= alloc_bytes_remaining_) { result = alloc_ptr_ + slop; alloc_ptr_ += needed; alloc_bytes_remaining_ -= needed; } else { result = AllocateFallback(bytes); } assert((reinterpret_cast<uintptr_t>(result) & (align - 1)) == 0); return result; } char* Arena::AllocateNewBlock(size_t block_bytes) { char* result = new char[block_bytes]; blocks_.push_back(result); memory_usage_.fetch_add(block_bytes + sizeof(char*), std::memory_order_relaxed); return result; } }
#include "util/arena.h" #include "gtest/gtest.h" #include "util/random.h" namespace leveldb { TEST(ArenaTest, Empty) { Arena arena; } TEST(ArenaTest, Simple) { std::vector<std::pair<size_t, char*>> allocated; Arena arena; const int N = 100000; size_t bytes = 0; Random rnd(301); for (int i = 0; i < N; i++) { size_t s; if (i % (N / 10) == 0) { s = i; } else { s = rnd.OneIn(4000) ? rnd.Uniform(6000) : (rnd.OneIn(10) ? rnd.Uniform(100) : rnd.Uniform(20)); } if (s == 0) { s = 1; } char* r; if (rnd.OneIn(10)) { r = arena.AllocateAligned(s); } else { r = arena.Allocate(s); } for (size_t b = 0; b < s; b++) { r[b] = i % 256; } bytes += s; allocated.push_back(std::make_pair(s, r)); ASSERT_GE(arena.MemoryUsage(), bytes); if (i > N / 10) { ASSERT_LE(arena.MemoryUsage(), bytes * 1.10); } } for (size_t i = 0; i < allocated.size(); i++) { size_t num_bytes = allocated[i].first; const char* p = allocated[i].second; for (size_t b = 0; b < num_bytes; b++) { ASSERT_EQ(int(p[b]) & 0xff, i % 256); } } } }
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/arena.cc
https://github.com/google/leveldb/blob/23e35d792b9154f922b8b575b12596a4d8664c65/util/arena_test.cc
23e35d792b9154f922b8b575b12596a4d8664c65
c7cec2c6-4c63-4839-b12d-e64a94d8516d
cpp
tensorflow/tensorflow
depthwiseconv_float
tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h
tensorflow/lite/kernels/internal/depthwiseconv_float_test.cc
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_ #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_DEPTHWISECONV_FLOAT_H_ #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/kernels/internal/types.h" namespace tflite { namespace reference_ops { inline void DepthwiseConv( const DepthwiseParams& params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& filter_shape, const float* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape, float* output_data) { const int stride_width = params.stride_width; const int stride_height = params.stride_height; const int dilation_width_factor = params.dilation_width_factor; const int dilation_height_factor = params.dilation_height_factor; const int pad_width = params.padding_values.width; const int pad_height = params.padding_values.height; const int depth_multiplier = params.depth_multiplier; const float output_activation_min = params.float_activation_min; const float output_activation_max = params.float_activation_max; TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4); TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4); const int batches = MatchingDim(input_shape, 0, output_shape, 0); const int output_depth = MatchingDim(filter_shape, 3, output_shape, 3); const int input_height = input_shape.Dims(1); const int input_width = input_shape.Dims(2); const int input_depth = input_shape.Dims(3); const int filter_height = filter_shape.Dims(1); const int filter_width = filter_shape.Dims(2); const int output_height = output_shape.Dims(1); const int output_width = output_shape.Dims(2); TFLITE_DCHECK_EQ(output_depth, input_depth * depth_multiplier); TFLITE_DCHECK_EQ(bias_shape.FlatSize(), output_depth); for (int b = 0; b < batches; ++b) { for (int out_y = 0; out_y < output_height; ++out_y) { for (int out_x = 0; out_x < output_width; ++out_x) { for (int ic = 0; ic < input_depth; ++ic) { for (int m = 0; m < depth_multiplier; m++) { const int oc = m + ic * depth_multiplier; const int in_x_origin = (out_x * stride_width) - pad_width; const int in_y_origin = (out_y * stride_height) - pad_height; float total = 0.f; for (int filter_y = 0; filter_y < filter_height; ++filter_y) { for (int filter_x = 0; filter_x < filter_width; ++filter_x) { const int in_x = in_x_origin + dilation_width_factor * filter_x; const int in_y = in_y_origin + dilation_height_factor * filter_y; if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) && (in_y < input_height)) { float input_value = input_data[Offset(input_shape, b, in_y, in_x, ic)]; float filter_value = filter_data[Offset( filter_shape, 0, filter_y, filter_x, oc)]; total += (input_value * filter_value); } } } float bias_value = 0.0f; if (bias_data) { bias_value = bias_data[oc]; } output_data[Offset(output_shape, b, out_y, out_x, oc)] = ActivationFunctionWithMinMax(total + bias_value, output_activation_min, output_activation_max); } } } } } } } } #endif
#include <algorithm> #include <cmath> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/test_util.h" #include "tensorflow/lite/kernels/internal/types.h" #define ALLOW_SLOW_GENERIC_DEPTHWISECONV_FALLBACK #include "tensorflow/lite/kernels/internal/optimized/cpu_check.h" #include "tensorflow/lite/kernels/internal/optimized/depthwiseconv_float.h" #include "tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h" namespace tflite { namespace { void TestOneDepthwiseConv( const DepthwiseParams& params, const RuntimeShape& input_shape, const float* input_data, const RuntimeShape& filter_shape, const float* filter_data, const RuntimeShape& bias_shape, const float* bias_data, const RuntimeShape& output_shape) { const int output_buffer_size = output_shape.FlatSize(); std::vector<float> output_data(output_buffer_size); std::vector<float> reference_output_data(output_buffer_size); reference_ops::DepthwiseConv(params, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, reference_output_data.data()); optimized_ops::DepthwiseConvImpl( params, input_shape, input_data, filter_shape, filter_data, bias_shape, bias_data, output_shape, output_data.data(), CpuFlags(), 0, output_shape.Dims(1), 1); double sum_abs_diff = 0; float max_abs_val = 0; for (int i = 0; i < output_buffer_size; i++) { sum_abs_diff += std::abs(output_data[i] - reference_output_data[i]); max_abs_val = std::max(max_abs_val, std::abs(reference_output_data[i])); } if (sum_abs_diff != 0.f) { const float mean_diff = static_cast<float>(sum_abs_diff / output_buffer_size); const float relative_error = std::abs(mean_diff) / max_abs_val; ASSERT_LT(relative_error, 1e-5f); } } bool TryTestOneDepthwiseConv() { const int batch = UniformRandomInt(1, 2); const int input_depth = ExponentialRandomPositiveInt(0.9f, 6, 50); const int input_width = ExponentialRandomPositiveInt(0.9f, 20, 200); const int input_height = ExponentialRandomPositiveInt(0.9f, 20, 200); const int filter_width = ExponentialRandomPositiveInt(0.9f, 4, 10); const int filter_height = ExponentialRandomPositiveInt(0.9f, 4, 10); const int depth_multiplier = ExponentialRandomPositiveInt(0.8f, 6, 50); const int stride = ExponentialRandomPositiveInt(0.9f, 3, 8); const int output_depth = input_depth * depth_multiplier; const int dilation_width_factor = RandomElement(std::vector<int>({1, 2, 4})); const int dilation_height_factor = RandomElement(std::vector<int>({1, 2, 4})); float output_activation_min, output_activation_max; FusedActivationFunctionType ac = RandomElement(std::vector<FusedActivationFunctionType>( {FusedActivationFunctionType::kNone, FusedActivationFunctionType::kRelu, FusedActivationFunctionType::kRelu1, FusedActivationFunctionType::kRelu6})); GetActivationMinMax(ac, &output_activation_min, &output_activation_max); const int kMaxSupportedOutputDepth = 1024; if (output_depth > kMaxSupportedOutputDepth) { return false; } RuntimeShape input_shape_inference( {batch, input_height, input_width, input_depth}); RuntimeShape output_shape_inference; int pad_width, pad_height; const auto padding_type = UniformRandomInt(0, 1) ? PaddingType::kSame : PaddingType::kValid; if (!ComputeConvSizes(input_shape_inference, output_depth, filter_width, filter_height, stride, dilation_width_factor, dilation_height_factor, padding_type, &output_shape_inference, &pad_width, &pad_height)) { return false; } RuntimeShape filter_shape_inference( {1, filter_height, filter_width, output_depth}); RuntimeShape bias_shape_inference({1, 1, 1, output_depth}); const int input_buffer_size = input_shape_inference.FlatSize(); const int filter_buffer_size = filter_shape_inference.FlatSize(); std::vector<float> input_data(input_buffer_size); std::vector<float> filter_data(filter_buffer_size); std::vector<float> bias_data(output_depth); const float input_amplitude = 1.f; const float filter_amplitude = 1.f; const float bias_amplitude = filter_width * filter_height * input_amplitude * filter_amplitude; FillRandom(&input_data, -input_amplitude, input_amplitude); FillRandom(&filter_data, -filter_amplitude, filter_amplitude); FillRandom(&bias_data, -bias_amplitude, bias_amplitude); DepthwiseParams op_params; op_params.padding_type = PaddingType::kSame; op_params.padding_values.width = pad_width; op_params.padding_values.height = pad_height; op_params.stride_width = stride; op_params.stride_height = stride; op_params.dilation_width_factor = dilation_width_factor; op_params.dilation_height_factor = dilation_height_factor; op_params.depth_multiplier = depth_multiplier; op_params.float_activation_min = output_activation_min; op_params.float_activation_max = output_activation_max; TestOneDepthwiseConv(op_params, input_shape_inference, input_data.data(), filter_shape_inference, filter_data.data(), bias_shape_inference, bias_data.data(), output_shape_inference); return true; } void TestOneDepthwiseConv() { while (!TryTestOneDepthwiseConv()) { } } TEST(TestDepthwiseConv, TestDepthwiseConv) { const int kTestsToRun = 10 * 1000; for (int i = 0; i < kTestsToRun; i++) { TestOneDepthwiseConv(); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/reference/depthwiseconv_float.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/internal/depthwiseconv_float_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e91a7dc9-1c90-4876-9a47-8825aed4fb9a
cpp
tensorflow/tensorflow
cpp_generator
tensorflow/c/experimental/ops/gen/cpp/cpp_generator.cc
tensorflow/c/experimental/ops/gen/cpp/cpp_generator_test.cc
#include "tensorflow/c/experimental/ops/gen/cpp/cpp_generator.h" #include "tensorflow/c/experimental/ops/gen/cpp/renderers/cpp_file_renderer.h" #include "tensorflow/core/lib/io/path.h" namespace tensorflow { namespace generator { CppGenerator::CppGenerator(cpp::CppConfig cpp_config, PathConfig path_config) : controller_(path_config), cpp_config_(cpp_config), path_config_(path_config) {} SourceCode CppGenerator::GenerateOneFile( cpp::RendererContext::Mode mode) const { SourceCode generated_code; const std::vector<OpSpec> ops(controller_.GetModelOps()); std::vector<cpp::OpView> views(ops.begin(), ops.end()); cpp::RendererContext context{mode, generated_code, cpp_config_, path_config_}; cpp::CppFileRenderer(context, views).Render(); return generated_code; } SourceCode CppGenerator::HeaderFileContents() const { return GenerateOneFile(cpp::RendererContext::kHeader); } SourceCode CppGenerator::SourceFileContents() const { return GenerateOneFile(cpp::RendererContext::kSource); } string CppGenerator::HeaderFileName() const { return io::JoinPath(path_config_.output_path, cpp_config_.unit + "_ops.h"); } string CppGenerator::SourceFileName() const { return io::JoinPath(path_config_.output_path, cpp_config_.unit + "_ops.cc"); } void CppGenerator::WriteHeaderFile() const { controller_.WriteFile(HeaderFileName(), HeaderFileContents()); } void CppGenerator::WriteSourceFile() const { controller_.WriteFile(SourceFileName(), SourceFileContents()); } } }
#include "tensorflow/c/experimental/ops/gen/cpp/cpp_generator.h" #include <algorithm> #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace generator { namespace { TEST(CppGeneratorTest, typical_usage) { string category = "testing"; string name_space = "tensorflow::ops"; string output_dir = "tensorflow/c/experimental/ops/gen/cpp/golden"; string source_dir = "tensorflow"; string api_dirs = ""; std::vector<string> ops = { "Neg", "MatMul", "IdentityN", "SparseSoftmaxCrossEntropyWithLogits", "AccumulatorApplyGradient", "VarHandleOp", "RestoreV2", }; cpp::CppConfig cpp_config(category, name_space); PathConfig controller_config(output_dir, source_dir, api_dirs, ops); CppGenerator generator(cpp_config, controller_config); Env *env = Env::Default(); string golden_dir = io::JoinPath(testing::TensorFlowSrcRoot(), controller_config.tf_output_dir); string generated_header = generator.HeaderFileContents().Render(); string generated_source = generator.SourceFileContents().Render(); string expected_header; string header_file_name = io::JoinPath(golden_dir, "testing_ops.h.golden"); TF_CHECK_OK(ReadFileToString(env, header_file_name, &expected_header)); string expected_source; string source_file_name = io::JoinPath(golden_dir, "testing_ops.cc.golden"); TF_CHECK_OK(ReadFileToString(env, source_file_name, &expected_source)); expected_header.erase( std::remove(expected_header.begin(), expected_header.end(), '\r'), expected_header.end()); expected_source.erase( std::remove(expected_source.begin(), expected_source.end(), '\r'), expected_source.end()); EXPECT_EQ(expected_header, generated_header); EXPECT_EQ(expected_source, generated_source); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/gen/cpp/cpp_generator.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/c/experimental/ops/gen/cpp/cpp_generator_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1ea8ed3d-c026-443e-b379-84a13dec9008
cpp
google/quiche
qbone_packet_exchanger
quiche/quic/qbone/qbone_packet_exchanger.cc
quiche/quic/qbone/qbone_packet_exchanger_test.cc
#include "quiche/quic/qbone/qbone_packet_exchanger.h" #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/strings/string_view.h" namespace quic { bool QbonePacketExchanger::ReadAndDeliverPacket( QboneClientInterface* qbone_client) { bool blocked = false; std::string error; std::unique_ptr<QuicData> packet = ReadPacket(&blocked, &error); if (packet == nullptr) { if (!blocked && visitor_) { visitor_->OnReadError(error); } return false; } qbone_client->ProcessPacketFromNetwork(packet->AsStringPiece()); return true; } void QbonePacketExchanger::WritePacketToNetwork(const char* packet, size_t size) { if (visitor_) { absl::Status status = visitor_->OnWrite(absl::string_view(packet, size)); if (!status.ok()) { QUIC_LOG_EVERY_N_SEC(ERROR, 60) << status; } } bool blocked = false; std::string error; if (packet_queue_.empty() && !write_blocked_) { if (WritePacket(packet, size, &blocked, &error)) { return; } if (blocked) { write_blocked_ = true; } else { QUIC_LOG_EVERY_N_SEC(ERROR, 60) << "Packet write failed: " << error; if (visitor_) { visitor_->OnWriteError(error); } } } if (packet_queue_.size() >= max_pending_packets_) { return; } auto data_copy = new char[size]; memcpy(data_copy, packet, size); packet_queue_.push_back( std::make_unique<QuicData>(data_copy, size, true)); } void QbonePacketExchanger::SetWritable() { write_blocked_ = false; while (!packet_queue_.empty()) { bool blocked = false; std::string error; if (WritePacket(packet_queue_.front()->data(), packet_queue_.front()->length(), &blocked, &error)) { packet_queue_.pop_front(); } else { if (!blocked && visitor_) { visitor_->OnWriteError(error); } write_blocked_ = blocked; return; } } } }
#include "quiche/quic/qbone/qbone_packet_exchanger.h" #include <list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/qbone/mock_qbone_client.h" namespace quic { namespace { using ::testing::StrEq; using ::testing::StrictMock; const size_t kMaxPendingPackets = 2; class MockVisitor : public QbonePacketExchanger::Visitor { public: MOCK_METHOD(void, OnReadError, (const std::string&), (override)); MOCK_METHOD(void, OnWriteError, (const std::string&), (override)); MOCK_METHOD(absl::Status, OnWrite, (absl::string_view), (override)); }; class FakeQbonePacketExchanger : public QbonePacketExchanger { public: using QbonePacketExchanger::QbonePacketExchanger; void AddPacketToBeRead(std::unique_ptr<QuicData> packet) { packets_to_be_read_.push_back(std::move(packet)); } void SetReadError(const std::string& error) { read_error_ = error; } void ForceWriteFailure(bool blocked, const std::string& error) { write_blocked_ = blocked; write_error_ = error; } const std::vector<std::string>& packets_written() const { return packets_written_; } private: std::unique_ptr<QuicData> ReadPacket(bool* blocked, std::string* error) override { *blocked = false; if (packets_to_be_read_.empty()) { *blocked = read_error_.empty(); *error = read_error_; return nullptr; } std::unique_ptr<QuicData> packet = std::move(packets_to_be_read_.front()); packets_to_be_read_.pop_front(); return packet; } bool WritePacket(const char* packet, size_t size, bool* blocked, std::string* error) override { *blocked = false; if (write_blocked_ || !write_error_.empty()) { *blocked = write_blocked_; *error = write_error_; return false; } packets_written_.push_back(std::string(packet, size)); return true; } std::string read_error_; std::list<std::unique_ptr<QuicData>> packets_to_be_read_; std::string write_error_; bool write_blocked_ = false; std::vector<std::string> packets_written_; }; TEST(QbonePacketExchangerTest, ReadAndDeliverPacketDeliversPacketToQboneClient) { StrictMock<MockVisitor> visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); StrictMock<MockQboneClient> client; std::string packet = "data"; exchanger.AddPacketToBeRead( std::make_unique<QuicData>(packet.data(), packet.length())); EXPECT_CALL(client, ProcessPacketFromNetwork(StrEq("data"))); EXPECT_TRUE(exchanger.ReadAndDeliverPacket(&client)); } TEST(QbonePacketExchangerTest, ReadAndDeliverPacketNotifiesVisitorOnReadFailure) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; std::string io_error = "I/O error"; exchanger.SetReadError(io_error); EXPECT_CALL(visitor, OnReadError(StrEq(io_error))).Times(1); EXPECT_FALSE(exchanger.ReadAndDeliverPacket(&client)); } TEST(QbonePacketExchangerTest, ReadAndDeliverPacketDoesNotNotifyVisitorOnBlockedIO) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; EXPECT_FALSE(exchanger.ReadAndDeliverPacket(&client)); } TEST(QbonePacketExchangerTest, WritePacketToNetworkWritesDirectlyToNetworkWhenNotBlocked) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; std::string packet = "data"; exchanger.WritePacketToNetwork(packet.data(), packet.length()); ASSERT_EQ(exchanger.packets_written().size(), 1); EXPECT_THAT(exchanger.packets_written()[0], StrEq(packet)); } TEST(QbonePacketExchangerTest, WritePacketToNetworkQueuesPacketsAndProcessThemLater) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; exchanger.ForceWriteFailure(true, ""); std::vector<std::string> packets = {"packet0", "packet1"}; for (int i = 0; i < packets.size(); i++) { exchanger.WritePacketToNetwork(packets[i].data(), packets[i].length()); } ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(false, ""); exchanger.SetWritable(); ASSERT_EQ(exchanger.packets_written().size(), 2); for (int i = 0; i < packets.size(); i++) { EXPECT_THAT(exchanger.packets_written()[i], StrEq(packets[i])); } } TEST(QbonePacketExchangerTest, SetWritableContinuesProcessingPacketIfPreviousCallBlocked) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; exchanger.ForceWriteFailure(true, ""); std::vector<std::string> packets = {"packet0", "packet1"}; for (int i = 0; i < packets.size(); i++) { exchanger.WritePacketToNetwork(packets[i].data(), packets[i].length()); } ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.SetWritable(); ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(false, ""); exchanger.SetWritable(); ASSERT_EQ(exchanger.packets_written().size(), 2); for (int i = 0; i < packets.size(); i++) { EXPECT_THAT(exchanger.packets_written()[i], StrEq(packets[i])); } } TEST(QbonePacketExchangerTest, WritePacketToNetworkDropsPacketIfQueueIfFull) { std::vector<std::string> packets = {"packet0", "packet1", "packet2"}; size_t queue_size = packets.size() - 1; MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, queue_size); MockQboneClient client; exchanger.ForceWriteFailure(true, ""); for (int i = 0; i < packets.size(); i++) { exchanger.WritePacketToNetwork(packets[i].data(), packets[i].length()); } ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(false, ""); exchanger.SetWritable(); ASSERT_EQ(exchanger.packets_written().size(), queue_size); for (int i = 0; i < queue_size; i++) { EXPECT_THAT(exchanger.packets_written()[i], StrEq(packets[i])); } } TEST(QbonePacketExchangerTest, WriteErrorsGetNotified) { MockVisitor visitor; FakeQbonePacketExchanger exchanger(&visitor, kMaxPendingPackets); MockQboneClient client; std::string packet = "data"; std::string io_error = "I/O error"; exchanger.ForceWriteFailure(false, io_error); EXPECT_CALL(visitor, OnWriteError(StrEq(io_error))).Times(1); exchanger.WritePacketToNetwork(packet.data(), packet.length()); ASSERT_TRUE(exchanger.packets_written().empty()); exchanger.ForceWriteFailure(true, ""); exchanger.WritePacketToNetwork(packet.data(), packet.length()); std::string sys_error = "sys error"; exchanger.ForceWriteFailure(false, sys_error); EXPECT_CALL(visitor, OnWriteError(StrEq(sys_error))).Times(1); exchanger.SetWritable(); ASSERT_TRUE(exchanger.packets_written().empty()); } TEST(QbonePacketExchangerTest, NullVisitorDoesntCrash) { FakeQbonePacketExchanger exchanger(nullptr, kMaxPendingPackets); MockQboneClient client; std::string packet = "data"; std::string io_error = "I/O error"; exchanger.SetReadError(io_error); EXPECT_FALSE(exchanger.ReadAndDeliverPacket(&client)); exchanger.ForceWriteFailure(false, io_error); exchanger.WritePacketToNetwork(packet.data(), packet.length()); EXPECT_TRUE(exchanger.packets_written().empty()); } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_packet_exchanger.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/qbone/qbone_packet_exchanger_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
46384a61-f663-42db-afe4-785b596082c0
cpp
tensorflow/tensorflow
platform_strings
tensorflow/core/platform/platform_strings.cc
tensorflow/core/platform/platform_strings_test.cc
#include "tensorflow/core/platform/platform_strings.h" #include <cerrno> #include <cstdio> #include <cstring> #include <string> #include <vector> namespace tensorflow { int GetPlatformStrings(const std::string& path, std::vector<std::string>* found) { int result; FILE* ifp = fopen(path.c_str(), "rb"); if (ifp != nullptr) { static const char prefix[] = TF_PLAT_STR_MAGIC_PREFIX_; int first_char = prefix[1]; int last_char = -1; int c; while ((c = getc(ifp)) != EOF) { if (c == first_char && last_char == 0) { int i = 2; while (prefix[i] != 0 && (c = getc(ifp)) == prefix[i]) { i++; } if (prefix[i] == 0) { std::string str; while ((c = getc(ifp)) != EOF && c != 0) { str.push_back(c); } if (!str.empty()) { found->push_back(str); } } } last_char = c; } result = (ferror(ifp) == 0) ? 0 : errno; if (fclose(ifp) != 0) { result = errno; } } else { result = errno; } return result; } }
#include "tensorflow/core/platform/platform_strings.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef _WIN32 #include <unistd.h> #endif #include <string> #include <vector> #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/init_main.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/str_util.h" TF_PLATFORM_STRINGS() typedef std::vector<std::string> string_vec; static int PrintStrings(const std::string file_name) { int rc = 0; string_vec str; if (!tensorflow::GetPlatformStrings(file_name, &str)) { for (int i = 0; i != str.size(); i++) { printf("%s\n", str[i].c_str()); } } else { perror(file_name.c_str()); rc = 2; } return rc; } static bool GetValue(const string_vec &str, const std::string &macro_name, std::string *pvalue) { std::string nam_eq = macro_name + "="; int i = 0; while (i != str.size() && !absl::StartsWith(str[i], nam_eq)) { i++; } bool found = (i != str.size()); if (found) { *pvalue = str[i].substr(nam_eq.size()); } return found; } static void CheckStr(const string_vec &str, const std::string &macro_name, const std::string &value) { std::string value_from_str; if (GetValue(str, macro_name, &value_from_str)) { if (value != value_from_str) { LOG(ERROR) << "===== value=" << value << " value_from_str=" << value_from_str; for (int i = 0; i != str.size(); i++) { LOG(ERROR) << "% " << str[i]; } LOG(ERROR) << "====="; } CHECK_EQ(value, value_from_str) << " " << macro_name << ": bad value"; } else { if (value != macro_name) { LOG(ERROR) << "===== value=" << value << " macro_name=" << macro_name; for (int i = 0; i != str.size(); i++) { LOG(ERROR) << "% " << str[i]; } LOG(ERROR) << "====="; } CHECK_EQ(value, macro_name) << " " << macro_name << ": not found in binary"; } } #define AS_STR_1_(x) #x #define AS_STR(x) AS_STR_1_(x) static int RunTest(const std::string &binary_name) { int rc = 0; string_vec str; if (!tensorflow::GetPlatformStrings(binary_name, &str)) { CheckStr(str, "__linux__", AS_STR(__linux__)); CheckStr(str, "_WIN32", AS_STR(_WIN32)); CheckStr(str, "__APPLE__", AS_STR(__APPLE__)); CheckStr(str, "__x86_64__", AS_STR(__x86_64__)); CheckStr(str, "__aarch64__", AS_STR(__aarch64__)); CheckStr(str, "__powerpc64__", AS_STR(__powerpc64__)); CheckStr(str, "TF_PLAT_STR_VERSION", TF_PLAT_STR_VERSION_); } else { perror(binary_name.c_str()); rc = 2; } return rc; } int main(int argc, char *argv[]) { tensorflow::Env *env = tensorflow::Env::Default(); static const char usage[] = "usage: platform_strings_test [file...]"; int rc = 0; tensorflow::port::InitMain(usage, &argc, &argv); if (argc == 1) { printf("rc=%d\n", PrintStrings(env->GetExecutablePath())); rc = RunTest(env->GetExecutablePath()); } else { for (int argn = 1; argn != argc; argn++) { rc |= PrintStrings(argv[argn]); } } return rc; }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/platform_strings.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/platform/platform_strings_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
df17418c-8f4a-4b2b-acdf-84b34d9ea22d
cpp
google/cel-cpp
arena_string_pool
common/arena_string_pool.h
common/arena_string_pool_test.cc
#ifndef THIRD_PARTY_CEL_CPP_COMMON_ARENA_STRING_POOL_H_ #define THIRD_PARTY_CEL_CPP_COMMON_ARENA_STRING_POOL_H_ #include <memory> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/strings/string_view.h" #include "common/arena_string.h" #include "internal/string_pool.h" #include "google/protobuf/arena.h" namespace cel { class ArenaStringPool; absl::Nonnull<std::unique_ptr<ArenaStringPool>> NewArenaStringPool( absl::Nonnull<google::protobuf::Arena*> arena ABSL_ATTRIBUTE_LIFETIME_BOUND); class ArenaStringPool final { public: ArenaStringPool(const ArenaStringPool&) = delete; ArenaStringPool(ArenaStringPool&&) = delete; ArenaStringPool& operator=(const ArenaStringPool&) = delete; ArenaStringPool& operator=(ArenaStringPool&&) = delete; ArenaString InternString(absl::string_view string) { return ArenaString(strings_.InternString(string)); } ArenaString InternString(ArenaString) = delete; private: friend absl::Nonnull<std::unique_ptr<ArenaStringPool>> NewArenaStringPool( absl::Nonnull<google::protobuf::Arena*>); explicit ArenaStringPool(absl::Nonnull<google::protobuf::Arena*> arena) : strings_(arena) {} internal::StringPool strings_; }; inline absl::Nonnull<std::unique_ptr<ArenaStringPool>> NewArenaStringPool( absl::Nonnull<google::protobuf::Arena*> arena ABSL_ATTRIBUTE_LIFETIME_BOUND) { return std::unique_ptr<ArenaStringPool>(new ArenaStringPool(arena)); } } #endif
#include "common/arena_string_pool.h" #include "internal/testing.h" #include "google/protobuf/arena.h" namespace cel { namespace { TEST(ArenaStringPool, InternString) { google::protobuf::Arena arena; auto string_pool = NewArenaStringPool(&arena); auto expected = string_pool->InternString("Hello World!"); auto got = string_pool->InternString("Hello World!"); EXPECT_EQ(expected.data(), got.data()); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/arena_string_pool.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/arena_string_pool_test.cc
4552db5798fb0853b131b783d8875794334fae7f
e6e6d503-beb5-4872-bfe4-475bd4b96eb3
cpp
tensorflow/tensorflow
broadcast_canonicalizer
third_party/xla/xla/service/broadcast_canonicalizer.cc
third_party/xla/xla/service/broadcast_canonicalizer_test.cc
#include "xla/service/broadcast_canonicalizer.h" #include <cstdint> #include <iterator> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_creation_utils.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { BroadcastCanonicalizer::BroadcastCanonicalizer() {} absl::StatusOr<bool> BroadcastCanonicalizer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (const auto& computation : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* hlo : computation->MakeInstructionPostOrder()) { if (hlo->opcode() != HloOpcode::kBroadcast) { continue; } if (absl::c_is_sorted(hlo->dimensions())) { continue; } std::vector<int64_t> new_dims(hlo->dimensions().begin(), hlo->dimensions().end()); std::vector<int64_t> original_dims(hlo->dimensions().begin(), hlo->dimensions().end()); std::vector<int64_t> new_broadcast_dims(hlo->shape().dimensions().begin(), hlo->shape().dimensions().end()); absl::c_sort(new_dims); const int64_t rank = hlo->shape().rank(); for (int i = 0; i < new_dims.size(); ++i) { new_broadcast_dims[new_dims[i]] = hlo->operand(0)->shape().dimensions(i); } auto new_broadcast = MakeBroadcastHlo(hlo->mutable_operand(0), new_dims, new_broadcast_dims); std::vector<int64_t> transpose_dims(rank); absl::c_iota(transpose_dims, 0); for (int i = 0; i < new_dims.size(); ++i) { transpose_dims[new_dims[i]] = new_dims[std::distance( original_dims.begin(), absl::c_find(original_dims, new_dims[i]))]; } TF_RETURN_IF_ERROR(computation->ReplaceWithNewInstruction( hlo, HloInstruction::CreateTranspose(hlo->shape(), new_broadcast, transpose_dims))); changed = true; } } return changed; } }
#include "xla/service/broadcast_canonicalizer.h" #include <functional> #include <memory> #include <optional> #include "xla/test.h" #include "xla/test_helpers.h" #include "xla/tests/filecheck.h" #include "xla/tests/hlo_test_base.h" namespace xla { namespace { class BroadcastCanonicalizerTest : public HloTestBase {}; TEST_F(BroadcastCanonicalizerTest, ReshapeBroadcast) { const char* hlo = R"( HloModule fusion.1644 ENTRY fusion.1644 { parameter.2 = f32[2,3,2]{2,1,0} parameter(0) %broadcast.399 = f32[3,2,8,2]{3,2,1,0} broadcast(%parameter.2), dimensions={1,0,3} ROOT %reshape.43 = f32[3,16,1,2]{3,2,1,0} reshape(f32[3,2,8,2]{3,2,1,0} %broadcast.399) } )"; RunAndFilecheckHloRewrite(hlo, BroadcastCanonicalizer{}, R"( )"); } TEST_F(BroadcastCanonicalizerTest, ReshapeBroadcast22) { const char* hlo = R"( HloModule fusion.1644 ENTRY fusion.1644 { parameter.2 = f32[5,6,7]{2,1,0} parameter(0) %broadcast.399 = f32[8,7,9,5,6]{4,3,2,1,0} broadcast(%parameter.2), dimensions={3,4,1} ROOT %reshape.43 = f32[8,7,45,1,6]{4,3,2,1,0} reshape(%broadcast.399) } )"; RunAndFilecheckHloRewrite(hlo, BroadcastCanonicalizer{}, R"( )"); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/broadcast_canonicalizer.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/broadcast_canonicalizer_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8476d0e3-b0ac-4493-9140-47533d5d00cd
cpp
tensorflow/tensorflow
dynamic_slice_thunk
third_party/xla/xla/service/gpu/runtime/dynamic_slice_thunk.cc
third_party/xla/xla/service/gpu/runtime/dynamic_slice_thunk_test.cc
#include "xla/service/gpu/runtime/dynamic_slice_thunk.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <variant> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "llvm/ADT/STLExtras.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/ir_emission_utils.h" #include "xla/service/gpu/runtime/sequential_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/gpu/runtime/while_thunk.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/status_macros.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/memory_allocation.h" #include "xla/stream_executor/stream.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { DynamicSliceThunk::DynamicSliceThunk( ThunkInfo thunk_info, std::unique_ptr<ThunkSequence> embedded_thunk, std::vector<std::optional<BufferAllocation::Slice>> arguments, std::vector<std::unique_ptr<BufferAllocation>> fake_allocations, std::vector<std::optional<std::vector<Offset>>> offsets, std::vector<std::optional<Shape>> orig_shapes, std::vector<std::optional<Shape>> sliced_shapes, std::vector<std::optional<uint64_t>> offset_byte_sizes) : Thunk(Kind::kDynamicSlice, thunk_info), embedded_thunk_(std::make_unique<SequentialThunk>( ThunkInfo(), std::move(*embedded_thunk))), fake_allocations_(std::move(fake_allocations)) { for (auto [arg, offsets, orig_shape, sliced_shape, offset_byte_size] : llvm::zip_equal(arguments, offsets, orig_shapes, sliced_shapes, offset_byte_sizes)) { slices_.push_back(SliceDef{ std::move(arg), std::move(offsets), std::move(orig_shape), std::move(sliced_shape), std::move(offset_byte_size), }); } for (SliceDef& slice : slices_) { offsets_allocs_base_.push_back(offsets_allocs_size_); if (slice.sliced_shape.has_value()) { offsets_allocs_size_ += slice.sliced_shape->rank() * sizeof(int64_t); } } } DynamicSliceThunk::OffsetArray::OffsetArray(const Literal& l) { CHECK(l.shape().IsArray()) << "Expected array literal, got " << l.ToString(); for (int i = 0; i < l.element_count(); i++) { switch (l.shape().element_type()) { case S32: values.push_back(l.data<int32_t>()[i]); break; case S64: values.push_back(l.data<int64_t>()[i]); break; case U32: values.push_back(l.data<uint32_t>()[i]); break; case U64: CHECK(l.data<uint64_t>()[i] < static_cast<uint64_t>(std::numeric_limits<int64_t>::max())) << "Offset value: " << l.data<uint64_t>()[i] << " cannot fit in int64_t"; values.push_back(l.data<uint64_t>()[i]); break; default: CHECK(false) << "Offset array must be of a supported integer type " "(S32, S64, U32, U64), found: " << l.shape().element_type(); } } } absl::Status DynamicSliceThunk::Prepare(const PrepareParams& params, ResourceRequests& resource_requests) { for (SliceDef& slice : slices_) { if (slice.offsets.has_value()) { TF_RET_CHECK(slice.embedded_thunk_argument.has_value()); TF_RET_CHECK(slice.orig_shape.has_value()); TF_RET_CHECK(slice.sliced_shape.has_value()); TF_RET_CHECK(slice.offset_byte_size.has_value()); TF_RET_CHECK(slice.orig_shape->IsArray()); TF_RET_CHECK(slice.sliced_shape->IsArray()); TF_RET_CHECK(slice.offsets->size() == slice.orig_shape->rank()); TF_RET_CHECK(slice.sliced_shape->rank() == slice.orig_shape->rank()); } } TF_RETURN_IF_ERROR(embedded_thunk_->Prepare(params, resource_requests)); return absl::OkStatus(); } absl::Status DynamicSliceThunk::Initialize(const InitializeParams& params) { TF_RETURN_IF_ERROR(embedded_thunk_->Initialize(params)); absl::MutexLock lock(&mutex_); if (offsets_allocs_.contains(params.executor)) return absl::OkStatus(); VLOG(2) << "Allocate " << offsets_allocs_size_ << " bytes for transferring offsets on executor: " << params.executor; TF_ASSIGN_OR_RETURN( std::unique_ptr<se::MemoryAllocation> allocation, params.executor->HostMemoryAllocate(offsets_allocs_size_)); offsets_allocs_.emplace(params.executor, std::move(allocation)); return absl::OkStatus(); } absl::Status DynamicSliceThunk::ExecuteOnStream(const ExecuteParams& params) { se::Stream& stream = *params.stream; const BufferAllocations& orig_allocations = *params.buffer_allocations; absl::InlinedVector<se::DeviceMemoryBase, 8> slice_buffers( slices_.size(), se::DeviceMemoryBase()); int64_t* offsets_alloc = [&] { absl::MutexLock lock(&mutex_); return reinterpret_cast<int64_t*>( offsets_allocs_.at(stream.parent())->opaque()); }(); auto offset_value = [&](int64_t arg_idx, int64_t offset_idx) -> int64_t& { return offsets_alloc[offsets_allocs_base_.at(arg_idx) + offset_idx]; }; VLOG(2) << "Execute address computation thunk: slices=" << slices_.size(); for (auto [argument_idx, slice] : llvm::enumerate(slices_)) { if (!slice.embedded_thunk_argument.has_value()) { continue; } se::DeviceMemoryBase argument_buffer = orig_allocations.GetDeviceAddress(*slice.embedded_thunk_argument); if (!slice.offsets.has_value()) { slice_buffers[argument_idx] = argument_buffer; continue; } const Shape& src_shape = *slice.orig_shape; const Shape& dst_shape = *slice.sliced_shape; absl::InlinedVector<int64_t, 4> slice_starts; slice_starts.reserve(dst_shape.rank()); int64_t num_transfers = 0; for (auto [offset_idx, values] : llvm::enumerate(llvm::zip( *slice.offsets, src_shape.dimensions(), dst_shape.dimensions()))) { auto [offset, src_dim, dst_dim] = values; if (uint64_t* const_offset = std::get_if<uint64_t>(&offset)) { VLOG(2) << " - arg " << argument_idx << "[" << offset_idx << "]: constant offset = " << *const_offset; offset_value(argument_idx, offset_idx) = *const_offset; } else if (std::holds_alternative<LoopIter>(offset)) { TF_ASSIGN_OR_RETURN(int64_t iter, WhileThunk::CurrentLoopIteration()); VLOG(2) << " - arg " << argument_idx << "[" << offset_idx << "]: loop iteration offset = " << iter; offset_value(argument_idx, offset_idx) = iter; } else if (OffsetArray* offset_array = std::get_if<OffsetArray>(&offset)) { TF_ASSIGN_OR_RETURN(int64_t iter, WhileThunk::CurrentLoopIteration()); VLOG(2) << " - arg " << argument_idx << "[" << offset_idx << "]: offset array offset = " << offset_array->values[iter]; offset_value(argument_idx, offset_idx) = offset_array->values[iter]; } else { auto alloc_slice = std::get<BufferAllocation::Slice>(offset); VLOG(2) << " - arg " << argument_idx << "[" << offset_idx << "]: transfer offset from device " << alloc_slice.ToString(); se::DeviceMemoryBase offset_src = orig_allocations.GetDeviceAddress(alloc_slice); int64_t* offset_dst = &offset_value(argument_idx, offset_idx); TF_RETURN_IF_ERROR( stream.Memcpy(offset_dst, offset_src, *slice.offset_byte_size)); ++num_transfers; } } if (num_transfers > 0) { VLOG(2) << "Wait for completion of " << num_transfers << " transfer"; TF_RETURN_IF_ERROR(stream.BlockHostUntilDone()); } for (auto [offset_idx, values] : llvm::enumerate( llvm::zip(src_shape.dimensions(), dst_shape.dimensions()))) { auto [src_dim, dst_dim] = values; int64_t start_index = std::min(std::max(offset_value(argument_idx, offset_idx), int64_t{0}), src_dim - dst_dim); slice_starts.push_back(start_index); } int64_t new_size = ShapeUtil::ByteSizeOf(dst_shape); int64_t new_offset = 0; for (auto [start, stride] : llvm::zip(slice_starts, *ShapeUtil::ByteStrides(src_shape))) { new_offset += start * stride; } VLOG(2) << "Create sliced argument " << argument_idx << " of shape " << slice.sliced_shape->ToString() << " by slicing argument of shape " << slice.orig_shape->ToString() << " at offset " << new_offset << " with " << new_size; slice_buffers[argument_idx] = argument_buffer.GetByteSlice(new_offset, new_size); } BufferAllocations slice_allocations(slice_buffers, orig_allocations.device_ordinal(), orig_allocations.memory_allocator()); Thunk::ExecuteParams new_params = Thunk::ExecuteParams::CloneWithNewAllocations(params, slice_allocations); TF_RETURN_IF_ERROR(embedded_thunk_->ExecuteOnStream(new_params)); return absl::OkStatus(); } } }
#include "xla/service/gpu/runtime/dynamic_slice_thunk.h" #include <algorithm> #include <cstdint> #include <functional> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "xla/ffi/ffi.h" #include "xla/ffi/ffi_api.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/buffer_allocations.h" #include "xla/service/gpu/matmul_utils.h" #include "xla/service/gpu/runtime/custom_call_thunk.h" #include "xla/service/gpu/runtime/gemm_thunk.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/service/platform_util.h" #include "xla/service/service_executable_run_options.h" #include "xla/shape_util.h" #include "xla/stream_executor/blas.h" #include "xla/stream_executor/command_buffer.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/gpu_types.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" #if GOOGLE_CUDA #define PLATFORM "CUDA" #elif TENSORFLOW_USE_ROCM #define PLATFORM "ROCM" #endif namespace xla::gpu { namespace { static se::StreamExecutor* GpuExecutor() { auto name = absl::AsciiStrToUpper(PlatformUtil::CanonicalPlatformName("gpu").value()); auto* platform = se::PlatformManager::PlatformWithName(name).value(); return platform->ExecutorForDevice(0).value(); } } TEST(DynamicSliceThunkTest, SlicedGemm) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 3 * 1; int64_t out_length = sizeof(float) * 1 * 1; int64_t offset_length = sizeof(int64_t); std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back( std::make_unique<BufferAllocation>(0, rhs_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, rhs_length); BufferAllocation alloc_lhs(0, lhs_length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, lhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, rhs_length, 0)); BufferAllocation::Slice slice_rhs(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs, slice_out, slice_workspace, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), std::nullopt, std::nullopt, std::nullopt}, {sizeof(int64_t), std::nullopt, std::nullopt, std::nullopt}); se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(3 * 1); std::vector<float> rhs_arr(3, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(1 * 1); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {lhs, rhs, out, workspace, lhs_offset_0, lhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({9})); } TEST(DynamicSliceThunkTest, MulipleSlicedOperandsGemm) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t length = sizeof(float) * 2 * 4; int64_t out_length = sizeof(float) * 1; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(float) * 3; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, slice_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 1, slice_length, 0)); BufferAllocation::Slice slice_rhs_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_lhs(0, length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, length); BufferAllocation alloc_rhs(1, length, 0); BufferAllocation::Slice slice_rhs(&alloc_rhs, 0, length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); BufferAllocation alloc_rhs_offset_0(6, offset_length, 0); BufferAllocation::Slice slice_rhs_offset_0(&alloc_rhs_offset_0, 0, offset_length); BufferAllocation alloc_rhs_offset_1(7, offset_length, 0); BufferAllocation::Slice slice_rhs_offset_1(&alloc_rhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs_fake, slice_out, slice_workspace, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; std::vector<DynamicSliceThunk::Offset> rhs_offsets{slice_rhs_offset_0, slice_rhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, rhs_offsets, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), ShapeUtil::MakeShape(PrimitiveType::F32, {8, 1}), std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), std::nullopt, std::nullopt}, {sizeof(int64_t), sizeof(int64_t), std::nullopt, std::nullopt}); std::vector<float> arr{1, 2, 3, 4, 5, 6, 7, 8}; se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); TF_ASSERT_OK(stream->Memcpy(&lhs, arr.data(), length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(8); std::vector<float> rhs_arr(8, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, arr.data(), length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(1); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); se::DeviceMemory<int64_t> rhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> rhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> rhs_offset_arr{2, 0}; TF_ASSERT_OK( stream->Memcpy(&rhs_offset_0, &rhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&rhs_offset_1, &rhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({lhs, rhs, out, workspace, lhs_offset_0, lhs_offset_1, rhs_offset_0, rhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({2 * 3 + 3 * 4 + 4 * 5})); } static absl::Status Memcpy(se::Stream* stream, ffi::AnyBuffer src, ffi::Result<ffi::AnyBuffer> dst) { se::DeviceMemoryBase dst_mem = dst->device_memory(); se::DeviceMemoryBase src_mem = src.device_memory(); return stream->MemcpyD2D(&dst_mem, src_mem, src_mem.size()); } XLA_FFI_DEFINE_HANDLER(kMemcpy, Memcpy, ffi::Ffi::Bind() .Ctx<ffi::Stream>() .Arg<ffi::AnyBuffer>() .Ret<ffi::AnyBuffer>() ); XLA_FFI_REGISTER_HANDLER(ffi::GetXlaFfiApi(), "__xla_test$$memcpy", PLATFORM, kMemcpy); TEST(DynamicSliceThunkTest, SlicedMemcpy) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t src_count = 8 * 8 * 10 * 8; int64_t dst_count = 8 * 8; int64_t src_length = sizeof(int32_t) * src_count; int64_t dst_length = sizeof(int32_t) * dst_count; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(int32_t) * dst_count; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(2); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_src_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_src(0, src_length, 0); BufferAllocation::Slice slice_src(&alloc_src, 0, src_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, dst_length, 0)); BufferAllocation::Slice slice_dst(fake_allocations.back().get(), 0, dst_length); BufferAllocation alloc_offset_0(2, offset_length, 0); BufferAllocation::Slice slice_offset_0(&alloc_offset_0, 0, offset_length); BufferAllocation alloc_offset_1(3, offset_length, 0); BufferAllocation::Slice slice_offset_1(&alloc_offset_1, 0, offset_length); BufferAllocation alloc_offset_2(4, offset_length, 0); BufferAllocation::Slice slice_offset_2(&alloc_offset_2, 0, offset_length); BufferAllocation alloc_offset_3(5, offset_length, 0); BufferAllocation::Slice slice_offset_3(&alloc_offset_3, 0, offset_length); auto registration = xla::ffi::FindHandler("__xla_test$$memcpy", PLATFORM); ASSERT_TRUE(registration.ok()); std::vector<std::optional<CustomCallThunk::Slice>> operands{ CustomCallThunk::Slice{slice_src_fake, ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8})}}; std::vector<std::optional<CustomCallThunk::Slice>> results{ CustomCallThunk::Slice{slice_dst, ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8})}}; ThunkSequence seq; TF_ASSERT_OK_AND_ASSIGN( seq.emplace_back(), CustomCallThunk::Create(Thunk::ThunkInfo(), registration->bundle, operands, results, CustomCallThunk::AttributesMap(), nullptr)); std::vector<DynamicSliceThunk::Offset> slice_offsets{ slice_offset_0, slice_offset_1, slice_offset_2, slice_offset_3}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_src, slice_dst}, std::move(fake_allocations), {slice_offsets, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8, 10, 8}), std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::S32, {1, 1, 8, 8}), std::nullopt}, {sizeof(int64_t), std::nullopt}); se::DeviceMemory<int32_t> src = executor->AllocateArray<int32_t>(src_count); std::vector<int32_t> src_arr(src_count, 0); for (unsigned i = 0; i < src_count; ++i) src_arr[i] = i; TF_ASSERT_OK(stream->Memcpy(&src, src_arr.data(), src_length)); se::DeviceMemory<int32_t> dst = executor->AllocateArray<int32_t>(dst_count); TF_ASSERT_OK(stream->MemZero(&dst, dst_length)); se::DeviceMemory<int64_t> offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> offset_1 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> offset_2 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> offset_3 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> offset_arr{3, 5, 2, 0}; TF_ASSERT_OK(stream->Memcpy(&offset_0, &offset_arr[0], offset_length)); TF_ASSERT_OK(stream->Memcpy(&offset_1, &offset_arr[1], offset_length)); TF_ASSERT_OK(stream->Memcpy(&offset_2, &offset_arr[2], offset_length)); TF_ASSERT_OK(stream->Memcpy(&offset_3, &offset_arr[3], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {src, dst, offset_0, offset_1, offset_2, offset_3}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> out(dst_count, 0); TF_ASSERT_OK(stream->Memcpy(out.data(), dst, dst_length)); std::vector<int32_t> ref(dst_count, 0); int64_t offset_val = offset_arr[3] + 8 * (offset_arr[2] + 10 * (offset_arr[1] + 8 * offset_arr[0])); std::copy(src_arr.begin() + offset_val, src_arr.begin() + offset_val + dst_count, ref.begin()); ASSERT_EQ(out, ref); } TEST(DynamicSliceThunkTest, SlicedOutputMemcpy) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t src_count = 8 * 8 * 10 * 2; int64_t dst_count = 2 * 2 * 2 * 2; int64_t slice_count = 2 * 2; int64_t src_length = sizeof(int32_t) * src_count; int64_t dst_length = sizeof(int32_t) * dst_count; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(int32_t) * slice_count; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(2); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_src_fake(fake_allocations.back().get(), 0, slice_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 1, slice_length, 0)); BufferAllocation::Slice slice_dst_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_src(0, src_length, 0); BufferAllocation::Slice slice_src(&alloc_src, 0, src_length); BufferAllocation alloc_dst(1, dst_length, 0); BufferAllocation::Slice slice_dst(&alloc_dst, 0, dst_length); BufferAllocation alloc_src_offset_0(2, offset_length, 0); BufferAllocation::Slice slice_src_offset_0(&alloc_src_offset_0, 0, offset_length); BufferAllocation alloc_src_offset_1(3, offset_length, 0); BufferAllocation::Slice slice_src_offset_1(&alloc_src_offset_1, 0, offset_length); BufferAllocation alloc_src_offset_2(4, offset_length, 0); BufferAllocation::Slice slice_src_offset_2(&alloc_src_offset_2, 0, offset_length); BufferAllocation alloc_src_offset_3(5, offset_length, 0); BufferAllocation::Slice slice_src_offset_3(&alloc_src_offset_3, 0, offset_length); BufferAllocation alloc_dst_offset_0(6, offset_length, 0); BufferAllocation::Slice slice_dst_offset_0(&alloc_dst_offset_0, 0, offset_length); BufferAllocation alloc_dst_offset_1(7, offset_length, 0); BufferAllocation::Slice slice_dst_offset_1(&alloc_dst_offset_1, 0, offset_length); BufferAllocation alloc_dst_offset_2(8, offset_length, 0); BufferAllocation::Slice slice_dst_offset_2(&alloc_dst_offset_2, 0, offset_length); BufferAllocation alloc_dst_offset_3(9, offset_length, 0); BufferAllocation::Slice slice_dst_offset_3(&alloc_dst_offset_3, 0, offset_length); auto registration = xla::ffi::FindHandler("__xla_test$$memcpy", PLATFORM); ASSERT_TRUE(registration.ok()); std::vector<std::optional<CustomCallThunk::Slice>> operands{ CustomCallThunk::Slice{slice_src_fake, ShapeUtil::MakeShape(PrimitiveType::S32, {2, 2})}}; std::vector<std::optional<CustomCallThunk::Slice>> results{ CustomCallThunk::Slice{slice_dst_fake, ShapeUtil::MakeShape(PrimitiveType::S32, {2, 2})}}; ThunkSequence seq; TF_ASSERT_OK_AND_ASSIGN( seq.emplace_back(), CustomCallThunk::Create(Thunk::ThunkInfo(), registration->bundle, operands, results, CustomCallThunk::AttributesMap(), nullptr)); std::vector<DynamicSliceThunk::Offset> slice_src_offsets{ slice_src_offset_0, slice_src_offset_1, slice_src_offset_2, slice_src_offset_3}; std::vector<DynamicSliceThunk::Offset> slice_dst_offsets{ slice_dst_offset_0, slice_dst_offset_1, slice_dst_offset_2, slice_dst_offset_3}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_src, slice_dst}, std::move(fake_allocations), {slice_src_offsets, slice_dst_offsets}, {ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8, 10, 2}), ShapeUtil::MakeShape(PrimitiveType::S32, {2, 2, 2, 2})}, {ShapeUtil::MakeShape(PrimitiveType::S32, {1, 1, 2, 2}), ShapeUtil::MakeShape(PrimitiveType::S32, {1, 1, 2, 2})}, {sizeof(int64_t), sizeof(int64_t)}); se::DeviceMemory<int32_t> src = executor->AllocateArray<int32_t>(src_count); std::vector<int32_t> src_arr(src_count, 0); for (unsigned i = 0; i < src_count; ++i) src_arr[i] = i; TF_ASSERT_OK(stream->Memcpy(&src, src_arr.data(), src_length)); se::DeviceMemory<int32_t> dst = executor->AllocateArray<int32_t>(dst_count); TF_ASSERT_OK(stream->MemZero(&dst, dst_length)); se::DeviceMemory<int64_t> src_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> src_offset_1 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> src_offset_2 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> src_offset_3 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> src_offset_arr{3, 5, 2, 0}; TF_ASSERT_OK( stream->Memcpy(&src_offset_0, &src_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&src_offset_1, &src_offset_arr[1], offset_length)); TF_ASSERT_OK( stream->Memcpy(&src_offset_2, &src_offset_arr[2], offset_length)); TF_ASSERT_OK( stream->Memcpy(&src_offset_3, &src_offset_arr[3], offset_length)); se::DeviceMemory<int64_t> dst_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> dst_offset_1 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> dst_offset_2 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> dst_offset_3 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> dst_offset_arr{1, 1, 0, 0}; TF_ASSERT_OK( stream->Memcpy(&dst_offset_0, &dst_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&dst_offset_1, &dst_offset_arr[1], offset_length)); TF_ASSERT_OK( stream->Memcpy(&dst_offset_2, &dst_offset_arr[2], offset_length)); TF_ASSERT_OK( stream->Memcpy(&dst_offset_3, &dst_offset_arr[3], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {src, dst, src_offset_0, src_offset_1, src_offset_2, src_offset_3, dst_offset_0, dst_offset_1, dst_offset_2, dst_offset_3}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> out(dst_count, 0); TF_ASSERT_OK(stream->Memcpy(out.data(), dst, dst_length)); std::vector<int32_t> ref(dst_count, 0); int64_t src_offset_val = src_offset_arr[3] + 2 * (src_offset_arr[2] + 10 * (src_offset_arr[1] + 8 * src_offset_arr[0])); int64_t dst_offset_val = dst_offset_arr[3] + 2 * (dst_offset_arr[2] + 2 * (dst_offset_arr[1] + 2 * dst_offset_arr[0])); std::copy(src_arr.begin() + src_offset_val, src_arr.begin() + src_offset_val + slice_count, ref.begin() + dst_offset_val); ASSERT_EQ(out, ref); } TEST(DynamicSliceThunkTest, SlicedGemmArbitraryArgumentOrder) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 3 * 1; int64_t out_length = sizeof(float) * 1 * 1; int64_t offset_length = sizeof(int64_t); std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back( std::make_unique<BufferAllocation>(0, rhs_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, rhs_length, 0)); BufferAllocation::Slice slice_rhs_fake(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out_fake(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace_fake(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs(1, lhs_length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, lhs_length); BufferAllocation alloc_rhs(3, rhs_length, 0); BufferAllocation::Slice slice_rhs(&alloc_rhs, 0, rhs_length); BufferAllocation alloc_out(2, out_length, 0); BufferAllocation::Slice slice_out(&alloc_out, 0, out_length); BufferAllocation alloc_workspace(0, 1024 * 1024, 0); BufferAllocation::Slice slice_workspace(&alloc_workspace, 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs_fake, slice_out_fake, slice_workspace_fake, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), std::nullopt, std::nullopt, std::nullopt}, {sizeof(int64_t), std::nullopt, std::nullopt, std::nullopt}); se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(3 * 1); std::vector<float> rhs_arr(3, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(1 * 1); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {workspace, lhs, out, rhs, lhs_offset_0, lhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({9})); } TEST(DynamicSliceThunkTest, SlicedGemmArbitraryNumberOfArguments) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 3 * 1; int64_t out_length = sizeof(float) * 1 * 1; int64_t offset_length = sizeof(int64_t); std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back( std::make_unique<BufferAllocation>(0, rhs_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, rhs_length, 0)); BufferAllocation::Slice slice_rhs_fake(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out_fake(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace_fake(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs(7, lhs_length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, 0, lhs_length); BufferAllocation alloc_rhs(3, rhs_length, 0); BufferAllocation::Slice slice_rhs(&alloc_rhs, 0, rhs_length); BufferAllocation alloc_out(2, out_length, 0); BufferAllocation::Slice slice_out(&alloc_out, 0, out_length); BufferAllocation alloc_workspace(0, 1024 * 1024, 0); BufferAllocation::Slice slice_workspace(&alloc_workspace, 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs_fake, slice_out_fake, slice_workspace_fake, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), std::nullopt, std::nullopt, std::nullopt}, {sizeof(int64_t), std::nullopt, std::nullopt, std::nullopt}); se::DeviceMemory<float> lhs = executor->AllocateArray<float>(2 * 4); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(3 * 1); std::vector<float> rhs_arr(3, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(1 * 1); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {workspace, se::DeviceMemoryBase(), out, rhs, lhs_offset_0, lhs_offset_1, rhs, lhs}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({9})); } TEST(DynamicSliceThunkTest, SlicedTupledOperandGemm) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 3 * 1; int64_t out_length = sizeof(float) * 1 * 1; int64_t offset_length = sizeof(int64_t); std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back( std::make_unique<BufferAllocation>(0, rhs_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, rhs_length); BufferAllocation alloc_lhs(0, 3 * lhs_length, 0); BufferAllocation::Slice slice_lhs(&alloc_lhs, lhs_length, lhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, rhs_length, 0)); BufferAllocation::Slice slice_rhs(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(4, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(5, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs, slice_out, slice_workspace, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), std::nullopt, std::nullopt, std::nullopt}, {sizeof(int64_t), std::nullopt, std::nullopt, std::nullopt}); se::DeviceMemory<float> lhs_whole_buffer = executor->AllocateArray<float>(2 * 4 * 3); TF_ASSERT_OK(stream->MemZero(&lhs_whole_buffer, 2 * 4 * 3)); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; se::DeviceMemoryBase lhs = lhs_whole_buffer.GetByteSlice(lhs_length, lhs_length); TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemory<float> rhs = executor->AllocateArray<float>(3 * 1); std::vector<float> rhs_arr(3, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemory<float> out = executor->AllocateArray<float>(1 * 1); TF_ASSERT_OK(stream->MemZero(&out, out_length)); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {lhs_whole_buffer, rhs, out, workspace, lhs_offset_0, lhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({9})); } TEST(DynamicSliceThunkTest, SlicedMemcpyOOB) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t src_count = 8 * 8 * 10 * 2; int64_t dst_count = 2 * 2 * 2 * 2; int64_t slice_count = 2 * 2; int64_t src_length = sizeof(int32_t) * src_count; int64_t dst_length = sizeof(int32_t) * dst_count; int64_t offset_length = sizeof(int64_t); int64_t slice_length = sizeof(int32_t) * slice_count; std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(2); fake_allocations.push_back(std::make_unique<BufferAllocation>( 0, slice_length, 0)); BufferAllocation::Slice slice_src_fake(fake_allocations.back().get(), 0, slice_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 1, slice_length, 0)); BufferAllocation::Slice slice_dst_fake(fake_allocations.back().get(), 0, slice_length); BufferAllocation alloc_src(0, src_length, 0); BufferAllocation::Slice slice_src(&alloc_src, 0, src_length); BufferAllocation alloc_dst(1, dst_length, 0); BufferAllocation::Slice slice_dst(&alloc_dst, 0, dst_length); BufferAllocation alloc_src_offset_0(2, offset_length, 0); BufferAllocation::Slice slice_src_offset_0(&alloc_src_offset_0, 0, offset_length); BufferAllocation alloc_src_offset_1(3, offset_length, 0); BufferAllocation::Slice slice_src_offset_1(&alloc_src_offset_1, 0, offset_length); BufferAllocation alloc_src_offset_2(4, offset_length, 0); BufferAllocation::Slice slice_src_offset_2(&alloc_src_offset_2, 0, offset_length); BufferAllocation alloc_src_offset_3(5, offset_length, 0); BufferAllocation::Slice slice_src_offset_3(&alloc_src_offset_3, 0, offset_length); BufferAllocation alloc_dst_offset_0(6, offset_length, 0); BufferAllocation::Slice slice_dst_offset_0(&alloc_dst_offset_0, 0, offset_length); BufferAllocation alloc_dst_offset_1(7, offset_length, 0); BufferAllocation::Slice slice_dst_offset_1(&alloc_dst_offset_1, 0, offset_length); BufferAllocation alloc_dst_offset_2(8, offset_length, 0); BufferAllocation::Slice slice_dst_offset_2(&alloc_dst_offset_2, 0, offset_length); BufferAllocation alloc_dst_offset_3(9, offset_length, 0); BufferAllocation::Slice slice_dst_offset_3(&alloc_dst_offset_3, 0, offset_length); auto registration = xla::ffi::FindHandler("__xla_test$$memcpy", PLATFORM); ASSERT_TRUE(registration.ok()); std::vector<std::optional<CustomCallThunk::Slice>> operands{ CustomCallThunk::Slice{slice_src_fake, ShapeUtil::MakeShape(PrimitiveType::S32, {2, 2})}}; std::vector<std::optional<CustomCallThunk::Slice>> results{ CustomCallThunk::Slice{slice_dst_fake, ShapeUtil::MakeShape(PrimitiveType::S32, {2, 2})}}; ThunkSequence seq; TF_ASSERT_OK_AND_ASSIGN( seq.emplace_back(), CustomCallThunk::Create(Thunk::ThunkInfo(), registration->bundle, operands, results, CustomCallThunk::AttributesMap(), nullptr)); std::vector<DynamicSliceThunk::Offset> slice_src_offsets{ slice_src_offset_0, slice_src_offset_1, slice_src_offset_2, slice_src_offset_3}; std::vector<DynamicSliceThunk::Offset> slice_dst_offsets{ slice_dst_offset_0, slice_dst_offset_1, slice_dst_offset_2, slice_dst_offset_3}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_src, slice_dst}, std::move(fake_allocations), {slice_src_offsets, slice_dst_offsets}, {ShapeUtil::MakeShape(PrimitiveType::S32, {8, 8, 10, 2}), ShapeUtil::MakeShape(PrimitiveType::S32, {2, 2, 2, 2})}, {ShapeUtil::MakeShape(PrimitiveType::S32, {1, 1, 2, 2}), ShapeUtil::MakeShape(PrimitiveType::S32, {1, 1, 2, 2})}, {sizeof(int64_t), sizeof(int64_t)}); se::DeviceMemory<int32_t> src = executor->AllocateArray<int32_t>(src_count); std::vector<int32_t> src_arr(src_count, 0); for (unsigned i = 0; i < src_count; ++i) src_arr[i] = i; TF_ASSERT_OK(stream->Memcpy(&src, src_arr.data(), src_length)); se::DeviceMemory<int32_t> dst = executor->AllocateArray<int32_t>(dst_count); TF_ASSERT_OK(stream->MemZero(&dst, dst_length)); se::DeviceMemory<int64_t> src_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> src_offset_1 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> src_offset_2 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> src_offset_3 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> src_ref_offset_arr{3, 5, 2, 0}; std::vector<int64_t> src_offset_arr{3, 5, 2, -3}; TF_ASSERT_OK( stream->Memcpy(&src_offset_0, &src_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&src_offset_1, &src_offset_arr[1], offset_length)); TF_ASSERT_OK( stream->Memcpy(&src_offset_2, &src_offset_arr[2], offset_length)); TF_ASSERT_OK( stream->Memcpy(&src_offset_3, &src_offset_arr[3], offset_length)); se::DeviceMemory<int64_t> dst_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> dst_offset_1 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> dst_offset_2 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> dst_offset_3 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> dst_ref_offset_arr{1, 1, 0, 0}; std::vector<int64_t> dst_offset_arr{3, 2, 5, -4}; TF_ASSERT_OK( stream->Memcpy(&dst_offset_0, &dst_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&dst_offset_1, &dst_offset_arr[1], offset_length)); TF_ASSERT_OK( stream->Memcpy(&dst_offset_2, &dst_offset_arr[2], offset_length)); TF_ASSERT_OK( stream->Memcpy(&dst_offset_3, &dst_offset_arr[3], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations( {src, dst, src_offset_0, src_offset_1, src_offset_2, src_offset_3, dst_offset_0, dst_offset_1, dst_offset_2, dst_offset_3}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<int32_t> out(dst_count, 0); TF_ASSERT_OK(stream->Memcpy(out.data(), dst, dst_length)); std::vector<int32_t> ref(dst_count, 0); int64_t src_offset_val = src_ref_offset_arr[3] + 2 * (src_ref_offset_arr[2] + 10 * (src_ref_offset_arr[1] + 8 * src_ref_offset_arr[0])); int64_t dst_offset_val = dst_ref_offset_arr[3] + 2 * (dst_ref_offset_arr[2] + 2 * (dst_ref_offset_arr[1] + 2 * dst_ref_offset_arr[0])); std::copy(src_arr.begin() + src_offset_val, src_arr.begin() + src_offset_val + slice_count, ref.begin() + dst_offset_val); ASSERT_EQ(out, ref); } TEST(DynamicSliceThunkTest, SlicedOperandsSameBufferGemm) { se::StreamExecutor* executor = GpuExecutor(); TF_ASSERT_OK_AND_ASSIGN(auto stream, executor->CreateStream()); int64_t lhs_length = sizeof(float) * 2 * 4; int64_t rhs_length = sizeof(float) * 3 * 1; int64_t out_length = sizeof(float) * 1 * 1; int64_t offset_length = sizeof(int64_t); std::vector<std::unique_ptr<BufferAllocation>> fake_allocations(4); fake_allocations.push_back( std::make_unique<BufferAllocation>(0, rhs_length, 0)); BufferAllocation::Slice slice_lhs_fake(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(1, rhs_length, 0)); BufferAllocation::Slice slice_rhs_fake(fake_allocations.back().get(), 0, rhs_length); fake_allocations.push_back( std::make_unique<BufferAllocation>(2, out_length, 0)); BufferAllocation::Slice slice_out_fake(fake_allocations.back().get(), 0, out_length); fake_allocations.push_back(std::make_unique<BufferAllocation>( 3, 1024 * 1024, 0)); BufferAllocation::Slice slice_workspace_fake(fake_allocations.back().get(), 0, 1024 * 1024); BufferAllocation alloc(0, lhs_length + rhs_length + out_length, 0); BufferAllocation::Slice slice_lhs(&alloc, 0, lhs_length); BufferAllocation::Slice slice_rhs(&alloc, lhs_length, rhs_length); BufferAllocation::Slice slice_out(&alloc, lhs_length + rhs_length, out_length); BufferAllocation alloc_workspace(1, 1024 * 1024, 0); BufferAllocation::Slice slice_workspace(&alloc_workspace, 0, 1024 * 1024); BufferAllocation alloc_lhs_offset_0(2, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_0(&alloc_lhs_offset_0, 0, offset_length); BufferAllocation alloc_lhs_offset_1(3, offset_length, 0); BufferAllocation::Slice slice_lhs_offset_1(&alloc_lhs_offset_1, 0, offset_length); auto config = GemmConfig::For(ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), {}, {1}, ShapeUtil::MakeShape(PrimitiveType::F32, {3, 1}), {}, {0}, ShapeUtil::MakeShape(PrimitiveType::F32, {1, 1}), 1.0, 0.0, 0.0, PrecisionConfig::ALG_UNSET, std::nullopt, se::blas::kDefaultComputePrecision, false, false); ASSERT_TRUE(config.ok()); ThunkSequence seq; seq.emplace_back(std::make_unique<GemmThunk>( Thunk::ThunkInfo(), config.value(), slice_lhs_fake, slice_rhs_fake, slice_out_fake, slice_workspace_fake, true)); std::vector<DynamicSliceThunk::Offset> lhs_offsets{slice_lhs_offset_0, slice_lhs_offset_1}; DynamicSliceThunk thunk( Thunk::ThunkInfo(), std::make_unique<ThunkSequence>(std::move(seq)), {slice_lhs, slice_rhs, slice_out, slice_workspace}, std::move(fake_allocations), {lhs_offsets, std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {2, 4}), std::nullopt, std::nullopt, std::nullopt}, {ShapeUtil::MakeShape(PrimitiveType::F32, {1, 3}), std::nullopt, std::nullopt, std::nullopt}, {sizeof(int64_t), std::nullopt, std::nullopt, std::nullopt}); se::DeviceMemory<float> buffer = executor->AllocateArray<float>(lhs_length + rhs_length + out_length); TF_ASSERT_OK(stream->MemZero(&buffer, lhs_length + rhs_length + out_length)); se::DeviceMemoryBase lhs = buffer.GetByteSlice(0, lhs_length); std::vector<float> lhs_arr{1, 2, 3, 4, 5, 6, 7, 8}; TF_ASSERT_OK(stream->Memcpy(&lhs, lhs_arr.data(), lhs_length)); se::DeviceMemoryBase rhs = buffer.GetByteSlice(lhs_length, rhs_length); std::vector<float> rhs_arr(3, 1); TF_ASSERT_OK(stream->Memcpy(&rhs, rhs_arr.data(), rhs_length)); se::DeviceMemoryBase out = buffer.GetByteSlice(lhs_length + rhs_length, out_length); se::DeviceMemory<float> workspace = executor->AllocateArray<float>(1024 * 1024); TF_ASSERT_OK(stream->MemZero(&workspace, 1024 * 1024)); se::DeviceMemory<int64_t> lhs_offset_0 = executor->AllocateArray<int64_t>(1); se::DeviceMemory<int64_t> lhs_offset_1 = executor->AllocateArray<int64_t>(1); std::vector<int64_t> lhs_offset_arr{0, 1}; TF_ASSERT_OK( stream->Memcpy(&lhs_offset_0, &lhs_offset_arr[0], offset_length)); TF_ASSERT_OK( stream->Memcpy(&lhs_offset_1, &lhs_offset_arr[1], offset_length)); ServiceExecutableRunOptions run_options; se::StreamExecutorMemoryAllocator allocator(executor); BufferAllocations allocations({buffer, workspace, lhs_offset_0, lhs_offset_1}, 0, &allocator); Thunk::ExecuteParams params = Thunk::ExecuteParams::Create( run_options, allocations, stream.get(), stream.get(), nullptr, nullptr); Thunk::ExecutableSource source = {"", {}}; TF_ASSERT_OK(thunk.Initialize( {executor, source, &allocations, stream.get(), stream.get()})); TF_ASSERT_OK(thunk.ExecuteOnStream(params)); TF_ASSERT_OK(stream->BlockHostUntilDone()); std::vector<float> dst(1, 0); TF_ASSERT_OK(stream->Memcpy(dst.data(), out, out_length)); ASSERT_EQ(dst, std::vector<float>({9})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/dynamic_slice_thunk.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/runtime/dynamic_slice_thunk_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
70211bbd-e67e-484e-a711-d1383b5f6173
cpp
google/quiche
blind_sign_auth
quiche/blind_sign_auth/blind_sign_auth.cc
quiche/blind_sign_auth/blind_sign_auth_test.cc
#include "quiche/blind_sign_auth/blind_sign_auth.h" #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/functional/bind_front.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "anonymous_tokens/cpp/crypto/crypto_utils.h" #include "anonymous_tokens/cpp/privacy_pass/rsa_bssa_public_metadata_client.h" #include "anonymous_tokens/cpp/privacy_pass/token_encodings.h" #include "anonymous_tokens/cpp/shared/proto_utils.h" #include "quiche/blind_sign_auth/blind_sign_auth_interface.h" #include "quiche/blind_sign_auth/blind_sign_auth_protos.h" #include "quiche/blind_sign_auth/blind_sign_message_interface.h" #include "quiche/blind_sign_auth/blind_sign_message_response.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_random.h" namespace quiche { namespace { template <typename T> std::string OmitDefault(T value) { return value == 0 ? "" : absl::StrCat(value); } constexpr absl::string_view kIssuerHostname = "https: } void BlindSignAuth::GetTokens(std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback) { privacy::ppn::GetInitialDataRequest request; request.set_use_attestation(false); request.set_service_type(BlindSignAuthServiceTypeToString(service_type)); request.set_location_granularity( privacy::ppn::GetInitialDataRequest_LocationGranularity_CITY_GEOS); request.set_validation_version(2); request.set_proxy_layer(QuicheProxyLayerToPpnProxyLayer(proxy_layer)); std::string body = request.SerializeAsString(); BlindSignMessageCallback initial_data_callback = absl::bind_front( &BlindSignAuth::GetInitialDataCallback, this, oauth_token, num_tokens, proxy_layer, service_type, std::move(callback)); fetcher_->DoRequest(BlindSignMessageRequestType::kGetInitialData, oauth_token, body, std::move(initial_data_callback)); } void BlindSignAuth::GetInitialDataCallback( std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback, absl::StatusOr<BlindSignMessageResponse> response) { if (!response.ok()) { QUICHE_LOG(WARNING) << "GetInitialDataRequest failed: " << response.status(); std::move(callback)(absl::InvalidArgumentError( "GetInitialDataRequest failed: invalid response")); return; } absl::StatusCode code = response->status_code(); if (code != absl::StatusCode::kOk) { std::string message = absl::StrCat("GetInitialDataRequest failed with code: ", code); QUICHE_LOG(WARNING) << message; std::move(callback)( absl::InvalidArgumentError("GetInitialDataRequest failed")); return; } privacy::ppn::GetInitialDataResponse initial_data_response; if (!initial_data_response.ParseFromString(response->body())) { QUICHE_LOG(WARNING) << "Failed to parse GetInitialDataResponse"; std::move(callback)( absl::InternalError("Failed to parse GetInitialDataResponse")); return; } bool use_privacy_pass_client = initial_data_response.has_privacy_pass_data() && auth_options_.enable_privacy_pass(); if (use_privacy_pass_client) { QUICHE_DVLOG(1) << "Using Privacy Pass client"; GeneratePrivacyPassTokens(initial_data_response, std::move(oauth_token), num_tokens, proxy_layer, service_type, std::move(callback)); } else { QUICHE_LOG(ERROR) << "Non-Privacy Pass tokens are no longer supported"; std::move(callback)(absl::UnimplementedError( "Non-Privacy Pass tokens are no longer supported")); } } void BlindSignAuth::GeneratePrivacyPassTokens( privacy::ppn::GetInitialDataResponse initial_data_response, std::optional<std::string> oauth_token, int num_tokens, ProxyLayer proxy_layer, BlindSignAuthServiceType service_type, SignedTokenCallback callback) { anonymous_tokens::RSAPublicKey public_key_proto; if (!public_key_proto.ParseFromString( initial_data_response.at_public_metadata_public_key() .serialized_public_key())) { std::move(callback)( absl::InvalidArgumentError("Failed to parse Privacy Pass public key")); return; } absl::StatusOr<bssl::UniquePtr<RSA>> bssl_rsa_key = anonymous_tokens::CreatePublicKeyRSA( public_key_proto.n(), public_key_proto.e()); if (!bssl_rsa_key.ok()) { QUICHE_LOG(ERROR) << "Failed to create RSA public key: " << bssl_rsa_key.status(); std::move(callback)(absl::InternalError("Failed to create RSA public key")); return; } absl::StatusOr<anonymous_tokens::Extensions> extensions = anonymous_tokens::DecodeExtensions( initial_data_response.privacy_pass_data() .public_metadata_extensions()); if (!extensions.ok()) { QUICHE_LOG(WARNING) << "Failed to decode extensions: " << extensions.status(); std::move(callback)( absl::InvalidArgumentError("Failed to decode extensions")); return; } std::vector<uint16_t> kExpectedExtensionTypes = { 0x0001, 0x0002, 0xF001, 0xF002, 0xF003}; absl::Status result = anonymous_tokens::ValidateExtensionsOrderAndValues( *extensions, absl::MakeSpan(kExpectedExtensionTypes), absl::Now()); if (!result.ok()) { QUICHE_LOG(WARNING) << "Failed to validate extensions: " << result; std::move(callback)( absl::InvalidArgumentError("Failed to validate extensions")); return; } absl::StatusOr<anonymous_tokens::ExpirationTimestamp> expiration_timestamp = anonymous_tokens:: ExpirationTimestamp::FromExtension(extensions->extensions.at(0)); if (!expiration_timestamp.ok()) { QUICHE_LOG(WARNING) << "Failed to parse expiration timestamp: " << expiration_timestamp.status(); std::move(callback)( absl::InvalidArgumentError("Failed to parse expiration timestamp")); return; } absl::Time public_metadata_expiry_time = absl::FromUnixSeconds(expiration_timestamp->timestamp); absl::StatusOr<anonymous_tokens::GeoHint> geo_hint = anonymous_tokens::GeoHint::FromExtension( extensions->extensions.at(1)); QUICHE_CHECK(geo_hint.ok()); anonymous_tokens::TokenChallenge challenge; challenge.issuer_name = kIssuerHostname; absl::StatusOr<std::string> token_challenge = anonymous_tokens::MarshalTokenChallenge(challenge); if (!token_challenge.ok()) { QUICHE_LOG(WARNING) << "Failed to marshal token challenge: " << token_challenge.status(); std::move(callback)( absl::InvalidArgumentError("Failed to marshal token challenge")); return; } QuicheRandom* random = QuicheRandom::GetInstance(); std::vector<anonymous_tokens::ExtendedTokenRequest> extended_token_requests; std::vector<std::unique_ptr<anonymous_tokens:: PrivacyPassRsaBssaPublicMetadataClient>> privacy_pass_clients; std::vector<std::string> privacy_pass_blinded_tokens; for (int i = 0; i < num_tokens; i++) { auto client = anonymous_tokens:: PrivacyPassRsaBssaPublicMetadataClient::Create(*bssl_rsa_key.value()); if (!client.ok()) { QUICHE_LOG(WARNING) << "Failed to create Privacy Pass client: " << client.status(); std::move(callback)( absl::InternalError("Failed to create Privacy Pass client")); return; } std::string nonce_rand(32, '\0'); random->RandBytes(nonce_rand.data(), nonce_rand.size()); absl::StatusOr<anonymous_tokens::ExtendedTokenRequest> extended_token_request = client.value()->CreateTokenRequest( *token_challenge, nonce_rand, initial_data_response.privacy_pass_data().token_key_id(), *extensions); if (!extended_token_request.ok()) { QUICHE_LOG(WARNING) << "Failed to create ExtendedTokenRequest: " << extended_token_request.status(); std::move(callback)( absl::InternalError("Failed to create ExtendedTokenRequest")); return; } privacy_pass_clients.push_back(*std::move(client)); extended_token_requests.push_back(*extended_token_request); privacy_pass_blinded_tokens.push_back(absl::Base64Escape( extended_token_request->request.blinded_token_request)); } privacy::ppn::AuthAndSignRequest sign_request; sign_request.set_service_type(BlindSignAuthServiceTypeToString(service_type)); sign_request.set_key_type(privacy::ppn::AT_PUBLIC_METADATA_KEY_TYPE); sign_request.set_key_version( initial_data_response.at_public_metadata_public_key().key_version()); sign_request.mutable_blinded_token()->Assign( privacy_pass_blinded_tokens.begin(), privacy_pass_blinded_tokens.end()); sign_request.mutable_public_metadata_extensions()->assign( initial_data_response.privacy_pass_data().public_metadata_extensions()); sign_request.set_do_not_use_rsa_public_exponent(true); sign_request.set_proxy_layer(QuicheProxyLayerToPpnProxyLayer(proxy_layer)); absl::StatusOr<anonymous_tokens::AnonymousTokensUseCase> use_case = anonymous_tokens::ParseUseCase( initial_data_response.at_public_metadata_public_key().use_case()); if (!use_case.ok()) { QUICHE_LOG(WARNING) << "Failed to parse use case: " << use_case.status(); std::move(callback)(absl::InvalidArgumentError("Failed to parse use case")); return; } BlindSignMessageCallback auth_and_sign_callback = absl::bind_front(&BlindSignAuth::PrivacyPassAuthAndSignCallback, this, std::move(initial_data_response.privacy_pass_data() .public_metadata_extensions()), public_metadata_expiry_time, *geo_hint, *use_case, std::move(privacy_pass_clients), std::move(callback)); fetcher_->DoRequest(BlindSignMessageRequestType::kAuthAndSign, oauth_token, sign_request.SerializeAsString(), std::move(auth_and_sign_callback)); } void BlindSignAuth::PrivacyPassAuthAndSignCallback( std::string encoded_extensions, absl::Time public_key_expiry_time, anonymous_tokens::GeoHint geo_hint, anonymous_tokens::AnonymousTokensUseCase use_case, std::vector<std::unique_ptr<anonymous_tokens:: PrivacyPassRsaBssaPublicMetadataClient>> privacy_pass_clients, SignedTokenCallback callback, absl::StatusOr<BlindSignMessageResponse> response) { if (!response.ok()) { QUICHE_LOG(WARNING) << "AuthAndSign failed: " << response.status(); std::move(callback)( absl::InvalidArgumentError("AuthAndSign failed: invalid response")); return; } absl::StatusCode code = response->status_code(); if (code != absl::StatusCode::kOk) { std::string message = absl::StrCat("AuthAndSign failed with code: ", code); QUICHE_LOG(WARNING) << message; std::move(callback)(absl::InvalidArgumentError("AuthAndSign failed")); return; } privacy::ppn::AuthAndSignResponse sign_response; if (!sign_response.ParseFromString(response->body())) { QUICHE_LOG(WARNING) << "Failed to parse AuthAndSignResponse"; std::move(callback)( absl::InternalError("Failed to parse AuthAndSignResponse")); return; } if (static_cast<size_t>(sign_response.blinded_token_signature_size()) != privacy_pass_clients.size()) { QUICHE_LOG(WARNING) << "Number of signatures does not equal number of " "Privacy Pass tokens sent"; std::move(callback)( absl::InternalError("Number of signatures does not equal number of " "Privacy Pass tokens sent")); return; } std::vector<BlindSignToken> tokens_vec; for (int i = 0; i < sign_response.blinded_token_signature_size(); i++) { std::string unescaped_blinded_sig; if (!absl::Base64Unescape(sign_response.blinded_token_signature()[i], &unescaped_blinded_sig)) { QUICHE_LOG(WARNING) << "Failed to unescape blinded signature"; std::move(callback)( absl::InternalError("Failed to unescape blinded signature")); return; } absl::StatusOr<anonymous_tokens::Token> token = privacy_pass_clients[i]->FinalizeToken(unescaped_blinded_sig); if (!token.ok()) { QUICHE_LOG(WARNING) << "Failed to finalize token: " << token.status(); std::move(callback)(absl::InternalError("Failed to finalize token")); return; } absl::StatusOr<std::string> marshaled_token = anonymous_tokens::MarshalToken(*token); if (!marshaled_token.ok()) { QUICHE_LOG(WARNING) << "Failed to marshal token: " << marshaled_token.status(); std::move(callback)(absl::InternalError("Failed to marshal token")); return; } privacy::ppn::PrivacyPassTokenData privacy_pass_token_data; privacy_pass_token_data.mutable_token()->assign( ConvertBase64ToWebSafeBase64(absl::Base64Escape(*marshaled_token))); privacy_pass_token_data.mutable_encoded_extensions()->assign( ConvertBase64ToWebSafeBase64(absl::Base64Escape(encoded_extensions))); privacy_pass_token_data.set_use_case_override(use_case); tokens_vec.push_back( BlindSignToken{privacy_pass_token_data.SerializeAsString(), public_key_expiry_time, geo_hint}); } std::move(callback)(absl::Span<BlindSignToken>(tokens_vec)); } privacy::ppn::ProxyLayer BlindSignAuth::QuicheProxyLayerToPpnProxyLayer( quiche::ProxyLayer proxy_layer) { switch (proxy_layer) { case ProxyLayer::kProxyA: { return privacy::ppn::ProxyLayer::PROXY_A; } case ProxyLayer::kProxyB: { return privacy::ppn::ProxyLayer::PROXY_B; } } } std::string BlindSignAuth::ConvertBase64ToWebSafeBase64( std::string base64_string) { absl::c_replace(base64_string, '+', '-'); absl::c_replace(base64_string, '/', '_'); return base64_string; } std::string BlindSignAuthServiceTypeToString( quiche::BlindSignAuthServiceType service_type) { switch (service_type) { case BlindSignAuthServiceType::kChromeIpBlinding: { return "chromeipblinding"; } case BlindSignAuthServiceType::kCronetIpBlinding: { return "cronetipblinding"; } case BlindSignAuthServiceType::kWebviewIpBlinding: { return "chromeipblinding"; } } } }
#include "quiche/blind_sign_auth/blind_sign_auth.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/string_view.h" #include "absl/time/clock.h" #include "absl/time/time.h" #include "absl/types/span.h" #include "anonymous_tokens/cpp/crypto/crypto_utils.h" #include "anonymous_tokens/cpp/privacy_pass/token_encodings.h" #include "anonymous_tokens/cpp/testing/utils.h" #include "openssl/base.h" #include "openssl/digest.h" #include "quiche/blind_sign_auth/blind_sign_auth_interface.h" #include "quiche/blind_sign_auth/blind_sign_auth_protos.h" #include "quiche/blind_sign_auth/blind_sign_message_interface.h" #include "quiche/blind_sign_auth/blind_sign_message_response.h" #include "quiche/blind_sign_auth/test_tools/mock_blind_sign_message_interface.h" #include "quiche/common/platform/api/quiche_mutex.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quiche { namespace test { namespace { using ::testing::_; using ::testing::Eq; using ::testing::InSequence; using ::testing::Invoke; using ::testing::StartsWith; using ::testing::Unused; class BlindSignAuthTest : public QuicheTest { protected: void SetUp() override { auto [test_rsa_public_key, test_rsa_private_key] = anonymous_tokens::GetStrongTestRsaKeyPair2048(); ANON_TOKENS_ASSERT_OK_AND_ASSIGN( rsa_public_key_, anonymous_tokens::CreatePublicKeyRSA( test_rsa_public_key.n, test_rsa_public_key.e)); ANON_TOKENS_ASSERT_OK_AND_ASSIGN( rsa_private_key_, anonymous_tokens::CreatePrivateKeyRSA( test_rsa_private_key.n, test_rsa_private_key.e, test_rsa_private_key.d, test_rsa_private_key.p, test_rsa_private_key.q, test_rsa_private_key.dp, test_rsa_private_key.dq, test_rsa_private_key.crt)); anonymous_tokens::RSAPublicKey public_key; public_key.set_n(test_rsa_public_key.n); public_key.set_e(test_rsa_public_key.e); public_key_proto_.set_key_version(1); public_key_proto_.set_use_case("TEST_USE_CASE"); public_key_proto_.set_serialized_public_key(public_key.SerializeAsString()); public_key_proto_.set_sig_hash_type( anonymous_tokens::AT_HASH_TYPE_SHA384); public_key_proto_.set_mask_gen_function( anonymous_tokens::AT_MGF_SHA384); public_key_proto_.set_salt_length(48); public_key_proto_.set_key_size(256); public_key_proto_.set_message_mask_type( anonymous_tokens::AT_MESSAGE_MASK_NO_MASK); public_key_proto_.set_message_mask_size(0); expected_get_initial_data_request_.set_use_attestation(false); expected_get_initial_data_request_.set_service_type("chromeipblinding"); expected_get_initial_data_request_.set_location_granularity( privacy::ppn::GetInitialDataRequest_LocationGranularity_CITY_GEOS); expected_get_initial_data_request_.set_validation_version(2); expected_get_initial_data_request_.set_proxy_layer(privacy::ppn::PROXY_A); privacy::ppn::GetInitialDataResponse fake_get_initial_data_response; *fake_get_initial_data_response.mutable_at_public_metadata_public_key() = public_key_proto_; fake_get_initial_data_response_ = fake_get_initial_data_response; privacy::ppn::GetInitialDataResponse::PrivacyPassData privacy_pass_data; ANON_TOKENS_ASSERT_OK_AND_ASSIGN( std::string public_key_der, anonymous_tokens::RsaSsaPssPublicKeyToDerEncoding( rsa_public_key_.get())); const EVP_MD* sha256 = EVP_sha256(); ANON_TOKENS_ASSERT_OK_AND_ASSIGN( token_key_id_, anonymous_tokens::ComputeHash( public_key_der, *sha256)); anonymous_tokens::ExpirationTimestamp expiration_timestamp; int64_t one_hour_away = absl::ToUnixSeconds(absl::Now() + absl::Hours(1)); expiration_timestamp.timestamp = one_hour_away - (one_hour_away % 900); expiration_timestamp.timestamp_precision = 900; absl::StatusOr<anonymous_tokens::Extension> expiration_extension = expiration_timestamp.AsExtension(); QUICHE_EXPECT_OK(expiration_extension); extensions_.extensions.push_back(*expiration_extension); anonymous_tokens::GeoHint geo_hint; geo_hint.geo_hint = "US,US-AL,ALABASTER"; absl::StatusOr<anonymous_tokens::Extension> geo_hint_extension = geo_hint.AsExtension(); QUICHE_EXPECT_OK(geo_hint_extension); extensions_.extensions.push_back(*geo_hint_extension); anonymous_tokens::ServiceType service_type; service_type.service_type_id = anonymous_tokens::ServiceType::kChromeIpBlinding; absl::StatusOr<anonymous_tokens::Extension> service_type_extension = service_type.AsExtension(); QUICHE_EXPECT_OK(service_type_extension); extensions_.extensions.push_back(*service_type_extension); anonymous_tokens::DebugMode debug_mode; debug_mode.mode = anonymous_tokens::DebugMode::kDebug; absl::StatusOr<anonymous_tokens::Extension> debug_mode_extension = debug_mode.AsExtension(); QUICHE_EXPECT_OK(debug_mode_extension); extensions_.extensions.push_back(*debug_mode_extension); anonymous_tokens::ProxyLayer proxy_layer; proxy_layer.layer = anonymous_tokens::ProxyLayer::kProxyA; absl::StatusOr<anonymous_tokens::Extension> proxy_layer_extension = proxy_layer.AsExtension(); QUICHE_EXPECT_OK(proxy_layer_extension); extensions_.extensions.push_back(*proxy_layer_extension); absl::StatusOr<std::string> serialized_extensions = anonymous_tokens::EncodeExtensions(extensions_); QUICHE_EXPECT_OK(serialized_extensions); privacy_pass_data.set_token_key_id(token_key_id_); privacy_pass_data.set_public_metadata_extensions(*serialized_extensions); *fake_get_initial_data_response.mutable_public_metadata_info() = public_metadata_info_; *fake_get_initial_data_response.mutable_privacy_pass_data() = privacy_pass_data; fake_get_initial_data_response_ = fake_get_initial_data_response; privacy::ppn::BlindSignAuthOptions options; options.set_enable_privacy_pass(true); blind_sign_auth_ = std::make_unique<BlindSignAuth>(&mock_message_interface_, options); } void TearDown() override { blind_sign_auth_.reset(nullptr); } public: void CreateSignResponse(const std::string& body, bool use_privacy_pass) { privacy::ppn::AuthAndSignRequest request; ASSERT_TRUE(request.ParseFromString(body)); EXPECT_EQ(request.service_type(), "chromeipblinding"); EXPECT_EQ(request.key_type(), privacy::ppn::AT_PUBLIC_METADATA_KEY_TYPE); EXPECT_EQ(request.public_key_hash(), ""); EXPECT_EQ(request.key_version(), public_key_proto_.key_version()); EXPECT_EQ(request.do_not_use_rsa_public_exponent(), true); EXPECT_NE(request.blinded_token().size(), 0); if (use_privacy_pass) { EXPECT_EQ(request.public_metadata_extensions(), fake_get_initial_data_response_.privacy_pass_data() .public_metadata_extensions()); } else { EXPECT_EQ(request.public_metadata_info().SerializeAsString(), public_metadata_info_.SerializeAsString()); } privacy::ppn::AuthAndSignResponse response; for (const auto& request_token : request.blinded_token()) { std::string decoded_blinded_token; ASSERT_TRUE(absl::Base64Unescape(request_token, &decoded_blinded_token)); if (use_privacy_pass) { absl::StatusOr<std::string> signature = anonymous_tokens::TestSignWithPublicMetadata( decoded_blinded_token, request.public_metadata_extensions(), *rsa_private_key_, false); QUICHE_EXPECT_OK(signature); response.add_blinded_token_signature(absl::Base64Escape(*signature)); } else { absl::StatusOr<std::string> serialized_token = anonymous_tokens::TestSign( decoded_blinded_token, rsa_private_key_.get()); QUICHE_EXPECT_OK(serialized_token); response.add_blinded_token_signature( absl::Base64Escape(*serialized_token)); } } sign_response_ = response; } void ValidatePrivacyPassTokensOutput(absl::Span<BlindSignToken> tokens) { for (const auto& token : tokens) { privacy::ppn::PrivacyPassTokenData privacy_pass_token_data; ASSERT_TRUE(privacy_pass_token_data.ParseFromString(token.token)); std::string decoded_token; ASSERT_TRUE(absl::WebSafeBase64Unescape(privacy_pass_token_data.token(), &decoded_token)); EXPECT_EQ(privacy_pass_token_data.encoded_extensions().back(), '='); std::string decoded_extensions; ASSERT_TRUE(absl::WebSafeBase64Unescape( privacy_pass_token_data.encoded_extensions(), &decoded_extensions)); EXPECT_EQ(token.geo_hint.geo_hint, "US,US-AL,ALABASTER"); EXPECT_EQ(token.geo_hint.country_code, "US"); EXPECT_EQ(token.geo_hint.region, "US-AL"); EXPECT_EQ(token.geo_hint.city, "ALABASTER"); } } MockBlindSignMessageInterface mock_message_interface_; std::unique_ptr<BlindSignAuth> blind_sign_auth_; anonymous_tokens::RSABlindSignaturePublicKey public_key_proto_; bssl::UniquePtr<RSA> rsa_public_key_; bssl::UniquePtr<RSA> rsa_private_key_; std::string token_key_id_; anonymous_tokens::Extensions extensions_; privacy::ppn::PublicMetadataInfo public_metadata_info_; privacy::ppn::AuthAndSignResponse sign_response_; privacy::ppn::GetInitialDataResponse fake_get_initial_data_response_; std::string oauth_token_ = "oauth_token"; privacy::ppn::GetInitialDataRequest expected_get_initial_data_request_; }; TEST_F(BlindSignAuthTest, TestGetTokensFailedNetworkError) { EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), _, _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)( absl::InternalError("Failed to create socket")); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), _, _, _)) .Times(0); int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInvalidArgument); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestGetTokensFailedBadGetInitialDataResponse) { *fake_get_initial_data_response_.mutable_at_public_metadata_public_key() ->mutable_use_case() = "SPAM"; BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); EXPECT_CALL( mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), _, _, _)) .Times(0); int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInvalidArgument); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestGetTokensFailedBadAuthAndSignResponse) { BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); { InSequence seq; EXPECT_CALL( mock_message_interface_, DoRequest( Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), Eq(oauth_token_), _, _)) .Times(1) .WillOnce(Invoke([this](Unused, Unused, const std::string& body, BlindSignMessageCallback callback) { CreateSignResponse(body, false); sign_response_.add_blinded_token_signature("invalid_signature%"); BlindSignMessageResponse response(absl::StatusCode::kOk, sign_response_.SerializeAsString()); std::move(callback)(response); })); } int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInternal); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestPrivacyPassGetTokensSucceeds) { BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); { InSequence seq; EXPECT_CALL( mock_message_interface_, DoRequest( Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); EXPECT_CALL(mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kAuthAndSign), Eq(oauth_token_), _, _)) .Times(1) .WillOnce(Invoke([this](Unused, Unused, const std::string& body, BlindSignMessageCallback callback) { CreateSignResponse(body, true); BlindSignMessageResponse response(absl::StatusCode::kOk, sign_response_.SerializeAsString()); std::move(callback)(response); })); } int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [this, &done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { QUICHE_EXPECT_OK(tokens); ValidatePrivacyPassTokensOutput(*tokens); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } TEST_F(BlindSignAuthTest, TestPrivacyPassGetTokensFailsWithBadExtensions) { privacy::ppn::BlindSignAuthOptions options; options.set_enable_privacy_pass(true); blind_sign_auth_ = std::make_unique<BlindSignAuth>(&mock_message_interface_, options); public_key_proto_.set_message_mask_type( anonymous_tokens::AT_MESSAGE_MASK_NO_MASK); public_key_proto_.set_message_mask_size(0); *fake_get_initial_data_response_.mutable_at_public_metadata_public_key() = public_key_proto_; fake_get_initial_data_response_.mutable_privacy_pass_data() ->set_public_metadata_extensions("spam"); BlindSignMessageResponse fake_public_key_response( absl::StatusCode::kOk, fake_get_initial_data_response_.SerializeAsString()); EXPECT_CALL( mock_message_interface_, DoRequest(Eq(BlindSignMessageRequestType::kGetInitialData), Eq(oauth_token_), Eq(expected_get_initial_data_request_.SerializeAsString()), _)) .Times(1) .WillOnce([=](auto&&, auto&&, auto&&, auto get_initial_data_cb) { std::move(get_initial_data_cb)(fake_public_key_response); }); int num_tokens = 1; QuicheNotification done; SignedTokenCallback callback = [&done](absl::StatusOr<absl::Span<BlindSignToken>> tokens) { EXPECT_THAT(tokens.status().code(), absl::StatusCode::kInvalidArgument); done.Notify(); }; blind_sign_auth_->GetTokens(oauth_token_, num_tokens, ProxyLayer::kProxyA, BlindSignAuthServiceType::kChromeIpBlinding, std::move(callback)); done.WaitForNotification(); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/blind_sign_auth/blind_sign_auth.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/blind_sign_auth/blind_sign_auth_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
040cc8ee-f53e-4ba5-b169-1de71bba8616
cpp
tensorflow/tensorflow
parallel_interleave_dataset_op
tensorflow/core/kernels/data/experimental/parallel_interleave_dataset_op.cc
tensorflow/core/kernels/data/experimental/parallel_interleave_dataset_op_test.cc
#include "tensorflow/core/kernels/data/experimental/parallel_interleave_dataset_op.h" #include <atomic> #include <deque> #include <functional> #include <string> #include <utility> #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/stats_aggregator.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/threadpool.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/platform/blocking_counter.h" #include "tensorflow/core/platform/stringprintf.h" #include "tensorflow/core/profiler/lib/traceme.h" #include "tensorflow/core/profiler/lib/traceme_encode.h" namespace tensorflow { namespace data { namespace experimental { constexpr const char* const ParallelInterleaveDatasetOp::kDatasetType; constexpr const char* const ParallelInterleaveDatasetOp::kInputDataset; constexpr const char* const ParallelInterleaveDatasetOp::kOtherArguments; constexpr const char* const ParallelInterleaveDatasetOp::kCycleLength; constexpr const char* const ParallelInterleaveDatasetOp::kBlockLength; constexpr const char* const ParallelInterleaveDatasetOp::kDeterministic; constexpr const char* const ParallelInterleaveDatasetOp::kSloppy; constexpr const char* const ParallelInterleaveDatasetOp::kBufferOutputElements; constexpr const char* const ParallelInterleaveDatasetOp::kPrefetchInputElements; constexpr const char* const ParallelInterleaveDatasetOp::kFunc; constexpr const char* const ParallelInterleaveDatasetOp::kTarguments; constexpr const char* const ParallelInterleaveDatasetOp::kOutputTypes; constexpr const char* const ParallelInterleaveDatasetOp::kOutputShapes; constexpr char kInputExhausted[] = "input_exhausted"; constexpr char kNextIndex[] = "next_index"; constexpr char kBlockCount[] = "block_count"; constexpr char kWorkersSize[] = "workers_size"; constexpr char kInterleaveSize[] = "interleave_size"; constexpr char kInterleaveIndices[] = "interleave_indices"; constexpr char kStagingSize[] = "staging_size"; constexpr char kStagingIndices[] = "staging_indices"; constexpr char kWorkerThreadsRunning[] = "worker_threads_running"; constexpr char kDataParallelInterleaveWorker[] = "data_parallel_interleave_worker"; constexpr char kWorker[] = "worker"; constexpr char kInputSize[] = "input_size"; constexpr char kInput[] = "input"; constexpr char kOutputsSize[] = "outputs_size"; constexpr char kOutputs[] = "outputs"; constexpr char kIsProducing[] = "is_producing"; constexpr char kWorkerThread[] = "worker_thread"; constexpr char kIteratorExhausted[] = "iterator_exhausted"; constexpr char kIteratorCreationStatus[] = "iterator_creation_status"; constexpr char kOutput[] = "output"; constexpr char kEndOfSequence[] = "end_of_sequence"; constexpr char kStatus[] = "status"; constexpr char kOutputSize[] = "output_size"; constexpr char kCode[] = "code"; constexpr char KMessage[] = "msg"; class ParallelInterleaveDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, std::unique_ptr<CapturedFunction> captured_func, int64_t cycle_length, int64_t block_length, DeterminismPolicy deterministic, int64_t buffer_output_elements, int64_t prefetch_input_elements, const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes, int op_version) : DatasetBase(DatasetContext(ctx)), input_(input), captured_func_(std::move(captured_func)), cycle_length_(cycle_length), block_length_(block_length), deterministic_(deterministic), buffer_output_elements_(buffer_output_elements), prefetch_input_elements_(prefetch_input_elements), output_types_(output_types), output_shapes_(output_shapes), traceme_metadata_( {{"block_length", strings::Printf("%lld", static_cast<long long>(block_length))}, {"cycle_length", strings::Printf("%lld", static_cast<long long>(cycle_length))}, {"deterministic", deterministic.IsDeterministic() || deterministic.IsDefault() ? "true" : "false"}}), op_version_(op_version) { input_->Ref(); } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { name_utils::IteratorPrefixParams params; params.op_version = op_version_; bool deterministic = deterministic_.IsDeterministic() || deterministic_.IsDefault(); return std::make_unique<Iterator>( Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix, params)}, deterministic); } const DataTypeVector& output_dtypes() const override { return output_types_; } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { name_utils::DatasetDebugStringParams params; params.op_version = op_version_; return name_utils::DatasetDebugString(kDatasetType, params); } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { TF_RETURN_IF_ERROR(captured_func_->CheckExternalState()); return input_->CheckExternalState(); } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { std::vector<std::pair<size_t, Node*>> inputs; std::vector<std::pair<size_t, absl::Span<Node* const>>> list_inputs; int input_index = 0; Node* input_node; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_node)); inputs.emplace_back(input_index++, input_node); std::vector<Node*> other_arguments; DataTypeVector other_arguments_types; TF_RETURN_IF_ERROR(captured_func_->AddToGraph(ctx, b, &other_arguments, &other_arguments_types)); list_inputs.emplace_back(input_index++, other_arguments); Node* cycle_length_node; TF_RETURN_IF_ERROR(b->AddScalar(cycle_length_, &cycle_length_node)); inputs.emplace_back(input_index++, cycle_length_node); Node* block_length_node; TF_RETURN_IF_ERROR(b->AddScalar(block_length_, &block_length_node)); inputs.emplace_back(input_index++, block_length_node); if (op_version_ == 1) { Node* sloppy_node; TF_RETURN_IF_ERROR( b->AddScalar(deterministic_.IsNondeterministic(), &sloppy_node)); inputs.emplace_back(input_index++, sloppy_node); } Node* buffer_output_elements_node; TF_RETURN_IF_ERROR( b->AddScalar(buffer_output_elements_, &buffer_output_elements_node)); inputs.emplace_back(input_index++, buffer_output_elements_node); Node* prefetch_input_elements_node; TF_RETURN_IF_ERROR( b->AddScalar(prefetch_input_elements_, &prefetch_input_elements_node)); inputs.emplace_back(input_index++, prefetch_input_elements_node); std::vector<std::pair<StringPiece, AttrValue>> attrs; AttrValue f; b->BuildAttrValue(captured_func_->func(), &f); attrs.emplace_back(kFunc, f); if (op_version_ == 2) { AttrValue deterministic_attr; b->BuildAttrValue(deterministic_.String(), &deterministic_attr); attrs.emplace_back(kDeterministic, deterministic_attr); } AttrValue other_arguments_types_attr; b->BuildAttrValue(other_arguments_types, &other_arguments_types_attr); attrs.emplace_back(kTarguments, other_arguments_types_attr); TF_RETURN_IF_ERROR(b->AddDataset(this, inputs, list_inputs, attrs, output)); return absl::OkStatus(); } private: int64_t num_threads() const { return cycle_length_ + prefetch_input_elements_; } class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params, bool deterministic) : DatasetIterator<Dataset>(params), deterministic_(deterministic), workers_(dataset()->num_threads()), worker_thread_states_(dataset()->num_threads()) {} ~Iterator() override { CancelThreads(); if (deregister_fn_) deregister_fn_(); } Status Initialize(IteratorContext* ctx) override { cancellation_manager_ = std::make_unique<CancellationManager>(); IteratorContext::Params params(ctx); params.cancellation_manager = cancellation_manager_.get(); TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator( IteratorContext(params), this, prefix(), &input_impl_)); return dataset()->captured_func_->Instantiate( ctx, &instantiated_captured_func_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(EnsureWorkerThreadsStarted(ctx)); while (!cancelled_) { bool can_produce_elements = false; bool must_wait_for_input = true; for (int64_t i = 0; i < interleave_indices_.size(); ++i) { int64_t index = (next_index_ + i) % interleave_indices_.size(); int64_t current_worker_index = interleave_indices_[index]; if (current_worker_index < 0) { continue; } WorkerState* current_worker = &workers_[current_worker_index]; can_produce_elements |= current_worker->MayHaveElements(); if (!current_worker->outputs.empty()) { next_index_ = index; const bool element_acquired_sloppily = !deterministic_ && i > 1; if (!element_acquired_sloppily) { block_count_++; if (block_count_ == dataset()->block_length_) { next_index_ = (index + 1) % interleave_indices_.size(); block_count_ = 0; } } else { block_count_ = 0; } *end_of_sequence = false; Status s = current_worker->outputs.front().status; tsl::profiler::TraceMe traceme([&] { return tsl::profiler::TraceMeEncode( "ParallelInterleaveConsume", {{"element_id", current_worker->outputs.front().id}}); }); current_worker->outputs.front().output.swap(*out_tensors); current_worker->outputs.pop_front(); current_worker->cond_var.notify_one(); return s; } else if (current_worker->is_producing && deterministic_) { if (next_index_ != index) { next_index_ = index; block_count_ = 0; } break; } else if (!current_worker->is_producing) { interleave_indices_[index] = -1; if (input_impl_) { std::vector<Tensor> args; bool end_of_input = false; Status s = input_impl_->GetNext(ctx, &args, &end_of_input); if (end_of_input) { input_impl_.reset(); } else { current_worker->SetInputs(s, std::move(args)); staging_indices_.emplace_back(current_worker_index); } } if (!staging_indices_.empty()) { interleave_indices_[index] = staging_indices_.front(); staging_indices_.pop_front(); next_index_ = (index + 1) % interleave_indices_.size(); block_count_ = 0; can_produce_elements = true; must_wait_for_input = false; break; } } } if (!can_produce_elements && !input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } if (must_wait_for_input) { RecordStop(ctx); if (deterministic_) { workers_[interleave_indices_[next_index_]].cond_var.wait(l); } else { any_element_available_cond_var_.wait(l); } RecordStart(ctx); } } return errors::Cancelled( "ParallelInterleaveDatasetOp::Dataset::Iterator::GetNext"); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeAsyncInterleaveManyNode( std::move(args), {model::MakeNonTunableParameter( kCycleLength, dataset()->cycle_length_), model::MakeNonTunableParameter( kDeterministic, deterministic_ ? 1.0 : 0.0)}); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { TF_RETURN_IF_ERROR(ctx->HandleCheckExternalStateStatus( dataset()->captured_func_->CheckExternalState())); mutex_lock l(mu_); mutex_lock ckpt_l(ckpt_mu_); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } else { TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kInputExhausted, "")); } TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kNextIndex, next_index_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kBlockCount, block_count_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kWorkersSize, workers_.size())); for (int i = 0; i < workers_.size(); ++i) { TF_RETURN_IF_ERROR(WriteWorkerStateLocked(writer, i)); } for (int i = 0; i < worker_thread_states_.size(); ++i) { TF_RETURN_IF_ERROR(WriteWorkerThreadStateLocked(ctx, writer, i)); } TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kInterleaveSize, interleave_indices_.size())); for (int i = 0; i < interleave_indices_.size(); ++i) { TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), strings::StrCat(kInterleaveIndices, "_", i), interleave_indices_[i])); } TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kStagingSize, staging_indices_.size())); for (int i = 0; i < staging_indices_.size(); ++i) { TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), strings::StrCat(kStagingIndices, "_", i), staging_indices_[i])); } if (!worker_threads_.empty()) { TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kWorkerThreadsRunning, "")); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { { mutex_lock l(mu_); mutex_lock ckpt_l(ckpt_mu_); if (!reader->Contains(prefix(), kInputExhausted)) { TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } int64_t temp; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kNextIndex, &temp)); next_index_ = size_t(temp); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kBlockCount, &temp)); block_count_ = size_t(temp); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kWorkersSize, &temp)); if (temp != dataset()->num_threads()) { return errors::Internal("Expected ", dataset()->num_threads(), " worker states but found ", temp, "."); } for (size_t i = 0; i < dataset()->num_threads(); ++i) { TF_RETURN_IF_ERROR(ReadWorkerStateLocked(ctx, reader, i)); } } std::unique_ptr<thread::ThreadPool> threadpool = ctx->CreateThreadPool( "read_worker_thread_state", dataset()->num_threads()); Status s = absl::OkStatus(); BlockingCounter counter(dataset()->num_threads()); for (size_t i = 0; i < dataset()->num_threads(); ++i) { threadpool->Schedule([this, i, ctx, reader, &s, &counter] { WorkerThreadState state; Status result = ReadWorkerThreadStateLocked(ctx, reader, i, &state); mutex_lock l(mu_); mutex_lock ckpt_l(ckpt_mu_); if (!result.ok()) { s.Update(result); counter.DecrementCount(); return; } worker_thread_states_[i] = std::move(state); counter.DecrementCount(); }); } counter.Wait(); if (!s.ok()) { return s; } mutex_lock l(mu_); mutex_lock ckpt_l(ckpt_mu_); std::set<int64_t> all_indices; { int64_t interleave_size; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInterleaveSize, &interleave_size)); interleave_indices_.reserve(interleave_size); for (int64_t i = 0; i < interleave_size; ++i) { int64_t temp; TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), strings::StrCat(kInterleaveIndices, "_", i), &temp)); if (temp >= 0 && all_indices.find(temp) != all_indices.end()) { return errors::Internal( "Duplicate entry for ", temp, " found when reading interleave and staging indices."); } if (temp >= 0) { all_indices.insert(temp); } interleave_indices_.emplace_back(temp); } } { int64_t staging_size; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kStagingSize, &staging_size)); for (int i = 0; i < staging_size; ++i) { int64_t temp; TF_RETURN_IF_ERROR(reader->ReadScalar( prefix(), strings::StrCat(kStagingIndices, "_", i), &temp)); if (all_indices.find(temp) != all_indices.end()) { return errors::Internal( "Duplicate entry for ", temp, " found when reading interleave and staging indices."); } if (temp >= 0) { all_indices.insert(temp); } staging_indices_.emplace_back(temp); } } if (reader->Contains(prefix(), kWorkerThreadsRunning)) { worker_threads_.reserve(dataset()->num_threads()); for (size_t i = 0; i < dataset()->num_threads(); ++i) { std::shared_ptr<IteratorContext> new_ctx(new IteratorContext(*ctx)); worker_threads_.emplace_back(ctx->StartThread( strings::StrCat(kDataParallelInterleaveWorker, "_", i), [this, new_ctx, i]() { WorkerThread(new_ctx, i); })); } } return absl::OkStatus(); } TraceMeMetadata GetTraceMeMetadata() const override { return dataset()->traceme_metadata_; } private: struct OutputElem { Status status; std::vector<Tensor> output; int64_t id = -1; explicit OutputElem(const Status& s) : status(s) {} OutputElem(const Status& s, int64_t id) : status(s), id(id) {} }; struct WorkerState { std::vector<Tensor> input; std::deque<OutputElem> outputs; bool is_producing = false; condition_variable cond_var; inline bool MayHaveElements() const { return is_producing || !outputs.empty(); } void SetInputs(const Status& s, std::vector<Tensor> input_arguments) { if (s.ok()) { DCHECK(!MayHaveElements()) << "Tried to start inputs, despite already producing!"; input = std::move(input_arguments); is_producing = true; cond_var.notify_one(); } else { outputs.emplace_back(s); } } }; struct WorkerThreadState { OutputElem output_elem; bool end_of_sequence = false; Status iterator_creation_status; std::vector<Tensor> input; std::unique_ptr<IteratorBase> iterator; WorkerThreadState() : output_elem(absl::OkStatus()) {} }; void CancelThreads() TF_LOCKS_EXCLUDED(mu_) { cancellation_manager_->StartCancel(); mutex_lock l(mu_); cancelled_ = true; for (auto& worker : workers_) { worker.cond_var.notify_all(); } } Status EnsureWorkerThreadsStarted(IteratorContext* ctx) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (worker_threads_.empty() && input_impl_) { worker_threads_.reserve(dataset()->num_threads()); for (int64_t i = 0; i < dataset()->num_threads(); ++i) { std::vector<Tensor> args; bool end_of_input = false; Status s = input_impl_->GetNext(ctx, &args, &end_of_input); if (end_of_input) { input_impl_.reset(); return absl::OkStatus(); } if (i < dataset()->cycle_length_) { interleave_indices_.push_back(i); } else { staging_indices_.push_back(i); } workers_[i].SetInputs(s, std::move(args)); std::shared_ptr<IteratorContext> new_ctx(new IteratorContext(*ctx)); worker_threads_.push_back(ctx->StartThread( strings::StrCat(kDataParallelInterleaveWorker, "_", i), [this, new_ctx, i]() { WorkerThread(new_ctx, i); })); } DCHECK(interleave_indices_.size() == dataset()->cycle_length_); DCHECK(staging_indices_.size() == dataset()->prefetch_input_elements_); } return absl::OkStatus(); } void WorkerThread(const std::shared_ptr<IteratorContext>& ctx, const int64_t thread_index) { RecordStart(ctx.get()); auto cleanup = gtl::MakeCleanup([this, thread_index, ctx] { mutex_lock l(mu_); workers_[thread_index].cond_var.notify_all(); RecordStop(ctx.get()); }); bool make_new_iterator; { tf_shared_lock l(ckpt_mu_); make_new_iterator = worker_thread_states_[thread_index].iterator == nullptr && worker_thread_states_[thread_index].iterator_creation_status.ok(); } bool thread_potentially_in_staging = true; while (true) { Status iterator_creation_status; if (make_new_iterator) { bool read_new_input; { tf_shared_lock l(ckpt_mu_); read_new_input = worker_thread_states_[thread_index].input.empty(); } if (read_new_input) { mutex_lock l(mu_); while (!cancelled_ && !workers_[thread_index].is_producing) { RecordStop(ctx.get()); workers_[thread_index].cond_var.wait(l); RecordStart(ctx.get()); } if (cancelled_) return; tf_shared_lock ckpt_l(ckpt_mu_); worker_thread_states_[thread_index].input.swap( workers_[thread_index].input); } { mutex_lock l(mu_); thread_potentially_in_staging = absl::c_find(staging_indices_, thread_index) != staging_indices_.end(); } { tf_shared_lock l(ckpt_mu_); worker_thread_states_[thread_index].iterator_creation_status = MakeIteratorFromInputElement( ctx.get(), this, worker_thread_states_[thread_index].input, thread_index, *instantiated_captured_func_, prefix(), &worker_thread_states_[thread_index].iterator, model_node()); iterator_creation_status = worker_thread_states_[thread_index].iterator_creation_status; if (!iterator_creation_status.ok()) { worker_thread_states_[thread_index].input.clear(); } else if (thread_potentially_in_staging) { DisableAutotune( ctx.get(), worker_thread_states_[thread_index].iterator.get()); } } } else { tf_shared_lock l(ckpt_mu_); iterator_creation_status = worker_thread_states_[thread_index].iterator_creation_status; make_new_iterator = true; } if (!iterator_creation_status.ok()) { mutex_lock l(mu_); while (!cancelled_ && workers_[thread_index].outputs.size() == dataset()->buffer_output_elements_) { RecordStop(ctx.get()); workers_[thread_index].cond_var.wait(l); RecordStart(ctx.get()); } if (cancelled_) return; tf_shared_lock ckpt_l(ckpt_mu_); workers_[thread_index].outputs.emplace_back(iterator_creation_status); workers_[thread_index].is_producing = false; worker_thread_states_[thread_index].iterator_creation_status = absl::OkStatus(); if (deterministic_) { workers_[thread_index].cond_var.notify_one(); } else { any_element_available_cond_var_.notify_one(); } } else { bool end_of_sequence = false; while (!end_of_sequence) { if (thread_potentially_in_staging) { mutex_lock l(mu_); thread_potentially_in_staging = absl::c_find(staging_indices_, thread_index) != staging_indices_.end(); if (!thread_potentially_in_staging) { tf_shared_lock l(ckpt_mu_); EnableAutotune( ctx.get(), worker_thread_states_[thread_index].iterator.get()); } } { tf_shared_lock ckpt_l(ckpt_mu_); if (worker_thread_states_[thread_index].output_elem.status.ok() && worker_thread_states_[thread_index] .output_elem.output.empty() && !worker_thread_states_[thread_index].end_of_sequence) { int64_t& id = worker_thread_states_[thread_index].output_elem.id; tsl::profiler::TraceMe traceme( [&] { id = tsl::profiler::TraceMe::NewActivityId(); return tsl::profiler::TraceMeEncode( "ParallelInterleaveProduce", {{"element_id", id}}); }, profiler::kInfo); worker_thread_states_[thread_index].output_elem.status = worker_thread_states_[thread_index].iterator->GetNext( ctx.get(), &worker_thread_states_[thread_index].output_elem.output, &worker_thread_states_[thread_index].end_of_sequence); end_of_sequence = worker_thread_states_[thread_index].end_of_sequence; } else { end_of_sequence = worker_thread_states_[thread_index].end_of_sequence; } } { mutex_lock l(mu_); while (!cancelled_ && workers_[thread_index].outputs.size() == dataset()->buffer_output_elements_) { RecordStop(ctx.get()); workers_[thread_index].cond_var.wait(l); RecordStart(ctx.get()); } if (cancelled_) return; tf_shared_lock ckpt_l(ckpt_mu_); workers_[thread_index].is_producing = !end_of_sequence; if (end_of_sequence) { worker_thread_states_[thread_index].iterator.reset(); worker_thread_states_[thread_index].input.clear(); worker_thread_states_[thread_index].end_of_sequence = false; } else { workers_[thread_index].outputs.emplace_back( worker_thread_states_[thread_index].output_elem.status, worker_thread_states_[thread_index].output_elem.id); workers_[thread_index].outputs.back().output.swap( worker_thread_states_[thread_index].output_elem.output); } worker_thread_states_[thread_index].output_elem.status = absl::OkStatus(); if (deterministic_) { workers_[thread_index].cond_var.notify_one(); } else { any_element_available_cond_var_.notify_one(); } } } } } } Status WriteWorkerStateLocked(IteratorStateWriter* writer, int index) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_, ckpt_mu_) { string iterator_name = strings::StrCat(prefix(), "::", kWorker, "_", index); TF_RETURN_IF_ERROR(writer->WriteScalar(iterator_name, kInputSize, workers_[index].input.size())); for (int i = 0; i < workers_[index].input.size(); ++i) { TF_RETURN_IF_ERROR(writer->WriteTensor(iterator_name, strings::StrCat(kInput, "_", i), workers_[index].input[i])); } TF_RETURN_IF_ERROR(writer->WriteScalar(iterator_name, kOutputsSize, workers_[index].outputs.size())); for (int i = 0; i < workers_[index].outputs.size(); ++i) { TF_RETURN_IF_ERROR(WriteOutputElemLocked( writer, workers_[index].outputs[i], iterator_name, strings::StrCat(kOutputs, "_", i))); } if (workers_[index].is_producing) { TF_RETURN_IF_ERROR( writer->WriteScalar(iterator_name, kIsProducing, "")); } return absl::OkStatus(); } Status ReadWorkerStateLocked(IteratorContext* ctx, IteratorStateReader* reader, int index) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_, ckpt_mu_) { string worker_prefix = strings::StrCat(prefix(), "::", kWorker, "_", index); int64_t input_size; TF_RETURN_IF_ERROR( reader->ReadScalar(worker_prefix, kInputSize, &input_size)); workers_[index].input.reserve(input_size); for (int i = 0; i < input_size; ++i) { workers_[index].input.emplace_back(); TF_RETURN_IF_ERROR(reader->ReadTensor(ctx->flr(), worker_prefix, strings::StrCat(kInput, "_", i), &workers_[index].input.back())); } int64_t outputs_size; TF_RETURN_IF_ERROR( reader->ReadScalar(worker_prefix, kOutputsSize, &outputs_size)); for (int i = 0; i < outputs_size; ++i) { workers_[index].outputs.emplace_back(absl::OkStatus()); TF_RETURN_IF_ERROR(ReadOutputElemLocked( ctx, reader, &workers_[index].outputs.back(), worker_prefix, strings::StrCat(kOutputs, "_", i))); } if (reader->Contains(worker_prefix, kIsProducing)) { workers_[index].is_producing = true; } else { workers_[index].is_producing = false; } return absl::OkStatus(); } Status WriteWorkerThreadStateLocked(SerializationContext* ctx, IteratorStateWriter* writer, int index) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_, ckpt_mu_) { string iterator_name = strings::StrCat(prefix(), "::", kWorkerThread, "_", index); if (worker_thread_states_[index].iterator != nullptr) { TF_RETURN_IF_ERROR( SaveInput(ctx, writer, worker_thread_states_[index].iterator)); } else { TF_RETURN_IF_ERROR( writer->WriteScalar(iterator_name, kIteratorExhausted, "")); } TF_RETURN_IF_ERROR( writer->WriteScalar(iterator_name, kInputSize, worker_thread_states_[index].input.size())); for (int i = 0; i < worker_thread_states_[index].input.size(); ++i) { TF_RETURN_IF_ERROR( writer->WriteTensor(iterator_name, strings::StrCat(kInput, "_", i), worker_thread_states_[index].input[i])); } TF_RETURN_IF_ERROR(WriteStatusLocked( writer, iterator_name, kIteratorCreationStatus, worker_thread_states_[index].iterator_creation_status)); TF_RETURN_IF_ERROR(WriteOutputElemLocked( writer, worker_thread_states_[index].output_elem, iterator_name, kOutput)); if (worker_thread_states_[index].end_of_sequence) { TF_RETURN_IF_ERROR( writer->WriteScalar(iterator_name, kEndOfSequence, "")); } return absl::OkStatus(); } Status ReadWorkerThreadStateLocked(IteratorContext* ctx, IteratorStateReader* reader, int index, WorkerThreadState* state) { string worker_prefix = strings::StrCat(prefix(), "::", kWorkerThread, "_", index); int64_t input_size; TF_RETURN_IF_ERROR( reader->ReadScalar(worker_prefix, kInputSize, &input_size)); state->input.reserve(input_size); for (int i = 0; i < input_size; ++i) { state->input.emplace_back(); TF_RETURN_IF_ERROR(reader->ReadTensor(ctx->flr(), worker_prefix, strings::StrCat(kInput, "_", i), &state->input.back())); } if (reader->Contains(worker_prefix, kIteratorExhausted)) { state->iterator.reset(); } else { std::unique_ptr<IteratorBase> iterator; TF_RETURN_IF_ERROR(MakeIteratorFromInputElement( ctx, this, state->input, index, *instantiated_captured_func_, prefix(), &iterator, nullptr)); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, iterator)); state->iterator.swap(iterator); } TF_RETURN_IF_ERROR(ReadStatusLocked(reader, worker_prefix, kIteratorCreationStatus, &state->iterator_creation_status)); TF_RETURN_IF_ERROR(ReadOutputElemLocked(ctx, reader, &state->output_elem, worker_prefix, kOutput)); if (reader->Contains(worker_prefix, kEndOfSequence)) { state->end_of_sequence = true; } else { state->end_of_sequence = false; } return absl::OkStatus(); } Status WriteOutputElemLocked(IteratorStateWriter* writer, const OutputElem& output_elem, const string& iterator_name, const string& prefix) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_, ckpt_mu_) { TF_RETURN_IF_ERROR(WriteStatusLocked( writer, iterator_name, strings::StrCat(prefix, "_", kStatus), output_elem.status)); TF_RETURN_IF_ERROR(writer->WriteScalar( iterator_name, strings::StrCat(prefix, "_", kOutputSize), output_elem.output.size())); for (int i = 0; i < output_elem.output.size(); ++i) { TF_RETURN_IF_ERROR(writer->WriteTensor( iterator_name, strings::StrCat(prefix, "_", kOutput, "_", i), output_elem.output[i])); } return absl::OkStatus(); } Status ReadOutputElemLocked(IteratorContext* ctx, IteratorStateReader* reader, OutputElem* output_elem, const string& iterator_name, const string& prefix) { TF_RETURN_IF_ERROR(ReadStatusLocked(reader, iterator_name, strings::StrCat(prefix, "_", kStatus), &output_elem->status)); int64_t output_size; TF_RETURN_IF_ERROR(reader->ReadScalar( iterator_name, strings::StrCat(prefix, "_", kOutputSize), &output_size)); output_elem->output.reserve(output_size); for (int i = 0; i < output_size; ++i) { output_elem->output.emplace_back(); TF_RETURN_IF_ERROR( reader->ReadTensor(ctx->flr(), iterator_name, strings::StrCat(prefix, "_", kOutput, "_", i), &output_elem->output.back())); } return absl::OkStatus(); } Status WriteStatusLocked(IteratorStateWriter* writer, const string& iterator_name, const string& prefix, const Status& status) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_, ckpt_mu_) { TF_RETURN_IF_ERROR(writer->WriteScalar( iterator_name, strings::StrCat(prefix, "_", kCode), static_cast<int64_t>(status.code()))); if (!status.ok()) { TF_RETURN_IF_ERROR(writer->WriteScalar( iterator_name, strings::StrCat(prefix, "_", KMessage), std::string(status.message()))); } return absl::OkStatus(); } Status ReadStatusLocked(IteratorStateReader* reader, const string& iterator_name, const string& prefix, Status* status) { int64_t code_int; TF_RETURN_IF_ERROR(reader->ReadScalar( iterator_name, strings::StrCat(prefix, "_", kCode), &code_int)); absl::StatusCode code = static_cast<absl::StatusCode>(code_int); if (code != absl::StatusCode::kOk) { tstring error_message; TF_RETURN_IF_ERROR(reader->ReadScalar( iterator_name, strings::StrCat(prefix, "_", KMessage), &error_message)); *status = Status(code, error_message); } else { *status = absl::OkStatus(); } return absl::OkStatus(); } mutex mu_ TF_ACQUIRED_BEFORE(ckpt_mu_); condition_variable any_element_available_cond_var_; const bool deterministic_; mutex ckpt_mu_; std::unique_ptr<CancellationManager> cancellation_manager_; std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func_; std::vector<WorkerState> workers_ TF_GUARDED_BY(mu_); std::vector<WorkerThreadState> worker_thread_states_ TF_GUARDED_BY(ckpt_mu_); std::vector<int64_t> interleave_indices_ TF_GUARDED_BY(mu_); std::deque<int64_t> staging_indices_ TF_GUARDED_BY(mu_); size_t next_index_ TF_GUARDED_BY(mu_) = 0; size_t block_count_ TF_GUARDED_BY(mu_) = 0; bool cancelled_ TF_GUARDED_BY(mu_) = false; std::vector<std::unique_ptr<Thread>> worker_threads_ TF_GUARDED_BY(mu_); std::function<void()> deregister_fn_; }; const DatasetBase* const input_; const std::unique_ptr<CapturedFunction> captured_func_; const int64_t cycle_length_; const int64_t block_length_; const DeterminismPolicy deterministic_; const int64_t buffer_output_elements_; const int64_t prefetch_input_elements_; const DataTypeVector output_types_; const std::vector<PartialTensorShape> output_shapes_; const TraceMeMetadata traceme_metadata_; const int op_version_; }; ParallelInterleaveDatasetOp::ParallelInterleaveDatasetOp( OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx), op_version_(ctx->HasAttr(kDeterministic) ? 2 : 1) { OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, kFunc, {}, &func_metadata_)); if (op_version_ == 2) { std::string deterministic; OP_REQUIRES_OK(ctx, ctx->GetAttr(kDeterministic, &deterministic)); OP_REQUIRES_OK( ctx, DeterminismPolicy::FromString(deterministic, &deterministic_)); } OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void ParallelInterleaveDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t cycle_length = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kCycleLength, &cycle_length)); OP_REQUIRES(ctx, cycle_length > 0, errors::InvalidArgument("`cycle_length` must be > 0")); int64_t block_length = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kBlockLength, &block_length)); OP_REQUIRES(ctx, block_length > 0, errors::InvalidArgument("`block_length` must be > 0")); if (op_version_ == 1) { bool sloppy = false; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kSloppy, &sloppy)); if (sloppy) { deterministic_ = DeterminismPolicy(DeterminismPolicy::Type::kNondeterministic); } else { deterministic_ = DeterminismPolicy(DeterminismPolicy::Type::kDeterministic); } } int64_t buffer_output_elements = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kBufferOutputElements, &buffer_output_elements)); OP_REQUIRES(ctx, buffer_output_elements > 0, errors::InvalidArgument("`buffer_output_elements` must be > 0")); int64_t prefetch_input_elements = 0; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kPrefetchInputElements, &prefetch_input_elements)); OP_REQUIRES( ctx, prefetch_input_elements >= 0, errors::InvalidArgument("`prefetch_input_elements` must be >= 0")); std::unique_ptr<CapturedFunction> captured_func; OP_REQUIRES_OK(ctx, CapturedFunction::Create(ctx, func_metadata_, kOtherArguments, &captured_func)); *output = new Dataset(ctx, input, std::move(captured_func), cycle_length, block_length, deterministic_, buffer_output_elements, prefetch_input_elements, output_types_, output_shapes_, op_version_); } namespace { REGISTER_KERNEL_BUILDER(Name("ParallelInterleaveDataset").Device(DEVICE_CPU), ParallelInterleaveDatasetOp); REGISTER_KERNEL_BUILDER( Name("ExperimentalParallelInterleaveDataset").Device(DEVICE_CPU), ParallelInterleaveDatasetOp); REGISTER_KERNEL_BUILDER( Name("LegacyParallelInterleaveDatasetV2").Device(DEVICE_CPU), ParallelInterleaveDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("ParallelInterleaveDataset"); REGISTER_INPUT_COLOCATION_EXEMPTION("ExperimentalParallelInterleaveDataset"); REGISTER_INPUT_COLOCATION_EXEMPTION("LegacyParallelInterleaveDatasetV2"); } } } }
#include "tensorflow/core/kernels/data/experimental/parallel_interleave_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/kernels/data/tensor_slice_dataset_op.h" namespace tensorflow { namespace data { namespace experimental { namespace { constexpr char kNodeName[] = "parallel_interleave_dataset"; constexpr int kOpVersion = 2; class ParallelInterleaveDatasetParams : public DatasetParams { public: template <typename T> ParallelInterleaveDatasetParams( T input_dataset_params, std::vector<Tensor> other_arguments, int64_t cycle_length, int64_t block_length, const std::string& deterministic, int64_t buffer_output_elements, int64_t prefetch_input_elements, FunctionDefHelper::AttrValueWrapper func, std::vector<FunctionDef> func_lib, DataTypeVector type_arguments, const DataTypeVector& output_dtypes, const std::vector<PartialTensorShape>& output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), other_arguments_(std::move(other_arguments)), cycle_length_(cycle_length), block_length_(block_length), deterministic_(deterministic), buffer_output_elements_(buffer_output_elements), prefetch_input_elements_(prefetch_input_elements), func_(std::move(func)), func_lib_(std::move(func_lib)), type_arguments_(std::move(type_arguments)) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); op_version_ = kOpVersion; name_utils::IteratorPrefixParams params; params.op_version = op_version_; iterator_prefix_ = name_utils::IteratorPrefix( input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix(), params); } std::vector<Tensor> GetInputTensors() const override { auto input_tensors = other_arguments_; input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {cycle_length_})); input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {block_length_})); input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {buffer_output_elements_})); input_tensors.emplace_back( CreateTensor<int64_t>(TensorShape({}), {prefetch_input_elements_})); return input_tensors; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->emplace_back(ParallelInterleaveDatasetOp::kInputDataset); for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back( absl::StrCat(ParallelInterleaveDatasetOp::kOtherArguments, "_", i)); } input_names->emplace_back(ParallelInterleaveDatasetOp::kCycleLength); input_names->emplace_back(ParallelInterleaveDatasetOp::kBlockLength); input_names->emplace_back( ParallelInterleaveDatasetOp::kBufferOutputElements); input_names->emplace_back( ParallelInterleaveDatasetOp::kPrefetchInputElements); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{"f", func_}, {"deterministic", deterministic_}, {"Targuments", type_arguments_}, {"output_shapes", output_shapes_}, {"output_types", output_dtypes_}, {"metadata", ""}}; return absl::OkStatus(); } string dataset_type() const override { return ParallelInterleaveDatasetOp::kDatasetType; } std::vector<FunctionDef> func_lib() const override { return func_lib_; } private: std::vector<Tensor> other_arguments_; int64_t cycle_length_; int64_t block_length_; std::string deterministic_; int64_t buffer_output_elements_; int64_t prefetch_input_elements_; FunctionDefHelper::AttrValueWrapper func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_arguments_; }; class ParallelInterleaveDatasetOpTest : public DatasetOpsTestBase {}; FunctionDefHelper::AttrValueWrapper MakeTensorSliceDatasetFunc( const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes) { return FunctionDefHelper::FunctionRef( "MakeTensorSliceDataset", {{TensorSliceDatasetOp::kToutputTypes, output_types}, {TensorSliceDatasetOp::kOutputShapes, output_shapes}}); } ParallelInterleaveDatasetParams ParallelInterleaveDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 1, 1, DeterminismPolicy::kDeterministic, 1, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams ParallelInterleaveDatasetParams2() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 2, 1, DeterminismPolicy::kDeterministic, 1, 0, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams ParallelInterleaveDatasetParams3() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 3, 1, DeterminismPolicy::kNondeterministic, 3, 2, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams ParallelInterleaveDatasetParams4() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 5, 1, DeterminismPolicy::kNondeterministic, 1, 2, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams ParallelInterleaveDatasetParams5() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<tstring>( TensorShape{3, 3, 1}, {"a", "b", "c", "d", "e", "f", "g", "h", "i"})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 2, 2, DeterminismPolicy::kDeterministic, 2, 2, MakeTensorSliceDatasetFunc( DataTypeVector({DT_STRING}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_STRING}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams EmptyInputParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {Tensor{}}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 2, 2, DeterminismPolicy::kNondeterministic, 2, 2, MakeTensorSliceDatasetFunc( DataTypeVector({DT_FLOAT}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_FLOAT}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams InvalidCycleLengthParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 0, 1, DeterminismPolicy::kDeterministic, 1, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams InvalidBlockLengthParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 1, -1, DeterminismPolicy::kDeterministic, 1, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams InvalidBufferOutputElementsParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 1, 1, DeterminismPolicy::kDeterministic, 0, 1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } ParallelInterleaveDatasetParams InvalidPrefetchInputElementsParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); return ParallelInterleaveDatasetParams( tensor_slice_dataset_params, {}, 1, 1, DeterminismPolicy::kDeterministic, 1, -1, MakeTensorSliceDatasetFunc( DataTypeVector({DT_INT64}), std::vector<PartialTensorShape>({PartialTensorShape({1})})), {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } std::vector<GetNextTestCase<ParallelInterleaveDatasetParams>> GetNextTestCases() { return {{ParallelInterleaveDatasetParams1(), CreateTensors<int64_t>( TensorShape{1}, {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}), true}, {ParallelInterleaveDatasetParams2(), CreateTensors<int64_t>( TensorShape{1}, {{0}, {3}, {1}, {4}, {2}, {5}, {6}, {7}, {8}}), true}, {ParallelInterleaveDatasetParams3(), CreateTensors<int64_t>( TensorShape{1}, {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}}), false}, {ParallelInterleaveDatasetParams4(), CreateTensors<int64_t>( TensorShape{1}, {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}}), false}, {ParallelInterleaveDatasetParams5(), CreateTensors<tstring>( TensorShape{1}, {{"a"}, {"b"}, {"d"}, {"e"}, {"c"}, {"f"}, {"g"}, {"h"}, {"i"}}), false}, {EmptyInputParams(), CreateTensors<tstring>(TensorShape{1}, {}), true}}; } ITERATOR_GET_NEXT_TEST_P(ParallelInterleaveDatasetOpTest, ParallelInterleaveDatasetParams, GetNextTestCases()) TEST_F(ParallelInterleaveDatasetOpTest, DatasetNodeName) { auto dataset_params = ParallelInterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(ParallelInterleaveDatasetOpTest, DatasetTypeString) { auto dataset_params = ParallelInterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); name_utils::OpNameParams params; params.op_version = dataset_params.op_version(); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(ParallelInterleaveDatasetOp::kDatasetType, params))); } TEST_F(ParallelInterleaveDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = ParallelInterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes({DT_INT64})); } TEST_F(ParallelInterleaveDatasetOpTest, DatasetOutputShapes) { auto dataset_params = ParallelInterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes({PartialTensorShape({1})})); } std::vector<CardinalityTestCase<ParallelInterleaveDatasetParams>> CardinalityTestCases() { return {{ParallelInterleaveDatasetParams1(), kUnknownCardinality}, {ParallelInterleaveDatasetParams2(), kUnknownCardinality}, {ParallelInterleaveDatasetParams3(), kUnknownCardinality}, {ParallelInterleaveDatasetParams4(), kUnknownCardinality}, {ParallelInterleaveDatasetParams5(), kUnknownCardinality}}; } DATASET_CARDINALITY_TEST_P(ParallelInterleaveDatasetOpTest, ParallelInterleaveDatasetParams, CardinalityTestCases()) TEST_F(ParallelInterleaveDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = ParallelInterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes({DT_INT64})); } TEST_F(ParallelInterleaveDatasetOpTest, IteratorOutputShapes) { auto dataset_params = ParallelInterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes({PartialTensorShape({1})})); } TEST_F(ParallelInterleaveDatasetOpTest, IteratorPrefix) { auto dataset_params = ParallelInterleaveDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); name_utils::IteratorPrefixParams params; params.op_version = dataset_params.op_version(); TF_ASSERT_OK(CheckIteratorPrefix( name_utils::IteratorPrefix(ParallelInterleaveDatasetOp::kDatasetType, dataset_params.iterator_prefix(), params))); } std::vector<IteratorSaveAndRestoreTestCase<ParallelInterleaveDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{ParallelInterleaveDatasetParams1(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape{1}, {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}), true}, {ParallelInterleaveDatasetParams2(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape{1}, {{0}, {3}, {1}, {4}, {2}, {5}, {6}, {7}, {8}}), true}, {ParallelInterleaveDatasetParams3(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape{1}, {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}}), false}, {ParallelInterleaveDatasetParams4(), {0, 4, 11}, CreateTensors<int64_t>( TensorShape{1}, {{0}, {3}, {6}, {1}, {4}, {7}, {2}, {5}, {8}}), false}, {ParallelInterleaveDatasetParams5(), {0, 4, 11}, CreateTensors<tstring>( TensorShape{1}, {{"a"}, {"b"}, {"d"}, {"e"}, {"c"}, {"f"}, {"g"}, {"h"}, {"i"}}), false}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(ParallelInterleaveDatasetOpTest, ParallelInterleaveDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(ParallelInterleaveDatasetOpTest, InvalidArguments) { std::vector<ParallelInterleaveDatasetParams> invalid_params = { InvalidCycleLengthParams(), InvalidBlockLengthParams(), InvalidBufferOutputElementsParams(), InvalidPrefetchInputElementsParams()}; for (auto& dataset_params : invalid_params) { EXPECT_EQ(Initialize(dataset_params).code(), absl::StatusCode::kInvalidArgument); } } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/parallel_interleave_dataset_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/data/experimental/parallel_interleave_dataset_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
1624f2bd-0f8b-4ecc-937f-e20454f99463
cpp
tensorflow/tensorflow
xplane_to_op_metrics_db
tensorflow/core/profiler/convert/xplane_to_op_metrics_db.cc
tensorflow/core/profiler/convert/xplane_to_op_metrics_db_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_op_metrics_db.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_op_utils.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "xla/tsl/profiler/utils/timespan.h" #include "xla/tsl/profiler/utils/xplane_schema.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/convert/op_metrics_db_combiner.h" #include "tensorflow/core/profiler/convert/op_stack.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/cost_utils.h" #include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" #include "tensorflow/core/profiler/utils/op_utils.h" #include "tensorflow/core/profiler/utils/trace_utils.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { constexpr uint64_t kRootSymbolId = 0; enum TfActivityType { kTfOpBegin, kTfOpEnd }; struct TfActivity { uint64 timestamp_ps; uint32 tf_op_id; TfActivityType activity_type; tsl::profiler::TfOp tf_op; bool is_eager; }; struct TfOpInfo { explicit TfOpInfo(uint64 ts) : start_timestamp_ps(ts) {} uint64 start_timestamp_ps; uint64 children_duration_ps = 0; }; void ProcessOneTfActivity(const TfActivity& activity, OpStack<TfOpInfo>* tf_op_stack, TfMetricsDbData* tf_metrics_data) { uint32 tf_op_id = activity.tf_op_id; switch (activity.activity_type) { case kTfOpBegin: { tf_op_stack->Push(tf_op_id, std::make_unique<TfOpInfo>(activity.timestamp_ps)); break; } case kTfOpEnd: { std::unique_ptr<TfOpInfo> info = tf_op_stack->Pop(tf_op_id); if (info == nullptr) { VLOG(1) << "No begin event found for TF activity id=" << tf_op_id << " name=" << activity.tf_op.name << " type=" << activity.tf_op.type; break; } tsl::profiler::Timespan tf_op_span = tsl::profiler::PicoSpan( info->start_timestamp_ps, activity.timestamp_ps); tf_metrics_data->tf_metrics_db_builder.EnterOp( activity.tf_op.name, activity.tf_op.type, activity.is_eager, tf_op_span.duration_ps(), info->children_duration_ps); TfOpInfo* parent_info = tf_op_stack->Top(); if (parent_info != nullptr) { parent_info->children_duration_ps += tf_op_span.duration_ps(); } if (tsl::profiler::IsInfeedEnqueueOp(activity.tf_op.type)) { tf_metrics_data->tf_metrics_db_builder.EnterHostInfeedEnqueue( tf_op_span); } break; } } } void ProcessTfActivities(std::vector<TfActivity>* tf_activities, TfMetricsDbData* tf_metrics_db_data) { if (tf_activities->empty()) return; absl::c_stable_sort(*tf_activities, [](const TfActivity& a, const TfActivity& b) { return a.timestamp_ps < b.timestamp_ps; }); OpStack<TfOpInfo> tf_op_stack; for (const auto& tf_activity : *tf_activities) { ProcessOneTfActivity(tf_activity, &tf_op_stack, tf_metrics_db_data); } SetTotalTimePs( tf_metrics_db_data->tf_metrics_db, tf_activities->back().timestamp_ps - tf_activities->front().timestamp_ps); } void CollectTfActivities( const XLineVisitor& line, const absl::flat_hash_map<int64_t, tsl::profiler::TfOp>& tf_ops, std::vector<TfActivity>* tf_activities) { uint32 tf_op_id = 0; if (IsDerivedThreadId(line.Id())) return; tf_activities->reserve(line.NumEvents() * 2); line.ForEachEvent( [&tf_ops, &tf_op_id, &tf_activities](const XEventVisitor& event) { const tsl::profiler::TfOp* tf_op = gtl::FindOrNull(tf_ops, event.Id()); if (tf_op != nullptr) { ++tf_op_id; bool is_eager = false; if (std::optional<XStatVisitor> stat = event.GetStat(StatType::kIsEager)) { is_eager = stat->IntValue(); } tsl::profiler::Timespan span = event.GetTimespan(); tf_activities->push_back( {span.begin_ps(), tf_op_id, kTfOpBegin, *tf_op, is_eager}); tf_activities->push_back( {span.end_ps(), tf_op_id, kTfOpEnd, *tf_op, is_eager}); } if (auto tf_op_stat = event.GetStat(StatType::kTfOp); tf_op_stat.has_value()) { ++tf_op_id; tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(tf_op_stat->StrOrRefValue()); tsl::profiler::Timespan span = event.GetTimespan(); tf_activities->push_back( {span.begin_ps(), tf_op_id, kTfOpBegin, tf_op, false}); tf_activities->push_back( {span.end_ps(), tf_op_id, kTfOpEnd, tf_op, false}); } }); } } absl::flat_hash_map<int64_t, tsl::profiler::TfOp> CollectTfOpsFromHostThreadsXPlane(const XPlane& host_trace) { absl::flat_hash_map<int64_t, tsl::profiler::TfOp> tf_ops; for (const auto& id_metadata : host_trace.event_metadata()) { const XEventMetadata& metadata = id_metadata.second; tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(metadata.name()); if (tf_op.category != tsl::profiler::Category::kUnknown) { tf_ops.try_emplace(metadata.id(), tf_op); } } return tf_ops; } TfMetricsDbData ConvertHostThreadsXLineToTfMetricsDbData( const XLineVisitor& line, const absl::flat_hash_map<int64_t, tsl::profiler::TfOp>& tf_ops) { TfMetricsDbData tf_metrics_db_data; std::vector<TfActivity> tf_activities; CollectTfActivities(line, tf_ops, &tf_activities); ProcessTfActivities(&tf_activities, &tf_metrics_db_data); return tf_metrics_db_data; } void ConsumeTfMetricsDbData(TfMetricsDbData src, OpMetricsDbCombiner* dst) { AddIdleOp(src.tf_metrics_db); dst->Combine(src.tf_metrics_db, false); src.tf_metrics_db.Clear(); } OpMetricsDb ConvertHostThreadsXPlaneToOpMetricsDb(const XPlane& host_trace) { absl::flat_hash_map<int64_t, tsl::profiler::TfOp> tf_ops = CollectTfOpsFromHostThreadsXPlane(host_trace); OpMetricsDb result; OpMetricsDbCombiner combiner(&result); XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&host_trace); plane.ForEachLine([&tf_ops, &combiner](const XLineVisitor& line) { ConsumeTfMetricsDbData( ConvertHostThreadsXLineToTfMetricsDbData(line, tf_ops), &combiner); }); return result; } OpMetricsDb ConvertTpuDeviceTraceXPlaneToOpMetricsDb( const XPlane& device_trace) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&device_trace); using OpMetricBySymbol = absl::flat_hash_map<uint64_t, OpMetrics>; XEventsOpMetricsDbBuilder builder; plane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent( [&](const XEventVisitor& event) { builder.AddOpMetric(event); }); }); return builder.Finalize( plane.GetStat(StatType::kTotalProfileDurationPs)->IntOrUintValue()); } OpMetricsDb ConvertDeviceTraceXPlaneToOpMetricsDb(const XPlane& device_trace) { OpMetricsDb result; DeviceOpMetricsDbBuilder device_op_metrics_db_builder(&result); int64_t first_op_offset_ps = kint64max; int64_t last_op_offset_ps = 0; TfOpRoofLineCostEstimator op_level_cost_estimator; XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(&device_trace); plane.ForEachLine([&](const XLineVisitor& line) { if (IsDerivedThreadId(line.Id())) return; line.ForEachEvent([&](const XEventVisitor& event) { first_op_offset_ps = std::min(first_op_offset_ps, event.OffsetPs()); last_op_offset_ps = std::max(last_op_offset_ps, event.EndOffsetPs()); absl::string_view tf_op_full_name; bool is_eager = false; int64_t program_id = 0; absl::string_view deduplicated_name = ""; event.ForEachStat([&](const XStatVisitor& stat) { if (stat.Type() == StatType::kTfOp) { tf_op_full_name = stat.StrOrRefValue(); } else if (stat.Type() == StatType::kIsEager) { is_eager = stat.IntValue(); } else if (stat.Type() == StatType::kProgramId) { program_id = stat.IntOrUintValue(); } else if (stat.Type() == StatType::kDeduplicatedName) { deduplicated_name = stat.StrOrRefValue(); } }); if (tf_op_full_name.empty()) return; tsl::profiler::TfOp tf_op = tsl::profiler::ParseTfOpFullname(tf_op_full_name); TfOpRoofLineCostEstimator::OpRoofLineStats costs; if (tf_op.category != tsl::profiler::Category::kUnknown) { costs = op_level_cost_estimator.Predict(event); } device_op_metrics_db_builder.EnterOp( program_id, absl::StrCat(tf_op.name, "/", event.Name()), tf_op.type, tf_op_full_name, deduplicated_name, is_eager, 1, event.DurationPs(), 0, costs.flops, costs.bytes_accessed); }); }); SetTotalTimePs( result, last_op_offset_ps ? last_op_offset_ps - first_op_offset_ps : 0); AddIdleOp(result); return result; } } }
#include "tensorflow/core/profiler/convert/xplane_to_op_metrics_db.h" #include <cstdint> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/op_metrics.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/math_utils.h" #include "tensorflow/core/profiler/utils/op_metrics_db_utils.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { #if defined(PLATFORM_GOOGLE) using ::testing::EqualsProto; #endif void AddTensorFlowTpuOpEvent(std::string&& name, std::string&& tf_op_fullname, int64_t start_timestamp_ns, int64_t duration_ns, std::string&& hlo_category, uint64 flops, uint64 bytes_accessed, int64_t occurences, int64_t self_duration, int64_t program_id, int64_t symbol_id, XPlaneBuilder* plane, XLineBuilder* line) { XEventBuilder event = line->AddEvent(*plane->GetOrCreateEventMetadata(name)); event.SetTimestampNs(start_timestamp_ns); event.SetDurationNs(duration_ns); event.SetNumOccurrences(occurences); XStatsBuilder<XEventMetadata> event_metadata( plane->GetOrCreateEventMetadata(name), plane); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), tf_op_fullname); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kHloCategory)), hlo_category); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kFlops)), flops); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kSymbolId)), symbol_id); event_metadata.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kProgramId)), program_id); } void AddTensorFlowOpEvent(std::string&& tf_op_fullname, int64_t start_timestamp_ns, int64_t duration_ns, bool on_device, absl::string_view kernel_name, XPlaneBuilder* plane, XLineBuilder* line) { absl::string_view name = on_device ? kernel_name : tf_op_fullname; XEventBuilder event = line->AddEvent(*plane->GetOrCreateEventMetadata(name)); event.SetTimestampNs(start_timestamp_ns); event.SetDurationNs(duration_ns); if (!on_device) return; event.AddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), *plane->GetOrCreateStatMetadata(std::move(tf_op_fullname))); } void AddXlaCpuOpEvent(std::string&& hlo_op_name, std::string&& tf_op, int64_t start_timestamp_ns, int64_t duration_ns, XPlaneBuilder* plane, XLineBuilder* line) { XEventBuilder event = line->AddEvent(*plane->GetOrCreateEventMetadata(hlo_op_name)); event.SetTimestampNs(start_timestamp_ns); event.SetDurationNs(duration_ns); event.ParseAndAddStatValue( *plane->GetOrCreateStatMetadata(GetStatTypeStr(StatType::kTfOp)), tf_op); } TEST(ConvertXPlaneToOpMetricsDb, HostOpMetricsDb) { static constexpr char kTfOp1[] = "TfOp1"; static constexpr char kTfOp2[] = "TfOp2"; constexpr int64_t kTfOp1StartNs = 100000; constexpr int64_t kTfOp1DurationNs = 8000; constexpr int64_t kTfOp2StartNs = 110000; constexpr int64_t kTfOp2DurationNs = 10000; XSpace xspace; XPlane* xplane = GetOrCreateHostXPlane(&xspace); XPlaneBuilder host_plane(xplane); XLineBuilder thread1 = host_plane.GetOrCreateLine(10); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kTfOp1StartNs, kTfOp1DurationNs, false, "", &host_plane, &thread1); XLineBuilder thread2 = host_plane.GetOrCreateLine(20); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kTfOp1StartNs, kTfOp1DurationNs, false, "", &host_plane, &thread2); AddTensorFlowOpEvent(absl::StrCat(kTfOp2, ":", kTfOp2), kTfOp2StartNs, kTfOp2DurationNs, false, "", &host_plane, &thread2); OpMetricsDb op_metrics = ConvertHostThreadsXPlaneToOpMetricsDb(*xplane); EXPECT_EQ(3, op_metrics.metrics_db_size()); uint64 total_op_duration = tsl::profiler::NanoToPico(kTfOp1DurationNs * 2 + kTfOp2DurationNs); EXPECT_EQ(total_op_duration, op_metrics.total_op_time_ps()); uint64 total_duration = tsl::profiler::NanoToPico( kTfOp2StartNs - kTfOp1StartNs + kTfOp2DurationNs + kTfOp1DurationNs); EXPECT_EQ(total_duration, op_metrics.total_time_ps()); const OpMetrics& op_1 = op_metrics.metrics_db().at(0); EXPECT_EQ(kTfOp1, op_1.name()); EXPECT_EQ(kTfOp1, op_1.category()); EXPECT_EQ(2, op_1.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kTfOp1DurationNs) * 2, op_1.time_ps()); const OpMetrics& idle = op_metrics.metrics_db().at(1); EXPECT_EQ(kIdle, idle.name()); EXPECT_EQ(kIdle, idle.category()); EXPECT_EQ(tsl::profiler::NanoToPico(2000), idle.time_ps()); const OpMetrics& op_2 = op_metrics.metrics_db().at(2); EXPECT_EQ(kTfOp2, op_2.name()); EXPECT_EQ(kTfOp2, op_2.category()); EXPECT_EQ(1, op_2.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kTfOp2DurationNs), op_2.time_ps()); } TEST(ConvertXPlaneToOpMetricsDb, DeviceOpMetricsDb) { static constexpr char kTfOp1[] = "TfOp1"; static constexpr char kTfOp2[] = "TfOp2"; static constexpr char kKernel1[] = "kernel1"; static constexpr char kKernel2[] = "kernel2"; static constexpr char kKernel3[] = "kernel3"; constexpr int64_t kKernel1StartNs = 100000; constexpr int64_t kKernel1DurationNs = 8000; constexpr int64_t kKernel2StartNs = 110000; constexpr int64_t kKernel2DurationNs = 10000; constexpr int64_t kKernel3StartNs = 120000; constexpr int64_t kKernel3DurationNs = 10000; XSpace xspace; XPlane* xplane = GetOrCreateGpuXPlane(&xspace, 0); XPlaneBuilder device_plane(xplane); XLineBuilder stream1 = device_plane.GetOrCreateLine(10); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel1StartNs, kKernel1DurationNs, true, kKernel1, &device_plane, &stream1); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel2StartNs, kKernel2DurationNs, true, kKernel2, &device_plane, &stream1); XLineBuilder stream2 = device_plane.GetOrCreateLine(20); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel1StartNs, kKernel1DurationNs, true, kKernel1, &device_plane, &stream2); AddTensorFlowOpEvent(absl::StrCat(kTfOp1, ":", kTfOp1), kKernel2StartNs, kKernel2DurationNs, true, kKernel2, &device_plane, &stream2); AddTensorFlowOpEvent(absl::StrCat(kTfOp2, ":", kTfOp2), kKernel3StartNs, kKernel3DurationNs, true, kKernel3, &device_plane, &stream2); OpMetricsDb op_metrics = ConvertDeviceTraceXPlaneToOpMetricsDb(*xplane); EXPECT_EQ(4, op_metrics.metrics_db_size()); uint64 total_op_duration = tsl::profiler::NanoToPico( kKernel1DurationNs * 2 + kKernel2DurationNs * 2 + kKernel3DurationNs); EXPECT_EQ(total_op_duration, op_metrics.total_op_time_ps()); uint64 total_duration = tsl::profiler::NanoToPico( kKernel3StartNs + kKernel3DurationNs - kKernel1StartNs); EXPECT_EQ(std::max(total_duration, total_op_duration), op_metrics.total_time_ps()); const OpMetrics& op_1 = op_metrics.metrics_db().at(0); EXPECT_EQ(absl::StrCat(kTfOp1, "/", kKernel1), op_1.name()); EXPECT_EQ(kTfOp1, op_1.category()); EXPECT_EQ(2, op_1.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kKernel1DurationNs) * 2, op_1.time_ps()); const OpMetrics& op_2 = op_metrics.metrics_db().at(1); EXPECT_EQ(absl::StrCat(kTfOp1, "/", kKernel2), op_2.name()); EXPECT_EQ(kTfOp1, op_2.category()); EXPECT_EQ(2, op_2.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kKernel2DurationNs) * 2, op_2.time_ps()); const OpMetrics& op_3 = op_metrics.metrics_db().at(2); EXPECT_EQ(absl::StrCat(kTfOp2, "/", kKernel3), op_3.name()); EXPECT_EQ(kTfOp2, op_3.category()); EXPECT_EQ(1, op_3.occurrences()); EXPECT_EQ(tsl::profiler::NanoToPico(kKernel3DurationNs), op_3.time_ps()); const OpMetrics& idle = op_metrics.metrics_db().at(3); EXPECT_EQ(kIdle, idle.name()); EXPECT_EQ(kIdle, idle.category()); EXPECT_EQ(tsl::profiler::NanoToPico(0), idle.time_ps()); } TEST(ConvertXPlaneToOpMetricsDb, TpuDeviceOpMetricsDb) { XSpace xspace; XPlane* xplane = GetOrCreateTpuXPlane(&xspace, 0, "TPU V4", 0, 0); XPlaneBuilder device_plane(xplane); device_plane.AddStatValue( *device_plane.GetOrCreateStatMetadata( GetStatTypeStr(StatType::kTotalProfileDurationPs)), 1000); XLineBuilder stream1 = device_plane.GetOrCreateLine(10); AddTensorFlowTpuOpEvent("MatMul", "while:MatMul", 0, 10, "MatMul", 34, 45, 2, 5, 1, 1, &device_plane, &stream1); OpMetricsDb op_metrics = ConvertTpuDeviceTraceXPlaneToOpMetricsDb(*xplane); #if defined(PLATFORM_GOOGLE) EXPECT_THAT(op_metrics, EqualsProto(R"pb(metrics_db { hlo_module_id: 1 self_time_ps: 10000 flops: 68 occurrences: 2 name: "MatMul" time_ps: 10000 category: "MatMul" provenance: "while:MatMul" min_time_ps: 10000 } metrics_db { name: "IDLE" category: "IDLE" } total_time_ps: 10000 total_op_time_ps: 10000 )pb")); #endif } TEST(ConvertXPlaneToOpMetricsDb, HostXPlaneWithXlaOps) { XPlane xplane; XPlaneBuilder plane(&xplane); XLineBuilder line = plane.GetOrCreateLine(10); AddXlaCpuOpEvent("xla_op", "tf_op", 100000, 8000, &plane, &line); AddXlaCpuOpEvent("xla_op2", "tf_op2", 110000, 10000, &plane, &line); OpMetricsDb op_metrics = ConvertHostThreadsXPlaneToOpMetricsDb(xplane); #if defined(PLATFORM_GOOGLE) EXPECT_THAT(op_metrics, EqualsProto(R"pb(metrics_db { self_time_ps: 8000000 occurrences: 1 name: "tf_op" time_ps: 8000000 } metrics_db { self_time_ps: 10000000 occurrences: 1 name: "tf_op2" time_ps: 10000000 } metrics_db { self_time_ps: 2000000 name: "IDLE" time_ps: 2000000 category: "IDLE" } total_time_ps: 20000000 total_op_time_ps: 18000000 precision_stats {} )pb")); #endif } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_metrics_db.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_op_metrics_db_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d7587362-ad42-4b12-b651-20d6bd9f85a2
cpp
tensorflow/tensorflow
rename_node
tensorflow/tools/graph_transforms/rename_node.cc
tensorflow/tools/graph_transforms/rename_node_test.cc
#include <string> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status RenameNode(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def) { if (!context.params.count("old_node_name") || (context.params.at("old_node_name").size() != 1) || !context.params.count("new_node_name") || (context.params.at("new_node_name").size() != 1)) { return errors::InvalidArgument( "rename_node expects exactly one 'old_node_name' and one " "'new_node_name' argument, e.g. " "rename_node(old_attribute_name=super/deep/output, " "new_attribute_name=output)"); } const std::string old_node_name = context.params.at("old_node_name")[0]; const std::string new_node_name = context.params.at("new_node_name")[0]; output_graph_def->Clear(); for (const NodeDef& input_node : input_graph_def.node()) { NodeDef* node = output_graph_def->mutable_node()->Add(); *node = input_node; if (node->name() == new_node_name) { return Status(absl::StatusCode::kInvalidArgument, "A node is alreading using " + new_node_name + "as name."); } if (node->name() == old_node_name) { node->set_name(new_node_name); } for (std::string& input_name : *node->mutable_input()) { std::string prefix; std::string input_node_name; std::string suffix; NodeNamePartsFromInput(input_name, &prefix, &input_node_name, &suffix); if (input_node_name == old_node_name) { std::string new_input_name = prefix + new_node_name + suffix; input_name = new_input_name; } } } return OkStatus(); } REGISTER_GRAPH_TRANSFORM("rename_node", RenameNode); } }
#include <string> #include <utility> #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/tools/graph_transforms/transform_utils.h" namespace tensorflow { namespace graph_transforms { Status RenameNode(const GraphDef& input_graph_def, const TransformFuncContext& context, GraphDef* output_graph_def); TEST(RenameNodeTest, Rename) { GraphDef in_graph; NodeDef* node = in_graph.add_node(); node->set_name("input"); node->set_op("Placeholder"); NodeDef* node_splitter = in_graph.add_node(); node_splitter->set_name("splitter"); node_splitter->set_op("Split"); NodeDef* node_adder = in_graph.add_node(); node_adder->set_op("Add"); node_adder->set_name("adder"); node_adder->add_input("splitter"); node_adder->add_input("splitter:1"); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"adder"}; context.params.insert(std::pair<string, std::vector<string>>( {"old_node_name", {std::string("splitter")}})); context.params.insert(std::pair<string, std::vector<string>>( {"new_node_name", {string("demux")}})); TF_ASSERT_OK(RenameNode(in_graph, context, &result)); std::map<string, const NodeDef*> node_lookup; MapNamesToNodes(result, &node_lookup); EXPECT_EQ(1, node_lookup.count("demux")); EXPECT_EQ(1, node_lookup.count("adder")); EXPECT_EQ(2, node_lookup["adder"]->input().size()); EXPECT_EQ("demux", node_lookup["adder"]->input()[0]); EXPECT_EQ("demux:1", node_lookup["adder"]->input()[1]); } TEST(RenameNodeTest, FailWhenNameAlreadyExists) { GraphDef in_graph; NodeDef* node = in_graph.add_node(); node->set_name("input"); node->set_op("Placeholder"); NodeDef* node_splitter = in_graph.add_node(); node_splitter->set_name("splitter"); node_splitter->set_op("Split"); NodeDef* node_adder = in_graph.add_node(); node_adder->set_op("Add"); node_adder->set_name("adder"); node_adder->add_input("splitter"); node_adder->add_input("splitter:1"); GraphDef result; TransformFuncContext context; context.input_names = {}; context.output_names = {"adder"}; context.params.insert(std::pair<string, std::vector<string>>( {"old_node_name", {std::string("splitter")}})); context.params.insert(std::pair<string, std::vector<string>>( {"new_node_name", {string("adder")}})); EXPECT_FALSE(RenameNode(in_graph, context, &result).ok()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/rename_node.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/tools/graph_transforms/rename_node_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
38a634d6-0df3-4df7-8bf8-cc745ad43372
cpp
tensorflow/tensorflow
abi
third_party/xla/third_party/tsl/tsl/platform/abi.cc
third_party/xla/third_party/tsl/tsl/platform/abi_test.cc
#include "tsl/platform/abi.h" #include "tsl/platform/types.h" #if defined(_MSC_VER) #include <windows.h> #include <cstring> #else #include <cxxabi.h> #include <cstdlib> #endif #include <memory> #include <string> #if defined(_MSC_VER) extern "C" char* __unDName(char* output_string, const char* name, int max_string_length, void* (*p_alloc)(std::size_t), void (*p_free)(void*), unsigned short disable_flags); #endif namespace tsl { namespace port { string MaybeAbiDemangle(const char* name) { #if defined(_MSC_VER) std::unique_ptr<char> demangled{__unDName(nullptr, name, 0, std::malloc, std::free, static_cast<unsigned short>(0))}; return string(demangled.get() != nullptr ? demangled.get() : name); #else int status = 0; std::unique_ptr<char, void (*)(void*)> res{ abi::__cxa_demangle(name, nullptr, nullptr, &status), std::free}; return (status == 0) ? res.get() : name; #endif } } }
#include "tsl/platform/abi.h" #include <typeinfo> #include "tsl/platform/test.h" namespace tsl { struct MyRandomPODType {}; TEST(AbiTest, AbiDemangleTest) { EXPECT_EQ(port::MaybeAbiDemangle(typeid(int).name()), "int"); #ifdef PLATFORM_WINDOWS const char pod_type_name[] = "struct tsl::MyRandomPODType"; #else const char pod_type_name[] = "tsl::MyRandomPODType"; #endif EXPECT_EQ(port::MaybeAbiDemangle(typeid(MyRandomPODType).name()), pod_type_name); EXPECT_EQ( port::MaybeAbiDemangle("help! i'm caught in a C++ mangle factoryasdf"), "help! i'm caught in a C++ mangle factoryasdf"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/abi.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/third_party/tsl/tsl/platform/abi_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d0c9aec6-77ab-4a35-8e60-bb07389258da
cpp
tensorflow/tensorflow
hlo_program_serdes
third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes.cc
third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes_test.cc
#include <memory> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ExtensibleRTTI.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "stablehlo/dialect/Serialization.h" #include "xla/mlir/utils/error_util.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/python/ifrt/hlo/hlo_program.h" #include "xla/python/ifrt/serdes.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { class HloProgramSerDes : public llvm::RTTIExtends<HloProgramSerDes, SerDes> { public: absl::string_view type_name() const override { return "xla::ifrt::XlaProgram"; } absl::StatusOr<std::string> Serialize(Serializable& serializable) override { const auto& program = llvm::cast<HloProgram>(serializable); if (program.mlir_module == nullptr) { return absl::InvalidArgumentError("Unable to serialize null MLIR module"); } mlir::OwningOpRef<mlir::ModuleOp> module( llvm::cast<mlir::ModuleOp>(program.mlir_module->clone())); TF_ASSIGN_OR_RETURN(std::string serialized, xla::SerializeUsingVersionedStablehlo( *module, xla::GetDefaultStablehloVersion())); return serialized; } absl::StatusOr<std::unique_ptr<Serializable>> Deserialize( const std::string& serialized, std::unique_ptr<DeserializeOptions>) override { auto context = std::make_unique<mlir::MLIRContext>( mlir::MLIRContext::Threading::DISABLED); mlir::BaseScopedDiagnosticHandler diagnostic_handler(context.get()); mlir::OwningOpRef<mlir::ModuleOp> module = mlir::stablehlo::deserializePortableArtifact(serialized, context.get()); if (!module) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError( absl::StrCat("Failed to deserialize StableHLO module;\n\nDetailed " "error from MLIR: ", status.message())); } mlir::PassManager pm(context.get()); pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); if (!mlir::succeeded(pm.run(*module))) { const absl::Status status = diagnostic_handler.ConsumeStatus(); return absl::InvalidArgumentError(absl::StrCat( "Failed to legalize StableHLO to MHLO;\n\nDetailed error from MLIR: ", status.message())); } return std::make_unique<HloProgram>(std::move(context), std::move(module)); } static char ID; }; char HloProgramSerDes::ID = 0; bool register_xla_program_serdes = ([]() { RegisterSerDes<HloProgram>(std::make_unique<HloProgramSerDes>()); }(), true); } } }
#include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "llvm/Support/Casting.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinDialect.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Support/DebugStringHelper.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/pjrt/mlir_to_hlo.h" #include "xla/python/ifrt/hlo/hlo_program.h" #include "xla/python/ifrt/serdes.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" namespace xla { namespace ifrt { namespace { using ::testing::HasSubstr; using ::testing::Not; using ::tsl::testing::StatusIs; TEST(HloProgramSerDesTest, RoundTrip) { static constexpr absl::string_view kMlirModuleStr = R"( module { func.func @main(%arg0: tensor<2x3xf32>) -> tensor<2x3xf32> { %0 = "mhlo.copy"(%arg0) : (tensor<2x3xf32>) -> tensor<2x3xf32> %1 = mhlo.constant dense<1.000000e+00> : tensor<f32> %2 = "mhlo.broadcast"(%1) {broadcast_sizes = dense<[2, 3]> : tensor<2xi64>} : (tensor<f32>) -> tensor<2x3xf32> %3 = mhlo.add %0, %2 : tensor<2x3xf32> return %3 : tensor<2x3xf32> } })"; Serialized serialized; { auto context = std::make_unique<mlir::MLIRContext>(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(kMlirModuleStr, *context)); auto program = std::make_unique<HloProgram>(std::move(context), std::move(module)); TF_ASSERT_OK_AND_ASSIGN(serialized, Serialize(*program)); } TF_ASSERT_OK_AND_ASSIGN( std::unique_ptr<HloProgram> xla_program, Deserialize<HloProgram>(serialized, nullptr)); bool has_unsupported_dialect = false; xla_program->mlir_module->walk([&](mlir::Operation *op) { if (!llvm::isa<mlir::BuiltinDialect, mlir::func::FuncDialect, mlir::mhlo::MhloDialect>(op->getDialect())) { LOG(ERROR) << "Found an op with an unsupported dialect: " << mlir::debugString(op); has_unsupported_dialect = true; } }); EXPECT_FALSE(has_unsupported_dialect); } TEST(HloProgramSerDesTest, SerializationError) { static constexpr absl::string_view kMlirModuleStr = R"( module { func.func @main(%arg0: tensor<f32>) -> tensor<f32> { %0 = "UnknownOp"(%arg0) : (tensor<f32>) -> tensor<f32> return %0 : tensor<f32> } })"; Serialized serialized; { auto context = std::make_unique<mlir::MLIRContext>(); context->allowUnregisteredDialects(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(kMlirModuleStr, *context)); auto program = std::make_unique<HloProgram>(std::move(context), std::move(module)); EXPECT_THAT(Serialize(*program), StatusIs(Not(absl::StatusCode::kOk), HasSubstr("Failed to serialize StableHLO"))); } } TEST(HloProgramSerDesTest, DeserializationError) { static constexpr absl::string_view kMlirModuleStr = R"( module { func.func @main(%arg0: tensor<f32>) -> tensor<f32> { return %arg0 : tensor<f32> } })"; Serialized serialized; { auto context = std::make_unique<mlir::MLIRContext>(); TF_ASSERT_OK_AND_ASSIGN( mlir::OwningOpRef<mlir::ModuleOp> module, xla::ParseMlirModuleString(kMlirModuleStr, *context)); auto program = std::make_unique<HloProgram>(std::move(context), std::move(module)); TF_ASSERT_OK_AND_ASSIGN(serialized, Serialize(*program)); } serialized.set_data("invalid data"); EXPECT_THAT(Deserialize<HloProgram>(serialized, nullptr), StatusIs(Not(absl::StatusCode::kOk), HasSubstr("Failed to deserialize StableHLO module"))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/python/ifrt/hlo/hlo_program_serdes_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
66f3c55a-dbb9-4df7-90ab-dabb19c6b4bc
cpp
tensorflow/tensorflow
topk_accuracy_eval_stage
tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.cc
tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage_test.cc
#include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <algorithm> #include <numeric> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { std::vector<int> GetTopKIndices(const std::vector<float>& values, int k) { std::vector<int> indices(values.size()); std::iota(indices.begin(), indices.end(), 0); std::stable_sort(indices.begin(), indices.end(), [&values](int a, int b) { return values[a] > values[b]; }); indices.resize(k); return indices; } } TfLiteStatus TopkAccuracyEvalStage::Init() { num_runs_ = 0; auto& params = config_.specification().topk_accuracy_eval_params(); if (!params.has_k()) { LOG(ERROR) << "Value of k not provided for TopkAccuracyEvalStage"; return kTfLiteError; } accuracy_counts_ = std::vector<int>(params.k(), 0); if (ground_truth_labels_.empty()) { LOG(ERROR) << "Ground-truth labels are empty"; return kTfLiteError; } num_total_labels_ = ground_truth_labels_.size(); if (params.k() > num_total_labels_) { LOG(ERROR) << "k is too large"; return kTfLiteError; } if (!model_output_shape_) { LOG(ERROR) << "Model output details not correctly set"; return kTfLiteError; } if (!(model_output_shape_->size == 2) || !(model_output_shape_->data[0] == 1) || !(model_output_shape_->data[1] == num_total_labels_)) { LOG(ERROR) << "Invalid model_output_shape_"; return kTfLiteError; } if (model_output_type_ != kTfLiteFloat32 && model_output_type_ != kTfLiteUInt8 && model_output_type_ != kTfLiteInt8) { LOG(ERROR) << "model_output_type_ not supported"; return kTfLiteError; } return kTfLiteOk; } TfLiteStatus TopkAccuracyEvalStage::Run() { if (!model_output_) { LOG(ERROR) << "model_output_ not set correctly"; return kTfLiteError; } if (!ground_truth_label_) { LOG(ERROR) << "ground_truth_label_ not provided"; return kTfLiteError; } auto& params = config_.specification().topk_accuracy_eval_params(); std::vector<float> probabilities; probabilities.reserve(num_total_labels_); if (model_output_type_ == kTfLiteFloat32) { auto probs = static_cast<float*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteUInt8) { auto probs = static_cast<uint8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteInt8) { auto probs = static_cast<int8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } std::vector<int> top_k = GetTopKIndices(probabilities, params.k()); UpdateCounts(top_k); return kTfLiteOk; } EvaluationStageMetrics TopkAccuracyEvalStage::LatestMetrics() { EvaluationStageMetrics metrics; if (num_runs_ == 0) return metrics; metrics.set_num_runs(num_runs_); auto* topk_metrics = metrics.mutable_process_metrics()->mutable_topk_accuracy_metrics(); for (const auto& count : accuracy_counts_) { topk_metrics->add_topk_accuracies(static_cast<float>(count) / num_runs_); } return metrics; } void TopkAccuracyEvalStage::UpdateCounts(const std::vector<int>& topk_indices) { for (size_t i = 0; i < topk_indices.size(); ++i) { if (*ground_truth_label_ == ground_truth_labels_[topk_indices[i]]) { for (size_t j = i; j < topk_indices.size(); j++) { accuracy_counts_[j] += 1; } break; } } num_runs_++; } } }
#include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_types.h" #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kTopkAccuracyEvalStageName[] = "topk_accuracy_eval_stage"; constexpr int kNumCategories = 1001; EvaluationStageConfig GetTopkAccuracyEvalStageConfig() { EvaluationStageConfig config; config.set_name(kTopkAccuracyEvalStageName); auto* params = config.mutable_specification()->mutable_topk_accuracy_eval_params(); params->set_k(5); return config; } template <typename T> T* ResetOutputArray(T array[]) { for (int i = 0; i < kNumCategories; i++) { array[i] = 0; } return array; } std::vector<std::string> CreateGroundTruthLabels() { std::vector<std::string> ground_truth_labels; ground_truth_labels.reserve(kNumCategories); for (int i = 0; i < kNumCategories; i++) { ground_truth_labels.push_back(std::to_string(i)); } return ground_truth_labels; } TEST(TopkAccuracyEvalStage, NoInitializers) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TopkAccuracyEvalStage, NoK) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification() ->mutable_topk_accuracy_eval_params() ->clear_k(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoGroundTruthLabels) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = {}; TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, KTooLarge) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification()->mutable_topk_accuracy_eval_params()->set_k( 10000); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, WeirdModelOutputShape) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, UnsupportedModelOutputType) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteComplex64; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoInputs) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, InvalidGroundTruth) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[0] = 0.8; stage.SetEvalInputs(tensor, nullptr); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, FloatTest_CorrectLabelsAtLastIndices) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[4] = 0.9; tensor[3] = 0.8; tensor[2] = 0.7; tensor[1] = 0.6; tensor[0] = 0.5; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); for (int i = 0; i < 4; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); EXPECT_FLOAT_EQ(0.5, accuracy_metrics.topk_accuracies(3)); for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } } class CorrectTopkAccuracyEvalTest : public ::testing::Test { protected: template <typename T> void VerifyCorrectBehaviorForType(T ground_truth_0_value, T ground_truth_1_value, TfLiteType model_output_type) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(0, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_EQ(0, accuracy_metrics.topk_accuracies_size()); T array[kNumCategories]; T* tensor = ResetOutputArray(array); tensor[0] = ground_truth_0_value; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } tensor[1] = ground_truth_1_value; ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } } }; TEST_F(CorrectTopkAccuracyEvalTest, FloatTest) { VerifyCorrectBehaviorForType(static_cast<float>(0.8), static_cast<float>(0.9), kTfLiteFloat32); } TEST_F(CorrectTopkAccuracyEvalTest, Int8Test) { VerifyCorrectBehaviorForType(static_cast<int8_t>(1), static_cast<int8_t>(2), kTfLiteInt8); } TEST_F(CorrectTopkAccuracyEvalTest, UInt8Test) { VerifyCorrectBehaviorForType(static_cast<uint8_t>(1), static_cast<uint8_t>(2), kTfLiteUInt8); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b03d42a1-41b2-4114-b009-33cfe164365f
cpp
tensorflow/tensorflow
mkl_relu_op
tensorflow/core/kernels/mkl/mkl_relu_op.cc
tensorflow/core/kernels/mkl/mkl_relu_op_test.cc
#if defined(INTEL_MKL) && !defined(ENABLE_ONEDNN_V3) #include <unordered_map> #include "unsupported/Eigen/CXX11/Tensor" #include "dnnl.hpp" #include "tensorflow/core/framework/numeric_op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/util/mkl_util.h" #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) #include "tensorflow/core/platform/mutex.h" #endif using dnnl::algorithm; using dnnl::eltwise_forward; using dnnl::memory; using dnnl::prop_kind; using dnnl::stream; using EltwiseFwdPd = dnnl::eltwise_forward::primitive_desc; using EltwiseBwdPd = dnnl::eltwise_backward::primitive_desc; namespace tensorflow { template <typename T> class MklEltwiseFwdParams { public: memory::dims src_dims; memory::desc src_md; algorithm alg_kind; float alpha; float beta; MklEltwiseFwdParams(memory::dims src_dims, memory::desc src_md, algorithm alg_kind, float alpha, float beta) : src_dims(src_dims), src_md(src_md), alg_kind(alg_kind), alpha(alpha), beta(beta) {} }; template <typename T> class MklEltwiseFwdPrimitive : public MklPrimitive { public: explicit MklEltwiseFwdPrimitive(const MklEltwiseFwdParams<T>& fwdParams) : MklPrimitive(engine(engine::kind::cpu, 0)) { if (context_.eltwise_fwd == nullptr) { Setup(fwdParams); } } ~MklEltwiseFwdPrimitive() {} void Execute(const T* src_data, T* dst_data, std::shared_ptr<stream> fwd_stream) { #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex_lock lock(primitive_execution_mu_); #endif #ifndef ENABLE_ONEDNN_OPENMP context_.src_mem->set_data_handle( static_cast<void*>(const_cast<T*>(src_data)), *fwd_stream); context_.dst_mem->set_data_handle(static_cast<void*>(dst_data), *fwd_stream); #else context_.src_mem->set_data_handle( static_cast<void*>(const_cast<T*>(src_data))); context_.dst_mem->set_data_handle(static_cast<void*>(dst_data)); #endif DCHECK_EQ(context_.fwd_primitives.size(), context_.fwd_primitives_args.size()); execute_primitives(context_.fwd_primitives, fwd_stream, context_.fwd_primitives_args); context_.src_mem->set_data_handle(DummyData); context_.dst_mem->set_data_handle(DummyData); } std::shared_ptr<EltwiseFwdPd> GetEltwiseFwdPd() { return context_.fwd_pd; } private: struct EltwiseFwdContext { std::shared_ptr<memory> src_mem; std::shared_ptr<memory> dst_mem; std::shared_ptr<dnnl::eltwise_forward::desc> fwd_desc; std::shared_ptr<EltwiseFwdPd> fwd_pd; std::shared_ptr<memory::desc> src_md; std::shared_ptr<memory::desc> dst_md; std::shared_ptr<dnnl::primitive> eltwise_fwd; std::vector<dnnl::primitive> fwd_primitives; std::vector<std::unordered_map<int, memory>> fwd_primitives_args; EltwiseFwdContext() : src_mem(nullptr), dst_mem(nullptr), fwd_desc(nullptr), fwd_pd(nullptr), src_md(nullptr), dst_md(nullptr), eltwise_fwd(nullptr) {} }; void Setup(const MklEltwiseFwdParams<T>& fwdParams) { context_.src_md.reset(new memory::desc(fwdParams.src_md.data)); context_.fwd_desc.reset(new eltwise_forward::desc( prop_kind::forward, fwdParams.alg_kind, *context_.src_md, fwdParams.alpha, fwdParams.beta)); context_.fwd_pd.reset(new EltwiseFwdPd(*context_.fwd_desc, cpu_engine_)); auto fwd_pd = context_.fwd_pd.get(); context_.src_mem.reset( new memory(fwd_pd->src_desc(), cpu_engine_, DummyData)); context_.dst_mem.reset( new memory(fwd_pd->dst_desc(), cpu_engine_, DummyData)); context_.eltwise_fwd.reset(new eltwise_forward(*context_.fwd_pd)); context_.fwd_primitives_args.push_back( {{DNNL_ARG_SRC, *context_.src_mem}, {DNNL_ARG_DST, *context_.dst_mem}}); context_.fwd_primitives.push_back(*context_.eltwise_fwd); } struct EltwiseFwdContext context_; #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex primitive_execution_mu_; #endif }; template <typename T> class MklEltwiseFwdPrimitiveFactory : public MklPrimitiveFactory<T> { public: static MklEltwiseFwdPrimitive<T>* Get( const MklEltwiseFwdParams<T>& fwdParams) { MklEltwiseFwdPrimitive<T>* eltwise_forward = nullptr; eltwise_forward = static_cast<MklEltwiseFwdPrimitive<T>*>( MklEltwiseFwdPrimitiveFactory<T>::GetInstance().GetEltwiseFwd( fwdParams)); if (eltwise_forward == nullptr) { eltwise_forward = new MklEltwiseFwdPrimitive<T>(fwdParams); MklEltwiseFwdPrimitiveFactory<T>::GetInstance().SetEltwiseFwd( fwdParams, eltwise_forward); } return eltwise_forward; } static MklEltwiseFwdPrimitiveFactory& GetInstance() { static MklEltwiseFwdPrimitiveFactory instance_; return instance_; } private: MklEltwiseFwdPrimitiveFactory() {} ~MklEltwiseFwdPrimitiveFactory() {} static string CreateKey(const MklEltwiseFwdParams<T>& fwdParams) { string prefix = "eltwise_fwd"; FactoryKeyCreator key_creator; key_creator.AddAsKey(prefix); key_creator.AddAsKey(fwdParams.src_dims); key_creator.AddAsKey<int>(static_cast<int>(fwdParams.alg_kind)); key_creator.AddAsKey<float>(static_cast<float>(fwdParams.alpha)); key_creator.AddAsKey<float>(static_cast<float>(fwdParams.beta)); return key_creator.GetKey(); } MklPrimitive* GetEltwiseFwd(const MklEltwiseFwdParams<T>& fwdParams) { string key = CreateKey(fwdParams); return this->GetOp(key); } void SetEltwiseFwd(const MklEltwiseFwdParams<T>& fwdParams, MklPrimitive* op) { string key = CreateKey(fwdParams); this->SetOp(key, op); } }; template <typename T> class MklEltwiseBwdParams { public: memory::dims src_dims; memory::desc common_md; algorithm alg_kind; float alpha; float beta; int forward_input_type; MklEltwiseBwdParams(const memory::dims& src_dims, const memory::desc& common_md, algorithm alg_kind, float alpha, float beta, int forward_input_type = -1) : src_dims(src_dims), common_md(common_md), alg_kind(alg_kind), alpha(alpha), beta(beta), forward_input_type(forward_input_type) {} }; template <typename T> class MklEltwiseBwdPrimitive : public MklPrimitive { public: explicit MklEltwiseBwdPrimitive(const MklEltwiseBwdParams<T>& bwdParams) : MklPrimitive(engine(engine::kind::cpu, 0)) { if (context_.eltwise_bwd == nullptr) { Setup(bwdParams); } } ~MklEltwiseBwdPrimitive() {} void Execute(const T* src_data, const T* diff_dst_data, T* diff_src_data, std::shared_ptr<stream> bwd_stream) { #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex_lock lock(primitive_execution_mu_); #endif #ifndef ENABLE_ONEDNN_OPENMP context_.src_mem->set_data_handle( static_cast<void*>(const_cast<T*>(src_data)), *bwd_stream); context_.diff_dst_mem->set_data_handle( static_cast<void*>(const_cast<T*>(diff_dst_data)), *bwd_stream); context_.diff_src_mem->set_data_handle(static_cast<void*>(diff_src_data), *bwd_stream); #else context_.src_mem->set_data_handle( static_cast<void*>(const_cast<T*>(src_data))); context_.diff_dst_mem->set_data_handle( static_cast<void*>(const_cast<T*>(diff_dst_data))); context_.diff_src_mem->set_data_handle(static_cast<void*>(diff_src_data)); #endif DCHECK_EQ(context_.bwd_primitives.size(), context_.bwd_primitives_args.size()); execute_primitives(context_.bwd_primitives, bwd_stream, context_.bwd_primitives_args); context_.src_mem->set_data_handle(DummyData); context_.diff_dst_mem->set_data_handle(DummyData); context_.diff_src_mem->set_data_handle(DummyData); } std::shared_ptr<EltwiseBwdPd> GetEltwiseBwdPd() { return context_.bwd_pd; } private: struct EltwiseBwdContext { std::shared_ptr<memory> src_mem; std::shared_ptr<memory> diff_dst_mem; std::shared_ptr<memory> diff_src_mem; std::shared_ptr<dnnl::eltwise_backward::desc> bwd_desc; std::shared_ptr<memory::desc> src_md; std::shared_ptr<memory::desc> diff_dst_md; std::shared_ptr<memory::desc> common_md; std::shared_ptr<dnnl::eltwise_forward::desc> fwd_desc; std::shared_ptr<EltwiseFwdPd> fwd_pd; std::shared_ptr<EltwiseBwdPd> bwd_pd; std::shared_ptr<dnnl::primitive> eltwise_bwd; std::vector<dnnl::primitive> bwd_primitives; std::vector<MemoryArgsMap> bwd_primitives_args; EltwiseBwdContext() : src_mem(nullptr), diff_dst_mem(nullptr), diff_src_mem(nullptr), src_md(nullptr), diff_dst_md(nullptr), common_md(nullptr), fwd_desc(nullptr), fwd_pd(nullptr), bwd_pd(nullptr), eltwise_bwd(nullptr) {} }; void Setup(const MklEltwiseBwdParams<T>& bwdParams) { context_.src_md.reset(new memory::desc(bwdParams.common_md.data)); context_.diff_dst_md.reset(new memory::desc(bwdParams.common_md.data)); context_.fwd_desc.reset(new dnnl::eltwise_forward::desc( prop_kind::forward_training, bwdParams.alg_kind, *context_.src_md, bwdParams.alpha, bwdParams.beta)); context_.fwd_pd.reset(new EltwiseFwdPd(*context_.fwd_desc, cpu_engine_)); context_.bwd_desc.reset(new dnnl::eltwise_backward::desc( bwdParams.alg_kind, *context_.diff_dst_md, *context_.src_md, bwdParams.alpha, bwdParams.beta)); context_.bwd_pd.reset( new EltwiseBwdPd(*context_.bwd_desc, cpu_engine_, *context_.fwd_pd)); auto bwd_pd = context_.bwd_pd.get(); context_.src_mem.reset( new memory(bwd_pd->src_desc(), cpu_engine_, DummyData)); context_.diff_dst_mem.reset( new memory(bwd_pd->diff_dst_desc(), cpu_engine_, DummyData)); context_.diff_src_mem.reset( new memory(bwd_pd->diff_src_desc(), cpu_engine_, DummyData)); context_.eltwise_bwd.reset(new dnnl::eltwise_backward(*context_.bwd_pd)); context_.bwd_primitives_args.push_back( {{bwdParams.forward_input_type, *context_.src_mem}, {DNNL_ARG_DIFF_DST, *context_.diff_dst_mem}, {DNNL_ARG_DIFF_SRC, *context_.diff_src_mem}}); context_.bwd_primitives.push_back(*context_.eltwise_bwd); } struct EltwiseBwdContext context_; #if defined(DNNL_AARCH64_USE_ACL) && defined(ENABLE_ONEDNN_OPENMP) mutex primitive_execution_mu_; #endif }; template <typename T> class MklEltwiseBwdPrimitiveFactory : public MklPrimitiveFactory<T> { private: MklEltwiseBwdPrimitiveFactory() {} ~MklEltwiseBwdPrimitiveFactory() {} public: static MklEltwiseBwdPrimitive<T>* Get( const MklEltwiseBwdParams<T>& bwdParams) { MklEltwiseBwdPrimitive<T>* eltwise_backward = nullptr; eltwise_backward = static_cast<MklEltwiseBwdPrimitive<T>*>( MklEltwiseBwdPrimitiveFactory<T>::GetInstance().GetEltwiseBwd( bwdParams)); if (eltwise_backward == nullptr) { eltwise_backward = new MklEltwiseBwdPrimitive<T>(bwdParams); MklEltwiseBwdPrimitiveFactory<T>::GetInstance().SetEltwiseBwd( bwdParams, eltwise_backward); } return eltwise_backward; } static MklEltwiseBwdPrimitiveFactory& GetInstance() { static MklEltwiseBwdPrimitiveFactory instance_; return instance_; } private: static string CreateKey(const MklEltwiseBwdParams<T>& bwdParams) { string prefix = "eltwise_bwd"; FactoryKeyCreator key_creator; key_creator.AddAsKey(prefix); key_creator.AddAsKey(bwdParams.src_dims); key_creator.AddAsKey(static_cast<int>(bwdParams.alg_kind)); key_creator.AddAsKey(static_cast<float>(bwdParams.alpha)); key_creator.AddAsKey(static_cast<float>(bwdParams.beta)); return key_creator.GetKey(); } MklPrimitive* GetEltwiseBwd(const MklEltwiseBwdParams<T>& bwdParams) { string key = CreateKey(bwdParams); return this->GetOp(key); } void SetEltwiseBwd(const MklEltwiseBwdParams<T>& bwdParams, MklPrimitive* op) { string key = CreateKey(bwdParams); this->SetOp(key, op); } }; typedef Eigen::ThreadPoolDevice CPUDevice; template <typename Device, typename T, algorithm alg_kind> class MklReluOpBase : public OpKernel { public: ~MklReluOpBase() {} explicit MklReluOpBase(OpKernelConstruction* context, float alpha, float beta) : OpKernel(context), alpha_(alpha), beta_(beta) {} virtual void Compute_Scalar(OpKernelContext* context) = 0; void Compute(OpKernelContext* context) override { try { const size_t src_index = 0; const size_t dst_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); MklDnnShape dnn_shape_src; GetMklShape(context, src_index, &dnn_shape_src); if (src_tensor.dims() == 0) { Compute_Scalar(context); return; } MklDnnShape dnn_shape_dst; TensorShape tf_shape_dst; Tensor* dst_tensor = nullptr; if (src_tensor.shape().num_elements() == 0) { dnn_shape_dst.SetMklTensor(false); tf_shape_dst = MklGetInput(context, src_index).shape(); AllocateOutputSetMklShape(context, dst_index, &dst_tensor, tf_shape_dst, dnn_shape_dst); return; } MklDnnData<T> src(&cpu_engine); memory::dims src_dims; memory::desc src_md({}, memory::data_type::undef, memory::format_tag::undef); if (dnn_shape_src.IsMklTensor()) { src_md = dnn_shape_src.GetMklLayout(); src_dims = dnn_shape_src.GetSizesAsMklDnnDims(); } else { src_dims = TFShapeToMklDnnDims(src_tensor.shape()); auto src_strides = CalculateTFStrides(src_dims); src_md = MklDnnData<T>::CreateBlockedMemDesc(src_dims, src_strides); } MklEltwiseFwdParams<T> fwdParams(src_dims, src_md, alg_kind, alpha_, beta_); Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); tsl::OneDnnThreadPool eigen_tp(eigen_interface, ThreadPoolUseCallerThread()); MklEltwiseFwdPrimitive<T>* eltwise_fwd = MklEltwiseFwdPrimitiveFactory<T>::Get(fwdParams); auto eltwise_fwd_pd = eltwise_fwd->GetEltwiseFwdPd(); std::shared_ptr<stream> fwd_cpu_stream; fwd_cpu_stream.reset(CreateStream(&eigen_tp, eltwise_fwd->GetEngine())); bool is_src_reordered = false; const T* src_data = src_tensor.flat<T>().data(); if (src_md != eltwise_fwd_pd->src_desc()) { src.SetUsrMem(src_md, &src_tensor); src.CheckReorderToOpMem(eltwise_fwd_pd->src_desc(), cpu_engine, context); src_data = const_cast<T*>( reinterpret_cast<T*>(src.GetOpMem().get_data_handle())); is_src_reordered = true; } if (is_src_reordered || dnn_shape_src.IsMklTensor()) { dnn_shape_dst.SetMklTensor(true); auto dst_pd = eltwise_fwd_pd->dst_desc(); dnn_shape_dst.SetMklLayout(&dst_pd); dnn_shape_dst.SetElemType(MklDnnType<T>()); if (dnn_shape_src.IsMklTensor()) { dnn_shape_dst.SetTfLayout(dnn_shape_src.GetDimension(), dnn_shape_src.GetSizesAsMklDnnDims(), dnn_shape_src.GetTfDataFormat()); } else { dnn_shape_dst.SetTfLayout(src_tensor.dims(), TFShapeToMklDnnDims(src_tensor.shape()), MklTensorFormat::FORMAT_BLOCKED); } tf_shape_dst.AddDim(dst_pd.get_size() / sizeof(T)); } else { dnn_shape_dst.SetMklTensor(false); tf_shape_dst = src_tensor.shape(); } if (is_src_reordered) { AllocateOutputSetMklShape(context, dst_index, &dst_tensor, tf_shape_dst, dnn_shape_dst); } else { OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {static_cast<const int>(src_index)}, static_cast<const int>(dst_index), tf_shape_dst, &dst_tensor)); AllocateOutputSetMklShape(context, dst_index, dnn_shape_dst); } T* dst_data = dst_tensor->flat<T>().data(); eltwise_fwd->Execute(src_data, dst_data, fwd_cpu_stream); } catch (dnnl::error& e) { string error_msg = "Status: " + std::to_string(e.status) + ", message: " + string(e.message) + ", in file " + string(__FILE__) + ":" + std::to_string(__LINE__); OP_REQUIRES_OK( context, errors::Aborted("Operation received an exception:", error_msg)); } } private: engine cpu_engine = engine(engine::kind::cpu, 0); std::shared_ptr<EltwiseFwdPd> relu_fwd_pd; protected: float alpha_; float beta_; }; template <typename Device, typename T, algorithm alg_kind> class MklReluGradOpBase : public OpKernel { public: ~MklReluGradOpBase() {} explicit MklReluGradOpBase(OpKernelConstruction* context, float alpha, float beta) : OpKernel(context), alpha_(alpha), beta_(beta) {} virtual void Compute_Scalar(OpKernelContext* context) = 0; virtual int GetDiffDstIndex() const { return 0; } virtual int GetSrcIndex() const { return 1; } virtual int GetDiffSrcIndex() const { return 0; } virtual int GetTypeOfInputTensorFromFwdOp() const { return DNNL_ARG_SRC; } void Compute(OpKernelContext* context) { try { MklDnnData<T> src(&cpu_engine); MklDnnData<T> diff_dst(&cpu_engine); size_t diff_dst_index = GetDiffDstIndex(); size_t src_index = GetSrcIndex(); const size_t diff_src_index = GetDiffSrcIndex(); const Tensor& src_tensor = MklGetInput(context, src_index); const Tensor& diff_dst_tensor = MklGetInput(context, diff_dst_index); Tensor* diff_src_tensor = nullptr; MklDnnShape dnn_shape_src, dnn_shape_diff_dst; GetMklShape(context, src_index, &dnn_shape_src); GetMklShape(context, diff_dst_index, &dnn_shape_diff_dst); int src_dims_size = src_tensor.dims(); if (src_dims_size == 0) { Compute_Scalar(context); return; } TensorShape tf_shape_diff_src; MklDnnShape dnn_shape_diff_src; if (src_tensor.shape().num_elements() == 0) { dnn_shape_diff_src.SetMklTensor(false); tf_shape_diff_src = MklGetInput(context, diff_src_index).shape(); AllocateOutputSetMklShape(context, diff_src_index, &diff_src_tensor, tf_shape_diff_src, dnn_shape_diff_src); return; } memory::dims src_dims = {}; memory::desc src_md({}, memory::data_type::undef, memory::format_tag::undef); memory::desc diff_dst_md({}, memory::data_type::undef, memory::format_tag::undef); if (!dnn_shape_src.IsMklTensor() && !dnn_shape_diff_dst.IsMklTensor()) { src_dims = TFShapeToMklDnnDims(src_tensor.shape()); auto src_strides = CalculateTFStrides(src_dims); src_md = MklDnnData<T>::CreateBlockedMemDesc(src_dims, src_strides); diff_dst_md = src_md; } else if (dnn_shape_src.IsMklTensor() && !dnn_shape_diff_dst.IsMklTensor()) { src_md = dnn_shape_src.GetMklLayout(); src_dims = dnn_shape_src.GetSizesAsMklDnnDims(); MklTensorFormat src_mkl_data_format = dnn_shape_src.GetTfDataFormat(); auto src_tf_data_format = MklDnnDataFormatToTFDataFormat(src_mkl_data_format); auto diff_dst_dims = TFShapeToMklDnnDimsInNCHW(diff_dst_tensor.shape(), src_tf_data_format); diff_dst_md = memory::desc( diff_dst_dims, MklDnnType<T>(), MklTensorFormatToMklDnnDataFormat(src_mkl_data_format)); } else if (!dnn_shape_src.IsMklTensor() && dnn_shape_diff_dst.IsMklTensor()) { diff_dst_md = dnn_shape_diff_dst.GetMklLayout(); MklTensorFormat diff_dst_mkl_data_format = dnn_shape_diff_dst.GetTfDataFormat(); auto diff_dst_tf_data_format = MklDnnDataFormatToTFDataFormat(diff_dst_mkl_data_format); src_dims = (src_tensor.dims() == 4) ? TFShapeToMklDnnDimsInNCHW(src_tensor.shape(), diff_dst_tf_data_format) : TFShapeToMklDnnDimsInNCDHW(src_tensor.shape(), diff_dst_tf_data_format); src_md = memory::desc( src_dims, MklDnnType<T>(), MklTensorFormatToMklDnnDataFormat(diff_dst_mkl_data_format)); } else { src_md = dnn_shape_src.GetMklLayout(); diff_dst_md = dnn_shape_diff_dst.GetMklLayout(); src_dims = dnn_shape_src.GetSizesAsMklDnnDims(); } memory::desc common_md({}, memory::data_type::undef, memory::format_tag::undef); if (dnn_shape_src.IsMklTensor() || dnn_shape_diff_dst.IsMklTensor()) { common_md = dnn_shape_src.IsMklTensor() ? src_md : diff_dst_md; } else { common_md = src_md; } MklEltwiseBwdParams<T> bwdParams(src_dims, common_md, alg_kind, alpha_, beta_, GetTypeOfInputTensorFromFwdOp()); Eigen::ThreadPoolInterface* eigen_interface = EigenThreadPoolFromTfContext(context); tsl::OneDnnThreadPool eigen_tp(eigen_interface, ThreadPoolUseCallerThread()); MklEltwiseBwdPrimitive<T>* eltwise_bwd = MklEltwiseBwdPrimitiveFactory<T>::Get(bwdParams); auto eltwise_bwd_pd = eltwise_bwd->GetEltwiseBwdPd(); std::shared_ptr<stream> bwd_cpu_stream; bwd_cpu_stream.reset(CreateStream(&eigen_tp, eltwise_bwd->GetEngine())); const T* src_data = src_tensor.flat<T>().data(); if (src_md != eltwise_bwd_pd->src_desc()) { src.SetUsrMem(src_md, &src_tensor); src.CheckReorderToOpMem(eltwise_bwd_pd.get()->diff_src_desc(), cpu_engine, context); src_data = const_cast<T*>( reinterpret_cast<T*>(src.GetOpMem().get_data_handle())); } const T* diff_dst_data = diff_dst_tensor.flat<T>().data(); if (diff_dst_md != eltwise_bwd_pd->diff_dst_desc()) { diff_dst.SetUsrMem(diff_dst_md, &diff_dst_tensor); diff_dst.CheckReorderToOpMem(eltwise_bwd_pd.get()->diff_src_desc(), cpu_engine, context); diff_dst_data = const_cast<T*>( reinterpret_cast<T*>(diff_dst.GetOpMem().get_data_handle())); } if (dnn_shape_src.IsMklTensor() || dnn_shape_diff_dst.IsMklTensor()) { auto diff_src_pd = eltwise_bwd_pd->diff_src_desc(); dnn_shape_diff_src.SetMklTensor(true); dnn_shape_diff_src.SetMklLayout(&diff_src_pd); dnn_shape_diff_src.SetElemType(MklDnnType<T>()); if (dnn_shape_src.IsMklTensor()) { dnn_shape_diff_src.SetTfLayout(dnn_shape_src.GetDimension(), dnn_shape_src.GetSizesAsMklDnnDims(), dnn_shape_src.GetTfDataFormat()); } else { dnn_shape_diff_src.SetTfLayout( dnn_shape_diff_dst.GetDimension(), dnn_shape_diff_dst.GetSizesAsMklDnnDims(), dnn_shape_diff_dst.GetTfDataFormat()); } tf_shape_diff_src.AddDim(diff_src_pd.get_size() / sizeof(T)); } else { dnn_shape_diff_src.SetMklTensor(false); tf_shape_diff_src = src_tensor.shape(); } OP_REQUIRES_OK(context, context->forward_input_or_allocate_output( {static_cast<const int>(diff_dst_index)}, static_cast<const int>(diff_src_index), tf_shape_diff_src, &diff_src_tensor)); AllocateOutputSetMklShape(context, diff_src_index, dnn_shape_diff_src); T* diff_src_data = diff_src_tensor->flat<T>().data(); eltwise_bwd->Execute(src_data, diff_dst_data, diff_src_data, bwd_cpu_stream); } catch (dnnl::error& e) { string error_msg = "Status: " + std::to_string(e.status) + ", message: " + string(e.message) + ", in file " + string(__FILE__) + ":" + std::to_string(__LINE__); OP_REQUIRES_OK( context, errors::Aborted("Operation received an exception:", error_msg)); } } private: engine cpu_engine = engine(engine::kind::cpu, 0); std::shared_ptr<EltwiseFwdPd> relu_fwd_pd; protected: float alpha_; float beta_; }; template <typename Device, typename T> class MklReluOp : public MklReluOpBase<Device, T, dnnl::algorithm::eltwise_relu> { public: ~MklReluOp() {} explicit MklReluOp(OpKernelConstruction* context) : MklReluOpBase<Device, T, dnnl::algorithm::eltwise_relu>(context, 0.0f, 0.0f) {} virtual void Compute_Scalar(OpKernelContext* context) { const size_t src_index = 0; const size_t dst_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); MklDnnShape dnn_shape_src; GetMklShape(context, src_index, &dnn_shape_src); Tensor* dst_tensor = nullptr; void* user_i = static_cast<void*>(const_cast<T*>(src_tensor.flat<T>().data())); MklDnnShape dnn_shape_dst; dnn_shape_dst.SetMklTensor(false); AllocateOutputSetMklShape(context, dst_index, &dst_tensor, src_tensor.shape(), dnn_shape_dst); void* out_o = static_cast<void*>(dst_tensor->flat<T>().data()); (static_cast<T*>(out_o))[0] = std::max((static_cast<T*>(user_i))[0], static_cast<T>(0)); return; } }; template <typename Device, typename T> class MklReluGradOp : public MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_relu> { public: ~MklReluGradOp() {} explicit MklReluGradOp(OpKernelConstruction* context) : MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_relu>( context, 0.0f, 0.0f) {} virtual void Compute_Scalar(OpKernelContext* context) { const size_t diff_dst_index = 0; const size_t src_index = 1; const size_t diff_src_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); const Tensor& diff_dst_tensor = MklGetInput(context, diff_dst_index); Tensor* diff_src_tensor = nullptr; MklDnnShape dnn_shape_diff_dst; GetMklShape(context, diff_dst_index, &dnn_shape_diff_dst); MklDnnShape dnn_shape_diff_src; dnn_shape_diff_src.SetMklTensor(false); AllocateOutputSetMklShape(context, diff_src_index, &diff_src_tensor, diff_dst_tensor.shape(), dnn_shape_diff_src); void* out_o = static_cast<void*>(diff_src_tensor->flat<T>().data()); void* user_i = static_cast<void*>(const_cast<T*>(src_tensor.flat<T>().data())); void* user_g = static_cast<void*>(const_cast<T*>(diff_dst_tensor.flat<T>().data())); (static_cast<T*>(out_o))[0] = (static_cast<T*>(user_g))[0] * (static_cast<T>((static_cast<T*>(user_i))[0] > static_cast<T>(0))); return; } }; template <typename Device, typename T> class MklEluOp : public MklReluOpBase<Device, T, dnnl::algorithm::eltwise_elu> { public: ~MklEluOp() {} explicit MklEluOp(OpKernelConstruction* context) : MklReluOpBase<Device, T, dnnl::algorithm::eltwise_elu>(context, 0.0f, 0.0f) {} virtual void Compute_Scalar(OpKernelContext* context) { const size_t src_index = 0; const size_t dst_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); MklDnnShape dnn_shape_src; GetMklShape(context, src_index, &dnn_shape_src); Tensor* dst_tensor = nullptr; void* user_i = static_cast<void*>(const_cast<T*>(src_tensor.flat<T>().data())); MklDnnShape dnn_shape_dst; dnn_shape_dst.SetMklTensor(false); AllocateOutputSetMklShape(context, dst_index, &dst_tensor, src_tensor.shape(), dnn_shape_dst); void* out_o = static_cast<void*>(dst_tensor->flat<T>().data()); T feature = (static_cast<T*>(user_i))[0]; if (feature < static_cast<T>(0)) (static_cast<T*>(out_o))[0] = Eigen::numext::exp(feature); else (static_cast<T*>(out_o))[0] = feature; return; } }; template <typename Device, typename T> class MklEluGradOp : public MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_elu> { public: ~MklEluGradOp() {} explicit MklEluGradOp(OpKernelConstruction* context) : MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_elu>( context, 0.0f, 0.0f) {} virtual void Compute_Scalar(OpKernelContext* context) { const size_t diff_dst_index = 0; const size_t src_index = 1; const size_t diff_src_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); const Tensor& diff_dst_tensor = MklGetInput(context, diff_dst_index); Tensor* diff_src_tensor = nullptr; MklDnnShape dnn_shape_diff_dst; GetMklShape(context, diff_dst_index, &dnn_shape_diff_dst); MklDnnShape dnn_shape_diff_src; dnn_shape_diff_src.SetMklTensor(false); AllocateOutputSetMklShape(context, diff_src_index, &diff_src_tensor, diff_dst_tensor.shape(), dnn_shape_diff_src); void* out_o = static_cast<void*>(diff_src_tensor->flat<T>().data()); void* user_i = static_cast<void*>(const_cast<T*>(src_tensor.flat<T>().data())); void* user_g = static_cast<void*>(const_cast<T*>(diff_dst_tensor.flat<T>().data())); T feature = (static_cast<T*>(user_i))[0]; if (feature > static_cast<T>(0)) { (static_cast<T*>(out_o))[0] = (static_cast<T*>(user_g))[0]; } else { T elu = Eigen::numext::exp(feature) - static_cast<T>(1); (static_cast<T*>(out_o))[0] = (static_cast<T*>(user_g))[0] * (elu + static_cast<T>(1)); } } }; template <typename Device, typename T> class MklTanhOp : public MklReluOpBase<Device, T, dnnl::algorithm::eltwise_tanh> { public: ~MklTanhOp() {} explicit MklTanhOp(OpKernelConstruction* context) : MklReluOpBase<Device, T, dnnl::algorithm::eltwise_tanh>(context, 0.0f, 0.0f) {} virtual void Compute_Scalar(OpKernelContext* context) { const size_t src_index = 0; const size_t dst_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); MklDnnShape dnn_shape_src; GetMklShape(context, src_index, &dnn_shape_src); Tensor* dst_tensor = nullptr; void* user_i = static_cast<void*>(const_cast<T*>(src_tensor.flat<T>().data())); MklDnnShape dnn_shape_dst; dnn_shape_dst.SetMklTensor(false); AllocateOutputSetMklShape(context, dst_index, &dst_tensor, src_tensor.shape(), dnn_shape_dst); void* out_o = static_cast<void*>(dst_tensor->flat<T>().data()); T feature = (static_cast<T*>(user_i))[0]; T e1 = Eigen::numext::exp(feature); T e2 = Eigen::numext::exp(-feature); (static_cast<T*>(out_o))[0] = (e1 - e2) / (e1 + e2); return; } }; template <typename Device, typename T> class MklTanhGradOp : public MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_tanh_use_dst_for_bwd> { public: ~MklTanhGradOp() {} explicit MklTanhGradOp(OpKernelConstruction* context) : MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_tanh_use_dst_for_bwd>( context, 0.0f, 0.0f) {} virtual int GetDiffDstIndex() const { return 1; } virtual int GetSrcIndex() const { return 0; } virtual int GetDiffSrcIndex() const { return 0; } virtual int GetTypeOfInputTensorFromFwdOp() const { return DNNL_ARG_DST; } virtual void Compute_Scalar(OpKernelContext* context) { const size_t diff_dst_index = GetDiffDstIndex(); const size_t src_index = GetSrcIndex(); const size_t diff_src_index = GetDiffSrcIndex(); const Tensor& src_tensor = MklGetInput(context, src_index); const Tensor& diff_dst_tensor = MklGetInput(context, diff_dst_index); Tensor* diff_src_tensor = nullptr; MklDnnShape dnn_shape_diff_dst; GetMklShape(context, diff_dst_index, &dnn_shape_diff_dst); MklDnnShape dnn_shape_diff_src; dnn_shape_diff_src.SetMklTensor(false); AllocateOutputSetMklShape(context, diff_src_index, &diff_src_tensor, diff_dst_tensor.shape(), dnn_shape_diff_src); void* out_o = static_cast<void*>(diff_src_tensor->flat<T>().data()); void* user_i = static_cast<void*>(const_cast<T*>(src_tensor.flat<T>().data())); T tanh = (static_cast<T*>(user_i))[0]; void* user_g = static_cast<void*>(const_cast<T*>(diff_dst_tensor.flat<T>().data())); (static_cast<T*>(out_o))[0] = (static_cast<T*>(user_g))[0] * (static_cast<T>(1) - tanh * tanh); } }; #define RELU6_UPPER_BOUND 6.0f template <typename Device, typename T> class MklRelu6Op : public MklReluOpBase<Device, T, dnnl::algorithm::eltwise_bounded_relu> { public: ~MklRelu6Op() {} explicit MklRelu6Op(OpKernelConstruction* context) : MklReluOpBase<Device, T, dnnl::algorithm::eltwise_bounded_relu>( context, RELU6_UPPER_BOUND, 0.0f) {} virtual void Compute_Scalar(OpKernelContext* context) { const size_t src_index = 0; const size_t dst_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); MklDnnShape dnn_shape_src; GetMklShape(context, src_index, &dnn_shape_src); Tensor* dst_tensor = nullptr; T* user_i = const_cast<T*>(src_tensor.flat<T>().data()); MklDnnShape dnn_shape_dst; dnn_shape_dst.SetMklTensor(false); AllocateOutputSetMklShape(context, dst_index, &dst_tensor, src_tensor.shape(), dnn_shape_dst); T* out_o = dst_tensor->flat<T>().data(); out_o[0] = std::min(std::max(user_i[0], static_cast<T>(0)), static_cast<T>(RELU6_UPPER_BOUND)); return; } }; template <typename Device, typename T> class MklRelu6GradOp : public MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_bounded_relu> { public: ~MklRelu6GradOp() {} explicit MklRelu6GradOp(OpKernelConstruction* context) : MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_bounded_relu>( context, RELU6_UPPER_BOUND, 0.0f) {} virtual void Compute_Scalar(OpKernelContext* context) { const size_t diff_dst_index = 0; const size_t src_index = 1; const size_t diff_src_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); const Tensor& diff_dst_tensor = MklGetInput(context, diff_dst_index); Tensor* diff_src_tensor = nullptr; MklDnnShape dnn_shape_diff_dst; GetMklShape(context, diff_dst_index, &dnn_shape_diff_dst); MklDnnShape dnn_shape_diff_src; dnn_shape_diff_src.SetMklTensor(false); AllocateOutputSetMklShape(context, diff_src_index, &diff_src_tensor, diff_dst_tensor.shape(), dnn_shape_diff_src); T* out_o = diff_src_tensor->flat<T>().data(); T* user_i = const_cast<T*>(src_tensor.flat<T>().data()); T* user_g = const_cast<T*>(diff_dst_tensor.flat<T>().data()); out_o[0] = user_g[0] * static_cast<T>(user_i[0] > static_cast<T>(0) && (user_i[0] < static_cast<T>(RELU6_UPPER_BOUND))); return; } }; template <typename Device, typename T> class MklLeakyReluOp : public MklReluOpBase<Device, T, dnnl::algorithm::eltwise_relu> { public: ~MklLeakyReluOp() {} explicit MklLeakyReluOp(OpKernelConstruction* context) : MklReluOpBase<Device, T, dnnl::algorithm::eltwise_relu>(context, 0.0f, 0.0f) { float alpha; OP_REQUIRES_OK(context, context->GetAttr("alpha", &alpha)); OP_REQUIRES( context, alpha <= 1, errors::InvalidArgument("MKL LeakyRelu only supports alpha <= 1. " "alpha is: ", alpha)); this->alpha_ = alpha; } virtual void Compute_Scalar(OpKernelContext* context) { const size_t src_index = 0; const size_t dst_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); MklDnnShape dnn_shape_src; GetMklShape(context, src_index, &dnn_shape_src); Tensor* dst_tensor = nullptr; T* user_i = const_cast<T*>(src_tensor.flat<T>().data()); MklDnnShape dnn_shape_dst; dnn_shape_dst.SetMklTensor(false); AllocateOutputSetMklShape(context, dst_index, &dst_tensor, src_tensor.shape(), dnn_shape_dst); T* out_o = dst_tensor->flat<T>().data(); out_o[0] = user_i[0] >= T(0) ? user_i[0] : user_i[0] * T(this->alpha_); return; } }; template <typename Device, typename T> class MklLeakyReluGradOp : public MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_relu> { public: ~MklLeakyReluGradOp() {} explicit MklLeakyReluGradOp(OpKernelConstruction* context) : MklReluGradOpBase<Device, T, dnnl::algorithm::eltwise_relu>( context, 0.0f, 0.0f) { float alpha; OP_REQUIRES_OK(context, context->GetAttr("alpha", &alpha)); OP_REQUIRES( context, alpha <= 1, errors::InvalidArgument("MKL LeakyRelu only supports alpha <= 1. " "alpha is: ", alpha)); this->alpha_ = alpha; } virtual void Compute_Scalar(OpKernelContext* context) { const size_t diff_dst_index = 0; const size_t src_index = 1; const size_t diff_src_index = 0; const Tensor& src_tensor = MklGetInput(context, src_index); const Tensor& diff_dst_tensor = MklGetInput(context, diff_dst_index); Tensor* diff_src_tensor = nullptr; MklDnnShape dnn_shape_diff_dst; GetMklShape(context, diff_dst_index, &dnn_shape_diff_dst); MklDnnShape dnn_shape_diff_src; dnn_shape_diff_src.SetMklTensor(false); AllocateOutputSetMklShape(context, diff_src_index, &diff_src_tensor, diff_dst_tensor.shape(), dnn_shape_diff_src); T* out_o = diff_src_tensor->flat<T>().data(); T* user_i = const_cast<T*>(src_tensor.flat<T>().data()); T* user_g = const_cast<T*>(diff_dst_tensor.flat<T>().data()); out_o[0] = user_i[0] >= static_cast<T>(0) ? user_g[0] : user_g[0] * static_cast<T>(this->alpha_); return; } }; #define REGISTER_RELU_MKL_SUPPORTED_KERNELS_TYPES(type) \ REGISTER_KERNEL_BUILDER( \ Name("_MklRelu") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklReluOp<CPUDevice, type>); \ REGISTER_KERNEL_BUILDER( \ Name("_MklReluGrad") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklReluGradOp<CPUDevice, type>); TF_CALL_float(REGISTER_RELU_MKL_SUPPORTED_KERNELS_TYPES); TF_CALL_bfloat16(REGISTER_RELU_MKL_SUPPORTED_KERNELS_TYPES); #define REGISTER_ELU_MKL_SUPPORTED_KERNELS_TYPES(type) \ REGISTER_KERNEL_BUILDER( \ Name("_MklElu") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklEluOp<CPUDevice, type>); \ REGISTER_KERNEL_BUILDER( \ Name("_MklEluGrad") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklEluGradOp<CPUDevice, type>); TF_CALL_float(REGISTER_ELU_MKL_SUPPORTED_KERNELS_TYPES); TF_CALL_bfloat16(REGISTER_ELU_MKL_SUPPORTED_KERNELS_TYPES); #define REGISTER_TANH_MKL_SUPPORTED_KERNELS_TYPES(type) \ REGISTER_KERNEL_BUILDER( \ Name("_MklTanh") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklTanhOp<CPUDevice, type>); \ REGISTER_KERNEL_BUILDER( \ Name("_MklTanhGrad") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklTanhGradOp<CPUDevice, type>); TF_CALL_float(REGISTER_TANH_MKL_SUPPORTED_KERNELS_TYPES); TF_CALL_bfloat16(REGISTER_TANH_MKL_SUPPORTED_KERNELS_TYPES); #define REGISTER_RELU6_MKL_SUPPORTED_KERNELS_TYPES(type) \ REGISTER_KERNEL_BUILDER( \ Name("_MklRelu6") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklRelu6Op<CPUDevice, type>); \ REGISTER_KERNEL_BUILDER( \ Name("_MklRelu6Grad") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklRelu6GradOp<CPUDevice, type>); TF_CALL_float(REGISTER_RELU6_MKL_SUPPORTED_KERNELS_TYPES); TF_CALL_bfloat16(REGISTER_RELU6_MKL_SUPPORTED_KERNELS_TYPES); #define REGISTER_LeakyRelu_MKL_SUPPORTED_KERNELS_TYPES(type) \ REGISTER_KERNEL_BUILDER( \ Name("_MklLeakyRelu") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklLeakyReluOp<CPUDevice, type>); \ REGISTER_KERNEL_BUILDER( \ Name("_MklLeakyReluGrad") \ .Device(DEVICE_CPU) \ .TypeConstraint<type>("T") \ .Label(mkl_op_registry::kMklLayoutDependentOpLabel), \ MklLeakyReluGradOp<CPUDevice, type>); TF_CALL_float(REGISTER_LeakyRelu_MKL_SUPPORTED_KERNELS_TYPES); TF_CALL_bfloat16(REGISTER_LeakyRelu_MKL_SUPPORTED_KERNELS_TYPES); } #endif
#if defined(INTEL_MKL) && !defined(ENABLE_ONEDNN_V3) && defined(ENABLE_MKL) #include "absl/strings/match.h" #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/nn_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/common_runtime/kernel_benchmark_testlib.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/platform/cpu_info.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/stacktrace_handler.h" #include "tensorflow/core/platform/str_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/util/mkl_util.h" namespace tensorflow { static Graph* Activation(const string& op_name, const string& kind, const TensorShape& shape) { auto* graph = new Graph(OpRegistry::Global()); const string node_name = kind + "_" + op_name; const bool isForwardOp = !tensorflow::str_util::EndsWith(op_name, "Grad"); const bool isDefault = (kind == "Default"); Tensor input_t(DT_FLOAT, shape); input_t.flat<float>().setRandom(); Node* input = test::graph::Constant(graph, input_t, "input"); Node* not_mkl_shape = test::graph::Constant(graph, GetMklMetaTensor(), "not_mkl"); if (isForwardOp) { if (isDefault) { TF_CHECK_OK(NodeBuilder(graph->NewName(node_name), op_name) .Input(input) .Attr("T", DT_FLOAT) .Finalize(graph, nullptr)); return graph; } TF_CHECK_OK(NodeBuilder(graph->NewName(node_name), "_Mkl" + op_name) .Input(input) .Input(not_mkl_shape) .Attr("T", DT_FLOAT) .Attr("_kernel", "MklLayoutDependentOp") .Finalize(graph, nullptr)); return graph; } Tensor grad_t(DT_FLOAT, shape); grad_t.flat<float>().setRandom(); Node* grad = test::graph::Constant(graph, grad_t, "grad"); if (isDefault) { TF_CHECK_OK(NodeBuilder(graph->NewName(node_name), op_name) .Input(grad) .Input(input) .Attr("T", DT_FLOAT) .Finalize(graph, nullptr)); return graph; } TF_CHECK_OK(NodeBuilder(graph->NewName(node_name), "_Mkl" + op_name) .Input(grad) .Input(input) .Input(not_mkl_shape) .Input(not_mkl_shape) .Attr("T", DT_FLOAT) .Attr("_kernel", "MklLayoutDependentOp") .Finalize(graph, nullptr)); return graph; } #define BM_Activation(op, kind, A, B, C, D, type) \ static void BM_##op##_##kind##_##type##_##A##_##B##_##C##_##D( \ ::testing::benchmark::State& state) { \ int64 num_computed_elements = (A) * (B) * (C) * (D); \ int64 flops_per_iter = num_computed_elements; \ \ test::Benchmark(#type, Activation(#op, #kind, {A, B, C, D}), \ false) \ .Run(state); \ state.SetItemsProcessed(state.iterations() * flops_per_iter); \ } \ BENCHMARK(BM_##op##_##kind##_##type##_##A##_##B##_##C##_##D) #define BM(op, A, B, C, D, type) \ BM_Activation(op, Default, A, B, C, D, type); \ BM_Activation(op, Mkl, A, B, C, D, type); #define TEST_ALL_SIZES(OP) \ BM(OP, 2, 4, 8, 16, cpu); \ BM(OP, 3, 5, 9, 17, cpu); \ BM(OP, 32, 64, 128, 256, cpu); \ BM(OP, 33, 65, 129, 257, cpu); TEST_ALL_SIZES(Tanh) TEST_ALL_SIZES(TanhGrad) TEST_ALL_SIZES(Relu) TEST_ALL_SIZES(ReluGrad) TEST_ALL_SIZES(Elu) TEST_ALL_SIZES(EluGrad) TEST_ALL_SIZES(Relu6) TEST_ALL_SIZES(Relu6Grad) TEST_ALL_SIZES(LeakyRelu) TEST_ALL_SIZES(LeakyReluGrad) } #endif
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_relu_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/mkl/mkl_relu_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
89bd881f-5e83-40d0-a29d-07fe18039cf9
cpp
tensorflow/tensorflow
type_id_registry
third_party/xla/xla/ffi/type_id_registry.cc
third_party/xla/xla/ffi/type_id_registry_test.cc
#include "xla/ffi/type_id_registry.h" #include <atomic> #include <cstdint> #include <string> #include <string_view> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "xla/util.h" namespace xla::ffi { ABSL_CONST_INIT absl::Mutex type_registry_mutex(absl::kConstInit); using ExternalTypeIdRegistry = absl::flat_hash_map<std::string, TypeIdRegistry::TypeId>; static ExternalTypeIdRegistry& StaticExternalTypeIdRegistry() { static auto* registry = new ExternalTypeIdRegistry(); return *registry; } TypeIdRegistry::TypeId TypeIdRegistry::GetNextTypeId() { static auto* counter = new std::atomic<int64_t>(1); return TypeId(counter->fetch_add(1)); } absl::StatusOr<TypeIdRegistry::TypeId> TypeIdRegistry::RegisterExternalTypeId( std::string_view name) { absl::MutexLock lock(&type_registry_mutex); auto& registry = StaticExternalTypeIdRegistry(); auto emplaced = registry.emplace(name, TypeId(0)); if (!emplaced.second) { return Internal("Type id %d already registered for type name %s", emplaced.first->second.value(), name); } return emplaced.first->second = GetNextTypeId(); } }
#include "xla/ffi/type_id_registry.h" #include <cstdint> #include "absl/status/status.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::ffi { namespace { using ::testing::HasSubstr; TEST(TypeIdRegistryTest, RegisterExternalTypeId) { TF_ASSERT_OK_AND_ASSIGN(auto type_id, TypeIdRegistry::RegisterExternalTypeId("foo")); EXPECT_GE(type_id.value(), 0); auto duplicate_type_id = TypeIdRegistry::RegisterExternalTypeId("foo"); EXPECT_THAT(duplicate_type_id.status().message(), HasSubstr("already registered for type name foo")); } TEST(TypeIdRegistryTest, RegisterInternalTypeId) { auto int32_type_id = TypeIdRegistry::GetTypeId<int32_t>(); auto int64_type_id = TypeIdRegistry::GetTypeId<int64_t>(); EXPECT_NE(int32_type_id, int64_type_id); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/type_id_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/ffi/type_id_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
e4078ac1-cb85-470a-adbf-9698468e662b
cpp
google/quiche
quic_linux_socket_utils
quiche/quic/core/quic_linux_socket_utils.cc
quiche/quic/core/quic_linux_socket_utils_test.cc
#include "quiche/quic/core/quic_linux_socket_utils.h" #include <linux/net_tstamp.h> #include <netinet/in.h> #include <cstddef> #include <cstdint> #include <string> #include "quiche/quic/core/quic_syscall_wrapper.h" #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/common/platform/api/quiche_logging.h" namespace quic { QuicMsgHdr::QuicMsgHdr(iovec* iov, size_t iov_len, char* cbuf, size_t cbuf_size) : cbuf_(cbuf), cbuf_size_(cbuf_size), cmsg_(nullptr) { hdr_.msg_name = nullptr; hdr_.msg_namelen = 0; hdr_.msg_iov = iov; hdr_.msg_iovlen = iov_len; hdr_.msg_flags = 0; hdr_.msg_control = nullptr; hdr_.msg_controllen = 0; } void QuicMsgHdr::SetPeerAddress(const QuicSocketAddress& peer_address) { QUICHE_DCHECK(peer_address.IsInitialized()); raw_peer_address_ = peer_address.generic_address(); hdr_.msg_name = &raw_peer_address_; hdr_.msg_namelen = raw_peer_address_.ss_family == AF_INET ? sizeof(sockaddr_in) : sizeof(sockaddr_in6); } void QuicMsgHdr::SetIpInNextCmsg(const QuicIpAddress& self_address) { if (!self_address.IsInitialized()) { return; } if (self_address.IsIPv4()) { QuicLinuxSocketUtils::SetIpInfoInCmsgData( self_address, GetNextCmsgData<in_pktinfo>(IPPROTO_IP, IP_PKTINFO)); } else { QuicLinuxSocketUtils::SetIpInfoInCmsgData( self_address, GetNextCmsgData<in6_pktinfo>(IPPROTO_IPV6, IPV6_PKTINFO)); } } void* QuicMsgHdr::GetNextCmsgDataInternal(int cmsg_level, int cmsg_type, size_t data_size) { hdr_.msg_controllen += CMSG_SPACE(data_size); QUICHE_DCHECK_LE(hdr_.msg_controllen, cbuf_size_); if (cmsg_ == nullptr) { QUICHE_DCHECK_EQ(nullptr, hdr_.msg_control); memset(cbuf_, 0, cbuf_size_); hdr_.msg_control = cbuf_; cmsg_ = CMSG_FIRSTHDR(&hdr_); } else { QUICHE_DCHECK_NE(nullptr, hdr_.msg_control); cmsg_ = CMSG_NXTHDR(&hdr_, cmsg_); } QUICHE_DCHECK_NE(nullptr, cmsg_) << "Insufficient control buffer space"; cmsg_->cmsg_len = CMSG_LEN(data_size); cmsg_->cmsg_level = cmsg_level; cmsg_->cmsg_type = cmsg_type; return CMSG_DATA(cmsg_); } void QuicMMsgHdr::InitOneHeader(int i, const BufferedWrite& buffered_write) { mmsghdr* mhdr = GetMMsgHdr(i); msghdr* hdr = &mhdr->msg_hdr; iovec* iov = GetIov(i); iov->iov_base = const_cast<char*>(buffered_write.buffer); iov->iov_len = buffered_write.buf_len; hdr->msg_iov = iov; hdr->msg_iovlen = 1; hdr->msg_control = nullptr; hdr->msg_controllen = 0; QUICHE_DCHECK(buffered_write.peer_address.IsInitialized()); sockaddr_storage* peer_address_storage = GetPeerAddressStorage(i); *peer_address_storage = buffered_write.peer_address.generic_address(); hdr->msg_name = peer_address_storage; hdr->msg_namelen = peer_address_storage->ss_family == AF_INET ? sizeof(sockaddr_in) : sizeof(sockaddr_in6); } void QuicMMsgHdr::SetIpInNextCmsg(int i, const QuicIpAddress& self_address) { if (!self_address.IsInitialized()) { return; } if (self_address.IsIPv4()) { QuicLinuxSocketUtils::SetIpInfoInCmsgData( self_address, GetNextCmsgData<in_pktinfo>(i, IPPROTO_IP, IP_PKTINFO)); } else { QuicLinuxSocketUtils::SetIpInfoInCmsgData( self_address, GetNextCmsgData<in6_pktinfo>(i, IPPROTO_IPV6, IPV6_PKTINFO)); } } void* QuicMMsgHdr::GetNextCmsgDataInternal(int i, int cmsg_level, int cmsg_type, size_t data_size) { mmsghdr* mhdr = GetMMsgHdr(i); msghdr* hdr = &mhdr->msg_hdr; cmsghdr*& cmsg = *GetCmsgHdr(i); hdr->msg_controllen += CMSG_SPACE(data_size); QUICHE_DCHECK_LE(hdr->msg_controllen, cbuf_size_); if (cmsg == nullptr) { QUICHE_DCHECK_EQ(nullptr, hdr->msg_control); hdr->msg_control = GetCbuf(i); cmsg = CMSG_FIRSTHDR(hdr); } else { QUICHE_DCHECK_NE(nullptr, hdr->msg_control); cmsg = CMSG_NXTHDR(hdr, cmsg); } QUICHE_DCHECK_NE(nullptr, cmsg) << "Insufficient control buffer space"; cmsg->cmsg_len = CMSG_LEN(data_size); cmsg->cmsg_level = cmsg_level; cmsg->cmsg_type = cmsg_type; return CMSG_DATA(cmsg); } int QuicMMsgHdr::num_bytes_sent(int num_packets_sent) { QUICHE_DCHECK_LE(0, num_packets_sent); QUICHE_DCHECK_LE(num_packets_sent, num_msgs_); int bytes_sent = 0; iovec* iov = GetIov(0); for (int i = 0; i < num_packets_sent; ++i) { bytes_sent += iov[i].iov_len; } return bytes_sent; } int QuicLinuxSocketUtils::GetUDPSegmentSize(int fd) { int optval; socklen_t optlen = sizeof(optval); int rc = getsockopt(fd, SOL_UDP, UDP_SEGMENT, &optval, &optlen); if (rc < 0) { QUIC_LOG_EVERY_N_SEC(INFO, 10) << "getsockopt(UDP_SEGMENT) failed: " << strerror(errno); return -1; } QUIC_LOG_EVERY_N_SEC(INFO, 10) << "getsockopt(UDP_SEGMENT) returned segment size: " << optval; return optval; } bool QuicLinuxSocketUtils::EnableReleaseTime(int fd, clockid_t clockid) { struct LinuxSockTxTime { clockid_t clockid; uint32_t flags; }; LinuxSockTxTime so_txtime_val{clockid, 0}; if (setsockopt(fd, SOL_SOCKET, SO_TXTIME, &so_txtime_val, sizeof(so_txtime_val)) != 0) { QUIC_LOG_EVERY_N_SEC(INFO, 10) << "setsockopt(SOL_SOCKET,SO_TXTIME) failed: " << strerror(errno); return false; } return true; } bool QuicLinuxSocketUtils::GetTtlFromMsghdr(struct msghdr* hdr, int* ttl) { if (hdr->msg_controllen > 0) { struct cmsghdr* cmsg; for (cmsg = CMSG_FIRSTHDR(hdr); cmsg != nullptr; cmsg = CMSG_NXTHDR(hdr, cmsg)) { if ((cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_TTL) || (cmsg->cmsg_level == IPPROTO_IPV6 && cmsg->cmsg_type == IPV6_HOPLIMIT)) { *ttl = *(reinterpret_cast<int*>(CMSG_DATA(cmsg))); return true; } } } return false; } void QuicLinuxSocketUtils::SetIpInfoInCmsgData( const QuicIpAddress& self_address, void* cmsg_data) { QUICHE_DCHECK(self_address.IsInitialized()); const std::string& address_str = self_address.ToPackedString(); if (self_address.IsIPv4()) { in_pktinfo* pktinfo = static_cast<in_pktinfo*>(cmsg_data); pktinfo->ipi_ifindex = 0; memcpy(&pktinfo->ipi_spec_dst, address_str.c_str(), address_str.length()); } else if (self_address.IsIPv6()) { in6_pktinfo* pktinfo = static_cast<in6_pktinfo*>(cmsg_data); memcpy(&pktinfo->ipi6_addr, address_str.c_str(), address_str.length()); } else { QUIC_BUG(quic_bug_10598_1) << "Unrecognized IPAddress"; } } size_t QuicLinuxSocketUtils::SetIpInfoInCmsg(const QuicIpAddress& self_address, cmsghdr* cmsg) { std::string address_string; if (self_address.IsIPv4()) { cmsg->cmsg_len = CMSG_LEN(sizeof(in_pktinfo)); cmsg->cmsg_level = IPPROTO_IP; cmsg->cmsg_type = IP_PKTINFO; in_pktinfo* pktinfo = reinterpret_cast<in_pktinfo*>(CMSG_DATA(cmsg)); memset(pktinfo, 0, sizeof(in_pktinfo)); pktinfo->ipi_ifindex = 0; address_string = self_address.ToPackedString(); memcpy(&pktinfo->ipi_spec_dst, address_string.c_str(), address_string.length()); return sizeof(in_pktinfo); } else if (self_address.IsIPv6()) { cmsg->cmsg_len = CMSG_LEN(sizeof(in6_pktinfo)); cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_PKTINFO; in6_pktinfo* pktinfo = reinterpret_cast<in6_pktinfo*>(CMSG_DATA(cmsg)); memset(pktinfo, 0, sizeof(in6_pktinfo)); address_string = self_address.ToPackedString(); memcpy(&pktinfo->ipi6_addr, address_string.c_str(), address_string.length()); return sizeof(in6_pktinfo); } else { QUIC_BUG(quic_bug_10598_2) << "Unrecognized IPAddress"; return 0; } } WriteResult QuicLinuxSocketUtils::WritePacket(int fd, const QuicMsgHdr& hdr) { int rc; do { rc = GetGlobalSyscallWrapper()->Sendmsg(fd, hdr.hdr(), 0); } while (rc < 0 && errno == EINTR); if (rc >= 0) { return WriteResult(WRITE_STATUS_OK, rc); } return WriteResult((errno == EAGAIN || errno == EWOULDBLOCK) ? WRITE_STATUS_BLOCKED : WRITE_STATUS_ERROR, errno); } WriteResult QuicLinuxSocketUtils::WriteMultiplePackets(int fd, QuicMMsgHdr* mhdr, int* num_packets_sent) { *num_packets_sent = 0; if (mhdr->num_msgs() <= 0) { return WriteResult(WRITE_STATUS_ERROR, EINVAL); } int rc; do { rc = GetGlobalSyscallWrapper()->Sendmmsg(fd, mhdr->mhdr(), mhdr->num_msgs(), 0); } while (rc < 0 && errno == EINTR); if (rc > 0) { *num_packets_sent = rc; return WriteResult(WRITE_STATUS_OK, mhdr->num_bytes_sent(rc)); } else if (rc == 0) { QUIC_BUG(quic_bug_10598_3) << "sendmmsg returned 0, returning WRITE_STATUS_ERROR. errno: " << errno; errno = EIO; } return WriteResult((errno == EAGAIN || errno == EWOULDBLOCK) ? WRITE_STATUS_BLOCKED : WRITE_STATUS_ERROR, errno); } }
#include "quiche/quic/core/quic_linux_socket_utils.h" #include <netinet/in.h> #include <stdint.h> #include <cstddef> #include <sstream> #include <string> #include <vector> #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_mock_syscall_wrapper.h" #include "quiche/common/quiche_circular_deque.h" using testing::_; using testing::InSequence; using testing::Invoke; namespace quic { namespace test { namespace { class QuicLinuxSocketUtilsTest : public QuicTest { protected: WriteResult TestWriteMultiplePackets( int fd, const quiche::QuicheCircularDeque<BufferedWrite>::const_iterator& first, const quiche::QuicheCircularDeque<BufferedWrite>::const_iterator& last, int* num_packets_sent) { QuicMMsgHdr mhdr( first, last, kCmsgSpaceForIp, [](QuicMMsgHdr* mhdr, int i, const BufferedWrite& buffered_write) { mhdr->SetIpInNextCmsg(i, buffered_write.self_address); }); WriteResult res = QuicLinuxSocketUtils::WriteMultiplePackets(fd, &mhdr, num_packets_sent); return res; } MockQuicSyscallWrapper mock_syscalls_; ScopedGlobalSyscallWrapperOverride syscall_override_{&mock_syscalls_}; }; void CheckIpAndTtlInCbuf(msghdr* hdr, const void* cbuf, const QuicIpAddress& self_addr, int ttl) { const bool is_ipv4 = self_addr.IsIPv4(); const size_t ip_cmsg_space = is_ipv4 ? kCmsgSpaceForIpv4 : kCmsgSpaceForIpv6; EXPECT_EQ(cbuf, hdr->msg_control); EXPECT_EQ(ip_cmsg_space + CMSG_SPACE(sizeof(uint16_t)), hdr->msg_controllen); cmsghdr* cmsg = CMSG_FIRSTHDR(hdr); EXPECT_EQ(cmsg->cmsg_len, is_ipv4 ? CMSG_LEN(sizeof(in_pktinfo)) : CMSG_LEN(sizeof(in6_pktinfo))); EXPECT_EQ(cmsg->cmsg_level, is_ipv4 ? IPPROTO_IP : IPPROTO_IPV6); EXPECT_EQ(cmsg->cmsg_type, is_ipv4 ? IP_PKTINFO : IPV6_PKTINFO); const std::string& self_addr_str = self_addr.ToPackedString(); if (is_ipv4) { in_pktinfo* pktinfo = reinterpret_cast<in_pktinfo*>(CMSG_DATA(cmsg)); EXPECT_EQ(0, memcmp(&pktinfo->ipi_spec_dst, self_addr_str.c_str(), self_addr_str.length())); } else { in6_pktinfo* pktinfo = reinterpret_cast<in6_pktinfo*>(CMSG_DATA(cmsg)); EXPECT_EQ(0, memcmp(&pktinfo->ipi6_addr, self_addr_str.c_str(), self_addr_str.length())); } cmsg = CMSG_NXTHDR(hdr, cmsg); EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(sizeof(int))); EXPECT_EQ(cmsg->cmsg_level, is_ipv4 ? IPPROTO_IP : IPPROTO_IPV6); EXPECT_EQ(cmsg->cmsg_type, is_ipv4 ? IP_TTL : IPV6_HOPLIMIT); EXPECT_EQ(ttl, *reinterpret_cast<int*>(CMSG_DATA(cmsg))); EXPECT_EQ(nullptr, CMSG_NXTHDR(hdr, cmsg)); } void CheckMsghdrWithoutCbuf(const msghdr* hdr, const void* buffer, size_t buf_len, const QuicSocketAddress& peer_addr) { EXPECT_EQ( peer_addr.host().IsIPv4() ? sizeof(sockaddr_in) : sizeof(sockaddr_in6), hdr->msg_namelen); sockaddr_storage peer_generic_addr = peer_addr.generic_address(); EXPECT_EQ(0, memcmp(hdr->msg_name, &peer_generic_addr, hdr->msg_namelen)); EXPECT_EQ(1u, hdr->msg_iovlen); EXPECT_EQ(buffer, hdr->msg_iov->iov_base); EXPECT_EQ(buf_len, hdr->msg_iov->iov_len); EXPECT_EQ(0, hdr->msg_flags); EXPECT_EQ(nullptr, hdr->msg_control); EXPECT_EQ(0u, hdr->msg_controllen); } void CheckIpAndGsoSizeInCbuf(msghdr* hdr, const void* cbuf, const QuicIpAddress& self_addr, uint16_t gso_size) { const bool is_ipv4 = self_addr.IsIPv4(); const size_t ip_cmsg_space = is_ipv4 ? kCmsgSpaceForIpv4 : kCmsgSpaceForIpv6; EXPECT_EQ(cbuf, hdr->msg_control); EXPECT_EQ(ip_cmsg_space + CMSG_SPACE(sizeof(uint16_t)), hdr->msg_controllen); cmsghdr* cmsg = CMSG_FIRSTHDR(hdr); EXPECT_EQ(cmsg->cmsg_len, is_ipv4 ? CMSG_LEN(sizeof(in_pktinfo)) : CMSG_LEN(sizeof(in6_pktinfo))); EXPECT_EQ(cmsg->cmsg_level, is_ipv4 ? IPPROTO_IP : IPPROTO_IPV6); EXPECT_EQ(cmsg->cmsg_type, is_ipv4 ? IP_PKTINFO : IPV6_PKTINFO); const std::string& self_addr_str = self_addr.ToPackedString(); if (is_ipv4) { in_pktinfo* pktinfo = reinterpret_cast<in_pktinfo*>(CMSG_DATA(cmsg)); EXPECT_EQ(0, memcmp(&pktinfo->ipi_spec_dst, self_addr_str.c_str(), self_addr_str.length())); } else { in6_pktinfo* pktinfo = reinterpret_cast<in6_pktinfo*>(CMSG_DATA(cmsg)); EXPECT_EQ(0, memcmp(&pktinfo->ipi6_addr, self_addr_str.c_str(), self_addr_str.length())); } cmsg = CMSG_NXTHDR(hdr, cmsg); EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(sizeof(uint16_t))); EXPECT_EQ(cmsg->cmsg_level, SOL_UDP); EXPECT_EQ(cmsg->cmsg_type, UDP_SEGMENT); EXPECT_EQ(gso_size, *reinterpret_cast<uint16_t*>(CMSG_DATA(cmsg))); EXPECT_EQ(nullptr, CMSG_NXTHDR(hdr, cmsg)); } TEST_F(QuicLinuxSocketUtilsTest, QuicMsgHdr) { QuicSocketAddress peer_addr(QuicIpAddress::Loopback4(), 1234); char packet_buf[1024]; iovec iov{packet_buf, sizeof(packet_buf)}; { QuicMsgHdr quic_hdr(&iov, 1, nullptr, 0); quic_hdr.SetPeerAddress(peer_addr); CheckMsghdrWithoutCbuf(quic_hdr.hdr(), packet_buf, sizeof(packet_buf), peer_addr); } for (bool is_ipv4 : {true, false}) { QuicIpAddress self_addr = is_ipv4 ? QuicIpAddress::Loopback4() : QuicIpAddress::Loopback6(); alignas(cmsghdr) char cbuf[kCmsgSpaceForIp + kCmsgSpaceForTTL]; QuicMsgHdr quic_hdr(&iov, 1, cbuf, sizeof(cbuf)); quic_hdr.SetPeerAddress(peer_addr); msghdr* hdr = const_cast<msghdr*>(quic_hdr.hdr()); EXPECT_EQ(nullptr, hdr->msg_control); EXPECT_EQ(0u, hdr->msg_controllen); quic_hdr.SetIpInNextCmsg(self_addr); EXPECT_EQ(cbuf, hdr->msg_control); const size_t ip_cmsg_space = is_ipv4 ? kCmsgSpaceForIpv4 : kCmsgSpaceForIpv6; EXPECT_EQ(ip_cmsg_space, hdr->msg_controllen); if (is_ipv4) { *quic_hdr.GetNextCmsgData<int>(IPPROTO_IP, IP_TTL) = 32; } else { *quic_hdr.GetNextCmsgData<int>(IPPROTO_IPV6, IPV6_HOPLIMIT) = 32; } CheckIpAndTtlInCbuf(hdr, cbuf, self_addr, 32); } } TEST_F(QuicLinuxSocketUtilsTest, QuicMMsgHdr) { quiche::QuicheCircularDeque<BufferedWrite> buffered_writes; char packet_buf1[1024]; char packet_buf2[512]; buffered_writes.emplace_back( packet_buf1, sizeof(packet_buf1), QuicIpAddress::Loopback4(), QuicSocketAddress(QuicIpAddress::Loopback4(), 4)); buffered_writes.emplace_back( packet_buf2, sizeof(packet_buf2), QuicIpAddress::Loopback6(), QuicSocketAddress(QuicIpAddress::Loopback6(), 6)); QuicMMsgHdr quic_mhdr_without_cbuf(buffered_writes.begin(), buffered_writes.end(), 0); for (size_t i = 0; i < buffered_writes.size(); ++i) { const BufferedWrite& bw = buffered_writes[i]; CheckMsghdrWithoutCbuf(&quic_mhdr_without_cbuf.mhdr()[i].msg_hdr, bw.buffer, bw.buf_len, bw.peer_address); } QuicMMsgHdr quic_mhdr_with_cbuf( buffered_writes.begin(), buffered_writes.end(), kCmsgSpaceForIp + kCmsgSpaceForSegmentSize, [](QuicMMsgHdr* mhdr, int i, const BufferedWrite& buffered_write) { mhdr->SetIpInNextCmsg(i, buffered_write.self_address); *mhdr->GetNextCmsgData<uint16_t>(i, SOL_UDP, UDP_SEGMENT) = 1300; }); for (size_t i = 0; i < buffered_writes.size(); ++i) { const BufferedWrite& bw = buffered_writes[i]; msghdr* hdr = &quic_mhdr_with_cbuf.mhdr()[i].msg_hdr; CheckIpAndGsoSizeInCbuf(hdr, hdr->msg_control, bw.self_address, 1300); } } TEST_F(QuicLinuxSocketUtilsTest, WriteMultiplePackets_NoPacketsToSend) { int num_packets_sent; quiche::QuicheCircularDeque<BufferedWrite> buffered_writes; EXPECT_CALL(mock_syscalls_, Sendmmsg(_, _, _, _)).Times(0); EXPECT_EQ(WriteResult(WRITE_STATUS_ERROR, EINVAL), TestWriteMultiplePackets(1, buffered_writes.begin(), buffered_writes.end(), &num_packets_sent)); } TEST_F(QuicLinuxSocketUtilsTest, WriteMultiplePackets_WriteBlocked) { int num_packets_sent; quiche::QuicheCircularDeque<BufferedWrite> buffered_writes; buffered_writes.emplace_back(nullptr, 0, QuicIpAddress(), QuicSocketAddress(QuicIpAddress::Any4(), 0)); EXPECT_CALL(mock_syscalls_, Sendmmsg(_, _, _, _)) .WillOnce(Invoke([](int , mmsghdr* , unsigned int , int ) { errno = EWOULDBLOCK; return -1; })); EXPECT_EQ(WriteResult(WRITE_STATUS_BLOCKED, EWOULDBLOCK), TestWriteMultiplePackets(1, buffered_writes.begin(), buffered_writes.end(), &num_packets_sent)); EXPECT_EQ(0, num_packets_sent); } TEST_F(QuicLinuxSocketUtilsTest, WriteMultiplePackets_WriteError) { int num_packets_sent; quiche::QuicheCircularDeque<BufferedWrite> buffered_writes; buffered_writes.emplace_back(nullptr, 0, QuicIpAddress(), QuicSocketAddress(QuicIpAddress::Any4(), 0)); EXPECT_CALL(mock_syscalls_, Sendmmsg(_, _, _, _)) .WillOnce(Invoke([](int , mmsghdr* , unsigned int , int ) { errno = EPERM; return -1; })); EXPECT_EQ(WriteResult(WRITE_STATUS_ERROR, EPERM), TestWriteMultiplePackets(1, buffered_writes.begin(), buffered_writes.end(), &num_packets_sent)); EXPECT_EQ(0, num_packets_sent); } TEST_F(QuicLinuxSocketUtilsTest, WriteMultiplePackets_WriteSuccess) { int num_packets_sent; quiche::QuicheCircularDeque<BufferedWrite> buffered_writes; const int kNumBufferedWrites = 10; static_assert(kNumBufferedWrites < 256, "Must be less than 256"); std::vector<std::string> buffer_holder; for (int i = 0; i < kNumBufferedWrites; ++i) { size_t buf_len = (i + 1) * 2; std::ostringstream buffer_ostream; while (buffer_ostream.str().length() < buf_len) { buffer_ostream << i; } buffer_holder.push_back(buffer_ostream.str().substr(0, buf_len - 1) + '$'); buffered_writes.emplace_back(buffer_holder.back().data(), buf_len, QuicIpAddress(), QuicSocketAddress(QuicIpAddress::Any4(), 0)); if (i != 0) { ASSERT_TRUE(buffered_writes.back().self_address.FromString("127.0.0.1")); } std::ostringstream peer_ip_ostream; QuicIpAddress peer_ip_address; peer_ip_ostream << "127.0.1." << i + 1; ASSERT_TRUE(peer_ip_address.FromString(peer_ip_ostream.str())); buffered_writes.back().peer_address = QuicSocketAddress(peer_ip_address, i + 1); } InSequence s; for (int expected_num_packets_sent : {1, 2, 3, 10}) { SCOPED_TRACE(testing::Message() << "expected_num_packets_sent=" << expected_num_packets_sent); EXPECT_CALL(mock_syscalls_, Sendmmsg(_, _, _, _)) .WillOnce(Invoke([&](int , mmsghdr* msgvec, unsigned int vlen, int ) { EXPECT_LE(static_cast<unsigned int>(expected_num_packets_sent), vlen); for (unsigned int i = 0; i < vlen; ++i) { const BufferedWrite& buffered_write = buffered_writes[i]; const msghdr& hdr = msgvec[i].msg_hdr; EXPECT_EQ(1u, hdr.msg_iovlen); EXPECT_EQ(buffered_write.buffer, hdr.msg_iov->iov_base); EXPECT_EQ(buffered_write.buf_len, hdr.msg_iov->iov_len); sockaddr_storage expected_peer_address = buffered_write.peer_address.generic_address(); EXPECT_EQ(0, memcmp(&expected_peer_address, hdr.msg_name, sizeof(sockaddr_storage))); EXPECT_EQ(buffered_write.self_address.IsInitialized(), hdr.msg_control != nullptr); } return expected_num_packets_sent; })) .RetiresOnSaturation(); int expected_bytes_written = 0; for (auto it = buffered_writes.cbegin(); it != buffered_writes.cbegin() + expected_num_packets_sent; ++it) { expected_bytes_written += it->buf_len; } EXPECT_EQ( WriteResult(WRITE_STATUS_OK, expected_bytes_written), TestWriteMultiplePackets(1, buffered_writes.cbegin(), buffered_writes.cend(), &num_packets_sent)); EXPECT_EQ(expected_num_packets_sent, num_packets_sent); } } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_linux_socket_utils.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/quic_linux_socket_utils_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
d2752f1d-79d1-488c-96f5-04c7a961ad96
cpp
google/arolla
fingerprint
arolla/util/fingerprint.cc
arolla/util/fingerprint_test.cc
#include "arolla/util/fingerprint.h" #include <cstddef> #include <cstdint> #include <ostream> #include <string> #include "absl/hash/hash.h" #include "absl/numeric/int128.h" #include "absl/random/random.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "cityhash/city.h" #include "arolla/util/types.h" namespace arolla { namespace { uint32_t RuntimeSeed() { static uint32_t result = absl::Hash<int>{}(501816262); return result; } } std::string Fingerprint::AsString() const { return absl::StrFormat("%032x", value); } signed_size_t Fingerprint::PythonHash() const { return absl::Hash<Fingerprint>()(*this); } std::ostream& operator<<(std::ostream& ostream, const Fingerprint& fingerprint) { return ostream << absl::StreamFormat("%032x", fingerprint.value); } Fingerprint RandomFingerprint() { absl::BitGen bitgen; return Fingerprint{absl::MakeUint128(absl::Uniform<uint64_t>(bitgen), absl::Uniform<uint64_t>(bitgen))}; } FingerprintHasher::FingerprintHasher(absl::string_view salt) : state_{3102879407, 2758948377} { Combine(RuntimeSeed(), salt); } Fingerprint FingerprintHasher::Finish() && { return Fingerprint{absl::MakeUint128(state_.second, state_.first)}; } void FingerprintHasher::CombineRawBytes(const void* data, size_t size) { state_ = cityhash::CityHash128WithSeed( static_cast<const char*>(data), size, state_); } }
#include "arolla/util/fingerprint.h" #include <limits> #include <string> #include <tuple> #include <type_traits> #include <utility> #include "gtest/gtest.h" #include "absl/container/flat_hash_set.h" #include "arolla/util/struct_field.h" namespace arolla { namespace { static_assert( std::is_trivially_constructible_v<Fingerprint>, "Make sure that fingerprint is trivially constructed, so that adding it to " "a struct does not slow down the struct's initialization time."); struct A {}; static_assert(!std::is_default_constructible_v<FingerprintHasherTraits<A>>); struct AWithFingerPrintMethod { void ArollaFingerprint(FingerprintHasher* hasher) const { hasher->Combine(19); } }; struct AWithStructFields { int a; double b; constexpr static auto ArollaStructFields() { using CppType = AWithStructFields; return std::tuple{ AROLLA_DECLARE_STRUCT_FIELD(a), AROLLA_DECLARE_STRUCT_FIELD(b), }; } void ArollaFingerprint(FingerprintHasher* hasher) const { CombineStructFields(hasher, *this); } }; template <typename... Ts> Fingerprint MakeDummyFingerprint(const Ts&... values) { return FingerprintHasher("dummy-salt").Combine(values...).Finish(); } TEST(FingerprintTest, Empty) { Fingerprint fgpt{}; EXPECT_EQ(fgpt.AsString(), "00000000000000000000000000000000"); } TEST(FingerprintTest, RandomFingerprint) { constexpr int N = 1024; absl::flat_hash_set<Fingerprint> set; set.reserve(N); for (int i = 0; i < N; ++i) { set.insert(RandomFingerprint()); } EXPECT_EQ(set.size(), N); } TEST(FingerprintTest, AWithFingerPrintMethod) { EXPECT_EQ(MakeDummyFingerprint(AWithFingerPrintMethod()), MakeDummyFingerprint(19)); } TEST(FingerprintTest, AWithStructFields) { EXPECT_EQ(MakeDummyFingerprint(AWithStructFields{.a = 5, .b = 7.}), MakeDummyFingerprint(5, 7.)); } TEST(FingerprintTest, TestPrimitives) { EXPECT_NE(MakeDummyFingerprint(5), MakeDummyFingerprint(6)); EXPECT_NE(MakeDummyFingerprint<std::string>("5"), MakeDummyFingerprint<std::string>("6")); } TEST(FingerprintTest, FloatingPointZero) { EXPECT_NE(MakeDummyFingerprint(0.0).PythonHash(), MakeDummyFingerprint(-0.0).PythonHash()); EXPECT_NE(MakeDummyFingerprint(0.f).PythonHash(), MakeDummyFingerprint(-0.f).PythonHash()); } TEST(FingerprintTest, FloatingPointNAN) { EXPECT_NE(MakeDummyFingerprint(std::numeric_limits<float>::quiet_NaN()) .PythonHash(), MakeDummyFingerprint(-std::numeric_limits<float>::quiet_NaN()) .PythonHash()); EXPECT_NE(MakeDummyFingerprint(std::numeric_limits<double>::quiet_NaN()) .PythonHash(), MakeDummyFingerprint(-std::numeric_limits<double>::quiet_NaN()) .PythonHash()); } TEST(FingerprintTest, PythonHash) { EXPECT_EQ(MakeDummyFingerprint(4).PythonHash(), MakeDummyFingerprint(4).PythonHash()); EXPECT_NE(MakeDummyFingerprint(5).PythonHash(), MakeDummyFingerprint(6).PythonHash()); } TEST(FingerprintTest, Less) { EXPECT_LT(Fingerprint{27}, Fingerprint{37}); EXPECT_FALSE(Fingerprint{27} < Fingerprint{27}); } TEST(FingerprintTest, CombineRawBytes) { { FingerprintHasher h1("dummy-salt"); FingerprintHasher h2("dummy-salt"); h1.CombineRawBytes("foobar", 6); h2.CombineRawBytes("foobar", 6); EXPECT_EQ(std::move(h1).Finish(), std::move(h2).Finish()); } { FingerprintHasher h1("dummy-salt"); FingerprintHasher h2("dummy-salt"); h1.CombineRawBytes("foobar", 6); h2.CombineRawBytes("barfoo", 6); EXPECT_NE(std::move(h1).Finish(), std::move(h2).Finish()); } } class Circle { public: Circle(int x, int y, int r) : center_(x, y), radius_(r) { FingerprintHasher hasher("arolla::TestCircle"); hasher.Combine(center_.first, center_.second, radius_); fingerprint_ = std::move(hasher).Finish(); } const Fingerprint& fingerprint() { return fingerprint_; } private: std::pair<int, int> center_; int radius_; Fingerprint fingerprint_; }; TEST(FingerprintTest, UserDefined) { EXPECT_NE(Circle(0, 0, 1).fingerprint(), Circle(0, 0, 2).fingerprint()); EXPECT_NE(Circle(1, 1, 1).fingerprint(), Circle(0, 0, 1).fingerprint()); } TEST(FingerprintTest, HasArollaFingerprintMethodRegression) { struct OverloadedType { int ArollaFingerprint() const { return 0; } void ArollaFingerprint(FingerprintHasher*) const {} }; EXPECT_TRUE( fingerprint_impl::HasArollaFingerprintMethod<OverloadedType>::value); struct WrongType { int ArollaFingerprint() const { return 0; } }; EXPECT_FALSE(fingerprint_impl::HasArollaFingerprintMethod<WrongType>::value); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/fingerprint.cc
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/util/fingerprint_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
9336a6ec-7fe8-48a5-a72c-958db037a159
cpp
google/quiche
simple_session_notifier
quiche/quic/test_tools/simple_session_notifier.cc
quiche/quic/test_tools/simple_session_notifier_test.cc
#include "quiche/quic/test_tools/simple_session_notifier.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_logging.h" #include "quiche/quic/test_tools/quic_test_utils.h" namespace quic { namespace test { SimpleSessionNotifier::SimpleSessionNotifier(QuicConnection* connection) : last_control_frame_id_(kInvalidControlFrameId), least_unacked_(1), least_unsent_(1), connection_(connection) {} SimpleSessionNotifier::~SimpleSessionNotifier() { while (!control_frames_.empty()) { DeleteFrame(&control_frames_.front()); control_frames_.pop_front(); } } SimpleSessionNotifier::StreamState::StreamState() : bytes_total(0), bytes_sent(0), fin_buffered(false), fin_sent(false), fin_outstanding(false), fin_lost(false) {} SimpleSessionNotifier::StreamState::~StreamState() {} QuicConsumedData SimpleSessionNotifier::WriteOrBufferData( QuicStreamId id, QuicByteCount data_length, StreamSendingState state) { return WriteOrBufferData(id, data_length, state, NOT_RETRANSMISSION); } QuicConsumedData SimpleSessionNotifier::WriteOrBufferData( QuicStreamId id, QuicByteCount data_length, StreamSendingState state, TransmissionType transmission_type) { if (!stream_map_.contains(id)) { stream_map_[id] = StreamState(); } StreamState& stream_state = stream_map_.find(id)->second; const bool had_buffered_data = HasBufferedStreamData() || HasBufferedControlFrames(); QuicStreamOffset offset = stream_state.bytes_sent; QUIC_DVLOG(1) << "WriteOrBuffer stream_id: " << id << " [" << offset << ", " << offset + data_length << "), fin: " << (state != NO_FIN); stream_state.bytes_total += data_length; stream_state.fin_buffered = state != NO_FIN; if (had_buffered_data) { QUIC_DLOG(WARNING) << "Connection is write blocked"; return {0, false}; } const size_t length = stream_state.bytes_total - stream_state.bytes_sent; connection_->SetTransmissionType(transmission_type); QuicConsumedData consumed = connection_->SendStreamData(id, length, stream_state.bytes_sent, state); QUIC_DVLOG(1) << "consumed: " << consumed; OnStreamDataConsumed(id, stream_state.bytes_sent, consumed.bytes_consumed, consumed.fin_consumed); return consumed; } void SimpleSessionNotifier::OnStreamDataConsumed(QuicStreamId id, QuicStreamOffset offset, QuicByteCount data_length, bool fin) { StreamState& state = stream_map_.find(id)->second; if (QuicUtils::IsCryptoStreamId(connection_->transport_version(), id) && data_length > 0) { crypto_bytes_transferred_[connection_->encryption_level()].Add( offset, offset + data_length); } state.bytes_sent += data_length; state.fin_sent = fin; state.fin_outstanding = fin; } size_t SimpleSessionNotifier::WriteCryptoData(EncryptionLevel level, QuicByteCount data_length, QuicStreamOffset offset) { crypto_state_[level].bytes_total += data_length; size_t bytes_written = connection_->SendCryptoData(level, data_length, offset); crypto_state_[level].bytes_sent += bytes_written; crypto_bytes_transferred_[level].Add(offset, offset + bytes_written); return bytes_written; } void SimpleSessionNotifier::WriteOrBufferRstStream( QuicStreamId id, QuicRstStreamErrorCode error, QuicStreamOffset bytes_written) { QUIC_DVLOG(1) << "Writing RST_STREAM_FRAME"; const bool had_buffered_data = HasBufferedStreamData() || HasBufferedControlFrames(); control_frames_.emplace_back((QuicFrame(new QuicRstStreamFrame( ++last_control_frame_id_, id, error, bytes_written)))); if (error != QUIC_STREAM_NO_ERROR) { stream_map_.erase(id); } if (had_buffered_data) { QUIC_DLOG(WARNING) << "Connection is write blocked"; return; } WriteBufferedControlFrames(); } void SimpleSessionNotifier::WriteOrBufferWindowUpate( QuicStreamId id, QuicStreamOffset byte_offset) { QUIC_DVLOG(1) << "Writing WINDOW_UPDATE"; const bool had_buffered_data = HasBufferedStreamData() || HasBufferedControlFrames(); QuicControlFrameId control_frame_id = ++last_control_frame_id_; control_frames_.emplace_back( (QuicFrame(QuicWindowUpdateFrame(control_frame_id, id, byte_offset)))); if (had_buffered_data) { QUIC_DLOG(WARNING) << "Connection is write blocked"; return; } WriteBufferedControlFrames(); } void SimpleSessionNotifier::WriteOrBufferPing() { QUIC_DVLOG(1) << "Writing PING_FRAME"; const bool had_buffered_data = HasBufferedStreamData() || HasBufferedControlFrames(); control_frames_.emplace_back( (QuicFrame(QuicPingFrame(++last_control_frame_id_)))); if (had_buffered_data) { QUIC_DLOG(WARNING) << "Connection is write blocked"; return; } WriteBufferedControlFrames(); } void SimpleSessionNotifier::WriteOrBufferAckFrequency( const QuicAckFrequencyFrame& ack_frequency_frame) { QUIC_DVLOG(1) << "Writing ACK_FREQUENCY"; const bool had_buffered_data = HasBufferedStreamData() || HasBufferedControlFrames(); QuicControlFrameId control_frame_id = ++last_control_frame_id_; control_frames_.emplace_back(( QuicFrame(new QuicAckFrequencyFrame(control_frame_id, control_frame_id, ack_frequency_frame.packet_tolerance, ack_frequency_frame.max_ack_delay)))); if (had_buffered_data) { QUIC_DLOG(WARNING) << "Connection is write blocked"; return; } WriteBufferedControlFrames(); } void SimpleSessionNotifier::NeuterUnencryptedData() { if (QuicVersionUsesCryptoFrames(connection_->transport_version())) { for (const auto& interval : crypto_bytes_transferred_[ENCRYPTION_INITIAL]) { QuicCryptoFrame crypto_frame(ENCRYPTION_INITIAL, interval.min(), interval.max() - interval.min()); OnFrameAcked(QuicFrame(&crypto_frame), QuicTime::Delta::Zero(), QuicTime::Zero()); } return; } for (const auto& interval : crypto_bytes_transferred_[ENCRYPTION_INITIAL]) { QuicStreamFrame stream_frame( QuicUtils::GetCryptoStreamId(connection_->transport_version()), false, interval.min(), interval.max() - interval.min()); OnFrameAcked(QuicFrame(stream_frame), QuicTime::Delta::Zero(), QuicTime::Zero()); } } void SimpleSessionNotifier::OnCanWrite() { if (connection_->framer().is_processing_packet()) { QUIC_BUG(simple_notifier_write_mid_packet_processing) << "Try to write mid packet processing."; return; } if (!RetransmitLostCryptoData() || !RetransmitLostControlFrames() || !RetransmitLostStreamData()) { return; } if (!WriteBufferedCryptoData() || !WriteBufferedControlFrames()) { return; } for (const auto& pair : stream_map_) { const auto& state = pair.second; if (!StreamHasBufferedData(pair.first)) { continue; } const size_t length = state.bytes_total - state.bytes_sent; const bool can_bundle_fin = state.fin_buffered && (state.bytes_sent + length == state.bytes_total); connection_->SetTransmissionType(NOT_RETRANSMISSION); QuicConnection::ScopedEncryptionLevelContext context( connection_, connection_->framer().GetEncryptionLevelToSendApplicationData()); QuicConsumedData consumed = connection_->SendStreamData( pair.first, length, state.bytes_sent, can_bundle_fin ? FIN : NO_FIN); QUIC_DVLOG(1) << "Tries to write stream_id: " << pair.first << " [" << state.bytes_sent << ", " << state.bytes_sent + length << "), fin: " << can_bundle_fin << ", and consumed: " << consumed; OnStreamDataConsumed(pair.first, state.bytes_sent, consumed.bytes_consumed, consumed.fin_consumed); if (length != consumed.bytes_consumed || (can_bundle_fin && !consumed.fin_consumed)) { break; } } } void SimpleSessionNotifier::OnStreamReset(QuicStreamId id, QuicRstStreamErrorCode error) { if (error != QUIC_STREAM_NO_ERROR) { stream_map_.erase(id); } } bool SimpleSessionNotifier::WillingToWrite() const { QUIC_DVLOG(1) << "has_buffered_control_frames: " << HasBufferedControlFrames() << " as_lost_control_frames: " << !lost_control_frames_.empty() << " has_buffered_stream_data: " << HasBufferedStreamData() << " has_lost_stream_data: " << HasLostStreamData(); return HasBufferedControlFrames() || !lost_control_frames_.empty() || HasBufferedStreamData() || HasLostStreamData(); } QuicByteCount SimpleSessionNotifier::StreamBytesSent() const { QuicByteCount bytes_sent = 0; for (const auto& pair : stream_map_) { const auto& state = pair.second; bytes_sent += state.bytes_sent; } return bytes_sent; } QuicByteCount SimpleSessionNotifier::StreamBytesToSend() const { QuicByteCount bytes_to_send = 0; for (const auto& pair : stream_map_) { const auto& state = pair.second; bytes_to_send += (state.bytes_total - state.bytes_sent); } return bytes_to_send; } bool SimpleSessionNotifier::OnFrameAcked(const QuicFrame& frame, QuicTime::Delta , QuicTime ) { QUIC_DVLOG(1) << "Acking " << frame; if (frame.type == CRYPTO_FRAME) { StreamState* state = &crypto_state_[frame.crypto_frame->level]; QuicStreamOffset offset = frame.crypto_frame->offset; QuicByteCount data_length = frame.crypto_frame->data_length; QuicIntervalSet<QuicStreamOffset> newly_acked(offset, offset + data_length); newly_acked.Difference(state->bytes_acked); if (newly_acked.Empty()) { return false; } state->bytes_acked.Add(offset, offset + data_length); state->pending_retransmissions.Difference(offset, offset + data_length); return true; } if (frame.type != STREAM_FRAME) { return OnControlFrameAcked(frame); } if (!stream_map_.contains(frame.stream_frame.stream_id)) { return false; } auto* state = &stream_map_.find(frame.stream_frame.stream_id)->second; QuicStreamOffset offset = frame.stream_frame.offset; QuicByteCount data_length = frame.stream_frame.data_length; QuicIntervalSet<QuicStreamOffset> newly_acked(offset, offset + data_length); newly_acked.Difference(state->bytes_acked); const bool fin_newly_acked = frame.stream_frame.fin && state->fin_outstanding; if (newly_acked.Empty() && !fin_newly_acked) { return false; } state->bytes_acked.Add(offset, offset + data_length); if (fin_newly_acked) { state->fin_outstanding = false; state->fin_lost = false; } state->pending_retransmissions.Difference(offset, offset + data_length); return true; } void SimpleSessionNotifier::OnFrameLost(const QuicFrame& frame) { QUIC_DVLOG(1) << "Losting " << frame; if (frame.type == CRYPTO_FRAME) { StreamState* state = &crypto_state_[frame.crypto_frame->level]; QuicStreamOffset offset = frame.crypto_frame->offset; QuicByteCount data_length = frame.crypto_frame->data_length; QuicIntervalSet<QuicStreamOffset> bytes_lost(offset, offset + data_length); bytes_lost.Difference(state->bytes_acked); if (bytes_lost.Empty()) { return; } for (const auto& lost : bytes_lost) { state->pending_retransmissions.Add(lost.min(), lost.max()); } return; } if (frame.type != STREAM_FRAME) { OnControlFrameLost(frame); return; } if (!stream_map_.contains(frame.stream_frame.stream_id)) { return; } auto* state = &stream_map_.find(frame.stream_frame.stream_id)->second; QuicStreamOffset offset = frame.stream_frame.offset; QuicByteCount data_length = frame.stream_frame.data_length; QuicIntervalSet<QuicStreamOffset> bytes_lost(offset, offset + data_length); bytes_lost.Difference(state->bytes_acked); const bool fin_lost = state->fin_outstanding && frame.stream_frame.fin; if (bytes_lost.Empty() && !fin_lost) { return; } for (const auto& lost : bytes_lost) { state->pending_retransmissions.Add(lost.min(), lost.max()); } state->fin_lost = fin_lost; } bool SimpleSessionNotifier::RetransmitFrames(const QuicFrames& frames, TransmissionType type) { QuicConnection::ScopedPacketFlusher retransmission_flusher(connection_); connection_->SetTransmissionType(type); for (const QuicFrame& frame : frames) { if (frame.type == CRYPTO_FRAME) { const StreamState& state = crypto_state_[frame.crypto_frame->level]; const EncryptionLevel current_encryption_level = connection_->encryption_level(); QuicIntervalSet<QuicStreamOffset> retransmission( frame.crypto_frame->offset, frame.crypto_frame->offset + frame.crypto_frame->data_length); retransmission.Difference(state.bytes_acked); for (const auto& interval : retransmission) { QuicStreamOffset offset = interval.min(); QuicByteCount length = interval.max() - interval.min(); connection_->SetDefaultEncryptionLevel(frame.crypto_frame->level); size_t consumed = connection_->SendCryptoData(frame.crypto_frame->level, length, offset); if (consumed < length) { return false; } } connection_->SetDefaultEncryptionLevel(current_encryption_level); } if (frame.type != STREAM_FRAME) { if (GetControlFrameId(frame) == kInvalidControlFrameId) { continue; } QuicFrame copy = CopyRetransmittableControlFrame(frame); if (!connection_->SendControlFrame(copy)) { DeleteFrame(&copy); return false; } continue; } if (!stream_map_.contains(frame.stream_frame.stream_id)) { continue; } const auto& state = stream_map_.find(frame.stream_frame.stream_id)->second; QuicIntervalSet<QuicStreamOffset> retransmission( frame.stream_frame.offset, frame.stream_frame.offset + frame.stream_frame.data_length); EncryptionLevel retransmission_encryption_level = connection_->encryption_level(); if (QuicUtils::IsCryptoStreamId(connection_->transport_version(), frame.stream_frame.stream_id)) { for (size_t i = 0; i < NUM_ENCRYPTION_LEVELS; ++i) { if (retransmission.Intersects(crypto_bytes_transferred_[i])) { retransmission_encryption_level = static_cast<EncryptionLevel>(i); retransmission.Intersection(crypto_bytes_transferred_[i]); break; } } } retransmission.Difference(state.bytes_acked); bool retransmit_fin = frame.stream_frame.fin && state.fin_outstanding; QuicConsumedData consumed(0, false); for (const auto& interval : retransmission) { QuicStreamOffset retransmission_offset = interval.min(); QuicByteCount retransmission_length = interval.max() - interval.min(); const bool can_bundle_fin = retransmit_fin && (retransmission_offset + retransmission_length == state.bytes_sent); QuicConnection::ScopedEncryptionLevelContext context( connection_, QuicUtils::IsCryptoStreamId(connection_->transport_version(), frame.stream_frame.stream_id) ? retransmission_encryption_level : connection_->framer() .GetEncryptionLevelToSendApplicationData()); consumed = connection_->SendStreamData( frame.stream_frame.stream_id, retransmission_length, retransmission_offset, can_bundle_fin ? FIN : NO_FIN); QUIC_DVLOG(1) << "stream " << frame.stream_frame.stream_id << " is forced to retransmit stream data [" << retransmission_offset << ", " << retransmission_offset + retransmission_length << ") and fin: " << can_bundle_fin << ", consumed: " << consumed; if (can_bundle_fin) { retransmit_fin = !consumed.fin_consumed; } if (consumed.bytes_consumed < retransmission_length || (can_bundle_fin && !consumed.fin_consumed)) { return false; } } if (retransmit_fin) { QUIC_DVLOG(1) << "stream " << frame.stream_frame.stream_id << " retransmits fin only frame."; consumed = connection_->SendStreamData(frame.stream_frame.stream_id, 0, state.bytes_sent, FIN); if (!consumed.fin_consumed) { return false; } } } return true; } bool SimpleSessionNotifier::IsFrameOutstanding(const QuicFrame& frame) const { if (frame.type == CRYPTO_FRAME) { QuicStreamOffset offset = frame.crypto_frame->offset; QuicByteCount data_length = frame.crypto_frame->data_length; bool ret = data_length > 0 && !crypto_state_[frame.crypto_frame->level].bytes_acked.Contains( offset, offset + data_length); return ret; } if (frame.type != STREAM_FRAME) { return IsControlFrameOutstanding(frame); } if (!stream_map_.contains(frame.stream_frame.stream_id)) { return false; } const auto& state = stream_map_.find(frame.stream_frame.stream_id)->second; QuicStreamOffset offset = frame.stream_frame.offset; QuicByteCount data_length = frame.stream_frame.data_length; return (data_length > 0 && !state.bytes_acked.Contains(offset, offset + data_length)) || (frame.stream_frame.fin && state.fin_outstanding); } bool SimpleSessionNotifier::HasUnackedCryptoData() const { if (QuicVersionUsesCryptoFrames(connection_->transport_version())) { for (size_t i = 0; i < NUM_ENCRYPTION_LEVELS; ++i) { const StreamState& state = crypto_state_[i]; if (state.bytes_total > state.bytes_sent) { return true; } QuicIntervalSet<QuicStreamOffset> bytes_to_ack(0, state.bytes_total); bytes_to_ack.Difference(state.bytes_acked); if (!bytes_to_ack.Empty()) { return true; } } return false; } if (!stream_map_.contains( QuicUtils::GetCryptoStreamId(connection_->transport_version()))) { return false; } const auto& state = stream_map_ .find(QuicUtils::GetCryptoStreamId(connection_->transport_version())) ->second; if (state.bytes_total > state.bytes_sent) { return true; } QuicIntervalSet<QuicStreamOffset> bytes_to_ack(0, state.bytes_total); bytes_to_ack.Difference(state.bytes_acked); return !bytes_to_ack.Empty(); } bool SimpleSessionNotifier::HasUnackedStreamData() const { for (const auto& it : stream_map_) { if (StreamIsWaitingForAcks(it.first)) return true; } return false; } bool SimpleSessionNotifier::OnControlFrameAcked(const QuicFrame& frame) { QuicControlFrameId id = GetControlFrameId(frame); if (id == kInvalidControlFrameId) { return false; } QUICHE_DCHECK(id < least_unacked_ + control_frames_.size()); if (id < least_unacked_ || GetControlFrameId(control_frames_.at(id - least_unacked_)) == kInvalidControlFrameId) { return false; } SetControlFrameId(kInvalidControlFrameId, &control_frames_.at(id - least_unacked_)); lost_control_frames_.erase(id); while (!control_frames_.empty() && GetControlFrameId(control_frames_.front()) == kInvalidControlFrameId) { DeleteFrame(&control_frames_.front()); control_frames_.pop_front(); ++least_unacked_; } return true; } void SimpleSessionNotifier::OnControlFrameLost(const QuicFrame& frame) { QuicControlFrameId id = GetControlFrameId(frame); if (id == kInvalidControlFrameId) { return; } QUICHE_DCHECK(id < least_unacked_ + control_frames_.size()); if (id < least_unacked_ || GetControlFrameId(control_frames_.at(id - least_unacked_)) == kInvalidControlFrameId) { return; } if (!lost_control_frames_.contains(id)) { lost_control_frames_[id] = true; } } bool SimpleSessionNotifier::IsControlFrameOutstanding( const QuicFrame& frame) const { QuicControlFrameId id = GetControlFrameId(frame); if (id == kInvalidControlFrameId) { return false; } return id < least_unacked_ + control_frames_.size() && id >= least_unacked_ && GetControlFrameId(control_frames_.at(id - least_unacked_)) != kInvalidControlFrameId; } bool SimpleSessionNotifier::RetransmitLostControlFrames() { while (!lost_control_frames_.empty()) { QuicFrame pending = control_frames_.at(lost_control_frames_.begin()->first - least_unacked_); QuicFrame copy = CopyRetransmittableControlFrame(pending); connection_->SetTransmissionType(LOSS_RETRANSMISSION); if (!connection_->SendControlFrame(copy)) { DeleteFrame(&copy); break; } lost_control_frames_.pop_front(); } return lost_control_frames_.empty(); } bool SimpleSessionNotifier::RetransmitLostCryptoData() { if (QuicVersionUsesCryptoFrames(connection_->transport_version())) { for (EncryptionLevel level : {ENCRYPTION_INITIAL, ENCRYPTION_HANDSHAKE, ENCRYPTION_ZERO_RTT, ENCRYPTION_FORWARD_SECURE}) { auto& state = crypto_state_[level]; while (!state.pending_retransmissions.Empty()) { connection_->SetTransmissionType(HANDSHAKE_RETRANSMISSION); EncryptionLevel current_encryption_level = connection_->encryption_level(); connection_->SetDefaultEncryptionLevel(level); QuicIntervalSet<QuicStreamOffset> retransmission( state.pending_retransmissions.begin()->min(), state.pending_retransmissions.begin()->max()); retransmission.Intersection(crypto_bytes_transferred_[level]); QuicStreamOffset retransmission_offset = retransmission.begin()->min(); QuicByteCount retransmission_length = retransmission.begin()->max() - retransmission.begin()->min(); size_t bytes_consumed = connection_->SendCryptoData( level, retransmission_length, retransmission_offset); connection_->SetDefaultEncryptionLevel(current_encryption_level); state.pending_retransmissions.Difference( retransmission_offset, retransmission_offset + bytes_consumed); if (bytes_consumed < retransmission_length) { return false; } } } return true; } if (!stream_map_.contains( QuicUtils::GetCryptoStreamId(connection_->transport_version()))) { return true; } auto& state = stream_map_ .find(QuicUtils::GetCryptoStreamId(connection_->transport_version())) ->second; while (!state.pending_retransmissions.Empty()) { connection_->SetTransmissionType(HANDSHAKE_RETRANSMISSION); QuicIntervalSet<QuicStreamOffset> retransmission( state.pending_retransmissions.begin()->min(), state.pending_retransmissions.begin()->max()); EncryptionLevel retransmission_encryption_level = ENCRYPTION_INITIAL; for (size_t i = 0; i < NUM_ENCRYPTION_LEVELS; ++i) { if (retransmission.Intersects(crypto_bytes_transferred_[i])) { retransmission_encryption_level = static_cast<EncryptionLevel>(i); retransmission.Intersection(crypto_bytes_transferred_[i]); break; } } QuicStreamOffset retransmission_offset = retransmission.begin()->min(); QuicByteCount retransmission_length = retransmission.begin()->max() - retransmission.begin()->min(); EncryptionLevel current_encryption_level = connection_->encryption_level(); connection_->SetDefaultEncryptionLevel(retransmission_encryption_level); QuicConsumedData consumed = connection_->SendStreamData( QuicUtils::GetCryptoStreamId(connection_->transport_version()), retransmission_length, retransmission_offset, NO_FIN); connection_->SetDefaultEncryptionLevel(current_encryption_level); state.pending_retransmissions.Difference( retransmission_offset, retransmission_offset + consumed.bytes_consumed); if (consumed.bytes_consumed < retransmission_length) { break; } } return state.pending_retransmissions.Empty(); } bool SimpleSessionNotifier::RetransmitLostStreamData() { for (auto& pair : stream_map_) { StreamState& state = pair.second; QuicConsumedData consumed(0, false); while (!state.pending_retransmissions.Empty() || state.fin_lost) { connection_->SetTransmissionType(LOSS_RETRANSMISSION); if (state.pending_retransmissions.Empty()) { QUIC_DVLOG(1) << "stream " << pair.first << " retransmits fin only frame."; consumed = connection_->SendStreamData(pair.first, 0, state.bytes_sent, FIN); state.fin_lost = !consumed.fin_consumed; if (state.fin_lost) { QUIC_DLOG(INFO) << "Connection is write blocked"; return false; } } else { QuicStreamOffset offset = state.pending_retransmissions.begin()->min(); QuicByteCount length = state.pending_retransmissions.begin()->max() - state.pending_retransmissions.begin()->min(); const bool can_bundle_fin = state.fin_lost && (offset + length == state.bytes_sent); consumed = connection_->SendStreamData(pair.first, length, offset, can_bundle_fin ? FIN : NO_FIN); QUIC_DVLOG(1) << "stream " << pair.first << " tries to retransmit stream data [" << offset << ", " << offset + length << ") and fin: " << can_bundle_fin << ", consumed: " << consumed; state.pending_retransmissions.Difference( offset, offset + consumed.bytes_consumed); if (consumed.fin_consumed) { state.fin_lost = false; } if (length > consumed.bytes_consumed || (can_bundle_fin && !consumed.fin_consumed)) { QUIC_DVLOG(1) << "Connection is write blocked"; break; } } } } return !HasLostStreamData(); } bool SimpleSessionNotifier::WriteBufferedCryptoData() { for (size_t i = 0; i < NUM_ENCRYPTION_LEVELS; ++i) { const StreamState& state = crypto_state_[i]; QuicIntervalSet<QuicStreamOffset> buffered_crypto_data(0, state.bytes_total); buffered_crypto_data.Difference(crypto_bytes_transferred_[i]); for (const auto& interval : buffered_crypto_data) { size_t bytes_written = connection_->SendCryptoData( static_cast<EncryptionLevel>(i), interval.Length(), interval.min()); crypto_state_[i].bytes_sent += bytes_written; crypto_bytes_transferred_[i].Add(interval.min(), interval.min() + bytes_written); if (bytes_written < interval.Length()) { return false; } } } return true; } bool SimpleSessionNotifier::WriteBufferedControlFrames() { while (HasBufferedControlFrames()) { QuicFrame frame_to_send = control_frames_.at(least_unsent_ - least_unacked_); QuicFrame copy = CopyRetransmittableControlFrame(frame_to_send); connection_->SetTransmissionType(NOT_RETRANSMISSION); if (!connection_->SendControlFrame(copy)) { DeleteFrame(&copy); break; } ++least_unsent_; } return !HasBufferedControlFrames(); } bool SimpleSessionNotifier::HasBufferedControlFrames() const { return least_unsent_ < least_unacked_ + control_frames_.size(); } bool SimpleSessionNotifier::HasBufferedStreamData() const { for (const auto& pair : stream_map_) { const auto& state = pair.second; if (state.bytes_total > state.bytes_sent || (state.fin_buffered && !state.fin_sent)) { return true; } } return false; } bool SimpleSessionNotifier::StreamIsWaitingForAcks(QuicStreamId id) const { if (!stream_map_.contains(id)) { return false; } const StreamState& state = stream_map_.find(id)->second; return !state.bytes_acked.Contains(0, state.bytes_sent) || state.fin_outstanding; } bool SimpleSessionNotifier::StreamHasBufferedData(QuicStreamId id) const { if (!stream_map_.contains(id)) { return false; } const StreamState& state = stream_map_.find(id)->second; return state.bytes_total > state.bytes_sent || (state.fin_buffered && !state.fin_sent); } bool SimpleSessionNotifier::HasLostStreamData() const { for (const auto& pair : stream_map_) { const auto& state = pair.second; if (!state.pending_retransmissions.Empty() || state.fin_lost) { return true; } } return false; } } }
#include "quiche/quic/test_tools/simple_session_notifier.h" #include <memory> #include <string> #include <utility> #include "quiche/quic/core/crypto/null_encrypter.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_connection_peer.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/quic/test_tools/simple_data_producer.h" using testing::_; using testing::InSequence; using testing::Return; using testing::StrictMock; namespace quic { namespace test { namespace { class MockQuicConnectionWithSendStreamData : public MockQuicConnection { public: MockQuicConnectionWithSendStreamData(MockQuicConnectionHelper* helper, MockAlarmFactory* alarm_factory, Perspective perspective) : MockQuicConnection(helper, alarm_factory, perspective) {} MOCK_METHOD(QuicConsumedData, SendStreamData, (QuicStreamId id, size_t write_length, QuicStreamOffset offset, StreamSendingState state), (override)); }; class SimpleSessionNotifierTest : public QuicTest { public: SimpleSessionNotifierTest() : connection_(&helper_, &alarm_factory_, Perspective::IS_CLIENT), notifier_(&connection_) { connection_.set_visitor(&visitor_); connection_.SetSessionNotifier(&notifier_); EXPECT_FALSE(notifier_.WillingToWrite()); EXPECT_EQ(0u, notifier_.StreamBytesSent()); EXPECT_FALSE(notifier_.HasBufferedStreamData()); } bool ControlFrameConsumed(const QuicFrame& frame) { DeleteFrame(&const_cast<QuicFrame&>(frame)); return true; } MockQuicConnectionHelper helper_; MockAlarmFactory alarm_factory_; MockQuicConnectionVisitor visitor_; StrictMock<MockQuicConnectionWithSendStreamData> connection_; SimpleSessionNotifier notifier_; }; TEST_F(SimpleSessionNotifierTest, WriteOrBufferData) { InSequence s; EXPECT_CALL(connection_, SendStreamData(3, 1024, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(1024, false))); notifier_.WriteOrBufferData(3, 1024, NO_FIN); EXPECT_EQ(0u, notifier_.StreamBytesToSend()); EXPECT_CALL(connection_, SendStreamData(5, 512, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(512, false))); notifier_.WriteOrBufferData(5, 512, NO_FIN); EXPECT_FALSE(notifier_.WillingToWrite()); EXPECT_CALL(connection_, SendStreamData(5, 512, 512, FIN)) .WillOnce(Return(QuicConsumedData(256, false))); notifier_.WriteOrBufferData(5, 512, FIN); EXPECT_TRUE(notifier_.WillingToWrite()); EXPECT_EQ(1792u, notifier_.StreamBytesSent()); EXPECT_EQ(256u, notifier_.StreamBytesToSend()); EXPECT_TRUE(notifier_.HasBufferedStreamData()); EXPECT_CALL(connection_, SendStreamData(7, 1024, 0, FIN)).Times(0); notifier_.WriteOrBufferData(7, 1024, FIN); EXPECT_EQ(1792u, notifier_.StreamBytesSent()); } TEST_F(SimpleSessionNotifierTest, WriteOrBufferRstStream) { InSequence s; EXPECT_CALL(connection_, SendStreamData(5, 1024, 0, FIN)) .WillOnce(Return(QuicConsumedData(1024, true))); notifier_.WriteOrBufferData(5, 1024, FIN); EXPECT_TRUE(notifier_.StreamIsWaitingForAcks(5)); EXPECT_TRUE(notifier_.HasUnackedStreamData()); EXPECT_CALL(connection_, SendControlFrame(_)) .WillRepeatedly( Invoke(this, &SimpleSessionNotifierTest::ControlFrameConsumed)); notifier_.WriteOrBufferRstStream(5, QUIC_STREAM_NO_ERROR, 1024); EXPECT_TRUE(notifier_.StreamIsWaitingForAcks(5)); EXPECT_TRUE(notifier_.HasUnackedStreamData()); notifier_.WriteOrBufferRstStream(5, QUIC_ERROR_PROCESSING_STREAM, 1024); EXPECT_FALSE(notifier_.StreamIsWaitingForAcks(5)); EXPECT_FALSE(notifier_.HasUnackedStreamData()); } TEST_F(SimpleSessionNotifierTest, WriteOrBufferPing) { InSequence s; EXPECT_CALL(connection_, SendControlFrame(_)) .WillRepeatedly( Invoke(this, &SimpleSessionNotifierTest::ControlFrameConsumed)); notifier_.WriteOrBufferPing(); EXPECT_EQ(0u, notifier_.StreamBytesToSend()); EXPECT_FALSE(notifier_.WillingToWrite()); EXPECT_CALL(connection_, SendStreamData(3, 1024, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(1024, false))); notifier_.WriteOrBufferData(3, 1024, NO_FIN); EXPECT_EQ(0u, notifier_.StreamBytesToSend()); EXPECT_CALL(connection_, SendStreamData(5, 512, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(256, false))); notifier_.WriteOrBufferData(5, 512, NO_FIN); EXPECT_TRUE(notifier_.WillingToWrite()); EXPECT_CALL(connection_, SendControlFrame(_)).Times(0); notifier_.WriteOrBufferPing(); } TEST_F(SimpleSessionNotifierTest, NeuterUnencryptedData) { if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { return; } InSequence s; connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); EXPECT_CALL(connection_, SendStreamData(QuicUtils::GetCryptoStreamId( connection_.transport_version()), 1024, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(1024, false))); notifier_.WriteOrBufferData( QuicUtils::GetCryptoStreamId(connection_.transport_version()), 1024, NO_FIN); connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); EXPECT_CALL(connection_, SendStreamData(QuicUtils::GetCryptoStreamId( connection_.transport_version()), 1024, 1024, NO_FIN)) .WillOnce(Return(QuicConsumedData(1024, false))); notifier_.WriteOrBufferData( QuicUtils::GetCryptoStreamId(connection_.transport_version()), 1024, NO_FIN); QuicStreamFrame stream_frame( QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 1024, 1024); notifier_.OnFrameAcked(QuicFrame(stream_frame), QuicTime::Delta::Zero(), QuicTime::Zero()); EXPECT_TRUE(notifier_.StreamIsWaitingForAcks( QuicUtils::GetCryptoStreamId(connection_.transport_version()))); EXPECT_TRUE(notifier_.HasUnackedStreamData()); notifier_.NeuterUnencryptedData(); EXPECT_FALSE(notifier_.StreamIsWaitingForAcks( QuicUtils::GetCryptoStreamId(connection_.transport_version()))); EXPECT_FALSE(notifier_.HasUnackedStreamData()); } TEST_F(SimpleSessionNotifierTest, OnCanWrite) { if (QuicVersionUsesCryptoFrames(connection_.transport_version())) { return; } InSequence s; connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); EXPECT_CALL(connection_, SendStreamData(QuicUtils::GetCryptoStreamId( connection_.transport_version()), 1024, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(1024, false))); notifier_.WriteOrBufferData( QuicUtils::GetCryptoStreamId(connection_.transport_version()), 1024, NO_FIN); connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); EXPECT_CALL(connection_, SendStreamData(QuicUtils::GetCryptoStreamId( connection_.transport_version()), 1024, 1024, NO_FIN)) .WillOnce(Return(QuicConsumedData(1024, false))); notifier_.WriteOrBufferData( QuicUtils::GetCryptoStreamId(connection_.transport_version()), 1024, NO_FIN); EXPECT_CALL(connection_, SendStreamData(3, 1024, 0, FIN)) .WillOnce(Return(QuicConsumedData(512, false))); notifier_.WriteOrBufferData(3, 1024, FIN); EXPECT_CALL(connection_, SendStreamData(5, _, _, _)).Times(0); notifier_.WriteOrBufferData(5, 1024, NO_FIN); EXPECT_CALL(connection_, SendControlFrame(_)).Times(0); notifier_.WriteOrBufferRstStream(5, QUIC_ERROR_PROCESSING_STREAM, 1024); QuicStreamFrame frame1( QuicUtils::GetCryptoStreamId(connection_.transport_version()), false, 500, 1000); QuicStreamFrame frame2(3, false, 0, 512); notifier_.OnFrameLost(QuicFrame(frame1)); notifier_.OnFrameLost(QuicFrame(frame2)); EXPECT_CALL(connection_, SendStreamData(QuicUtils::GetCryptoStreamId( connection_.transport_version()), 524, 500, NO_FIN)) .WillOnce(Return(QuicConsumedData(524, false))); EXPECT_CALL(connection_, SendStreamData(QuicUtils::GetCryptoStreamId( connection_.transport_version()), 476, 1024, NO_FIN)) .WillOnce(Return(QuicConsumedData(476, false))); EXPECT_CALL(connection_, SendStreamData(3, 512, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(512, false))); EXPECT_CALL(connection_, SendControlFrame(_)) .WillOnce(Invoke(this, &SimpleSessionNotifierTest::ControlFrameConsumed)); EXPECT_CALL(connection_, SendStreamData(3, 512, 512, FIN)) .WillOnce(Return(QuicConsumedData(512, true))); notifier_.OnCanWrite(); EXPECT_FALSE(notifier_.WillingToWrite()); } TEST_F(SimpleSessionNotifierTest, OnCanWriteCryptoFrames) { if (!QuicVersionUsesCryptoFrames(connection_.transport_version())) { return; } SimpleDataProducer producer; connection_.SetDataProducer(&producer); InSequence s; connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); EXPECT_CALL(connection_, SendCryptoData(ENCRYPTION_INITIAL, 1024, 0)) .WillOnce(Invoke(&connection_, &MockQuicConnection::QuicConnection_SendCryptoData)); EXPECT_CALL(connection_, CloseConnection(QUIC_PACKET_WRITE_ERROR, _, _)); std::string crypto_data1(1024, 'a'); producer.SaveCryptoData(ENCRYPTION_INITIAL, 0, crypto_data1); std::string crypto_data2(524, 'a'); producer.SaveCryptoData(ENCRYPTION_INITIAL, 500, crypto_data2); notifier_.WriteCryptoData(ENCRYPTION_INITIAL, 1024, 0); connection_.SetEncrypter(ENCRYPTION_ZERO_RTT, std::make_unique<NullEncrypter>( Perspective::IS_CLIENT)); connection_.SetDefaultEncryptionLevel(ENCRYPTION_ZERO_RTT); EXPECT_CALL(connection_, SendCryptoData(ENCRYPTION_ZERO_RTT, 1024, 0)) .WillOnce(Invoke(&connection_, &MockQuicConnection::QuicConnection_SendCryptoData)); std::string crypto_data3(1024, 'a'); producer.SaveCryptoData(ENCRYPTION_ZERO_RTT, 0, crypto_data3); notifier_.WriteCryptoData(ENCRYPTION_ZERO_RTT, 1024, 0); EXPECT_CALL(connection_, SendStreamData(3, 1024, 0, FIN)) .WillOnce(Return(QuicConsumedData(512, false))); notifier_.WriteOrBufferData(3, 1024, FIN); EXPECT_CALL(connection_, SendStreamData(5, _, _, _)).Times(0); notifier_.WriteOrBufferData(5, 1024, NO_FIN); EXPECT_CALL(connection_, SendControlFrame(_)).Times(0); notifier_.WriteOrBufferRstStream(5, QUIC_ERROR_PROCESSING_STREAM, 1024); QuicCryptoFrame crypto_frame1(ENCRYPTION_INITIAL, 500, 524); QuicCryptoFrame crypto_frame2(ENCRYPTION_ZERO_RTT, 0, 476); QuicStreamFrame stream3_frame(3, false, 0, 512); notifier_.OnFrameLost(QuicFrame(&crypto_frame1)); notifier_.OnFrameLost(QuicFrame(&crypto_frame2)); notifier_.OnFrameLost(QuicFrame(stream3_frame)); EXPECT_CALL(connection_, SendCryptoData(ENCRYPTION_INITIAL, 524, 500)) .WillOnce(Invoke(&connection_, &MockQuicConnection::QuicConnection_SendCryptoData)); EXPECT_CALL(connection_, SendCryptoData(ENCRYPTION_ZERO_RTT, 476, 0)) .WillOnce(Invoke(&connection_, &MockQuicConnection::QuicConnection_SendCryptoData)); EXPECT_CALL(connection_, SendStreamData(3, 512, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(512, false))); EXPECT_CALL(connection_, SendControlFrame(_)) .WillOnce(Invoke(this, &SimpleSessionNotifierTest::ControlFrameConsumed)); EXPECT_CALL(connection_, SendStreamData(3, 512, 512, FIN)) .WillOnce(Return(QuicConsumedData(512, true))); notifier_.OnCanWrite(); EXPECT_FALSE(notifier_.WillingToWrite()); } TEST_F(SimpleSessionNotifierTest, RetransmitFrames) { InSequence s; connection_.SetEncrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique<NullEncrypter>(Perspective::IS_CLIENT)); EXPECT_CALL(connection_, SendStreamData(3, 10, 0, FIN)) .WillOnce(Return(QuicConsumedData(10, true))); notifier_.WriteOrBufferData(3, 10, FIN); QuicStreamFrame frame1(3, true, 0, 10); EXPECT_CALL(connection_, SendStreamData(5, 10, 0, FIN)) .WillOnce(Return(QuicConsumedData(10, true))); notifier_.WriteOrBufferData(5, 10, FIN); QuicStreamFrame frame2(5, true, 0, 10); EXPECT_CALL(connection_, SendControlFrame(_)) .WillOnce(Invoke(this, &SimpleSessionNotifierTest::ControlFrameConsumed)); notifier_.WriteOrBufferRstStream(5, QUIC_STREAM_NO_ERROR, 10); QuicStreamFrame ack_frame1(3, false, 3, 4); QuicStreamFrame ack_frame2(5, false, 8, 2); notifier_.OnFrameAcked(QuicFrame(ack_frame1), QuicTime::Delta::Zero(), QuicTime::Zero()); notifier_.OnFrameAcked(QuicFrame(ack_frame2), QuicTime::Delta::Zero(), QuicTime::Zero()); EXPECT_FALSE(notifier_.WillingToWrite()); QuicRstStreamFrame rst_stream(1, 5, QUIC_STREAM_NO_ERROR, 10); QuicFrames frames; frames.push_back(QuicFrame(frame2)); frames.push_back(QuicFrame(&rst_stream)); frames.push_back(QuicFrame(frame1)); EXPECT_CALL(connection_, SendStreamData(5, 8, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(8, false))); EXPECT_CALL(connection_, SendStreamData(5, 0, 10, FIN)) .WillOnce(Return(QuicConsumedData(0, true))); EXPECT_CALL(connection_, SendControlFrame(_)) .WillOnce(Invoke(this, &SimpleSessionNotifierTest::ControlFrameConsumed)); EXPECT_CALL(connection_, SendStreamData(3, 3, 0, NO_FIN)) .WillOnce(Return(QuicConsumedData(2, false))); notifier_.RetransmitFrames(frames, PTO_RETRANSMISSION); EXPECT_FALSE(notifier_.WillingToWrite()); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/simple_session_notifier.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/test_tools/simple_session_notifier_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
85410ddd-a164-4604-bf44-65fbae760e54
cpp
tensorflow/tensorflow
ragged_tensor_to_sparse_kernel
tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc
tensorflow/core/kernels/ragged_tensor_to_sparse_kernel_test.cc
#include <limits> #include <memory> #include <string> #include <vector> #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/register_types.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/errors.h" namespace tensorflow { using errors::InvalidArgument; template <typename SPLITS_TYPE> class RaggedTensorToSparseOp : public OpKernel { public: using OpKernel::OpKernel; using ConstFlatSplits = typename TTypes<SPLITS_TYPE>::ConstFlat; void Compute(OpKernelContext* context) override { OpInputList rt_nested_splits_in; OP_REQUIRES_OK( context, context->input_list("rt_nested_splits", &rt_nested_splits_in)); const int rt_nested_splits_len = rt_nested_splits_in.size(); OP_REQUIRES(context, rt_nested_splits_len > 0, errors::InvalidArgument("rt_nested_splits must be non empty")); std::vector<ConstFlatSplits> rt_nested_splits; rt_nested_splits.reserve(rt_nested_splits_len); for (int i = 0; i < rt_nested_splits_len; ++i) { rt_nested_splits.push_back(rt_nested_splits_in[i].flat<SPLITS_TYPE>()); } const Tensor& rt_dense_values_in = context->input(rt_nested_splits_len); OP_REQUIRES_OK(context, ValidateInputs(rt_nested_splits, rt_dense_values_in)); std::vector<int64_t> index_prefix(rt_nested_splits_len); std::vector<std::vector<int64_t>> index_suffixes = MakeIndexSuffixes(rt_dense_values_in.shape()); const int64_t nvals = (rt_nested_splits.back()(rt_nested_splits.back().size() - 1) * index_suffixes.size()); const int64_t indices_len = rt_nested_splits_len + rt_dense_values_in.dims(); Tensor* sparse_indices_out = nullptr; OP_REQUIRES_OK( context, context->allocate_output(0, TensorShape({nvals, indices_len}), &sparse_indices_out)); auto sparse_indices = sparse_indices_out->tensor<int64_t, 2>(); std::vector<int64_t> pos(rt_nested_splits_len); int64_t& final_pos = pos[rt_nested_splits_len - 1]; int next_index = 0; int max_final_pos = rt_nested_splits.back().size() - 1; for (; final_pos < max_final_pos; ++final_pos) { for (int dim = rt_nested_splits_len - 2; dim >= 0; --dim) { while (IsCompleted(pos, dim, rt_nested_splits)) { pos[dim] += 1; } } for (int dim = 0; dim < index_prefix.size(); ++dim) { int start = dim > 0 ? rt_nested_splits[dim - 1](pos[dim - 1]) : 0; index_prefix[dim] = pos[dim] - start; } const auto& final_splits = rt_nested_splits[rt_nested_splits_len - 1]; int64_t slice_len = final_splits(final_pos + 1) - final_splits(final_pos); for (int64_t i = 0; i < slice_len; ++i) { for (const auto& index_suffix : index_suffixes) { int dim = 0; for (int64_t index : index_prefix) { sparse_indices(next_index, dim++) = index; } sparse_indices(next_index, dim++) = i; for (int64_t index : index_suffix) { sparse_indices(next_index, dim++) = index; } DCHECK_EQ(dim, indices_len); ++next_index; } } } DCHECK_EQ(next_index, nvals); if (rt_dense_values_in.dims() == 1) { context->set_output(1, rt_dense_values_in); } else { Tensor sparse_values_out(rt_dense_values_in.dtype()); bool shapes_match = sparse_values_out.CopyFrom( rt_dense_values_in, {rt_dense_values_in.NumElements()}); DCHECK(shapes_match); context->set_output(1, sparse_values_out); } int64_t ndims = rt_nested_splits_len + rt_dense_values_in.dims(); Tensor* sparse_dense_shape_out = nullptr; OP_REQUIRES_OK(context, context->allocate_output(2, TensorShape({ndims}), &sparse_dense_shape_out)); auto sparse_dense_shape = sparse_dense_shape_out->vec<int64_t>(); sparse_dense_shape(0) = rt_nested_splits_in[0].dim_size(0) - 1; for (int dim = 0; dim < rt_nested_splits_len; ++dim) { const auto& splits = rt_nested_splits[dim]; SPLITS_TYPE max_width = 0; for (int i = 1; i < splits.size(); ++i) { max_width = std::max(max_width, splits(i) - splits(i - 1)); } sparse_dense_shape(dim + 1) = max_width; } for (int dim = 1; dim < rt_dense_values_in.dims(); ++dim) { sparse_dense_shape(dim + rt_nested_splits_len) = rt_dense_values_in.dim_size(dim); } } private: static ::tensorflow::Status ValidateInputs( std::vector<ConstFlatSplits> rt_nested_splits, const Tensor& rt_dense_values_in) { for (int i = 0; i < rt_nested_splits.size(); ++i) { if (rt_nested_splits[i].size() == 0) { return InvalidArgument("ragged splits may not be empty."); } if (rt_nested_splits[i](0) != 0) { return InvalidArgument("First value of ragged splits must be 0."); } for (int j = 1; j < rt_nested_splits[i].size(); ++j) { if (rt_nested_splits[i](j) < rt_nested_splits[i](j - 1)) { return InvalidArgument( "Ragged splits should be non decreasing, but we got ", rt_nested_splits[i](j - 1), " followed by ", rt_nested_splits[i](j)); } } if (i > 0) { SPLITS_TYPE last_split = rt_nested_splits[i - 1](rt_nested_splits[i - 1].size() - 1); if (rt_nested_splits[i].size() != last_split + 1) { return InvalidArgument( "Final value of ragged splits must match the length " "the corresponding ragged values."); } } } if (rt_dense_values_in.dim_size(0) != rt_nested_splits.back()(rt_nested_splits.back().size() - 1)) { return InvalidArgument( "Final value of ragged splits must match the length " "the corresponding ragged values."); } return absl::OkStatus(); } static std::vector<std::vector<int64_t>> MakeIndexSuffixes( const TensorShape& values_shape) { std::vector<std::vector<int64_t>> suffixes{{}}; for (int dim = 1; dim < values_shape.dims(); ++dim) { std::vector<std::vector<int64_t>> new_suffixes; for (const auto& suffix : suffixes) { for (int i = 0; i < values_shape.dim_size(dim); ++i) { new_suffixes.push_back(suffix); new_suffixes.back().push_back(i); } } suffixes.swap(new_suffixes); } return suffixes; } static bool IsCompleted( const std::vector<int64_t>& pos, int dim, const std::vector<ConstFlatSplits>& rt_nested_splits) { int64_t current_child = pos[dim + 1]; int64_t limit_child = rt_nested_splits[dim](pos[dim] + 1); return current_child >= limit_child; } }; REGISTER_KERNEL_BUILDER(Name("RaggedTensorToSparse") .Device(DEVICE_CPU) .TypeConstraint<int32>("Tsplits"), RaggedTensorToSparseOp<int32>); REGISTER_KERNEL_BUILDER(Name("RaggedTensorToSparse") .Device(DEVICE_CPU) .TypeConstraint<int64_t>("Tsplits"), RaggedTensorToSparseOp<int64_t>); }
#include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class RaggedTensorToSparseTest : public ::tensorflow::OpsTestBase { protected: static constexpr int kSparseIndicesOutput = 0; static constexpr int kSparseValuesOutput = 1; static constexpr int kSparseDenseShapeOutput = 2; template <typename T> void BuildRaggedTensorToSparseGraph( const std::vector<std::vector<int64_t>>& rt_nested_splits, const TensorShape& rt_dense_values_shape, const std::vector<T>& rt_dense_values) { const auto& dtype = DataTypeToEnum<T>::v(); int64_t num_splits = rt_nested_splits.size(); TF_ASSERT_OK(NodeDefBuilder("tested_op", "RaggedTensorToSparse") .Input(FakeInput(num_splits)) .Input(FakeInput(dtype)) .Attr("RAGGED_RANK", num_splits) .Attr("T", dtype) .Finalize(node_def())); TF_ASSERT_OK(InitOp()); for (const auto& splits : rt_nested_splits) { int64_t splits_size = splits.size(); AddInputFromArray<int64_t>(TensorShape({splits_size}), splits); } AddInputFromArray<T>(rt_dense_values_shape, rt_dense_values); } }; TEST_F(RaggedTensorToSparseTest, OneSplits_Values1D) { BuildRaggedTensorToSparseGraph<int>({{0, 3, 3, 5, 6}}, TensorShape({6}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>( *GetOutput(kSparseIndicesOutput), test::AsTensor<int64_t>({0, 0, 0, 1, 0, 2, 2, 0, 2, 1, 3, 0}, {6, 2})); test::ExpectTensorEqual<int>(*GetOutput(kSparseValuesOutput), test::AsTensor<int>({1, 2, 3, 4, 5, 6})); test::ExpectTensorEqual<int64_t>(*GetOutput(kSparseDenseShapeOutput), test::AsTensor<int64_t>({4, 3})); } TEST_F(RaggedTensorToSparseTest, EmptyRows) { BuildRaggedTensorToSparseGraph<int>({{0, 0, 4, 4, 6, 6}}, TensorShape({6}), {1, 2, 3, 4, 5, 6}); TF_ASSERT_OK(RunOpKernel()); test::ExpectTensorEqual<int64_t>( *GetOutput(kSparseIndicesOutput), test::AsTensor<int64_t>({1, 0, 1, 1, 1, 2, 1, 3, 3, 0, 3, 1}, {6, 2})); test::ExpectTensorEqual<int>(*GetOutput(kSparseValuesOutput), test::AsTensor<int>({1, 2, 3, 4, 5, 6})); test::ExpectTensorEqual<int64_t>(*GetOutput(kSparseDenseShapeOutput), test::AsTensor<int64_t>({5, 4})); } TEST_F(RaggedTensorToSparseTest, OneSplits_Values2D) { BuildRaggedTensorToSparseGraph<int>( {{0, 3, 3, 5, 6}}, TensorShape({6, 2}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); TF_ASSERT_OK(RunOpKernel()); std::vector<int64_t> expected_splits_12_3 = { 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 2, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 3, 0, 0, 3, 0, 1}; std::vector<int> expected_values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; test::ExpectTensorEqual<int64_t>( *GetOutput(kSparseIndicesOutput), test::AsTensor<int64_t>(expected_splits_12_3, {12, 3})); test::ExpectTensorEqual<int>(*GetOutput(kSparseValuesOutput), test::AsTensor<int>(expected_values)); test::ExpectTensorEqual<int64_t>(*GetOutput(kSparseDenseShapeOutput), test::AsTensor<int64_t>({4, 3, 2})); } TEST_F(RaggedTensorToSparseTest, TwoSplits_Values1D) { BuildRaggedTensorToSparseGraph<int>( {{0, 3, 3, 5, 7}, {0, 1, 3, 3, 8, 11, 11, 15}}, TensorShape({15}), {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}); TF_ASSERT_OK(RunOpKernel()); std::vector<int64_t> expected_splits_15_3 = { 0, 0, 0, 0, 1, 0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 0, 3, 2, 0, 4, 2, 1, 0, 2, 1, 1, 2, 1, 2, 3, 1, 0, 3, 1, 1, 3, 1, 2, 3, 1, 3}; std::vector<int> expected_values = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; test::ExpectTensorEqual<int>(*GetOutput(kSparseValuesOutput), test::AsTensor<int>(expected_values)); test::ExpectTensorEqual<int64_t>( *GetOutput(kSparseIndicesOutput), test::AsTensor<int64_t>(expected_splits_15_3, {15, 3})); test::ExpectTensorEqual<int64_t>(*GetOutput(kSparseDenseShapeOutput), test::AsTensor<int64_t>({4, 3, 5})); } TEST_F(RaggedTensorToSparseTest, ShapeFn) { ShapeInferenceTestOp op("RaggedTensorToSparse"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(0); INFER_ERROR("Requires RAGGED_RANK>0", op, "?"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(1); INFER_OK(op, "?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;[?]", "[?,2];[?];[2]"); INFER_OK(op, "?;[?,?]", "[?,3];[?];[3]"); INFER_OK(op, "[?];[5]", "[5,2];[5];[2]"); INFER_OK(op, "[?];[5,2]", "[10,3];[10];[3]"); INFER_ERROR("Shape must be rank 1 but is rank 0", op, "[];?"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "[5,5];?"); INFER_ERROR("Shape must be at least rank 1 but is rank 0", op, "?;[]"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(2); INFER_OK(op, "?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;?;[?]", "[?,3];[?];[3]"); INFER_OK(op, "?;?;[?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[?];[?];[5]", "[5,3];[5];[3]"); INFER_OK(op, "[?];[?];[5,2]", "[10,4];[10];[4]"); INFER_ERROR("Shape must be rank 1 but is rank 2", op, "?;[5,5];?"); (*op.node_def.mutable_attr())["RAGGED_RANK"].set_i(3); INFER_OK(op, "?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;?;?;[?]", "[?,4];[?];[4]"); INFER_OK(op, "?;?;?;[5]", "[5,4];[5];[4]"); } TEST_F(RaggedTensorToSparseTest, NoSplits) { const auto& dtype = DataTypeToEnum<int>::v(); TF_ASSERT_OK(NodeDefBuilder("tested_op", "RaggedTensorToSparse") .Input(FakeInput(0)) .Input(FakeInput(dtype)) .Attr("RAGGED_RANK", 0) .Attr("T", dtype) .Finalize(node_def())); EXPECT_TRUE(absl::StartsWith( InitOp().message(), "Value for attr 'RAGGED_RANK' of 0 must be at least minimum 1")); } TEST_F(RaggedTensorToSparseTest, InvalidArg_BadSplitStart) { BuildRaggedTensorToSparseGraph<int>({{5, 7, 10}}, TensorShape({0}), {}); EXPECT_EQ("First value of ragged splits must be 0.", RunOpKernel().message()); } TEST_F(RaggedTensorToSparseTest, InvalidArg_BadSplitLengths1) { BuildRaggedTensorToSparseGraph<int>({{0, 5}, {0, 2, 4, 6}}, TensorShape({0}), {}); EXPECT_EQ( "Final value of ragged splits must match the length " "the corresponding ragged values.", RunOpKernel().message()); } TEST_F(RaggedTensorToSparseTest, InvalidArg_BadSplitLengths2) { BuildRaggedTensorToSparseGraph<int>({{0, 5}}, TensorShape({0}), {}); EXPECT_EQ( "Final value of ragged splits must match the length " "the corresponding ragged values.", RunOpKernel().message()); } TEST_F(RaggedTensorToSparseTest, InvalidArg_EmptySplits) { BuildRaggedTensorToSparseGraph<int>({{}}, TensorShape({0}), {}); EXPECT_EQ("ragged splits may not be empty.", RunOpKernel().message()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/ragged_tensor_to_sparse_kernel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
772ecdae-719a-4552-84ed-7c36b3f447ac
cpp
google/quiche
capsule
quiche/common/capsule.cc
quiche/common/capsule_test.cc
#include "quiche/common/capsule.h" #include <cstddef> #include <cstdint> #include <limits> #include <ostream> #include <string> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "absl/types/variant.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_buffer_allocator.h" #include "quiche/common/quiche_data_reader.h" #include "quiche/common/quiche_data_writer.h" #include "quiche/common/quiche_ip_address.h" #include "quiche/common/quiche_status_utils.h" #include "quiche/common/wire_serialization.h" #include "quiche/web_transport/web_transport.h" namespace quiche { std::string CapsuleTypeToString(CapsuleType capsule_type) { switch (capsule_type) { case CapsuleType::DATAGRAM: return "DATAGRAM"; case CapsuleType::LEGACY_DATAGRAM: return "LEGACY_DATAGRAM"; case CapsuleType::LEGACY_DATAGRAM_WITHOUT_CONTEXT: return "LEGACY_DATAGRAM_WITHOUT_CONTEXT"; case CapsuleType::CLOSE_WEBTRANSPORT_SESSION: return "CLOSE_WEBTRANSPORT_SESSION"; case CapsuleType::DRAIN_WEBTRANSPORT_SESSION: return "DRAIN_WEBTRANSPORT_SESSION"; case CapsuleType::ADDRESS_REQUEST: return "ADDRESS_REQUEST"; case CapsuleType::ADDRESS_ASSIGN: return "ADDRESS_ASSIGN"; case CapsuleType::ROUTE_ADVERTISEMENT: return "ROUTE_ADVERTISEMENT"; case CapsuleType::WT_STREAM: return "WT_STREAM"; case CapsuleType::WT_STREAM_WITH_FIN: return "WT_STREAM_WITH_FIN"; case CapsuleType::WT_RESET_STREAM: return "WT_RESET_STREAM"; case CapsuleType::WT_STOP_SENDING: return "WT_STOP_SENDING"; case CapsuleType::WT_MAX_STREAM_DATA: return "WT_MAX_STREAM_DATA"; case CapsuleType::WT_MAX_STREAMS_BIDI: return "WT_MAX_STREAMS_BIDI"; case CapsuleType::WT_MAX_STREAMS_UNIDI: return "WT_MAX_STREAMS_UNIDI"; } return absl::StrCat("Unknown(", static_cast<uint64_t>(capsule_type), ")"); } std::ostream& operator<<(std::ostream& os, const CapsuleType& capsule_type) { os << CapsuleTypeToString(capsule_type); return os; } Capsule Capsule::Datagram(absl::string_view http_datagram_payload) { return Capsule(DatagramCapsule{http_datagram_payload}); } Capsule Capsule::LegacyDatagram(absl::string_view http_datagram_payload) { return Capsule(LegacyDatagramCapsule{http_datagram_payload}); } Capsule Capsule::LegacyDatagramWithoutContext( absl::string_view http_datagram_payload) { return Capsule(LegacyDatagramWithoutContextCapsule{http_datagram_payload}); } Capsule Capsule::CloseWebTransportSession( webtransport::SessionErrorCode error_code, absl::string_view error_message) { return Capsule(CloseWebTransportSessionCapsule({error_code, error_message})); } Capsule Capsule::AddressRequest() { return Capsule(AddressRequestCapsule()); } Capsule Capsule::AddressAssign() { return Capsule(AddressAssignCapsule()); } Capsule Capsule::RouteAdvertisement() { return Capsule(RouteAdvertisementCapsule()); } Capsule Capsule::Unknown(uint64_t capsule_type, absl::string_view unknown_capsule_data) { return Capsule(UnknownCapsule{capsule_type, unknown_capsule_data}); } bool Capsule::operator==(const Capsule& other) const { return capsule_ == other.capsule_; } std::string DatagramCapsule::ToString() const { return absl::StrCat("DATAGRAM[", absl::BytesToHexString(http_datagram_payload), "]"); } std::string LegacyDatagramCapsule::ToString() const { return absl::StrCat("LEGACY_DATAGRAM[", absl::BytesToHexString(http_datagram_payload), "]"); } std::string LegacyDatagramWithoutContextCapsule::ToString() const { return absl::StrCat("LEGACY_DATAGRAM_WITHOUT_CONTEXT[", absl::BytesToHexString(http_datagram_payload), "]"); } std::string CloseWebTransportSessionCapsule::ToString() const { return absl::StrCat("CLOSE_WEBTRANSPORT_SESSION(error_code=", error_code, ",error_message=\"", error_message, "\")"); } std::string DrainWebTransportSessionCapsule::ToString() const { return "DRAIN_WEBTRANSPORT_SESSION()"; } std::string AddressRequestCapsule::ToString() const { std::string rv = "ADDRESS_REQUEST["; for (auto requested_address : requested_addresses) { absl::StrAppend(&rv, "(", requested_address.request_id, "-", requested_address.ip_prefix.ToString(), ")"); } absl::StrAppend(&rv, "]"); return rv; } std::string AddressAssignCapsule::ToString() const { std::string rv = "ADDRESS_ASSIGN["; for (auto assigned_address : assigned_addresses) { absl::StrAppend(&rv, "(", assigned_address.request_id, "-", assigned_address.ip_prefix.ToString(), ")"); } absl::StrAppend(&rv, "]"); return rv; } std::string RouteAdvertisementCapsule::ToString() const { std::string rv = "ROUTE_ADVERTISEMENT["; for (auto ip_address_range : ip_address_ranges) { absl::StrAppend(&rv, "(", ip_address_range.start_ip_address.ToString(), "-", ip_address_range.end_ip_address.ToString(), "-", static_cast<int>(ip_address_range.ip_protocol), ")"); } absl::StrAppend(&rv, "]"); return rv; } std::string UnknownCapsule::ToString() const { return absl::StrCat("Unknown(", type, ") [", absl::BytesToHexString(payload), "]"); } std::string WebTransportStreamDataCapsule::ToString() const { return absl::StrCat(CapsuleTypeToString(capsule_type()), " [stream_id=", stream_id, ", data=", absl::BytesToHexString(data), "]"); } std::string WebTransportResetStreamCapsule::ToString() const { return absl::StrCat("WT_RESET_STREAM(stream_id=", stream_id, ", error_code=", error_code, ")"); } std::string WebTransportStopSendingCapsule::ToString() const { return absl::StrCat("WT_STOP_SENDING(stream_id=", stream_id, ", error_code=", error_code, ")"); } std::string WebTransportMaxStreamDataCapsule::ToString() const { return absl::StrCat("WT_MAX_STREAM_DATA (stream_id=", stream_id, ", max_stream_data=", max_stream_data, ")"); } std::string WebTransportMaxStreamsCapsule::ToString() const { return absl::StrCat(CapsuleTypeToString(capsule_type()), " (max_streams=", max_stream_count, ")"); } std::string Capsule::ToString() const { return absl::visit([](const auto& capsule) { return capsule.ToString(); }, capsule_); } std::ostream& operator<<(std::ostream& os, const Capsule& capsule) { os << capsule.ToString(); return os; } CapsuleParser::CapsuleParser(Visitor* visitor) : visitor_(visitor) { QUICHE_DCHECK_NE(visitor_, nullptr); } class WirePrefixWithId { public: using DataType = PrefixWithId; WirePrefixWithId(const PrefixWithId& prefix) : prefix_(prefix) {} size_t GetLengthOnWire() { return ComputeLengthOnWire( WireVarInt62(prefix_.request_id), WireUint8(prefix_.ip_prefix.address().IsIPv4() ? 4 : 6), WireBytes(prefix_.ip_prefix.address().ToPackedString()), WireUint8(prefix_.ip_prefix.prefix_length())); } absl::Status SerializeIntoWriter(QuicheDataWriter& writer) { return AppendToStatus( quiche::SerializeIntoWriter( writer, WireVarInt62(prefix_.request_id), WireUint8(prefix_.ip_prefix.address().IsIPv4() ? 4 : 6), WireBytes(prefix_.ip_prefix.address().ToPackedString()), WireUint8(prefix_.ip_prefix.prefix_length())), " while serializing a PrefixWithId"); } private: const PrefixWithId& prefix_; }; class WireIpAddressRange { public: using DataType = IpAddressRange; explicit WireIpAddressRange(const IpAddressRange& range) : range_(range) {} size_t GetLengthOnWire() { return ComputeLengthOnWire( WireUint8(range_.start_ip_address.IsIPv4() ? 4 : 6), WireBytes(range_.start_ip_address.ToPackedString()), WireBytes(range_.end_ip_address.ToPackedString()), WireUint8(range_.ip_protocol)); } absl::Status SerializeIntoWriter(QuicheDataWriter& writer) { return AppendToStatus( ::quiche::SerializeIntoWriter( writer, WireUint8(range_.start_ip_address.IsIPv4() ? 4 : 6), WireBytes(range_.start_ip_address.ToPackedString()), WireBytes(range_.end_ip_address.ToPackedString()), WireUint8(range_.ip_protocol)), " while serializing an IpAddressRange"); } private: const IpAddressRange& range_; }; template <typename... T> absl::StatusOr<quiche::QuicheBuffer> SerializeCapsuleFields( CapsuleType type, QuicheBufferAllocator* allocator, T... fields) { size_t capsule_payload_size = ComputeLengthOnWire(fields...); return SerializeIntoBuffer(allocator, WireVarInt62(type), WireVarInt62(capsule_payload_size), fields...); } absl::StatusOr<quiche::QuicheBuffer> SerializeCapsuleWithStatus( const Capsule& capsule, quiche::QuicheBufferAllocator* allocator) { switch (capsule.capsule_type()) { case CapsuleType::DATAGRAM: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireBytes(capsule.datagram_capsule().http_datagram_payload)); case CapsuleType::LEGACY_DATAGRAM: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireBytes(capsule.legacy_datagram_capsule().http_datagram_payload)); case CapsuleType::LEGACY_DATAGRAM_WITHOUT_CONTEXT: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireBytes(capsule.legacy_datagram_without_context_capsule() .http_datagram_payload)); case CapsuleType::CLOSE_WEBTRANSPORT_SESSION: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireUint32(capsule.close_web_transport_session_capsule().error_code), WireBytes( capsule.close_web_transport_session_capsule().error_message)); case CapsuleType::DRAIN_WEBTRANSPORT_SESSION: return SerializeCapsuleFields(capsule.capsule_type(), allocator); case CapsuleType::ADDRESS_REQUEST: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireSpan<WirePrefixWithId>(absl::MakeConstSpan( capsule.address_request_capsule().requested_addresses))); case CapsuleType::ADDRESS_ASSIGN: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireSpan<WirePrefixWithId>(absl::MakeConstSpan( capsule.address_assign_capsule().assigned_addresses))); case CapsuleType::ROUTE_ADVERTISEMENT: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireSpan<WireIpAddressRange>(absl::MakeConstSpan( capsule.route_advertisement_capsule().ip_address_ranges))); case CapsuleType::WT_STREAM: case CapsuleType::WT_STREAM_WITH_FIN: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireVarInt62(capsule.web_transport_stream_data().stream_id), WireBytes(capsule.web_transport_stream_data().data)); case CapsuleType::WT_RESET_STREAM: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireVarInt62(capsule.web_transport_reset_stream().stream_id), WireVarInt62(capsule.web_transport_reset_stream().error_code)); case CapsuleType::WT_STOP_SENDING: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireVarInt62(capsule.web_transport_stop_sending().stream_id), WireVarInt62(capsule.web_transport_stop_sending().error_code)); case CapsuleType::WT_MAX_STREAM_DATA: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireVarInt62(capsule.web_transport_max_stream_data().stream_id), WireVarInt62( capsule.web_transport_max_stream_data().max_stream_data)); case CapsuleType::WT_MAX_STREAMS_BIDI: case CapsuleType::WT_MAX_STREAMS_UNIDI: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireVarInt62(capsule.web_transport_max_streams().max_stream_count)); default: return SerializeCapsuleFields( capsule.capsule_type(), allocator, WireBytes(capsule.unknown_capsule().payload)); } } QuicheBuffer SerializeDatagramCapsuleHeader(uint64_t datagram_size, QuicheBufferAllocator* allocator) { absl::StatusOr<QuicheBuffer> buffer = SerializeIntoBuffer(allocator, WireVarInt62(CapsuleType::DATAGRAM), WireVarInt62(datagram_size)); if (!buffer.ok()) { return QuicheBuffer(); } return *std::move(buffer); } QUICHE_EXPORT QuicheBuffer SerializeWebTransportStreamCapsuleHeader( webtransport::StreamId stream_id, bool fin, uint64_t write_size, QuicheBufferAllocator* allocator) { absl::StatusOr<QuicheBuffer> buffer = SerializeIntoBuffer( allocator, WireVarInt62(fin ? CapsuleType::WT_STREAM_WITH_FIN : CapsuleType::WT_STREAM), WireVarInt62(write_size + QuicheDataWriter::GetVarInt62Len(stream_id)), WireVarInt62(stream_id)); if (!buffer.ok()) { return QuicheBuffer(); } return *std::move(buffer); } QuicheBuffer SerializeCapsule(const Capsule& capsule, quiche::QuicheBufferAllocator* allocator) { absl::StatusOr<QuicheBuffer> serialized = SerializeCapsuleWithStatus(capsule, allocator); if (!serialized.ok()) { QUICHE_BUG(capsule_serialization_failed) << "Failed to serialize the following capsule:\n" << capsule << "Serialization error: " << serialized.status(); return QuicheBuffer(); } return *std::move(serialized); } bool CapsuleParser::IngestCapsuleFragment(absl::string_view capsule_fragment) { if (parsing_error_occurred_) { return false; } absl::StrAppend(&buffered_data_, capsule_fragment); while (true) { const absl::StatusOr<size_t> buffered_data_read = AttemptParseCapsule(); if (!buffered_data_read.ok()) { ReportParseFailure(buffered_data_read.status().message()); buffered_data_.clear(); return false; } if (*buffered_data_read == 0) { break; } buffered_data_.erase(0, *buffered_data_read); } static constexpr size_t kMaxCapsuleBufferSize = 1024 * 1024; if (buffered_data_.size() > kMaxCapsuleBufferSize) { buffered_data_.clear(); ReportParseFailure("Refusing to buffer too much capsule data"); return false; } return true; } namespace { absl::Status ReadWebTransportStreamId(QuicheDataReader& reader, webtransport::StreamId& id) { uint64_t raw_id; if (!reader.ReadVarInt62(&raw_id)) { return absl::InvalidArgumentError("Failed to read WebTransport Stream ID"); } if (raw_id > std::numeric_limits<uint32_t>::max()) { return absl::InvalidArgumentError("Stream ID does not fit into a uint32_t"); } id = static_cast<webtransport::StreamId>(raw_id); return absl::OkStatus(); } absl::StatusOr<Capsule> ParseCapsulePayload(QuicheDataReader& reader, CapsuleType type) { switch (type) { case CapsuleType::DATAGRAM: return Capsule::Datagram(reader.ReadRemainingPayload()); case CapsuleType::LEGACY_DATAGRAM: return Capsule::LegacyDatagram(reader.ReadRemainingPayload()); case CapsuleType::LEGACY_DATAGRAM_WITHOUT_CONTEXT: return Capsule::LegacyDatagramWithoutContext( reader.ReadRemainingPayload()); case CapsuleType::CLOSE_WEBTRANSPORT_SESSION: { CloseWebTransportSessionCapsule capsule; if (!reader.ReadUInt32(&capsule.error_code)) { return absl::InvalidArgumentError( "Unable to parse capsule CLOSE_WEBTRANSPORT_SESSION error code"); } capsule.error_message = reader.ReadRemainingPayload(); return Capsule(std::move(capsule)); } case CapsuleType::DRAIN_WEBTRANSPORT_SESSION: return Capsule(DrainWebTransportSessionCapsule()); case CapsuleType::ADDRESS_REQUEST: { AddressRequestCapsule capsule; while (!reader.IsDoneReading()) { PrefixWithId requested_address; if (!reader.ReadVarInt62(&requested_address.request_id)) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_REQUEST request ID"); } uint8_t address_family; if (!reader.ReadUInt8(&address_family)) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_REQUEST family"); } if (address_family != 4 && address_family != 6) { return absl::InvalidArgumentError("Bad ADDRESS_REQUEST family"); } absl::string_view ip_address_bytes; if (!reader.ReadStringPiece(&ip_address_bytes, address_family == 4 ? QuicheIpAddress::kIPv4AddressSize : QuicheIpAddress::kIPv6AddressSize)) { return absl::InvalidArgumentError( "Unable to read capsule ADDRESS_REQUEST address"); } quiche::QuicheIpAddress ip_address; if (!ip_address.FromPackedString(ip_address_bytes.data(), ip_address_bytes.size())) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_REQUEST address"); } uint8_t ip_prefix_length; if (!reader.ReadUInt8(&ip_prefix_length)) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_REQUEST IP prefix length"); } if (ip_prefix_length > QuicheIpPrefix(ip_address).prefix_length()) { return absl::InvalidArgumentError("Invalid IP prefix length"); } requested_address.ip_prefix = QuicheIpPrefix(ip_address, ip_prefix_length); capsule.requested_addresses.push_back(requested_address); } return Capsule(std::move(capsule)); } case CapsuleType::ADDRESS_ASSIGN: { AddressAssignCapsule capsule; while (!reader.IsDoneReading()) { PrefixWithId assigned_address; if (!reader.ReadVarInt62(&assigned_address.request_id)) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_ASSIGN request ID"); } uint8_t address_family; if (!reader.ReadUInt8(&address_family)) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_ASSIGN family"); } if (address_family != 4 && address_family != 6) { return absl::InvalidArgumentError("Bad ADDRESS_ASSIGN family"); } absl::string_view ip_address_bytes; if (!reader.ReadStringPiece(&ip_address_bytes, address_family == 4 ? QuicheIpAddress::kIPv4AddressSize : QuicheIpAddress::kIPv6AddressSize)) { return absl::InvalidArgumentError( "Unable to read capsule ADDRESS_ASSIGN address"); } quiche::QuicheIpAddress ip_address; if (!ip_address.FromPackedString(ip_address_bytes.data(), ip_address_bytes.size())) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_ASSIGN address"); } uint8_t ip_prefix_length; if (!reader.ReadUInt8(&ip_prefix_length)) { return absl::InvalidArgumentError( "Unable to parse capsule ADDRESS_ASSIGN IP prefix length"); } if (ip_prefix_length > QuicheIpPrefix(ip_address).prefix_length()) { return absl::InvalidArgumentError("Invalid IP prefix length"); } assigned_address.ip_prefix = QuicheIpPrefix(ip_address, ip_prefix_length); capsule.assigned_addresses.push_back(assigned_address); } return Capsule(std::move(capsule)); } case CapsuleType::ROUTE_ADVERTISEMENT: { RouteAdvertisementCapsule capsule; while (!reader.IsDoneReading()) { uint8_t address_family; if (!reader.ReadUInt8(&address_family)) { return absl::InvalidArgumentError( "Unable to parse capsule ROUTE_ADVERTISEMENT family"); } if (address_family != 4 && address_family != 6) { return absl::InvalidArgumentError("Bad ROUTE_ADVERTISEMENT family"); } IpAddressRange ip_address_range; absl::string_view start_ip_address_bytes; if (!reader.ReadStringPiece(&start_ip_address_bytes, address_family == 4 ? QuicheIpAddress::kIPv4AddressSize : QuicheIpAddress::kIPv6AddressSize)) { return absl::InvalidArgumentError( "Unable to read capsule ROUTE_ADVERTISEMENT start address"); } if (!ip_address_range.start_ip_address.FromPackedString( start_ip_address_bytes.data(), start_ip_address_bytes.size())) { return absl::InvalidArgumentError( "Unable to parse capsule ROUTE_ADVERTISEMENT start address"); } absl::string_view end_ip_address_bytes; if (!reader.ReadStringPiece(&end_ip_address_bytes, address_family == 4 ? QuicheIpAddress::kIPv4AddressSize : QuicheIpAddress::kIPv6AddressSize)) { return absl::InvalidArgumentError( "Unable to read capsule ROUTE_ADVERTISEMENT end address"); } if (!ip_address_range.end_ip_address.FromPackedString( end_ip_address_bytes.data(), end_ip_address_bytes.size())) { return absl::InvalidArgumentError( "Unable to parse capsule ROUTE_ADVERTISEMENT end address"); } if (!reader.ReadUInt8(&ip_address_range.ip_protocol)) { return absl::InvalidArgumentError( "Unable to parse capsule ROUTE_ADVERTISEMENT IP protocol"); } capsule.ip_address_ranges.push_back(ip_address_range); } return Capsule(std::move(capsule)); } case CapsuleType::WT_STREAM: case CapsuleType::WT_STREAM_WITH_FIN: { WebTransportStreamDataCapsule capsule; capsule.fin = (type == CapsuleType::WT_STREAM_WITH_FIN); QUICHE_RETURN_IF_ERROR( ReadWebTransportStreamId(reader, capsule.stream_id)); capsule.data = reader.ReadRemainingPayload(); return Capsule(std::move(capsule)); } case CapsuleType::WT_RESET_STREAM: { WebTransportResetStreamCapsule capsule; QUICHE_RETURN_IF_ERROR( ReadWebTransportStreamId(reader, capsule.stream_id)); if (!reader.ReadVarInt62(&capsule.error_code)) { return absl::InvalidArgumentError( "Failed to parse the RESET_STREAM error code"); } return Capsule(std::move(capsule)); } case CapsuleType::WT_STOP_SENDING: { WebTransportStopSendingCapsule capsule; QUICHE_RETURN_IF_ERROR( ReadWebTransportStreamId(reader, capsule.stream_id)); if (!reader.ReadVarInt62(&capsule.error_code)) { return absl::InvalidArgumentError( "Failed to parse the STOP_SENDING error code"); } return Capsule(std::move(capsule)); } case CapsuleType::WT_MAX_STREAM_DATA: { WebTransportMaxStreamDataCapsule capsule; QUICHE_RETURN_IF_ERROR( ReadWebTransportStreamId(reader, capsule.stream_id)); if (!reader.ReadVarInt62(&capsule.max_stream_data)) { return absl::InvalidArgumentError( "Failed to parse the max stream data field"); } return Capsule(std::move(capsule)); } case CapsuleType::WT_MAX_STREAMS_UNIDI: case CapsuleType::WT_MAX_STREAMS_BIDI: { WebTransportMaxStreamsCapsule capsule; capsule.stream_type = type == CapsuleType::WT_MAX_STREAMS_UNIDI ? webtransport::StreamType::kUnidirectional : webtransport::StreamType::kBidirectional; if (!reader.ReadVarInt62(&capsule.max_stream_count)) { return absl::InvalidArgumentError( "Failed to parse the max streams field"); } return Capsule(std::move(capsule)); } default: return Capsule(UnknownCapsule{static_cast<uint64_t>(type), reader.ReadRemainingPayload()}); } } } absl::StatusOr<size_t> CapsuleParser::AttemptParseCapsule() { QUICHE_DCHECK(!parsing_error_occurred_); if (buffered_data_.empty()) { return 0; } QuicheDataReader capsule_fragment_reader(buffered_data_); uint64_t capsule_type64; if (!capsule_fragment_reader.ReadVarInt62(&capsule_type64)) { QUICHE_DVLOG(2) << "Partial read: not enough data to read capsule type"; return 0; } absl::string_view capsule_data; if (!capsule_fragment_reader.ReadStringPieceVarInt62(&capsule_data)) { QUICHE_DVLOG(2) << "Partial read: not enough data to read capsule length or " "full capsule data"; return 0; } QuicheDataReader capsule_data_reader(capsule_data); absl::StatusOr<Capsule> capsule = ParseCapsulePayload( capsule_data_reader, static_cast<CapsuleType>(capsule_type64)); QUICHE_RETURN_IF_ERROR(capsule.status()); if (!visitor_->OnCapsule(*capsule)) { return absl::AbortedError("Visitor failed to process capsule"); } return capsule_fragment_reader.PreviouslyReadPayload().length(); } void CapsuleParser::ReportParseFailure(absl::string_view error_message) { if (parsing_error_occurred_) { QUICHE_BUG(multiple parse errors) << "Experienced multiple parse failures"; return; } parsing_error_occurred_ = true; visitor_->OnCapsuleParseFailure(error_message); } void CapsuleParser::ErrorIfThereIsRemainingBufferedData() { if (parsing_error_occurred_) { return; } if (!buffered_data_.empty()) { ReportParseFailure("Incomplete capsule left at the end of the stream"); } } bool PrefixWithId::operator==(const PrefixWithId& other) const { return request_id == other.request_id && ip_prefix == other.ip_prefix; } bool IpAddressRange::operator==(const IpAddressRange& other) const { return start_ip_address == other.start_ip_address && end_ip_address == other.end_ip_address && ip_protocol == other.ip_protocol; } bool AddressAssignCapsule::operator==(const AddressAssignCapsule& other) const { return assigned_addresses == other.assigned_addresses; } bool AddressRequestCapsule::operator==( const AddressRequestCapsule& other) const { return requested_addresses == other.requested_addresses; } bool RouteAdvertisementCapsule::operator==( const RouteAdvertisementCapsule& other) const { return ip_address_ranges == other.ip_address_ranges; } bool WebTransportStreamDataCapsule::operator==( const WebTransportStreamDataCapsule& other) const { return stream_id == other.stream_id && data == other.data && fin == other.fin; } bool WebTransportResetStreamCapsule::operator==( const WebTransportResetStreamCapsule& other) const { return stream_id == other.stream_id && error_code == other.error_code; } bool WebTransportStopSendingCapsule::operator==( const WebTransportStopSendingCapsule& other) const { return stream_id == other.stream_id && error_code == other.error_code; } bool WebTransportMaxStreamDataCapsule::operator==( const WebTransportMaxStreamDataCapsule& other) const { return stream_id == other.stream_id && max_stream_data == other.max_stream_data; } bool WebTransportMaxStreamsCapsule::operator==( const WebTransportMaxStreamsCapsule& other) const { return stream_type == other.stream_type && max_stream_count == other.max_stream_count; } }
#include "quiche/common/capsule.h" #include <cstddef> #include <deque> #include <string> #include <vector> #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_test.h" #include "quiche/common/quiche_buffer_allocator.h" #include "quiche/common/quiche_ip_address.h" #include "quiche/common/simple_buffer_allocator.h" #include "quiche/common/test_tools/quiche_test_utils.h" #include "quiche/web_transport/web_transport.h" using ::testing::_; using ::testing::InSequence; using ::testing::Return; using ::webtransport::StreamType; namespace quiche { namespace test { class CapsuleParserPeer { public: static std::string* buffered_data(CapsuleParser* capsule_parser) { return &capsule_parser->buffered_data_; } }; namespace { class MockCapsuleParserVisitor : public CapsuleParser::Visitor { public: MockCapsuleParserVisitor() { ON_CALL(*this, OnCapsule(_)).WillByDefault(Return(true)); } ~MockCapsuleParserVisitor() override = default; MOCK_METHOD(bool, OnCapsule, (const Capsule& capsule), (override)); MOCK_METHOD(void, OnCapsuleParseFailure, (absl::string_view error_message), (override)); }; class CapsuleTest : public QuicheTest { public: CapsuleTest() : capsule_parser_(&visitor_) {} void ValidateParserIsEmpty() { EXPECT_CALL(visitor_, OnCapsule(_)).Times(0); EXPECT_CALL(visitor_, OnCapsuleParseFailure(_)).Times(0); capsule_parser_.ErrorIfThereIsRemainingBufferedData(); EXPECT_TRUE(CapsuleParserPeer::buffered_data(&capsule_parser_)->empty()); } void TestSerialization(const Capsule& capsule, const std::string& expected_bytes) { quiche::QuicheBuffer serialized_capsule = SerializeCapsule(capsule, SimpleBufferAllocator::Get()); quiche::test::CompareCharArraysWithHexError( "Serialized capsule", serialized_capsule.data(), serialized_capsule.size(), expected_bytes.data(), expected_bytes.size()); } ::testing::StrictMock<MockCapsuleParserVisitor> visitor_; CapsuleParser capsule_parser_; }; TEST_F(CapsuleTest, DatagramCapsule) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("00" "08" "a1a2a3a4a5a6a7a8", &capsule_fragment)); std::string datagram_payload; ASSERT_TRUE(absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &datagram_payload)); Capsule expected_capsule = Capsule::Datagram(datagram_payload); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, DatagramCapsuleViaHeader) { std::string datagram_payload; ASSERT_TRUE(absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &datagram_payload)); quiche::QuicheBuffer expected_capsule = SerializeCapsule( Capsule::Datagram(datagram_payload), SimpleBufferAllocator::Get()); quiche::QuicheBuffer actual_header = SerializeDatagramCapsuleHeader( datagram_payload.size(), SimpleBufferAllocator::Get()); EXPECT_EQ(expected_capsule.AsStringView(), absl::StrCat(actual_header.AsStringView(), datagram_payload)); } TEST_F(CapsuleTest, LegacyDatagramCapsule) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("80ff37a0" "08" "a1a2a3a4a5a6a7a8", &capsule_fragment)); std::string datagram_payload; ASSERT_TRUE(absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &datagram_payload)); Capsule expected_capsule = Capsule::LegacyDatagram(datagram_payload); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, LegacyDatagramWithoutContextCapsule) { std::string capsule_fragment; ASSERT_TRUE(absl::HexStringToBytes( "80ff37a5" "08" "a1a2a3a4a5a6a7a8", &capsule_fragment)); std::string datagram_payload; ASSERT_TRUE(absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &datagram_payload)); Capsule expected_capsule = Capsule::LegacyDatagramWithoutContext(datagram_payload); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, CloseWebTransportStreamCapsule) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("6843" "09" "00001234" "68656c6c6f", &capsule_fragment)); Capsule expected_capsule = Capsule::CloseWebTransportSession( 0x1234, "hello"); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, DrainWebTransportStreamCapsule) { std::string capsule_fragment; ASSERT_TRUE(absl::HexStringToBytes( "800078ae" "00", &capsule_fragment)); Capsule expected_capsule = Capsule(DrainWebTransportSessionCapsule()); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, AddressAssignCapsule) { std::string capsule_fragment; ASSERT_TRUE(absl::HexStringToBytes( "9ECA6A00" "1A" "00" "04" "C000022A" "1F" "01" "06" "20010db8123456780000000000000000" "40", &capsule_fragment)); Capsule expected_capsule = Capsule::AddressAssign(); quiche::QuicheIpAddress ip_address1; ip_address1.FromString("192.0.2.42"); PrefixWithId assigned_address1; assigned_address1.request_id = 0; assigned_address1.ip_prefix = quiche::QuicheIpPrefix(ip_address1, 31); expected_capsule.address_assign_capsule().assigned_addresses.push_back( assigned_address1); quiche::QuicheIpAddress ip_address2; ip_address2.FromString("2001:db8:1234:5678::"); PrefixWithId assigned_address2; assigned_address2.request_id = 1; assigned_address2.ip_prefix = quiche::QuicheIpPrefix(ip_address2, 64); expected_capsule.address_assign_capsule().assigned_addresses.push_back( assigned_address2); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, AddressRequestCapsule) { std::string capsule_fragment; ASSERT_TRUE(absl::HexStringToBytes( "9ECA6A01" "1A" "00" "04" "C000022A" "1F" "01" "06" "20010db8123456780000000000000000" "40", &capsule_fragment)); Capsule expected_capsule = Capsule::AddressRequest(); quiche::QuicheIpAddress ip_address1; ip_address1.FromString("192.0.2.42"); PrefixWithId requested_address1; requested_address1.request_id = 0; requested_address1.ip_prefix = quiche::QuicheIpPrefix(ip_address1, 31); expected_capsule.address_request_capsule().requested_addresses.push_back( requested_address1); quiche::QuicheIpAddress ip_address2; ip_address2.FromString("2001:db8:1234:5678::"); PrefixWithId requested_address2; requested_address2.request_id = 1; requested_address2.ip_prefix = quiche::QuicheIpPrefix(ip_address2, 64); expected_capsule.address_request_capsule().requested_addresses.push_back( requested_address2); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, RouteAdvertisementCapsule) { std::string capsule_fragment; ASSERT_TRUE(absl::HexStringToBytes( "9ECA6A02" "2C" "04" "C0000218" "C000022A" "00" "06" "00000000000000000000000000000000" "ffffffffffffffffffffffffffffffff" "01", &capsule_fragment)); Capsule expected_capsule = Capsule::RouteAdvertisement(); IpAddressRange ip_address_range1; ip_address_range1.start_ip_address.FromString("192.0.2.24"); ip_address_range1.end_ip_address.FromString("192.0.2.42"); ip_address_range1.ip_protocol = 0; expected_capsule.route_advertisement_capsule().ip_address_ranges.push_back( ip_address_range1); IpAddressRange ip_address_range2; ip_address_range2.start_ip_address.FromString("::"); ip_address_range2.end_ip_address.FromString( "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"); ip_address_range2.ip_protocol = 1; expected_capsule.route_advertisement_capsule().ip_address_ranges.push_back( ip_address_range2); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, WebTransportStreamData) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("990b4d3b" "04" "17" "abcdef", &capsule_fragment)); Capsule expected_capsule = Capsule(WebTransportStreamDataCapsule()); expected_capsule.web_transport_stream_data().stream_id = 0x17; expected_capsule.web_transport_stream_data().data = "\xab\xcd\xef"; expected_capsule.web_transport_stream_data().fin = false; { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, WebTransportStreamDataHeader) { std::string capsule_fragment; ASSERT_TRUE(absl::HexStringToBytes( "990b4d3b" "04" "17", &capsule_fragment)); QuicheBufferAllocator* allocator = SimpleBufferAllocator::Get(); QuicheBuffer capsule_header = quiche::SerializeWebTransportStreamCapsuleHeader(0x17, false, 3, allocator); EXPECT_EQ(capsule_header.AsStringView(), capsule_fragment); } TEST_F(CapsuleTest, WebTransportStreamDataWithFin) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("990b4d3c" "04" "17" "abcdef", &capsule_fragment)); Capsule expected_capsule = Capsule(WebTransportStreamDataCapsule()); expected_capsule.web_transport_stream_data().stream_id = 0x17; expected_capsule.web_transport_stream_data().data = "\xab\xcd\xef"; expected_capsule.web_transport_stream_data().fin = true; { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, WebTransportResetStream) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("990b4d39" "02" "17" "07", &capsule_fragment)); Capsule expected_capsule = Capsule(WebTransportResetStreamCapsule()); expected_capsule.web_transport_reset_stream().stream_id = 0x17; expected_capsule.web_transport_reset_stream().error_code = 0x07; { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, WebTransportStopSending) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("990b4d3a" "02" "17" "07", &capsule_fragment)); Capsule expected_capsule = Capsule(WebTransportStopSendingCapsule()); expected_capsule.web_transport_stop_sending().stream_id = 0x17; expected_capsule.web_transport_stop_sending().error_code = 0x07; { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, WebTransportMaxStreamData) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("990b4d3e" "02" "17" "10", &capsule_fragment)); Capsule expected_capsule = Capsule(WebTransportMaxStreamDataCapsule()); expected_capsule.web_transport_max_stream_data().stream_id = 0x17; expected_capsule.web_transport_max_stream_data().max_stream_data = 0x10; { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, WebTransportMaxStreamsBi) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("990b4d3f" "01" "17", &capsule_fragment)); Capsule expected_capsule = Capsule(WebTransportMaxStreamsCapsule()); expected_capsule.web_transport_max_streams().stream_type = StreamType::kBidirectional; expected_capsule.web_transport_max_streams().max_stream_count = 0x17; { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, WebTransportMaxStreamsUni) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("990b4d40" "01" "17", &capsule_fragment)); Capsule expected_capsule = Capsule(WebTransportMaxStreamsCapsule()); expected_capsule.web_transport_max_streams().stream_type = StreamType::kUnidirectional; expected_capsule.web_transport_max_streams().max_stream_count = 0x17; { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, UnknownCapsule) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("17" "08" "a1a2a3a4a5a6a7a8", &capsule_fragment)); std::string unknown_capsule_data; ASSERT_TRUE( absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &unknown_capsule_data)); Capsule expected_capsule = Capsule::Unknown(0x17, unknown_capsule_data); { EXPECT_CALL(visitor_, OnCapsule(expected_capsule)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); TestSerialization(expected_capsule, capsule_fragment); } TEST_F(CapsuleTest, TwoCapsules) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("00" "08" "a1a2a3a4a5a6a7a8" "00" "08" "b1b2b3b4b5b6b7b8", &capsule_fragment)); std::string datagram_payload1; ASSERT_TRUE(absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &datagram_payload1)); std::string datagram_payload2; ASSERT_TRUE(absl::HexStringToBytes("b1b2b3b4b5b6b7b8", &datagram_payload2)); Capsule expected_capsule1 = Capsule::Datagram(datagram_payload1); Capsule expected_capsule2 = Capsule::Datagram(datagram_payload2); { InSequence s; EXPECT_CALL(visitor_, OnCapsule(expected_capsule1)); EXPECT_CALL(visitor_, OnCapsule(expected_capsule2)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } ValidateParserIsEmpty(); } TEST_F(CapsuleTest, TwoCapsulesPartialReads) { std::string capsule_fragment1; ASSERT_TRUE(absl::HexStringToBytes( "00" "08" "a1a2a3a4", &capsule_fragment1)); std::string capsule_fragment2; ASSERT_TRUE(absl::HexStringToBytes( "a5a6a7a8" "00", &capsule_fragment2)); std::string capsule_fragment3; ASSERT_TRUE(absl::HexStringToBytes( "08" "b1b2b3b4b5b6b7b8", &capsule_fragment3)); capsule_parser_.ErrorIfThereIsRemainingBufferedData(); std::string datagram_payload1; ASSERT_TRUE(absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &datagram_payload1)); std::string datagram_payload2; ASSERT_TRUE(absl::HexStringToBytes("b1b2b3b4b5b6b7b8", &datagram_payload2)); Capsule expected_capsule1 = Capsule::Datagram(datagram_payload1); Capsule expected_capsule2 = Capsule::Datagram(datagram_payload2); { InSequence s; EXPECT_CALL(visitor_, OnCapsule(expected_capsule1)); EXPECT_CALL(visitor_, OnCapsule(expected_capsule2)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment1)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment2)); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment3)); } ValidateParserIsEmpty(); } TEST_F(CapsuleTest, TwoCapsulesOneByteAtATime) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("00" "08" "a1a2a3a4a5a6a7a8" "00" "08" "b1b2b3b4b5b6b7b8", &capsule_fragment)); std::string datagram_payload1; ASSERT_TRUE(absl::HexStringToBytes("a1a2a3a4a5a6a7a8", &datagram_payload1)); std::string datagram_payload2; ASSERT_TRUE(absl::HexStringToBytes("b1b2b3b4b5b6b7b8", &datagram_payload2)); Capsule expected_capsule1 = Capsule::Datagram(datagram_payload1); Capsule expected_capsule2 = Capsule::Datagram(datagram_payload2); for (size_t i = 0; i < capsule_fragment.size(); i++) { if (i < capsule_fragment.size() / 2 - 1) { EXPECT_CALL(visitor_, OnCapsule(_)).Times(0); ASSERT_TRUE( capsule_parser_.IngestCapsuleFragment(capsule_fragment.substr(i, 1))); } else if (i == capsule_fragment.size() / 2 - 1) { EXPECT_CALL(visitor_, OnCapsule(expected_capsule1)); ASSERT_TRUE( capsule_parser_.IngestCapsuleFragment(capsule_fragment.substr(i, 1))); EXPECT_TRUE(CapsuleParserPeer::buffered_data(&capsule_parser_)->empty()); } else if (i < capsule_fragment.size() - 1) { EXPECT_CALL(visitor_, OnCapsule(_)).Times(0); ASSERT_TRUE( capsule_parser_.IngestCapsuleFragment(capsule_fragment.substr(i, 1))); } else { EXPECT_CALL(visitor_, OnCapsule(expected_capsule2)); ASSERT_TRUE( capsule_parser_.IngestCapsuleFragment(capsule_fragment.substr(i, 1))); EXPECT_TRUE(CapsuleParserPeer::buffered_data(&capsule_parser_)->empty()); } } capsule_parser_.ErrorIfThereIsRemainingBufferedData(); EXPECT_TRUE(CapsuleParserPeer::buffered_data(&capsule_parser_)->empty()); } TEST_F(CapsuleTest, PartialCapsuleThenError) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("00" "08" "a1a2a3a4", &capsule_fragment)); EXPECT_CALL(visitor_, OnCapsule(_)).Times(0); { EXPECT_CALL(visitor_, OnCapsuleParseFailure(_)).Times(0); ASSERT_TRUE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } { EXPECT_CALL(visitor_, OnCapsuleParseFailure( "Incomplete capsule left at the end of the stream")); capsule_parser_.ErrorIfThereIsRemainingBufferedData(); } } TEST_F(CapsuleTest, RejectOverlyLongCapsule) { std::string capsule_fragment; ASSERT_TRUE( absl::HexStringToBytes("17" "80123456", &capsule_fragment)); absl::StrAppend(&capsule_fragment, std::string(1111111, '?')); EXPECT_CALL(visitor_, OnCapsuleParseFailure( "Refusing to buffer too much capsule data")); EXPECT_FALSE(capsule_parser_.IngestCapsuleFragment(capsule_fragment)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/capsule.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/common/capsule_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
aae77314-eb0b-4792-8519-6a254ba3f7fb
cpp
tensorflow/tensorflow
bits
tensorflow/lite/experimental/microfrontend/lib/bits.h
third_party/xla/xla/tsl/lib/core/bits_test.cc
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_BITS_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_MICROFRONTEND_LIB_BITS_H_ #ifdef __cplusplus #include <cstdint> extern "C" { #endif static inline int CountLeadingZeros32Slow(uint64_t n) { int zeroes = 28; if (n >> 16) zeroes -= 16, n >>= 16; if (n >> 8) zeroes -= 8, n >>= 8; if (n >> 4) zeroes -= 4, n >>= 4; return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes; } static inline int CountLeadingZeros32(uint32_t n) { #if !defined(__clang__) && defined(_MSC_VER) unsigned long result = 0; if (_BitScanReverse(&result, n)) { return 31 - result; } return 32; #elif defined(__clang__) && defined(__GNUC__) if (n == 0) { return 32; } return __builtin_clz(n); #else return CountLeadingZeros32Slow(n); #endif } static inline int MostSignificantBit32(uint32_t n) { return 32 - CountLeadingZeros32(n); } static inline int CountLeadingZeros64Slow(uint64_t n) { int zeroes = 60; if (n >> 32) zeroes -= 32, n >>= 32; if (n >> 16) zeroes -= 16, n >>= 16; if (n >> 8) zeroes -= 8, n >>= 8; if (n >> 4) zeroes -= 4, n >>= 4; return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[n] + zeroes; } static inline int CountLeadingZeros64(uint64_t n) { #if !defined(__clang__) && defined(_MSC_VER) && defined(_M_X64) unsigned long result = 0; if (_BitScanReverse64(&result, n)) { return 63 - result; } return 64; #elif !defined(__clang__) && defined(_MSC_VER) unsigned long result = 0; if ((n >> 32) && _BitScanReverse(&result, n >> 32)) { return 31 - result; } if (_BitScanReverse(&result, n)) { return 63 - result; } return 64; #elif defined(__clang__) || defined(__GNUC__) if (n == 0) { return 64; } return __builtin_clzll(n); #else return CountLeadingZeros64Slow(n); #endif } static inline int MostSignificantBit64(uint64_t n) { return 64 - CountLeadingZeros64(n); } #ifdef __cplusplus } #endif #endif
#include "xla/tsl/lib/core/bits.h" #include <cstdint> #include "tsl/platform/test.h" namespace tsl { namespace { TEST(BitsTest, NextPowerOfTwoS64) { constexpr int64_t kMaxRepresentablePowerOfTwo = static_cast<int64_t>(uint64_t{1} << 62); EXPECT_EQ(NextPowerOfTwoS64(0), 1); EXPECT_EQ(NextPowerOfTwoS64(1), 1); EXPECT_EQ(NextPowerOfTwoS64(2), 2); EXPECT_EQ(NextPowerOfTwoS64(3), 4); EXPECT_EQ(NextPowerOfTwoS64(kMaxRepresentablePowerOfTwo - 1), kMaxRepresentablePowerOfTwo); EXPECT_EQ(NextPowerOfTwoS64(kMaxRepresentablePowerOfTwo), kMaxRepresentablePowerOfTwo); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/microfrontend/lib/bits.h
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/tsl/lib/core/bits_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
6824ada7-01ad-4c47-ba4e-358ca1192093
cpp
tensorflow/tensorflow
gpu_delegate_compatibility_checker
tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.cc
tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker_test.cc
#include "tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.h" #include <functional> #include <memory> #include <string> #include <unordered_map> #include "absl/status/status.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" #include "tensorflow/lite/tools/versioning/gpu_compatibility.h" #include "tensorflow/lite/tools/versioning/op_signature.h" namespace tflite { namespace tools { namespace { void convertToValidationFailureType(absl::Status status, proto::OpCompatibilityResult* op_result) { auto compatibility_failure = op_result->add_compatibility_failures(); compatibility_failure->set_description(std::string(status.message())); switch (status.code()) { case absl::StatusCode::kInvalidArgument: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INVALID_ARGUMENT); break; case absl::StatusCode::kUnimplemented: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_UNIMPLEMENTED_ERROR); break; case absl::StatusCode::kInternal: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); break; case absl::StatusCode::kOutOfRange: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_OUT_OF_RANGE); break; default: compatibility_failure->set_failure_type( proto::CompatibilityFailureType::DCC_INTERNAL_ERROR); compatibility_failure->set_description( "Unknown validation failure type."); } } } std::unordered_map<std::string, std::string> tools::GpuDelegateCompatibilityChecker::getDccConfigurations() { return {}; } absl::Status tools::GpuDelegateCompatibilityChecker::setDccConfigurations( const std::unordered_map<std::string, std::string>& dcc_configs) { return absl::OkStatus(); } absl::Status tools::GpuDelegateCompatibilityChecker::checkModelCompatibilityOnline( tflite::FlatBufferModel* model_buffer, tflite::proto::CompatibilityResult* result) { return absl::UnimplementedError( "Online mode is not supported on GPU delegate compatibility checker."); } absl::Status tools::GpuDelegateCompatibilityChecker::checkOpSigCompatibility( const OpSignature& op_sig, tflite::proto::OpCompatibilityResult* op_result) { auto status = CheckGpuDelegateCompatibility(op_sig); if (!status.ok()) { convertToValidationFailureType(status, op_result); op_result->set_is_supported(false); } else { op_result->set_is_supported(true); } return absl::OkStatus(); } } }
#include "tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/model_builder.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tools/delegates/compatibility/protos/compatibility_result.pb.h" namespace tflite { namespace tools { #ifndef EXPECT_OK #define EXPECT_OK(x) EXPECT_TRUE(x.ok()); #endif namespace { class AddOpModel : public SingleOpModel { public: AddOpModel(const TensorData& input1, const TensorData& input2, const TensorData& output, ActivationFunctionType activation_type) { input1_ = AddInput(input1); input2_ = AddInput(input2); output_ = AddOutput(output); SetBuiltinOp(BuiltinOperator_ADD, BuiltinOptions_AddOptions, CreateAddOptions(builder_, activation_type).Union()); BuildInterpreter({GetShape(input1_), GetShape(input2_)}); } protected: int input1_; int input2_; int output_; }; } TEST(GpuDelegateCompatibilityCheckerTest, CheckOnlineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_EQ( gpu_dcc .checkModelCompatibilityOnline(fb_model.get(), &compatibility_result) .code(), absl::StatusCode::kUnimplemented); } TEST(GpuDelegateCompatibilityCheckerTest, CompatibleModelOfflineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath("tensorflow/lite/testdata/add.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_OK(gpu_dcc.checkModelCompatibilityOffline(fb_model.get(), &compatibility_result)); for (auto op_compatibility_result : compatibility_result.compatibility_results()) { EXPECT_TRUE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result.compatibility_results_size(), 2); } TEST(GpuDelegateCompatibilityCheckerTest, IncompatibleModelOfflineMode) { const std::string& full_path = tensorflow::GetDataDependencyFilepath( "tensorflow/lite/testdata/conv3d_huge_im2col.bin"); auto fb_model = FlatBufferModel::BuildFromFile(full_path.data()); ASSERT_TRUE(fb_model); proto::CompatibilityResult compatibility_result; GpuDelegateCompatibilityChecker gpu_dcc; EXPECT_OK(gpu_dcc.checkModelCompatibilityOffline(fb_model.get(), &compatibility_result)); for (auto op_compatibility_result : compatibility_result.compatibility_results()) { EXPECT_FALSE(op_compatibility_result.is_supported()); } EXPECT_EQ(compatibility_result.compatibility_results_size(), 1); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/tools/delegates/compatibility/gpu/gpu_delegate_compatibility_checker_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d5771585-ded8-4367-ad73-ce5eaccac290
cpp
tensorflow/tensorflow
while_gradients
tensorflow/cc/framework/while_gradients.cc
tensorflow/cc/framework/while_gradients_test.cc
#include "tensorflow/cc/framework/while_gradients.h" #include <string> #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/framework/scope_internal.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/cc/ops/while_loop.h" namespace tensorflow { namespace { using ops::BodyGraphBuilderFn; using ops::BuildWhileLoop; using ops::CondGraphBuilderFn; Output ToOutput(OutputTensor output_tensor) { return Output(const_cast<Node*>(output_tensor.node), output_tensor.index); } std::vector<Output> ToOutputVector( const std::vector<OutputTensor>& output_tensors) { const int n = output_tensors.size(); std::vector<Output> result; result.reserve(n); for (int i = 0; i < n; ++i) result.push_back(ToOutput(output_tensors[i])); return result; } string BackPropFrameName(const string& forward_frame_name) { return strings::StrCat(forward_frame_name, "_backprop"); } Status AddForwardLoopCounter(WhileContext* while_ctx, const Scope& scope, Output* count) { Output zero = ops::Const(scope, 0, {}); CondGraphBuilderFn cond_fn = [while_ctx](const Scope& scope, const std::vector<Output>& inputs, Output* output) { *output = ToOutput(while_ctx->cond_output()); return absl::OkStatus(); }; BodyGraphBuilderFn body_fn = [](const Scope& scope, const std::vector<Output>& inputs, std::vector<Output>* outputs) { DCHECK_EQ(inputs.size(), 1); outputs->emplace_back(ops::Add(scope, inputs[0], 1)); return scope.status(); }; std::vector<Output> outputs; TF_RETURN_IF_ERROR(BuildWhileLoop(scope, {zero}, cond_fn, body_fn, while_ctx->frame_name(), &outputs, false)); *count = outputs[0]; return absl::OkStatus(); } Status AddBackPropLoopCounter(WhileContext* while_ctx, const Output& loop_count, const Scope& scope, Output* backprop_execution_pred) { CondGraphBuilderFn cond_fn = [](const Scope& scope, const std::vector<Output>& inputs, Output* output) { DCHECK_EQ(inputs.size(), 1); *output = ops::Greater(scope, inputs[0], 0); return scope.status(); }; BodyGraphBuilderFn body_fn = [](const Scope& scope, const std::vector<Output>& inputs, std::vector<Output>* outputs) { DCHECK_EQ(inputs.size(), 1); outputs->emplace_back(ops::Subtract(scope, inputs[0], 1)); return scope.status(); }; string frame_name = BackPropFrameName(while_ctx->frame_name()); std::vector<Output> outputs; TF_RETURN_IF_ERROR(BuildWhileLoop( scope, {loop_count}, cond_fn, body_fn, frame_name, &outputs, false, backprop_execution_pred)); return absl::OkStatus(); } Status AddWhileGradientLoop(WhileContext* while_ctx, const std::vector<Output>& grad_inputs, const Output& backprop_execution_pred, const Scope& parent_scope, std::vector<Output>* grad_outputs) { DCHECK_EQ(grad_inputs.size(), while_ctx->body_outputs().size()); DCHECK_EQ(while_ctx->body_inputs().size(), while_ctx->body_outputs().size()); Scope scope = parent_scope.NewSubScope("while"); CondGraphBuilderFn cond_fn = [backprop_execution_pred]( const Scope& scope, const std::vector<Output>& inputs, Output* output) { *output = backprop_execution_pred; return absl::OkStatus(); }; BodyGraphBuilderFn body_fn = [while_ctx](const Scope& scope, const std::vector<Output>& inputs, std::vector<Output>* outputs) { std::vector<Output> body_outputs = ToOutputVector(while_ctx->body_outputs()); std::vector<Output> body_inputs = ToOutputVector(while_ctx->body_inputs()); return AddSymbolicGradients(scope, body_outputs, body_inputs, inputs, outputs); }; string frame_name = BackPropFrameName(while_ctx->frame_name()); TF_RETURN_IF_ERROR(BuildWhileLoop(scope, grad_inputs, cond_fn, body_fn, frame_name, grad_outputs, false)); return absl::OkStatus(); } } Status AddWhileLoopGradient(WhileContext* while_ctx, const Scope& scope, const std::vector<Output>& grad_inputs, std::vector<Output>* grad_outputs) { Output forward_loop_count; TF_RETURN_IF_ERROR(AddForwardLoopCounter( while_ctx, scope.NewSubScope("ForwardLoopCounter"), &forward_loop_count)); Output backprop_counter_cond; TF_RETURN_IF_ERROR(AddBackPropLoopCounter( while_ctx, forward_loop_count, scope.NewSubScope("BackPropLoopCounter"), &backprop_counter_cond)); return AddWhileGradientLoop(while_ctx, grad_inputs, backprop_counter_cond, scope, grad_outputs); } }
#include "tensorflow/cc/client/client_session.h" #include "tensorflow/cc/framework/gradients.h" #include "tensorflow/cc/framework/testutil.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/cc/ops/while_loop.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { class WhileGradientsTest : public ::testing::Test { protected: WhileGradientsTest() : scope_(Scope::NewRootScope()) {} void Init(int num_inputs, DataType dtype = DT_INT32) { for (int i = 0; i < num_inputs; ++i) { inputs_.push_back(ops::Placeholder(scope_, dtype)); } } void CreateLoop(const ops::CondGraphBuilderFn& cond, const ops::BodyGraphBuilderFn& body, const std::vector<Output>* inputs = nullptr) { if (inputs == nullptr) inputs = &inputs_; TF_ASSERT_OK(ops::BuildWhileLoop(scope_, *inputs, cond, body, "test_loop", &outputs_)); } void CreateBackprop() { TF_ASSERT_OK( AddSymbolicGradients(scope_, outputs_, inputs_, &grad_outputs_)); ASSERT_EQ(grad_outputs_.size(), inputs_.size()); } template <typename T> void Run(const std::vector<Input::Initializer>& input_values, const std::vector<T>& expected_grad_values) { Run<T>(ClientSession(scope_), input_values, expected_grad_values); } template <typename T> void Run(const ClientSession& session, const std::vector<Input::Initializer>& input_values, const std::vector<T>& expected_grad_values, const RunOptions& run_options = RunOptions(), RunMetadata* run_metadata = nullptr) { DCHECK_EQ(input_values.size(), inputs_.size()); ClientSession::FeedType feeds; for (int i = 0; i < inputs_.size(); ++i) { feeds.emplace(inputs_[i], input_values[i]); } std::vector<Operation> run_outputs; std::vector<Tensor> out_tensors; TF_ASSERT_OK(session.Run(run_options, feeds, grad_outputs_, run_outputs, &out_tensors, run_metadata)); ASSERT_EQ(out_tensors.size(), grad_outputs_.size()); DCHECK_EQ(expected_grad_values.size(), out_tensors.size()); for (int i = 0; i < out_tensors.size(); ++i) { test::ExpectTensorEqual<T>( out_tensors[i], test::AsTensor<T>({expected_grad_values[i]}, {})); } } Scope scope_; std::vector<Output> inputs_; std::vector<Output> outputs_; std::vector<Output> grad_outputs_; }; TEST_F(WhileGradientsTest, Basic) { Init(1); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(s, inputs[0], 10); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::AddN(s, {inputs[0], 1})); return s.status(); }); CreateBackprop(); Run<int>({1}, {1}); Run<int>({11}, {1}); } TEST_F(WhileGradientsTest, MultipleLoopVars) { Init(3); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(s, inputs[0], 10); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::AddN(s, {inputs[0], inputs[1]})); outputs->push_back(ops::AddN(s, {inputs[1], 1})); outputs->push_back(inputs[2]); return s.status(); }); CreateBackprop(); Run<int>({0, 1, 2}, {1, 5, 1}); Run<int>({1, 1, 0}, {1, 5, 1}); Run<int>({0, 0, 0}, {1, 6, 1}); } TEST_F(WhileGradientsTest, Chaining) { Init(2, DT_DOUBLE); std::vector<Output> loop_inputs = {ops::Multiply(scope_, inputs_[0], 2.0), ops::Multiply(scope_, inputs_[1], 2.0)}; CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::LogicalAnd(s, ops::Greater(s, inputs[0], 0.0), ops::Greater(s, inputs[1], 0.0)); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { outputs->push_back(ops::AddN(s, {inputs[0], -1.0})); outputs->push_back(inputs[1]); return s.status(); }, &loop_inputs); outputs_[0] = ops::Neg(scope_, outputs_[0]); CreateBackprop(); Run<double>({1.0, 1.0}, {-2.0, 2.0}); Run<double>({0.0, 0.0}, {-2.0, 2.0}); } TEST_F(WhileGradientsTest, MultipleDevices) { scope_ = scope_.WithDevice("/cpu:0"); Init(2); CreateLoop( [](const Scope& s, const std::vector<Output>& inputs, Output* output) { *output = ops::Less(s, inputs[0], 10); return s.status(); }, [](const Scope& s, const std::vector<Output>& inputs, std::vector<Output>* outputs) { Scope cpu1_scope = s.WithDevice("/cpu:1"); outputs->push_back(ops::AddN(cpu1_scope, {inputs[0], inputs[1]})); outputs->push_back(inputs[1]); return cpu1_scope.status(); }); Scope cpu1_scope = scope_.WithDevice("/cpu:1"); TF_ASSERT_OK( AddSymbolicGradients(cpu1_scope, outputs_, inputs_, &grad_outputs_)); ASSERT_EQ(grad_outputs_.size(), inputs_.size()); SessionOptions session_options; (*session_options.config.mutable_device_count())["CPU"] = 2; RunOptions run_options; run_options.set_output_partition_graphs(true); RunMetadata run_metadata; Run<int>(ClientSession(scope_, session_options), {0, 1}, {1, 11}, run_options, &run_metadata); ASSERT_EQ(run_metadata.partition_graphs().size(), 2); for (const GraphDef& partition_graph : run_metadata.partition_graphs()) { EXPECT_GE(partition_graph.node().size(), 1); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/framework/while_gradients.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/cc/framework/while_gradients_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
8516a4c9-8e79-4fdf-822d-a8ebae3ce68e
cpp
tensorflow/tensorflow
structure_verifier
tensorflow/core/grappler/verifiers/structure_verifier.cc
tensorflow/core/grappler/verifiers/structure_verifier_test.cc
#include "tensorflow/core/grappler/verifiers/structure_verifier.h" #include <string> #include <vector> #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/validate.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/grappler/verifiers/graph_verifier.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { namespace grappler { Status StructureVerifier::Verify(const GraphDef& graph) { StatusGroup status_group; FunctionLibraryDefinition function_library(OpRegistry::Global(), graph.library()); status_group.Update(tensorflow::graph::ValidateGraphDefAgainstOpRegistry( graph, function_library)); status_group.Update(tensorflow::graph::VerifyNoDuplicateNodeNames(graph)); std::vector<const NodeDef*> topo_order; status_group.Update(ComputeTopologicalOrder(graph, &topo_order)); return status_group.as_concatenated_status(); } } }
#include "tensorflow/core/grappler/verifiers/structure_verifier.h" #include <memory> #include "absl/strings/match.h" #include "tensorflow/cc/ops/parsing_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/shape_inference.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { class StructureVerifierTest : public ::testing::Test { protected: StructureVerifierTest() { verifier_ = std::make_unique<StructureVerifier>(); } void SetGraph(const string& gdef_ascii) { CHECK(protobuf::TextFormat::ParseFromString(gdef_ascii, &graph_)); } GraphDef graph_; std::unique_ptr<StructureVerifier> verifier_; }; Status Scalars(shape_inference::InferenceContext* c) { for (int i = 0; i < c->num_outputs(); ++i) { c->set_output(i, c->Scalar()); } return absl::OkStatus(); } REGISTER_OP("TestParams").Output("o: float").SetShapeFn(Scalars); REGISTER_OP("TestInput") .Output("a: float") .Output("b: float") .SetShapeFn(Scalars); REGISTER_OP("TestMul") .Input("a: float") .Input("b: float") .Output("o: float") .SetShapeFn(Scalars); TEST_F(StructureVerifierTest, ValidGraphs) { tensorflow::Scope s = tensorflow::Scope::NewRootScope(); Output a = ops::Const(s.WithOpName("a"), 0.0f, {10, 10}); ops::ShapeN b(s.WithOpName("b"), {a, a, a}); GraphDef graph; TF_CHECK_OK(s.ToGraphDef(&graph)); TF_EXPECT_OK(verifier_->Verify(graph)); SetGraph( "node { name: 'W1' op: 'TestParams' }" "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'W1', 'input:1' ] }"); TF_EXPECT_OK(verifier_->Verify(graph_)); } TEST_F(StructureVerifierTest, OpNotRegistered) { SetGraph( "node { name: 'input' op: 'OpNotRegistered' }" "node { name: 't1' op: 'TestMul' input: [ 'input:0', 't2' ] }" "node { name: 't2' op: 'TestMul' input: [ 'input:1', 't1' ] }"); Status status = verifier_->Verify(graph_); EXPECT_TRUE(errors::IsNotFound(status)); EXPECT_TRUE(absl::StrContains(status.message(), "Op type not registered")); } TEST_F(StructureVerifierTest, DuplicateNodeNames) { SetGraph( "node { name: 'A' op: 'TestParams' }" "node { name: 'A' op: 'TestInput' }"); Status status = verifier_->Verify(graph_); EXPECT_TRUE(errors::IsAlreadyExists(status)); EXPECT_TRUE(absl::StrContains(status.message(), "Node already exists:")); } TEST_F(StructureVerifierTest, GraphWithInvalidCycle) { SetGraph( "node { name: 'input' op: 'TestInput' }" "node { name: 't1' op: 'TestMul' input: [ 'input:0', 't2' ] }" "node { name: 't2' op: 'TestMul' input: [ 'input:1', 't1' ] }"); Status status = verifier_->Verify(graph_); EXPECT_TRUE(errors::IsInvalidArgument(status)); EXPECT_TRUE(absl::StrContains( status.message(), "The graph couldn't be sorted in topological order")); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/verifiers/structure_verifier.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/grappler/verifiers/structure_verifier_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
142e80f4-e36b-41d7-9010-10ab919d054d
cpp
google/cel-cpp
map_value
common/values/map_value.cc
common/values/map_value_test.cc
#include <cstddef> #include <utility> #include "absl/base/attributes.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "common/casting.h" #include "common/value.h" #include "common/value_kind.h" #include "internal/status_macros.h" namespace cel { namespace { absl::Status InvalidMapKeyTypeError(ValueKind kind) { return absl::InvalidArgumentError( absl::StrCat("Invalid map key type: '", ValueKindToString(kind), "'")); } } absl::string_view MapValue::GetTypeName() const { return absl::visit( [](const auto& alternative) -> absl::string_view { return alternative.GetTypeName(); }, variant_); } std::string MapValue::DebugString() const { return absl::visit( [](const auto& alternative) -> std::string { return alternative.DebugString(); }, variant_); } absl::Status MapValue::SerializeTo(AnyToJsonConverter& converter, absl::Cord& value) const { return absl::visit( [&converter, &value](const auto& alternative) -> absl::Status { return alternative.SerializeTo(converter, value); }, variant_); } absl::StatusOr<Json> MapValue::ConvertToJson( AnyToJsonConverter& converter) const { return absl::visit( [&converter](const auto& alternative) -> absl::StatusOr<Json> { return alternative.ConvertToJson(converter); }, variant_); } absl::StatusOr<JsonObject> MapValue::ConvertToJsonObject( AnyToJsonConverter& converter) const { return absl::visit( [&converter](const auto& alternative) -> absl::StatusOr<JsonObject> { return alternative.ConvertToJsonObject(converter); }, variant_); } bool MapValue::IsZeroValue() const { return absl::visit( [](const auto& alternative) -> bool { return alternative.IsZeroValue(); }, variant_); } absl::StatusOr<bool> MapValue::IsEmpty() const { return absl::visit( [](const auto& alternative) -> bool { return alternative.IsEmpty(); }, variant_); } absl::StatusOr<size_t> MapValue::Size() const { return absl::visit( [](const auto& alternative) -> size_t { return alternative.Size(); }, variant_); } namespace common_internal { absl::Status MapValueEqual(ValueManager& value_manager, const MapValue& lhs, const MapValue& rhs, Value& result) { if (Is(lhs, rhs)) { result = BoolValue{true}; return absl::OkStatus(); } CEL_ASSIGN_OR_RETURN(auto lhs_size, lhs.Size()); CEL_ASSIGN_OR_RETURN(auto rhs_size, rhs.Size()); if (lhs_size != rhs_size) { result = BoolValue{false}; return absl::OkStatus(); } CEL_ASSIGN_OR_RETURN(auto lhs_iterator, lhs.NewIterator(value_manager)); Value lhs_key; Value lhs_value; Value rhs_value; for (size_t index = 0; index < lhs_size; ++index) { ABSL_CHECK(lhs_iterator->HasNext()); CEL_RETURN_IF_ERROR(lhs_iterator->Next(value_manager, lhs_key)); bool rhs_value_found; CEL_ASSIGN_OR_RETURN(rhs_value_found, rhs.Find(value_manager, lhs_key, rhs_value)); if (!rhs_value_found) { result = BoolValue{false}; return absl::OkStatus(); } CEL_RETURN_IF_ERROR(lhs.Get(value_manager, lhs_key, lhs_value)); CEL_RETURN_IF_ERROR(lhs_value.Equal(value_manager, rhs_value, result)); if (auto bool_value = As<BoolValue>(result); bool_value.has_value() && !bool_value->NativeValue()) { return absl::OkStatus(); } } ABSL_DCHECK(!lhs_iterator->HasNext()); result = BoolValue{true}; return absl::OkStatus(); } absl::Status MapValueEqual(ValueManager& value_manager, const ParsedMapValueInterface& lhs, const MapValue& rhs, Value& result) { auto lhs_size = lhs.Size(); CEL_ASSIGN_OR_RETURN(auto rhs_size, rhs.Size()); if (lhs_size != rhs_size) { result = BoolValue{false}; return absl::OkStatus(); } CEL_ASSIGN_OR_RETURN(auto lhs_iterator, lhs.NewIterator(value_manager)); Value lhs_key; Value lhs_value; Value rhs_value; for (size_t index = 0; index < lhs_size; ++index) { ABSL_CHECK(lhs_iterator->HasNext()); CEL_RETURN_IF_ERROR(lhs_iterator->Next(value_manager, lhs_key)); bool rhs_value_found; CEL_ASSIGN_OR_RETURN(rhs_value_found, rhs.Find(value_manager, lhs_key, rhs_value)); if (!rhs_value_found) { result = BoolValue{false}; return absl::OkStatus(); } CEL_RETURN_IF_ERROR(lhs.Get(value_manager, lhs_key, lhs_value)); CEL_RETURN_IF_ERROR(lhs_value.Equal(value_manager, rhs_value, result)); if (auto bool_value = As<BoolValue>(result); bool_value.has_value() && !bool_value->NativeValue()) { return absl::OkStatus(); } } ABSL_DCHECK(!lhs_iterator->HasNext()); result = BoolValue{true}; return absl::OkStatus(); } } absl::Status CheckMapKey(const Value& key) { switch (key.kind()) { case ValueKind::kBool: ABSL_FALLTHROUGH_INTENDED; case ValueKind::kInt: ABSL_FALLTHROUGH_INTENDED; case ValueKind::kUint: ABSL_FALLTHROUGH_INTENDED; case ValueKind::kString: return absl::OkStatus(); default: return InvalidMapKeyTypeError(key.kind()); } } common_internal::ValueVariant MapValue::ToValueVariant() const& { return absl::visit( [](const auto& alternative) -> common_internal::ValueVariant { return alternative; }, variant_); } common_internal::ValueVariant MapValue::ToValueVariant() && { return absl::visit( [](auto&& alternative) -> common_internal::ValueVariant { return std::move(alternative); }, std::move(variant_)); } }
#include <cstdint> #include <memory> #include <sstream> #include <tuple> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "common/casting.h" #include "common/json.h" #include "common/memory.h" #include "common/type.h" #include "common/type_factory.h" #include "common/value.h" #include "common/value_testing.h" #include "internal/status_macros.h" #include "internal/testing.h" namespace cel { namespace { using ::absl_testing::IsOk; using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::testing::TestParamInfo; using ::testing::UnorderedElementsAreArray; TEST(MapValue, CheckKey) { EXPECT_THAT(CheckMapKey(BoolValue()), IsOk()); EXPECT_THAT(CheckMapKey(IntValue()), IsOk()); EXPECT_THAT(CheckMapKey(UintValue()), IsOk()); EXPECT_THAT(CheckMapKey(StringValue()), IsOk()); EXPECT_THAT(CheckMapKey(BytesValue()), StatusIs(absl::StatusCode::kInvalidArgument)); } class MapValueTest : public common_internal::ThreadCompatibleValueTest<> { public: template <typename... Args> absl::StatusOr<MapValue> NewIntDoubleMapValue(Args&&... args) { CEL_ASSIGN_OR_RETURN(auto builder, value_manager().NewMapValueBuilder(MapType())); (static_cast<void>(builder->Put(std::forward<Args>(args).first, std::forward<Args>(args).second)), ...); return std::move(*builder).Build(); } template <typename... Args> absl::StatusOr<MapValue> NewJsonMapValue(Args&&... args) { CEL_ASSIGN_OR_RETURN(auto builder, value_manager().NewMapValueBuilder(JsonMapType())); (static_cast<void>(builder->Put(std::forward<Args>(args).first, std::forward<Args>(args).second)), ...); return std::move(*builder).Build(); } }; TEST_P(MapValueTest, Default) { MapValue map_value; EXPECT_THAT(map_value.IsEmpty(), IsOkAndHolds(true)); EXPECT_THAT(map_value.Size(), IsOkAndHolds(0)); EXPECT_EQ(map_value.DebugString(), "{}"); ASSERT_OK_AND_ASSIGN(auto list_value, map_value.ListKeys(value_manager())); EXPECT_THAT(list_value.IsEmpty(), IsOkAndHolds(true)); EXPECT_THAT(list_value.Size(), IsOkAndHolds(0)); EXPECT_EQ(list_value.DebugString(), "[]"); ASSERT_OK_AND_ASSIGN(auto iterator, map_value.NewIterator(value_manager())); EXPECT_FALSE(iterator->HasNext()); EXPECT_THAT(iterator->Next(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(MapValueTest, Kind) { ASSERT_OK_AND_ASSIGN( auto value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); EXPECT_EQ(value.kind(), MapValue::kKind); EXPECT_EQ(Value(value).kind(), MapValue::kKind); } TEST_P(MapValueTest, DebugString) { ASSERT_OK_AND_ASSIGN( auto value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); { std::ostringstream out; out << value; EXPECT_EQ(out.str(), "{0: 3.0, 1: 4.0, 2: 5.0}"); } { std::ostringstream out; out << Value(value); EXPECT_EQ(out.str(), "{0: 3.0, 1: 4.0, 2: 5.0}"); } } TEST_P(MapValueTest, IsEmpty) { ASSERT_OK_AND_ASSIGN( auto value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); EXPECT_THAT(value.IsEmpty(), IsOkAndHolds(false)); } TEST_P(MapValueTest, Size) { ASSERT_OK_AND_ASSIGN( auto value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); EXPECT_THAT(value.Size(), IsOkAndHolds(3)); } TEST_P(MapValueTest, Get) { ASSERT_OK_AND_ASSIGN( auto map_value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); ASSERT_OK_AND_ASSIGN(auto value, map_value.Get(value_manager(), IntValue(0))); ASSERT_TRUE(InstanceOf<DoubleValue>(value)); ASSERT_EQ(Cast<DoubleValue>(value).NativeValue(), 3.0); ASSERT_OK_AND_ASSIGN(value, map_value.Get(value_manager(), IntValue(1))); ASSERT_TRUE(InstanceOf<DoubleValue>(value)); ASSERT_EQ(Cast<DoubleValue>(value).NativeValue(), 4.0); ASSERT_OK_AND_ASSIGN(value, map_value.Get(value_manager(), IntValue(2))); ASSERT_TRUE(InstanceOf<DoubleValue>(value)); ASSERT_EQ(Cast<DoubleValue>(value).NativeValue(), 5.0); EXPECT_THAT(map_value.Get(value_manager(), IntValue(3)), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(MapValueTest, Find) { ASSERT_OK_AND_ASSIGN( auto map_value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); Value value; bool ok; ASSERT_OK_AND_ASSIGN(std::tie(value, ok), map_value.Find(value_manager(), IntValue(0))); ASSERT_TRUE(ok); ASSERT_TRUE(InstanceOf<DoubleValue>(value)); ASSERT_EQ(Cast<DoubleValue>(value).NativeValue(), 3.0); ASSERT_OK_AND_ASSIGN(std::tie(value, ok), map_value.Find(value_manager(), IntValue(1))); ASSERT_TRUE(ok); ASSERT_TRUE(InstanceOf<DoubleValue>(value)); ASSERT_EQ(Cast<DoubleValue>(value).NativeValue(), 4.0); ASSERT_OK_AND_ASSIGN(std::tie(value, ok), map_value.Find(value_manager(), IntValue(2))); ASSERT_TRUE(ok); ASSERT_TRUE(InstanceOf<DoubleValue>(value)); ASSERT_EQ(Cast<DoubleValue>(value).NativeValue(), 5.0); ASSERT_OK_AND_ASSIGN(std::tie(value, ok), map_value.Find(value_manager(), IntValue(3))); ASSERT_FALSE(ok); } TEST_P(MapValueTest, Has) { ASSERT_OK_AND_ASSIGN( auto map_value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); ASSERT_OK_AND_ASSIGN(auto value, map_value.Has(value_manager(), IntValue(0))); ASSERT_TRUE(InstanceOf<BoolValue>(value)); ASSERT_TRUE(Cast<BoolValue>(value).NativeValue()); ASSERT_OK_AND_ASSIGN(value, map_value.Has(value_manager(), IntValue(1))); ASSERT_TRUE(InstanceOf<BoolValue>(value)); ASSERT_TRUE(Cast<BoolValue>(value).NativeValue()); ASSERT_OK_AND_ASSIGN(value, map_value.Has(value_manager(), IntValue(2))); ASSERT_TRUE(InstanceOf<BoolValue>(value)); ASSERT_TRUE(Cast<BoolValue>(value).NativeValue()); ASSERT_OK_AND_ASSIGN(value, map_value.Has(value_manager(), IntValue(3))); ASSERT_TRUE(InstanceOf<BoolValue>(value)); ASSERT_FALSE(Cast<BoolValue>(value).NativeValue()); } TEST_P(MapValueTest, ListKeys) { ASSERT_OK_AND_ASSIGN( auto map_value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); ASSERT_OK_AND_ASSIGN(auto list_keys, map_value.ListKeys(value_manager())); std::vector<int64_t> keys; ASSERT_OK( list_keys.ForEach(value_manager(), [&keys](const Value& element) -> bool { keys.push_back(Cast<IntValue>(element).NativeValue()); return true; })); EXPECT_THAT(keys, UnorderedElementsAreArray({0, 1, 2})); } TEST_P(MapValueTest, ForEach) { ASSERT_OK_AND_ASSIGN( auto value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); std::vector<std::pair<int64_t, double>> entries; EXPECT_OK(value.ForEach( value_manager(), [&entries](const Value& key, const Value& value) { entries.push_back(std::pair{Cast<IntValue>(key).NativeValue(), Cast<DoubleValue>(value).NativeValue()}); return true; })); EXPECT_THAT(entries, UnorderedElementsAreArray( {std::pair{0, 3.0}, std::pair{1, 4.0}, std::pair{2, 5.0}})); } TEST_P(MapValueTest, NewIterator) { ASSERT_OK_AND_ASSIGN( auto value, NewIntDoubleMapValue(std::pair{IntValue(0), DoubleValue(3.0)}, std::pair{IntValue(1), DoubleValue(4.0)}, std::pair{IntValue(2), DoubleValue(5.0)})); ASSERT_OK_AND_ASSIGN(auto iterator, value.NewIterator(value_manager())); std::vector<int64_t> keys; while (iterator->HasNext()) { ASSERT_OK_AND_ASSIGN(auto element, iterator->Next(value_manager())); ASSERT_TRUE(InstanceOf<IntValue>(element)); keys.push_back(Cast<IntValue>(element).NativeValue()); } EXPECT_EQ(iterator->HasNext(), false); EXPECT_THAT(iterator->Next(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); EXPECT_THAT(keys, UnorderedElementsAreArray({0, 1, 2})); } TEST_P(MapValueTest, ConvertToJson) { ASSERT_OK_AND_ASSIGN( auto value, NewJsonMapValue(std::pair{StringValue("0"), DoubleValue(3.0)}, std::pair{StringValue("1"), DoubleValue(4.0)}, std::pair{StringValue("2"), DoubleValue(5.0)})); EXPECT_THAT(value.ConvertToJson(value_manager()), IsOkAndHolds(Json(MakeJsonObject({{JsonString("0"), 3.0}, {JsonString("1"), 4.0}, {JsonString("2"), 5.0}})))); } INSTANTIATE_TEST_SUITE_P( MapValueTest, MapValueTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), MapValueTest::ToString); } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/map_value.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/common/values/map_value_test.cc
4552db5798fb0853b131b783d8875794334fae7f
3406a3e3-4682-478d-868d-9065687f1b4b
cpp
tensorflow/tensorflow
hlo_module_dce
third_party/xla/xla/service/hlo_module_dce.cc
third_party/xla/xla/service/hlo_module_dce_test.cc
#include "xla/service/hlo_module_dce.h" #include <deque> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/hlo_dce.h" #include "xla/service/hlo_liveness_analysis.h" #include "xla/service/tuple_simplifier.h" #include "xla/service/while_loop_simplifier.h" #include "xla/status_macros.h" #include "xla/types.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace { absl::StatusOr<bool> RunWhileDCE( HloModule* module, HloLivenessAnalysis* liveness, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; std::vector<HloComputation*> while_body_comps_to_dce; for (auto* computation : module->computations(execution_threads)) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() != HloOpcode::kWhile) { continue; } const auto* xla_while = instruction; auto* while_body_comp = xla_while->while_body(); auto* while_body_param = while_body_comp->parameter_instruction(0); auto* while_body_root = while_body_comp->root_instruction(); if (!xla_while->shape().IsTuple() || while_body_root->opcode() != HloOpcode::kTuple) { VLOG(1) << "WhileDCE SKIP while: " << xla_while->ToString(); continue; } const int64_t tuple_element_count = ShapeUtil::TupleElementCount(xla_while->shape()); bool modified_while_body_comp = false; for (int64_t i = 0; i < tuple_element_count; ++i) { if (liveness->IsLive(xla_while, {i})) { continue; } VLOG(1) << "WhileDCE Dead while tuple element." << " while: " << xla_while->name() << " tuple_index: " << i; HloInstruction* pass_thru_gte = while_body_comp->AddInstruction( HloInstruction::CreateGetTupleElement( while_body_param->shape().tuple_shapes(i), while_body_param, i)); TF_RETURN_IF_ERROR( while_body_root->ReplaceOperandWith(i, pass_thru_gte)); changed = true; modified_while_body_comp = true; } if (modified_while_body_comp) { while_body_comps_to_dce.push_back(while_body_comp); } } } for (auto* while_body_comp : while_body_comps_to_dce) { TF_ASSIGN_OR_RETURN(bool changed_for_computation, HloDCE::RunOnComputation( while_body_comp, false)); changed |= changed_for_computation; } return changed; } } absl::StatusOr<bool> HloModuleDCE::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { VLOG(2) << "Before HloModuleDCE:"; XLA_VLOG_LINES(3, module->ToString()); std::unique_ptr<HloLivenessAnalysis> liveness; TF_ASSIGN_OR_RETURN(liveness, HloLivenessAnalysis::Run(*module)); TF_ASSIGN_OR_RETURN(bool hlo_module_dce_changed, RunWhileDCE(module, liveness.get(), execution_threads)); WhileLoopSimplifier while_loop_simplifier; TF_ASSIGN_OR_RETURN(bool while_loop_simplifier_changed, while_loop_simplifier.Run(module, execution_threads)); TupleSimplifier tuple_simplifier; TF_ASSIGN_OR_RETURN(bool tuple_simplifier_changed, tuple_simplifier.Run(module, execution_threads)); HloDCE hlo_dce; TF_ASSIGN_OR_RETURN(bool hlo_dce_changed, hlo_dce.Run(module, execution_threads)); VLOG(2) << "After HloModuleDCE:"; XLA_VLOG_LINES(3, module->ToString()); return hlo_module_dce_changed | hlo_dce_changed | tuple_simplifier_changed | while_loop_simplifier_changed; } }
#include "xla/service/hlo_module_dce.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tests/test_utils.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/types.h" namespace xla { namespace { class HloModuleDceTest : public HloTestBase { protected: HloModuleDceTest() {} bool HasInstruction(const HloComputation& computation, const HloInstruction* instruction) { return absl::c_linear_search(computation.instructions(), instruction); } bool WhileBodyHasPassThroughTupleElement(const HloComputation* computation, const std::string& while_name, const int64_t tuple_index) { for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kWhile && instruction->name() == while_name) { auto* while_body_comp = instruction->while_body(); auto* while_body_param = while_body_comp->parameter_instruction(0); auto* while_body_root = while_body_comp->root_instruction(); if (while_body_root->opcode() != HloOpcode::kTuple) { return false; } auto* operand = while_body_root->operand(tuple_index); if (operand->opcode() == HloOpcode::kGetTupleElement && operand->tuple_index() == tuple_index && operand->operand(0) == while_body_param) { return true; } return false; } } return false; } std::vector<const HloInstruction*> GetWhileLoops( const HloComputation* computation) { std::vector<const HloInstruction*> while_loops; for (auto* instruction : computation->instructions()) { if (instruction->opcode() == HloOpcode::kWhile) { while_loops.push_back(instruction); } } return while_loops; } }; TEST_F(HloModuleDceTest, WhileWithLiveOutputs) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) ROOT while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body })") .value(); HloModuleDCE dce; EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); } TEST_F(HloModuleDceTest, WhileWithUnusedSideEffectingTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], f32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = f32[] get-tuple-element(loop_var.1), index=1 constant.2 = f32[] constant(1.0) rng = f32[] rng(constant.2, get-tuple-element.2), distribution=rng_uniform add.1 = f32[] add(get-tuple-element.2, constant.2) ROOT tuple = (s32[], f32[]) tuple(add, add.1) } SimpleLoop.condition { loop_var.2 = (s32[], f32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.3 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.3), direction=LT } ENTRY SimpleLoop { constant.4 = s32[] constant(0) constant.5 = f32[] constant(0.0) tuple.1 = (s32[], f32[]) tuple(constant.4, constant.5) while = (s32[], f32[]) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); } TEST_F(HloModuleDceTest, OneWhileWithDeadTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[3]{0} constant({0, 1, 2}) tuple.1 = (s32[], s32[3]{0}) tuple(constant.3, constant.4) while = (s32[], s32[3]{0}) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(1, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); } TEST_F(HloModuleDceTest, OneWhileWithTupleElementUsedByCond) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body { loop_var.1 = (s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[] get-tuple-element(loop_var.1), index=1 multiply = s32[] multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[]) tuple(add, multiply) } SimpleLoop.condition { loop_var.2 = (s32[], s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=1 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) constant.4 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.3, constant.4) while = (s32[], s32[]) while(tuple.1), condition= SimpleLoop.condition, body=SimpleLoop.body ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 1)); } TEST_F(HloModuleDceTest, TwoWhilesWithDeadTupleElement) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body0 { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[], s32[3]{0}) tuple(add, multiply) } SimpleLoop.condition0 { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } SimpleLoop.body1 { loop_var.3 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.3), index=0 constant.3 = s32[] constant(1) add.1 = s32[] add(get-tuple-element.4, constant.3) get-tuple-element.5 = s32[3]{0} get-tuple-element(loop_var.3), index=1 multiply.1 = s32[3]{0} multiply(get-tuple-element.5, get-tuple-element.5) ROOT tuple.1 = (s32[], s32[3]{0}) tuple(add.1, multiply.1) } SimpleLoop.condition1 { loop_var.4 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(loop_var.4), index=0 constant.4 = s32[] constant(10) ROOT less-than.1 = pred[] compare(get-tuple-element.6, constant.4), direction=LT } ENTRY SimpleLoop { constant.5 = s32[] constant(0) constant.6 = s32[3]{0} constant({0, 1, 2}) tuple.2 = (s32[], s32[3]{0}) tuple(constant.5, constant.6) while.1 = (s32[], s32[3]{0}) while(tuple.2), condition= SimpleLoop.condition0, body=SimpleLoop.body0 get-tuple-element.7 = s32[] get-tuple-element(while.1), index=0 tuple.3 = (s32[], s32[3]{0}) tuple(get-tuple-element.7, constant.6) while.2 = (s32[], s32[3]{0}) while(tuple.3), condition= SimpleLoop.condition1, body=SimpleLoop.body1 ROOT get-tuple-element.8 = s32[] get-tuple-element(while.2), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 1)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(2, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[1]->shape())); } TEST_F(HloModuleDceTest, TwoWhilesWithDeadTupleElementSwizzled) { auto module = ParseAndReturnVerifiedModule(R"( HloModule SimpleLoop SimpleLoop.body0 { loop_var.1 = (s32[3]{0}, s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=1 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=0 multiply = s32[3]{0} multiply(get-tuple-element.2, get-tuple-element.2) ROOT tuple = (s32[3]{0}, s32[]) tuple(multiply, add) } SimpleLoop.condition0 { loop_var.2 = (s32[3]{0}, s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=1 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } SimpleLoop.body1 { loop_var.3 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.3), index=0 constant.3 = s32[] constant(1) add.1 = s32[] add(get-tuple-element.4, constant.3) get-tuple-element.5 = s32[3]{0} get-tuple-element(loop_var.3), index=1 multiply.1 = s32[3]{0} multiply(get-tuple-element.5, get-tuple-element.5) ROOT tuple.1 = (s32[], s32[3]{0}) tuple(add.1, multiply.1) } SimpleLoop.condition1 { loop_var.4 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(loop_var.4), index=0 constant.4 = s32[] constant(10) ROOT less-than.1 = pred[] compare(get-tuple-element.6, constant.4), direction=LT } ENTRY SimpleLoop { constant.5 = s32[] constant(0) constant.6 = s32[3]{0} constant({0, 1, 2}) tuple.2 = (s32[3]{0}, s32[]) tuple(constant.6, constant.5) while.1 = (s32[3]{0}, s32[]) while(tuple.2), condition= SimpleLoop.condition0, body=SimpleLoop.body0 get-tuple-element.7 = s32[] get-tuple-element(while.1), index=1 tuple.3 = (s32[], s32[3]{0}) tuple(get-tuple-element.7, constant.6) while.2 = (s32[], s32[3]{0}) while(tuple.3), condition= SimpleLoop.condition1, body=SimpleLoop.body1 ROOT get-tuple-element.8 = s32[] get-tuple-element(while.2), index=0 })") .value(); HloModuleDCE dce; EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 0)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 1)); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(2, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[1]->shape())); } TEST_F(HloModuleDceTest, WhileWithOutfeed) { auto module = ParseAndReturnVerifiedModule(R"( HloModule OutfeedLoop WhileBody { body_param = (s32[]) parameter(0) token0 = token[] after-all() constant.2 = s32[] constant(2) outfeed_tuple = (s32[]) outfeed(constant.2, token0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[]) tuple(add) } WhileCondition { cond_param = (s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { constant.3 = s32[] constant(0) tuple.1 = (s32[]) tuple(constant.3) while = (s32[]) while(tuple.1), condition=WhileCondition, body=WhileBody ROOT rtuple = () tuple() })") .value(); HloModuleDCE dce; EXPECT_FALSE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); } TEST_F(HloModuleDceTest, WhileWithOnlyLoopVariableBumping) { auto module = ParseAndReturnVerifiedModule(R"( HloModule InfiniteLoop WhileBody { body_param = (s32[], s32[]) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(body_param), index=0 get-tuple-element.2 = s32[] get-tuple-element(body_param), index=1 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) ROOT tuple = (s32[], s32[]) tuple(add, get-tuple-element.2) } WhileCondition { cond_param = (s32[], s32[]) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(cond_param), index=0 constant.2 = s32[] constant(10) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } ENTRY SimpleLoop { p0 = (s32[]) parameter(0) get-tuple-element.5 = s32[] get-tuple-element(p0), index=0 constant.3 = s32[] constant(0) tuple.1 = (s32[], s32[]) tuple(constant.3, get-tuple-element.5) while = (s32[], s32[]) while(tuple.1), condition=WhileCondition, body=WhileBody ROOT get-tuple-element.4 = s32[] get-tuple-element(while), index=1 })") .value(); HloModuleDCE dce; EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while", 0)); } TEST_F(HloModuleDceTest, TwoWhilesWithDeadWhileLoop) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TwoWhilesWithDeadWhileLoop SimpleLoop.body0 { loop_var.1 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.1 = s32[] get-tuple-element(loop_var.1), index=0 constant.1 = s32[] constant(1) add = s32[] add(get-tuple-element.1, constant.1) get-tuple-element.2 = s32[3]{0} get-tuple-element(loop_var.1), index=1 ROOT tuple = (s32[], s32[3]{0}) tuple(add, get-tuple-element.2) } SimpleLoop.condition0 { loop_var.2 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.3 = s32[] get-tuple-element(loop_var.2), index=0 constant.2 = s32[] constant(5) ROOT less-than = pred[] compare(get-tuple-element.3, constant.2), direction=LT } SimpleLoop.body1 { loop_var.3 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.4 = s32[] get-tuple-element(loop_var.3), index=0 constant.3 = s32[] constant(1) add.1 = s32[] add(get-tuple-element.4, constant.3) get-tuple-element.5 = s32[3]{0} get-tuple-element(loop_var.3), index=1 ROOT tuple.1 = (s32[], s32[3]{0}) tuple(add.1, get-tuple-element.5) } SimpleLoop.condition1 { loop_var.4 = (s32[], s32[3]{0}) parameter(0) get-tuple-element.6 = s32[] get-tuple-element(loop_var.4), index=0 constant.4 = s32[] constant(5) ROOT less-than.1 = pred[] compare(get-tuple-element.6, constant.4), direction=LT } ENTRY SimpleLoop { constant.5 = s32[] constant(0) constant.6 = s32[3]{0} constant({0, 1, 2}) tuple.2 = (s32[], s32[3]{0}) tuple(constant.5, constant.6) while.1 = (s32[], s32[3]{0}) while(tuple.2), condition= SimpleLoop.condition0, body=SimpleLoop.body0 get-tuple-element.7 = s32[3]{0} get-tuple-element(while.1), index=1 constant.7 = s32[] constant(0) tuple.3 = (s32[], s32[3]{0}) tuple(constant.7, get-tuple-element.7) while.2 = (s32[], s32[3]{0}) while(tuple.3), condition= SimpleLoop.condition1, body=SimpleLoop.body1 ROOT get-tuple-element.8 = s32[] get-tuple-element(while.2), index=0 })") .value(); HloModuleDCE dce; EXPECT_TRUE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.1", 1)); EXPECT_TRUE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 1)); EXPECT_TRUE(dce.Run(module.get()).value()); EXPECT_FALSE(WhileBodyHasPassThroughTupleElement(module->entry_computation(), "while.2", 0)); auto while_loops = GetWhileLoops(module->entry_computation()); EXPECT_EQ(1, while_loops.size()); EXPECT_EQ(1, ShapeUtil::TupleElementCount(while_loops[0]->shape())); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_module_dce.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/hlo_module_dce_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5aa9fdf1-bc85-46d2-9996-2eebe164027e
cpp
tensorflow/tensorflow
broadcast_to
tensorflow/lite/kernels/broadcast_to.cc
tensorflow/lite/kernels/broadcast_to_test.cc
#include "tensorflow/lite/kernels/internal/reference/broadcast_to.h" #include <string.h> #include <cstdint> #include <memory> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace broadcastto { constexpr int kInputTensor = 0; constexpr int kShapeTensor = 1; constexpr int kOutputTensor = 0; constexpr int kMaxDims = 8; struct BroadcastToContext { BroadcastToContext(TfLiteContext* context, TfLiteNode* node) { input = GetInput(context, node, kInputTensor); shape = GetInput(context, node, kShapeTensor); output = GetOutput(context, node, kOutputTensor); } const TfLiteTensor* input; const TfLiteTensor* shape; TfLiteTensor* output; }; TfLiteStatus ResizeOutputTensor(TfLiteContext* context, BroadcastToContext* op_context) { TF_LITE_ENSURE_EQ(context, NumDimensions(op_context->shape), 1); int input_num_dims = NumDimensions(op_context->input); int output_num_dims = SizeOfDimension(op_context->shape, 0); TF_LITE_ENSURE_MSG(context, input_num_dims <= output_num_dims, "Output shape must be broadcastable from input shape."); TF_LITE_ENSURE_MSG(context, output_num_dims <= kMaxDims, "BroadcastTo only supports 1-8D tensor."); auto get_shape_data = [op_context](int i) -> int32_t { if (op_context->shape->type == kTfLiteInt32) { return GetTensorData<int32_t>(op_context->shape)[i]; } else { return GetTensorData<int64_t>(op_context->shape)[i]; } }; int extending_dims = output_num_dims - input_num_dims; for (int idx = 0; idx < input_num_dims; ++idx) { TF_LITE_ENSURE_MSG(context, (SizeOfDimension(op_context->input, idx) == 1 || SizeOfDimension(op_context->input, idx) == get_shape_data(extending_dims + idx)), "Output shape must be broadcastable from input shape."); } TfLiteIntArray* output_shape = TfLiteIntArrayCreate(output_num_dims); std::unique_ptr<TfLiteIntArray, void (*)(TfLiteIntArray*)> scoped_output_shape(output_shape, TfLiteIntArrayFree); for (int idx = 0; idx < output_num_dims; ++idx) { output_shape->data[idx] = get_shape_data(idx); } return context->ResizeTensor(context, op_context->output, scoped_output_shape.release()); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE(context, NumInputs(node) == 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); TF_LITE_ENSURE_MSG(context, (NumDimensions(GetInput(context, node, 0)) <= kMaxDims), "BroadcastTo only supports 1-8D tensor."); BroadcastToContext op_context(context, node); TF_LITE_ENSURE(context, op_context.shape->type == kTfLiteInt32 || op_context.shape->type == kTfLiteInt64); TF_LITE_ENSURE_EQ(context, op_context.input->type, op_context.output->type); TF_LITE_ENSURE(context, op_context.input->type != kTfLiteString); if (IsConstantOrPersistentTensor(op_context.shape)) { return ResizeOutputTensor(context, &op_context); } SetTensorToDynamic(op_context.output); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { BroadcastToContext op_context(context, node); if (IsDynamicTensor(op_context.output)) { TF_LITE_ENSURE_OK(context, ResizeOutputTensor(context, &op_context)); } reference_ops::BroadcastTo<kMaxDims>( GetTensorShape(op_context.input), op_context.input->data.raw, GetTensorShape(op_context.output), op_context.output->data.raw, op_context.input->type); return kTfLiteOk; } } TfLiteRegistration* Register_BROADCAST_TO() { static TfLiteRegistration r = {nullptr, nullptr, broadcastto::Prepare, broadcastto::Eval}; return &r; } } } }
#include <cstdint> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/model.h" #include "tensorflow/lite/kernels/test_util.h" namespace tflite { namespace { using ::testing::ElementsAreArray; template <class InputType, class ShapeType = int32_t> class BroadcastToOpModel : public SingleOpModel { public: BroadcastToOpModel(std::initializer_list<int> input_shape, std::initializer_list<int> shape_shape) { input_ = AddInput({GetTensorType<InputType>(), input_shape}); shape_ = AddInput({GetTensorType<ShapeType>(), shape_shape}); output_ = AddOutput(GetTensorType<InputType>()); SetBuiltinOp(BuiltinOperator_BROADCAST_TO, BuiltinOptions_BroadcastToOptions, CreateBroadcastToOptions(builder_).Union()); BuildInterpreter({input_shape, shape_shape}); } BroadcastToOpModel(std::initializer_list<int> input_shape, std::initializer_list<int> shape_shape, std::initializer_list<ShapeType> shape_values) { input_ = AddInput({GetTensorType<InputType>(), input_shape}); shape_ = AddConstInput(GetTensorType<ShapeType>(), shape_values, shape_shape); output_ = AddOutput(GetTensorType<InputType>()); SetBuiltinOp(BuiltinOperator_BROADCAST_TO, BuiltinOptions_BroadcastToOptions, CreateBroadcastToOptions(builder_).Union()); BuildInterpreter({input_shape, shape_shape}); } void SetInput(std::initializer_list<InputType> data) { PopulateTensor(input_, data); } void SetShape(std::initializer_list<ShapeType> data) { PopulateTensor(shape_, data); } std::vector<InputType> GetOutput() { return ExtractVector<InputType>(output_); } std::vector<int> GetOutputShape() { return GetTensorShape(output_); } protected: int input_; int shape_; int output_; }; template <typename T> class BroadcastToOpTest : public ::testing::Test {}; using DataTypes = ::testing::Types<float, uint8_t, int8_t, int16_t, int32_t>; TYPED_TEST_SUITE(BroadcastToOpTest, DataTypes); #if GTEST_HAS_DEATH_TEST TYPED_TEST(BroadcastToOpTest, ShapeMustBe1D) { EXPECT_DEATH( BroadcastToOpModel<TypeParam>({2, 3, 4, 4}, {2, 2}, {2, 3, 4, 4}), ""); BroadcastToOpModel<TypeParam> m({2, 3, 4, 4}, {2, 2}); m.SetShape({2, 3, 4, 4}); EXPECT_THAT(m.Invoke(), kTfLiteError); } TYPED_TEST(BroadcastToOpTest, TooManyDimensions) { EXPECT_DEATH(BroadcastToOpModel<TypeParam>({1, 2, 3, 4, 5, 6, 7, 8, 9}, {9}, {2, 2, 3, 4, 5, 6, 7, 8, 9}), "BroadcastTo only supports 1-8D tensor."); EXPECT_DEATH(BroadcastToOpModel<TypeParam>({1, 2, 3, 4, 5, 6, 7, 8, 9}, {9}), "BroadcastTo only supports 1-8D tensor."); } TYPED_TEST(BroadcastToOpTest, MismatchDimension) { EXPECT_DEATH(BroadcastToOpModel<TypeParam>({2, 4, 1, 2}, {4}, {2, 4, 1, 3}), "Output shape must be broadcastable from input shape."); EXPECT_DEATH( BroadcastToOpModel<TypeParam>({2, 4, 1, 2, 3}, {4}, {2, 4, 1, 2}), "Output shape must be broadcastable from input shape."); BroadcastToOpModel<TypeParam> m1({2, 4, 1, 2}, {4}); m1.SetShape({2, 3, 4, 4}); EXPECT_THAT(m1.Invoke(), kTfLiteError); BroadcastToOpModel<TypeParam> m2({2, 4, 1, 2}, {5}); m2.SetShape({1, 2, 3, 4, 4}); EXPECT_THAT(m2.Invoke(), kTfLiteError); } #endif TYPED_TEST(BroadcastToOpTest, BroadcastTo1DConstTest) { BroadcastToOpModel<TypeParam> m({1}, {1}, {4}); m.SetInput({3}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({4})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 3})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo4DConstTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 2}, {4}, {1, 1, 2, 2}); m.SetInput({3, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 4, 3, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo8DConstTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}, {1, 1, 1, 1, 1, 1, 2, 2}); m.SetInput({3, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo1DDynamicTest) { BroadcastToOpModel<TypeParam> m({1}, {1}); m.SetInput({3}); m.SetShape({4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({4})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 3, 3})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo4DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 2}, {4}); m.SetInput({3, 4}); m.SetShape({1, 1, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 4, 3, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastTo8DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}); m.SetInput({3, 4}); m.SetShape({1, 1, 1, 1, 1, 1, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast4DConstTest) { BroadcastToOpModel<TypeParam> m({1, 3, 1, 2}, {4}, {3, 3, 2, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 2, 2})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast4DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 3, 1, 2}, {4}); m.SetInput({1, 2, 3, 4, 5, 6}); m.SetShape({3, 3, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 2, 2})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast6DConstTest) { BroadcastToOpModel<TypeParam> m({1, 2, 1, 3, 1, 2}, {6}, {2, 2, 1, 3, 2, 2}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 1, 3, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast6DDynamicTest) { BroadcastToOpModel<TypeParam> m({1, 2, 1, 3, 1, 2}, {6}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}); m.SetShape({2, 2, 1, 3, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 1, 3, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast8DConstTest) { BroadcastToOpModel<TypeParam> m({1, 3, 1, 2, 1, 4, 1, 1}, {8}, {2, 3, 1, 2, 2, 4, 1, 1}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3, 1, 2, 2, 4, 1, 1})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 17, 18, 19, 20, 17, 18, 19, 20, 21, 22, 23, 24, 21, 22, 23, 24, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 17, 18, 19, 20, 17, 18, 19, 20, 21, 22, 23, 24, 21, 22, 23, 24})); } TYPED_TEST(BroadcastToOpTest, ComplexBroadcast8DDynamicTest) { BroadcastToOpModel<TypeParam> m({2, 1, 1, 2, 1, 4, 1, 1}, {8}); m.SetInput({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}); m.SetShape({2, 3, 2, 2, 2, 4, 1, 1}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3, 2, 2, 2, 4, 1, 1})); EXPECT_THAT( m.GetOutput(), ElementsAreArray( {1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 16, 13, 14, 15, 16})); } TYPED_TEST(BroadcastToOpTest, ExtendingShape4DConstTest) { BroadcastToOpModel<TypeParam> m({3, 1, 2}, {4}, {3, 3, 2, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 3, 2, 2})); EXPECT_THAT( m.GetOutput(), ElementsAreArray({1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6})); } TYPED_TEST(BroadcastToOpTest, NoBroadcastingConstTest) { BroadcastToOpModel<TypeParam> m({3, 1, 2}, {3}, {3, 1, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 1, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6})); } TYPED_TEST(BroadcastToOpTest, NoBroadcasting8DConstTest) { BroadcastToOpModel<TypeParam> m({3, 1, 1, 1, 1, 1, 1, 2}, {8}, {3, 1, 1, 1, 1, 1, 1, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 1, 1, 1, 1, 1, 1, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({1, 2, 3, 4, 5, 6})); } TYPED_TEST(BroadcastToOpTest, Int64ShapeConstTest) { BroadcastToOpModel<TypeParam, int64_t> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}, {1, 1, 1, 1, 1, 1, 2, 2}); m.SetInput({3, 4}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, Int64ShapeDDynamicTest) { BroadcastToOpModel<TypeParam, int64_t> m({1, 1, 1, 1, 1, 1, 2, 1}, {8}); m.SetInput({3, 4}); m.SetShape({1, 1, 1, 1, 1, 1, 2, 2}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({1, 1, 1, 1, 1, 1, 2, 2})); EXPECT_THAT(m.GetOutput(), ElementsAreArray({3, 3, 4, 4})); } TYPED_TEST(BroadcastToOpTest, BroadcastToEmtpyShapeTest) { BroadcastToOpModel<TypeParam> m({3, 1, 2}, {3}, {3, 0, 2}); m.SetInput({1, 2, 3, 4, 5, 6}); ASSERT_EQ(m.Invoke(), kTfLiteOk); EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({3, 0, 2})); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/broadcast_to.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/broadcast_to_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
83b1774b-22a8-4980-b94c-a9ffd854051b
cpp
tensorflow/tensorflow
tf_to_uniform_attribute_utils
tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_uniform_attribute_utils.cc
tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_uniform_attribute_utils_test.cc
#include "tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_uniform_attribute_utils.h" #include <array> #include <cstdint> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypeInterfaces.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/quantization/common/quantization_lib/quantization_utils.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/ops/uniform_op_quant_spec.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" #include "tensorflow/core/util/quantization/uniform_quant_ops_attr.pb.h" namespace mlir::quant { using QuantMethod = tensorflow::quantization::QuantizationMethod::PresetMethod; enum class OpType { kDynamicRangeOp, kUnaryOp, kBinaryOp, kQuantizationOp, }; constexpr std::array<absl::string_view, 3> kQuantizationAxisAttrs = { "input_quantization_axis", "quantization_axis", "rhs_quantization_axis"}; constexpr std::array<absl::string_view, 2> kSuffixes = {"_min_val", "_max_val"}; Attribute GetWindowStridesValue( PatternRewriter& rewriter, llvm::StringMap<Attribute>& identifier_to_attr) { ArrayAttr stride = mlir::dyn_cast<ArrayAttr>(identifier_to_attr["strides"]); const int stride_h = mlir::cast<IntegerAttr>(stride[1]).getInt(); const int stride_w = mlir::cast<IntegerAttr>(stride[2]).getInt(); return rewriter.getI64ArrayAttr({stride_h, stride_w}); } Attribute GetLhsDilationValue(PatternRewriter& rewriter, llvm::StringMap<Attribute>& identifier_to_attr) { return rewriter.getI64ArrayAttr({1, 1}); } Attribute GetRhsDilationValue(PatternRewriter& rewriter, llvm::StringMap<Attribute>& identifier_to_attr) { ArrayAttr dilations = mlir::dyn_cast<ArrayAttr>(identifier_to_attr["dilations"]); const int dilation_h = mlir::cast<IntegerAttr>(dilations[1]).getInt(); const int dilation_w = mlir::cast<IntegerAttr>(dilations[2]).getInt(); return rewriter.getI64ArrayAttr({dilation_h, dilation_w}); } Attribute GetPaddingValue(PatternRewriter& rewriter, llvm::StringMap<Attribute>& identifier_to_attr) { llvm::StringRef padding = mlir::dyn_cast<StringAttr>(identifier_to_attr["padding"]).getValue(); return rewriter.getStringAttr(padding); } Attribute GetExplicitPaddingValue( PatternRewriter& rewriter, llvm::StringMap<Attribute>& identifier_to_attr) { ArrayAttr explicit_padding = mlir::dyn_cast<ArrayAttr>(identifier_to_attr["explicit_paddings"]); return explicit_padding; } Attribute GetDimensionNumbersValue( PatternRewriter& rewriter, llvm::StringMap<Attribute>& identifier_to_attr) { tensorflow::UniformQuantizedConvolutionDimensionNumbersAttr dimension_numbers; if (!tensorflow::protobuf::TextFormat::ParseFromString( R"pb( input_batch_dimension: 0 input_feature_dimension: 3 input_spatial_dimensions: 1 input_spatial_dimensions: 2 kernel_output_feature_dimension: 3 kernel_input_feature_dimension: 2 kernel_spatial_dimensions: 0 kernel_spatial_dimensions: 1 output_batch_dimension: 0 output_feature_dimension: 3 output_spatial_dimensions: 1 output_spatial_dimensions: 2 )pb", &dimension_numbers)) { return rewriter.getStringAttr(""); } return rewriter.getStringAttr(dimension_numbers.SerializeAsString()); } Attribute GetBatchGroupCountValue( PatternRewriter& rewriter, llvm::StringMap<Attribute>& identifier_to_attr) { return rewriter.getI64IntegerAttr(1); } Attribute GetQuantizationAxis(PatternRewriter& rewriter, Operation* op, const int operand_index) { auto* defining_op = op->getOperand(operand_index).getDefiningOp(); for (auto attr : kQuantizationAxisAttrs) { if (defining_op->hasAttr(attr)) { return defining_op->getAttr(attr); } } return rewriter.getI64IntegerAttr(-1); } LogicalResult CheckIfAttrIs8Bit(const std::string& attr, Operation* op, bool& is_8_bit) { Type element_type; if (attr == "lhs_quantization" || attr == "input_quantization" || attr == "quantization") { if (op->getNumOperands() < 1) { return failure(); } element_type = getElementTypeOrSelf(op->getOperand(0).getType()); } if (attr == "rhs_quantization") { if (op->getNumOperands() < 2) { return failure(); } element_type = getElementTypeOrSelf(op->getOperand(1).getType()); } if (attr == "output_quantization") { if (op->getNumResults() < 1) { return failure(); } element_type = getElementTypeOrSelf(op->getOpResult(0).getType()); } if (element_type) { is_8_bit = mlir::isa<TF::Qint8Type>(element_type); return success(); } return failure(); } LogicalResult FillQuantizationAttributes( PatternRewriter& rewriter, Operation* op, NamedAttrList& attrs, llvm::StringMap<Attribute>& identifier_to_attr, OpType op_type) { absl::flat_hash_map<std::string, int> min_max_scheme_for_8bit = { {"min", -128}, {"max", 127}}; absl::flat_hash_map<std::string, int> min_max_schema_for_32bit = { {"min", -2147483648}, {"max", 2147483647}}; std::vector<std::string> quantization_attributes; switch (op_type) { case OpType::kDynamicRangeOp: quantization_attributes = {"rhs_quantization"}; break; case OpType::kUnaryOp: quantization_attributes = {"quantization"}; break; case OpType::kBinaryOp: quantization_attributes = {"lhs_quantization", "rhs_quantization", "output_quantization"}; break; case OpType::kQuantizationOp: quantization_attributes = {"input_quantization", "output_quantization"}; break; default: quantization_attributes = {}; break; } for (const auto& attr : quantization_attributes) { bool attr_is_8_bit; if (failed(CheckIfAttrIs8Bit(attr, op, attr_is_8_bit))) { return failure(); } for (int i = 0; i < kSuffixes.size(); i++) { int64_t quant_val; if (attr_is_8_bit) { quant_val = i == 0 ? min_max_scheme_for_8bit["min"] : min_max_scheme_for_8bit["max"]; } else { quant_val = i == 0 ? min_max_schema_for_32bit["min"] : min_max_schema_for_32bit["max"]; } std::string attr_minmax = absl::StrCat(attr, kSuffixes[i]); attrs.push_back(rewriter.getNamedAttr( attr_minmax, rewriter.getI64IntegerAttr(quant_val))); } } return success(); } LogicalResult FillAttributesForUniformQuantizedDotOp( PatternRewriter& rewriter, Operation* op, llvm::StringMap<Attribute>& identifier_to_attr, QuantMethod quantization_method, bool enable_per_channel_quantization) { NamedAttrList attrs; if (quantization_method == tensorflow::quantization::QuantizationMethod::METHOD_DYNAMIC_RANGE_INT8) { if (failed(FillQuantizationAttributes(rewriter, op, attrs, identifier_to_attr, OpType::kDynamicRangeOp))) { return failure(); } } else { if (failed(FillQuantizationAttributes( rewriter, op, attrs, identifier_to_attr, OpType::kBinaryOp))) { return failure(); } attrs.push_back(rewriter.getNamedAttr("lhs_quantization_axis", rewriter.getI64IntegerAttr(-1))); } std::unique_ptr<OpQuantSpec> spec = GetUniformOpQuantSpec(op); absl::flat_hash_set<int> operands = spec->quantizable_operands; int quant_dim = -1; if (enable_per_channel_quantization && operands.size() == 1) { quant_dim = spec->coeff_op_quant_dim[*(operands.begin())]; } attrs.push_back(rewriter.getNamedAttr("rhs_quantization_axis", rewriter.getI64IntegerAttr(quant_dim))); attrs.push_back(rewriter.getNamedAttr("output_quantization_axis", rewriter.getI64IntegerAttr(quant_dim))); op->setAttrs(rewriter.getDictionaryAttr(attrs)); return success(); } LogicalResult FillAttributesForUniformQuantizedConvolutionOp( PatternRewriter& rewriter, Operation* op, llvm::StringMap<Attribute>& identifier_to_attr, QuantMethod quantization_method, bool enable_per_channel_quantization) { NamedAttrList attrs; absl::flat_hash_map<std::string, Attribute (*)(PatternRewriter&, llvm::StringMap<Attribute>&)> attribute_getter_map; attribute_getter_map = {{"window_strides", GetWindowStridesValue}, {"lhs_dilation", GetLhsDilationValue}, {"rhs_dilation", GetRhsDilationValue}, {"padding", GetPaddingValue}, {"explicit_padding", GetExplicitPaddingValue}, {"dimension_numbers", GetDimensionNumbersValue}, {"batch_group_count", GetBatchGroupCountValue}}; for (auto& attr : op->getAttrs()) { llvm::StringRef attr_name = attr.getName().getValue(); if (attribute_getter_map.find(attr_name.str()) != attribute_getter_map.end()) { auto attr_val = (attribute_getter_map[attr_name.str()])(rewriter, identifier_to_attr); attrs.push_back(rewriter.getNamedAttr(attr_name, attr_val)); } } auto feature_group_cnt_attr = llvm::StringRef("feature_group_count"); int feature_group_cnt = 1; ShapedType input_shape = mlir::dyn_cast<ShapedType>(op->getOperand(0).getType()); if (!input_shape) { return op->emitError( "Only input with known shape is supported for Uniform Quantized " "opset."); } if (op->getParentOfType<func::FuncOp>().getName().contains("depthwise_")) { feature_group_cnt = input_shape.getDimSize(3); } attrs.push_back(rewriter.getNamedAttr( feature_group_cnt_attr, rewriter.getI64IntegerAttr(feature_group_cnt))); if (quantization_method == tensorflow::quantization::QuantizationMethod::METHOD_DYNAMIC_RANGE_INT8) { if (failed(FillQuantizationAttributes(rewriter, op, attrs, identifier_to_attr, OpType::kDynamicRangeOp))) { return failure(); } } else { if (failed(FillQuantizationAttributes( rewriter, op, attrs, identifier_to_attr, OpType::kBinaryOp))) { return failure(); } } if (quantization_method != tensorflow::quantization::QuantizationMethod::METHOD_DYNAMIC_RANGE_INT8) { attrs.push_back(rewriter.getNamedAttr("lhs_quantization_axis", rewriter.getI64IntegerAttr(-1))); } std::unique_ptr<OpQuantSpec> spec = GetUniformOpQuantSpec(op); absl::flat_hash_set<int> operands = spec->quantizable_operands; int quant_dim = -1; if (enable_per_channel_quantization && operands.size() == 1) { quant_dim = spec->coeff_op_quant_dim[*(operands.begin())]; } attrs.push_back(rewriter.getNamedAttr("rhs_quantization_axis", rewriter.getI64IntegerAttr(quant_dim))); attrs.push_back(rewriter.getNamedAttr("output_quantization_axis", rewriter.getI64IntegerAttr(quant_dim))); op->setAttrs(rewriter.getDictionaryAttr(attrs)); return success(); } LogicalResult FillAttributesForUniformQuantizedAddOp( PatternRewriter& rewriter, Operation* op, llvm::StringMap<Attribute>& identifier_to_attr, const QuantMethod quantization_method, const bool enable_per_channel_quantization) { NamedAttrList attrs; if (failed(FillQuantizationAttributes(rewriter, op, attrs, identifier_to_attr, OpType::kBinaryOp))) { return failure(); } Attribute activation_quantization_axis = rewriter.getI64IntegerAttr(-1); if (enable_per_channel_quantization) { activation_quantization_axis = GetQuantizationAxis(rewriter, op, 0); if (activation_quantization_axis == rewriter.getI64IntegerAttr(-1)) { activation_quantization_axis = GetQuantizationAxis(rewriter, op, 1); } } attrs.push_back(rewriter.getNamedAttr("lhs_quantization_axis", activation_quantization_axis)); attrs.push_back(rewriter.getNamedAttr("rhs_quantization_axis", activation_quantization_axis)); attrs.push_back(rewriter.getNamedAttr("output_quantization_axis", activation_quantization_axis)); op->setAttrs(rewriter.getDictionaryAttr(attrs)); return success(); } LogicalResult FillAttributesForUniformQuantizedClipByValueOp( PatternRewriter& rewriter, Operation* op, llvm::StringMap<Attribute>& identifier_to_attr, QuantMethod quantization_method, bool enable_per_channel_quantization) { NamedAttrList attrs; if (failed(FillQuantizationAttributes(rewriter, op, attrs, identifier_to_attr, OpType::kUnaryOp))) { return failure(); } Attribute activation_quantization_axis = rewriter.getI64IntegerAttr(-1); if (enable_per_channel_quantization) { activation_quantization_axis = GetQuantizationAxis(rewriter, op, 0); } attrs.push_back( rewriter.getNamedAttr("quantization_axis", activation_quantization_axis)); op->setAttrs(rewriter.getDictionaryAttr(attrs)); return success(); } LogicalResult FillAttributesForUniformRequantizeOp( PatternRewriter& rewriter, Operation* op, llvm::StringMap<Attribute>& identifier_to_attr, QuantMethod quantization_method, bool enable_per_channel_quantization) { NamedAttrList attrs; if (failed(FillQuantizationAttributes(rewriter, op, attrs, identifier_to_attr, OpType::kQuantizationOp))) { return failure(); } Attribute activation_quantization_axis = rewriter.getI64IntegerAttr(-1); Attribute output_quantization_axis = rewriter.getI64IntegerAttr(-1); if (enable_per_channel_quantization) { activation_quantization_axis = GetQuantizationAxis(rewriter, op, 0); auto output_scale_type = mlir::dyn_cast<ShapedType>(op->getOperand(3).getType()); if (!output_scale_type) { return failure(); } if (output_scale_type.hasRank() && 0 < output_scale_type.getRank()) { output_quantization_axis = activation_quantization_axis; } } attrs.push_back(rewriter.getNamedAttr("input_quantization_axis", activation_quantization_axis)); attrs.push_back(rewriter.getNamedAttr("output_quantization_axis", output_quantization_axis)); op->setAttrs(rewriter.getDictionaryAttr(attrs)); return success(); } LogicalResult FillAttributesForUniformQuantizeOp( PatternRewriter& rewriter, Operation* op, llvm::StringMap<Attribute>& identifier_to_attr, QuantMethod quantization_method, bool enable_per_channel_quantization) { NamedAttrList attrs; if (failed(FillQuantizationAttributes(rewriter, op, attrs, identifier_to_attr, OpType::kUnaryOp))) { return failure(); } Attribute quantization_axis = rewriter.getI64IntegerAttr(-1); if (enable_per_channel_quantization) { quantization_axis = rewriter.getI64IntegerAttr(3); } attrs.push_back( rewriter.getNamedAttr("quantization_axis", quantization_axis)); op->setAttrs(rewriter.getDictionaryAttr(attrs)); return success(); } }
#include "tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_uniform_attribute_utils.h" #include <gtest/gtest.h> #include "absl/strings/string_view.h" #include "llvm/ADT/StringMap.h" #include "mlir/IR/AsmState.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Block.h" #include "mlir/IR/Builders.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/quantization/tensorflow/quantization_options.pb.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_dialect.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" namespace mlir::quant { namespace { using QuantMethod = tensorflow::quantization::QuantizationMethod::PresetMethod; class EmptyPatternRewriter : public mlir::PatternRewriter { public: explicit EmptyPatternRewriter(const OpBuilder& op_builder) : mlir::PatternRewriter(op_builder) {} ~EmptyPatternRewriter() override = default; }; class TfToUniformAttributeUtilsTestPeer { public: explicit TfToUniformAttributeUtilsTestPeer() = delete; explicit TfToUniformAttributeUtilsTestPeer(MLIRContext* ctx) : rewriter_(OpBuilder(ctx)) {} EmptyPatternRewriter rewriter_; }; class TfToUniformAttributeUtilsTest : public ::testing::Test { protected: TfToUniformAttributeUtilsTest() : ctx_() { ctx_.loadDialect<TF::TensorFlowDialect>(); } MLIRContext ctx_; }; TF::UniformQuantizedAddOp ParseUniformQuantizedAddOp( const absl::string_view add_op_str, Block& block, MLIRContext& ctx) { const LogicalResult parse_result = parseSourceString(add_op_str, &block, ParserConfig(&ctx)); EXPECT_TRUE(succeeded(parse_result)); auto uq_add_op = dyn_cast_or_null<TF::UniformQuantizedAddOp>(block.back()); EXPECT_TRUE(uq_add_op); return uq_add_op; } TF::UniformRequantizeOp ParseUniformRequantizedOp( const absl::string_view requant_op_str, Block& block, MLIRContext& ctx) { const LogicalResult parse_result = parseSourceString(requant_op_str, &block, ParserConfig(&ctx)); EXPECT_TRUE(succeeded(parse_result)); auto uq_requant_op = dyn_cast_or_null<TF::UniformRequantizeOp>(block.back()); EXPECT_TRUE(uq_requant_op); return uq_requant_op; } TEST_F(TfToUniformAttributeUtilsTest, UniformQuantizedAddOpAttributes) { TfToUniformAttributeUtilsTestPeer test_peer(&ctx_); constexpr absl::string_view kAddOpExpr = R"mlir( %0 = "tf.Const"() {value = #tf_type<tensor_proto : "0x746674656"> : tensor<1x3x2x2x!tf_type.qint32>} : () -> tensor<1x3x2x2x!tf_type.qint32> %1 = "tf.Const"() {value = #tf_type<tensor_proto : "0x746674656"> : tensor<2x!tf_type.qint32>} : () -> tensor<2x!tf_type.qint32> %2 = "tf.Const"() {value = dense<1.0> : tensor<f32>} : () -> tensor<f32> %3 = "tf.Const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32> %4 = "tf.UniformQuantizedAdd"(%0, %1, %2, %3, %2, %3, %2, %3) {device = "", lhs_quantization_axis = -1 : i64, lhs_quantization_max_val = 127 : i64, lhs_quantization_min_val = -127 : i64, output_quantization_axis = -1 : i64, output_quantization_max_val = 127 : i64, output_quantization_min_val = -127 : i64, rhs_quantization_axis = -1 : i64, rhs_quantization_max_val = 127 : i64, rhs_quantization_min_val = -127 : i64} : (tensor<1x3x2x2x!tf_type.qint32>, tensor<2x!tf_type.qint32>, tensor<f32>, tensor<i32>, tensor<f32>, tensor<i32>, tensor<f32>, tensor<i32>) -> tensor<1x3x2x2x!tf_type.qint32> )mlir"; Block block{}; TF::UniformQuantizedAddOp op = ParseUniformQuantizedAddOp(kAddOpExpr, block, ctx_); llvm::StringMap<Attribute> identifier_to_attr; QuantMethod quantization_method = tensorflow::quantization::QuantizationMethod::METHOD_STATIC_RANGE_INT8; auto res = FillAttributesForUniformQuantizedAddOp( test_peer.rewriter_, op, identifier_to_attr, quantization_method, false); ASSERT_TRUE(succeeded(res)); ASSERT_EQ(2147483647, op.getLhsQuantizationMaxValAttr().getInt()); ASSERT_EQ(-2147483648, op.getLhsQuantizationMinValAttr().getInt()); ASSERT_EQ(2147483647, op.getRhsQuantizationMaxValAttr().getInt()); ASSERT_EQ(-2147483648, op.getRhsQuantizationMinValAttr().getInt()); ASSERT_EQ(2147483647, op.getOutputQuantizationMaxValAttr().getInt()); ASSERT_EQ(-2147483648, op.getOutputQuantizationMinValAttr().getInt()); ASSERT_EQ(-1, op.getLhsQuantizationAxisAttr().getInt()); ASSERT_EQ(-1, op.getRhsQuantizationAxisAttr().getInt()); ASSERT_EQ(-1, op.getOutputQuantizationAxisAttr().getInt()); } TEST_F(TfToUniformAttributeUtilsTest, UniformQuantizedRequantizeOpAttributes) { TfToUniformAttributeUtilsTestPeer test_peer(&ctx_); constexpr absl::string_view kRequantOpExpr = R"mlir( %0 = "tf.Const"() {value = #tf_type<tensor_proto : "0x746674656"> : tensor<1x3x2x2x!tf_type.qint32>, quantization_axis = 3} : () -> tensor<1x3x2x2x!tf_type.qint32> %1 = "tf.Const"() {value = dense<1.0> : tensor<2xf32>} : () -> tensor<2xf32> %2 = "tf.Const"() {value = dense<2> : tensor<2xi32>} : () -> tensor<2xi32> %3 = "tf.Const"() {value = dense<1.0> : tensor<f32>} : () -> tensor<f32> %4 = "tf.Const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32> %5 = "tf.UniformRequantize"(%0, %1, %2, %3, %4) {device = "", input_quantization_axis = 3 : i64, input_quantization_max_val = 127 : i64, input_quantization_min_val = -127 : i64, output_quantization_axis = -1 : i64, output_quantization_max_val = 127 : i64, output_quantization_min_val = -127 : i64} : (tensor<1x3x2x2x!tf_type.qint32>, tensor<2xf32>, tensor<2xi32>, tensor<f32>, tensor<i32>) -> tensor<1x3x2x2x!tf_type.qint8> )mlir"; Block block{}; TF::UniformRequantizeOp op = ParseUniformRequantizedOp(kRequantOpExpr, block, ctx_); llvm::StringMap<Attribute> identifier_to_attr; QuantMethod quantization_method = tensorflow::quantization::QuantizationMethod::METHOD_STATIC_RANGE_INT8; auto res = FillAttributesForUniformRequantizeOp( test_peer.rewriter_, op, identifier_to_attr, quantization_method, true); ASSERT_TRUE(succeeded(res)); ASSERT_EQ(2147483647, op.getInputQuantizationMaxValAttr().getInt()); ASSERT_EQ(-2147483648, op.getInputQuantizationMinValAttr().getInt()); ASSERT_EQ(127, op.getOutputQuantizationMaxValAttr().getInt()); ASSERT_EQ(-128, op.getOutputQuantizationMinValAttr().getInt()); ASSERT_EQ(3, op.getInputQuantizationAxisAttr().getInt()); ASSERT_EQ(-1, op.getOutputQuantizationAxisAttr().getInt()); } TEST_F(TfToUniformAttributeUtilsTest, UniformQuantizedRequantizeOpAttributes_OutputPerChannel) { TfToUniformAttributeUtilsTestPeer test_peer(&ctx_); constexpr absl::string_view kRequantOpExpr = R"mlir( %0 = "tf.Const"() {value = #tf_type<tensor_proto : "0x746674656"> : tensor<1x3x2x2x!tf_type.qint32>, quantization_axis = 3} : () -> tensor<1x3x2x2x!tf_type.qint32> %1 = "tf.Const"() {value = dense<1.0> : tensor<2xf32>} : () -> tensor<2xf32> %2 = "tf.Const"() {value = dense<2> : tensor<2xi32>} : () -> tensor<2xi32> %3 = "tf.Const"() {value = dense<1.0> : tensor<2xf32>} : () -> tensor<2xf32> %4 = "tf.Const"() {value = dense<0> : tensor<2xi32>} : () -> tensor<2xi32> %5 = "tf.UniformRequantize"(%0, %1, %2, %3, %4) {device = "", input_quantization_axis = 3 : i64, input_quantization_max_val = 127 : i64, input_quantization_min_val = -127 : i64, output_quantization_axis = 1 : i64, output_quantization_max_val = 127 : i64, output_quantization_min_val = -127 : i64} : (tensor<1x3x2x2x!tf_type.qint32>, tensor<2xf32>, tensor<2xi32>, tensor<2xf32>, tensor<2xi32>) -> tensor<1x3x2x2x!tf_type.qint8> )mlir"; Block block{}; TF::UniformRequantizeOp op = ParseUniformRequantizedOp(kRequantOpExpr, block, ctx_); llvm::StringMap<Attribute> identifier_to_attr; QuantMethod quantization_method = tensorflow::quantization::QuantizationMethod::METHOD_STATIC_RANGE_INT8; auto res = FillAttributesForUniformRequantizeOp( test_peer.rewriter_, op, identifier_to_attr, quantization_method, true); ASSERT_TRUE(succeeded(res)); ASSERT_EQ(2147483647, op.getInputQuantizationMaxValAttr().getInt()); ASSERT_EQ(-2147483648, op.getInputQuantizationMinValAttr().getInt()); ASSERT_EQ(127, op.getOutputQuantizationMaxValAttr().getInt()); ASSERT_EQ(-128, op.getOutputQuantizationMinValAttr().getInt()); ASSERT_EQ(3, op.getInputQuantizationAxisAttr().getInt()); ASSERT_EQ(3, op.getOutputQuantizationAxisAttr().getInt()); } TEST_F(TfToUniformAttributeUtilsTest, UniformQuantizedRequantizeOpAttributes_DisablePerChannelQuantization) { TfToUniformAttributeUtilsTestPeer test_peer(&ctx_); constexpr absl::string_view kRequantOpExpr = R"mlir( %0 = "tf.Const"() {value = #tf_type<tensor_proto : "0x746674656"> : tensor<1x3x2x2x!tf_type.qint32>, quantization_axis = 3} : () -> tensor<1x3x2x2x!tf_type.qint32> %1 = "tf.Const"() {value = dense<1.0> : tensor<2xf32>} : () -> tensor<2xf32> %2 = "tf.Const"() {value = dense<2> : tensor<2xi32>} : () -> tensor<2xi32> %3 = "tf.Const"() {value = dense<1.0> : tensor<f32>} : () -> tensor<f32> %4 = "tf.Const"() {value = dense<0> : tensor<i32>} : () -> tensor<i32> %5 = "tf.UniformRequantize"(%0, %1, %2, %3, %4) {device = "", input_quantization_axis = 3 : i64, input_quantization_max_val = 127 : i64, input_quantization_min_val = -127 : i64, output_quantization_axis = -1 : i64, output_quantization_max_val = 127 : i64, output_quantization_min_val = -127 : i64} : (tensor<1x3x2x2x!tf_type.qint32>, tensor<2xf32>, tensor<2xi32>, tensor<f32>, tensor<i32>) -> tensor<1x3x2x2x!tf_type.qint8> )mlir"; Block block{}; TF::UniformRequantizeOp op = ParseUniformRequantizedOp(kRequantOpExpr, block, ctx_); llvm::StringMap<Attribute> identifier_to_attr; QuantMethod quantization_method = tensorflow::quantization::QuantizationMethod::METHOD_STATIC_RANGE_INT8; auto res = FillAttributesForUniformRequantizeOp( test_peer.rewriter_, op, identifier_to_attr, quantization_method, false); ASSERT_TRUE(succeeded(res)); ASSERT_EQ(2147483647, op.getInputQuantizationMaxValAttr().getInt()); ASSERT_EQ(-2147483648, op.getInputQuantizationMinValAttr().getInt()); ASSERT_EQ(127, op.getOutputQuantizationMaxValAttr().getInt()); ASSERT_EQ(-128, op.getOutputQuantizationMinValAttr().getInt()); ASSERT_EQ(-1, op.getInputQuantizationAxisAttr().getInt()); ASSERT_EQ(-1, op.getOutputQuantizationAxisAttr().getInt()); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_uniform_attribute_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/compiler/mlir/quantization/tensorflow/utils/tf_to_uniform_attribute_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a3cdbd40-8d4c-4144-9518-6b84e52b8158
cpp
tensorflow/tensorflow
svd
third_party/xla/xla/hlo/builder/lib/svd.cc
third_party/xla/xla/hlo/builder/lib/svd_test.cc
#include "xla/hlo/builder/lib/svd.h" #include <memory> #include <numeric> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/comparators.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/loops.h" #include "xla/hlo/builder/lib/math.h" #include "xla/hlo/builder/lib/matrix.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/statusor.h" namespace xla { namespace { struct HouseHolderResult { XlaOp v; XlaOp beta; XlaOp a; }; struct JacobiRotation { XlaOp c; XlaOp s; }; struct JacobiUpdate { XlaOp v; XlaOp w; }; struct OneSidedJacobiRotation { JacobiRotation rot_l; JacobiRotation rot_r; }; absl::StatusOr<HouseHolderResult> HouseRow( XlaOp a, XlaOp i, XlaOp j, XlaOp eps, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); XlaOp zero = ScalarLike(i, 0); XlaOp x = DynamicSliceInMinorDims(a, {i, zero}, {1, n}); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int k = 0; k < num_batch_dims; ++k) { batch_dims[k] = ShapeUtil::GetDimension(a_shape, k); } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); auto idx = Iota(builder, ShapeUtil::MakeShape(S32, x_shape.dimensions()), num_dims - 1); auto zeros = ZerosLike(x); auto v = Select(Gt(idx, j), x, zeros); auto one = ScalarLike(v, 1.0); auto sigma = Sqrt(Reduce(Square(v), ScalarLike(v, 0.0), CreateScalarAddComputation(x_shape.element_type(), builder), {num_dims - 1})); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); auto x_0j = DynamicSliceInMinorDims(x, {zero, j}, {1, 1}); auto mu = Mul(sigma, Sqrt(Square(Div(x_0j, sigma, broadcast_dims)) + one), broadcast_dims); auto v_0j = Select( Le(x_0j, ScalarLike(x_0j, 0.0)), Sub(x_0j, mu), -Mul(sigma, Div(sigma, Add(x_0j, mu), broadcast_dims), broadcast_dims)); auto beta = Div(ScalarLike(v_0j, 2.0), (Square(Div(sigma, v_0j, broadcast_dims)) + one)); v = Select( BroadcastInDim(Lt(sigma, eps), x_shape.dimensions(), broadcast_dims), v, v / v_0j); v = Select(Eq(idx, j), zeros + one, v); beta = Select(Lt(Add(sigma, ZerosLike(beta), broadcast_dims), eps), ZerosLike(beta), beta); HouseHolderResult result; result.v = v; result.beta = beta; result.a = Sub(a, Mul(beta, BatchDot(BatchDot(a, false, v, true, precision), v, precision))); return result; } absl::StatusOr<HouseHolderResult> HouseCol( XlaOp a, XlaOp i, XlaOp j, XlaOp eps, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); const int64_t m = ShapeUtil::GetDimension(a_shape, -2); XlaOp zero = ScalarLike(i, 0); XlaOp x = DynamicSliceInMinorDims(a, {zero, j}, {m, 1}); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int k = 0; k < num_batch_dims; ++k) { batch_dims[k] = ShapeUtil::GetDimension(a_shape, k); } TF_ASSIGN_OR_RETURN(Shape x_shape, builder->GetShape(x)); auto idx = Iota(builder, ShapeUtil::MakeShape(S32, x_shape.dimensions()), num_dims - 2); auto zeros = ZerosLike(x); auto v = Select(Gt(idx, i), x, zeros); auto one = ScalarLike(v, 1.0); auto sigma = Sqrt(Reduce(Square(v), ScalarLike(v, 0.0), CreateScalarAddComputation(x_shape.element_type(), builder), {num_dims - 2})); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[num_dims - 2] = num_dims - 1; auto x_0i = DynamicSliceInMinorDims(x, {i, zero}, {1, 1}); auto mu = Mul(sigma, Sqrt(Square(Div(x_0i, sigma, broadcast_dims)) + one), broadcast_dims); auto v_0i = Select( Le(x_0i, ScalarLike(x_0i, 0.0)), Sub(x_0i, mu), -Mul(sigma, Div(sigma, Add(x_0i, mu), broadcast_dims), broadcast_dims)); auto beta = Div(ScalarLike(v_0i, 2.0), (Square(Div(sigma, v_0i, broadcast_dims)) + one)); v = Select( BroadcastInDim(Lt(sigma, eps), x_shape.dimensions(), broadcast_dims), v, v / v_0i); v = Select(Eq(idx, i), zeros + one, v); beta = Select(Lt(Add(sigma, ZerosLike(beta), broadcast_dims), eps), ZerosLike(beta), beta); HouseHolderResult result; result.v = v; result.beta = beta; result.a = Sub( a, Mul(beta, BatchDot(v, false, BatchDot(v, true, a, false, precision), false, precision))); return result; } absl::StatusOr<SVDResult> HouseHolderBidiagonalization( XlaOp a, XlaOp eps, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a)); const int64_t num_dims = a_shape.rank(); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int i = 0; i < num_batch_dims; ++i) { batch_dims[i] = ShapeUtil::GetDimension(a_shape, i); } const int64_t m = ShapeUtil::GetDimension(a_shape, -2); const int64_t n = ShapeUtil::GetDimension(a_shape, -1); XlaOp u_init = Broadcast( IdentityMatrix(builder, a_shape.element_type(), m, m), batch_dims); XlaOp v_init = Broadcast( IdentityMatrix(builder, a_shape.element_type(), n, n), batch_dims); auto while_cond_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* cond_builder) -> absl::StatusOr<XlaOp> { auto i = values[0]; return Lt(i, ScalarLike(i, n - 2)); }; auto while_body_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto i = values[0]; auto one = ScalarLike(i, 1); auto u = values[1]; auto v = values[2]; auto a = values[3]; auto eps = values[4]; TF_ASSIGN_OR_RETURN(HouseHolderResult house_col, HouseCol(a, i, i, eps, precision)); u = Sub(u, Mul(house_col.beta, BatchDot(BatchDot(u, house_col.v, precision), false, house_col.v, true, precision))); a = house_col.a; TF_ASSIGN_OR_RETURN(HouseHolderResult house_row, HouseRow(a, i, i + one, eps, precision)); v = Sub(v, Mul(house_row.beta, BatchDot(BatchDot(v, false, house_row.v, true, precision), house_row.v, precision))); a = house_row.a; std::vector<XlaOp> updated_values; updated_values.reserve(values.size()); updated_values.push_back(i + one); updated_values.push_back(u); updated_values.push_back(v); updated_values.push_back(a); updated_values.push_back(eps); return updated_values; }; std::vector<XlaOp> values(5); values[0] = Zero(builder, S32); values[1] = u_init; values[2] = v_init; values[3] = a; values[4] = eps; TF_ASSIGN_OR_RETURN(values, WhileLoopHelper(while_cond_fn, while_body_fn, values, "HouseHolderBidiagonalization", builder)); for (int k = 2; k > 0; --k) { if (n - k >= 0) { XlaOp index = ScalarLike(values[0], n - k); TF_ASSIGN_OR_RETURN(HouseHolderResult house_col, HouseCol(values[3], index, index, eps, precision)); values[1] = Sub(values[1], Mul(house_col.beta, BatchDot(BatchDot(values[1], house_col.v, precision), false, house_col.v, true, precision))); values[3] = house_col.a; } } SVDResult result; result.u = values[1]; result.v = values[2]; result.d = values[3]; return result; } absl::StatusOr<JacobiRotation> MakeJacobi(XlaOp ps, XlaOp qs, XlaOp pqs, XlaOp eps) { auto zero = ScalarLike(ps, 0.0); auto one = ScalarLike(ps, 1.0); auto two = ScalarLike(ps, 2.0); auto tau = (qs - ps) / (pqs * two); auto t_pos = one / (tau + Sqrt(one + Square(tau))); auto t_neg = -one / (-tau + Sqrt(one + Square(tau))); auto t = Select(Ge(tau, zero), t_pos, t_neg); auto c_temp = Rsqrt(one + Square(t)); auto s_temp = t * c_temp; auto c = Select(Ge(Abs(pqs), eps), c_temp, ZerosLike(c_temp) + one); auto s = Select(Ge(Abs(pqs), eps), s_temp, ZerosLike(s_temp)); auto rnorm = Rsqrt(Square(c) + Square(s)); JacobiRotation rot; rot.c = c * rnorm; rot.s = s * rnorm; return rot; } absl::StatusOr<OneSidedJacobiRotation> GetOneSidedJacobiRotation(XlaOp a, XlaOp p, XlaOp q, XlaOp eps) { XlaOp a_pp = DynamicSliceInMinorDims(a, {p, p}, {1, 1}); XlaOp a_pq = DynamicSliceInMinorDims(a, {p, q}, {1, 1}); XlaOp a_qp = DynamicSliceInMinorDims(a, {q, p}, {1, 1}); XlaOp a_qq = DynamicSliceInMinorDims(a, {q, q}, {1, 1}); XlaOp one = ScalarLike(a, 1.0); XlaOp t = a_pp + a_qq; XlaOp d = a_qp - a_pq; XlaOp u = Div(t, d); XlaOp tmp = Rsqrt(one + Square(u)); JacobiRotation rot; XlaOp zeros = ZerosLike(tmp); XlaOp ones = zeros + one; rot.s = Select(Lt(Abs(d), eps), zeros, -tmp); rot.c = Select(Lt(Abs(d), eps), ones, Mul(u, tmp)); XlaOp a_pp_new = rot.c * a_pp - rot.s * a_qp; XlaOp a_pq_new = rot.c * a_pq - rot.s * a_qq; XlaOp a_qq_new = rot.s * a_pq + rot.c * a_qq; OneSidedJacobiRotation rots; TF_ASSIGN_OR_RETURN(rots.rot_r, MakeJacobi(a_pp_new, a_qq_new, a_pq_new, eps)); rots.rot_l.c = rot.c * rots.rot_r.c - rot.s * rots.rot_r.s; rots.rot_l.s = rot.s * rots.rot_r.c + rot.c * rots.rot_r.s; return rots; } absl::StatusOr<SVDResult> OneSidedJacobiUpdate(SVDResult svd_result, XlaOp p, XlaOp q, XlaOp eps) { XlaOp u = svd_result.u; XlaOp v = svd_result.v; XlaOp d = svd_result.d; XlaBuilder* builder = d.builder(); TF_ASSIGN_OR_RETURN(Shape d_shape, builder->GetShape(d)); const int64_t num_dims = d_shape.rank(); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int i = 0; i < num_batch_dims; ++i) { batch_dims[i] = ShapeUtil::GetDimension(d_shape, i); } const int64_t m = ShapeUtil::GetDimension(d_shape, -2); const int64_t n = ShapeUtil::GetDimension(d_shape, -1); TF_ASSIGN_OR_RETURN(OneSidedJacobiRotation onesided_jacobi, GetOneSidedJacobiRotation(d, p, q, eps)); auto zero = ScalarLike(p, 0); std::vector<int64_t> pq_dims(batch_dims.begin(), batch_dims.end()); pq_dims.push_back(1); pq_dims.push_back(1); auto pq_zero = ScalarLike(d, 0.0); auto pq_zeros = Broadcast(pq_zero, pq_dims); std::vector<int64_t> broadcast_dims(batch_dims.size()); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims.push_back(num_dims - 1); auto slice_p = DynamicSliceInMinorDims(d, {p, zero}, {1, n}); auto slice_q = DynamicSliceInMinorDims(d, {q, zero}, {1, n}); auto slice_p_new = onesided_jacobi.rot_l.c * slice_p - onesided_jacobi.rot_l.s * slice_q; auto slice_q_new = onesided_jacobi.rot_l.s * slice_p + onesided_jacobi.rot_l.c * slice_q; d = DynamicUpdateSliceInMinorDims(d, slice_p_new, {p, zero}); d = DynamicUpdateSliceInMinorDims(d, slice_q_new, {q, zero}); slice_p = DynamicSliceInMinorDims(d, {zero, p}, {m, 1}); slice_q = DynamicSliceInMinorDims(d, {zero, q}, {m, 1}); slice_p_new = onesided_jacobi.rot_r.c * slice_p - onesided_jacobi.rot_r.s * slice_q; slice_q_new = onesided_jacobi.rot_r.s * slice_p + onesided_jacobi.rot_r.c * slice_q; d = DynamicUpdateSliceInMinorDims(d, slice_p_new, {zero, p}); d = DynamicUpdateSliceInMinorDims(d, slice_q_new, {zero, q}); d = DynamicUpdateSliceInMinorDims(d, pq_zeros, {p, q}); d = DynamicUpdateSliceInMinorDims(d, pq_zeros, {q, p}); slice_p = DynamicSliceInMinorDims(u, {zero, p}, {m, 1}); slice_q = DynamicSliceInMinorDims(u, {zero, q}, {m, 1}); slice_p_new = onesided_jacobi.rot_l.c * slice_p - onesided_jacobi.rot_l.s * slice_q; slice_p_new = Mul( slice_p_new, Rsqrt(Reduce(Square(slice_p_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); slice_q_new = onesided_jacobi.rot_l.s * slice_p + onesided_jacobi.rot_l.c * slice_q; slice_q_new = Mul( slice_q_new, Rsqrt(Reduce(Square(slice_q_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); u = DynamicUpdateSliceInMinorDims(u, slice_p_new, {zero, p}); u = DynamicUpdateSliceInMinorDims(u, slice_q_new, {zero, q}); slice_p = DynamicSliceInMinorDims(v, {zero, p}, {n, 1}); slice_q = DynamicSliceInMinorDims(v, {zero, q}, {n, 1}); slice_p_new = onesided_jacobi.rot_r.c * slice_p - onesided_jacobi.rot_r.s * slice_q; slice_p_new = Mul( slice_p_new, Rsqrt(Reduce(Square(slice_p_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); slice_q_new = onesided_jacobi.rot_r.s * slice_p + onesided_jacobi.rot_r.c * slice_q; slice_q_new = Mul( slice_q_new, Rsqrt(Reduce(Square(slice_q_new), pq_zero, CreateScalarAddComputation(d_shape.element_type(), builder), {num_dims - 2})), broadcast_dims); v = DynamicUpdateSliceInMinorDims(v, slice_p_new, {zero, p}); v = DynamicUpdateSliceInMinorDims(v, slice_q_new, {zero, q}); svd_result.d = d; svd_result.u = u; svd_result.v = v; return svd_result; } absl::StatusOr<XlaOp> ComputeToleranceComparison(XlaOp w, XlaOp epsilon) { XlaBuilder* builder = w.builder(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(w)); auto num_dims = static_cast<int32_t>(shape.rank()); int64_t n = shape.dimensions(num_dims - 1); shape.set_dimensions(num_dims - 2, n); auto w_sliced = SliceInMinorDims(w, {0, 0}, {n, n}); auto diag = GetMatrixDiagonal(w_sliced); diag = Select(Lt(diag, ZerosLike(diag)), -diag, diag); std::vector<int64_t> broadcasted_dims(num_dims - 1); std::iota(broadcasted_dims.begin(), broadcasted_dims.end(), 0); auto broadcast_to_rows = BroadcastInDim(diag, shape.dimensions(), broadcasted_dims); broadcasted_dims.back() = num_dims - 1; auto broadcast_to_columns = BroadcastInDim(diag, shape.dimensions(), broadcasted_dims); XlaOp tolerance; if (builder->GetShape(epsilon)->element_type() == BF16 || builder->GetShape(epsilon)->element_type() == F16) { auto upscale_eps = ConvertElementType(epsilon, F32); tolerance = ConvertElementType(broadcast_to_rows, F32) * ConvertElementType(broadcast_to_columns, F32) * upscale_eps * upscale_eps; tolerance = ConvertElementType(tolerance, builder->GetShape(epsilon)->element_type()); } else { tolerance = broadcast_to_rows * broadcast_to_columns * epsilon * epsilon; } return Lt(tolerance, Square(Select(GetDiagonalMask(w_sliced), ZerosLike(w_sliced), w_sliced))); } absl::StatusOr<std::vector<XlaOp>> WhileLoopFn( absl::Span<const XlaOp> initial_values, int matrix_dimension, int max_sweep_updates, absl::string_view name, XlaBuilder* builder) { auto while_cond_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* cond_builder) -> absl::StatusOr<XlaOp> { auto k = values[0]; auto max_sweeps = ScalarLike(k, max_sweep_updates); auto sweep_update_cond = Gt(max_sweeps, k); TF_ASSIGN_OR_RETURN(auto tolerance_comparison, ComputeToleranceComparison(values[3], values[4])); auto tolerance_cond = ReduceAll( tolerance_comparison, xla::ConstantR0<bool>(cond_builder, false), CreateScalarOrComputation(PRED, cond_builder)); return And(sweep_update_cond, tolerance_cond); }; auto while_body_fn = [&](absl::Span<const XlaOp> values, XlaBuilder* body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto while_cond_fn_inner = [&](absl::Span<const XlaOp> values_inner, XlaBuilder* inner_cond_builder) -> absl::StatusOr<XlaOp> { auto p = values_inner[0]; return Lt(p, ScalarLike(p, matrix_dimension - 1)); }; auto while_body_fn_inner = [&](absl::Span<const XlaOp> values_inner, XlaBuilder* inner_body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto while_cond_fn_innermost = [&](absl::Span<const XlaOp> values_innermost, XlaBuilder* innermost_cond_builder) -> absl::StatusOr<XlaOp> { auto q = values_innermost[1]; return Lt(q, ScalarLike(q, matrix_dimension)); }; auto while_body_fn_innermost = [&](absl::Span<const XlaOp> values_innermost, XlaBuilder* innermost_body_builder) -> absl::StatusOr<std::vector<XlaOp>> { auto p = values_innermost[0]; auto q = values_innermost[1]; SVDResult onesided_jacobi_update; onesided_jacobi_update.u = values_innermost[2]; onesided_jacobi_update.v = values_innermost[3]; onesided_jacobi_update.d = values_innermost[4]; auto eps = values_innermost[5]; TF_ASSIGN_OR_RETURN( onesided_jacobi_update, OneSidedJacobiUpdate(onesided_jacobi_update, p, q, eps)); std::vector<XlaOp> updated_values_innermost; updated_values_innermost.reserve(values_innermost.size()); updated_values_innermost.push_back(p); updated_values_innermost.push_back(q + ScalarLike(q, 1)); updated_values_innermost.push_back(onesided_jacobi_update.u); updated_values_innermost.push_back(onesided_jacobi_update.v); updated_values_innermost.push_back(onesided_jacobi_update.d); updated_values_innermost.push_back(eps); return updated_values_innermost; }; std::vector<XlaOp> values_innermost(6); auto p = values_inner[0]; auto q = p + ScalarLike(p, 1); values_innermost[0] = p; values_innermost[1] = q; values_innermost[2] = values_inner[1]; values_innermost[3] = values_inner[2]; values_innermost[4] = values_inner[3]; values_innermost[5] = values_inner[4]; TF_ASSIGN_OR_RETURN( values_innermost, WhileLoopHelper(while_cond_fn_innermost, while_body_fn_innermost, values_innermost, absl::StrCat(name, "-Innermost"), inner_body_builder)); std::vector<XlaOp> updated_values_inner; updated_values_inner.reserve(values_inner.size()); updated_values_inner.push_back(p + ScalarLike(p, 1)); updated_values_inner.push_back(values_innermost[2]); updated_values_inner.push_back(values_innermost[3]); updated_values_inner.push_back(values_innermost[4]); updated_values_inner.push_back(values_innermost[5]); return updated_values_inner; }; XlaOp k = values[0]; std::vector<XlaOp> values_inner(5); values_inner[0] = ScalarLike(k, 0); values_inner[1] = values[1]; values_inner[2] = values[2]; values_inner[3] = values[3]; values_inner[4] = values[4]; TF_ASSIGN_OR_RETURN( values_inner, WhileLoopHelper(while_cond_fn_inner, while_body_fn_inner, values_inner, absl::StrCat(name, "-Inner"), body_builder)); std::vector<XlaOp> updated_values; updated_values.reserve(values_inner.size()); updated_values.push_back(k + ScalarLike(k, 1)); updated_values.push_back(values_inner[1]); updated_values.push_back(values_inner[2]); updated_values.push_back(values_inner[3]); updated_values.push_back(values_inner[4]); return updated_values; }; std::vector<XlaOp> values; TF_ASSIGN_OR_RETURN(values, WhileLoopHelper(while_cond_fn, while_body_fn, initial_values, name, builder)); return values; } absl::StatusOr<SVDResult> SortBySingularValuesAndPostProcessing( SVDResult result) { XlaBuilder* builder = result.d.builder(); TF_ASSIGN_OR_RETURN(Shape shape, builder->GetShape(result.d)); const int64_t num_dims = shape.rank(); auto dimensions = shape.dimensions(); const int64_t m = ShapeUtil::GetDimension(shape, -2); const int64_t n = ShapeUtil::GetDimension(shape, -1); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[num_dims - 2] = num_dims - 1; auto d = GetMatrixDiagonal(result.d); auto zeros = ZerosLike(d); auto one = ScalarLike(d, 1.0); auto sign = Select(Ge(d, zeros), zeros + one, zeros - one); d = Select(Ge(d, zeros), d, -d); result.v = Mul(result.v, sign, broadcast_dims); d = BroadcastInDim(d, dimensions, broadcast_dims); XlaOp sort_u_result = Sort({d, SliceInMinorDims(result.u, {0, 0}, {m, n})}, CreateScalarGtComputation( {shape.element_type(), shape.element_type()}, builder), num_dims - 1); XlaOp sort_v_result = Sort({SliceInMinorDims(d, {0, 0}, {n, n}), result.v}, CreateScalarGtComputation( {shape.element_type(), shape.element_type()}, builder), num_dims - 1); result.d = GetMatrixDiagonal(GetTupleElement(sort_v_result, 0)); result.v = GetTupleElement(sort_v_result, 1); result.v = Mul( result.v, Rsqrt(Reduce(Square(result.v), ScalarLike(d, 0.0), CreateScalarAddComputation(shape.element_type(), builder), {num_dims - 2})), broadcast_dims); result.u = ConcatInDim(builder, {GetTupleElement(sort_u_result, 1), SliceInMinorDims(result.u, {0, n}, {m, m})}, num_dims - 1); result.u = Mul( result.u, Rsqrt(Reduce(Square(result.u), ScalarLike(d, 0.0), CreateScalarAddComputation(shape.element_type(), builder), {num_dims - 2})), broadcast_dims); return result; } } SVDResult SVD(XlaOp a, int64_t max_iter, float epsilon, PrecisionConfig::Precision precision) { XlaBuilder* builder = a.builder(); auto return_error = [&](const absl::Status& status) { SVDResult result; result.u = builder->ReportError(status); result.v = builder->ReportError(status); result.d = builder->ReportError(status); return result; }; auto shape_with_status = builder->GetShape(a); if (!shape_with_status.status().ok()) { return return_error(shape_with_status.status()); } Shape a_shape = shape_with_status.value(); const int64_t num_dims = a_shape.rank(); const int64_t num_batch_dims = num_dims - 2; std::vector<int64_t> batch_dims(num_batch_dims); for (int i = 0; i < num_batch_dims; ++i) { batch_dims[i] = ShapeUtil::GetDimension(a_shape, i); } int64_t m = ShapeUtil::GetDimension(a_shape, -2); int64_t n = ShapeUtil::GetDimension(a_shape, -1); bool maybe_transpose = m < n; if (maybe_transpose) { a = TransposeInMinorDims(a); std::swap(m, n); } auto eps = ScalarLike(a, epsilon); auto svd_result_or = HouseHolderBidiagonalization(a, eps, precision); if (!svd_result_or.ok()) { return return_error(svd_result_or.status()); } SVDResult svd_result = svd_result_or.value(); auto output_with_status = WhileLoopFn( { Zero(builder, S32), svd_result.u, svd_result.v, svd_result.d, eps, }, n, max_iter, "CyclicOneSidedJacobi", builder); if (!output_with_status.status().ok()) { return return_error(output_with_status.status()); } auto output = output_with_status.value(); svd_result.u = output[1]; svd_result.v = output[2]; svd_result.d = output[3]; svd_result_or = SortBySingularValuesAndPostProcessing(svd_result); if (!svd_result_or.ok()) { return return_error(svd_result_or.status()); } svd_result = svd_result_or.value(); if (maybe_transpose) { std::swap(svd_result.u, svd_result.v); } return svd_result; } }
#include "xla/hlo/builder/lib/svd.h" #include <numeric> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "xla/array2d.h" #include "xla/array3d.h" #include "xla/error_spec.h" #include "xla/hlo/builder/lib/arithmetic.h" #include "xla/hlo/builder/lib/constants.h" #include "xla/hlo/builder/lib/matrix.h" #include "xla/hlo/builder/lib/slicing.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/tests/client_library_test_base.h" #include "xla/tests/test_macros.h" #include "xla/xla_data.pb.h" namespace xla { class SVDTest : public ClientLibraryTestBase { protected: void SetUp() override { ClientLibraryTestBase::SetUp(); batch_3d_4x5_ = Array3D<float>{ { {4, 6, 8, 10, 1}, {6, 45, 54, 63, 1}, {8, 54, 146, 166, 1}, {10, 63, 166, 310, 1}, }, { {16, 24, 8, 12, 6}, {24, 61, 82, 48, 5}, {8, 82, 100, 6, 4}, {12, 48, 6, 62, 3}, }, }; } void TearDown() override { ClientLibraryTestBase::TearDown(); } Array3D<float> GetUnitMatrix3D(int32_t batch_dim, int32_t mat_dim) { Array3D<float> result(batch_dim, mat_dim, mat_dim, 0.0); for (int i = 0; i < batch_dim; ++i) { for (int j = 0; j < mat_dim; ++j) { result({i, j, j}) = 1.0; } } return result; } XlaOp ComputeMatmulUDVT(SVDResult result, XlaBuilder* builder) { Shape u_shape = builder->GetShape(result.u).value(); Shape v_shape = builder->GetShape(result.v).value(); int64_t m = ShapeUtil::GetDimension(u_shape, -1); int64_t n = ShapeUtil::GetDimension(v_shape, -1); auto v = result.v; auto u = result.u; auto d = result.d; if (m > n) { u = SliceInMinorDims(u, {0, 0}, {m, n}); } else if (m < n) { v = SliceInMinorDims(v, {0, 0}, {n, m}); } int num_dims = u_shape.rank(); std::vector<int64_t> broadcast_dims(num_dims - 1); std::iota(broadcast_dims.begin(), broadcast_dims.end(), 0); broadcast_dims[num_dims - 2] = num_dims - 1; return BatchDot(Mul(u, d, broadcast_dims), TransposeInMinorDims(v), PrecisionConfig::HIGHEST); } XlaOp GetAverageAbsoluteError(XlaOp m1, XlaOp m2, XlaBuilder* builder) { Shape shape = builder->GetShape(m1).value(); int64_t size = 1; for (auto d : shape.dimensions()) { size *= d; } return ReduceAll(Abs(m1 - m2), ConstantR0WithType(builder, F32, 0), CreateScalarAddComputation(F32, builder)) / ConstantR0WithType(builder, F32, size); } Array2D<float> GenerateRandomMatrix(int xsize, int ysize) { Array2D<float> result{xsize, ysize, 0.0}; result.FillRandom(10 , 2 ); return result; } Array3D<float> batch_3d_4x5_; }; XLA_TEST_F(SVDTest, Simple2D) { XlaBuilder builder(TestName()); Array2D<float> simple_2d_4x4_ = Array2D<float>{ {4, 6, 8, 10}, {6, 45, 54, 63}, {8, 54, 146, 166}, {10, 63, 166, 310}, }; XlaOp a; auto a_data = CreateR2Parameter<float>(simple_2d_4x4_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-6); ComputeMatmulUDVT(result, &builder); ComputeAndCompareR2<float>(&builder, simple_2d_4x4_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Test_VWVt_EQ_A_2x4x5) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); ComputeMatmulUDVT(result, &builder); ComputeAndCompareR3<float>(&builder, batch_3d_4x5_, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Test_Orthogonality_U) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); ComputeMatmulUDVT(result, &builder); BatchDot(result.u, TransposeInMinorDims(result.u)); ComputeAndCompareR3<float>(&builder, GetUnitMatrix3D(2, 4), {a_data.get()}, ErrorSpec(1e-2, 1e-2)); } XLA_TEST_F(SVDTest, Test_Orthogonality_V) { XlaBuilder builder(TestName()); XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); BatchDot(result.v, TransposeInMinorDims(result.v), PrecisionConfig::HIGHEST); ComputeAndCompareR3<float>(&builder, GetUnitMatrix3D(2, 5), {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, TestSingleValuesMatchNumpy) { XlaBuilder builder(TestName()); auto singular_values = Array2D<float>{ {431.05153007, 49.88334164, 20.94464584, 3.24845468}, {179.73128591, 68.05162245, 21.77679503, 13.94319712}, }; XlaOp a; auto a_data = CreateR3Parameter<float>(batch_3d_4x5_, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-8); Add(result.d, ZerosLike(result.d)); ComputeAndCompareR2<float>(&builder, singular_values, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_INTERPRETER(Various_Size_Random_Matrix_512x128)) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(512, 128); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Various_Size_Random_Matrix_128x256) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(128, 256); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, Various_Size_Random_Matrix_256x128) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(256, 128); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_INTERPRETER(Various_Size_Random_Matrix_128x512)) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(128, 512); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_CPU(DISABLED_ON_INTERPRETER( Various_Size_Random_Matrix_512x256))) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(512, 256); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } XLA_TEST_F(SVDTest, DISABLED_ON_GPU(DISABLED_ON_CPU(DISABLED_ON_INTERPRETER( Various_Size_Random_Matrix_512x512)))) { XlaBuilder builder(TestName()); Array2D<float> a_val = GenerateRandomMatrix(512, 512); XlaOp a; auto a_data = CreateR2Parameter<float>(a_val, 0, "a", &builder, &a); auto result = SVD(a, 100, 1e-4); GetAverageAbsoluteError(ComputeMatmulUDVT(result, &builder), a, &builder); ComputeAndCompareR0<float>(&builder, 1e-3, {a_data.get()}, ErrorSpec(1e-3, 1e-3)); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/svd.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/hlo/builder/lib/svd_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
716754ad-2df8-41c0-9550-49ab9b1acfa3
cpp
google/quiche
quic_header_list
quiche/quic/core/http/quic_header_list.cc
quiche/quic/core/http/quic_header_list_test.cc
#include "quiche/quic/core/http/quic_header_list.h" #include <limits> #include <string> #include "absl/strings/string_view.h" #include "quiche/quic/core/qpack/qpack_header_table.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/platform/api/quic_flags.h" namespace quic { void QuicHeaderList::OnHeader(absl::string_view name, absl::string_view value) { header_list_.emplace_back(std::string(name), std::string(value)); } void QuicHeaderList::OnHeaderBlockEnd(size_t uncompressed_header_bytes, size_t compressed_header_bytes) { uncompressed_header_bytes_ = uncompressed_header_bytes; compressed_header_bytes_ = compressed_header_bytes; } void QuicHeaderList::Clear() { header_list_.clear(); uncompressed_header_bytes_ = 0; compressed_header_bytes_ = 0; } std::string QuicHeaderList::DebugString() const { std::string s = "{ "; for (const auto& p : *this) { s.append(p.first + "=" + p.second + ", "); } s.append("}"); return s; } }
#include "quiche/quic/core/http/quic_header_list.h" #include <string> #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" using ::testing::ElementsAre; using ::testing::Pair; namespace quic::test { class QuicHeaderListTest : public QuicTest {}; TEST_F(QuicHeaderListTest, OnHeader) { QuicHeaderList headers; headers.OnHeader("foo", "bar"); headers.OnHeader("april", "fools"); headers.OnHeader("beep", ""); EXPECT_THAT(headers, ElementsAre(Pair("foo", "bar"), Pair("april", "fools"), Pair("beep", ""))); } TEST_F(QuicHeaderListTest, DebugString) { QuicHeaderList headers; headers.OnHeader("foo", "bar"); headers.OnHeader("april", "fools"); headers.OnHeader("beep", ""); EXPECT_EQ("{ foo=bar, april=fools, beep=, }", headers.DebugString()); } TEST_F(QuicHeaderListTest, IsCopyableAndAssignable) { QuicHeaderList headers; headers.OnHeader("foo", "bar"); headers.OnHeader("april", "fools"); headers.OnHeader("beep", ""); QuicHeaderList headers2(headers); QuicHeaderList headers3 = headers; EXPECT_THAT(headers2, ElementsAre(Pair("foo", "bar"), Pair("april", "fools"), Pair("beep", ""))); EXPECT_THAT(headers3, ElementsAre(Pair("foo", "bar"), Pair("april", "fools"), Pair("beep", ""))); } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/quic_header_list.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/http/quic_header_list_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
f811e098-b9eb-4721-a5ef-a33f172b9062
cpp
tensorflow/tensorflow
basic_rnn
tensorflow/lite/kernels/basic_rnn.cc
tensorflow/lite/kernels/basic_rnn_test.cc
#include <cstddef> #include <cstdint> #include "tensorflow/lite/core/c/builtin_op_data.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/kernel_utils.h" #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace builtin { namespace rnn { namespace { struct OpData { int scratch_tensor_index; bool compute_row_sums = false; }; } constexpr int kInputTensor = 0; constexpr int kWeightsTensor = 1; constexpr int kRecurrentWeightsTensor = 2; constexpr int kBiasTensor = 3; constexpr int kHiddenStateTensor = 4; constexpr int kOutputTensor = 0; void* Init(TfLiteContext* context, const char* buffer, size_t length) { auto* op_data = new OpData(); context->AddTensors(context, 6, &op_data->scratch_tensor_index); return op_data; } void Free(TfLiteContext* context, void* buffer) { delete reinterpret_cast<OpData*>(buffer); } TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, node->inputs->size, 5); TF_LITE_ENSURE_EQ(context, node->outputs->size, 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* input_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kWeightsTensor, &input_weights)); const TfLiteTensor* recurrent_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kRecurrentWeightsTensor, &recurrent_weights)); const TfLiteTensor* bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBiasTensor, &bias)); const TfLiteTensor* hidden_state; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kHiddenStateTensor, &hidden_state)); const int batch_size = input->dims->data[0]; const int num_units = input_weights->dims->data[0]; TF_LITE_ENSURE_EQ(context, input->dims->data[1], input_weights->dims->data[1]); TF_LITE_ENSURE_EQ(context, input_weights->dims->data[0], bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, recurrent_weights->dims->data[0], bias->dims->data[0]); TF_LITE_ENSURE_EQ(context, recurrent_weights->dims->data[1], bias->dims->data[0]); TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32); TF_LITE_ENSURE_TYPES_EQ(context, input_weights->type, recurrent_weights->type); TF_LITE_ENSURE_EQ(context, NumDimensions(hidden_state), 2); TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[0], batch_size); TF_LITE_ENSURE_EQ(context, hidden_state->dims->data[1], num_units); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TfLiteIntArray* output_size_array = TfLiteIntArrayCreate(2); output_size_array->data[0] = batch_size; output_size_array->data[1] = num_units; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, output, output_size_array)); const bool is_hybrid = IsHybridOp(input, input_weights); if (is_hybrid) { auto* op_data = reinterpret_cast<OpData*>(node->user_data); op_data->compute_row_sums = true; TfLiteIntArrayFree(node->temporaries); node->temporaries = TfLiteIntArrayCreate(6); node->temporaries->data[0] = op_data->scratch_tensor_index; TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 0, &input_quantized)); input_quantized->type = input_weights->type; input_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(input_quantized->dims, input->dims)) { TfLiteIntArray* input_quantized_size = TfLiteIntArrayCopy(input->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, input_quantized, input_quantized_size)); } node->temporaries->data[1] = op_data->scratch_tensor_index + 1; TfLiteTensor* hidden_state_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 1, &hidden_state_quantized)); hidden_state_quantized->type = input_weights->type; hidden_state_quantized->allocation_type = kTfLiteArenaRw; if (!TfLiteIntArrayEqual(hidden_state_quantized->dims, hidden_state->dims)) { TfLiteIntArray* hidden_state_quantized_size = TfLiteIntArrayCopy(hidden_state->dims); TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, hidden_state_quantized, hidden_state_quantized_size)); } node->temporaries->data[2] = op_data->scratch_tensor_index + 2; TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &scaling_factors)); scaling_factors->type = kTfLiteFloat32; scaling_factors->allocation_type = kTfLiteArenaRw; int scaling_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(scaling_factors->dims, 1, scaling_dims)) { TfLiteIntArray* scaling_factors_size = TfLiteIntArrayCreate(1); scaling_factors_size->data[0] = batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, scaling_factors, scaling_factors_size)); } node->temporaries->data[3] = op_data->scratch_tensor_index + 3; TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 3, &accum_scratch)); accum_scratch->type = kTfLiteInt32; accum_scratch->allocation_type = kTfLiteArenaRw; int accum_scratch_dims[2] = {num_units, batch_size}; if (!TfLiteIntArrayEqualsArray(accum_scratch->dims, 2, accum_scratch_dims)) { TfLiteIntArray* accum_scratch_size = TfLiteIntArrayCreate(2); accum_scratch_size->data[0] = accum_scratch_dims[0]; accum_scratch_size->data[1] = accum_scratch_dims[1]; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, accum_scratch, accum_scratch_size)); } node->temporaries->data[4] = op_data->scratch_tensor_index + 4; TfLiteTensor* zero_points; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 4, &zero_points)); zero_points->type = kTfLiteInt32; zero_points->allocation_type = kTfLiteArenaRw; int zero_points_dims[1] = {batch_size}; if (!TfLiteIntArrayEqualsArray(zero_points->dims, 1, zero_points_dims)) { TfLiteIntArray* zero_points_size = TfLiteIntArrayCreate(1); zero_points_size->data[0] = batch_size; TF_LITE_ENSURE_OK(context, context->ResizeTensor(context, zero_points, zero_points_size)); } node->temporaries->data[5] = op_data->scratch_tensor_index + 5; TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 5, &row_sums)); row_sums->type = kTfLiteInt32; row_sums->name = "Rnn_row_sums"; row_sums->allocation_type = kTfLiteArenaRwPersistent; int row_sums_dims[2] = {2, num_units}; if (!TfLiteIntArrayEqualsArray(row_sums->dims, 2, row_sums_dims)) { TfLiteIntArray* row_sums_size = TfLiteIntArrayCreate(2); row_sums_size->data[0] = row_sums_dims[0]; row_sums_size->data[1] = row_sums_dims[1]; TF_LITE_ENSURE_OK( context, context->ResizeTensor(context, row_sums, row_sums_size)); } } return kTfLiteOk; } TfLiteStatus EvalFloat(const TfLiteTensor* input, const TfLiteTensor* input_weights, const TfLiteTensor* recurrent_weights, const TfLiteTensor* bias, const TfLiteRNNParams* params, TfLiteTensor* hidden_state, TfLiteTensor* output) { const int batch_size = input->dims->data[0]; const int num_units = input_weights->dims->data[0]; const int input_size = input->dims->data[1]; const int output_batch_leading_dim = output->dims->data[output->dims->size - 1]; float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state); const float* input_ptr_batch = GetTensorData<float>(input); float* output_ptr_batch = GetTensorData<float>(output); const float* input_weights_ptr = GetTensorData<float>(input_weights); const float* recurrent_weights_ptr = GetTensorData<float>(recurrent_weights); const float* bias_ptr = GetTensorData<float>(bias); kernel_utils::RnnBatchStep( input_ptr_batch, input_weights_ptr, recurrent_weights_ptr, bias_ptr, input_size, num_units, batch_size, output_batch_leading_dim, params->activation, hidden_state_ptr_batch, output_ptr_batch); return kTfLiteOk; } TfLiteStatus EvalHybrid(const TfLiteTensor* input, const TfLiteTensor* input_weights, const TfLiteTensor* recurrent_weights, const TfLiteTensor* bias, const TfLiteRNNParams* params, TfLiteTensor* input_scratch, TfLiteTensor* hidden_state_scratch, TfLiteTensor* scaling_factors, TfLiteTensor* hidden_state, TfLiteTensor* output, TfLiteTensor* zero_points, TfLiteTensor* accum_scratch, TfLiteTensor* row_sums, bool* compute_row_sums) { const int batch_size = input->dims->data[0]; const int num_units = input_weights->dims->data[0]; const int input_size = input->dims->data[1]; const int output_batch_leading_dim = output->dims->data[output->dims->size - 1]; float* hidden_state_ptr_batch = GetTensorData<float>(hidden_state); const float* input_ptr_batch = GetTensorData<float>(input); float* output_ptr_batch = GetTensorData<float>(output); const int8_t* input_weights_ptr = GetTensorData<int8_t>(input_weights); const int8_t* recurrent_weights_ptr = GetTensorData<int8_t>(recurrent_weights); const float* bias_ptr = GetTensorData<float>(bias); float input_weights_scale = input_weights->params.scale; float recurrent_weights_scale = recurrent_weights->params.scale; int8_t* quantized_input_ptr = GetTensorData<int8_t>(input_scratch); int8_t* quantized_hidden_state_ptr = GetTensorData<int8_t>(hidden_state_scratch); float* scaling_factors_ptr = GetTensorData<float>(scaling_factors); int32_t* accum_scratch_ptr = GetTensorData<int32_t>(accum_scratch); int32_t* zero_points_ptr = nullptr; int32_t* row_sums_ptr = nullptr; if (params->asymmetric_quantize_inputs) { zero_points_ptr = GetTensorData<int32_t>(zero_points); row_sums_ptr = GetTensorData<int32_t>(row_sums); } kernel_utils::RnnBatchStep( input_ptr_batch, input_weights_ptr, input_weights_scale, recurrent_weights_ptr, recurrent_weights_scale, bias_ptr, input_size, num_units, batch_size, output_batch_leading_dim, params->activation, quantized_input_ptr, quantized_hidden_state_ptr, scaling_factors_ptr, hidden_state_ptr_batch, output_ptr_batch, params->asymmetric_quantize_inputs, zero_points_ptr, accum_scratch_ptr, row_sums_ptr, compute_row_sums); return kTfLiteOk; } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { auto* params = reinterpret_cast<TfLiteRNNParams*>(node->builtin_data); auto* op_data = reinterpret_cast<OpData*>(node->user_data); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* input_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kWeightsTensor, &input_weights)); const TfLiteTensor* recurrent_weights; TF_LITE_ENSURE_OK( context, GetInputSafe(context, node, kRecurrentWeightsTensor, &recurrent_weights)); const TfLiteTensor* bias; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kBiasTensor, &bias)); TfLiteTensor* hidden_state = GetVariableInput(context, node, kHiddenStateTensor); TF_LITE_ENSURE(context, hidden_state != nullptr); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (input_weights->type) { case kTfLiteFloat32: return EvalFloat(input, input_weights, recurrent_weights, bias, params, hidden_state, output); case kTfLiteUInt8: case kTfLiteInt8: { TfLiteTensor* input_quantized; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 0, &input_quantized)); TfLiteTensor* hidden_state_quantized; TF_LITE_ENSURE_OK( context, GetTemporarySafe(context, node, 1, &hidden_state_quantized)); TfLiteTensor* scaling_factors; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 2, &scaling_factors)); TfLiteTensor* accum_scratch; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 3, &accum_scratch)); TfLiteTensor* zero_points; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 4, &zero_points)); TfLiteTensor* row_sums; TF_LITE_ENSURE_OK(context, GetTemporarySafe(context, node, 5, &row_sums)); return EvalHybrid(input, input_weights, recurrent_weights, bias, params, input_quantized, hidden_state_quantized, scaling_factors, hidden_state, output, zero_points, accum_scratch, row_sums, &op_data->compute_row_sums); } default: TF_LITE_KERNEL_LOG(context, "Type %s not currently supported.", TfLiteTypeGetName(input_weights->type)); return kTfLiteError; } } } TfLiteRegistration* Register_RNN() { static TfLiteRegistration r = {rnn::Init, rnn::Free, rnn::Prepare, rnn::Eval}; return &r; } } } }
#include <initializer_list> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "flatbuffers/flatbuffers.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace { using ::testing::ElementsAreArray; static float rnn_input[] = { 0.23689353, 0.285385, 0.037029743, -0.19858193, -0.27569133, 0.43773448, 0.60379338, 0.35562468, -0.69424844, -0.93421471, -0.87287879, 0.37144363, -0.62476718, 0.23791671, 0.40060222, 0.1356622, -0.99774903, -0.98858172, -0.38952237, -0.47685933, 0.31073618, 0.71511042, -0.63767755, -0.31729108, 0.33468103, 0.75801885, 0.30660987, -0.37354088, 0.77002847, -0.62747043, -0.68572164, 0.0069220066, 0.65791464, 0.35130811, 0.80834007, -0.61777675, -0.21095741, 0.41213346, 0.73784804, 0.094794154, 0.47791874, 0.86496925, -0.53376222, 0.85315156, 0.10288584, 0.86684, -0.011186242, 0.10513687, 0.87825835, 0.59929144, 0.62827742, 0.18899453, 0.31440187, 0.99059987, 0.87170351, -0.35091716, 0.74861872, 0.17831337, 0.2755419, 0.51864719, 0.55084288, 0.58982027, -0.47443086, 0.20875752, -0.058871567, -0.66609079, 0.59098077, 0.73017097, 0.74604273, 0.32882881, -0.17503482, 0.22396147, 0.19379807, 0.29120302, 0.077113032, -0.70331609, 0.15804303, -0.93407321, 0.40182066, 0.036301374, 0.66521823, 0.0300982, -0.7747041, -0.02038002, 0.020698071, -0.90300065, 0.62870288, -0.23068321, 0.27531278, -0.095755219, -0.712036, -0.17384434, -0.50593495, -0.18646687, -0.96508682, 0.43519354, 0.14744234, 0.62589407, 0.1653645, -0.10651493, -0.045277178, 0.99032974, -0.88255352, -0.85147917, 0.28153265, 0.19455957, -0.55479527, -0.56042433, 0.26048636, 0.84702539, 0.47587705, -0.074295521, -0.12287641, 0.70117295, 0.90532446, 0.89782166, 0.79817224, 0.53402734, -0.33286154, 0.073485017, -0.56172788, -0.044897556, 0.89964068, -0.067662835, 0.76863563, 0.93455386, -0.6324693, -0.083922029}; static float rnn_golden_output[] = { 0.496726, 0, 0.965996, 0, 0.0584254, 0, 0, 0.12315, 0, 0, 0.612266, 0.456601, 0, 0.52286, 1.16099, 0.0291232, 0, 0, 0.524901, 0, 0, 0, 0, 1.02116, 0, 1.35762, 0, 0.356909, 0.436415, 0.0355727, 0, 0, 0, 0, 0, 0.262335, 0, 0, 0, 1.33992, 0, 2.9739, 0, 0, 1.31914, 2.66147, 0, 0, 0.942568, 0, 0, 0, 0.025507, 0, 0, 0, 0.321429, 0.569141, 1.25274, 1.57719, 0.8158, 1.21805, 0.586239, 0.25427, 1.04436, 0, 0.630725, 0, 0.133801, 0.210693, 0.363026, 0, 0.533426, 0, 1.25926, 0.722707, 0, 1.22031, 1.30117, 0.495867, 0.222187, 0, 0.72725, 0, 0.767003, 0, 0, 0.147835, 0, 0, 0, 0.608758, 0.469394, 0.00720298, 0.927537, 0, 0.856974, 0.424257, 0, 0, 0.937329, 0, 0, 0, 0.476425, 0, 0.566017, 0.418462, 0.141911, 0.996214, 1.13063, 0, 0.967899, 0, 0, 0, 0.0831304, 0, 0, 1.00378, 0, 0, 0, 1.44818, 1.01768, 0.943891, 0.502745, 0, 0.940135, 0, 0, 0, 0, 0, 0, 2.13243, 0, 0.71208, 0.123918, 1.53907, 1.30225, 1.59644, 0.70222, 0, 0.804329, 0, 0.430576, 0, 0.505872, 0.509603, 0.343448, 0, 0.107756, 0.614544, 1.44549, 1.52311, 0.0454298, 0.300267, 0.562784, 0.395095, 0.228154, 0, 0.675323, 0, 1.70536, 0.766217, 0, 0, 0, 0.735363, 0.0759267, 1.91017, 0.941888, 0, 0, 0, 0, 0, 1.5909, 0, 0, 0, 0, 0.5755, 0, 0.184687, 0, 1.56296, 0.625285, 0, 0, 0, 0, 0, 0.0857888, 0, 0, 0, 0, 0.488383, 0.252786, 0, 0, 0, 1.02817, 1.85665, 0, 0, 0.00981836, 0, 1.06371, 0, 0, 0, 0, 0, 0, 0.290445, 0.316406, 0, 0.304161, 1.25079, 0.0707152, 0, 0.986264, 0.309201, 0, 0, 0, 0, 0, 1.64896, 0.346248, 0, 0.918175, 0.78884, 0.524981, 1.92076, 2.07013, 0.333244, 0.415153, 0.210318, 0, 0, 0, 0, 0, 2.02616, 0, 0.728256, 0.84183, 0.0907453, 0.628881, 3.58099, 1.49974, 0}; static std::initializer_list<float> rnn_weights = { 0.461459, 0.153381, 0.529743, -0.00371218, 0.676267, -0.211346, 0.317493, 0.969689, -0.343251, 0.186423, 0.398151, 0.152399, 0.448504, 0.317662, 0.523556, -0.323514, 0.480877, 0.333113, -0.757714, -0.674487, -0.643585, 0.217766, -0.0251462, 0.79512, -0.595574, -0.422444, 0.371572, -0.452178, -0.556069, -0.482188, -0.685456, -0.727851, 0.841829, 0.551535, -0.232336, 0.729158, -0.00294906, -0.69754, 0.766073, -0.178424, 0.369513, -0.423241, 0.548547, -0.0152023, -0.757482, -0.85491, 0.251331, -0.989183, 0.306261, -0.340716, 0.886103, -0.0726757, -0.723523, -0.784303, 0.0354295, 0.566564, -0.485469, -0.620498, 0.832546, 0.697884, -0.279115, 0.294415, -0.584313, 0.548772, 0.0648819, 0.968726, 0.723834, -0.0080452, -0.350386, -0.272803, 0.115121, -0.412644, -0.824713, -0.992843, -0.592904, -0.417893, 0.863791, -0.423461, -0.147601, -0.770664, -0.479006, 0.654782, 0.587314, -0.639158, 0.816969, -0.337228, 0.659878, 0.73107, 0.754768, -0.337042, 0.0960841, 0.368357, 0.244191, -0.817703, -0.211223, 0.442012, 0.37225, -0.623598, -0.405423, 0.455101, 0.673656, -0.145345, -0.511346, -0.901675, -0.81252, -0.127006, 0.809865, -0.721884, 0.636255, 0.868989, -0.347973, -0.10179, -0.777449, 0.917274, 0.819286, 0.206218, -0.00785118, 0.167141, 0.45872, 0.972934, -0.276798, 0.837861, 0.747958, -0.0151566, -0.330057, -0.469077, 0.277308, 0.415818}; static std::initializer_list<float> rnn_recurrent_weights = { 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1}; static std::initializer_list<float> rnn_bias = { 0.065691948, -0.69055247, 0.1107955, -0.97084129, -0.23957068, -0.23566568, -0.389184, 0.47481549, -0.4791103, 0.29931796, 0.10463274, 0.83918178, 0.37197268, 0.61957061, 0.3956964, -0.37609905}; class RNNOpModel : public SingleOpModel { public: RNNOpModel(int batches, int units, int size, const TensorType& weights = TensorType_FLOAT32, const TensorType& recurrent_weights = TensorType_FLOAT32, bool asymmetric_quantize_inputs = false) : batches_(batches), units_(units), input_size_(size) { input_ = AddInput(TensorType_FLOAT32); weights_ = AddInput(weights); recurrent_weights_ = AddInput(recurrent_weights); bias_ = AddInput(TensorType_FLOAT32); hidden_state_ = AddVariableInput(TensorType_FLOAT32); output_ = AddOutput(TensorType_FLOAT32); SetBuiltinOp(BuiltinOperator_RNN, BuiltinOptions_RNNOptions, CreateRNNOptions(builder_, ActivationFunctionType_RELU, asymmetric_quantize_inputs) .Union()); BuildInterpreter({{batches_, input_size_}, {units_, input_size_}, {units_, units_}, {units_}, {batches_, units_}}); } void SetBias(std::initializer_list<float> f) { PopulateTensor(bias_, f); } void SetWeights(std::initializer_list<float> f) { PopulateTensor(weights_, f); } void SetRecurrentWeights(std::initializer_list<float> f) { PopulateTensor(recurrent_weights_, f); } void SetInput(std::initializer_list<float> data) { PopulateTensor(input_, data); } void SetInput(int offset, float* begin, float* end) { PopulateTensor(input_, offset, begin, end); } std::vector<float> GetOutput() { return ExtractVector<float>(output_); } int input_size() { return input_size_; } int num_units() { return units_; } int num_batches() { return batches_; } protected: int input_; int weights_; int recurrent_weights_; int bias_; int hidden_state_; int output_; int batches_; int units_; int input_size_; }; class HybridRNNOpModel : public RNNOpModel { public: HybridRNNOpModel(int batches, int units, int size, TensorType tensor_type, bool asymmetric_quantize_inputs) : RNNOpModel(batches, units, size, tensor_type, tensor_type, asymmetric_quantize_inputs) { tensor_type_ = tensor_type; } TensorType tensor_type_; void SetWeights(int weights_idx, const std::vector<float>& f) { if (tensor_type_ == TensorType_UINT8) { SymmetricQuantizeAndPopulate(weights_idx, f); } else { SignedSymmetricQuantizeAndPopulate(weights_idx, f); } } void SetWeights(std::initializer_list<float> f) { SetWeights(weights_, f); } void SetRecurrentWeights(std::initializer_list<float> f) { SetWeights(recurrent_weights_, f); } }; TEST(RnnOpTest, BlackBoxTest) { RNNOpModel rnn(2, 16, 8); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = sizeof(rnn_input) / sizeof(float) / (rnn.input_size() * rnn.num_batches()); for (int i = 0; i < input_sequence_size; i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(rnn.input_size(), batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_start = rnn_golden_output + i * rnn.num_units(); float* golden_end = golden_start + rnn.num_units(); std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear(expected))); } } class HybridRnnOpTest : public ::testing::TestWithParam<bool> {}; TEST_P(HybridRnnOpTest, BlackBoxTestUint8) { HybridRNNOpModel rnn(2, 16, 8, TensorType_UINT8, GetParam()); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = sizeof(rnn_input) / sizeof(float) / (rnn.input_size() * rnn.num_batches()); for (int i = 0; i < input_sequence_size; i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(rnn.input_size(), batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_start = rnn_golden_output + i * rnn.num_units(); float* golden_end = golden_start + rnn.num_units(); std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, 0.0104))); } } TEST_P(HybridRnnOpTest, BlackBoxTestInt8) { HybridRNNOpModel rnn(2, 16, 8, TensorType_INT8, GetParam()); rnn.SetWeights(rnn_weights); rnn.SetBias(rnn_bias); rnn.SetRecurrentWeights(rnn_recurrent_weights); const int input_sequence_size = sizeof(rnn_input) / sizeof(float) / (rnn.input_size() * rnn.num_batches()); for (int i = 0; i < input_sequence_size; i++) { float* batch_start = rnn_input + i * rnn.input_size(); float* batch_end = batch_start + rnn.input_size(); rnn.SetInput(0, batch_start, batch_end); rnn.SetInput(rnn.input_size(), batch_start, batch_end); ASSERT_EQ(rnn.Invoke(), kTfLiteOk); float* golden_start = rnn_golden_output + i * rnn.num_units(); float* golden_end = golden_start + rnn.num_units(); std::vector<float> expected; expected.insert(expected.end(), golden_start, golden_end); expected.insert(expected.end(), golden_start, golden_end); EXPECT_THAT(rnn.GetOutput(), ElementsAreArray(ArrayFloatNear( expected, 0.0104))); } } INSTANTIATE_TEST_SUITE_P(HybridRnnOpTest, HybridRnnOpTest, ::testing::ValuesIn({false, true})); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/basic_rnn.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/basic_rnn_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ae917258-0a9b-4bd7-b025-c4d9b3ac9c98
cpp
tensorflow/tensorflow
ifrt_serving_core_selector
tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.cc
tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector_test.cc
#include "tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.h" #include <cstdint> #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "xla/tsl/framework/serving_device_selector.h" namespace tensorflow { namespace ifrt_serving { IfrtServingCoreSelector::IfrtServingCoreSelector( tsl::ServingDeviceSelector* device_selector, int num_cores) : device_selector_(device_selector), num_cores_(num_cores) {} tsl::DeviceReservation IfrtServingCoreSelector::ReserveDevice( int64_t program_id) { absl::MutexLock lock(&mu_); int64_t run_count = run_counter_[program_id]++; if (run_count < num_cores_) { return tsl::DeviceReservation(run_count, nullptr); } return device_selector_->ReserveDevice(absl::StrCat(program_id)); } } }
#include "tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.h" #include <cstdint> #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "xla/tsl/framework/serving_device_selector.h" #include "xla/tsl/framework/test_util/mock_serving_device_selector.h" namespace tensorflow { namespace ifrt_serving { namespace { class IfrtServingCoreSelectorTest : public ::testing::Test { protected: explicit IfrtServingCoreSelectorTest() { core_selector_ = std::make_unique<IfrtServingCoreSelector>( &serving_device_selector_, num_cores_); } tsl::test_util::MockServingDeviceSelector serving_device_selector_; std::unique_ptr<IfrtServingCoreSelector> core_selector_; int num_cores_ = 2; }; TEST_F(IfrtServingCoreSelectorTest, ReservedDevicesReturns) { int64_t program_id1 = 111111; EXPECT_CALL(serving_device_selector_, ReserveDevice(absl::StrCat(program_id1))) .WillOnce([this](::testing::Unused) { return tsl::DeviceReservation(0, &serving_device_selector_); }); for (int i = 0; i < num_cores_; ++i) { EXPECT_THAT(core_selector_->ReserveDevice(program_id1).device_index(), i); } tsl::DeviceReservation reservation = core_selector_->ReserveDevice(program_id1); EXPECT_THAT(reservation.device_index(), 0); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
72404f3d-ecd2-4b7c-a0d4-46a6e8782029
cpp
google/cel-cpp
proto_message_type_adapter
eval/public/structs/proto_message_type_adapter.cc
eval/public/structs/proto_message_type_adapter_test.cc
#include "eval/public/structs/proto_message_type_adapter.h" #include <cstdint> #include <limits> #include <string> #include <utility> #include <vector> #include "google/protobuf/util/message_differencer.h" #include "absl/base/no_destructor.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/strings/substitute.h" #include "absl/types/optional.h" #include "absl/types/span.h" #include "base/attribute.h" #include "common/memory.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "eval/public/containers/internal_field_backed_list_impl.h" #include "eval/public/containers/internal_field_backed_map_impl.h" #include "eval/public/message_wrapper.h" #include "eval/public/structs/cel_proto_wrap_util.h" #include "eval/public/structs/field_access_impl.h" #include "eval/public/structs/legacy_type_adapter.h" #include "eval/public/structs/legacy_type_info_apis.h" #include "extensions/protobuf/internal/qualify.h" #include "extensions/protobuf/memory_manager.h" #include "internal/casts.h" #include "internal/status_macros.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/map_field.h" #include "google/protobuf/message.h" namespace google::api::expr::runtime { namespace { using ::cel::extensions::ProtoMemoryManagerArena; using ::cel::extensions::ProtoMemoryManagerRef; using ::google::protobuf::FieldDescriptor; using ::google::protobuf::Message; using ::google::protobuf::Reflection; using LegacyQualifyResult = LegacyTypeAccessApis::LegacyQualifyResult; const std::string& UnsupportedTypeName() { static absl::NoDestructor<std::string> kUnsupportedTypeName( "<unknown message>"); return *kUnsupportedTypeName; } CelValue MessageCelValueFactory(const google::protobuf::Message* message); inline absl::StatusOr<const google::protobuf::Message*> UnwrapMessage( const MessageWrapper& value, absl::string_view op) { if (!value.HasFullProto() || value.message_ptr() == nullptr) { return absl::InternalError( absl::StrCat(op, " called on non-message type.")); } return static_cast<const google::protobuf::Message*>(value.message_ptr()); } inline absl::StatusOr<google::protobuf::Message*> UnwrapMessage( const MessageWrapper::Builder& value, absl::string_view op) { if (!value.HasFullProto() || value.message_ptr() == nullptr) { return absl::InternalError( absl::StrCat(op, " called on non-message type.")); } return static_cast<google::protobuf::Message*>(value.message_ptr()); } bool ProtoEquals(const google::protobuf::Message& m1, const google::protobuf::Message& m2) { if (m1.GetDescriptor() != m2.GetDescriptor()) { return false; } return google::protobuf::util::MessageDifferencer::Equals(m1, m2); } bool CelFieldIsPresent(const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* field_desc, const google::protobuf::Reflection* reflection) { if (field_desc->is_map()) { return reflection->FieldSize(*message, field_desc) != 0; } if (field_desc->is_repeated()) { return reflection->FieldSize(*message, field_desc) != 0; } return reflection->HasField(*message, field_desc); } absl::StatusOr<bool> HasFieldImpl(const google::protobuf::Message* message, const google::protobuf::Descriptor* descriptor, absl::string_view field_name) { ABSL_ASSERT(descriptor == message->GetDescriptor()); const Reflection* reflection = message->GetReflection(); const FieldDescriptor* field_desc = descriptor->FindFieldByName(field_name); if (field_desc == nullptr && reflection != nullptr) { field_desc = reflection->FindKnownExtensionByName(field_name); } if (field_desc == nullptr) { return absl::NotFoundError(absl::StrCat("no_such_field : ", field_name)); } if (reflection == nullptr) { return absl::FailedPreconditionError( "google::protobuf::Reflection unavailble in CEL field access."); } return CelFieldIsPresent(message, field_desc, reflection); } absl::StatusOr<CelValue> CreateCelValueFromField( const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* field_desc, ProtoWrapperTypeOptions unboxing_option, google::protobuf::Arena* arena) { if (field_desc->is_map()) { auto* map = google::protobuf::Arena::Create<internal::FieldBackedMapImpl>( arena, message, field_desc, &MessageCelValueFactory, arena); return CelValue::CreateMap(map); } if (field_desc->is_repeated()) { auto* list = google::protobuf::Arena::Create<internal::FieldBackedListImpl>( arena, message, field_desc, &MessageCelValueFactory, arena); return CelValue::CreateList(list); } CEL_ASSIGN_OR_RETURN( CelValue result, internal::CreateValueFromSingleField(message, field_desc, unboxing_option, &MessageCelValueFactory, arena)); return result; } absl::StatusOr<CelValue> GetFieldImpl(const google::protobuf::Message* message, const google::protobuf::Descriptor* descriptor, absl::string_view field_name, ProtoWrapperTypeOptions unboxing_option, cel::MemoryManagerRef memory_manager) { ABSL_ASSERT(descriptor == message->GetDescriptor()); const Reflection* reflection = message->GetReflection(); const FieldDescriptor* field_desc = descriptor->FindFieldByName(field_name); if (field_desc == nullptr && reflection != nullptr) { std::string ext_name(field_name); field_desc = reflection->FindKnownExtensionByName(ext_name); } if (field_desc == nullptr) { return CreateNoSuchFieldError(memory_manager, field_name); } google::protobuf::Arena* arena = ProtoMemoryManagerArena(memory_manager); return CreateCelValueFromField(message, field_desc, unboxing_option, arena); } class LegacyQualifyState final : public cel::extensions::protobuf_internal::ProtoQualifyState { public: using ProtoQualifyState::ProtoQualifyState; LegacyQualifyState(const LegacyQualifyState&) = delete; LegacyQualifyState& operator=(const LegacyQualifyState&) = delete; absl::optional<CelValue>& result() { return result_; } private: void SetResultFromError(absl::Status status, cel::MemoryManagerRef memory_manager) override { result_ = CreateErrorValue(memory_manager, status); } void SetResultFromBool(bool value) override { result_ = CelValue::CreateBool(value); } absl::Status SetResultFromField( const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* field, ProtoWrapperTypeOptions unboxing_option, cel::MemoryManagerRef memory_manager) override { CEL_ASSIGN_OR_RETURN(result_, CreateCelValueFromField( message, field, unboxing_option, ProtoMemoryManagerArena(memory_manager))); return absl::OkStatus(); } absl::Status SetResultFromRepeatedField( const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* field, int index, cel::MemoryManagerRef memory_manager) override { CEL_ASSIGN_OR_RETURN(result_, internal::CreateValueFromRepeatedField( message, field, index, &MessageCelValueFactory, ProtoMemoryManagerArena(memory_manager))); return absl::OkStatus(); } absl::Status SetResultFromMapField( const google::protobuf::Message* message, const google::protobuf::FieldDescriptor* field, const google::protobuf::MapValueConstRef& value, cel::MemoryManagerRef memory_manager) override { CEL_ASSIGN_OR_RETURN(result_, internal::CreateValueFromMapValue( message, field, &value, &MessageCelValueFactory, ProtoMemoryManagerArena(memory_manager))); return absl::OkStatus(); } absl::optional<CelValue> result_; }; absl::StatusOr<LegacyQualifyResult> QualifyImpl( const google::protobuf::Message* message, const google::protobuf::Descriptor* descriptor, absl::Span<const cel::SelectQualifier> path, bool presence_test, cel::MemoryManagerRef memory_manager) { google::protobuf::Arena* arena = ProtoMemoryManagerArena(memory_manager); ABSL_DCHECK(descriptor == message->GetDescriptor()); LegacyQualifyState qualify_state(message, descriptor, message->GetReflection()); for (int i = 0; i < path.size() - 1; i++) { const auto& qualifier = path.at(i); CEL_RETURN_IF_ERROR(qualify_state.ApplySelectQualifier( qualifier, ProtoMemoryManagerRef(arena))); if (qualify_state.result().has_value()) { LegacyQualifyResult result; result.value = std::move(qualify_state.result()).value(); result.qualifier_count = result.value.IsError() ? -1 : i + 1; return result; } } const auto& last_qualifier = path.back(); LegacyQualifyResult result; result.qualifier_count = -1; if (presence_test) { CEL_RETURN_IF_ERROR(qualify_state.ApplyLastQualifierHas( last_qualifier, ProtoMemoryManagerRef(arena))); } else { CEL_RETURN_IF_ERROR(qualify_state.ApplyLastQualifierGet( last_qualifier, ProtoMemoryManagerRef(arena))); } result.value = *qualify_state.result(); return result; } std::vector<absl::string_view> ListFieldsImpl( const CelValue::MessageWrapper& instance) { if (instance.message_ptr() == nullptr) { return std::vector<absl::string_view>(); } ABSL_ASSERT(instance.HasFullProto()); const auto* message = static_cast<const google::protobuf::Message*>(instance.message_ptr()); const auto* reflect = message->GetReflection(); std::vector<const google::protobuf::FieldDescriptor*> fields; reflect->ListFields(*message, &fields); std::vector<absl::string_view> field_names; field_names.reserve(fields.size()); for (const auto* field : fields) { field_names.emplace_back(field->name()); } return field_names; } class DucktypedMessageAdapter : public LegacyTypeAccessApis, public LegacyTypeMutationApis, public LegacyTypeInfoApis { public: absl::StatusOr<bool> HasField( absl::string_view field_name, const CelValue::MessageWrapper& value) const override { CEL_ASSIGN_OR_RETURN(const google::protobuf::Message* message, UnwrapMessage(value, "HasField")); return HasFieldImpl(message, message->GetDescriptor(), field_name); } absl::StatusOr<CelValue> GetField( absl::string_view field_name, const CelValue::MessageWrapper& instance, ProtoWrapperTypeOptions unboxing_option, cel::MemoryManagerRef memory_manager) const override { CEL_ASSIGN_OR_RETURN(const google::protobuf::Message* message, UnwrapMessage(instance, "GetField")); return GetFieldImpl(message, message->GetDescriptor(), field_name, unboxing_option, memory_manager); } absl::StatusOr<LegacyTypeAccessApis::LegacyQualifyResult> Qualify( absl::Span<const cel::SelectQualifier> qualifiers, const CelValue::MessageWrapper& instance, bool presence_test, cel::MemoryManagerRef memory_manager) const override { CEL_ASSIGN_OR_RETURN(const google::protobuf::Message* message, UnwrapMessage(instance, "Qualify")); return QualifyImpl(message, message->GetDescriptor(), qualifiers, presence_test, memory_manager); } bool IsEqualTo( const CelValue::MessageWrapper& instance, const CelValue::MessageWrapper& other_instance) const override { absl::StatusOr<const google::protobuf::Message*> lhs = UnwrapMessage(instance, "IsEqualTo"); absl::StatusOr<const google::protobuf::Message*> rhs = UnwrapMessage(other_instance, "IsEqualTo"); if (!lhs.ok() || !rhs.ok()) { return false; } return ProtoEquals(**lhs, **rhs); } absl::string_view GetTypename( const MessageWrapper& wrapped_message) const override { if (!wrapped_message.HasFullProto() || wrapped_message.message_ptr() == nullptr) { return UnsupportedTypeName(); } auto* message = static_cast<const google::protobuf::Message*>(wrapped_message.message_ptr()); return message->GetDescriptor()->full_name(); } std::string DebugString( const MessageWrapper& wrapped_message) const override { if (!wrapped_message.HasFullProto() || wrapped_message.message_ptr() == nullptr) { return UnsupportedTypeName(); } auto* message = static_cast<const google::protobuf::Message*>(wrapped_message.message_ptr()); return message->ShortDebugString(); } bool DefinesField(absl::string_view field_name) const override { return true; } absl::StatusOr<CelValue::MessageWrapper::Builder> NewInstance( cel::MemoryManagerRef memory_manager) const override { return absl::UnimplementedError("NewInstance is not implemented"); } absl::StatusOr<CelValue> AdaptFromWellKnownType( cel::MemoryManagerRef memory_manager, CelValue::MessageWrapper::Builder instance) const override { if (!instance.HasFullProto() || instance.message_ptr() == nullptr) { return absl::UnimplementedError( "MessageLite is not supported, descriptor is required"); } return ProtoMessageTypeAdapter( static_cast<const google::protobuf::Message*>(instance.message_ptr()) ->GetDescriptor(), nullptr) .AdaptFromWellKnownType(memory_manager, instance); } absl::Status SetField( absl::string_view field_name, const CelValue& value, cel::MemoryManagerRef memory_manager, CelValue::MessageWrapper::Builder& instance) const override { if (!instance.HasFullProto() || instance.message_ptr() == nullptr) { return absl::UnimplementedError( "MessageLite is not supported, descriptor is required"); } return ProtoMessageTypeAdapter( static_cast<const google::protobuf::Message*>(instance.message_ptr()) ->GetDescriptor(), nullptr) .SetField(field_name, value, memory_manager, instance); } std::vector<absl::string_view> ListFields( const CelValue::MessageWrapper& instance) const override { return ListFieldsImpl(instance); } const LegacyTypeAccessApis* GetAccessApis( const MessageWrapper& wrapped_message) const override { return this; } const LegacyTypeMutationApis* GetMutationApis( const MessageWrapper& wrapped_message) const override { return this; } static const DucktypedMessageAdapter& GetSingleton() { static absl::NoDestructor<DucktypedMessageAdapter> instance; return *instance; } }; CelValue MessageCelValueFactory(const google::protobuf::Message* message) { return CelValue::CreateMessageWrapper( MessageWrapper(message, &DucktypedMessageAdapter::GetSingleton())); } } std::string ProtoMessageTypeAdapter::DebugString( const MessageWrapper& wrapped_message) const { if (!wrapped_message.HasFullProto() || wrapped_message.message_ptr() == nullptr) { return UnsupportedTypeName(); } auto* message = static_cast<const google::protobuf::Message*>(wrapped_message.message_ptr()); return message->ShortDebugString(); } absl::string_view ProtoMessageTypeAdapter::GetTypename( const MessageWrapper& wrapped_message) const { return descriptor_->full_name(); } const LegacyTypeMutationApis* ProtoMessageTypeAdapter::GetMutationApis( const MessageWrapper& wrapped_message) const { return this; } const LegacyTypeAccessApis* ProtoMessageTypeAdapter::GetAccessApis( const MessageWrapper& wrapped_message) const { return this; } absl::optional<LegacyTypeInfoApis::FieldDescription> ProtoMessageTypeAdapter::FindFieldByName(absl::string_view field_name) const { if (descriptor_ == nullptr) { return absl::nullopt; } const google::protobuf::FieldDescriptor* field_descriptor = descriptor_->FindFieldByName(field_name); if (field_descriptor == nullptr) { return absl::nullopt; } return LegacyTypeInfoApis::FieldDescription{field_descriptor->number(), field_descriptor->name()}; } absl::Status ProtoMessageTypeAdapter::ValidateSetFieldOp( bool assertion, absl::string_view field, absl::string_view detail) const { if (!assertion) { return absl::InvalidArgumentError( absl::Substitute("SetField failed on message $0, field '$1': $2", descriptor_->full_name(), field, detail)); } return absl::OkStatus(); } absl::StatusOr<CelValue::MessageWrapper::Builder> ProtoMessageTypeAdapter::NewInstance( cel::MemoryManagerRef memory_manager) const { if (message_factory_ == nullptr) { return absl::UnimplementedError( absl::StrCat("Cannot create message ", descriptor_->name())); } google::protobuf::Arena* arena = ProtoMemoryManagerArena(memory_manager); const Message* prototype = message_factory_->GetPrototype(descriptor_); Message* msg = (prototype != nullptr) ? prototype->New(arena) : nullptr; if (msg == nullptr) { return absl::InvalidArgumentError( absl::StrCat("Failed to create message ", descriptor_->name())); } return MessageWrapper::Builder(msg); } bool ProtoMessageTypeAdapter::DefinesField(absl::string_view field_name) const { return descriptor_->FindFieldByName(field_name) != nullptr; } absl::StatusOr<bool> ProtoMessageTypeAdapter::HasField( absl::string_view field_name, const CelValue::MessageWrapper& value) const { CEL_ASSIGN_OR_RETURN(const google::protobuf::Message* message, UnwrapMessage(value, "HasField")); return HasFieldImpl(message, descriptor_, field_name); } absl::StatusOr<CelValue> ProtoMessageTypeAdapter::GetField( absl::string_view field_name, const CelValue::MessageWrapper& instance, ProtoWrapperTypeOptions unboxing_option, cel::MemoryManagerRef memory_manager) const { CEL_ASSIGN_OR_RETURN(const google::protobuf::Message* message, UnwrapMessage(instance, "GetField")); return GetFieldImpl(message, descriptor_, field_name, unboxing_option, memory_manager); } absl::StatusOr<LegacyTypeAccessApis::LegacyQualifyResult> ProtoMessageTypeAdapter::Qualify( absl::Span<const cel::SelectQualifier> qualifiers, const CelValue::MessageWrapper& instance, bool presence_test, cel::MemoryManagerRef memory_manager) const { CEL_ASSIGN_OR_RETURN(const google::protobuf::Message* message, UnwrapMessage(instance, "Qualify")); return QualifyImpl(message, descriptor_, qualifiers, presence_test, memory_manager); } absl::Status ProtoMessageTypeAdapter::SetField( const google::protobuf::FieldDescriptor* field, const CelValue& value, google::protobuf::Arena* arena, google::protobuf::Message* message) const { if (field->is_map()) { constexpr int kKeyField = 1; constexpr int kValueField = 2; const CelMap* cel_map; CEL_RETURN_IF_ERROR(ValidateSetFieldOp( value.GetValue<const CelMap*>(&cel_map) && cel_map != nullptr, field->name(), "value is not CelMap")); auto entry_descriptor = field->message_type(); CEL_RETURN_IF_ERROR( ValidateSetFieldOp(entry_descriptor != nullptr, field->name(), "failed to find map entry descriptor")); auto key_field_descriptor = entry_descriptor->FindFieldByNumber(kKeyField); auto value_field_descriptor = entry_descriptor->FindFieldByNumber(kValueField); CEL_RETURN_IF_ERROR( ValidateSetFieldOp(key_field_descriptor != nullptr, field->name(), "failed to find key field descriptor")); CEL_RETURN_IF_ERROR( ValidateSetFieldOp(value_field_descriptor != nullptr, field->name(), "failed to find value field descriptor")); CEL_ASSIGN_OR_RETURN(const CelList* key_list, cel_map->ListKeys(arena)); for (int i = 0; i < key_list->size(); i++) { CelValue key = (*key_list).Get(arena, i); auto value = (*cel_map).Get(arena, key); CEL_RETURN_IF_ERROR(ValidateSetFieldOp(value.has_value(), field->name(), "error serializing CelMap")); Message* entry_msg = message->GetReflection()->AddMessage(message, field); CEL_RETURN_IF_ERROR(internal::SetValueToSingleField( key, key_field_descriptor, entry_msg, arena)); CEL_RETURN_IF_ERROR(internal::SetValueToSingleField( value.value(), value_field_descriptor, entry_msg, arena)); } } else if (field->is_repeated()) { const CelList* cel_list; CEL_RETURN_IF_ERROR(ValidateSetFieldOp( value.GetValue<const CelList*>(&cel_list) && cel_list != nullptr, field->name(), "expected CelList value")); for (int i = 0; i < cel_list->size(); i++) { CEL_RETURN_IF_ERROR(internal::AddValueToRepeatedField( (*cel_list).Get(arena, i), field, message, arena)); } } else { CEL_RETURN_IF_ERROR( internal::SetValueToSingleField(value, field, message, arena)); } return absl::OkStatus(); } absl::Status ProtoMessageTypeAdapter::SetField( absl::string_view field_name, const CelValue& value, cel::MemoryManagerRef memory_manager, CelValue::MessageWrapper::Builder& instance) const { google::protobuf::Arena* arena = cel::extensions::ProtoMemoryManagerArena(memory_manager); CEL_ASSIGN_OR_RETURN(google::protobuf::Message * mutable_message, UnwrapMessage(instance, "SetField")); const google::protobuf::FieldDescriptor* field_descriptor = descriptor_->FindFieldByName(field_name); CEL_RETURN_IF_ERROR( ValidateSetFieldOp(field_descriptor != nullptr, field_name, "not found")); return SetField(field_descriptor, value, arena, mutable_message); } absl::Status ProtoMessageTypeAdapter::SetFieldByNumber( int64_t field_number, const CelValue& value, cel::MemoryManagerRef memory_manager, CelValue::MessageWrapper::Builder& instance) const { google::protobuf::Arena* arena = cel::extensions::ProtoMemoryManagerArena(memory_manager); CEL_ASSIGN_OR_RETURN(google::protobuf::Message * mutable_message, UnwrapMessage(instance, "SetField")); const google::protobuf::FieldDescriptor* field_descriptor = descriptor_->FindFieldByNumber(field_number); CEL_RETURN_IF_ERROR(ValidateSetFieldOp( field_descriptor != nullptr, absl::StrCat(field_number), "not found")); return SetField(field_descriptor, value, arena, mutable_message); } absl::StatusOr<CelValue> ProtoMessageTypeAdapter::AdaptFromWellKnownType( cel::MemoryManagerRef memory_manager, CelValue::MessageWrapper::Builder instance) const { google::protobuf::Arena* arena = cel::extensions::ProtoMemoryManagerArena(memory_manager); CEL_ASSIGN_OR_RETURN(google::protobuf::Message * message, UnwrapMessage(instance, "AdaptFromWellKnownType")); return internal::UnwrapMessageToValue(message, &MessageCelValueFactory, arena); } bool ProtoMessageTypeAdapter::IsEqualTo( const CelValue::MessageWrapper& instance, const CelValue::MessageWrapper& other_instance) const { absl::StatusOr<const google::protobuf::Message*> lhs = UnwrapMessage(instance, "IsEqualTo"); absl::StatusOr<const google::protobuf::Message*> rhs = UnwrapMessage(other_instance, "IsEqualTo"); if (!lhs.ok() || !rhs.ok()) { return false; } return ProtoEquals(**lhs, **rhs); } std::vector<absl::string_view> ProtoMessageTypeAdapter::ListFields( const CelValue::MessageWrapper& instance) const { return ListFieldsImpl(instance); } const LegacyTypeInfoApis& GetGenericProtoTypeInfoInstance() { return DucktypedMessageAdapter::GetSingleton(); } }
#include "eval/public/structs/proto_message_type_adapter.h" #include <vector> #include "google/protobuf/wrappers.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/status/status.h" #include "base/attribute.h" #include "common/value.h" #include "eval/public/cel_value.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/message_wrapper.h" #include "eval/public/structs/legacy_type_adapter.h" #include "eval/public/structs/legacy_type_info_apis.h" #include "eval/public/testing/matchers.h" #include "eval/testutil/test_message.pb.h" #include "extensions/protobuf/memory_manager.h" #include "internal/proto_matchers.h" #include "internal/testing.h" #include "runtime/runtime_options.h" #include "google/protobuf/arena.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace google::api::expr::runtime { namespace { using ::absl_testing::IsOkAndHolds; using ::absl_testing::StatusIs; using ::cel::ProtoWrapperTypeOptions; using ::cel::extensions::ProtoMemoryManagerRef; using ::cel::internal::test::EqualsProto; using ::google::protobuf::Int64Value; using ::testing::_; using ::testing::AllOf; using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Field; using ::testing::HasSubstr; using ::testing::Optional; using ::testing::Truly; using LegacyQualifyResult = LegacyTypeAccessApis::LegacyQualifyResult; class ProtoMessageTypeAccessorTest : public testing::TestWithParam<bool> { public: ProtoMessageTypeAccessorTest() : type_specific_instance_( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()) {} const LegacyTypeAccessApis& GetAccessApis() { bool use_generic_instance = GetParam(); if (use_generic_instance) { return *GetGenericProtoTypeInfoInstance().GetAccessApis(dummy_); } else { return type_specific_instance_; } } private: ProtoMessageTypeAdapter type_specific_instance_; CelValue::MessageWrapper dummy_; }; TEST_P(ProtoMessageTypeAccessorTest, HasFieldSingular) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.HasField("int64_value", value), IsOkAndHolds(false)); example.set_int64_value(10); EXPECT_THAT(accessor.HasField("int64_value", value), IsOkAndHolds(true)); } TEST_P(ProtoMessageTypeAccessorTest, HasFieldRepeated) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.HasField("int64_list", value), IsOkAndHolds(false)); example.add_int64_list(10); EXPECT_THAT(accessor.HasField("int64_list", value), IsOkAndHolds(true)); } TEST_P(ProtoMessageTypeAccessorTest, HasFieldMap) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; example.set_int64_value(10); MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.HasField("int64_int32_map", value), IsOkAndHolds(false)); (*example.mutable_int64_int32_map())[2] = 3; EXPECT_THAT(accessor.HasField("int64_int32_map", value), IsOkAndHolds(true)); } TEST_P(ProtoMessageTypeAccessorTest, HasFieldUnknownField) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; example.set_int64_value(10); MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.HasField("unknown_field", value), StatusIs(absl::StatusCode::kNotFound)); } TEST_P(ProtoMessageTypeAccessorTest, HasFieldNonMessageType) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); MessageWrapper value(static_cast<const google::protobuf::MessageLite*>(nullptr), nullptr); EXPECT_THAT(accessor.HasField("unknown_field", value), StatusIs(absl::StatusCode::kInternal)); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldSingular) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); TestMessage example; example.set_int64_value(10); MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.GetField("int64_value", value, ProtoWrapperTypeOptions::kUnsetNull, manager), IsOkAndHolds(test::IsCelInt64(10))); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldNoSuchField) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); TestMessage example; example.set_int64_value(10); MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.GetField("unknown_field", value, ProtoWrapperTypeOptions::kUnsetNull, manager), IsOkAndHolds(test::IsCelError(StatusIs( absl::StatusCode::kNotFound, HasSubstr("unknown_field"))))); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldNotAMessage) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); MessageWrapper value(static_cast<const google::protobuf::MessageLite*>(nullptr), nullptr); EXPECT_THAT(accessor.GetField("int64_value", value, ProtoWrapperTypeOptions::kUnsetNull, manager), StatusIs(absl::StatusCode::kInternal)); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldRepeated) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); TestMessage example; example.add_int64_list(10); example.add_int64_list(20); MessageWrapper value(&example, nullptr); ASSERT_OK_AND_ASSIGN( CelValue result, accessor.GetField("int64_list", value, ProtoWrapperTypeOptions::kUnsetNull, manager)); const CelList* held_value; ASSERT_TRUE(result.GetValue(&held_value)) << result.DebugString(); EXPECT_EQ(held_value->size(), 2); EXPECT_THAT((*held_value)[0], test::IsCelInt64(10)); EXPECT_THAT((*held_value)[1], test::IsCelInt64(20)); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldMap) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); TestMessage example; (*example.mutable_int64_int32_map())[10] = 20; MessageWrapper value(&example, nullptr); ASSERT_OK_AND_ASSIGN( CelValue result, accessor.GetField("int64_int32_map", value, ProtoWrapperTypeOptions::kUnsetNull, manager)); const CelMap* held_value; ASSERT_TRUE(result.GetValue(&held_value)) << result.DebugString(); EXPECT_EQ(held_value->size(), 1); EXPECT_THAT((*held_value)[CelValue::CreateInt64(10)], Optional(test::IsCelInt64(20))); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldWrapperType) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); TestMessage example; example.mutable_int64_wrapper_value()->set_value(10); MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.GetField("int64_wrapper_value", value, ProtoWrapperTypeOptions::kUnsetNull, manager), IsOkAndHolds(test::IsCelInt64(10))); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldWrapperTypeUnsetNullUnbox) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); TestMessage example; MessageWrapper value(&example, nullptr); EXPECT_THAT(accessor.GetField("int64_wrapper_value", value, ProtoWrapperTypeOptions::kUnsetNull, manager), IsOkAndHolds(test::IsCelNull())); example.mutable_int64_wrapper_value()->clear_value(); EXPECT_THAT(accessor.GetField("int64_wrapper_value", value, ProtoWrapperTypeOptions::kUnsetNull, manager), IsOkAndHolds(test::IsCelInt64(_))); } TEST_P(ProtoMessageTypeAccessorTest, GetFieldWrapperTypeUnsetDefaultValueUnbox) { google::protobuf::Arena arena; const LegacyTypeAccessApis& accessor = GetAccessApis(); auto manager = ProtoMemoryManagerRef(&arena); TestMessage example; MessageWrapper value(&example, nullptr); EXPECT_THAT( accessor.GetField("int64_wrapper_value", value, ProtoWrapperTypeOptions::kUnsetProtoDefault, manager), IsOkAndHolds(test::IsCelInt64(_))); example.mutable_int64_wrapper_value()->clear_value(); EXPECT_THAT( accessor.GetField("int64_wrapper_value", value, ProtoWrapperTypeOptions::kUnsetProtoDefault, manager), IsOkAndHolds(test::IsCelInt64(_))); } TEST_P(ProtoMessageTypeAccessorTest, IsEqualTo) { const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; example.mutable_int64_wrapper_value()->set_value(10); TestMessage example2; example2.mutable_int64_wrapper_value()->set_value(10); MessageWrapper value(&example, nullptr); MessageWrapper value2(&example2, nullptr); EXPECT_TRUE(accessor.IsEqualTo(value, value2)); EXPECT_TRUE(accessor.IsEqualTo(value2, value)); } TEST_P(ProtoMessageTypeAccessorTest, IsEqualToSameTypeInequal) { const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; example.mutable_int64_wrapper_value()->set_value(10); TestMessage example2; example2.mutable_int64_wrapper_value()->set_value(12); MessageWrapper value(&example, nullptr); MessageWrapper value2(&example2, nullptr); EXPECT_FALSE(accessor.IsEqualTo(value, value2)); EXPECT_FALSE(accessor.IsEqualTo(value2, value)); } TEST_P(ProtoMessageTypeAccessorTest, IsEqualToDifferentTypeInequal) { const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; example.mutable_int64_wrapper_value()->set_value(10); Int64Value example2; example2.set_value(10); MessageWrapper value(&example, nullptr); MessageWrapper value2(&example2, nullptr); EXPECT_FALSE(accessor.IsEqualTo(value, value2)); EXPECT_FALSE(accessor.IsEqualTo(value2, value)); } TEST_P(ProtoMessageTypeAccessorTest, IsEqualToNonMessageInequal) { const LegacyTypeAccessApis& accessor = GetAccessApis(); TestMessage example; example.mutable_int64_wrapper_value()->set_value(10); TestMessage example2; example2.mutable_int64_wrapper_value()->set_value(10); MessageWrapper value(&example, nullptr); MessageWrapper value2(static_cast<const google::protobuf::MessageLite*>(&example2), nullptr); EXPECT_FALSE(accessor.IsEqualTo(value, value2)); EXPECT_FALSE(accessor.IsEqualTo(value2, value)); } INSTANTIATE_TEST_SUITE_P(GenericAndSpecific, ProtoMessageTypeAccessorTest, testing::Bool()); TEST(GetGenericProtoTypeInfoInstance, GetTypeName) { const LegacyTypeInfoApis& info_api = GetGenericProtoTypeInfoInstance(); TestMessage test_message; CelValue::MessageWrapper wrapped_message(&test_message, nullptr); EXPECT_EQ(info_api.GetTypename(wrapped_message), test_message.GetTypeName()); } TEST(GetGenericProtoTypeInfoInstance, DebugString) { const LegacyTypeInfoApis& info_api = GetGenericProtoTypeInfoInstance(); TestMessage test_message; test_message.set_string_value("abcd"); CelValue::MessageWrapper wrapped_message(&test_message, nullptr); EXPECT_EQ(info_api.DebugString(wrapped_message), test_message.ShortDebugString()); } TEST(GetGenericProtoTypeInfoInstance, GetAccessApis) { const LegacyTypeInfoApis& info_api = GetGenericProtoTypeInfoInstance(); TestMessage test_message; test_message.set_string_value("abcd"); CelValue::MessageWrapper wrapped_message(&test_message, nullptr); auto* accessor = info_api.GetAccessApis(wrapped_message); google::protobuf::Arena arena; auto manager = ProtoMemoryManagerRef(&arena); ASSERT_OK_AND_ASSIGN( CelValue result, accessor->GetField("string_value", wrapped_message, ProtoWrapperTypeOptions::kUnsetNull, manager)); EXPECT_THAT(result, test::IsCelString("abcd")); } TEST(GetGenericProtoTypeInfoInstance, FallbackForNonMessage) { const LegacyTypeInfoApis& info_api = GetGenericProtoTypeInfoInstance(); TestMessage test_message; test_message.set_string_value("abcd"); CelValue::MessageWrapper wrapped_message( static_cast<const google::protobuf::MessageLite*>(&test_message), nullptr); EXPECT_EQ(info_api.GetTypename(wrapped_message), "<unknown message>"); EXPECT_EQ(info_api.DebugString(wrapped_message), "<unknown message>"); CelValue::MessageWrapper null_message( static_cast<const google::protobuf::Message*>(nullptr), nullptr); EXPECT_EQ(info_api.GetTypename(null_message), "<unknown message>"); EXPECT_EQ(info_api.DebugString(null_message), "<unknown message>"); } TEST(ProtoMessageTypeAdapter, NewInstance) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); ASSERT_OK_AND_ASSIGN(CelValue::MessageWrapper::Builder result, adapter.NewInstance(manager)); EXPECT_EQ(result.message_ptr()->SerializeAsString(), ""); } TEST(ProtoMessageTypeAdapter, NewInstanceUnsupportedDescriptor) { google::protobuf::Arena arena; google::protobuf::DescriptorPool pool; google::protobuf::FileDescriptorProto faked_file; faked_file.set_name("faked.proto"); faked_file.set_syntax("proto3"); faked_file.set_package("google.api.expr.runtime"); auto msg_descriptor = faked_file.add_message_type(); msg_descriptor->set_name("FakeMessage"); pool.BuildFile(faked_file); ProtoMessageTypeAdapter adapter( pool.FindMessageTypeByName("google.api.expr.runtime.FakeMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); EXPECT_THAT( adapter.NewInstance(manager), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("FakeMessage"))); } TEST(ProtoMessageTypeAdapter, DefinesField) { ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); EXPECT_TRUE(adapter.DefinesField("int64_value")); EXPECT_FALSE(adapter.DefinesField("not_a_field")); } TEST(ProtoMessageTypeAdapter, SetFieldSingular) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); ASSERT_OK_AND_ASSIGN(CelValue::MessageWrapper::Builder value, adapter.NewInstance(manager)); ASSERT_OK(adapter.SetField("int64_value", CelValue::CreateInt64(10), manager, value)); TestMessage message; message.set_int64_value(10); EXPECT_EQ(value.message_ptr()->SerializeAsString(), message.SerializeAsString()); ASSERT_THAT(adapter.SetField("not_a_field", CelValue::CreateInt64(10), manager, value), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("field 'not_a_field': not found"))); } TEST(ProtoMessageTypeAdapter, SetFieldRepeated) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); ContainerBackedListImpl list( {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}); CelValue value_to_set = CelValue::CreateList(&list); ASSERT_OK_AND_ASSIGN(CelValue::MessageWrapper::Builder instance, adapter.NewInstance(manager)); ASSERT_OK(adapter.SetField("int64_list", value_to_set, manager, instance)); TestMessage message; message.add_int64_list(1); message.add_int64_list(2); EXPECT_EQ(instance.message_ptr()->SerializeAsString(), message.SerializeAsString()); } TEST(ProtoMessageTypeAdapter, SetFieldNotAField) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); ASSERT_OK_AND_ASSIGN(CelValue::MessageWrapper::Builder instance, adapter.NewInstance(manager)); ASSERT_THAT(adapter.SetField("not_a_field", CelValue::CreateInt64(10), manager, instance), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("field 'not_a_field': not found"))); } TEST(ProtoMesssageTypeAdapter, SetFieldWrongType) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); ContainerBackedListImpl list( {CelValue::CreateInt64(1), CelValue::CreateInt64(2)}); CelValue list_value = CelValue::CreateList(&list); CelMapBuilder builder; ASSERT_OK(builder.Add(CelValue::CreateInt64(1), CelValue::CreateInt64(2))); ASSERT_OK(builder.Add(CelValue::CreateInt64(2), CelValue::CreateInt64(4))); CelValue map_value = CelValue::CreateMap(&builder); CelValue int_value = CelValue::CreateInt64(42); ASSERT_OK_AND_ASSIGN(CelValue::MessageWrapper::Builder instance, adapter.NewInstance(manager)); EXPECT_THAT(adapter.SetField("int64_value", map_value, manager, instance), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(adapter.SetField("int64_value", list_value, manager, instance), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT( adapter.SetField("int64_int32_map", list_value, manager, instance), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(adapter.SetField("int64_int32_map", int_value, manager, instance), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(adapter.SetField("int64_list", int_value, manager, instance), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(adapter.SetField("int64_list", map_value, manager, instance), StatusIs(absl::StatusCode::kInvalidArgument)); } TEST(ProtoMesssageTypeAdapter, SetFieldNotAMessage) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); CelValue int_value = CelValue::CreateInt64(42); CelValue::MessageWrapper::Builder instance( static_cast<google::protobuf::MessageLite*>(nullptr)); EXPECT_THAT(adapter.SetField("int64_value", int_value, manager, instance), StatusIs(absl::StatusCode::kInternal)); } TEST(ProtoMesssageTypeAdapter, SetFieldNullMessage) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); CelValue int_value = CelValue::CreateInt64(42); CelValue::MessageWrapper::Builder instance( static_cast<google::protobuf::Message*>(nullptr)); EXPECT_THAT(adapter.SetField("int64_value", int_value, manager, instance), StatusIs(absl::StatusCode::kInternal)); } TEST(ProtoMessageTypeAdapter, AdaptFromWellKnownType) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.protobuf.Int64Value"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); ASSERT_OK_AND_ASSIGN(CelValue::MessageWrapper::Builder instance, adapter.NewInstance(manager)); ASSERT_OK( adapter.SetField("value", CelValue::CreateInt64(42), manager, instance)); ASSERT_OK_AND_ASSIGN(CelValue value, adapter.AdaptFromWellKnownType(manager, instance)); EXPECT_THAT(value, test::IsCelInt64(42)); } TEST(ProtoMessageTypeAdapter, AdaptFromWellKnownTypeUnspecial) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); ASSERT_OK_AND_ASSIGN(CelValue::MessageWrapper::Builder instance, adapter.NewInstance(manager)); ASSERT_OK(adapter.SetField("int64_value", CelValue::CreateInt64(42), manager, instance)); ASSERT_OK_AND_ASSIGN(CelValue value, adapter.AdaptFromWellKnownType(manager, instance)); EXPECT_THAT(value, test::IsCelMessage(EqualsProto("int64_value: 42"))); } TEST(ProtoMessageTypeAdapter, AdaptFromWellKnownTypeNotAMessageError) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); CelValue::MessageWrapper::Builder instance( static_cast<google::protobuf::MessageLite*>(nullptr)); EXPECT_THAT(adapter.AdaptFromWellKnownType(manager, instance), StatusIs(absl::StatusCode::kInternal)); } TEST(ProtoMesssageTypeAdapter, TypeInfoDebug) { ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); TestMessage message; message.set_int64_value(42); EXPECT_THAT(adapter.DebugString(MessageWrapper(&message, &adapter)), HasSubstr(message.ShortDebugString())); EXPECT_THAT(adapter.DebugString(MessageWrapper()), HasSubstr("<unknown message>")); } TEST(ProtoMesssageTypeAdapter, TypeInfoName) { ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); EXPECT_EQ(adapter.GetTypename(MessageWrapper()), "google.api.expr.runtime.TestMessage"); } TEST(ProtoMesssageTypeAdapter, FindFieldFound) { ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); EXPECT_THAT( adapter.FindFieldByName("int64_value"), Optional(Truly([](const LegacyTypeInfoApis::FieldDescription& desc) { return desc.name == "int64_value" && desc.number == 2; }))) << "expected field int64_value: 2"; } TEST(ProtoMesssageTypeAdapter, FindFieldNotFound) { ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); EXPECT_EQ(adapter.FindFieldByName("foo_not_a_field"), absl::nullopt); } TEST(ProtoMesssageTypeAdapter, TypeInfoMutator) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); const LegacyTypeMutationApis* api = adapter.GetMutationApis(MessageWrapper()); ASSERT_NE(api, nullptr); ASSERT_OK_AND_ASSIGN(MessageWrapper::Builder builder, api->NewInstance(manager)); EXPECT_NE(dynamic_cast<TestMessage*>(builder.message_ptr()), nullptr); } TEST(ProtoMesssageTypeAdapter, TypeInfoAccesor) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); EXPECT_THAT(api->GetField("int64_value", wrapped, ProtoWrapperTypeOptions::kUnsetNull, manager), IsOkAndHolds(test::IsCelInt64(42))); } TEST(ProtoMesssageTypeAdapter, Qualify) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.mutable_message_value()->set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{2, "int64_value"}}; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelInt64(42)))); } TEST(ProtoMesssageTypeAdapter, QualifyDynamicFieldAccessUnsupported) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.mutable_message_value()->set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::AttributeQualifier::OfString("int64_value")}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(ProtoMesssageTypeAdapter, QualifyNoSuchField) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.mutable_message_value()->set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{99, "not_a_field"}, cel::FieldSpecifier{2, "int64_value"}}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field( &LegacyQualifyResult::value, test::IsCelError(StatusIs(absl::StatusCode::kNotFound, HasSubstr("no_such_field")))))); } TEST(ProtoMesssageTypeAdapter, QualifyHasNoSuchField) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.mutable_message_value()->set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{99, "not_a_field"}}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, true, manager), IsOkAndHolds(Field( &LegacyQualifyResult::value, test::IsCelError(StatusIs(absl::StatusCode::kNotFound, HasSubstr("no_such_field")))))); } TEST(ProtoMesssageTypeAdapter, QualifyNoSuchFieldLeaf) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.mutable_message_value()->set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{99, "not_a_field"}}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field( &LegacyQualifyResult::value, test::IsCelError(StatusIs(absl::StatusCode::kNotFound, HasSubstr("no_such_field")))))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalSupport) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_string_message_map())["@key"].set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{210, "string_message_map"}, cel::AttributeQualifier::OfString("@key"), cel::FieldSpecifier{2, "int64_value"}}; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelInt64(42)))); } TEST(ProtoMesssageTypeAdapter, TypedFieldAccessOnMapUnsupported) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_string_message_map())["@key"].set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{210, "string_message_map"}, cel::FieldSpecifier{2, "value"}, cel::FieldSpecifier{2, "int64_value"}}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), StatusIs(absl::StatusCode::kUnimplemented)); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalWrongKeyType) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_string_message_map())["@key"].set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{210, "string_message_map"}, cel::AttributeQualifier::OfInt(0), cel::FieldSpecifier{2, "int64_value"}}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelError(StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("Invalid map key type")))))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalHasWrongKeyType) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_string_message_map())["@key"].set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{210, "string_message_map"}, cel::AttributeQualifier::OfInt(0)}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, true, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelError(StatusIs( absl::StatusCode::kUnknown, HasSubstr("No matching overloads")))))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalSupportNoSuchKey) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_string_message_map())["@key"].set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{210, "string_message_map"}, cel::AttributeQualifier::OfString("bad_key"), cel::FieldSpecifier{2, "int64_value"}}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field( &LegacyQualifyResult::value, test::IsCelError(StatusIs(absl::StatusCode::kNotFound, HasSubstr("Key not found")))))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalInt32Key) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_int32_int32_map())[0] = 42; CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{205, "int32_int32_map"}, cel::AttributeQualifier::OfInt(0)}; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelInt64(42)))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalIntOutOfRange) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_int32_int32_map())[0] = 42; CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{205, "int32_int32_map"}, cel::AttributeQualifier::OfInt(1LL << 32)}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field( &LegacyQualifyResult::value, test::IsCelError(StatusIs(absl::StatusCode::kOutOfRange, HasSubstr("integer overflow")))))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalUint32Key) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_uint32_uint32_map())[0] = 42; CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{206, "uint32_uint32_map"}, cel::AttributeQualifier::OfUint(0)}; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelUint64(42)))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalUintOutOfRange) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_uint32_uint32_map())[0] = 42; CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{206, "uint32_uint32_map"}, cel::AttributeQualifier::OfUint(1LL << 32)}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field( &LegacyQualifyResult::value, test::IsCelError(StatusIs(absl::StatusCode::kOutOfRange, HasSubstr("integer overflow")))))); } TEST(ProtoMesssageTypeAdapter, QualifyMapTraversalUnexpectedFieldAccess) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_string_message_map())["@key"].set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{210, "string_message_map"}, cel::FieldSpecifier{0, "field_like_key"}}; auto result = api->Qualify(qualfiers, wrapped, false, manager); EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), StatusIs(absl::StatusCode::kUnimplemented, _)); } TEST(ProtoMesssageTypeAdapter, UntypedQualifiersNotYetSupported) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; (*message.mutable_string_message_map())["@key"].set_int64_value(42); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::AttributeQualifier::OfString("string_message_map"), cel::AttributeQualifier::OfString("@key"), cel::AttributeQualifier::OfString("int64_value")}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), StatusIs(absl::StatusCode::kUnimplemented, _)); } TEST(ProtoMesssageTypeAdapter, QualifyRepeatedIndexWrongType) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.add_message_list()->add_int64_list(1); message.add_message_list()->add_int64_list(2); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{112, "message_list"}, cel::AttributeQualifier::OfBool(false), cel::FieldSpecifier{102, "int64_list"}, cel::AttributeQualifier::OfInt(0)}; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelError(StatusIs( absl::StatusCode::kUnknown, HasSubstr("No matching overloads found")))))); } TEST(ProtoMesssageTypeAdapter, QualifyRepeatedTypeCheckError) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; message.add_int64_list(1); message.add_int64_list(2); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{102, "int64_list"}, cel::AttributeQualifier::OfInt(0), cel::AttributeQualifier::OfInt(1)}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), StatusIs(absl::StatusCode::kInternal, HasSubstr("Unexpected qualify intermediate type"))); } TEST(ProtoMesssageTypeAdapter, QualifyRepeatedLeaf) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; auto* nested = message.mutable_message_value(); nested->add_int64_list(1); nested->add_int64_list(2); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{102, "int64_list"}, }; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelList(ElementsAre(test::IsCelInt64(1), test::IsCelInt64(2)))))); } TEST(ProtoMesssageTypeAdapter, QualifyRepeatedIndexLeaf) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; auto* nested = message.mutable_message_value(); nested->add_int64_list(1); nested->add_int64_list(2); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{102, "int64_list"}, cel::AttributeQualifier::OfInt(1)}; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelInt64(2)))); } TEST(ProtoMesssageTypeAdapter, QualifyRepeatedIndexLeafOutOfBounds) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; auto* nested = message.mutable_message_value(); nested->add_int64_list(1); nested->add_int64_list(2); CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{102, "int64_list"}, cel::AttributeQualifier::OfInt(2)}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelError(StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("index out of bounds")))))); } TEST(ProtoMesssageTypeAdapter, QualifyMapLeaf) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; auto* nested_map = message.mutable_message_value()->mutable_string_int32_map(); (*nested_map)["@key"] = 42; (*nested_map)["@key2"] = -42; CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{203, "string_int32_map"}, }; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field( &LegacyQualifyResult::value, Truly([](const CelValue& v) { return v.IsMap() && v.MapOrDie()->size() == 2; })))); } TEST(ProtoMesssageTypeAdapter, QualifyMapIndexLeaf) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; auto* nested_map = message.mutable_message_value()->mutable_string_int32_map(); (*nested_map)["@key"] = 42; (*nested_map)["@key2"] = -42; CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{203, "string_int32_map"}, cel::AttributeQualifier::OfString("@key")}; EXPECT_THAT( api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelInt64(42)))); } TEST(ProtoMesssageTypeAdapter, QualifyMapIndexLeafWrongType) { google::protobuf::Arena arena; ProtoMessageTypeAdapter adapter( google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName( "google.api.expr.runtime.TestMessage"), google::protobuf::MessageFactory::generated_factory()); auto manager = ProtoMemoryManagerRef(&arena); TestMessage message; auto* nested_map = message.mutable_message_value()->mutable_string_int32_map(); (*nested_map)["@key"] = 42; (*nested_map)["@key2"] = -42; CelValue::MessageWrapper wrapped(&message, &adapter); const LegacyTypeAccessApis* api = adapter.GetAccessApis(MessageWrapper()); ASSERT_NE(api, nullptr); std::vector<cel::SelectQualifier> qualfiers{ cel::FieldSpecifier{12, "message_value"}, cel::FieldSpecifier{203, "string_int32_map"}, cel::AttributeQualifier::OfInt(0)}; EXPECT_THAT(api->Qualify(qualfiers, wrapped, false, manager), IsOkAndHolds(Field(&LegacyQualifyResult::value, test::IsCelError(StatusIs( absl::StatusCode::kInvalidArgument, HasSubstr("Invalid map key type")))))); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/proto_message_type_adapter.cc
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/eval/public/structs/proto_message_type_adapter_test.cc
4552db5798fb0853b131b783d8875794334fae7f
1aab19fb-dac4-4d6e-935a-6fba6c4f96d3
cpp
google/quiche
http2_constants
quiche/http2/http2_constants.cc
quiche/http2/http2_constants_test.cc
#include "quiche/http2/http2_constants.h" #include <string> #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { std::string Http2FrameTypeToString(Http2FrameType v) { switch (v) { case Http2FrameType::DATA: return "DATA"; case Http2FrameType::HEADERS: return "HEADERS"; case Http2FrameType::PRIORITY: return "PRIORITY"; case Http2FrameType::RST_STREAM: return "RST_STREAM"; case Http2FrameType::SETTINGS: return "SETTINGS"; case Http2FrameType::PUSH_PROMISE: return "PUSH_PROMISE"; case Http2FrameType::PING: return "PING"; case Http2FrameType::GOAWAY: return "GOAWAY"; case Http2FrameType::WINDOW_UPDATE: return "WINDOW_UPDATE"; case Http2FrameType::CONTINUATION: return "CONTINUATION"; case Http2FrameType::ALTSVC: return "ALTSVC"; case Http2FrameType::PRIORITY_UPDATE: return "PRIORITY_UPDATE"; } return absl::StrCat("UnknownFrameType(", static_cast<int>(v), ")"); } std::string Http2FrameTypeToString(uint8_t v) { return Http2FrameTypeToString(static_cast<Http2FrameType>(v)); } std::string Http2FrameFlagsToString(Http2FrameType type, uint8_t flags) { std::string s; auto append_and_clear = [&s, &flags](absl::string_view v, uint8_t bit) { if (!s.empty()) { s.push_back('|'); } absl::StrAppend(&s, v); flags ^= bit; }; if (flags & 0x01) { if (type == Http2FrameType::DATA || type == Http2FrameType::HEADERS) { append_and_clear("END_STREAM", Http2FrameFlag::END_STREAM); } else if (type == Http2FrameType::SETTINGS || type == Http2FrameType::PING) { append_and_clear("ACK", Http2FrameFlag::ACK); } } if (flags & 0x04) { if (type == Http2FrameType::HEADERS || type == Http2FrameType::PUSH_PROMISE || type == Http2FrameType::CONTINUATION) { append_and_clear("END_HEADERS", Http2FrameFlag::END_HEADERS); } } if (flags & 0x08) { if (type == Http2FrameType::DATA || type == Http2FrameType::HEADERS || type == Http2FrameType::PUSH_PROMISE) { append_and_clear("PADDED", Http2FrameFlag::PADDED); } } if (flags & 0x20) { if (type == Http2FrameType::HEADERS) { append_and_clear("PRIORITY", Http2FrameFlag::PRIORITY); } } if (flags != 0) { append_and_clear(absl::StrFormat("0x%02x", flags), flags); } QUICHE_DCHECK_EQ(0, flags); return s; } std::string Http2FrameFlagsToString(uint8_t type, uint8_t flags) { return Http2FrameFlagsToString(static_cast<Http2FrameType>(type), flags); } std::string Http2ErrorCodeToString(uint32_t v) { switch (v) { case 0x0: return "NO_ERROR"; case 0x1: return "PROTOCOL_ERROR"; case 0x2: return "INTERNAL_ERROR"; case 0x3: return "FLOW_CONTROL_ERROR"; case 0x4: return "SETTINGS_TIMEOUT"; case 0x5: return "STREAM_CLOSED"; case 0x6: return "FRAME_SIZE_ERROR"; case 0x7: return "REFUSED_STREAM"; case 0x8: return "CANCEL"; case 0x9: return "COMPRESSION_ERROR"; case 0xa: return "CONNECT_ERROR"; case 0xb: return "ENHANCE_YOUR_CALM"; case 0xc: return "INADEQUATE_SECURITY"; case 0xd: return "HTTP_1_1_REQUIRED"; } return absl::StrCat("UnknownErrorCode(0x", absl::Hex(v), ")"); } std::string Http2ErrorCodeToString(Http2ErrorCode v) { return Http2ErrorCodeToString(static_cast<uint32_t>(v)); } std::string Http2SettingsParameterToString(uint32_t v) { switch (v) { case 0x1: return "HEADER_TABLE_SIZE"; case 0x2: return "ENABLE_PUSH"; case 0x3: return "MAX_CONCURRENT_STREAMS"; case 0x4: return "INITIAL_WINDOW_SIZE"; case 0x5: return "MAX_FRAME_SIZE"; case 0x6: return "MAX_HEADER_LIST_SIZE"; } return absl::StrCat("UnknownSettingsParameter(0x", absl::Hex(v), ")"); } std::string Http2SettingsParameterToString(Http2SettingsParameter v) { return Http2SettingsParameterToString(static_cast<uint32_t>(v)); } constexpr char const* kHttp2InvalidHeaderNames[] = { "connection", "host", "keep-alive", "proxy-connection", "transfer-encoding", "", }; const InvalidHeaderSet& GetInvalidHttp2HeaderSet() { static const auto* invalid_header_set = new InvalidHeaderSet(std::begin(http2::kHttp2InvalidHeaderNames), std::end(http2::kHttp2InvalidHeaderNames)); return *invalid_header_set; } }
#include "quiche/http2/http2_constants.h" #include "quiche/common/platform/api/quiche_test.h" namespace http2 { namespace test { namespace { class Http2ConstantsTest : public quiche::test::QuicheTest {}; TEST(Http2ConstantsTest, Http2FrameType) { EXPECT_EQ(Http2FrameType::DATA, static_cast<Http2FrameType>(0)); EXPECT_EQ(Http2FrameType::HEADERS, static_cast<Http2FrameType>(1)); EXPECT_EQ(Http2FrameType::PRIORITY, static_cast<Http2FrameType>(2)); EXPECT_EQ(Http2FrameType::RST_STREAM, static_cast<Http2FrameType>(3)); EXPECT_EQ(Http2FrameType::SETTINGS, static_cast<Http2FrameType>(4)); EXPECT_EQ(Http2FrameType::PUSH_PROMISE, static_cast<Http2FrameType>(5)); EXPECT_EQ(Http2FrameType::PING, static_cast<Http2FrameType>(6)); EXPECT_EQ(Http2FrameType::GOAWAY, static_cast<Http2FrameType>(7)); EXPECT_EQ(Http2FrameType::WINDOW_UPDATE, static_cast<Http2FrameType>(8)); EXPECT_EQ(Http2FrameType::CONTINUATION, static_cast<Http2FrameType>(9)); EXPECT_EQ(Http2FrameType::ALTSVC, static_cast<Http2FrameType>(10)); } TEST(Http2ConstantsTest, Http2FrameTypeToString) { EXPECT_EQ("DATA", Http2FrameTypeToString(Http2FrameType::DATA)); EXPECT_EQ("HEADERS", Http2FrameTypeToString(Http2FrameType::HEADERS)); EXPECT_EQ("PRIORITY", Http2FrameTypeToString(Http2FrameType::PRIORITY)); EXPECT_EQ("RST_STREAM", Http2FrameTypeToString(Http2FrameType::RST_STREAM)); EXPECT_EQ("SETTINGS", Http2FrameTypeToString(Http2FrameType::SETTINGS)); EXPECT_EQ("PUSH_PROMISE", Http2FrameTypeToString(Http2FrameType::PUSH_PROMISE)); EXPECT_EQ("PING", Http2FrameTypeToString(Http2FrameType::PING)); EXPECT_EQ("GOAWAY", Http2FrameTypeToString(Http2FrameType::GOAWAY)); EXPECT_EQ("WINDOW_UPDATE", Http2FrameTypeToString(Http2FrameType::WINDOW_UPDATE)); EXPECT_EQ("CONTINUATION", Http2FrameTypeToString(Http2FrameType::CONTINUATION)); EXPECT_EQ("ALTSVC", Http2FrameTypeToString(Http2FrameType::ALTSVC)); EXPECT_EQ("DATA", Http2FrameTypeToString(0)); EXPECT_EQ("HEADERS", Http2FrameTypeToString(1)); EXPECT_EQ("PRIORITY", Http2FrameTypeToString(2)); EXPECT_EQ("RST_STREAM", Http2FrameTypeToString(3)); EXPECT_EQ("SETTINGS", Http2FrameTypeToString(4)); EXPECT_EQ("PUSH_PROMISE", Http2FrameTypeToString(5)); EXPECT_EQ("PING", Http2FrameTypeToString(6)); EXPECT_EQ("GOAWAY", Http2FrameTypeToString(7)); EXPECT_EQ("WINDOW_UPDATE", Http2FrameTypeToString(8)); EXPECT_EQ("CONTINUATION", Http2FrameTypeToString(9)); EXPECT_EQ("ALTSVC", Http2FrameTypeToString(10)); EXPECT_EQ("UnknownFrameType(99)", Http2FrameTypeToString(99)); } TEST(Http2ConstantsTest, Http2FrameFlag) { EXPECT_EQ(Http2FrameFlag::END_STREAM, static_cast<Http2FrameFlag>(0x01)); EXPECT_EQ(Http2FrameFlag::ACK, static_cast<Http2FrameFlag>(0x01)); EXPECT_EQ(Http2FrameFlag::END_HEADERS, static_cast<Http2FrameFlag>(0x04)); EXPECT_EQ(Http2FrameFlag::PADDED, static_cast<Http2FrameFlag>(0x08)); EXPECT_EQ(Http2FrameFlag::PRIORITY, static_cast<Http2FrameFlag>(0x20)); EXPECT_EQ(Http2FrameFlag::END_STREAM, 0x01); EXPECT_EQ(Http2FrameFlag::ACK, 0x01); EXPECT_EQ(Http2FrameFlag::END_HEADERS, 0x04); EXPECT_EQ(Http2FrameFlag::PADDED, 0x08); EXPECT_EQ(Http2FrameFlag::PRIORITY, 0x20); } TEST(Http2ConstantsTest, Http2FrameFlagsToString) { EXPECT_EQ("END_STREAM", Http2FrameFlagsToString(Http2FrameType::DATA, Http2FrameFlag::END_STREAM)); EXPECT_EQ("END_STREAM", Http2FrameFlagsToString(Http2FrameType::HEADERS, 0x01)); EXPECT_EQ("ACK", Http2FrameFlagsToString(Http2FrameType::SETTINGS, Http2FrameFlag::ACK)); EXPECT_EQ("ACK", Http2FrameFlagsToString(Http2FrameType::PING, 0x01)); EXPECT_EQ("0x02", Http2FrameFlagsToString(0xff, 0x02)); EXPECT_EQ("END_HEADERS", Http2FrameFlagsToString(Http2FrameType::HEADERS, Http2FrameFlag::END_HEADERS)); EXPECT_EQ("END_HEADERS", Http2FrameFlagsToString(Http2FrameType::PUSH_PROMISE, 0x04)); EXPECT_EQ("END_HEADERS", Http2FrameFlagsToString(0x09, 0x04)); EXPECT_EQ("0x04", Http2FrameFlagsToString(0xff, 0x04)); EXPECT_EQ("PADDED", Http2FrameFlagsToString(Http2FrameType::DATA, Http2FrameFlag::PADDED)); EXPECT_EQ("PADDED", Http2FrameFlagsToString(Http2FrameType::HEADERS, 0x08)); EXPECT_EQ("PADDED", Http2FrameFlagsToString(0x05, 0x08)); EXPECT_EQ("0x08", Http2FrameFlagsToString(0xff, Http2FrameFlag::PADDED)); EXPECT_EQ("0x10", Http2FrameFlagsToString(Http2FrameType::SETTINGS, 0x10)); EXPECT_EQ("PRIORITY", Http2FrameFlagsToString(Http2FrameType::HEADERS, 0x20)); EXPECT_EQ("0x20", Http2FrameFlagsToString(Http2FrameType::PUSH_PROMISE, 0x20)); EXPECT_EQ("0x40", Http2FrameFlagsToString(0xff, 0x40)); EXPECT_EQ("0x80", Http2FrameFlagsToString(0xff, 0x80)); EXPECT_EQ("END_STREAM|PADDED|0xf6", Http2FrameFlagsToString(Http2FrameType::DATA, 0xff)); EXPECT_EQ("END_STREAM|END_HEADERS|PADDED|PRIORITY|0xd2", Http2FrameFlagsToString(Http2FrameType::HEADERS, 0xff)); EXPECT_EQ("0xff", Http2FrameFlagsToString(Http2FrameType::PRIORITY, 0xff)); EXPECT_EQ("0xff", Http2FrameFlagsToString(Http2FrameType::RST_STREAM, 0xff)); EXPECT_EQ("ACK|0xfe", Http2FrameFlagsToString(Http2FrameType::SETTINGS, 0xff)); EXPECT_EQ("END_HEADERS|PADDED|0xf3", Http2FrameFlagsToString(Http2FrameType::PUSH_PROMISE, 0xff)); EXPECT_EQ("ACK|0xfe", Http2FrameFlagsToString(Http2FrameType::PING, 0xff)); EXPECT_EQ("0xff", Http2FrameFlagsToString(Http2FrameType::GOAWAY, 0xff)); EXPECT_EQ("0xff", Http2FrameFlagsToString(Http2FrameType::WINDOW_UPDATE, 0xff)); EXPECT_EQ("END_HEADERS|0xfb", Http2FrameFlagsToString(Http2FrameType::CONTINUATION, 0xff)); EXPECT_EQ("0xff", Http2FrameFlagsToString(Http2FrameType::ALTSVC, 0xff)); EXPECT_EQ("0xff", Http2FrameFlagsToString(0xff, 0xff)); } TEST(Http2ConstantsTest, Http2ErrorCode) { EXPECT_EQ(Http2ErrorCode::HTTP2_NO_ERROR, static_cast<Http2ErrorCode>(0x0)); EXPECT_EQ(Http2ErrorCode::PROTOCOL_ERROR, static_cast<Http2ErrorCode>(0x1)); EXPECT_EQ(Http2ErrorCode::INTERNAL_ERROR, static_cast<Http2ErrorCode>(0x2)); EXPECT_EQ(Http2ErrorCode::FLOW_CONTROL_ERROR, static_cast<Http2ErrorCode>(0x3)); EXPECT_EQ(Http2ErrorCode::SETTINGS_TIMEOUT, static_cast<Http2ErrorCode>(0x4)); EXPECT_EQ(Http2ErrorCode::STREAM_CLOSED, static_cast<Http2ErrorCode>(0x5)); EXPECT_EQ(Http2ErrorCode::FRAME_SIZE_ERROR, static_cast<Http2ErrorCode>(0x6)); EXPECT_EQ(Http2ErrorCode::REFUSED_STREAM, static_cast<Http2ErrorCode>(0x7)); EXPECT_EQ(Http2ErrorCode::CANCEL, static_cast<Http2ErrorCode>(0x8)); EXPECT_EQ(Http2ErrorCode::COMPRESSION_ERROR, static_cast<Http2ErrorCode>(0x9)); EXPECT_EQ(Http2ErrorCode::CONNECT_ERROR, static_cast<Http2ErrorCode>(0xa)); EXPECT_EQ(Http2ErrorCode::ENHANCE_YOUR_CALM, static_cast<Http2ErrorCode>(0xb)); EXPECT_EQ(Http2ErrorCode::INADEQUATE_SECURITY, static_cast<Http2ErrorCode>(0xc)); EXPECT_EQ(Http2ErrorCode::HTTP_1_1_REQUIRED, static_cast<Http2ErrorCode>(0xd)); } TEST(Http2ConstantsTest, Http2ErrorCodeToString) { EXPECT_EQ("NO_ERROR", Http2ErrorCodeToString(Http2ErrorCode::HTTP2_NO_ERROR)); EXPECT_EQ("NO_ERROR", Http2ErrorCodeToString(0x0)); EXPECT_EQ("PROTOCOL_ERROR", Http2ErrorCodeToString(Http2ErrorCode::PROTOCOL_ERROR)); EXPECT_EQ("PROTOCOL_ERROR", Http2ErrorCodeToString(0x1)); EXPECT_EQ("INTERNAL_ERROR", Http2ErrorCodeToString(Http2ErrorCode::INTERNAL_ERROR)); EXPECT_EQ("INTERNAL_ERROR", Http2ErrorCodeToString(0x2)); EXPECT_EQ("FLOW_CONTROL_ERROR", Http2ErrorCodeToString(Http2ErrorCode::FLOW_CONTROL_ERROR)); EXPECT_EQ("FLOW_CONTROL_ERROR", Http2ErrorCodeToString(0x3)); EXPECT_EQ("SETTINGS_TIMEOUT", Http2ErrorCodeToString(Http2ErrorCode::SETTINGS_TIMEOUT)); EXPECT_EQ("SETTINGS_TIMEOUT", Http2ErrorCodeToString(0x4)); EXPECT_EQ("STREAM_CLOSED", Http2ErrorCodeToString(Http2ErrorCode::STREAM_CLOSED)); EXPECT_EQ("STREAM_CLOSED", Http2ErrorCodeToString(0x5)); EXPECT_EQ("FRAME_SIZE_ERROR", Http2ErrorCodeToString(Http2ErrorCode::FRAME_SIZE_ERROR)); EXPECT_EQ("FRAME_SIZE_ERROR", Http2ErrorCodeToString(0x6)); EXPECT_EQ("REFUSED_STREAM", Http2ErrorCodeToString(Http2ErrorCode::REFUSED_STREAM)); EXPECT_EQ("REFUSED_STREAM", Http2ErrorCodeToString(0x7)); EXPECT_EQ("CANCEL", Http2ErrorCodeToString(Http2ErrorCode::CANCEL)); EXPECT_EQ("CANCEL", Http2ErrorCodeToString(0x8)); EXPECT_EQ("COMPRESSION_ERROR", Http2ErrorCodeToString(Http2ErrorCode::COMPRESSION_ERROR)); EXPECT_EQ("COMPRESSION_ERROR", Http2ErrorCodeToString(0x9)); EXPECT_EQ("CONNECT_ERROR", Http2ErrorCodeToString(Http2ErrorCode::CONNECT_ERROR)); EXPECT_EQ("CONNECT_ERROR", Http2ErrorCodeToString(0xa)); EXPECT_EQ("ENHANCE_YOUR_CALM", Http2ErrorCodeToString(Http2ErrorCode::ENHANCE_YOUR_CALM)); EXPECT_EQ("ENHANCE_YOUR_CALM", Http2ErrorCodeToString(0xb)); EXPECT_EQ("INADEQUATE_SECURITY", Http2ErrorCodeToString(Http2ErrorCode::INADEQUATE_SECURITY)); EXPECT_EQ("INADEQUATE_SECURITY", Http2ErrorCodeToString(0xc)); EXPECT_EQ("HTTP_1_1_REQUIRED", Http2ErrorCodeToString(Http2ErrorCode::HTTP_1_1_REQUIRED)); EXPECT_EQ("HTTP_1_1_REQUIRED", Http2ErrorCodeToString(0xd)); EXPECT_EQ("UnknownErrorCode(0x123)", Http2ErrorCodeToString(0x123)); } TEST(Http2ConstantsTest, Http2SettingsParameter) { EXPECT_EQ(Http2SettingsParameter::HEADER_TABLE_SIZE, static_cast<Http2SettingsParameter>(0x1)); EXPECT_EQ(Http2SettingsParameter::ENABLE_PUSH, static_cast<Http2SettingsParameter>(0x2)); EXPECT_EQ(Http2SettingsParameter::MAX_CONCURRENT_STREAMS, static_cast<Http2SettingsParameter>(0x3)); EXPECT_EQ(Http2SettingsParameter::INITIAL_WINDOW_SIZE, static_cast<Http2SettingsParameter>(0x4)); EXPECT_EQ(Http2SettingsParameter::MAX_FRAME_SIZE, static_cast<Http2SettingsParameter>(0x5)); EXPECT_EQ(Http2SettingsParameter::MAX_HEADER_LIST_SIZE, static_cast<Http2SettingsParameter>(0x6)); EXPECT_TRUE(IsSupportedHttp2SettingsParameter( Http2SettingsParameter::HEADER_TABLE_SIZE)); EXPECT_TRUE( IsSupportedHttp2SettingsParameter(Http2SettingsParameter::ENABLE_PUSH)); EXPECT_TRUE(IsSupportedHttp2SettingsParameter( Http2SettingsParameter::MAX_CONCURRENT_STREAMS)); EXPECT_TRUE(IsSupportedHttp2SettingsParameter( Http2SettingsParameter::INITIAL_WINDOW_SIZE)); EXPECT_TRUE(IsSupportedHttp2SettingsParameter( Http2SettingsParameter::MAX_FRAME_SIZE)); EXPECT_TRUE(IsSupportedHttp2SettingsParameter( Http2SettingsParameter::MAX_HEADER_LIST_SIZE)); EXPECT_FALSE(IsSupportedHttp2SettingsParameter( static_cast<Http2SettingsParameter>(0))); EXPECT_FALSE(IsSupportedHttp2SettingsParameter( static_cast<Http2SettingsParameter>(7))); } TEST(Http2ConstantsTest, Http2SettingsParameterToString) { EXPECT_EQ("HEADER_TABLE_SIZE", Http2SettingsParameterToString( Http2SettingsParameter::HEADER_TABLE_SIZE)); EXPECT_EQ("HEADER_TABLE_SIZE", Http2SettingsParameterToString(0x1)); EXPECT_EQ("ENABLE_PUSH", Http2SettingsParameterToString( Http2SettingsParameter::ENABLE_PUSH)); EXPECT_EQ("ENABLE_PUSH", Http2SettingsParameterToString(0x2)); EXPECT_EQ("MAX_CONCURRENT_STREAMS", Http2SettingsParameterToString( Http2SettingsParameter::MAX_CONCURRENT_STREAMS)); EXPECT_EQ("MAX_CONCURRENT_STREAMS", Http2SettingsParameterToString(0x3)); EXPECT_EQ("INITIAL_WINDOW_SIZE", Http2SettingsParameterToString( Http2SettingsParameter::INITIAL_WINDOW_SIZE)); EXPECT_EQ("INITIAL_WINDOW_SIZE", Http2SettingsParameterToString(0x4)); EXPECT_EQ("MAX_FRAME_SIZE", Http2SettingsParameterToString( Http2SettingsParameter::MAX_FRAME_SIZE)); EXPECT_EQ("MAX_FRAME_SIZE", Http2SettingsParameterToString(0x5)); EXPECT_EQ("MAX_HEADER_LIST_SIZE", Http2SettingsParameterToString( Http2SettingsParameter::MAX_HEADER_LIST_SIZE)); EXPECT_EQ("MAX_HEADER_LIST_SIZE", Http2SettingsParameterToString(0x6)); EXPECT_EQ("UnknownSettingsParameter(0x123)", Http2SettingsParameterToString(0x123)); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/http2_constants.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/http2/http2_constants_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
277ee37f-d713-49c2-8335-47aaf3e46bf8
cpp
tensorflow/tensorflow
topk_rewriter
third_party/xla/xla/service/topk_rewriter.cc
third_party/xla/xla/service/topk_rewriter_test.cc
#include "xla/service/topk_rewriter.h" #include <array> #include <cstdint> #include <memory> #include <optional> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/builder/lib/comparators.h" #include "xla/hlo/builder/xla_builder.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_casting_utils.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/primitive_util.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace xla { namespace m = match; static absl::StatusOr<HloComputation*> BuilderToHloComputation( XlaComputation& comp, HloComputation* sibling_computation) { TF_ASSIGN_OR_RETURN(ProgramShape program_shape, comp.GetProgramShape()); HloModuleConfig config(program_shape); TF_ASSIGN_OR_RETURN(auto new_module, HloModule::CreateFromProto(comp.proto(), config)); HloModule* dest_module = sibling_computation->parent(); HloCloneContext context(dest_module); return dest_module->DeepCloneComputation(new_module->entry_computation(), &context); } static bool IsNanSafeGt(HloComputation* comp) { namespace m = match; auto match_bitcast_f32 = [](int64_t parameter_number) { auto param = m::Parameter(parameter_number) .WithShape(m::Shape().WithElementType(F32)); auto param_s32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(S32)); auto param_u32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(U32)); return m::Select( m::Lt(param_s32, m::ConstantScalar(0)), m::BitcastConvert( m::Subtract(m::ConstantScalar(std::numeric_limits<int32_t>::max()), param_u32)) .WithShape(m::Shape().WithElementType(S32)), param_s32); }; auto match_bitcast_f32_with_convert = [](int64_t parameter_number) { auto param = m::Parameter(parameter_number) .WithShape(m::Shape().WithElementType(F32)); auto param_s32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(S32)); auto param_u32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(U32)); auto max_u32 = m::Convert(m::ConstantScalar(std::numeric_limits<int32_t>::max())) .WithShape(m::Shape().WithElementType(U32)); return m::Select(m::Lt(param_s32, m::ConstantScalar(0)), m::BitcastConvert(m::Subtract(max_u32, param_u32)) .WithShape(m::Shape().WithElementType(S32)), param_s32); }; auto match_bitcast_bf16 = [](int64_t parameter_number) { auto param = m::Convert(m::Parameter(parameter_number) .WithShape(m::Shape().WithElementType(BF16))) .WithShape(m::Shape().WithElementType(F32)); auto param_s32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(S32)); auto param_u32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(U32)); return m::Select( m::Lt(param_s32, m::ConstantScalar(0)), m::BitcastConvert( m::Subtract(m::ConstantScalar(std::numeric_limits<int32_t>::max()), param_u32)) .WithShape(m::Shape().WithElementType(S32)), param_s32); }; auto match_bitcast_bf16_with_convert = [](int64_t parameter_number) { auto param = m::Convert(m::Parameter(parameter_number) .WithShape(m::Shape().WithElementType(BF16))) .WithShape(m::Shape().WithElementType(F32)); auto param_s32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(S32)); auto param_u32 = m::BitcastConvert(param).WithShape(m::Shape().WithElementType(U32)); auto max_u32 = m::Convert(m::ConstantScalar(std::numeric_limits<int32_t>::max())) .WithShape(m::Shape().WithElementType(U32)); return m::Select(m::Lt(param_s32, m::ConstantScalar(0)), m::BitcastConvert(m::Subtract(max_u32, param_u32)) .WithShape(m::Shape().WithElementType(S32)), param_s32); }; auto match_generic_iec559 = [](int64_t parameter_number, PrimitiveType fp_type, PrimitiveType int_type) { auto param = m::Parameter(parameter_number) .WithShape(m::Shape().WithElementType(fp_type)); auto signed_value = m::BitcastConvert(param).WithShape( m::Shape().WithElementType(int_type)); int64_t bit_width = primitive_util::BitWidth(fp_type); auto max_value = m::ConstantScalar(LsbMask<uint64_t>(bit_width - 1)); auto flipped_value = m::XorAnyOrder(max_value, signed_value); auto is_negative = m::Lt(signed_value, m::ConstantScalar(0)); return m::Select(is_negative, flipped_value, signed_value); }; auto match_generic_iec559_with_convert = [](int64_t parameter_number, PrimitiveType param_type, PrimitiveType fp_type, PrimitiveType int_type) { auto param = m::Parameter(parameter_number) .WithShape(m::Shape().WithElementType(param_type)); auto convert = m::Convert(param).WithShape(m::Shape().WithElementType(fp_type)); auto signed_value = m::BitcastConvert(convert).WithShape( m::Shape().WithElementType(int_type)); int64_t bit_width = primitive_util::BitWidth(fp_type); auto max_value = m::ConstantScalar(LsbMask<uint64_t>(bit_width - 1)); auto flipped_value = m::XorAnyOrder(max_value, signed_value); auto is_negative = m::Lt(signed_value, m::ConstantScalar(0)); return m::Select(is_negative, flipped_value, signed_value); }; auto match_s32 = [](int64_t parameter_number) { auto param = m::Parameter(parameter_number) .WithShape(m::Shape().WithElementType(S32)); return param; }; auto match_compare = [](PrimitiveType type) { auto param0 = m::Parameter(0).WithShape(m::Shape().WithElementType(type)); auto param1 = m::Parameter(1).WithShape(m::Shape().WithElementType(type)); return m::Gt(param0, param1); }; auto match_default_compare = [](PrimitiveType type) { auto params_with_type = [&](int i, PrimitiveType t) { return m::Parameter(i).WithShape(m::Shape().WithElementType(t)); }; auto params = std::vector({ params_with_type(0, type), params_with_type(1, type), params_with_type(2, S32), params_with_type(3, S32)}); auto const_true = m::Broadcast(m::Constant()); auto values_gt = m::Gt(params[0], params[1]); return m::Select(const_true, values_gt, const_true); }; auto match_all_types = [](HloInstruction* root, auto callback) { bool result = false; for (auto type : {BF16, F32, S32, U32}) { result = result || Match(root, callback(type)); } return result; }; return Match(comp->root_instruction(), m::Gt(match_generic_iec559(0, F32, S32), match_generic_iec559(1, F32, S32))) || Match(comp->root_instruction(), m::Gt(match_generic_iec559(0, BF16, S16), match_generic_iec559(1, BF16, S16))) || Match(comp->root_instruction(), m::Gt(match_generic_iec559_with_convert(0, BF16, F32, S32), match_generic_iec559_with_convert(1, BF16, F32, S32))) || Match(comp->root_instruction(), m::Gt(match_bitcast_f32(0), match_bitcast_f32(1))) || Match(comp->root_instruction(), m::Gt(match_bitcast_bf16(0), match_bitcast_bf16(1))) || Match(comp->root_instruction(), m::Gt(match_bitcast_f32_with_convert(0), match_bitcast_f32_with_convert(1))) || Match(comp->root_instruction(), m::Gt(match_bitcast_bf16_with_convert(0), match_bitcast_bf16_with_convert(1))) || Match(comp->root_instruction(), m::Gt(match_s32(0), match_s32(1))) || match_all_types(comp->root_instruction(), match_compare) || match_all_types(comp->root_instruction(), match_default_compare); } static bool HasIota(HloSortInstruction* sort, HloInstruction* data) { namespace m = match; const std::array<int64_t, 1> sort_dims = { data->shape().dimensions(sort->sort_dimension())}; auto match_iota = [](auto dims) { return m::Iota().WithShape(m::Shape().WithElementType(S32).WithDims(dims)); }; return Match(sort->operand(1), match_iota(data->shape().dimensions())) || Match(sort->operand(1), m::Broadcast(match_iota(sort_dims))); } std::optional<int64_t> TopkRewriter::SortIsInTopK(HloInstruction* inst) { HloSortInstruction* sort = DynCast<HloSortInstruction>(inst); if (sort == nullptr) { return std::nullopt; } if (sort->operand_count() != 1 && sort->operand_count() != 2) { return std::nullopt; } HloInstruction* data = sort->mutable_operand(0); if (sort->operand_count() == 2 && !HasIota(sort, data)) { return std::nullopt; } if (!IsNanSafeGt(sort->to_apply())) { return std::nullopt; } const int64_t sort_dim = sort->sort_dimension(); bool supported = true; std::optional<int64_t> k; for (HloInstruction* user : sort->users()) { const HloInstruction* slice = user; if (sort->operand_count() == 2) { if (user->opcode() != HloOpcode::kGetTupleElement || user->user_count() != 1) { supported = false; break; } slice = user->users()[0]; } if (slice->opcode() != HloOpcode::kSlice) { supported = false; break; } if (absl::c_any_of(slice->slice_starts(), [](int x) { return x != 0; }) || absl::c_any_of(slice->slice_strides(), [](int x) { return x != 1; })) { supported = false; break; } for (int64_t i = 0; i < slice->slice_limits().size(); ++i) { if (i != sort_dim && slice->slice_limits(i) != slice->operand(0)->shape().dimensions(i)) { supported = false; break; } } if (!supported) { break; } if (k == std::nullopt) { k = slice->slice_limits(sort_dim); } else if (k != slice->slice_limits(sort_dim)) { supported = false; break; } } if (k == std::nullopt || !supported) { return std::nullopt; } return k; } struct TopKCustomCall { HloInstruction* topk; HloInstruction* value_gte; HloInstruction* index_gte; }; TopKCustomCall CreateTopKCustomCall(HloInstruction* input, const int64_t sort_dim, const int64_t k, HloComputation* comparator, HloComputation* comp) { Shape data_shape = input->shape(); PrimitiveType element_type = data_shape.element_type(); bool has_batch = data_shape.rank() >= 2; int64_t input_size = data_shape.dimensions(sort_dim); int64_t batch_size = 1; Shape topk_input_shape; if (has_batch) { batch_size = ShapeUtil::ElementsIn(data_shape) / data_shape.dimensions(sort_dim); topk_input_shape = ShapeUtil::MakeShape(element_type, {batch_size, input_size}); if (data_shape.rank() > 2) { input = comp->AddInstruction(HloInstruction::CreateReshape( sort_dim == 0 ? ShapeUtil::MakeShape(element_type, {input_size, batch_size}) : ShapeUtil::MakeShape(element_type, {batch_size, input_size}), input)); } if (sort_dim == 0) { input = comp->AddInstruction( HloInstruction::CreateTranspose(topk_input_shape, input, {1, 0})); } } else { topk_input_shape = data_shape; } Shape topk_shape = has_batch ? ShapeUtil::MakeTupleShape( {ShapeUtil::MakeShape(element_type, {batch_size, k}), ShapeUtil::MakeShape(S32, {batch_size, k})}) : ShapeUtil::MakeTupleShape({ShapeUtil::MakeShape(element_type, {k}), ShapeUtil::MakeShape(S32, {k})}); HloInstruction* topk = comp->AddInstruction(HloInstruction::CreateCustomCall( topk_shape, {input}, comparator, "TopK")); HloInstruction* value_gte = comp->AddInstruction(HloInstruction::CreateGetTupleElement( topk->shape().tuple_shapes(0), topk, 0)); HloInstruction* index_gte = comp->AddInstruction(HloInstruction::CreateGetTupleElement( topk->shape().tuple_shapes(1), topk, 1)); if (has_batch) { if (sort_dim == 0) { value_gte = comp->AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(element_type, {k, batch_size}), value_gte, {1, 0})); index_gte = comp->AddInstruction(HloInstruction::CreateTranspose( ShapeUtil::MakeShape(S32, {k, batch_size}), index_gte, {1, 0})); } if (data_shape.rank() > 2) { std::vector<int64_t> shape_dim(data_shape.dimensions().begin(), data_shape.dimensions().end()); shape_dim[sort_dim] = k; value_gte = comp->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(element_type, shape_dim), value_gte)); index_gte = comp->AddInstruction(HloInstruction::CreateReshape( ShapeUtil::MakeShape(S32, shape_dim), index_gte)); } } return {topk, value_gte, index_gte}; } absl::StatusOr<HloInstruction*> TopkRewriter::TransformPatternToCustomCall( HloInstruction* inst) { std::optional<int64_t> k = SortIsInTopK(inst); if (!k) { return nullptr; } HloSortInstruction* sort = DynCast<HloSortInstruction>(inst); HloInstruction* data = sort->mutable_operand(0); const PrimitiveType element_type = data->shape().element_type(); if (element_type != F32 && element_type != BF16) { return nullptr; } const int64_t sort_dim = sort->sort_dimension(); if (sort_dim != 0 && sort_dim != data->shape().rank() - 1) { return nullptr; } if (!is_profitable_to_convert_(sort, *k)) { return nullptr; } TopKCustomCall topkcc = CreateTopKCustomCall( data, sort_dim, k.value(), sort->to_apply(), inst->parent()); for (HloInstruction* user : sort->users()) { if (sort->operand_count() == 2) { HloInstruction* gte = user; for (HloInstruction* slice : gte->users()) { if (gte->tuple_index() == 0) { TF_RETURN_IF_ERROR(slice->ReplaceAllUsesWith(topkcc.value_gte)); } else if (gte->tuple_index() == 1) { TF_RETURN_IF_ERROR(slice->ReplaceAllUsesWith(topkcc.index_gte)); } else { LOG(FATAL) << "Sort with more than 2 output isn't supported in " "topk rewriter"; } } } else { TF_RETURN_IF_ERROR(user->ReplaceAllUsesWith(topkcc.value_gte)); } } return topkcc.topk; } absl::StatusOr<bool> TopkRewriter::TransformToCustomCall( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->computations(execution_threads)) { for (HloInstruction* inst : comp->MakeInstructionPostOrder()) { TF_ASSIGN_OR_RETURN(HloInstruction * topkcc, TransformPatternToCustomCall(inst)); if (topkcc != nullptr) { VLOG(2) << "Rewritten Topk: " << topkcc->ToString(); changed = true; } } } return changed; } absl::StatusOr<bool> TopkRewriter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; TF_ASSIGN_OR_RETURN(auto transform_to_customcall_changed, TransformToCustomCall(module, execution_threads)); changed |= transform_to_customcall_changed; return changed; } class TopkDecomposerVisitor : public DfsHloRewriteVisitor { public: explicit TopkDecomposerVisitor(HloPredicate should_decompose) : should_decompose_(should_decompose) {} absl::Status HandleCustomCall(HloInstruction* inst) override { if (should_decompose_ && !should_decompose_(inst)) { return absl::OkStatus(); } HloCustomCallInstruction* call = DynCast<HloCustomCallInstruction>(inst); if (call == nullptr || call->custom_call_target() != "TopK") { return absl::OkStatus(); } HloComputation* comparator = call->to_apply(); return DecomposeTopK(call, comparator); } absl::Status HandleTopK(HloInstruction* topk) override { if (should_decompose_ && !should_decompose_(topk)) { return absl::OkStatus(); } TF_ASSIGN_OR_RETURN(HloComputation * comparator, CreateVariadicComparator(topk)); return DecomposeTopK(topk, comparator); } private: bool HasSingleUserReadingOnlyTheValueOutput(HloInstruction* inst) { return inst->user_count() == 1 && inst->users().front()->tuple_index() == 0; } absl::StatusOr<HloComputation*> CreateVariadicComparator( HloInstruction* inst) { HloTopKInstruction* topk = DynCast<HloTopKInstruction>(inst); XlaBuilder b(absl::StrCat("comparator_", topk->name())); std::vector<PrimitiveType> ptypes = { topk->operand(0)->shape().element_type()}; if (!HasSingleUserReadingOnlyTheValueOutput(inst)) { ptypes.emplace_back(PrimitiveType::S32); } XlaComputation comparison = topk->largest() ? CreateScalarGtComputation(ptypes, &b) : CreateScalarLtComputation(ptypes, &b); TF_ASSIGN_OR_RETURN(HloComputation * comparator, BuilderToHloComputation(comparison, topk->parent())); return comparator; } absl::Status DecomposeTopK(HloInstruction* call, HloComputation* variadic_comparator) { HloComputation* comp = call->parent(); HloInstruction* input = call->mutable_operand(0); Shape iota_shape = input->shape(); iota_shape.set_element_type(S32); size_t sort_dimension = input->shape().dimensions_size() - 1; std::vector<int64_t> zeroes(iota_shape.rank(), 0); std::vector<int64_t> ones(iota_shape.rank(), 1); auto slice_tuple = [&](HloInstruction* sort, const size_t index) { return comp->AddInstruction(HloInstruction::CreateSlice( call->shape().tuple_shapes(index), comp->AddInstruction(HloInstruction::CreateGetTupleElement( sort->shape().tuple_shapes(index), sort, index)), zeroes, call->shape().tuple_shapes(index).dimensions(), ones)); }; CHECK_NE(variadic_comparator, nullptr); if (HasSingleUserReadingOnlyTheValueOutput(call) && variadic_comparator->num_parameters() == 2) { HloInstruction* sort = comp->AddInstruction(HloInstruction::CreateSort( {input->shape()}, sort_dimension, {input}, variadic_comparator, true)); TF_RETURN_IF_ERROR(ReplaceInstruction( call->users().front(), comp->AddInstruction(HloInstruction::CreateSlice( call->shape().tuple_shapes(0), sort, zeroes, call->shape().tuple_shapes(0).dimensions(), ones)))); sort->set_metadata(call->metadata()); } else { HloInstruction* iota = comp->AddInstruction( HloInstruction::CreateIota(iota_shape, iota_shape.rank() - 1)); HloInstruction* sort = comp->AddInstruction(HloInstruction::CreateSort( ShapeUtil::MakeTupleShape({input->shape(), iota_shape}), sort_dimension, {input, iota}, variadic_comparator, true)); TF_RETURN_IF_ERROR(ReplaceInstruction( call, comp->AddInstruction(HloInstruction::CreateTuple( {slice_tuple(sort, 0), slice_tuple(sort, 1)})))); sort->set_metadata(call->metadata()); } return absl::OkStatus(); } private: HloPredicate should_decompose_; }; absl::StatusOr<bool> TopkDecomposer::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { return TopkDecomposerVisitor(should_decompose_) .RunOnModule(module, execution_threads); } }
#include "xla/service/topk_rewriter.h" #include <algorithm> #include <memory> #include <numeric> #include <optional> #include <utility> #include <vector> #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_instructions.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/utils/hlo_matchers.h" #include "xla/service/hlo_dce.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/service/tuple_simplifier.h" #include "xla/tests/hlo_test_base.h" #include "xla/tests/literal_test_util.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace m = ::xla::match; namespace xla { namespace { namespace op = xla::testing::opcode_matchers; using ::tsl::testing::IsOkAndHolds; using TopkRewriterTest = HloTestBase; std::string getComparator() { return R"( %compare { %p.1.lhs.8 = s32[] parameter(2) %p.1.rhs.9 = s32[] parameter(3) %p.0.lhs.6 = f32[] parameter(0) %bitcast-convert.11 = s32[] bitcast-convert(%p.0.lhs.6) %constant.15 = s32[] constant(0) %compare.16 = pred[] compare(%bitcast-convert.11, %constant.15), direction=LT %constant.10 = u32[] constant(2147483647) %bitcast-convert.12 = u32[] bitcast-convert(%p.0.lhs.6) %subtract.13 = u32[] subtract(%constant.10, %bitcast-convert.12) %bitcast-convert.14 = s32[] bitcast-convert(%subtract.13) %select.17 = s32[] select(%compare.16, %bitcast-convert.14, %bitcast-convert.11) %p.0.rhs.7 = f32[] parameter(1) %bitcast-convert.19 = s32[] bitcast-convert(%p.0.rhs.7) %constant.23 = s32[] constant(0) %compare.24 = pred[] compare(%bitcast-convert.19, %constant.23), direction=LT %constant.18 = u32[] constant(2147483647) %bitcast-convert.20 = u32[] bitcast-convert(%p.0.rhs.7) %subtract.21 = u32[] subtract(%constant.18, %bitcast-convert.20) %bitcast-convert.22 = s32[] bitcast-convert(%subtract.21) %select.25 = s32[] select(%compare.24, %bitcast-convert.22, %bitcast-convert.19) ROOT %compare.26 = pred[] compare(%select.17, %select.25), direction=GT })"; } std::string getConvertMaxComparator() { return R"( %compare { %p.1.lhs.6 = s32[] parameter(2) %p.1.rhs.7 = s32[] parameter(3) %p.0.lhs.4 = f32[] parameter(0) %bitcast-convert = s32[] bitcast-convert(f32[] %p.0.lhs.4) %constant = s32[] constant(0) %compare = pred[] compare(s32[] %bitcast-convert, s32[] %constant), direction=LT %constant.1 = s32[] constant(2147483647) %convert = u32[] convert(s32[] %constant.1) %bitcast-convert.1 = u32[] bitcast-convert(f32[] %p.0.lhs.4) %subtract = u32[] subtract(u32[] %convert, u32[] %bitcast-convert.1) %bitcast-convert.2 = s32[] bitcast-convert(u32[] %subtract) %select = s32[] select(pred[] %compare, s32[] %bitcast-convert.2, s32[] %bitcast-convert) %p.0.rhs.5 = f32[] parameter(1) %bitcast-convert.3 = s32[] bitcast-convert(f32[] %p.0.rhs.5) %compare.1 = pred[] compare(s32[] %bitcast-convert.3, s32[] %constant), direction=LT %bitcast-convert.4 = u32[] bitcast-convert(f32[] %p.0.rhs.5) %subtract.1 = u32[] subtract(u32[] %convert, u32[] %bitcast-convert.4) %bitcast-convert.5 = s32[] bitcast-convert(u32[] %subtract.1) %select.1 = s32[] select(pred[] %compare.1, s32[] %bitcast-convert.5, s32[] %bitcast-convert.3) ROOT %compare.2 = pred[] compare(s32[] %select, s32[] %select.1), direction=GT })"; } std::string getComparatorNoIota() { return R"( %compare { %p.0.lhs.6 = f32[] parameter(0) %bitcast-convert.11 = s32[] bitcast-convert(%p.0.lhs.6) %constant.15 = s32[] constant(0) %compare.16 = pred[] compare(%bitcast-convert.11, %constant.15), direction=LT %constant.10 = u32[] constant(2147483647) %bitcast-convert.12 = u32[] bitcast-convert(%p.0.lhs.6) %subtract.13 = u32[] subtract(%constant.10, %bitcast-convert.12) %bitcast-convert.14 = s32[] bitcast-convert(%subtract.13) %select.17 = s32[] select(%compare.16, %bitcast-convert.14, %bitcast-convert.11) %p.0.rhs.7 = f32[] parameter(1) %bitcast-convert.19 = s32[] bitcast-convert(%p.0.rhs.7) %constant.23 = s32[] constant(0) %compare.24 = pred[] compare(%bitcast-convert.19, %constant.23), direction=LT %constant.18 = u32[] constant(2147483647) %bitcast-convert.20 = u32[] bitcast-convert(%p.0.rhs.7) %subtract.21 = u32[] subtract(%constant.18, %bitcast-convert.20) %bitcast-convert.22 = s32[] bitcast-convert(%subtract.21) %select.25 = s32[] select(%compare.24, %bitcast-convert.22, %bitcast-convert.19) ROOT %compare.26 = pred[] compare(%select.17, %select.25), direction=GT })"; } std::string getCompareComparator() { return R"( %compare { %Arg_0.100 = f32[] parameter(0) %Arg_1.101 = f32[] parameter(1) %Arg_2.102 = s32[] parameter(2) %Arg_3.103 = s32[] parameter(3) ROOT %compare.56364 = pred[] compare(f32[] %Arg_0.100, f32[] %Arg_1.101), direction=GT, type=TOTALORDER })"; } std::string getStableComparator() { return R"( %compare { %p.1.lhs.40628 = s32[] parameter(2) %p.1.rhs.40629 = s32[] parameter(3) %constant.40630 = pred[] constant(true) %broadcast.40631 = pred[] broadcast(pred[] %constant.40630), dimensions={} %p.0.lhs.40626 = f32[] parameter(0) %p.0.rhs.40627 = f32[] parameter(1) %compare.40632 = pred[] compare(f32[] %p.0.lhs.40626, f32[] %p.0.rhs.40627), direction=GT, type=TOTALORDER ROOT %select.40633 = pred[] select(pred[] %broadcast.40631, pred[] %compare.40632, pred[] %broadcast.40631) })"; } bool IsStableSort(const HloInstruction* inst) { auto* sort = DynCast<HloSortInstruction>(inst); return sort != nullptr && sort->is_stable(); } TEST_F(TopkRewriterTest, Rewrite) { for (std::string comparator : {getComparator(), getCompareComparator(), getStableComparator()}) { const std::string hlo_string = R"( HloModule module )" + comparator + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %iota.4 = s32[8,1234567] iota(), iota_dimension=1 %sort.27 = (f32[8,1234567], s32[8,1234567]) sort(%arg_tuple.1, %iota.4), dimensions={1}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[8,1234567] get-tuple-element(%sort.27), index=0 %slice.29 = f32[8,5] slice(%get-tuple-element.28), slice={[0:8], [0:5]} %get-tuple-element.30 = s32[8,1234567] get-tuple-element(%sort.27), index=1 %slice.31 = s32[8,5] slice(%get-tuple-element.30), slice={[0:8], [0:5]} ROOT %tuple.32 = (f32[8,5], s32[8,5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0), m::GetTupleElement(m::CustomCall(m::Parameter(0)), 1)))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(cc->custom_call_target(), "TopK"); } } TEST_F(TopkRewriterTest, RewriteWithBroadcast) { for (std::string comparator : {getComparator(), getCompareComparator(), getStableComparator()}) { const std::string hlo_string = R"( HloModule module )" + comparator + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %iota.4 = s32[1234567]{0} iota(), iota_dimension=0 %broadcast.5 = s32[8,1234567]{1,0} broadcast(iota.4), dimensions={1} %sort.27 = (f32[8,1234567], s32[8,1234567]) sort(%arg_tuple.1, %broadcast.5), dimensions={1}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[8,1234567] get-tuple-element(%sort.27), index=0 %slice.29 = f32[8,5] slice(%get-tuple-element.28), slice={[0:8], [0:5]} %get-tuple-element.30 = s32[8,1234567] get-tuple-element(%sort.27), index=1 %slice.31 = s32[8,5] slice(%get-tuple-element.30), slice={[0:8], [0:5]} ROOT %tuple.32 = (f32[8,5], s32[8,5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0), m::GetTupleElement(m::CustomCall(m::Parameter(0)), 1)))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(cc->custom_call_target(), "TopK"); } } TEST_F(TopkRewriterTest, RewriteWithConvertMaxComparator) { const std::string hlo_string = R"( HloModule module )" + getConvertMaxComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %iota.4 = s32[8,1234567] iota(), iota_dimension=1 %sort.27 = (f32[8,1234567], s32[8,1234567]) sort(%arg_tuple.1, %iota.4), dimensions={1}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[8,1234567] get-tuple-element(%sort.27), index=0 %slice.29 = f32[8,5] slice(%get-tuple-element.28), slice={[0:8], [0:5]} %get-tuple-element.30 = s32[8,1234567] get-tuple-element(%sort.27), index=1 %slice.31 = s32[8,5] slice(%get-tuple-element.30), slice={[0:8], [0:5]} ROOT %tuple.32 = (f32[8,5], s32[8,5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0), m::GetTupleElement(m::CustomCall(m::Parameter(0)), 1)))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(cc->custom_call_target(), "TopK"); } TEST_F(TopkRewriterTest, RewriteUnbatched) { const std::string hlo_string = R"( HloModule module )" + getComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[1234567] parameter(0) %iota.4 = s32[1234567] iota(), iota_dimension=0 %sort.27 = (f32[1234567], s32[1234567]) sort(%arg_tuple.1, %iota.4), dimensions={0}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[1234567] get-tuple-element(%sort.27), index=0 %slice.29 = f32[5] slice(%get-tuple-element.28), slice={[0:5]} %get-tuple-element.30 = s32[1234567] get-tuple-element(%sort.27), index=1 %slice.31 = s32[5] slice(%get-tuple-element.30), slice={[0:5]} ROOT %tuple.32 = (f32[5], s32[5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0), m::GetTupleElement(m::CustomCall(m::Parameter(0)), 1)))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0)->operand(0); EXPECT_THAT(cc->custom_call_target(), "TopK"); } TEST_F(TopkRewriterTest, RewriteTranspose) { const std::string hlo_string = R"( HloModule module )" + getComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[1234567,8] parameter(0) %iota.4 = s32[1234567,8] iota(), iota_dimension=0 %sort.27 = (f32[1234567,8], s32[1234567,8]) sort(%arg_tuple.1, %iota.4), dimensions={0}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[1234567,8] get-tuple-element(%sort.27), index=0 %slice.29 = f32[5,8] slice(%get-tuple-element.28), slice={[0:5], [0:8]} %get-tuple-element.30 = s32[1234567,8] get-tuple-element(%sort.27), index=1 %slice.31 = s32[5,8] slice(%get-tuple-element.30), slice={[0:5], [0:8]} ROOT %tuple.32 = (f32[5,8], s32[5,8]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); LOG(INFO) << module->entry_computation()->ToString(); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Transpose(m::GetTupleElement( m::CustomCall(m::Transpose(m::Parameter(0))), 0)), m::Transpose(m::GetTupleElement( m::CustomCall(m::Transpose(m::Parameter(0))), 1))))); const HloInstruction* cc = module->entry_computation() ->root_instruction() ->operand(0) ->operand(0) ->operand(0); EXPECT_THAT(cc->custom_call_target(), "TopK"); } TEST_F(TopkRewriterTest, RewriteReshape) { const std::string hlo_string = R"( HloModule module )" + getComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[3,8,1234567] parameter(0) %iota.4 = s32[3,8,1234567] iota(), iota_dimension=2 %sort.27 = (f32[3,8,1234567], s32[3,8,1234567]) sort(%arg_tuple.1, %iota.4), dimensions={2}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[3, 8,1234567] get-tuple-element(%sort.27), index=0 %slice.29 = f32[3,8,5] slice(%get-tuple-element.28), slice={[0:3], [0:8], [0:5]} %get-tuple-element.30 = s32[3,8,1234567] get-tuple-element(%sort.27), index=1 %slice.31 = s32[3,8,5] slice(%get-tuple-element.30), slice={[0:3], [0:8], [0:5]} ROOT %tuple.32 = (f32[3,8,5], s32[3,8,5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::Reshape(m::GetTupleElement( m::CustomCall(m::Reshape(m::Parameter(0))), 0)), m::Reshape(m::GetTupleElement( m::CustomCall(m::Reshape(m::Parameter(0))), 1))))); const HloInstruction* cc = module->entry_computation() ->root_instruction() ->operand(0) ->operand(0) ->operand(0); EXPECT_THAT(cc->custom_call_target(), "TopK"); } TEST_F(TopkRewriterTest, RewriteNoIota) { const std::string hlo_string = R"( HloModule module )" + getComparatorNoIota() + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %sort.27 = f32[8,1234567] sort(%arg_tuple.1), dimensions={1}, is_stable=true, to_apply=%compare ROOT %slice.29 = f32[8,5] slice(%sort.27), slice={[0:8], [0:5]} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0); EXPECT_THAT(cc->custom_call_target(), "TopK"); } TEST_F(TopkRewriterTest, RoundTripNoIota) { const std::string hlo_string = R"( HloModule module )" + getComparatorNoIota() + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %sort.27 = f32[8,1234567] sort(%arg_tuple.1), dimensions={1}, is_stable=true, to_apply=%compare ROOT %slice.29 = f32[8,5] slice(%sort.27), slice={[0:8], [0:5]} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto run_topk_pass = [&] { TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); ASSERT_TRUE(changed); ASSERT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0); ASSERT_THAT(cc->custom_call_target(), "TopK"); }; run_topk_pass(); TF_ASSERT_OK_AND_ASSIGN(bool decomposer_changed, TopkDecomposer().Run(module.get())); EXPECT_TRUE(decomposer_changed); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Slice( m::Sort(m::Parameter(0)).WithPredicate(IsStableSort)))); run_topk_pass(); } TEST_F(TopkRewriterTest, RoundTripOnlyIota) { const std::string hlo_string = R"( HloModule module )" + getComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %iota.4 = s32[1234567]{0} iota(), iota_dimension=0 %broadcast.5 = s32[8,1234567]{1,0} broadcast(iota.4), dimensions={1} %sort.27 = (f32[8,1234567], s32[8,1234567]) sort(%arg_tuple.1, %broadcast.5), dimensions={1}, is_stable=true, to_apply=%compare %get-tuple-element.28 = s32[8,1234567] get-tuple-element(%sort.27), index=1 ROOT %slice.29 = s32[8,5] slice(%get-tuple-element.28), slice={[0:8], [0:5]} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto run_topk_pass = [&] { TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); ASSERT_TRUE(changed); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(m::Parameter(0)), 1))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0); ASSERT_THAT(cc->custom_call_target(), "TopK"); }; run_topk_pass(); TF_ASSERT_OK_AND_ASSIGN(bool decomposer_changed, TopkDecomposer().Run(module.get())); EXPECT_TRUE(decomposer_changed); TF_ASSERT_OK(TupleSimplifier().Run(module.get()).status()); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Slice(m::GetTupleElement( m::Sort(m::Parameter(0), m::Iota()).WithPredicate(IsStableSort), 1)))); run_topk_pass(); } TEST_F(TopkRewriterTest, RoundTrip) { const std::string hlo_string = R"( HloModule module )" + getComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %iota.4 = s32[8,1234567] iota(), iota_dimension=1 %sort.27 = (f32[8,1234567], s32[8,1234567]) sort(%arg_tuple.1, %iota.4), dimensions={1}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[8,1234567] get-tuple-element(%sort.27), index=0 %slice.29 = f32[8,5] slice(%get-tuple-element.28), slice={[0:8], [0:5]} %get-tuple-element.30 = s32[8,1234567] get-tuple-element(%sort.27), index=1 %slice.31 = s32[8,5] slice(%get-tuple-element.30), slice={[0:8], [0:5]} ROOT %tuple.32 = (f32[8,5], s32[8,5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto run_topk_pass = [&] { TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); ASSERT_TRUE(changed); ASSERT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Tuple( m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0), m::GetTupleElement(m::CustomCall(m::Parameter(0)), 1)))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0)->operand(0); ASSERT_THAT(cc->custom_call_target(), "TopK"); }; run_topk_pass(); TF_ASSERT_OK_AND_ASSIGN(bool decomposer_changed, TopkDecomposer().Run(module.get())); EXPECT_TRUE(decomposer_changed); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); TF_ASSERT_OK(TupleSimplifier().Run(module.get()).status()); auto sort_matcher = m::Sort(m::Parameter(0), m::Iota()).WithPredicate(IsStableSort); EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Tuple(m::Slice(m::GetTupleElement(sort_matcher, 0)), m::Slice(m::GetTupleElement(sort_matcher, 1))))); run_topk_pass(); } TEST_F(TopkRewriterTest, RoundTripValueOnly) { const std::string hlo_string = R"( HloModule module )" + getComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[8,1234567] parameter(0) %iota.4 = s32[8,1234567] iota(), iota_dimension=1 %sort.27 = (f32[8,1234567], s32[8,1234567]) sort(%arg_tuple.1, %iota.4), dimensions={1}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[8,1234567] get-tuple-element(%sort.27), index=0 ROOT %slice.29 = f32[8,5] slice(%get-tuple-element.28), slice={[0:8], [0:5]} })"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); auto run_topk_pass = [&] { TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); ASSERT_TRUE(changed); ASSERT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::GetTupleElement(m::CustomCall(m::Parameter(0)), 0))); const HloInstruction* cc = module->entry_computation()->root_instruction()->operand(0); ASSERT_THAT(cc->custom_call_target(), "TopK"); }; run_topk_pass(); TF_ASSERT_OK_AND_ASSIGN(bool decomposer_changed, TopkDecomposer().Run(module.get())); EXPECT_TRUE(decomposer_changed); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); TF_ASSERT_OK(TupleSimplifier().Run(module.get()).status()); auto sort_matcher = m::Sort(m::Parameter(0), m::Iota()).WithPredicate(IsStableSort); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Slice(m::GetTupleElement(sort_matcher, 0)))); run_topk_pass(); } TEST_F(TopkRewriterTest, SanityCheckOutput) { const std::string hlo_string = R"( HloModule module )" + getCompareComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[1234] parameter(0) %iota.4 = s32[1234] iota(), iota_dimension=0 %sort.27 = (f32[1234], s32[1234]) sort(%arg_tuple.1, %iota.4), dimensions={0}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[1234] get-tuple-element(%sort.27), index=0 %slice.29 = f32[5] slice(%get-tuple-element.28), slice={[0:5]} %get-tuple-element.30 = s32[1234] get-tuple-element(%sort.27), index=1 %slice.31 = s32[5] slice(%get-tuple-element.30), slice={[0:5]} ROOT %tuple.32 = (f32[5], s32[5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto source_module, ParseAndReturnVerifiedModule(hlo_string)); auto topk_module = source_module->Clone(); EXPECT_THAT(TopkRewriter([](const HloSortInstruction*, int64_t) { return true; }).Run(topk_module.get()), IsOkAndHolds(true)); auto decomposed_module = topk_module->Clone(); EXPECT_THAT(TopkDecomposer().Run(decomposed_module.get()), IsOkAndHolds(true)); const size_t source_size = 1234; std::vector<float> source(source_size); std::iota(source.begin(), source.end(), 80000); auto input = LiteralUtil::CreateR1<float>(source); std::vector<float> top_k({81233, 81232, 81231, 81230, 81229}); auto check_result = [&](std::unique_ptr<HloModule> module) { TF_ASSERT_OK_AND_ASSIGN(auto result, Execute(std::move(module), {&input})); LiteralTestUtil::ExpectR1Equal<float>(top_k, result.DecomposeTuple()[0]); }; check_result(std::move(source_module)); check_result(std::move(decomposed_module)); } TEST_F(TopkRewriterTest, Equivalent) { const std::string hlo_string = R"( HloModule module )" + getCompareComparator() + R"( ENTRY cluster { %arg_tuple.1 = f32[1234] parameter(0) %iota.4 = s32[1234] iota(), iota_dimension=0 %sort.27 = (f32[1234], s32[1234]) sort(%arg_tuple.1, %iota.4), dimensions={0}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[1234] get-tuple-element(%sort.27), index=0 %slice.29 = f32[5] slice(%get-tuple-element.28), slice={[0:5]} %get-tuple-element.30 = s32[1234] get-tuple-element(%sort.27), index=1 %slice.31 = s32[5] slice(%get-tuple-element.30), slice={[0:5]} ROOT %tuple.32 = (f32[5], s32[5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto source_module, ParseAndReturnVerifiedModule(hlo_string)); auto round_trip = [](HloModule* module) { EXPECT_THAT(TopkRewriter([](const HloSortInstruction*, int64_t) { return true; }).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopkDecomposer().Run(module), IsOkAndHolds(true)); }; EXPECT_TRUE( RunAndCompare(std::move(source_module), std::nullopt, round_trip)); } TEST_F(TopkRewriterTest, DecomposerStability) { const std::string hlo_string = R"( HloModule module )" + getCompareComparator() + R"( ENTRY cluster { %constant.1 = f32[] constant(42) %broadcast.2= f32[1234] broadcast(f32[] %constant.1), dimensions={} %iota.4 = s32[1234] iota(), iota_dimension=0 %sort.27 = (f32[1234], s32[1234]) sort(%broadcast.2, %iota.4), dimensions={0}, is_stable=true, to_apply=%compare %get-tuple-element.28 = f32[1234] get-tuple-element(%sort.27), index=0 %slice.29 = f32[5] slice(%get-tuple-element.28), slice={[0:5]} %get-tuple-element.30 = s32[1234] get-tuple-element(%sort.27), index=1 %slice.31 = s32[5] slice(%get-tuple-element.30), slice={[0:5]} ROOT %tuple.32 = (f32[5], s32[5]) tuple(%slice.29, %slice.31) })"; TF_ASSERT_OK_AND_ASSIGN(auto source_module, ParseAndReturnVerifiedModule(hlo_string)); auto round_trip = [](HloModule* module) { EXPECT_THAT(TopkRewriter([](const HloSortInstruction*, int64_t) { return true; }).Run(module), IsOkAndHolds(true)); EXPECT_THAT(TopkDecomposer().Run(module), IsOkAndHolds(true)); }; EXPECT_TRUE(RunAndCompareNoHloPasses(std::move(source_module), std::nullopt, round_trip)); } TEST_F(TopkRewriterTest, TopKDecomposition) { const std::string hlo_string = R"( HloModule topk ENTRY TopK { x = bf16[10,10]{0,1} parameter(0) ROOT topk = (bf16[10,2]{0,1}, s32[10,2]{0,1}) topk(x), k=2, largest=true } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool decomposer_changed, TopkDecomposer().Run(module.get())); EXPECT_TRUE(decomposer_changed); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); TF_ASSERT_OK(TupleSimplifier().Run(module.get()).status()); auto sort_matcher = op::Sort(op::Parameter(0), op::Iota()); EXPECT_THAT(module->entry_computation()->root_instruction(), op::Tuple(op::Slice(op::GetTupleElement(sort_matcher, 0)), op::Slice(op::GetTupleElement(sort_matcher, 1)))); TopkRewriter rewriter( [](const HloSortInstruction*, int64_t) { return true; }); TF_ASSERT_OK_AND_ASSIGN(bool changed, rewriter.Run(module.get())); TF_ASSERT_OK(HloDCE().Run(module.get()).status()); EXPECT_TRUE(changed); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/topk_rewriter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/topk_rewriter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
3a0f99c2-f130-42c7-848e-16e5e583a8ca
cpp
google/langsvr
decode
src/lsp/decode.cc
src/lsp/decode_test.cc
#include "langsvr/lsp/decode.h" namespace langsvr::lsp { Result<SuccessType> Decode(const json::Value& v, Null&) { return v.Null(); } Result<SuccessType> Decode(const json::Value& v, Boolean& out) { auto res = v.Bool(); if (res == Success) [[likely]] { out = res.Get(); return Success; } return res.Failure(); } Result<SuccessType> Decode(const json::Value& v, Integer& out) { auto res = v.I64(); if (res == Success) [[likely]] { out = res.Get(); return Success; } return res.Failure(); } Result<SuccessType> Decode(const json::Value& v, Uinteger& out) { auto res = v.U64(); if (res == Success) [[likely]] { out = res.Get(); return Success; } return res.Failure(); } Result<SuccessType> Decode(const json::Value& v, Decimal& out) { auto res = v.F64(); if (res == Success) [[likely]] { out = res.Get(); return Success; } return res.Failure(); } Result<SuccessType> Decode(const json::Value& v, String& out) { auto res = v.String(); if (res == Success) [[likely]] { out = res.Get(); return Success; } return res.Failure(); } }
#include "langsvr/json/builder.h" #include "langsvr/lsp/lsp.h" #include "langsvr/lsp/printer.h" #include "gmock/gmock.h" namespace langsvr::lsp { namespace { TEST(DecodeTest, ShowDocumentParams) { auto b = json::Builder::Create(); auto parse_res = b->Parse( R"({"selection":{"end":{"character":4,"line":3},"start":{"character":2,"line":1}},"uri":"file.txt"})"); EXPECT_EQ(parse_res, Success); ShowDocumentParams got; auto decode_res = Decode(*parse_res.Get(), got); EXPECT_EQ(decode_res, Success); ShowDocumentParams expected; expected.uri = "file.txt"; expected.selection = Range{{1, 2}, {3, 4}}; EXPECT_EQ(got, expected); } TEST(DecodeTest, ErrNullStruct) { auto b = json::Builder::Create(); auto parse_res = b->Parse("null"); EXPECT_EQ(parse_res, Success); SemanticTokensFullDelta got; auto decode_res = Decode(*parse_res.Get(), got); EXPECT_NE(decode_res, Success); } TEST(DecodeTest, ErrNumberStruct) { auto b = json::Builder::Create(); auto parse_res = b->Parse("42"); EXPECT_EQ(parse_res, Success); SemanticTokensFullDelta got; auto decode_res = Decode(*parse_res.Get(), got); EXPECT_NE(decode_res, Success); } } }
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/lsp/decode.cc
https://github.com/google/langsvr/blob/303c526231a90049a3e384549720f3fbd453cf66/src/lsp/decode_test.cc
303c526231a90049a3e384549720f3fbd453cf66
c819c062-ecf7-46e5-a83c-b400d4ef4882
cpp
tensorflow/tensorflow
xplane_to_memory_profile
tensorflow/core/profiler/convert/xplane_to_memory_profile.cc
tensorflow/core/profiler/convert/xplane_to_memory_profile_test.cc
#include "tensorflow/core/profiler/convert/xplane_to_memory_profile.h" #include <algorithm> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "xla/tsl/profiler/utils/tf_xplane_visitor.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { constexpr int64_t kInvalidStepId = -1; using IndexMetaPair = std::pair<int64_t , const MemoryActivityMetadata*>; bool IsMemoryAllocation(int64_t event_type) { return event_type == HostEventType::kMemoryAllocation; } bool IsMemoryDeallocation(int64_t event_type) { return event_type == HostEventType::kMemoryDeallocation; } void UpdateProfileSummary(const MemoryAggregationStats& stats, int64_t time_offset_ps, MemoryProfileSummary* summary) { summary->set_peak_bytes_usage_lifetime(stats.peak_bytes_in_use()); MemoryAggregationStats* peak_stats = summary->mutable_peak_stats(); if (stats.stack_reserved_bytes() + stats.heap_allocated_bytes() >= peak_stats->peak_bytes_in_use()) { *peak_stats = stats; peak_stats->set_peak_bytes_in_use(stats.stack_reserved_bytes() + stats.heap_allocated_bytes()); summary->set_peak_stats_time_ps(time_offset_ps); summary->set_memory_capacity(stats.stack_reserved_bytes() + stats.heap_allocated_bytes() + stats.free_memory_bytes()); } } MemoryProfile GenerateMemoryProfile(const XPlane* host_trace) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); MemoryProfile memory_profile; plane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { int64_t event_type = event.Type().value_or(HostEventType::kUnknownHostEventType); if (!(IsMemoryAllocation(event_type) || IsMemoryDeallocation(event_type))) { return; } MemoryAggregationStats stats; MemoryActivityMetadata metadata; if (IsMemoryAllocation(event_type)) { metadata.set_memory_activity(ALLOCATION); } else if (IsMemoryDeallocation(event_type)) { metadata.set_memory_activity(DEALLOCATION); } metadata.set_step_id(kInvalidStepId); std::string memory_id; event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (stat.Type().value()) { case StatType::kIndexOnHost: case StatType::kDeviceOrdinal: memory_id = absl::StrCat(stat.IntValue()); break; case StatType::kAllocatorName: memory_id = std::string(stat.StrOrRefValue()); break; case StatType::kBytesReserved: stats.set_stack_reserved_bytes(stat.IntValue()); break; case StatType::kBytesAllocated: stats.set_heap_allocated_bytes(stat.IntValue()); break; case StatType::kBytesAvailable: stats.set_free_memory_bytes(stat.IntValue()); break; case StatType::kFragmentation: stats.set_fragmentation(stat.DoubleValue()); break; case StatType::kPeakBytesInUse: stats.set_peak_bytes_in_use(stat.IntValue()); break; case StatType::kRequestedBytes: metadata.set_requested_bytes(stat.IntValue()); break; case StatType::kAllocationBytes: metadata.set_allocation_bytes(stat.IntValue()); break; case StatType::kAddress: metadata.set_address(stat.IntValue()); break; case StatType::kTfOp: metadata.set_tf_op_name(std::string(stat.StrOrRefValue())); break; case StatType::kGroupId: metadata.set_step_id(stat.IntValue()); break; case StatType::kRegionType: metadata.set_region_type(std::string(stat.StrOrRefValue())); break; case StatType::kDataType: metadata.set_data_type(tensorflow::DataTypeString( static_cast<tensorflow::DataType>(stat.IntValue()))); break; case StatType::kTensorShapes: metadata.set_tensor_shape(std::string(stat.StrOrRefValue())); break; } }); MemoryProfileSummary* summary = (*memory_profile.mutable_memory_profile_per_allocator())[memory_id] .mutable_profile_summary(); UpdateProfileSummary(stats, event.OffsetPs(), summary); MemoryProfileSnapshot* snapshot = (*memory_profile.mutable_memory_profile_per_allocator())[memory_id] .add_memory_profile_snapshots(); snapshot->set_time_offset_ps(event.OffsetPs()); *snapshot->mutable_aggregation_stats() = std::move(stats); *snapshot->mutable_activity_metadata() = std::move(metadata); }); }); return memory_profile; } void UpdateStepId(PerAllocatorMemoryProfile* memory_profile) { int64_t last_valid_step_id = -1; for (auto& snapshot : *memory_profile->mutable_memory_profile_snapshots()) { DCHECK(snapshot.has_activity_metadata()); if (snapshot.mutable_activity_metadata()->step_id() == kInvalidStepId) { snapshot.mutable_activity_metadata()->set_step_id(last_valid_step_id + 1); } else { last_valid_step_id = snapshot.mutable_activity_metadata()->step_id(); } } } void UpdateDeallocation(PerAllocatorMemoryProfile* memory_profile) { absl::flat_hash_map<uint64 , const MemoryActivityMetadata*> addr_metadata_map; for (auto& snapshot : *memory_profile->mutable_memory_profile_snapshots()) { uint64 address = snapshot.activity_metadata().address(); if (snapshot.activity_metadata().memory_activity() == DEALLOCATION) { if (addr_metadata_map.contains(address)) { const MemoryActivityMetadata* alloc_meta = addr_metadata_map[address]; snapshot.mutable_activity_metadata()->set_tf_op_name( alloc_meta->tf_op_name()); snapshot.mutable_activity_metadata()->set_region_type( alloc_meta->region_type()); snapshot.mutable_activity_metadata()->set_data_type( alloc_meta->data_type()); snapshot.mutable_activity_metadata()->set_tensor_shape( alloc_meta->tensor_shape()); addr_metadata_map.erase(address); } else { VLOG(2) << "Can't find matching memory allocation for this deallocation: " << snapshot.DebugString(); } } else if (!addr_metadata_map.contains(address)) { addr_metadata_map[address] = &snapshot.activity_metadata(); } else { VLOG(2) << "There are two allocations recorded for the same address: " << address << ". The later allocation event is: " << snapshot.DebugString(); } } VLOG(2) << "Number of allocations that cannot find matching dealloctions: " << addr_metadata_map.size(); } int64_t GetPeakMemoryStep(int64_t peak_bytes_profile, const PerAllocatorMemoryProfile* memory_profile) { int64_t peak_bytes_profile_step_id = 0; for (const auto& snapshot : memory_profile->memory_profile_snapshots()) { if (peak_bytes_profile == snapshot.aggregation_stats().heap_allocated_bytes() + snapshot.aggregation_stats().stack_reserved_bytes()) { DCHECK(snapshot.has_activity_metadata()); peak_bytes_profile_step_id = snapshot.activity_metadata().step_id(); } } return peak_bytes_profile_step_id; } struct MetadataComparator { bool operator()(const IndexMetaPair& a, const IndexMetaPair& b) const { const MemoryActivityMetadata* a_meta = a.second; const MemoryActivityMetadata* b_meta = b.second; DCHECK_NE(a_meta, nullptr); DCHECK_NE(b_meta, nullptr); auto lhs = std::make_tuple(-a_meta->allocation_bytes(), -a_meta->requested_bytes(), a_meta->tf_op_name(), a_meta->region_type(), a_meta->data_type(), a_meta->tensor_shape()); auto rhs = std::make_tuple(-b_meta->allocation_bytes(), -b_meta->requested_bytes(), b_meta->tf_op_name(), b_meta->region_type(), b_meta->data_type(), b_meta->tensor_shape()); return lhs < rhs; } }; void InsertSpecialAllocations(int64_t unmapped_allocation_bytes, int64_t step_id, PerAllocatorMemoryProfile* memory_profile, std::vector<IndexMetaPair>* active_allocs) { int index = 0; if (unmapped_allocation_bytes > 0) { MemoryActivityMetadata* special_allocation = memory_profile->add_special_allocations(); special_allocation->set_memory_activity(ALLOCATION); special_allocation->set_requested_bytes(unmapped_allocation_bytes); special_allocation->set_allocation_bytes(unmapped_allocation_bytes); special_allocation->set_address(0); special_allocation->set_tf_op_name("unused preallocated device memory"); special_allocation->set_step_id(step_id); special_allocation->set_region_type("persist/dynamic"); special_allocation->set_data_type( tensorflow::DataTypeString(static_cast<tensorflow::DataType>(0))); special_allocation->set_tensor_shape("unknown"); active_allocs->push_back({--index, special_allocation}); } int64_t stack_bytes = memory_profile->profile_summary().peak_stats().stack_reserved_bytes(); if (stack_bytes > 0) { MemoryActivityMetadata* special_allocation = memory_profile->add_special_allocations(); special_allocation->set_memory_activity(ALLOCATION); special_allocation->set_requested_bytes(stack_bytes); special_allocation->set_allocation_bytes(stack_bytes); special_allocation->set_address(0); special_allocation->set_tf_op_name("stack"); special_allocation->set_step_id(step_id); special_allocation->set_region_type("stack"); special_allocation->set_data_type( tensorflow::DataTypeString(static_cast<tensorflow::DataType>(0))); special_allocation->set_tensor_shape("unknown"); active_allocs->push_back({--index, special_allocation}); } } bool operator==(const IndexMetaPair& a, const IndexMetaPair& b) { const MemoryActivityMetadata* a_meta = a.second; const MemoryActivityMetadata* b_meta = b.second; return a_meta->allocation_bytes() == b_meta->allocation_bytes() && a_meta->requested_bytes() == b_meta->requested_bytes() && a_meta->tf_op_name() == b_meta->tf_op_name() && a_meta->region_type() == b_meta->region_type() && a_meta->data_type() == b_meta->data_type() && a_meta->tensor_shape() == b_meta->tensor_shape(); } void ProcessActiveAllocations(int64_t peak_bytes_profile_step_id, PerAllocatorMemoryProfile* memory_profile) { int64_t unmapped_allocation_bytes = memory_profile->profile_summary().peak_stats().heap_allocated_bytes(); int64_t unmapped_deallocation_bytes = 0; absl::flat_hash_map<int64_t , IndexMetaPair> active_alloc_map; for (int i = 0; i < memory_profile->memory_profile_snapshots_size(); i++) { const auto& snapshot = memory_profile->memory_profile_snapshots().at(i); DCHECK(snapshot.has_activity_metadata()); const MemoryActivityMetadata& metadata = snapshot.activity_metadata(); if (snapshot.time_offset_ps() > memory_profile->profile_summary().peak_stats_time_ps()) break; if (metadata.step_id() != peak_bytes_profile_step_id) continue; if (metadata.memory_activity() == ALLOCATION) { active_alloc_map[metadata.address()] = {i, &metadata}; unmapped_allocation_bytes -= metadata.allocation_bytes(); } else { DCHECK_EQ(metadata.memory_activity(), DEALLOCATION); if (active_alloc_map.contains(metadata.address())) { active_alloc_map.erase(metadata.address()); } else { unmapped_deallocation_bytes += metadata.allocation_bytes(); } unmapped_allocation_bytes += metadata.allocation_bytes(); } } unmapped_allocation_bytes -= unmapped_deallocation_bytes; VLOG(2) << "unmapped_allocation_bytes=" << unmapped_allocation_bytes << ", unmapped_deallocation_bytes=" << unmapped_deallocation_bytes; std::vector<IndexMetaPair> active_allocs; for (const auto& address_and_index_meta : active_alloc_map) { active_allocs.push_back(address_and_index_meta.second); } InsertSpecialAllocations(unmapped_allocation_bytes, peak_bytes_profile_step_id, memory_profile, &active_allocs); std::sort(active_allocs.begin(), active_allocs.end(), MetadataComparator()); for (int i = 0, end = active_allocs.size(); i < end; i++) { ActiveAllocation* allocation = memory_profile->add_active_allocations(); allocation->set_snapshot_index(active_allocs[i].first); if (active_allocs[i].first < 0) { allocation->set_special_index(-active_allocs[i].first - 1); } else { allocation->set_special_index(-1); } allocation->set_num_occurrences(1); const int last_alloc = active_allocs.size() - 1; while (i < last_alloc && active_allocs[i] == active_allocs[i + 1]) { allocation->set_num_occurrences(allocation->num_occurrences() + 1); i++; } } VLOG(2) << "Distinctive active allocation count=" << memory_profile->active_allocations_size(); } void SaveActiveAllocationSnapshots( protobuf::RepeatedPtrField<MemoryProfileSnapshot>* snapshots, protobuf::RepeatedPtrField<ActiveAllocation>* active_allocations) { std::vector<MemoryProfileSnapshot*> samples; for (const auto& allocation : *active_allocations) { auto orig_index = allocation.snapshot_index(); if (orig_index < 0) continue; samples.push_back(&(*snapshots)[orig_index]); } int new_index = 0; for (auto& allocation : *active_allocations) { int64_t origin_index = allocation.snapshot_index(); if (origin_index < 0) continue; allocation.set_snapshot_index(new_index); new_index++; } protobuf::RepeatedPtrField<MemoryProfileSnapshot> new_snapshots; new_snapshots.Reserve(samples.size()); for (const auto& sample : samples) { *new_snapshots.Add() = std::move(*sample); } *snapshots = std::move(new_snapshots); } void SampleMemoryProfileTimeline(int64_t max_num_snapshots, PerAllocatorMemoryProfile* memory_profile) { const protobuf::RepeatedPtrField<MemoryProfileSnapshot>& original_snapshots = memory_profile->memory_profile_snapshots(); protobuf::RepeatedPtrField<MemoryProfileSnapshot>* timeline_snapshots = memory_profile->mutable_sampled_timeline_snapshots(); int64_t snapshot_count = original_snapshots.size(); if (snapshot_count > max_num_snapshots) { auto max_box_filter = [&](int filter_width, int count, int start) { for (int i = 0; i < count; i++) { const MemoryProfileSnapshot* max_snapshot = &original_snapshots[start + filter_width * i]; int64_t max_bytes = max_snapshot->aggregation_stats().heap_allocated_bytes() + max_snapshot->aggregation_stats().stack_reserved_bytes(); for (int index = start + filter_width * i + 1; index < start + filter_width * (i + 1); index++) { int64_t bytes = original_snapshots[index] .aggregation_stats() .heap_allocated_bytes() + original_snapshots[index] .aggregation_stats() .stack_reserved_bytes(); if (bytes > max_bytes) { max_snapshot = &original_snapshots[index]; max_bytes = bytes; } } *timeline_snapshots->Add() = *max_snapshot; } }; int width = snapshot_count / max_num_snapshots; int count1 = max_num_snapshots * (width + 1) - snapshot_count; int count2 = max_num_snapshots - count1; max_box_filter(width, count1, 0); max_box_filter(width + 1, count2, width * count1); } else { *timeline_snapshots = original_snapshots; } } void ProcessMemoryProfileProto(int64_t max_num_snapshots, MemoryProfile* memory_profile) { memory_profile->set_num_hosts(1); for (const auto& id_and_allocator_profile : memory_profile->memory_profile_per_allocator()) { if (!id_and_allocator_profile.second.memory_profile_snapshots().empty()) { memory_profile->add_memory_ids(id_and_allocator_profile.first); } } absl::c_sort(*memory_profile->mutable_memory_ids()); for (auto& id_and_allocator_profile : *memory_profile->mutable_memory_profile_per_allocator()) { PerAllocatorMemoryProfile* allocator_memory_profile = &id_and_allocator_profile.second; protobuf::RepeatedPtrField<MemoryProfileSnapshot>* snapshots = allocator_memory_profile->mutable_memory_profile_snapshots(); absl::c_sort(*snapshots, [](const MemoryProfileSnapshot& a, const MemoryProfileSnapshot& b) { return a.time_offset_ps() < b.time_offset_ps(); }); UpdateStepId(allocator_memory_profile); UpdateDeallocation(allocator_memory_profile); SampleMemoryProfileTimeline(max_num_snapshots, allocator_memory_profile); int64_t peak_step_id = GetPeakMemoryStep(allocator_memory_profile->profile_summary() .peak_stats() .peak_bytes_in_use(), allocator_memory_profile); ProcessActiveAllocations(peak_step_id, allocator_memory_profile); SaveActiveAllocationSnapshots( snapshots, allocator_memory_profile->mutable_active_allocations()); } } template <typename Proto> Status ConvertProtoToJson(const Proto& proto_output, std::string* json_output) { protobuf::util::JsonPrintOptions json_options; json_options.always_print_primitive_fields = true; auto status = protobuf::util::MessageToJsonString(proto_output, json_output, json_options); if (!status.ok()) { auto error_msg = status.message(); return errors::Internal( "Could not convert proto to JSON string: ", absl::string_view(error_msg.data(), error_msg.length())); } return absl::OkStatus(); } } MemoryProfile ConvertXPlaneToMemoryProfile(const XPlane& host_plane, int64_t max_num_snapshots) { MemoryProfile memory_profile = GenerateMemoryProfile(&host_plane); ProcessMemoryProfileProto(max_num_snapshots, &memory_profile); memory_profile.set_version(1); return memory_profile; } Status ConvertXSpaceToMemoryProfileJson(const XSpace& xspace, std::string* json_output) { if (const XPlane* host_plane = FindPlaneWithName(xspace, kHostThreadsPlaneName)) { MemoryProfile memory_profile = ConvertXPlaneToMemoryProfile(*host_plane); TF_RETURN_IF_ERROR(ConvertProtoToJson(memory_profile, json_output)); } return absl::OkStatus(); } } }
#include "tensorflow/core/profiler/convert/xplane_to_memory_profile.h" #include "absl/strings/string_view.h" #include "xla/tsl/profiler/utils/group_events.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" namespace tensorflow { namespace profiler { namespace { TEST(ConvertXPlaneToMemoryProfile, OneAllocatorMultiActivitiesTest) { XSpace space; XPlane* host_plane = GetOrCreateHostXPlane(&space); XPlaneBuilder host_plane_builder(host_plane); host_plane_builder.ReserveLines(1); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryAllocation", 40000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{3000}}, {StatType::kBytesAvailable, int64_t{5000}}, {StatType::kPeakBytesInUse, int64_t{8500}}, {StatType::kRequestedBytes, int64_t{200}}, {StatType::kAllocationBytes, int64_t{256}}, {StatType::kAddress, int64_t{222333}}, {StatType::kStepId, int64_t{-93746}}, {StatType::kDataType, int64_t{1}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kTfOp, "foo/bar"}, {StatType::kRegionType, "output"}, {StatType::kTensorShapes, "[3, 3, 512, 512]"}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryDeallocation", 50000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{2744}}, {StatType::kBytesAvailable, int64_t{5256}}, {StatType::kPeakBytesInUse, int64_t{8500}}, {StatType::kRequestedBytes, int64_t{200}}, {StatType::kAllocationBytes, int64_t{256}}, {StatType::kAddress, int64_t{222333}}, {StatType::kStepId, int64_t{0}}, {StatType::kDataType, int64_t{0}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kRegionType, ""}, {StatType::kTensorShapes, ""}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryAllocation", 70000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{5000}}, {StatType::kBytesAvailable, int64_t{3000}}, {StatType::kPeakBytesInUse, int64_t{9500}}, {StatType::kRequestedBytes, int64_t{300}}, {StatType::kAllocationBytes, int64_t{300}}, {StatType::kAddress, int64_t{345678}}, {StatType::kStepId, int64_t{-93746}}, {StatType::kDataType, int64_t{9}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kTfOp, "mul_grad/Sum"}, {StatType::kRegionType, "temp"}, {StatType::kTensorShapes, "[1, 2]"}}); tsl::profiler::GroupTfEvents(&space); MemoryProfile memory_profile = ConvertXPlaneToMemoryProfile(*host_plane); EXPECT_EQ(memory_profile.memory_profile_per_allocator().size(), 1); EXPECT_EQ(memory_profile.num_hosts(), 1); EXPECT_EQ(memory_profile.memory_ids_size(), 1); EXPECT_EQ(memory_profile.memory_profile_per_allocator().begin()->first, "GPU_0_bfc"); EXPECT_EQ(memory_profile.version(), 1); const auto& allocator_memory_profile = memory_profile.memory_profile_per_allocator().begin()->second; EXPECT_EQ( allocator_memory_profile.profile_summary().peak_bytes_usage_lifetime(), 9500); EXPECT_EQ(allocator_memory_profile.profile_summary() .peak_stats() .peak_bytes_in_use(), 7000); EXPECT_EQ(allocator_memory_profile.profile_summary().peak_stats_time_ps(), 70000); EXPECT_EQ(allocator_memory_profile.sampled_timeline_snapshots_size(), 3); EXPECT_EQ(allocator_memory_profile.memory_profile_snapshots_size(), 1); EXPECT_EQ(allocator_memory_profile.memory_profile_snapshots() .at(0) .activity_metadata() .tf_op_name(), "mul_grad/Sum"); EXPECT_EQ(allocator_memory_profile.active_allocations_size(), 3); EXPECT_EQ( allocator_memory_profile.active_allocations().at(2).snapshot_index(), 0); EXPECT_EQ(allocator_memory_profile.special_allocations_size(), 2); EXPECT_EQ(allocator_memory_profile.special_allocations().at(1).tf_op_name(), "stack"); EXPECT_EQ( allocator_memory_profile.special_allocations().at(1).allocation_bytes(), 2000); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_memory_profile.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/profiler/convert/xplane_to_memory_profile_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
fe31defb-0fd1-4d9a-820f-8eb2460a1483
cpp
tensorflow/tensorflow
object_accessor
tensorflow/lite/delegates/gpu/gl/compiler/object_accessor.cc
tensorflow/lite/delegates/gpu/gl/compiler/object_accessor_test.cc
#include "tensorflow/lite/delegates/gpu/gl/compiler/object_accessor.h" #include <string> #include <utility> #include <variant> #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "absl/types/variant.h" #include "tensorflow/lite/delegates/gpu/common/access_type.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/variable_accessor.h" #include "tensorflow/lite/delegates/gpu/gl/object.h" namespace tflite { namespace gpu { namespace gl { namespace object_accessor_internal { IndexedElement ParseElement(absl::string_view input) { auto i = input.find('['); if (i == std::string::npos || input.back() != ']') { return {}; } return {input.substr(0, i), absl::StrSplit(input.substr(i + 1, input.size() - i - 2), ',', absl::SkipWhitespace())}; } } namespace { void MaybeConvertToHalf(DataType data_type, absl::string_view value, std::string* output) { if (data_type == DataType::FLOAT16) { absl::StrAppend(output, "Vec4ToHalf(", value, ")"); } else { absl::StrAppend(output, value); } } void MaybeConvertFromHalf(DataType data_type, absl::string_view value, std::string* output) { if (data_type == DataType::FLOAT16) { absl::StrAppend(output, "Vec4FromHalf(", value, ")"); } else { absl::StrAppend(output, value); } } struct ReadFromTextureGenerator { RewriteStatus operator()(size_t) const { if (element.indices.size() != 1) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } if (sampler_textures) { absl::StrAppend(result, "texelFetch(", element.object_name, ", ivec2(", element.indices[0], ", 0), 0)"); } else { absl::StrAppend(result, "imageLoad(", element.object_name, ", ivec2(", element.indices[0], ", 0))"); } return RewriteStatus::SUCCESS; } template <typename Shape> RewriteStatus operator()(const Shape&) const { if (element.indices.size() != Shape::size()) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } if (sampler_textures) { absl::StrAppend(result, "texelFetch(", element.object_name, ", ivec", Shape::size(), "(", absl::StrJoin(element.indices, ", "), "), 0)"); } else { absl::StrAppend(result, "imageLoad(", element.object_name, ", ivec", Shape::size(), "(", absl::StrJoin(element.indices, ", "), "))"); } return RewriteStatus::SUCCESS; } const object_accessor_internal::IndexedElement& element; const bool sampler_textures; std::string* result; }; struct ReadFromBufferGenerator { RewriteStatus operator()(size_t) const { if (element.indices.size() != 1) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } MaybeConvertFromHalf( data_type, absl::StrCat(element.object_name, ".data[", element.indices[0], "]"), result); return RewriteStatus::SUCCESS; } RewriteStatus operator()(const uint2& size) const { if (element.indices.size() == 1) { return (*this)(1U); } if (element.indices.size() != 2) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } MaybeConvertFromHalf( data_type, absl::StrCat(element.object_name, ".data[", element.indices[0], " + $", element.object_name, "_w$ * (", element.indices[1], ")]"), result); *requires_sizes = true; return RewriteStatus::SUCCESS; } RewriteStatus operator()(const uint3& size) const { if (element.indices.size() == 1) { return (*this)(1U); } if (element.indices.size() != 3) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } MaybeConvertFromHalf( data_type, absl::StrCat(element.object_name, ".data[", element.indices[0], " + $", element.object_name, "_w$ * (", element.indices[1], " + $", element.object_name, "_h$ * (", element.indices[2], "))]"), result); *requires_sizes = true; return RewriteStatus::SUCCESS; } DataType data_type; const object_accessor_internal::IndexedElement& element; std::string* result; bool* requires_sizes; }; RewriteStatus GenerateReadAccessor( const Object& object, const object_accessor_internal::IndexedElement& element, bool sampler_textures, std::string* result, bool* requires_sizes) { switch (object.object_type) { case ObjectType::BUFFER: return std::visit(ReadFromBufferGenerator{object.data_type, element, result, requires_sizes}, object.size); case ObjectType::TEXTURE: return std::visit( ReadFromTextureGenerator{element, sampler_textures, result}, object.size); case ObjectType::UNKNOWN: return RewriteStatus::ERROR; } } struct WriteToBufferGenerator { RewriteStatus operator()(size_t) const { if (element.indices.size() != 1) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } absl::StrAppend(result, element.object_name, ".data[", element.indices[0], "] = "); MaybeConvertToHalf(data_type, value, result); return RewriteStatus::SUCCESS; } RewriteStatus operator()(const uint2& size) const { if (element.indices.size() == 1) { return (*this)(1U); } if (element.indices.size() != 2) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } absl::StrAppend(result, element.object_name, ".data[", element.indices[0], " + $", element.object_name, "_w$ * (", element.indices[1], ")] = "); MaybeConvertToHalf(data_type, value, result); *requires_sizes = true; return RewriteStatus::SUCCESS; } RewriteStatus operator()(const uint3& size) const { if (element.indices.size() == 1) { return (*this)(1U); } if (element.indices.size() != 3) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } absl::StrAppend(result, element.object_name, ".data[", element.indices[0], " + $", element.object_name, "_w$ * (", element.indices[1], " + $", element.object_name, "_h$ * (", element.indices[2], "))] = "); MaybeConvertToHalf(data_type, value, result); *requires_sizes = true; return RewriteStatus::SUCCESS; } DataType data_type; const object_accessor_internal::IndexedElement& element; absl::string_view value; std::string* result; bool* requires_sizes; }; struct WriteToTextureGenerator { RewriteStatus operator()(size_t) const { if (element.indices.size() != 1) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } absl::StrAppend(result, "imageStore(", element.object_name, ", ivec2(", element.indices[0], ", 0), ", value, ")"); return RewriteStatus::SUCCESS; } template <typename Shape> RewriteStatus operator()(const Shape&) const { if (element.indices.size() != Shape::size()) { result->append("WRONG_NUMBER_OF_INDICES"); return RewriteStatus::ERROR; } absl::StrAppend(result, "imageStore(", element.object_name, ", ivec", Shape::size(), "(", absl::StrJoin(element.indices, ", "), "), ", value, ")"); return RewriteStatus::SUCCESS; } const object_accessor_internal::IndexedElement& element; absl::string_view value; std::string* result; }; RewriteStatus GenerateWriteAccessor( const Object& object, const object_accessor_internal::IndexedElement& element, absl::string_view value, std::string* result, bool* requires_sizes) { switch (object.object_type) { case ObjectType::BUFFER: return std::visit(WriteToBufferGenerator{object.data_type, element, value, result, requires_sizes}, object.size); case ObjectType::TEXTURE: return std::visit(WriteToTextureGenerator{element, value, result}, object.size); case ObjectType::UNKNOWN: return RewriteStatus::ERROR; } } std::string ToAccessModifier(AccessType access, bool use_readonly_modifier) { switch (access) { case AccessType::READ: return use_readonly_modifier ? " readonly" : ""; case AccessType::WRITE: return " writeonly"; case AccessType::READ_WRITE: return " restrict"; } return " unknown_access"; } std::string ToBufferType(DataType data_type) { switch (data_type) { case DataType::UINT8: case DataType::UINT16: case DataType::UINT32: return "uvec4"; case DataType::UINT64: return "u64vec4_not_available_in_glsl"; case DataType::INT8: case DataType::INT16: case DataType::INT32: return "ivec4"; case DataType::INT64: return "i64vec4_not_available_in_glsl"; case DataType::FLOAT16: return "uvec2"; case DataType::BOOL: case DataType::FLOAT32: return "vec4"; case DataType::FLOAT64: return "dvec4"; case DataType::UNKNOWN: return "unknown_buffer_type"; } } struct TextureImageTypeGetter { std::string operator()(size_t) const { return (*this)(uint2()); } std::string operator()(const uint2&) const { switch (type) { case DataType::UINT16: case DataType::UINT32: return "uimage2D"; case DataType::INT16: case DataType::INT32: return "iimage2D"; case DataType::FLOAT16: case DataType::FLOAT32: return "image2D"; default: return "unknown_image_2d"; } } std::string operator()(const uint3&) const { switch (type) { case DataType::UINT16: case DataType::UINT32: return "uimage2DArray"; case DataType::INT16: case DataType::INT32: return "iimage2DArray"; case DataType::FLOAT16: case DataType::FLOAT32: return "image2DArray"; default: return "unknown_image_2d_array"; } } DataType type; }; struct TextureSamplerTypeGetter { std::string operator()(size_t) const { return (*this)(uint2()); } std::string operator()(const uint2&) const { switch (type) { case DataType::FLOAT16: case DataType::FLOAT32: return "sampler2D"; case DataType::INT32: case DataType::INT16: return "isampler2D"; case DataType::UINT32: case DataType::UINT16: return "usampler2D"; default: return "unknown_sampler2D"; } } std::string operator()(const uint3&) const { switch (type) { case DataType::FLOAT16: case DataType::FLOAT32: return "sampler2DArray"; case DataType::INT32: case DataType::INT16: return "isampler2DArray"; case DataType::UINT32: case DataType::UINT16: return "usampler2DArray"; default: return "unknown_sampler2DArray"; } } DataType type; }; std::string ToImageType(const Object& object, bool sampler_textures) { if (sampler_textures && (object.access == AccessType::READ)) { return std::visit(TextureSamplerTypeGetter{object.data_type}, object.size); } else { return std::visit(TextureImageTypeGetter{object.data_type}, object.size); } } std::string ToImageLayoutQualifier(DataType type) { switch (type) { case DataType::UINT16: return "rgba16ui"; case DataType::UINT32: return "rgba32ui"; case DataType::INT16: return "rgba16i"; case DataType::INT32: return "rgba32i"; case DataType::FLOAT16: return "rgba16f"; case DataType::FLOAT32: return "rgba32f"; default: return "unknown_image_layout"; } } std::string ToImagePrecision(DataType type) { switch (type) { case DataType::UINT16: case DataType::INT16: case DataType::FLOAT16: return "mediump"; case DataType::UINT32: case DataType::INT32: case DataType::FLOAT32: return "highp"; default: return "unknown_image_precision"; } } struct SizeParametersAdder { void operator()(size_t) const {} void operator()(const uint2& size) const { variable_accessor->AddUniformParameter( {absl::StrCat(object_name, "_w"), static_cast<int32_t>(size.x)}); } void operator()(const uint3& size) const { variable_accessor->AddUniformParameter( {absl::StrCat(object_name, "_w"), static_cast<int32_t>(size.x)}); variable_accessor->AddUniformParameter( {absl::StrCat(object_name, "_h"), static_cast<int32_t>(size.y)}); } absl::string_view object_name; VariableAccessor* variable_accessor; }; void AddSizeParameters(absl::string_view object_name, const Object& object, VariableAccessor* parameters) { std::visit(SizeParametersAdder{object_name, parameters}, object.size); } void GenerateObjectDeclaration(absl::string_view name, const Object& object, std::string* declaration, bool is_mali, bool sampler_textures) { switch (object.object_type) { case ObjectType::BUFFER: absl::StrAppend(declaration, "layout(binding = ", object.binding, ")", ToAccessModifier(object.access, !is_mali), " buffer B", object.binding, " { ", ToBufferType(object.data_type), " data[]; } ", name, ";\n"); break; case ObjectType::TEXTURE: if (sampler_textures && (object.access == AccessType::READ)) { absl::StrAppend(declaration, "layout(binding = ", object.binding, ") uniform ", ToImagePrecision(object.data_type), " ", ToImageType(object, sampler_textures), " ", name, ";\n"); } else { absl::StrAppend( declaration, "layout(", ToImageLayoutQualifier(object.data_type), ", binding = ", object.binding, ")", ToAccessModifier(object.access, true), " uniform ", ToImagePrecision(object.data_type), " ", ToImageType(object, sampler_textures), " ", name, ";\n"); } break; case ObjectType::UNKNOWN: break; } } } RewriteStatus ObjectAccessor::Rewrite(absl::string_view input, std::string* output) { std::pair<absl::string_view, absl::string_view> n = absl::StrSplit(input, absl::MaxSplits('=', 1), absl::SkipWhitespace()); if (n.first.empty()) { return RewriteStatus::NOT_RECOGNIZED; } if (n.second.empty()) { return RewriteRead(absl::StripAsciiWhitespace(n.first), output); } return RewriteWrite(absl::StripAsciiWhitespace(n.first), absl::StripAsciiWhitespace(n.second), output); } RewriteStatus ObjectAccessor::RewriteRead(absl::string_view location, std::string* output) { auto element = object_accessor_internal::ParseElement(location); if (element.object_name.empty()) { return RewriteStatus::NOT_RECOGNIZED; } auto it = name_to_object_.find( std::string(element.object_name.data(), element.object_name.size())); if (it == name_to_object_.end()) { return RewriteStatus::NOT_RECOGNIZED; } bool requires_sizes = false; auto status = GenerateReadAccessor(it->second, element, sampler_textures_, output, &requires_sizes); if (requires_sizes) { AddSizeParameters(it->first, it->second, variable_accessor_); } return status; } RewriteStatus ObjectAccessor::RewriteWrite(absl::string_view location, absl::string_view value, std::string* output) { auto element = object_accessor_internal::ParseElement(location); if (element.object_name.empty()) { return RewriteStatus::NOT_RECOGNIZED; } auto it = name_to_object_.find( std::string(element.object_name.data(), element.object_name.size())); if (it == name_to_object_.end()) { return RewriteStatus::NOT_RECOGNIZED; } bool requires_sizes = false; auto status = GenerateWriteAccessor(it->second, element, value, output, &requires_sizes); if (requires_sizes) { AddSizeParameters(it->first, it->second, variable_accessor_); } return status; } bool ObjectAccessor::AddObject(const std::string& name, Object object) { if (object.object_type == ObjectType::UNKNOWN) { return false; } return name_to_object_.insert({name, std::move(object)}).second; } std::string ObjectAccessor::GetObjectDeclarations() const { std::string declarations; for (auto& o : name_to_object_) { GenerateObjectDeclaration(o.first, o.second, &declarations, is_mali_, sampler_textures_); } return declarations; } std::string ObjectAccessor::GetFunctionsDeclarations() const { for (const auto& o : name_to_object_) { if (o.second.data_type == DataType::FLOAT16 && o.second.object_type == ObjectType::BUFFER) { return absl::StrCat( "#define Vec4FromHalf(v) vec4(unpackHalf2x16(v.x), " "unpackHalf2x16(v.y))\n", "#define Vec4ToHalf(v) uvec2(packHalf2x16(v.xy), " "packHalf2x16(v.zw))"); } } return ""; } std::vector<Object> ObjectAccessor::GetObjects() const { std::vector<Object> objects; objects.reserve(name_to_object_.size()); for (auto& o : name_to_object_) { objects.push_back(o.second); } return objects; } } } }
#include "tensorflow/lite/delegates/gpu/gl/compiler/object_accessor.h" #include <string> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/types/variant.h" #include "tensorflow/lite/delegates/gpu/common/types.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/preprocessor.h" #include "tensorflow/lite/delegates/gpu/gl/compiler/variable_accessor.h" #include "tensorflow/lite/delegates/gpu/gl/object.h" #include "tensorflow/lite/delegates/gpu/gl/variable.h" namespace tflite { namespace gpu { namespace gl { struct ParameterComparator { template <typename T> bool operator()(const T& t) const { const T* v = std::get_if<T>(&p.value); return v && t == *v; } const Variable& p; }; bool operator==(const Variable& l, const Variable& r) { return l.name == r.name && std::visit(ParameterComparator{l}, r.value); } namespace { TEST(Preprocessor, CornerCases) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); std::string result; ASSERT_EQ(accessor.Rewrite("", &result), RewriteStatus::NOT_RECOGNIZED); ASSERT_EQ(accessor.Rewrite("=", &result), RewriteStatus::NOT_RECOGNIZED); } TEST(Preprocessor, ReadFromBuffer) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE( accessor.AddObject("obj", MakeReadonlyBuffer(std::vector<float>{1.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[i]", &result), RewriteStatus::SUCCESS); EXPECT_TRUE(variable_accessor.GetUniformParameters().empty()); ASSERT_EQ(result, "obj.data[i]"); } TEST(Preprocessor, ReadFromBufferLinear) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE(accessor.AddObject( "obj", MakeReadonlyBuffer(uint3(1, 2, 3), std::vector<float>{1.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[i]", &result), RewriteStatus::SUCCESS); EXPECT_TRUE(variable_accessor.GetUniformParameters().empty()); ASSERT_EQ(result, "obj.data[i]"); } TEST(Preprocessor, ReadFromBufferByIndex) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE(accessor.AddObject( "obj", MakeReadonlyBuffer(uint3(1, 2, 3), std::vector<float>{1.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[x,y + 5,z]", &result), RewriteStatus::SUCCESS); EXPECT_THAT(variable_accessor.GetUniformParameters(), testing::UnorderedElementsAre(Variable{"obj_w", 1}, Variable{"obj_h", 2})); ASSERT_EQ(result, "obj.data[x + $obj_w$ * (y + 5 + $obj_h$ * (z))]"); } TEST(Preprocessor, ReadFromTexture) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE(accessor.AddObject( "obj", MakeReadonlyTexture(uint3(1, 2, 3), {1.0, 2.0, 3.0, 4.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[i,j,k]", &result), RewriteStatus::SUCCESS); EXPECT_TRUE(variable_accessor.GetUniformParameters().empty()); ASSERT_EQ(result, "imageLoad(obj, ivec3(i, j, k))"); } TEST(Preprocessor, ReadFromTexture1D) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE( accessor.AddObject("obj", MakeReadonlyTexture({1.0, 2.0, 3.0, 4.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[i]", &result), RewriteStatus::SUCCESS); EXPECT_TRUE(variable_accessor.GetUniformParameters().empty()); ASSERT_EQ(result, "imageLoad(obj, ivec2(i, 0))"); } TEST(Preprocessor, WriteToBuffer) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE( accessor.AddObject("obj", MakeReadonlyBuffer(std::vector<float>{1.0}))); std::string result; EXPECT_EQ(accessor.Rewrite(" obj[i] =value", &result), RewriteStatus::SUCCESS); EXPECT_TRUE(variable_accessor.GetUniformParameters().empty()); ASSERT_EQ(result, "obj.data[i] = value"); } TEST(Preprocessor, WriteToBufferByIndex) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE(accessor.AddObject( "obj", MakeReadonlyBuffer(uint3(1, 2, 3), {1.0, 2.0, 3.0, 4.0}))); std::string result; EXPECT_EQ(accessor.Rewrite(" obj[i,j,k] =value", &result), RewriteStatus::SUCCESS); EXPECT_THAT(variable_accessor.GetUniformParameters(), testing::UnorderedElementsAre(Variable{"obj_w", 1}, Variable{"obj_h", 2})); ASSERT_EQ(result, "obj.data[i + $obj_w$ * (j + $obj_h$ * (k))] = value"); } TEST(Preprocessor, WriteToTexture) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE(accessor.AddObject( "obj", MakeReadonlyTexture(uint3(1, 1, 1), {1.0, 2.0, 3.0, 4.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[i,j,k]= value ", &result), RewriteStatus::SUCCESS); ASSERT_EQ(result, "imageStore(obj, ivec3(i, j, k), value)"); } TEST(Preprocessor, WriteToTexture1D) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE( accessor.AddObject("obj", MakeReadonlyTexture({1.0, 2.0, 3.0, 4.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[i]= value ", &result), RewriteStatus::SUCCESS); EXPECT_TRUE(variable_accessor.GetUniformParameters().empty()); ASSERT_EQ(result, "imageStore(obj, ivec2(i, 0), value)"); } TEST(Preprocessor, FailedWriteToBuffer) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE( accessor.AddObject("obj", MakeReadonlyBuffer(std::vector<float>{1.0}))); std::string result; EXPECT_EQ(accessor.Rewrite(" obj[i,j] =value", &result), RewriteStatus::ERROR); ASSERT_EQ(result, "WRONG_NUMBER_OF_INDICES"); } TEST(Preprocessor, FailedWriteToTexture) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE(accessor.AddObject( "obj", MakeReadonlyTexture(uint3(1, 1, 1), {1.0, 2.0, 3.0, 4.0}))); std::string result; EXPECT_EQ(accessor.Rewrite("obj[i]= value ", &result), RewriteStatus::ERROR); ASSERT_EQ(result, "WRONG_NUMBER_OF_INDICES"); } TEST(Preprocessor, DeclareTexture) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(false, &variable_accessor); ASSERT_TRUE(accessor.AddObject( "obj", MakeReadonlyTexture(uint3(1, 1, 1), {1.0, 2.0, 3.0, 4.0}))); ASSERT_EQ(accessor.GetObjectDeclarations(), "layout(rgba32f, binding = 0) readonly uniform highp image2DArray " "obj;\n"); } TEST(Preprocessor, DeclareBuffer) { VariableAccessor variable_accessor(false); ObjectAccessor accessor(true, &variable_accessor); ASSERT_TRUE( accessor.AddObject("obj", MakeReadonlyBuffer(std::vector<float>{1.0}))); ASSERT_EQ(accessor.GetObjectDeclarations(), "layout(binding = 0) buffer B0 { vec4 data[]; } obj;\n"); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/compiler/object_accessor.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/compiler/object_accessor_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
f91e14b2-7735-43ce-8b22-6f38cce4d87a
cpp
tensorflow/tensorflow
debug_graph_utils
tensorflow/core/debug/debug_graph_utils.cc
tensorflow/core/debug/debug_graph_utils_test.cc
#include "tensorflow/core/debug/debug_graph_utils.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/memory_types.h" #include "tensorflow/core/framework/kernel_def.pb.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/protobuf/debug.pb.h" namespace tensorflow { namespace { Status ParseBoolString(const string& bool_str, bool* bool_val) { const string lower_bool_str = absl::AsciiStrToLower(bool_str); if (lower_bool_str == "false" || lower_bool_str == "f" || lower_bool_str == "0") { *bool_val = false; } else if (lower_bool_str == "true" || lower_bool_str == "t" || lower_bool_str == "1") { *bool_val = true; } else { return absl::InvalidArgumentError( absl::StrCat("Invalid string for bool value: ", bool_str)); } return absl::OkStatus(); } } Status DebugNodeInserter::InsertNodes( const protobuf::RepeatedPtrField<DebugTensorWatch>& watches, Graph* graph, Device* device) { if (watches.empty()) { return absl::OkStatus(); } std::vector<string> default_debug_ops; std::vector<string> default_debug_urls; std::unordered_map<string, std::vector<string>> tensor_watches; std::unordered_map<string, std::vector<string>> tensor_watch_urls; std::unordered_map<string, bool> tensor_tolerate_failures; for (const DebugTensorWatch& watch : watches) { if (watch.debug_ops().empty()) { continue; } if (watch.debug_urls().empty()) { continue; } if (watch.node_name() == "*") { if (watch.output_slot() == -1) { default_debug_ops.insert(default_debug_ops.end(), watch.debug_ops().begin(), watch.debug_ops().end()); default_debug_urls.insert(default_debug_urls.end(), watch.debug_urls().begin(), watch.debug_urls().end()); } else { return Status(absl::StatusCode::kFailedPrecondition, strings::StrCat( "output_slot is expected to be -1 for wildcard ", "node name (\"*\"), but got ", watch.output_slot())); } continue; } else { if (watch.output_slot() < 0) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("A negative output_slot in DebugTensorWatch is ", "valid only for the wildcard node name (\"*\"), ", "but got node name ", watch.node_name())); } } string tensor_name = strings::StrCat(watch.node_name(), ":", watch.output_slot()); std::vector<string> debug_ops; for (const string& debug_op : watch.debug_ops()) { debug_ops.push_back(debug_op); } tensor_watches[tensor_name] = debug_ops; tensor_tolerate_failures[tensor_name] = watch.tolerate_debug_op_creation_failures(); std::vector<string> urls; for (const string& url : watch.debug_urls()) { urls.push_back(url); } tensor_watch_urls[tensor_name] = urls; } if (tensor_watches.empty()) { return absl::OkStatus(); } DeviceType device_type = DeviceType{device->device_type()}; std::vector<const Edge*> edges_to_remove; for (Node* src_node : graph->nodes()) { std::unordered_map<int, std::vector<const Edge*>> output_slot_to_edges; for (const Edge* edge : src_node->out_edges()) { const int src_output = edge->src_output(); if (output_slot_to_edges.find(src_output) == output_slot_to_edges.end()) { output_slot_to_edges[src_output] = {edge}; } else { output_slot_to_edges[src_output].push_back(edge); } } for (int src_output_slot = 0; src_output_slot < src_node->num_outputs(); ++src_output_slot) { const string tensor_name = strings::StrCat(src_node->name(), ":", src_output_slot); const bool explicit_tensor_match = tensor_watches.find(tensor_name) != tensor_watches.end(); if (!explicit_tensor_match && default_debug_ops.empty()) { continue; } const DataType src_dt = src_node->output_type(src_output_slot); MemoryType memory_type; TF_RETURN_IF_ERROR(MemoryTypeForOutput(device_type, graph, src_node, src_output_slot, &memory_type)); const std::vector<string> debug_ops = explicit_tensor_match ? tensor_watches[tensor_name] : default_debug_ops; const std::vector<string> debug_urls = explicit_tensor_match ? tensor_watch_urls[tensor_name] : default_debug_urls; Node* copy_node; Status copy_s = CreateCopyNode(graph, device_type, memory_type == HOST_MEMORY, src_node->name(), src_output_slot, src_dt, tensor_name, debug_ops, debug_urls, &copy_node); if (!copy_s.ok()) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create Copy/CopyHost node for tensor ", tensor_name, ", due to: ", copy_s.message())); } graph->AddEdge(src_node, src_output_slot, copy_node, 0); std::vector<Node*> debug_nodes; for (size_t i = 0; i < debug_ops.size(); ++i) { const string& debug_op_name = debug_ops[i]; Node* debug_node; Status debug_s = CreateDebugNode(graph, *device, copy_node->name(), src_dt, tensor_name, debug_urls, i, debug_op_name, &debug_node); if (debug_s.ok()) { graph->AddEdge(copy_node, 0, debug_node, 0); debug_nodes.push_back(debug_node); } else { if (tensor_tolerate_failures[tensor_name]) { LOG(INFO) << "Tolerating failure to create debug node: " << "tensor name = " << tensor_name << "; " << "debug op name = " << debug_op_name; } else { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create debug node ", debug_op_name, " for tensor ", tensor_name, ", due to: ", debug_s.message())); } } } const bool is_ref = IsRefType(src_node->output_type(src_output_slot)); for (const Edge* edge : output_slot_to_edges[src_output_slot]) { if (!is_ref) { edges_to_remove.push_back(edge); graph->AddEdge(copy_node, 0, edge->dst(), edge->dst_input()); } for (Node* debug_node : debug_nodes) { if (!src_node->IsEnter() && !src_node->IsNextIteration()) { graph->AddEdge(debug_node, Graph::kControlSlot, edge->dst(), Graph::kControlSlot); } } } } } for (const Edge* edge : edges_to_remove) { graph->RemoveEdge(edge); } return absl::OkStatus(); } void DebugNodeInserter::DeparallelizeWhileLoops(Graph* graph, Device* device) { bool deparallelized_a_loop = false; for (Node* node : graph->nodes()) { if (node->IsEnter()) { const AttrValue* parallel_iterations = node->attrs().Find("parallel_iterations"); if (parallel_iterations && parallel_iterations->i() > 1) { deparallelized_a_loop = true; VLOG(1) << "Changing the parallel_iterations attribute of the " << "Enter/RefEnter node \"" << node->name() << "\" on device \"" << device->name() << "\" from " << parallel_iterations->i() << " to 1."; node->AddAttr<int64_t>("parallel_iterations", 1); } } } if (deparallelized_a_loop) { LOG(INFO) << "For debugging, tfdbg has set the parallel_iterations " << "attribute of all scheduled Enter/RefEnter nodes to 1. (This " << "does not affect subsequent non-debug runs.)"; } } const string DebugNodeInserter::GetCopyNodeName(const string& node_name, const int output_slot) { return strings::StrCat("__copy_", node_name, "_", output_slot); } const string DebugNodeInserter::GetDebugNodeName(const string& tensor_name, const int debug_op_num, const string& debug_op_name) { return strings::StrCat("__dbg_", tensor_name, "_", debug_op_num, "_", debug_op_name); } Status DebugNodeInserter::CreateCopyNode( Graph* graph, const DeviceType device_type, const bool is_host_memory, const string& src_node_name, const int src_output, const DataType src_dt, const string& tensor_name, const std::vector<string>& debug_ops, const std::vector<string>& debug_urls, Node** copy_node) { const string kGatedGrpcAttributeKey = "gated_grpc"; NodeDef node_def; const KernelDef* kdef; const string copy_op_name = is_host_memory ? "CopyHost" : "Copy"; const string copy_node_name = GetCopyNodeName(src_node_name, src_output); std::vector<string> debug_ops_spec; for (const string& debug_op : debug_ops) { for (const string& debug_url : debug_urls) { string debug_op_name_proper; std::unordered_map<string, string> custom_attributes; TF_RETURN_IF_ERROR(ParseDebugOpName(debug_op, &debug_op_name_proper, &custom_attributes)); bool gated_grpc_value = false; if (custom_attributes.find(kGatedGrpcAttributeKey) != custom_attributes.end()) { TF_RETURN_IF_ERROR(ParseBoolString( custom_attributes[kGatedGrpcAttributeKey], &gated_grpc_value)); } debug_ops_spec.push_back(strings::StrCat(debug_op_name_proper, ";", debug_url, ";", gated_grpc_value ? "1" : "0")); } } auto builder = NodeDefBuilder(copy_node_name, copy_op_name) .Input(src_node_name, src_output, src_dt) .Attr("debug_ops_spec", debug_ops_spec); if (!builder.Finalize(&node_def).ok()) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create node definition ", "for copy op ", copy_node_name, " on watched tensor ", tensor_name)); } Status s = FindKernelDef(device_type, node_def, &kdef, nullptr); if (!s.ok()) { return Status( absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to find kernel definition ", "for copy op ", copy_node_name, " on watched tensor ", tensor_name)); } if (!NodeBuilder(builder).Finalize(graph, copy_node).ok()) { return Status(absl::StatusCode::kFailedPrecondition, strings::StrCat("Failed to create copy node ", copy_node_name, " on watched tensor ", tensor_name)); } return absl::OkStatus(); } Status DebugNodeInserter::ParseDebugOpName( const string& debug_op_name, string* debug_op_name_proper, std::unordered_map<string, string>* attributes) { const size_t l_index = debug_op_name.find('('); const size_t r_index = debug_op_name.find(')'); if (l_index == string::npos && r_index == string::npos) { *debug_op_name_proper = debug_op_name; } else { if (l_index == string::npos || l_index == 0 || r_index != debug_op_name.size() - 1) { return absl::InvalidArgumentError( absl::StrCat("Malformed debug op name \"", debug_op_name, "\"")); } *debug_op_name_proper = debug_op_name.substr(0, l_index); string arguments = debug_op_name.substr(l_index + 1, r_index - l_index - 1); std::vector<string> attribute_segs = str_util::Split(arguments, ";"); for (const string& attribute_seg : attribute_segs) { StringPiece seg(attribute_seg); str_util::RemoveWhitespaceContext(&seg); if (seg.empty()) { continue; } const size_t eq_index = seg.find('='); if (eq_index == string::npos) { return absl::InvalidArgumentError(absl::StrCat( "Malformed attributes in debug op name \"", debug_op_name, "\"")); } const string key(seg.substr(0, eq_index)); const string value( seg.substr(eq_index + 1, attribute_seg.size() - eq_index - 1)); if (key.empty() || value.empty()) { return absl::InvalidArgumentError(absl::StrCat( "Malformed attributes in debug op name \"", debug_op_name, "\"")); } if (attributes->find(key) == attributes->end()) { (*attributes)[key] = value; } else { return absl::InvalidArgumentError( absl::StrCat("Duplicate attribute name \"", key, "\" found in the debug op: \"", debug_op_name, "\"")); } } } return absl::OkStatus(); } Status DebugNodeInserter::SetDebugNodeAttributes( Node* debug_node, const std::unordered_map<string, string>& attributes) { std::unordered_set<string> unfulfilled_keys; for (const auto& item : attributes) { unfulfilled_keys.insert(item.first); } for (const auto& attr : debug_node->op_def().attr()) { if (attributes.find(attr.name()) != attributes.end()) { const string& attr_value = attributes.at(attr.name()); if (attr.type() == "string") { debug_node->AddAttr<string>(attr.name(), attr_value); } else if (attr.type() == "float") { float float_value = 0.0; if (!::tensorflow::strings::safe_strtof(attr_value, &float_value)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid value string for float-type attribute ", attr.name(), "of debug node ", debug_node->name(), ": \"", attr_value, "\"")); } debug_node->AddAttr<float>(attr.name(), float_value); } else if (attr.type() == "int") { int64_t int_value = 0; if (!::tensorflow::strings::safe_strto64(attr_value, &int_value)) { return absl::InvalidArgumentError(absl::StrCat( "Invalid value string for int-type attribute ", attr.name(), "of debug node ", debug_node->name(), ": \"", attr_value, "\"")); } debug_node->AddAttr<int>(attr.name(), int_value); } else if (attr.type() == "bool") { bool bool_value; if (!ParseBoolString(attr_value, &bool_value).ok()) { return absl::InvalidArgumentError(absl::StrCat( "Invalid value string for bool-type attribute ", attr.name(), "of debug node ", debug_node->name(), ": \"", attr_value, "\"")); } debug_node->AddAttr<bool>(attr.name(), bool_value); } else { return absl::InvalidArgumentError( absl::StrCat("Unsupported type of custom attribute for debug ops: ", attr.type())); } unfulfilled_keys.erase(attr.name()); } } if (unfulfilled_keys.empty()) { return absl::OkStatus(); } else { return absl::InvalidArgumentError(absl::StrCat( unfulfilled_keys.size(), " attribute key(s) were not valid for debug node ", debug_node->name(), ": ", absl::StrJoin(unfulfilled_keys, ", "))); } } Status DebugNodeInserter::CreateDebugNode( Graph* graph, const Device& device, const string& src_copy_node_name, const DataType src_dt, const string& tensor_name, const std::vector<string>& debug_urls, const int debug_op_num, const string& debug_op_name, Node** debug_node) { NodeDef node_def; const KernelDef* kdef; string debug_op_name_proper; std::unordered_map<string, string> custom_attributes; TF_RETURN_IF_ERROR(ParseDebugOpName(debug_op_name, &debug_op_name_proper, &custom_attributes)); const string debug_node_name = GetDebugNodeName(tensor_name, debug_op_num, debug_op_name_proper); auto builder = NodeDefBuilder(debug_node_name, debug_op_name_proper) .Input(src_copy_node_name, 0, src_dt) .Attr("device_name", device.name()) .Attr("tensor_name", tensor_name) .Attr("debug_urls", debug_urls); if (!builder.Finalize(&node_def).ok()) { return absl::FailedPreconditionError( absl::StrCat("Failed to create node definition for debug op ", debug_op_name_proper, " on watched tensor ", tensor_name)); } if (!FindKernelDef(DeviceType(device.device_type()), node_def, &kdef, nullptr) .ok()) { return absl::FailedPreconditionError( absl::StrCat("Failed to find kernel definition for debug op ", debug_op_name_proper, " on watched tensor ", tensor_name)); } if (!NodeBuilder(builder).Finalize(graph, debug_node).ok()) { return absl::FailedPreconditionError( absl::StrCat("Failed to create debug node ", debug_op_name_proper, " on watched tensor ", tensor_name)); } if (!custom_attributes.empty()) { TF_RETURN_IF_ERROR(SetDebugNodeAttributes(*debug_node, custom_attributes)); } return absl::OkStatus(); } }
#include "tensorflow/core/debug/debug_graph_utils.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/strings/str_util.h" namespace tensorflow { class DebugGraphUtilsTest : public ::testing::Test { protected: Status ParseDebugOpName(const string& debug_op_name, string* debug_op_name_proper, std::unordered_map<string, string>* attributes) { return DebugNodeInserter::ParseDebugOpName( debug_op_name, debug_op_name_proper, attributes); } }; TEST_F(DebugGraphUtilsTest, TestParseNoAttributeDebugOpName) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK( ParseDebugOpName("DebugIdentity", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugIdentity", debug_op_name_proper); ASSERT_EQ(0, attributes.size()); } TEST_F(DebugGraphUtilsTest, TestMalformedDebugOpName) { string debug_op_name_proper; std::unordered_map<string, string> attributes; Status s = ParseDebugOpName("(mute_if_healthy=true)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); } TEST_F(DebugGraphUtilsTest, TestDebugOpNameWithMalformedAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; Status s = ParseDebugOpName("DebugNumericSummary(=)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(mute_if_healthy=)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(=true)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(mute_if_healthy:true)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName("DebugNumericSummary(mute_if_healthy=true;threshold=)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); s = ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true;threshold:300.0)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithSingleAttribute) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK(ParseDebugOpName("DebugNumericSummary()", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(0, attributes.size()); attributes.clear(); TF_ASSERT_OK(ParseDebugOpName("DebugNumericSummary(mute_if_healthy=true)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(1, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithMoreThanOneAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true; threshold=300.0)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(2, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); attributes.clear(); TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true;threshold=300.0;first_n=100)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(3, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); ASSERT_EQ("100", attributes["first_n"]); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithMoreDuplicateAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; Status s = ParseDebugOpName( "DebugNumericSummary(mute_if_healthy=true; lower_bound=3; " "mute_if_healthy=false;)", &debug_op_name_proper, &attributes); ASSERT_TRUE(errors::IsInvalidArgument(s)); } TEST_F(DebugGraphUtilsTest, TestValidDebugOpNameWithWhitespaceInAttributes) { string debug_op_name_proper; std::unordered_map<string, string> attributes; TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary( mute_if_healthy=true; threshold=300.0 )", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(2, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); attributes.clear(); TF_ASSERT_OK(ParseDebugOpName( "DebugNumericSummary(;;mute_if_healthy=true; threshold=300.0;;)", &debug_op_name_proper, &attributes)); ASSERT_EQ("DebugNumericSummary", debug_op_name_proper); ASSERT_EQ(2, attributes.size()); ASSERT_EQ("true", attributes["mute_if_healthy"]); ASSERT_EQ("300.0", attributes["threshold"]); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/debug/debug_graph_utils.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/debug/debug_graph_utils_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
d694b9e1-5657-4324-bf6e-f7b39fa399c0
cpp
tensorflow/tensorflow
quantized_tensor_element_type
tensorflow/lite/experimental/shlo/quantized_tensor_element_type.cc
tensorflow/lite/experimental/shlo/quantized_tensor_element_type_test.cc
#include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include <sstream> #include <string> #include <type_traits> #include <variant> #include "tensorflow/lite/experimental/shlo/data_type.h" namespace shlo_ref { std::string ToString(const QuantizedElementTypePerTensor& t) { std::stringstream sstr; sstr << "QuantizedPerTensor[" << ToString(t.StorageType()) << ", " << ToString(t.ExpressedType()) << "]"; return sstr.str(); } std::string ToString(const QuantizedElementTypePerAxis& t) { std::stringstream sstr; sstr << "QuantizedPerAxis[" << ToString(t.StorageType()) << ", " << ToString(t.ExpressedType()) << ", " << t.QuantizedDimension() << "]"; return sstr.str(); } QuantizedElementTypePerTensor BaselineType( const QuantizedElementTypePerTensor& type) { QuantizedElementTypePerTensor baseline = type; std::visit( [](auto& scale) -> void { scale = std::remove_reference_t<decltype(scale)>(1); }, baseline.Scale()); std::visit( [](auto& zero_point) -> void { zero_point = std::remove_reference_t<decltype(zero_point)>(0); }, baseline.ZeroPoint()); return baseline; } QuantizedElementTypePerAxis BaselineType( const QuantizedElementTypePerAxis& type) { QuantizedElementTypePerAxis baseline = type; std::visit( [](auto& scales) -> void { using T = std::remove_reference_t<decltype(scales[0])>; absl::c_fill(scales, static_cast<T>(1)); }, baseline.Scales()); std::visit( [](auto& zero_points) -> void { using T = std::remove_reference_t<decltype(zero_points[0])>; absl::c_fill(zero_points, static_cast<T>(0)); }, baseline.ZeroPoints()); return baseline; } }
#include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include <array> #include <cstdint> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" namespace shlo_ref { namespace { using testing::Each; using testing::ElementsAreArray; using testing::FloatEq; using testing::Pointwise; TEST(Quantization, IsValidQuantizationTypePairWorks) { EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kI1, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kSI32)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kBF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI4, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kSI32)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kBF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI8, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kF16)); EXPECT_TRUE(IsValidQuantizationTypePair(DataType::kSI16, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kSI32, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kBF16, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF16, DataType::kF32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kI1)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI4)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI8)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kSI32)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kBF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kF16)); EXPECT_FALSE(IsValidQuantizationTypePair(DataType::kF32, DataType::kF32)); } struct QuantizationPair { DataType storage_type; DataType expressed_type; }; std::vector<QuantizationPair> ValidQuantizationTypePairs() { return {QuantizationPair{.storage_type = DataType::kSI4, .expressed_type = DataType::kBF16}, QuantizationPair{.storage_type = DataType::kSI4, .expressed_type = DataType::kF16}, QuantizationPair{.storage_type = DataType::kSI4, .expressed_type = DataType::kF32}, QuantizationPair{.storage_type = DataType::kSI8, .expressed_type = DataType::kBF16}, QuantizationPair{.storage_type = DataType::kSI8, .expressed_type = DataType::kF16}, QuantizationPair{.storage_type = DataType::kSI8, .expressed_type = DataType::kF32}, QuantizationPair{.storage_type = DataType::kSI16, .expressed_type = DataType::kF32}}; } struct PerTensorTest : testing::TestWithParam<QuantizationPair> { static constexpr auto ExtractValueAsInt = [](auto v) { return static_cast<int32_t>(v); }; static constexpr auto ExtractValueAsFloat = [](auto v) { return static_cast<float>(v); }; }; TEST_P(PerTensorTest, BuildPerTensorWorks) { const QuantizationPair& config = GetParam(); QuantizedElementTypePerTensor type(config.storage_type, 1, config.expressed_type, 2.5); EXPECT_EQ(type.StorageType(), config.storage_type); EXPECT_EQ(type.ExpressedType(), config.expressed_type); EXPECT_EQ(std::visit(ExtractValueAsInt, type.ZeroPoint()), 1); EXPECT_THAT(std::visit(ExtractValueAsFloat, type.Scale()), FloatEq(2.5)); } TEST_P(PerTensorTest, BaselineTypeWorks) { float scale = 0.5f; int32_t zero_point = 3; const QuantizationPair& config = GetParam(); QuantizedElementTypePerTensor element(config.storage_type, zero_point, config.expressed_type, scale); const auto baseline = BaselineType(element); EXPECT_EQ(baseline.StorageType(), element.StorageType()); EXPECT_EQ(baseline.ExpressedType(), element.ExpressedType()); EXPECT_EQ(std::visit(ExtractValueAsInt, baseline.ZeroPoint()), 0); EXPECT_THAT(std::visit(ExtractValueAsFloat, baseline.Scale()), FloatEq(1)); } INSTANTIATE_TEST_SUITE_P(PerTensor, PerTensorTest, testing::ValuesIn(ValidQuantizationTypePairs())); struct PerAxisTest : testing::TestWithParam<QuantizationPair> { static constexpr auto ExtractValueAsInt = [](auto v) { return std::vector<int32_t>(v.begin(), v.end()); }; static constexpr auto ExtractValueAsFloat = [](auto v) { return std::vector<float>(v.begin(), v.end()); }; }; TEST_P(PerAxisTest, BuildPerAxisWorks) { const QuantizationPair& config = GetParam(); const std::vector<int32_t> ref_zero_points{1, 2, 3}; const std::vector<float> ref_scales{1.5, 2.5, 3.5}; QuantizedElementTypePerAxis type(config.storage_type, ref_zero_points, config.expressed_type, ref_scales, 1); EXPECT_EQ(type.StorageType(), config.storage_type); EXPECT_EQ(type.ExpressedType(), config.expressed_type); EXPECT_THAT(std::visit(ExtractValueAsInt, type.ZeroPoints()), ElementsAreArray(ref_zero_points)); EXPECT_THAT(std::visit(ExtractValueAsFloat, type.Scales()), Pointwise(FloatEq(), ref_scales)); } TEST_P(PerAxisTest, BaselineTypeWorks) { const QuantizationPair& config = GetParam(); float scales[3] = {0.5f, 0.6f, 0.2f}; int32_t zero_points[3] = {3, 1, 2}; const QuantizedElementTypePerAxis element(config.storage_type, scales, config.expressed_type, zero_points, 3u); const auto baseline = BaselineType(element); const auto extracted_zero_points = std::visit(ExtractValueAsInt, baseline.ZeroPoints()); const auto extracted_scales = std::visit(ExtractValueAsFloat, baseline.Scales()); EXPECT_EQ(baseline.StorageType(), element.StorageType()); EXPECT_EQ(baseline.ExpressedType(), element.ExpressedType()); EXPECT_EQ(baseline.QuantizedDimension(), element.QuantizedDimension()); EXPECT_THAT(extracted_zero_points, Each(0)); EXPECT_THAT(extracted_zero_points.size(), std::size(zero_points)); EXPECT_THAT(extracted_scales, Each(FloatEq(1.0f))); EXPECT_THAT(extracted_scales.size(), std::size(scales)); } INSTANTIATE_TEST_SUITE_P(PerAxis, PerAxisTest, testing::ValuesIn(ValidQuantizationTypePairs())); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/quantized_tensor_element_type.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/experimental/shlo/quantized_tensor_element_type_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
b5b5cb72-a89f-46c4-99ab-2d6652fe6b51
cpp
tensorflow/tensorflow
cutlass_gemm_custom_kernel
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_custom_kernel.cc
third_party/xla/xla/service/gpu/kernels/cutlass_gemm_custom_kernel_test.cc
#include "xla/service/gpu/kernels/cutlass_gemm_custom_kernel.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <tuple> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "third_party/gpus/cuda/include/cuda.h" #include "xla/service/gpu/kernels/custom_kernel.h" #include "xla/service/gpu/kernels/cutlass_gemm.h" #include "xla/stream_executor/device_description.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/kernel_spec.h" #include "xla/stream_executor/launch_dim.h" #include "xla/xla_data.pb.h" namespace xla::gpu::kernel::gemm_universal { static constexpr auto Default = Arch::kDefault; static constexpr auto Sm80 = Arch::kSm80; static constexpr auto Sm90 = Arch::kSm90; extern template struct Adaptor<F32xF32ToF32<Default>>; extern template struct DeviceKernel<F32xF32ToF32<Default>>; extern template struct Adaptor<Bf16xBf16ToBf16<Default>>; extern template struct DeviceKernel<Bf16xBf16ToBf16<Default>>; extern template struct Adaptor<Bf16xBf16ToBf16<Sm80>>; extern template struct DeviceKernel<Bf16xBf16ToBf16<Sm80>>; extern template struct Adaptor<Bf16xBf16ToBf16<Sm90>>; extern template struct DeviceKernel<Bf16xBf16ToBf16<Sm90>>; using KernelArgsPacking = se::MultiKernelLoaderSpec::KernelArgsPacking; template <typename Dim> static Dim As(Dim3 dim3) { return Dim(dim3.x, dim3.y, dim3.z); } template <typename Dim> static std::optional<Dim> As(std::optional<Dim3> dim3) { if (dim3.has_value()) return Dim(dim3->x, dim3->y, dim3->z); return std::nullopt; } static int32_t* SlicePtr(const se::KernelArgsDeviceMemoryArray* args, int64_t index) { const void* opaque = args->device_memory_ptr(index); return static_cast<int32_t*>(const_cast<void*>(opaque)); } template <typename Tag> KernelArgsPacking ArgsPacking(GemmMode mode, int32_t batch_count, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, int32_t device_sms, Adaptor<Tag> adaptor) { using Packed = absl::StatusOr<std::unique_ptr<se::KernelArgsPackedArrayBase>>; struct Params { #if defined(_MSC_VER) alignas(64) std::byte storage[1024]; #else alignas(128) std::byte storage[1024]; #endif }; return [=](const se::Kernel& kernel, const se::KernelArgs& args) -> Packed { auto* mem_args = se::Cast<se::KernelArgsDeviceMemoryArray>(&args); Arguments arguments = {mode, batch_count, m, n, k}; arguments.lhs = const_cast<void*>(mem_args->device_memory_ptr(indices.lhs)); arguments.rhs = const_cast<void*>(mem_args->device_memory_ptr(indices.rhs)); arguments.out = const_cast<void*>(mem_args->device_memory_ptr(indices.out)); if (indices.has_workspace) { size_t num_mem_args = mem_args->device_memory_args().size(); arguments.workspace = const_cast<void*>(mem_args->device_memory_ptr(num_mem_args - 1)); } else { arguments.workspace = nullptr; } if (slices.out.has_value()) { arguments.slices.out = SlicePtr(mem_args, *slices.out); } if (!adaptor.CanImplement(arguments)) { return absl::InternalError(absl::StrCat( "CUTLASS kernel can not implement gemm for a given problem size", ": m=", m, ", n=", n, ", k=", k)); } auto threads = As<se::ThreadDim>(adaptor.ThreadDim()); auto shmem_bytes = adaptor.SharedMemoryBytes(); static int32_t sm_occupancy = kernel.GetMaxOccupiedBlocksPerCore(threads, shmem_bytes).value_or(1); if (sm_occupancy == 0) { LOG_FIRST_N(WARNING, 1) << "CUTLASS gemm kernel reported 0 occupancy: threads_per_block=" << (threads.x * threads.y * threads.z) << ", dynamic_shared_memory_bytes=" << shmem_bytes; } Params params; adaptor.Initialize(&params, arguments, device_sms, sm_occupancy); return se::PackKernelArgs<Params, DynamicSliceArguments>( args.number_of_shared_bytes(), params, arguments.slices); }; } template <typename Tag> static CustomKernel Load(std::string name, GemmMode mode, int32_t batch_count, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device, Adaptor<Tag> adaptor = {}, DeviceKernel<Tag> kernel = {}) { auto cluster_dim = As<se::ClusterDim>(adaptor.ClusterDim()); auto block_dim = As<se::BlockDim>(adaptor.BlockDim(m, n, k)); auto thread_dim = As<se::ThreadDim>(adaptor.ThreadDim()); auto shared_memory_bytes = adaptor.SharedMemoryBytes(); auto packing = ArgsPacking<Tag>(mode, batch_count, m, n, k, indices, slices, device.core_count(), adaptor); se::MultiKernelLoaderSpec spec(2, std::move(packing)); spec.AddInProcessSymbol(kernel.symbol(), name); if (cluster_dim.has_value()) { return CustomKernel(std::move(name), std::move(spec), block_dim, thread_dim, *cluster_dim, shared_memory_bytes); } else { return CustomKernel(std::move(name), std::move(spec), block_dim, thread_dim, shared_memory_bytes); } } absl::StatusOr<std::vector<CustomKernel>> GetCutlassGemmKernels( std::string name, PrimitiveType dot_type, PrimitiveType lhs_type, PrimitiveType rhs_type, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device) { absl::flat_hash_map<std::tuple<PrimitiveType, PrimitiveType, PrimitiveType>, std::vector<CustomKernel>> kernels = { {{BF16, BF16, BF16}, {{Load<Bf16xBf16ToBf16<Default>>(name, GemmMode::kGemm, 1, m, n, k, indices, slices, device)}}}, {{BF16, BF16, F32}, {{Load<Bf16xBf16ToF32<Default>>(name, GemmMode::kGemm, 1, m, n, k, indices, slices, device)}}}, {{F32, BF16, F32}, {{Load<F32xBf16ToF32<Default>>(name, GemmMode::kGemm, 1, m, n, k, indices, slices, device)}, {Load<F32xBf16ToF32<Default>>(name, GemmMode::kGemmSplitKParallel, 16, m, n, k, indices, slices, device)}}}, {{BF16, S8, F32}, {{Load<Bf16xS8ToF32<Default>>(name, GemmMode::kGemm, 1, m, n, k, indices, slices, device)}, {Load<Bf16xS8ToF32<Default>>(name, GemmMode::kGemmSplitKParallel, 16, m, n, k, indices, slices, device)}}}, {{F32, F32, F32}, {{Load<F32xF32ToF32<Default>>(name, GemmMode::kGemm, 1, m, n, k, indices, slices, device)}}}}; auto loaded_kernels = kernels.find({lhs_type, rhs_type, dot_type}); if (loaded_kernels != kernels.end()) { return loaded_kernels->second; } else { std::string kernel_name = PrimitiveType_Name(lhs_type) + "x" + PrimitiveType_Name(rhs_type) + "To" + PrimitiveType_Name(dot_type); return absl::InvalidArgumentError(absl::StrCat( "Unsupported CUTLASS gemm data type for kernel: ", kernel_name)); } } absl::StatusOr<CustomKernel> LoadCutlassGemmKernel( std::string name, const std::string& library_path, PrimitiveType dtype, int32_t m, int32_t n, int32_t k, const ArgsIndices& indices, const DynamicSliceIndices& slices, const se::DeviceDescription& device) { auto adaptor = Adaptor<DlOpenedKernel>::Load(library_path); if (!adaptor.has_value()) { return absl::InternalError( absl::StrCat("Failed to load CUTLASS adaptor from a shared library: ", library_path)); } auto kernel = DeviceKernel<DlOpenedKernel>::Load(library_path); if (!kernel.has_value()) { return absl::InternalError(absl::StrCat( "Failed to load CUTLASS kernel from a shared library: ", library_path)); } return Load<DlOpenedKernel>(std::move(name), GemmMode::kGemm, 1, m, n, k, indices, slices, device, *adaptor, *kernel); } }
#include "xla/service/gpu/kernels/cutlass_gemm_custom_kernel.h" #include <cstdint> #include <cstring> #include <string> #include <vector> #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/lib/core/status_test_util.h" #include "xla/xla_data.pb.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::gpu::kernel::gemm_universal { TEST(CutlassGemmKernelTest, SimpleGemm) { se::Platform* platform = se::PlatformManager::PlatformWithName("CUDA").value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); auto stream = executor->CreateStream().value(); TF_ASSERT_OK_AND_ASSIGN( auto custom_kernels, GetCutlassGemmKernels("cutlass_gemm", PrimitiveType::F32, PrimitiveType::F32, PrimitiveType::F32, 4, 4, 4, {0, 1, 2}, {}, executor->GetDeviceDescription())); auto custom_kernel = custom_kernels[0]; TF_ASSERT_OK_AND_ASSIGN(auto gemm, executor->LoadKernel(custom_kernel.kernel_spec())); int64_t length = 4 * 4; int64_t byte_length = sizeof(float) * length; se::DeviceMemory<float> a = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> b = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> c = executor->AllocateArray<float>(length, 0); float value = 2.0; uint32_t pattern; std::memcpy(&pattern, &value, sizeof(pattern)); TF_ASSERT_OK(stream->Memset32(&a, pattern, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, pattern, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); se::KernelArgsDeviceMemoryArray arr( std::vector<se::DeviceMemoryBase>({a, b, c}), custom_kernel.shared_memory_bytes()); TF_ASSERT_OK(stream->Launch(custom_kernel.thread_dims(), custom_kernel.block_dims(), *gemm, arr)); std::vector<float> dst(length, -1.0f); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<float> expected(length, 16.0); ASSERT_EQ(dst, expected); } TEST(CutlassGemmKernelTest, LoadFromSharedLibrary) { std::string kernel_lib_path = tsl::io::JoinPath(tsl::testing::XlaSrcRoot(), "service", "gpu", "kernels", "cutlass_gemm_kernel_f32xf32_to_f32.so"); se::Platform* platform = se::PlatformManager::PlatformWithName("CUDA").value(); se::StreamExecutor* executor = platform->ExecutorForDevice(0).value(); auto stream = executor->CreateStream().value(); auto custom_kernel = LoadCutlassGemmKernel( "cutlass_gemm", kernel_lib_path, PrimitiveType::F32, 4, 4, 4, {0, 1, 2}, {}, executor->GetDeviceDescription()); TF_ASSERT_OK_AND_ASSIGN(auto gemm, executor->LoadKernel(custom_kernel->kernel_spec())); int64_t length = 4 * 4; int64_t byte_length = sizeof(float) * length; se::DeviceMemory<float> a = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> b = executor->AllocateArray<float>(length, 0); se::DeviceMemory<float> c = executor->AllocateArray<float>(length, 0); float value = 2.0; uint32_t pattern; std::memcpy(&pattern, &value, sizeof(pattern)); TF_ASSERT_OK(stream->Memset32(&a, pattern, byte_length)); TF_ASSERT_OK(stream->Memset32(&b, pattern, byte_length)); TF_ASSERT_OK(stream->MemZero(&c, byte_length)); se::KernelArgsDeviceMemoryArray arr( std::vector<se::DeviceMemoryBase>({a, b, c}), custom_kernel->shared_memory_bytes()); TF_ASSERT_OK(stream->Launch(custom_kernel->thread_dims(), custom_kernel->block_dims(), *gemm, arr)); std::vector<float> dst(length, -1.0f); TF_ASSERT_OK(stream->Memcpy(dst.data(), c, byte_length)); std::vector<float> expected(length, 16.0); ASSERT_EQ(dst, expected); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/kernels/cutlass_gemm_custom_kernel.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/kernels/cutlass_gemm_custom_kernel_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bcd78a0f-f497-45e9-bed7-3f0cc8ce3d72
cpp
tensorflow/tensorflow
input_colocation_exemption_registry
tensorflow/core/common_runtime/input_colocation_exemption_registry.cc
tensorflow/core/common_runtime/input_colocation_exemption_registry_test.cc
#include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include <set> #include <string> #include "tensorflow/core/platform/logging.h" namespace tensorflow { InputColocationExemptionRegistry* InputColocationExemptionRegistry::Global() { static InputColocationExemptionRegistry* registry = new InputColocationExemptionRegistry; return registry; } void InputColocationExemptionRegistry::Register(const string& op) { auto it = ops_.find(op); if (it != ops_.end()) { LOG(WARNING) << "Input colocation exemption for op: " << op << " already registered"; } else { ops_.insert(op); } } }
#include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { REGISTER_INPUT_COLOCATION_EXEMPTION("op 1"); REGISTER_INPUT_COLOCATION_EXEMPTION("op 2"); } TEST(RPCFactoryRegistryTest, TestBasic) { auto exempt_ops = InputColocationExemptionRegistry::Global()->Get(); EXPECT_EQ(exempt_ops.size(), 2); EXPECT_NE(exempt_ops.find("op 1"), exempt_ops.end()); EXPECT_NE(exempt_ops.find("op 2"), exempt_ops.end()); EXPECT_EQ(exempt_ops.find("op 3"), exempt_ops.end()); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/input_colocation_exemption_registry.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/common_runtime/input_colocation_exemption_registry_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
ae58849b-b731-44fd-832e-ff17424f19f3
cpp
abseil/abseil-cpp
cord_rep_btree
absl/strings/internal/cord_rep_btree.cc
absl/strings/internal/cord_rep_btree_test.cc
#include "absl/strings/internal/cord_rep_btree.h" #include <atomic> #include <cassert> #include <cstdint> #include <iostream> #include <ostream> #include <string> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/optimization.h" #include "absl/strings/internal/cord_data_edge.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_consume.h" #include "absl/strings/internal/cord_rep_flat.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr size_t CordRepBtree::kMaxCapacity; #endif namespace { using NodeStack = CordRepBtree * [CordRepBtree::kMaxDepth]; using EdgeType = CordRepBtree::EdgeType; using OpResult = CordRepBtree::OpResult; using CopyResult = CordRepBtree::CopyResult; constexpr auto kFront = CordRepBtree::kFront; constexpr auto kBack = CordRepBtree::kBack; ABSL_CONST_INIT std::atomic<bool> cord_btree_exhaustive_validation(false); void DumpAll(const CordRep* rep, bool include_contents, std::ostream& stream, size_t depth = 0) { assert(depth <= CordRepBtree::kMaxDepth + 2); std::string sharing = const_cast<CordRep*>(rep)->refcount.IsOne() ? std::string("Private") : absl::StrCat("Shared(", rep->refcount.Get(), ")"); std::string sptr = absl::StrCat("0x", absl::Hex(rep)); auto maybe_dump_data = [&stream, include_contents](const CordRep* r) { if (include_contents) { constexpr size_t kMaxDataLength = 60; stream << ", data = \"" << EdgeData(r).substr(0, kMaxDataLength) << (r->length > kMaxDataLength ? "\"..." : "\""); } stream << '\n'; }; stream << std::string(depth * 2, ' ') << sharing << " (" << sptr << ") "; if (rep->IsBtree()) { const CordRepBtree* node = rep->btree(); std::string label = node->height() ? absl::StrCat("Node(", node->height(), ")") : "Leaf"; stream << label << ", len = " << node->length << ", begin = " << node->begin() << ", end = " << node->end() << "\n"; for (CordRep* edge : node->Edges()) { DumpAll(edge, include_contents, stream, depth + 1); } } else if (rep->tag == SUBSTRING) { const CordRepSubstring* substring = rep->substring(); stream << "Substring, len = " << rep->length << ", start = " << substring->start; maybe_dump_data(rep); DumpAll(substring->child, include_contents, stream, depth + 1); } else if (rep->tag >= FLAT) { stream << "Flat, len = " << rep->length << ", cap = " << rep->flat()->Capacity(); maybe_dump_data(rep); } else if (rep->tag == EXTERNAL) { stream << "Extn, len = " << rep->length; maybe_dump_data(rep); } } CordRepSubstring* CreateSubstring(CordRep* rep, size_t offset, size_t n) { assert(n != 0); assert(offset + n <= rep->length); assert(offset != 0 || n != rep->length); if (rep->tag == SUBSTRING) { CordRepSubstring* substring = rep->substring(); offset += substring->start; rep = CordRep::Ref(substring->child); CordRep::Unref(substring); } assert(rep->IsExternal() || rep->IsFlat()); CordRepSubstring* substring = new CordRepSubstring(); substring->length = n; substring->tag = SUBSTRING; substring->start = offset; substring->child = rep; return substring; } inline CordRep* MakeSubstring(CordRep* rep, size_t offset, size_t n) { if (n == rep->length) return rep; if (n == 0) return CordRep::Unref(rep), nullptr; return CreateSubstring(rep, offset, n); } inline CordRep* MakeSubstring(CordRep* rep, size_t offset) { if (offset == 0) return rep; return CreateSubstring(rep, offset, rep->length - offset); } CordRep* ResizeEdge(CordRep* edge, size_t length, bool is_mutable) { assert(length > 0); assert(length <= edge->length); assert(IsDataEdge(edge)); if (length >= edge->length) return edge; if (is_mutable && (edge->tag >= FLAT || edge->tag == SUBSTRING)) { edge->length = length; return edge; } return CreateSubstring(edge, 0, length); } template <EdgeType edge_type> inline absl::string_view Consume(absl::string_view s, size_t n) { return edge_type == kBack ? s.substr(n) : s.substr(0, s.size() - n); } template <EdgeType edge_type> inline absl::string_view Consume(char* dst, absl::string_view s, size_t n) { if (edge_type == kBack) { memcpy(dst, s.data(), n); return s.substr(n); } else { const size_t offset = s.size() - n; memcpy(dst, s.data() + offset, n); return s.substr(0, offset); } } template <typename R, typename Fn> inline void FastUnref(R* r, Fn&& fn) { if (r->refcount.IsOne()) { fn(r); } else if (!r->refcount.DecrementExpectHighRefcount()) { fn(r); } } void DeleteSubstring(CordRepSubstring* substring) { CordRep* rep = substring->child; if (!rep->refcount.Decrement()) { if (rep->tag >= FLAT) { CordRepFlat::Delete(rep->flat()); } else { assert(rep->tag == EXTERNAL); CordRepExternal::Delete(rep->external()); } } delete substring; } void DeleteLeafEdge(CordRep* rep) { assert(IsDataEdge(rep)); if (rep->tag >= FLAT) { CordRepFlat::Delete(rep->flat()); } else if (rep->tag == EXTERNAL) { CordRepExternal::Delete(rep->external()); } else { DeleteSubstring(rep->substring()); } } template <EdgeType edge_type> struct StackOperations { inline bool owned(int depth) const { return depth < share_depth; } inline CordRepBtree* node(int depth) const { return stack[depth]; } inline CordRepBtree* BuildStack(CordRepBtree* tree, int depth) { assert(depth <= tree->height()); int current_depth = 0; while (current_depth < depth && tree->refcount.IsOne()) { stack[current_depth++] = tree; tree = tree->Edge(edge_type)->btree(); } share_depth = current_depth + (tree->refcount.IsOne() ? 1 : 0); while (current_depth < depth) { stack[current_depth++] = tree; tree = tree->Edge(edge_type)->btree(); } return tree; } inline void BuildOwnedStack(CordRepBtree* tree, int height) { assert(height <= CordRepBtree::kMaxHeight); int depth = 0; while (depth < height) { assert(tree->refcount.IsOne()); stack[depth++] = tree; tree = tree->Edge(edge_type)->btree(); } assert(tree->refcount.IsOne()); share_depth = depth + 1; } static inline CordRepBtree* Finalize(CordRepBtree* tree, OpResult result) { switch (result.action) { case CordRepBtree::kPopped: tree = edge_type == kBack ? CordRepBtree::New(tree, result.tree) : CordRepBtree::New(result.tree, tree); if (ABSL_PREDICT_FALSE(tree->height() > CordRepBtree::kMaxHeight)) { tree = CordRepBtree::Rebuild(tree); ABSL_RAW_CHECK(tree->height() <= CordRepBtree::kMaxHeight, "Max height exceeded"); } return tree; case CordRepBtree::kCopied: CordRep::Unref(tree); ABSL_FALLTHROUGH_INTENDED; case CordRepBtree::kSelf: return result.tree; } ABSL_UNREACHABLE(); return result.tree; } template <bool propagate = false> inline CordRepBtree* Unwind(CordRepBtree* tree, int depth, size_t length, OpResult result) { if (depth != 0) { do { CordRepBtree* node = stack[--depth]; const bool owned = depth < share_depth; switch (result.action) { case CordRepBtree::kPopped: assert(!propagate); result = node->AddEdge<edge_type>(owned, result.tree, length); break; case CordRepBtree::kCopied: result = node->SetEdge<edge_type>(owned, result.tree, length); if (propagate) stack[depth] = result.tree; break; case CordRepBtree::kSelf: node->length += length; while (depth > 0) { node = stack[--depth]; node->length += length; } return node; } } while (depth > 0); } return Finalize(tree, result); } inline CordRepBtree* Propagate(CordRepBtree* tree, int depth, size_t length, OpResult result) { return Unwind<true>(tree, depth, length, result); } int share_depth; NodeStack stack; }; } void SetCordBtreeExhaustiveValidation(bool do_exaustive_validation) { cord_btree_exhaustive_validation.store(do_exaustive_validation, std::memory_order_relaxed); } bool IsCordBtreeExhaustiveValidationEnabled() { return cord_btree_exhaustive_validation.load(std::memory_order_relaxed); } void CordRepBtree::Dump(const CordRep* rep, absl::string_view label, bool include_contents, std::ostream& stream) { stream << "===================================\n"; if (!label.empty()) { stream << label << '\n'; stream << "-----------------------------------\n"; } if (rep) { DumpAll(rep, include_contents, stream); } else { stream << "NULL\n"; } } void CordRepBtree::Dump(const CordRep* rep, absl::string_view label, std::ostream& stream) { Dump(rep, label, false, stream); } void CordRepBtree::Dump(const CordRep* rep, std::ostream& stream) { Dump(rep, absl::string_view(), false, stream); } template <size_t size> static void DestroyTree(CordRepBtree* tree) { for (CordRep* node : tree->Edges()) { if (node->refcount.Decrement()) continue; for (CordRep* edge : node->btree()->Edges()) { if (edge->refcount.Decrement()) continue; if (size == 1) { DeleteLeafEdge(edge); } else { CordRepBtree::Destroy(edge->btree()); } } CordRepBtree::Delete(node->btree()); } CordRepBtree::Delete(tree); } void CordRepBtree::Destroy(CordRepBtree* tree) { switch (tree->height()) { case 0: for (CordRep* edge : tree->Edges()) { if (!edge->refcount.Decrement()) { DeleteLeafEdge(edge); } } return CordRepBtree::Delete(tree); case 1: return DestroyTree<1>(tree); default: return DestroyTree<2>(tree); } } bool CordRepBtree::IsValid(const CordRepBtree* tree, bool shallow) { #define NODE_CHECK_VALID(x) \ if (!(x)) { \ ABSL_RAW_LOG(ERROR, "CordRepBtree::CheckValid() FAILED: %s", #x); \ return false; \ } #define NODE_CHECK_EQ(x, y) \ if ((x) != (y)) { \ ABSL_RAW_LOG(ERROR, \ "CordRepBtree::CheckValid() FAILED: %s != %s (%s vs %s)", #x, \ #y, absl::StrCat(x).c_str(), absl::StrCat(y).c_str()); \ return false; \ } NODE_CHECK_VALID(tree != nullptr); NODE_CHECK_VALID(tree->IsBtree()); NODE_CHECK_VALID(tree->height() <= kMaxHeight); NODE_CHECK_VALID(tree->begin() < tree->capacity()); NODE_CHECK_VALID(tree->end() <= tree->capacity()); NODE_CHECK_VALID(tree->begin() <= tree->end()); size_t child_length = 0; for (CordRep* edge : tree->Edges()) { NODE_CHECK_VALID(edge != nullptr); if (tree->height() > 0) { NODE_CHECK_VALID(edge->IsBtree()); NODE_CHECK_VALID(edge->btree()->height() == tree->height() - 1); } else { NODE_CHECK_VALID(IsDataEdge(edge)); } child_length += edge->length; } NODE_CHECK_EQ(child_length, tree->length); if ((!shallow || IsCordBtreeExhaustiveValidationEnabled()) && tree->height() > 0) { for (CordRep* edge : tree->Edges()) { if (!IsValid(edge->btree(), shallow)) return false; } } return true; #undef NODE_CHECK_VALID #undef NODE_CHECK_EQ } #ifndef NDEBUG CordRepBtree* CordRepBtree::AssertValid(CordRepBtree* tree, bool shallow) { if (!IsValid(tree, shallow)) { Dump(tree, "CordRepBtree validation failed:", false, std::cout); ABSL_RAW_LOG(FATAL, "CordRepBtree::CheckValid() FAILED"); } return tree; } const CordRepBtree* CordRepBtree::AssertValid(const CordRepBtree* tree, bool shallow) { if (!IsValid(tree, shallow)) { Dump(tree, "CordRepBtree validation failed:", false, std::cout); ABSL_RAW_LOG(FATAL, "CordRepBtree::CheckValid() FAILED"); } return tree; } #endif template <EdgeType edge_type> inline OpResult CordRepBtree::AddEdge(bool owned, CordRep* edge, size_t delta) { if (size() >= kMaxCapacity) return {New(edge), kPopped}; OpResult result = ToOpResult(owned); result.tree->Add<edge_type>(edge); result.tree->length += delta; return result; } template <EdgeType edge_type> OpResult CordRepBtree::SetEdge(bool owned, CordRep* edge, size_t delta) { OpResult result; const size_t idx = index(edge_type); if (owned) { result = {this, kSelf}; CordRep::Unref(edges_[idx]); } else { result = {CopyRaw(length), kCopied}; constexpr int shift = edge_type == kFront ? 1 : 0; for (CordRep* r : Edges(begin() + shift, back() + shift)) { CordRep::Ref(r); } } result.tree->edges_[idx] = edge; result.tree->length += delta; return result; } template <EdgeType edge_type> CordRepBtree* CordRepBtree::AddCordRep(CordRepBtree* tree, CordRep* rep) { const int depth = tree->height(); const size_t length = rep->length; StackOperations<edge_type> ops; CordRepBtree* leaf = ops.BuildStack(tree, depth); const OpResult result = leaf->AddEdge<edge_type>(ops.owned(depth), rep, length); return ops.Unwind(tree, depth, length, result); } template <> CordRepBtree* CordRepBtree::NewLeaf<kBack>(absl::string_view data, size_t extra) { CordRepBtree* leaf = CordRepBtree::New(0); size_t length = 0; size_t end = 0; const size_t cap = leaf->capacity(); while (!data.empty() && end != cap) { auto* flat = CordRepFlat::New(data.length() + extra); flat->length = (std::min)(data.length(), flat->Capacity()); length += flat->length; leaf->edges_[end++] = flat; data = Consume<kBack>(flat->Data(), data, flat->length); } leaf->length = length; leaf->set_end(end); return leaf; } template <> CordRepBtree* CordRepBtree::NewLeaf<kFront>(absl::string_view data, size_t extra) { CordRepBtree* leaf = CordRepBtree::New(0); size_t length = 0; size_t begin = leaf->capacity(); leaf->set_end(leaf->capacity()); while (!data.empty() && begin != 0) { auto* flat = CordRepFlat::New(data.length() + extra); flat->length = (std::min)(data.length(), flat->Capacity()); length += flat->length; leaf->edges_[--begin] = flat; data = Consume<kFront>(flat->Data(), data, flat->length); } leaf->length = length; leaf->set_begin(begin); return leaf; } template <> absl::string_view CordRepBtree::AddData<kBack>(absl::string_view data, size_t extra) { assert(!data.empty()); assert(size() < capacity()); AlignBegin(); const size_t cap = capacity(); do { CordRepFlat* flat = CordRepFlat::New(data.length() + extra); const size_t n = (std::min)(data.length(), flat->Capacity()); flat->length = n; edges_[fetch_add_end(1)] = flat; data = Consume<kBack>(flat->Data(), data, n); } while (!data.empty() && end() != cap); return data; } template <> absl::string_view CordRepBtree::AddData<kFront>(absl::string_view data, size_t extra) { assert(!data.empty()); assert(size() < capacity()); AlignEnd(); do { CordRepFlat* flat = CordRepFlat::New(data.length() + extra); const size_t n = (std::min)(data.length(), flat->Capacity()); flat->length = n; edges_[sub_fetch_begin(1)] = flat; data = Consume<kFront>(flat->Data(), data, n); } while (!data.empty() && begin() != 0); return data; } template <EdgeType edge_type> CordRepBtree* CordRepBtree::AddData(CordRepBtree* tree, absl::string_view data, size_t extra) { if (ABSL_PREDICT_FALSE(data.empty())) return tree; const size_t original_data_size = data.size(); int depth = tree->height(); StackOperations<edge_type> ops; CordRepBtree* leaf = ops.BuildStack(tree, depth); if (leaf->size() < leaf->capacity()) { OpResult result = leaf->ToOpResult(ops.owned(depth)); data = result.tree->AddData<edge_type>(data, extra); if (data.empty()) { result.tree->length += original_data_size; return ops.Unwind(tree, depth, original_data_size, result); } size_t delta = original_data_size - data.size(); assert(delta > 0); result.tree->length += delta; tree = ops.Propagate(tree, depth, delta, result); ops.share_depth = depth + 1; } for (;;) { OpResult result = {CordRepBtree::NewLeaf<edge_type>(data, extra), kPopped}; if (result.tree->length == data.size()) { return ops.Unwind(tree, depth, result.tree->length, result); } data = Consume<edge_type>(data, result.tree->length); tree = ops.Unwind(tree, depth, result.tree->length, result); depth = tree->height(); ops.BuildOwnedStack(tree, depth); } } template <EdgeType edge_type> CordRepBtree* CordRepBtree::Merge(CordRepBtree* dst, CordRepBtree* src) { assert(dst->height() >= src->height()); const size_t length = src->length; const int depth = dst->height() - src->height(); StackOperations<edge_type> ops; CordRepBtree* merge_node = ops.BuildStack(dst, depth); OpResult result; if (merge_node->size() + src->size() <= kMaxCapacity) { result = merge_node->ToOpResult(ops.owned(depth)); result.tree->Add<edge_type>(src->Edges()); result.tree->length += src->length; if (src->refcount.IsOne()) { Delete(src); } else { for (CordRep* edge : src->Edges()) CordRep::Ref(edge); CordRepBtree::Unref(src); } } else { result = {src, kPopped}; } if (depth) { return ops.Unwind(dst, depth, length, result); } return ops.Finalize(dst, result); } CopyResult CordRepBtree::CopySuffix(size_t offset) { assert(offset < this->length); int height = this->height(); CordRepBtree* node = this; size_t len = node->length - offset; CordRep* back = node->Edge(kBack); while (back->length >= len) { offset = back->length - len; if (--height < 0) { return {MakeSubstring(CordRep::Ref(back), offset), height}; } node = back->btree(); back = node->Edge(kBack); } if (offset == 0) return {CordRep::Ref(node), height}; Position pos = node->IndexBeyond(offset); CordRepBtree* sub = node->CopyToEndFrom(pos.index, len); const CopyResult result = {sub, height}; while (pos.n != 0) { assert(pos.index >= 1); const size_t begin = pos.index - 1; sub->set_begin(begin); CordRep* const edge = node->Edge(begin); len = pos.n; offset = edge->length - len; if (--height < 0) { sub->edges_[begin] = MakeSubstring(CordRep::Ref(edge), offset, len); return result; } node = edge->btree(); pos = node->IndexBeyond(offset); CordRepBtree* nsub = node->CopyToEndFrom(pos.index, len); sub->edges_[begin] = nsub; sub = nsub; } sub->set_begin(pos.index); return result; } CopyResult CordRepBtree::CopyPrefix(size_t n, bool allow_folding) { assert(n > 0); assert(n <= this->length); int height = this->height(); CordRepBtree* node = this; CordRep* front = node->Edge(kFront); if (allow_folding) { while (front->length >= n) { if (--height < 0) return {MakeSubstring(CordRep::Ref(front), 0, n), -1}; node = front->btree(); front = node->Edge(kFront); } } if (node->length == n) return {CordRep::Ref(node), height}; Position pos = node->IndexOf(n); CordRepBtree* sub = node->CopyBeginTo(pos.index, n); const CopyResult result = {sub, height}; while (pos.n != 0) { size_t end = pos.index; n = pos.n; CordRep* edge = node->Edge(pos.index); if (--height < 0) { sub->edges_[end++] = MakeSubstring(CordRep::Ref(edge), 0, n); sub->set_end(end); AssertValid(result.edge->btree()); return result; } node = edge->btree(); pos = node->IndexOf(n); CordRepBtree* nsub = node->CopyBeginTo(pos.index, n); sub->edges_[end++] = nsub; sub->set_end(end); sub = nsub; } sub->set_end(pos.index); AssertValid(result.edge->btree()); return result; } CordRep* CordRepBtree::ExtractFront(CordRepBtree* tree) { CordRep* front = tree->Edge(tree->begin()); if (tree->refcount.IsOne()) { Unref(tree->Edges(tree->begin() + 1, tree->end())); CordRepBtree::Delete(tree); } else { CordRep::Ref(front); CordRep::Unref(tree); } return front; } CordRepBtree* CordRepBtree::ConsumeBeginTo(CordRepBtree* tree, size_t end, size_t new_length) { assert(end <= tree->end()); if (tree->refcount.IsOne()) { Unref(tree->Edges(end, tree->end())); tree->set_end(end); tree->length = new_length; } else { CordRepBtree* old = tree; tree = tree->CopyBeginTo(end, new_length); CordRep::Unref(old); } return tree; } CordRep* CordRepBtree::RemoveSuffix(CordRepBtree* tree, size_t n) { assert(tree != nullptr); assert(n <= tree->length); const size_t len = tree->length; if (ABSL_PREDICT_FALSE(n == 0)) { return tree; } if (ABSL_PREDICT_FALSE(n >= len)) { CordRepBtree::Unref(tree); return nullptr; } size_t length = len - n; int height = tree->height(); bool is_mutable = tree->refcount.IsOne(); Position pos = tree->IndexOfLength(length); while (pos.index == tree->begin()) { CordRep* edge = ExtractFront(tree); is_mutable &= edge->refcount.IsOne(); if (height-- == 0) return ResizeEdge(edge, length, is_mutable); tree = edge->btree(); pos = tree->IndexOfLength(length); } CordRepBtree* top = tree = ConsumeBeginTo(tree, pos.index + 1, length); CordRep* edge = tree->Edge(pos.index); length = pos.n; while (length != edge->length) { assert(tree->refcount.IsOne()); const bool edge_is_mutable = edge->refcount.IsOne(); if (height-- == 0) { tree->edges_[pos.index] = ResizeEdge(edge, length, edge_is_mutable); return AssertValid(top); } if (!edge_is_mutable) { tree->edges_[pos.index] = edge->btree()->CopyPrefix(length, false).edge; CordRep::Unref(edge); return AssertValid(top); } tree = edge->btree(); pos = tree->IndexOfLength(length); tree = ConsumeBeginTo(edge->btree(), pos.index + 1, length); edge = tree->Edge(pos.index); length = pos.n; } return AssertValid(top); } CordRep* CordRepBtree::SubTree(size_t offset, size_t n) { assert(n <= this->length); assert(offset <= this->length - n); if (ABSL_PREDICT_FALSE(n == 0)) return nullptr; CordRepBtree* node = this; int height = node->height(); Position front = node->IndexOf(offset); CordRep* left = node->edges_[front.index]; while (front.n + n <= left->length) { if (--height < 0) return MakeSubstring(CordRep::Ref(left), front.n, n); node = left->btree(); front = node->IndexOf(front.n); left = node->edges_[front.index]; } const Position back = node->IndexBefore(front, n); CordRep* const right = node->edges_[back.index]; assert(back.index > front.index); CopyResult prefix; CopyResult suffix; if (height > 0) { prefix = left->btree()->CopySuffix(front.n); suffix = right->btree()->CopyPrefix(back.n); if (front.index + 1 == back.index) { height = (std::max)(prefix.height, suffix.height) + 1; } for (int h = prefix.height + 1; h < height; ++h) { prefix.edge = CordRepBtree::New(prefix.edge); } for (int h = suffix.height + 1; h < height; ++h) { suffix.edge = CordRepBtree::New(suffix.edge); } } else { prefix = CopyResult{MakeSubstring(CordRep::Ref(left), front.n), -1}; suffix = CopyResult{MakeSubstring(CordRep::Ref(right), 0, back.n), -1}; } CordRepBtree* sub = CordRepBtree::New(height); size_t end = 0; sub->edges_[end++] = prefix.edge; for (CordRep* r : node->Edges(front.index + 1, back.index)) { sub->edges_[end++] = CordRep::Ref(r); } sub->edges_[end++] = suffix.edge; sub->set_end(end); sub->length = n; return AssertValid(sub); } CordRepBtree* CordRepBtree::MergeTrees(CordRepBtree* left, CordRepBtree* right) { return left->height() >= right->height() ? Merge<kBack>(left, right) : Merge<kFront>(right, left); } bool CordRepBtree::IsFlat(absl::string_view* fragment) const { if (height() == 0 && size() == 1) { if (fragment) *fragment = Data(begin()); return true; } return false; } bool CordRepBtree::IsFlat(size_t offset, const size_t n, absl::string_view* fragment) const { assert(n <= this->length); assert(offset <= this->length - n); if (ABSL_PREDICT_FALSE(n == 0)) return false; int height = this->height(); const CordRepBtree* node = this; for (;;) { const Position front = node->IndexOf(offset); const CordRep* edge = node->Edge(front.index); if (edge->length < front.n + n) return false; if (--height < 0) { if (fragment) *fragment = EdgeData(edge).substr(front.n, n); return true; } offset = front.n; node = node->Edge(front.index)->btree(); } } char CordRepBtree::GetCharacter(size_t offset) const { assert(offset < length); const CordRepBtree* node = this; int height = node->height(); for (;;) { Position front = node->IndexOf(offset); if (--height < 0) return node->Data(front.index)[front.n]; offset = front.n; node = node->Edge(front.index)->btree(); } } Span<char> CordRepBtree::GetAppendBufferSlow(size_t size) { assert(height() >= 4); assert(refcount.IsOne()); const int depth = height(); CordRepBtree* node = this; CordRepBtree* stack[kMaxDepth]; for (int i = 0; i < depth; ++i) { node = node->Edge(kBack)->btree(); if (!node->refcount.IsOne()) return {}; stack[i] = node; } CordRep* const edge = node->Edge(kBack); if (!edge->refcount.IsOne() || edge->tag < FLAT) return {}; const size_t avail = edge->flat()->Capacity() - edge->length; if (avail == 0) return {}; size_t delta = (std::min)(size, avail); Span<char> span = {edge->flat()->Data() + edge->length, delta}; edge->length += delta; this->length += delta; for (int i = 0; i < depth; ++i) { stack[i]->length += delta; } return span; } CordRepBtree* CordRepBtree::CreateSlow(CordRep* rep) { if (rep->IsBtree()) return rep->btree(); CordRepBtree* node = nullptr; auto consume = [&node](CordRep* r, size_t offset, size_t length) { r = MakeSubstring(r, offset, length); if (node == nullptr) { node = New(r); } else { node = CordRepBtree::AddCordRep<kBack>(node, r); } }; Consume(rep, consume); return node; } CordRepBtree* CordRepBtree::AppendSlow(CordRepBtree* tree, CordRep* rep) { if (ABSL_PREDICT_TRUE(rep->IsBtree())) { return MergeTrees(tree, rep->btree()); } auto consume = [&tree](CordRep* r, size_t offset, size_t length) { r = MakeSubstring(r, offset, length); tree = CordRepBtree::AddCordRep<kBack>(tree, r); }; Consume(rep, consume); return tree; } CordRepBtree* CordRepBtree::PrependSlow(CordRepBtree* tree, CordRep* rep) { if (ABSL_PREDICT_TRUE(rep->IsBtree())) { return MergeTrees(rep->btree(), tree); } auto consume = [&tree](CordRep* r, size_t offset, size_t length) { r = MakeSubstring(r, offset, length); tree = CordRepBtree::AddCordRep<kFront>(tree, r); }; ReverseConsume(rep, consume); return tree; } CordRepBtree* CordRepBtree::Append(CordRepBtree* tree, absl::string_view data, size_t extra) { return CordRepBtree::AddData<kBack>(tree, data, extra); } CordRepBtree* CordRepBtree::Prepend(CordRepBtree* tree, absl::string_view data, size_t extra) { return CordRepBtree::AddData<kFront>(tree, data, extra); } template CordRepBtree* CordRepBtree::AddCordRep<kFront>(CordRepBtree* tree, CordRep* rep); template CordRepBtree* CordRepBtree::AddCordRep<kBack>(CordRepBtree* tree, CordRep* rep); template CordRepBtree* CordRepBtree::AddData<kFront>(CordRepBtree* tree, absl::string_view data, size_t extra); template CordRepBtree* CordRepBtree::AddData<kBack>(CordRepBtree* tree, absl::string_view data, size_t extra); void CordRepBtree::Rebuild(CordRepBtree** stack, CordRepBtree* tree, bool consume) { bool owned = consume && tree->refcount.IsOne(); if (tree->height() == 0) { for (CordRep* edge : tree->Edges()) { if (!owned) edge = CordRep::Ref(edge); size_t height = 0; size_t length = edge->length; CordRepBtree* node = stack[0]; OpResult result = node->AddEdge<kBack>(true, edge, length); while (result.action == CordRepBtree::kPopped) { stack[height] = result.tree; if (stack[++height] == nullptr) { result.action = CordRepBtree::kSelf; stack[height] = CordRepBtree::New(node, result.tree); } else { node = stack[height]; result = node->AddEdge<kBack>(true, result.tree, length); } } while (stack[++height] != nullptr) { stack[height]->length += length; } } } else { for (CordRep* rep : tree->Edges()) { Rebuild(stack, rep->btree(), owned); } } if (consume) { if (owned) { CordRepBtree::Delete(tree); } else { CordRepBtree::Unref(tree); } } } CordRepBtree* CordRepBtree::Rebuild(CordRepBtree* tree) { CordRepBtree* node = CordRepBtree::New(); CordRepBtree* stack[CordRepBtree::kMaxDepth + 1] = {node}; Rebuild(stack, tree, true); for (CordRepBtree* parent : stack) { if (parent == nullptr) return node; node = parent; } assert(false); return nullptr; } CordRepBtree::ExtractResult CordRepBtree::ExtractAppendBuffer( CordRepBtree* tree, size_t extra_capacity) { int depth = 0; NodeStack stack; ExtractResult result; result.tree = tree; result.extracted = nullptr; while (tree->height() > 0) { if (!tree->refcount.IsOne()) return result; stack[depth++] = tree; tree = tree->Edge(kBack)->btree(); } if (!tree->refcount.IsOne()) return result; CordRep* rep = tree->Edge(kBack); if (!(rep->IsFlat() && rep->refcount.IsOne())) return result; CordRepFlat* flat = rep->flat(); const size_t length = flat->length; const size_t avail = flat->Capacity() - flat->length; if (extra_capacity > avail) return result; result.extracted = flat; while (tree->size() == 1) { CordRepBtree::Delete(tree); if (--depth < 0) { result.tree = nullptr; return result; } rep = tree; tree = stack[depth]; } tree->set_end(tree->end() - 1); tree->length -= length; while (depth > 0) { tree = stack[--depth]; tree->length -= length; } while (tree->size() == 1) { int height = tree->height(); rep = tree->Edge(kBack); Delete(tree); if (height == 0) { result.tree = rep; return result; } tree = rep->btree(); } result.tree = tree; return result; } } ABSL_NAMESPACE_END }
#include "absl/strings/internal/cord_rep_btree.h" #include <cmath> #include <deque> #include <iostream> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/cleanup/cleanup.h" #include "absl/strings/internal/cord_data_edge.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_test_util.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace cord_internal { class CordRepBtreeTestPeer { public: static void SetEdge(CordRepBtree* node, size_t idx, CordRep* edge) { node->edges_[idx] = edge; } static void AddEdge(CordRepBtree* node, CordRep* edge) { node->edges_[node->fetch_add_end(1)] = edge; } }; namespace { using ::absl::cordrep_testing::AutoUnref; using ::absl::cordrep_testing::CordCollectRepsIf; using ::absl::cordrep_testing::CordToString; using ::absl::cordrep_testing::CordVisitReps; using ::absl::cordrep_testing::CreateFlatsFromString; using ::absl::cordrep_testing::CreateRandomString; using ::absl::cordrep_testing::MakeExternal; using ::absl::cordrep_testing::MakeFlat; using ::absl::cordrep_testing::MakeSubstring; using ::testing::_; using ::testing::AllOf; using ::testing::AnyOf; using ::testing::Conditional; using ::testing::ElementsAre; using ::testing::ElementsAreArray; using ::testing::Eq; using ::testing::HasSubstr; using ::testing::Le; using ::testing::Ne; using ::testing::Not; using ::testing::SizeIs; using ::testing::TypedEq; MATCHER_P(EqFlatHolding, data, "Equals flat holding data") { if (arg->tag < FLAT) { *result_listener << "Expected FLAT, got tag " << static_cast<int>(arg->tag); return false; } std::string actual = CordToString(arg); if (actual != data) { *result_listener << "Expected flat holding \"" << data << "\", got flat holding \"" << actual << "\""; return false; } return true; } MATCHER_P(IsNode, height, absl::StrCat("Is a valid node of height ", height)) { if (arg == nullptr) { *result_listener << "Expected NODE, got nullptr"; return false; } if (arg->tag != BTREE) { *result_listener << "Expected NODE, got " << static_cast<int>(arg->tag); return false; } if (!CordRepBtree::IsValid(arg->btree())) { CordRepBtree::Dump(arg->btree(), "Expected valid NODE, got:", false, *result_listener->stream()); return false; } if (arg->btree()->height() != height) { *result_listener << "Expected NODE of height " << height << ", got " << arg->btree()->height(); return false; } return true; } MATCHER_P2(IsSubstring, start, length, absl::StrCat("Is a substring(start = ", start, ", length = ", length, ")")) { if (arg == nullptr) { *result_listener << "Expected substring, got nullptr"; return false; } if (arg->tag != SUBSTRING) { *result_listener << "Expected SUBSTRING, got " << static_cast<int>(arg->tag); return false; } const CordRepSubstring* const substr = arg->substring(); if (substr->start != start || substr->length != length) { *result_listener << "Expected substring(" << start << ", " << length << "), got substring(" << substr->start << ", " << substr->length << ")"; return false; } return true; } MATCHER_P2(EqExtractResult, tree, rep, "Equals ExtractResult") { if (arg.tree != tree || arg.extracted != rep) { *result_listener << "Expected {" << static_cast<const void*>(tree) << ", " << static_cast<const void*>(rep) << "}, got {" << arg.tree << ", " << arg.extracted << "}"; return false; } return true; } class DataConsumer { public: DataConsumer(absl::string_view data, bool forward) : data_(data), forward_(forward) {} absl::string_view Next(size_t n) { assert(n <= data_.size() - consumed_); consumed_ += n; return data_.substr(forward_ ? consumed_ - n : data_.size() - consumed_, n); } absl::string_view Consumed() const { return forward_ ? data_.substr(0, consumed_) : data_.substr(data_.size() - consumed_); } private: absl::string_view data_; size_t consumed_ = 0; bool forward_; }; CordRepBtree* BtreeAdd(CordRepBtree* node, bool append, absl::string_view data) { return append ? CordRepBtree::Append(node, data) : CordRepBtree::Prepend(node, data); } void GetLeafEdges(const CordRepBtree* tree, std::vector<CordRep*>& edges) { if (tree->height() == 0) { for (CordRep* edge : tree->Edges()) { edges.push_back(edge); } } else { for (CordRep* edge : tree->Edges()) { GetLeafEdges(edge->btree(), edges); } } } std::vector<CordRep*> GetLeafEdges(const CordRepBtree* tree) { std::vector<CordRep*> edges; GetLeafEdges(tree, edges); return edges; } CordRepFlat* MakeHexFlat(size_t i) { return MakeFlat(absl::StrCat("0x", absl::Hex(i, absl::kZeroPad4))); } CordRepBtree* MakeLeaf(size_t size = CordRepBtree::kMaxCapacity) { assert(size <= CordRepBtree::kMaxCapacity); CordRepBtree* leaf = CordRepBtree::Create(MakeHexFlat(0)); for (size_t i = 1; i < size; ++i) { leaf = CordRepBtree::Append(leaf, MakeHexFlat(i)); } return leaf; } CordRepBtree* MakeTree(size_t size, bool append = true) { CordRepBtree* tree = CordRepBtree::Create(MakeHexFlat(0)); for (size_t i = 1; i < size; ++i) { tree = append ? CordRepBtree::Append(tree, MakeHexFlat(i)) : CordRepBtree::Prepend(tree, MakeHexFlat(i)); } return tree; } CordRepBtree* CreateTree(absl::Span<CordRep* const> reps) { auto it = reps.begin(); CordRepBtree* tree = CordRepBtree::Create(*it); while (++it != reps.end()) tree = CordRepBtree::Append(tree, *it); return tree; } CordRepBtree* CreateTree(absl::string_view data, size_t chunk_size) { return CreateTree(CreateFlatsFromString(data, chunk_size)); } CordRepBtree* CreateTreeReverse(absl::string_view data, size_t chunk_size) { std::vector<CordRep*> flats = CreateFlatsFromString(data, chunk_size); auto rit = flats.rbegin(); CordRepBtree* tree = CordRepBtree::Create(*rit); while (++rit != flats.rend()) tree = CordRepBtree::Prepend(tree, *rit); return tree; } class CordRepBtreeTest : public testing::TestWithParam<bool> { public: bool shared() const { return GetParam(); } static std::string ToString(testing::TestParamInfo<bool> param) { return param.param ? "Shared" : "Private"; } }; INSTANTIATE_TEST_SUITE_P(WithParam, CordRepBtreeTest, testing::Bool(), CordRepBtreeTest::ToString); class CordRepBtreeHeightTest : public testing::TestWithParam<int> { public: int height() const { return GetParam(); } static std::string ToString(testing::TestParamInfo<int> param) { return absl::StrCat(param.param); } }; INSTANTIATE_TEST_SUITE_P(WithHeights, CordRepBtreeHeightTest, testing::Range(0, CordRepBtree::kMaxHeight), CordRepBtreeHeightTest::ToString); using TwoBools = testing::tuple<bool, bool>; class CordRepBtreeDualTest : public testing::TestWithParam<TwoBools> { public: bool first_shared() const { return std::get<0>(GetParam()); } bool second_shared() const { return std::get<1>(GetParam()); } static std::string ToString(testing::TestParamInfo<TwoBools> param) { if (std::get<0>(param.param)) { return std::get<1>(param.param) ? "BothShared" : "FirstShared"; } return std::get<1>(param.param) ? "SecondShared" : "Private"; } }; INSTANTIATE_TEST_SUITE_P(WithParam, CordRepBtreeDualTest, testing::Combine(testing::Bool(), testing::Bool()), CordRepBtreeDualTest::ToString); TEST(CordRepBtreeTest, SizeIsMultipleOf64) { if (sizeof(size_t) == 8 && sizeof(void*) == 8) { EXPECT_THAT(sizeof(CordRepBtree) % 64, Eq(0u)) << "Should be multiple of 64"; } } TEST(CordRepBtreeTest, NewDestroyEmptyTree) { auto* tree = CordRepBtree::New(); EXPECT_THAT(tree->size(), Eq(0u)); EXPECT_THAT(tree->height(), Eq(0)); EXPECT_THAT(tree->Edges(), ElementsAre()); CordRepBtree::Destroy(tree); } TEST(CordRepBtreeTest, NewDestroyEmptyTreeAtHeight) { auto* tree = CordRepBtree::New(3); EXPECT_THAT(tree->size(), Eq(0u)); EXPECT_THAT(tree->height(), Eq(3)); EXPECT_THAT(tree->Edges(), ElementsAre()); CordRepBtree::Destroy(tree); } TEST(CordRepBtreeTest, Btree) { CordRep* rep = CordRepBtree::New(); EXPECT_THAT(rep->btree(), Eq(rep)); EXPECT_THAT(static_cast<const CordRep*>(rep)->btree(), Eq(rep)); CordRep::Unref(rep); #if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG) rep = MakeFlat("Hello world"); EXPECT_DEATH(rep->btree(), ".*"); EXPECT_DEATH(static_cast<const CordRep*>(rep)->btree(), ".*"); CordRep::Unref(rep); #endif } TEST(CordRepBtreeTest, EdgeData) { CordRepFlat* flat = MakeFlat("Hello world"); CordRepExternal* external = MakeExternal("Hello external"); CordRep* substr1 = MakeSubstring(1, 6, CordRep::Ref(flat)); CordRep* substr2 = MakeSubstring(1, 6, CordRep::Ref(external)); CordRep* bad_substr = MakeSubstring(1, 2, CordRep::Ref(substr1)); EXPECT_TRUE(IsDataEdge(flat)); EXPECT_THAT(EdgeData(flat).data(), TypedEq<const void*>(flat->Data())); EXPECT_THAT(EdgeData(flat), Eq("Hello world")); EXPECT_TRUE(IsDataEdge(external)); EXPECT_THAT(EdgeData(external).data(), TypedEq<const void*>(external->base)); EXPECT_THAT(EdgeData(external), Eq("Hello external")); EXPECT_TRUE(IsDataEdge(substr1)); EXPECT_THAT(EdgeData(substr1).data(), TypedEq<const void*>(flat->Data() + 1)); EXPECT_THAT(EdgeData(substr1), Eq("ello w")); EXPECT_TRUE(IsDataEdge(substr2)); EXPECT_THAT(EdgeData(substr2).data(), TypedEq<const void*>(external->base + 1)); EXPECT_THAT(EdgeData(substr2), Eq("ello e")); EXPECT_FALSE(IsDataEdge(bad_substr)); #if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG) EXPECT_DEATH(EdgeData(bad_substr), ".*"); #endif CordRep::Unref(bad_substr); CordRep::Unref(substr2); CordRep::Unref(substr1); CordRep::Unref(external); CordRep::Unref(flat); } TEST(CordRepBtreeTest, CreateUnrefLeaf) { auto* flat = MakeFlat("a"); auto* leaf = CordRepBtree::Create(flat); EXPECT_THAT(leaf->size(), Eq(1u)); EXPECT_THAT(leaf->height(), Eq(0)); EXPECT_THAT(leaf->Edges(), ElementsAre(flat)); CordRepBtree::Unref(leaf); } TEST(CordRepBtreeTest, NewUnrefNode) { auto* leaf = CordRepBtree::Create(MakeFlat("a")); CordRepBtree* tree = CordRepBtree::New(leaf); EXPECT_THAT(tree->size(), Eq(1u)); EXPECT_THAT(tree->height(), Eq(1)); EXPECT_THAT(tree->Edges(), ElementsAre(leaf)); CordRepBtree::Unref(tree); } TEST_P(CordRepBtreeTest, AppendToLeafToCapacity) { AutoUnref refs; std::vector<CordRep*> flats; flats.push_back(MakeHexFlat(0)); auto* leaf = CordRepBtree::Create(flats.back()); for (size_t i = 1; i < CordRepBtree::kMaxCapacity; ++i) { refs.RefIf(shared(), leaf); flats.push_back(MakeHexFlat(i)); auto* result = CordRepBtree::Append(leaf, flats.back()); EXPECT_THAT(result->height(), Eq(0)); EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf))); EXPECT_THAT(result->Edges(), ElementsAreArray(flats)); leaf = result; } CordRep::Unref(leaf); } TEST_P(CordRepBtreeTest, PrependToLeafToCapacity) { AutoUnref refs; std::deque<CordRep*> flats; flats.push_front(MakeHexFlat(0)); auto* leaf = CordRepBtree::Create(flats.front()); for (size_t i = 1; i < CordRepBtree::kMaxCapacity; ++i) { refs.RefIf(shared(), leaf); flats.push_front(MakeHexFlat(i)); auto* result = CordRepBtree::Prepend(leaf, flats.front()); EXPECT_THAT(result->height(), Eq(0)); EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf))); EXPECT_THAT(result->Edges(), ElementsAreArray(flats)); leaf = result; } CordRep::Unref(leaf); } TEST_P(CordRepBtreeTest, AppendPrependToLeafToCapacity) { AutoUnref refs; std::deque<CordRep*> flats; flats.push_front(MakeHexFlat(0)); auto* leaf = CordRepBtree::Create(flats.front()); for (size_t i = 1; i < CordRepBtree::kMaxCapacity; ++i) { refs.RefIf(shared(), leaf); CordRepBtree* result; if (i % 2 != 0) { flats.push_front(MakeHexFlat(i)); result = CordRepBtree::Prepend(leaf, flats.front()); } else { flats.push_back(MakeHexFlat(i)); result = CordRepBtree::Append(leaf, flats.back()); } EXPECT_THAT(result->height(), Eq(0)); EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf))); EXPECT_THAT(result->Edges(), ElementsAreArray(flats)); leaf = result; } CordRep::Unref(leaf); } TEST_P(CordRepBtreeTest, AppendToLeafBeyondCapacity) { AutoUnref refs; auto* leaf = MakeLeaf(); refs.RefIf(shared(), leaf); CordRep* flat = MakeFlat("abc"); auto* result = CordRepBtree::Append(leaf, flat); ASSERT_THAT(result, IsNode(1)); EXPECT_THAT(result, Ne(leaf)); absl::Span<CordRep* const> edges = result->Edges(); ASSERT_THAT(edges, ElementsAre(leaf, IsNode(0))); EXPECT_THAT(edges[1]->btree()->Edges(), ElementsAre(flat)); CordRep::Unref(result); } TEST_P(CordRepBtreeTest, PrependToLeafBeyondCapacity) { AutoUnref refs; auto* leaf = MakeLeaf(); refs.RefIf(shared(), leaf); CordRep* flat = MakeFlat("abc"); auto* result = CordRepBtree::Prepend(leaf, flat); ASSERT_THAT(result, IsNode(1)); EXPECT_THAT(result, Ne(leaf)); absl::Span<CordRep* const> edges = result->Edges(); ASSERT_THAT(edges, ElementsAre(IsNode(0), leaf)); EXPECT_THAT(edges[0]->btree()->Edges(), ElementsAre(flat)); CordRep::Unref(result); } TEST_P(CordRepBtreeTest, AppendToTreeOneDeep) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; AutoUnref refs; std::vector<CordRep*> flats; flats.push_back(MakeHexFlat(0)); CordRepBtree* tree = CordRepBtree::Create(flats.back()); for (size_t i = 1; i <= max_cap; ++i) { flats.push_back(MakeHexFlat(i)); tree = CordRepBtree::Append(tree, flats.back()); } ASSERT_THAT(tree, IsNode(1)); for (size_t i = max_cap + 1; i < max_cap * max_cap; ++i) { refs.RefIf(shared(), tree); refs.RefIf(i % 4 == 0, tree->Edges().back()); flats.push_back(MakeHexFlat(i)); CordRepBtree* result = CordRepBtree::Append(tree, flats.back()); ASSERT_THAT(result, IsNode(1)); ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); std::vector<CordRep*> edges = GetLeafEdges(result); ASSERT_THAT(edges, ElementsAreArray(flats)); tree = result; } CordRep::Unref(tree); } TEST_P(CordRepBtreeTest, AppendToTreeTwoDeep) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; AutoUnref refs; std::vector<CordRep*> flats; flats.push_back(MakeHexFlat(0)); CordRepBtree* tree = CordRepBtree::Create(flats.back()); for (size_t i = 1; i <= max_cap * max_cap; ++i) { flats.push_back(MakeHexFlat(i)); tree = CordRepBtree::Append(tree, flats.back()); } ASSERT_THAT(tree, IsNode(2)); for (size_t i = max_cap * max_cap + 1; i < max_cap * max_cap * max_cap; ++i) { refs.RefIf(shared(), tree); refs.RefIf(i % 16 == 0, tree->Edges().back()); refs.RefIf(i % 4 == 0, tree->Edges().back()->btree()->Edges().back()); flats.push_back(MakeHexFlat(i)); CordRepBtree* result = CordRepBtree::Append(tree, flats.back()); ASSERT_THAT(result, IsNode(2)); ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); std::vector<CordRep*> edges = GetLeafEdges(result); ASSERT_THAT(edges, ElementsAreArray(flats)); tree = result; } CordRep::Unref(tree); } TEST_P(CordRepBtreeTest, PrependToTreeOneDeep) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; AutoUnref refs; std::deque<CordRep*> flats; flats.push_back(MakeHexFlat(0)); CordRepBtree* tree = CordRepBtree::Create(flats.back()); for (size_t i = 1; i <= max_cap; ++i) { flats.push_front(MakeHexFlat(i)); tree = CordRepBtree::Prepend(tree, flats.front()); } ASSERT_THAT(tree, IsNode(1)); for (size_t i = max_cap + 1; i < max_cap * max_cap; ++i) { refs.RefIf(shared(), tree); refs.RefIf(i % 4 == 0, tree->Edges().back()); flats.push_front(MakeHexFlat(i)); CordRepBtree* result = CordRepBtree::Prepend(tree, flats.front()); ASSERT_THAT(result, IsNode(1)); ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); std::vector<CordRep*> edges = GetLeafEdges(result); ASSERT_THAT(edges, ElementsAreArray(flats)); tree = result; } CordRep::Unref(tree); } TEST_P(CordRepBtreeTest, PrependToTreeTwoDeep) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; AutoUnref refs; std::deque<CordRep*> flats; flats.push_back(MakeHexFlat(0)); CordRepBtree* tree = CordRepBtree::Create(flats.back()); for (size_t i = 1; i <= max_cap * max_cap; ++i) { flats.push_front(MakeHexFlat(i)); tree = CordRepBtree::Prepend(tree, flats.front()); } ASSERT_THAT(tree, IsNode(2)); for (size_t i = max_cap * max_cap + 1; i < max_cap * max_cap * max_cap; ++i) { refs.RefIf(shared(), tree); refs.RefIf(i % 16 == 0, tree->Edges().back()); refs.RefIf(i % 4 == 0, tree->Edges().back()->btree()->Edges().back()); flats.push_front(MakeHexFlat(i)); CordRepBtree* result = CordRepBtree::Prepend(tree, flats.front()); ASSERT_THAT(result, IsNode(2)); ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); std::vector<CordRep*> edges = GetLeafEdges(result); ASSERT_THAT(edges, ElementsAreArray(flats)); tree = result; } CordRep::Unref(tree); } TEST_P(CordRepBtreeDualTest, MergeLeafsNotExceedingCapacity) { for (bool use_append : {false, true}) { SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend"); AutoUnref refs; std::vector<CordRep*> flats; CordRepBtree* left = MakeLeaf(3); GetLeafEdges(left, flats); refs.RefIf(first_shared(), left); CordRepBtree* right = MakeLeaf(2); GetLeafEdges(right, flats); refs.RefIf(second_shared(), right); CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right) : CordRepBtree::Prepend(right, left); EXPECT_THAT(tree, IsNode(0)); EXPECT_THAT(tree->Edges(), ElementsAreArray(flats)); CordRepBtree::Unref(tree); } } TEST_P(CordRepBtreeDualTest, MergeLeafsExceedingCapacity) { for (bool use_append : {false, true}) { SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend"); AutoUnref refs; CordRepBtree* left = MakeLeaf(CordRepBtree::kMaxCapacity - 2); refs.RefIf(first_shared(), left); CordRepBtree* right = MakeLeaf(CordRepBtree::kMaxCapacity - 1); refs.RefIf(second_shared(), right); CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right) : CordRepBtree::Prepend(right, left); EXPECT_THAT(tree, IsNode(1)); EXPECT_THAT(tree->Edges(), ElementsAre(left, right)); CordRepBtree::Unref(tree); } } TEST_P(CordRepBtreeDualTest, MergeEqualHeightTrees) { for (bool use_append : {false, true}) { SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend"); AutoUnref refs; std::vector<CordRep*> flats; CordRepBtree* left = MakeTree(CordRepBtree::kMaxCapacity * 3); GetLeafEdges(left, flats); refs.RefIf(first_shared(), left); CordRepBtree* right = MakeTree(CordRepBtree::kMaxCapacity * 2); GetLeafEdges(right, flats); refs.RefIf(second_shared(), right); CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right) : CordRepBtree::Prepend(right, left); EXPECT_THAT(tree, IsNode(1)); EXPECT_THAT(tree->Edges(), SizeIs(5u)); EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats)); CordRepBtree::Unref(tree); } } TEST_P(CordRepBtreeDualTest, MergeLeafWithTreeNotExceedingLeafCapacity) { for (bool use_append : {false, true}) { SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend"); AutoUnref refs; std::vector<CordRep*> flats; CordRepBtree* left = MakeTree(CordRepBtree::kMaxCapacity * 2 + 2); GetLeafEdges(left, flats); refs.RefIf(first_shared(), left); CordRepBtree* right = MakeTree(3); GetLeafEdges(right, flats); refs.RefIf(second_shared(), right); CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right) : CordRepBtree::Prepend(right, left); EXPECT_THAT(tree, IsNode(1)); EXPECT_THAT(tree->Edges(), SizeIs(3u)); EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats)); CordRepBtree::Unref(tree); } } TEST_P(CordRepBtreeDualTest, MergeLeafWithTreeExceedingLeafCapacity) { for (bool use_append : {false, true}) { SCOPED_TRACE(use_append ? "Using Append" : "Using Prepend"); AutoUnref refs; std::vector<CordRep*> flats; CordRepBtree* left = MakeTree(CordRepBtree::kMaxCapacity * 3 - 2); GetLeafEdges(left, flats); refs.RefIf(first_shared(), left); CordRepBtree* right = MakeTree(3); GetLeafEdges(right, flats); refs.RefIf(second_shared(), right); CordRepBtree* tree = use_append ? CordRepBtree::Append(left, right) : CordRepBtree::Prepend(right, left); EXPECT_THAT(tree, IsNode(1)); EXPECT_THAT(tree->Edges(), SizeIs(4u)); EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats)); CordRepBtree::Unref(tree); } } void RefEdgesAt(size_t depth, AutoUnref& refs, CordRepBtree* tree) { absl::Span<CordRep* const> edges = tree->Edges(); if (depth == 0) { refs.Ref(edges.front()); refs.Ref(edges.back()); } else { assert(tree->height() > 0); RefEdgesAt(depth - 1, refs, edges.front()->btree()); RefEdgesAt(depth - 1, refs, edges.back()->btree()); } } TEST(CordRepBtreeTest, MergeFuzzTest) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; std::minstd_rand rnd; std::uniform_int_distribution<int> coin_flip(0, 1); std::uniform_int_distribution<int> dice_throw(1, 6); auto random_leaf_count = [&]() { std::uniform_int_distribution<int> dist_height(0, 3); std::uniform_int_distribution<int> dist_leaf(0, max_cap - 1); const int height = dist_height(rnd); return (height ? pow(max_cap, height) : 0) + dist_leaf(rnd); }; for (int i = 0; i < 10000; ++i) { AutoUnref refs; std::vector<CordRep*> flats; CordRepBtree* left = MakeTree(random_leaf_count(), coin_flip(rnd)); GetLeafEdges(left, flats); if (dice_throw(rnd) == 1) { std::uniform_int_distribution<size_t> dist( 0, static_cast<size_t>(left->height())); RefEdgesAt(dist(rnd), refs, left); } CordRepBtree* right = MakeTree(random_leaf_count(), coin_flip(rnd)); GetLeafEdges(right, flats); if (dice_throw(rnd) == 1) { std::uniform_int_distribution<size_t> dist( 0, static_cast<size_t>(right->height())); RefEdgesAt(dist(rnd), refs, right); } CordRepBtree* tree = CordRepBtree::Append(left, right); EXPECT_THAT(GetLeafEdges(tree), ElementsAreArray(flats)); CordRepBtree::Unref(tree); } } TEST_P(CordRepBtreeTest, RemoveSuffix) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; for (size_t cap : {max_cap - 1, max_cap * 2, max_cap * max_cap * 2}) { const std::string data = CreateRandomString(cap * 512); { AutoUnref refs; CordRepBtree* node = refs.RefIf(shared(), CreateTree(data, 512)); EXPECT_THAT(CordRepBtree::RemoveSuffix(node, data.length()), Eq(nullptr)); node = refs.RefIf(shared(), CreateTree(data, 512)); EXPECT_THAT(CordRepBtree::RemoveSuffix(node, 0), Eq(node)); CordRep::Unref(node); } for (size_t n = 1; n < data.length(); ++n) { AutoUnref refs; auto flats = CreateFlatsFromString(data, 512); CordRepBtree* node = refs.RefIf(shared(), CreateTree(flats)); CordRep* rep = refs.Add(CordRepBtree::RemoveSuffix(node, n)); EXPECT_THAT(CordToString(rep), Eq(data.substr(0, data.length() - n))); auto is_flat = [](CordRep* rep) { return rep->tag >= FLAT; }; std::vector<CordRep*> edges = CordCollectRepsIf(is_flat, rep); ASSERT_THAT(edges.size(), Le(flats.size())); CordRep* last_edge = edges.back(); edges.pop_back(); const size_t last_length = rep->length - edges.size() * 512; size_t index = 0; for (CordRep* edge : edges) { ASSERT_THAT(edge, Eq(flats[index++])); ASSERT_THAT(edge->length, Eq(512u)); } if (last_length >= 500) { EXPECT_THAT(last_edge, Eq(flats[index++])); if (shared()) { EXPECT_THAT(last_edge->length, Eq(512u)); } else { EXPECT_TRUE(last_edge->refcount.IsOne()); EXPECT_THAT(last_edge->length, Eq(last_length)); } } } } } TEST(CordRepBtreeTest, SubTree) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; const size_t n = max_cap * max_cap * 2; const std::string data = CreateRandomString(n * 3); std::vector<CordRep*> flats; for (absl::string_view s = data; !s.empty(); s.remove_prefix(3)) { flats.push_back(MakeFlat(s.substr(0, 3))); } CordRepBtree* node = CordRepBtree::Create(CordRep::Ref(flats[0])); for (size_t i = 1; i < flats.size(); ++i) { node = CordRepBtree::Append(node, CordRep::Ref(flats[i])); } for (size_t offset = 0; offset < data.length(); ++offset) { for (size_t length = 1; length <= data.length() - offset; ++length) { CordRep* rep = node->SubTree(offset, length); EXPECT_THAT(CordToString(rep), Eq(data.substr(offset, length))); CordRep::Unref(rep); } } CordRepBtree::Unref(node); for (CordRep* rep : flats) { CordRep::Unref(rep); } } TEST(CordRepBtreeTest, SubTreeOnExistingSubstring) { AutoUnref refs; std::string data = CreateRandomString(1000); CordRepBtree* leaf = CordRepBtree::Create(MakeFlat("abc")); CordRep* flat = MakeFlat(data); leaf = CordRepBtree::Append(leaf, flat); CordRep* result = leaf->SubTree(0, 3 + 990); ASSERT_THAT(result->tag, Eq(BTREE)); CordRep::Unref(leaf); leaf = result->btree(); ASSERT_THAT(leaf->Edges(), ElementsAre(_, IsSubstring(0u, 990u))); EXPECT_THAT(leaf->Edges()[1]->substring()->child, Eq(flat)); result = leaf->SubTree(3 + 5, 970); ASSERT_THAT(result, IsSubstring(5u, 970u)); EXPECT_THAT(result->substring()->child, Eq(flat)); CordRep::Unref(result); CordRep::Unref(leaf); } TEST_P(CordRepBtreeTest, AddDataToLeaf) { const size_t n = CordRepBtree::kMaxCapacity; const std::string data = CreateRandomString(n * 3); for (bool append : {true, false}) { AutoUnref refs; DataConsumer consumer(data, append); SCOPED_TRACE(append ? "Append" : "Prepend"); CordRepBtree* leaf = CordRepBtree::Create(MakeFlat(consumer.Next(3))); for (size_t i = 1; i < n; ++i) { refs.RefIf(shared(), leaf); CordRepBtree* result = BtreeAdd(leaf, append, consumer.Next(3)); EXPECT_THAT(result, Conditional(shared(), Ne(leaf), Eq(leaf))); EXPECT_THAT(CordToString(result), Eq(consumer.Consumed())); leaf = result; } CordRep::Unref(leaf); } } TEST_P(CordRepBtreeTest, AppendDataToTree) { AutoUnref refs; size_t n = CordRepBtree::kMaxCapacity + CordRepBtree::kMaxCapacity / 2; std::string data = CreateRandomString(n * 3); CordRepBtree* tree = refs.RefIf(shared(), CreateTree(data, 3)); CordRepBtree* leaf0 = tree->Edges()[0]->btree(); CordRepBtree* leaf1 = tree->Edges()[1]->btree(); CordRepBtree* result = CordRepBtree::Append(tree, "123456789"); EXPECT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); EXPECT_THAT(result->Edges(), ElementsAre(leaf0, Conditional(shared(), Ne(leaf1), Eq(leaf1)))); EXPECT_THAT(CordToString(result), Eq(data + "123456789")); CordRep::Unref(result); } TEST_P(CordRepBtreeTest, PrependDataToTree) { AutoUnref refs; size_t n = CordRepBtree::kMaxCapacity + CordRepBtree::kMaxCapacity / 2; std::string data = CreateRandomString(n * 3); CordRepBtree* tree = refs.RefIf(shared(), CreateTreeReverse(data, 3)); CordRepBtree* leaf0 = tree->Edges()[0]->btree(); CordRepBtree* leaf1 = tree->Edges()[1]->btree(); CordRepBtree* result = CordRepBtree::Prepend(tree, "123456789"); EXPECT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); EXPECT_THAT(result->Edges(), ElementsAre(Conditional(shared(), Ne(leaf0), Eq(leaf0)), leaf1)); EXPECT_THAT(CordToString(result), Eq("123456789" + data)); CordRep::Unref(result); } TEST_P(CordRepBtreeTest, AddDataToTreeThreeLevelsDeep) { constexpr size_t max_cap = CordRepBtree::kMaxCapacity; const size_t n = max_cap * max_cap * max_cap; const std::string data = CreateRandomString(n * 3); for (bool append : {true, false}) { AutoUnref refs; DataConsumer consumer(data, append); SCOPED_TRACE(append ? "Append" : "Prepend"); CordRepBtree* tree = CordRepBtree::Create(MakeFlat(consumer.Next(3))); for (size_t i = 1; i < max_cap; ++i) { tree = BtreeAdd(tree, append, consumer.Next(3)); } ASSERT_THAT(CordToString(tree), Eq(consumer.Consumed())); refs.RefIf(shared(), tree); CordRepBtree* result = BtreeAdd(tree, append, consumer.Next(3)); ASSERT_THAT(result, IsNode(1)); ASSERT_THAT(result, Ne(tree)); ASSERT_THAT(CordToString(result), Eq(consumer.Consumed())); tree = result; for (size_t i = max_cap + 1; i < max_cap * max_cap; ++i) { refs.RefIf(shared(), tree); result = BtreeAdd(tree, append, consumer.Next(3)); ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); ASSERT_THAT(CordToString(result), Eq(consumer.Consumed())); tree = result; } refs.RefIf(shared(), tree); result = BtreeAdd(tree, append, consumer.Next(3)); ASSERT_THAT(result, IsNode(2)); ASSERT_THAT(result, Ne(tree)); ASSERT_THAT(CordToString(result), Eq(consumer.Consumed())); tree = result; for (size_t i = max_cap * max_cap + 1; i < max_cap * max_cap * max_cap; ++i) { refs.RefIf(shared(), tree); result = BtreeAdd(tree, append, consumer.Next(3)); ASSERT_THAT(result, Conditional(shared(), Ne(tree), Eq(tree))); ASSERT_THAT(CordToString(result), Eq(consumer.Consumed())); tree = result; } CordRep::Unref(tree); } } TEST_P(CordRepBtreeTest, AddLargeDataToLeaf) { const size_t max_cap = CordRepBtree::kMaxCapacity; const size_t n = max_cap * max_cap * max_cap * 3 + 2; const std::string data = CreateRandomString(n * kMaxFlatLength); for (bool append : {true, false}) { AutoUnref refs; SCOPED_TRACE(append ? "Append" : "Prepend"); CordRepBtree* leaf = CordRepBtree::Create(MakeFlat("abc")); refs.RefIf(shared(), leaf); CordRepBtree* result = BtreeAdd(leaf, append, data); EXPECT_THAT(CordToString(result), Eq(append ? "abc" + data : data + "abc")); CordRep::Unref(result); } } TEST_P(CordRepBtreeTest, CreateFromTreeReturnsTree) { AutoUnref refs; CordRepBtree* leaf = CordRepBtree::Create(MakeFlat("Hello world")); refs.RefIf(shared(), leaf); CordRepBtree* result = CordRepBtree::Create(leaf); EXPECT_THAT(result, Eq(leaf)); CordRep::Unref(result); } TEST(CordRepBtreeTest, GetCharacter) { size_t n = CordRepBtree::kMaxCapacity * CordRepBtree::kMaxCapacity + 2; std::string data = CreateRandomString(n * 3); CordRepBtree* tree = CreateTree(data, 3); tree = tree->Append(tree, MakeSubstring(4, 5, MakeFlat("abcdefghijklm"))); data += "efghi"; for (size_t i = 0; i < data.length(); ++i) { ASSERT_THAT(tree->GetCharacter(i), Eq(data[i])); } CordRep::Unref(tree); } TEST_P(CordRepBtreeTest, IsFlatSingleFlat) { CordRepBtree* leaf = CordRepBtree::Create(MakeFlat("Hello world")); absl::string_view fragment; EXPECT_TRUE(leaf->IsFlat(nullptr)); EXPECT_TRUE(leaf->IsFlat(&fragment)); EXPECT_THAT(fragment, Eq("Hello world")); fragment = ""; EXPECT_TRUE(leaf->IsFlat(0, 11, nullptr)); EXPECT_TRUE(leaf->IsFlat(0, 11, &fragment)); EXPECT_THAT(fragment, Eq("Hello world")); EXPECT_TRUE(leaf->IsFlat(1, 4, &fragment)); EXPECT_THAT(fragment, Eq("ello")); EXPECT_TRUE(leaf->IsFlat(6, 5, &fragment)); EXPECT_THAT(fragment, Eq("world")); CordRep::Unref(leaf); } TEST(CordRepBtreeTest, IsFlatMultiFlat) { size_t n = CordRepBtree::kMaxCapacity * CordRepBtree::kMaxCapacity + 2; std::string data = CreateRandomString(n * 3); CordRepBtree* tree = CreateTree(data, 3); tree = tree->Append(tree, MakeSubstring(4, 3, MakeFlat("abcdefghijklm"))); tree = tree->Append(tree, MakeSubstring(8, 3, MakeFlat("abcdefghijklm"))); data += "efgijk"; EXPECT_FALSE(tree->IsFlat(nullptr)); absl::string_view fragment = "Can't touch this"; EXPECT_FALSE(tree->IsFlat(&fragment)); EXPECT_THAT(fragment, Eq("Can't touch this")); for (size_t offset = 0; offset < data.size(); offset += 3) { EXPECT_TRUE(tree->IsFlat(offset, 3, nullptr)); EXPECT_TRUE(tree->IsFlat(offset, 3, &fragment)); EXPECT_THAT(fragment, Eq(data.substr(offset, 3))); fragment = "Can't touch this"; if (offset > 0) { EXPECT_FALSE(tree->IsFlat(offset - 1, 4, nullptr)); EXPECT_FALSE(tree->IsFlat(offset - 1, 4, &fragment)); EXPECT_THAT(fragment, Eq("Can't touch this")); } if (offset < data.size() - 4) { EXPECT_FALSE(tree->IsFlat(offset, 4, nullptr)); EXPECT_FALSE(tree->IsFlat(offset, 4, &fragment)); EXPECT_THAT(fragment, Eq("Can't touch this")); } } CordRep::Unref(tree); } #if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG) TEST_P(CordRepBtreeHeightTest, GetAppendBufferNotPrivate) { CordRepBtree* tree = CordRepBtree::Create(MakeExternal("Foo")); CordRepBtree::Ref(tree); EXPECT_DEATH(tree->GetAppendBuffer(1), ".*"); CordRepBtree::Unref(tree); CordRepBtree::Unref(tree); } #endif TEST_P(CordRepBtreeHeightTest, GetAppendBufferNotFlat) { CordRepBtree* tree = CordRepBtree::Create(MakeExternal("Foo")); for (int i = 1; i <= height(); ++i) { tree = CordRepBtree::New(tree); } EXPECT_THAT(tree->GetAppendBuffer(1), SizeIs(0u)); CordRepBtree::Unref(tree); } TEST_P(CordRepBtreeHeightTest, GetAppendBufferFlatNotPrivate) { CordRepFlat* flat = MakeFlat("abc"); CordRepBtree* tree = CordRepBtree::Create(CordRep::Ref(flat)); for (int i = 1; i <= height(); ++i) { tree = CordRepBtree::New(tree); } EXPECT_THAT(tree->GetAppendBuffer(1), SizeIs(0u)); CordRepBtree::Unref(tree); CordRep::Unref(flat); } TEST_P(CordRepBtreeHeightTest, GetAppendBufferTreeNotPrivate) { if (height() == 0) return; AutoUnref refs; CordRepFlat* flat = MakeFlat("abc"); CordRepBtree* tree = CordRepBtree::Create(CordRep::Ref(flat)); for (int i = 1; i <= height(); ++i) { if (i == (height() + 1) / 2) refs.Ref(tree); tree = CordRepBtree::New(tree); } EXPECT_THAT(tree->GetAppendBuffer(1), SizeIs(0u)); CordRepBtree::Unref(tree); CordRep::Unref(flat); } TEST_P(CordRepBtreeHeightTest, GetAppendBufferFlatNoCapacity) { CordRepFlat* flat = MakeFlat("abc"); flat->length = flat->Capacity(); CordRepBtree* tree = CordRepBtree::Create(flat); for (int i = 1; i <= height(); ++i) { tree = CordRepBtree::New(tree); } EXPECT_THAT(tree->GetAppendBuffer(1), SizeIs(0u)); CordRepBtree::Unref(tree); } TEST_P(CordRepBtreeHeightTest, GetAppendBufferFlatWithCapacity) { CordRepFlat* flat = MakeFlat("abc"); CordRepBtree* tree = CordRepBtree::Create(flat); for (int i = 1; i <= height(); ++i) { tree = CordRepBtree::New(tree); } absl::Span<char> span = tree->GetAppendBuffer(2); EXPECT_THAT(span, SizeIs(2u)); EXPECT_THAT(span.data(), TypedEq<void*>(flat->Data() + 3)); EXPECT_THAT(tree->length, Eq(5u)); size_t avail = flat->Capacity() - 5; span = tree->GetAppendBuffer(avail + 100); EXPECT_THAT(span, SizeIs(avail)); EXPECT_THAT(span.data(), TypedEq<void*>(flat->Data() + 5)); EXPECT_THAT(tree->length, Eq(5 + avail)); CordRepBtree::Unref(tree); } TEST(CordRepBtreeTest, Dump) { std::stringstream ss; CordRepBtree::Dump(nullptr, ss); CordRepBtree::Dump(nullptr, "Once upon a label", ss); CordRepBtree::Dump(nullptr, "Once upon a label", false, ss); CordRepBtree::Dump(nullptr, "Once upon a label", true, ss); CordRepFlat* flat = MakeFlat("Hello world"); CordRepExternal* external = MakeExternal("Hello external"); CordRep* substr_flat = MakeSubstring(1, 6, CordRep::Ref(flat)); CordRep* substr_external = MakeSubstring(2, 7, CordRep::Ref(external)); CordRepBtree* tree = CordRepBtree::Create(flat); tree = CordRepBtree::Append(tree, external); tree = CordRepBtree::Append(tree, substr_flat); tree = CordRepBtree::Append(tree, substr_external); while (tree->height() == 0) { tree = CordRepBtree::Append(tree, CordRep::Ref(flat)); tree = CordRepBtree::Append(tree, CordRep::Ref(external)); tree = CordRepBtree::Append(tree, CordRep::Ref(substr_flat)); tree = CordRepBtree::Append(tree, CordRep::Ref(substr_external)); } for (int api = 0; api <= 3; ++api) { absl::string_view api_scope; std::stringstream ss; switch (api) { case 0: api_scope = "Bare"; CordRepBtree::Dump(tree, ss); break; case 1: api_scope = "Label only"; CordRepBtree::Dump(tree, "Once upon a label", ss); break; case 2: api_scope = "Label no content"; CordRepBtree::Dump(tree, "Once upon a label", false, ss); break; default: api_scope = "Label and content"; CordRepBtree::Dump(tree, "Once upon a label", true, ss); break; } SCOPED_TRACE(api_scope); std::string str = ss.str(); EXPECT_THAT(str, AllOf(HasSubstr("Node(1)"), HasSubstr("Leaf"), HasSubstr("Private"), HasSubstr("Shared"))); EXPECT_THAT(str, AllOf(HasSubstr("len = 11"), HasSubstr("len = 14"), HasSubstr("len = 6"), HasSubstr("len = 7"), HasSubstr("start = 1"), HasSubstr("start = 2"))); EXPECT_THAT( str, AllOf(HasSubstr(absl::StrCat("0x", absl::Hex(flat))), HasSubstr(absl::StrCat("0x", absl::Hex(external))), HasSubstr(absl::StrCat("0x", absl::Hex(substr_flat))), HasSubstr(absl::StrCat("0x", absl::Hex(substr_external))))); if (api != 0) { EXPECT_THAT(str, HasSubstr("Once upon a label")); } if (api != 3) { EXPECT_THAT(str, Not(AnyOf((HasSubstr("data = \"Hello world\""), HasSubstr("data = \"Hello external\""), HasSubstr("data = \"ello w\""), HasSubstr("data = \"llo ext\""))))); } else { EXPECT_THAT(str, AllOf((HasSubstr("data = \"Hello world\""), HasSubstr("data = \"Hello external\""), HasSubstr("data = \"ello w\""), HasSubstr("data = \"llo ext\"")))); } } CordRep::Unref(tree); } TEST(CordRepBtreeTest, IsValid) { EXPECT_FALSE(CordRepBtree::IsValid(nullptr)); CordRepBtree* empty = CordRepBtree::New(0); EXPECT_TRUE(CordRepBtree::IsValid(empty)); CordRep::Unref(empty); for (bool as_tree : {false, true}) { CordRepBtree* leaf = CordRepBtree::Create(MakeFlat("abc")); CordRepBtree* tree = as_tree ? CordRepBtree::New(leaf) : nullptr; CordRepBtree* check = as_tree ? tree : leaf; ASSERT_TRUE(CordRepBtree::IsValid(check)); leaf->length--; EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->length++; ASSERT_TRUE(CordRepBtree::IsValid(check)); leaf->tag--; EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->tag++; ASSERT_TRUE(CordRepBtree::IsValid(check)); leaf->storage[0] = static_cast<uint8_t>(CordRepBtree::kMaxHeight + 1); EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->storage[0] = 1; EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->storage[0] = 0; ASSERT_TRUE(CordRepBtree::IsValid(check)); const uint8_t begin = leaf->storage[1]; leaf->storage[1] = static_cast<uint8_t>(CordRepBtree::kMaxCapacity); EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->storage[1] = 2; EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->storage[1] = begin; ASSERT_TRUE(CordRepBtree::IsValid(check)); const uint8_t end = leaf->storage[2]; leaf->storage[2] = static_cast<uint8_t>(CordRepBtree::kMaxCapacity + 1); EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->storage[2] = end; ASSERT_TRUE(CordRepBtree::IsValid(check)); CordRep* const edge = leaf->Edges()[0]; const uint8_t tag = edge->tag; CordRepBtreeTestPeer::SetEdge(leaf, begin, nullptr); EXPECT_FALSE(CordRepBtree::IsValid(check)); CordRepBtreeTestPeer::SetEdge(leaf, begin, edge); edge->tag = BTREE; EXPECT_FALSE(CordRepBtree::IsValid(check)); edge->tag = tag; if (as_tree) { ASSERT_TRUE(CordRepBtree::IsValid(check)); leaf->length--; EXPECT_FALSE(CordRepBtree::IsValid(check)); leaf->length++; ASSERT_TRUE(CordRepBtree::IsValid(check)); tree->storage[0] = static_cast<uint8_t>(2); EXPECT_FALSE(CordRepBtree::IsValid(check)); tree->storage[0] = 1; ASSERT_TRUE(CordRepBtree::IsValid(check)); CordRep* const edge = tree->Edges()[0]; const uint8_t tag = edge->tag; edge->tag = FLAT; EXPECT_FALSE(CordRepBtree::IsValid(check)); edge->tag = tag; } ASSERT_TRUE(CordRepBtree::IsValid(check)); CordRep::Unref(check); } } TEST(CordRepBtreeTest, AssertValid) { CordRepBtree* tree = CordRepBtree::Create(MakeFlat("abc")); const CordRepBtree* ctree = tree; EXPECT_THAT(CordRepBtree::AssertValid(tree), Eq(tree)); EXPECT_THAT(CordRepBtree::AssertValid(ctree), Eq(ctree)); #if defined(GTEST_HAS_DEATH_TEST) CordRepBtree* nulltree = nullptr; const CordRepBtree* cnulltree = nullptr; EXPECT_DEBUG_DEATH( EXPECT_THAT(CordRepBtree::AssertValid(nulltree), Eq(nulltree)), ".*"); EXPECT_DEBUG_DEATH( EXPECT_THAT(CordRepBtree::AssertValid(cnulltree), Eq(cnulltree)), ".*"); tree->length--; EXPECT_DEBUG_DEATH(EXPECT_THAT(CordRepBtree::AssertValid(tree), Eq(tree)), ".*"); EXPECT_DEBUG_DEATH(EXPECT_THAT(CordRepBtree::AssertValid(ctree), Eq(ctree)), ".*"); tree->length++; #endif CordRep::Unref(tree); } TEST(CordRepBtreeTest, CheckAssertValidShallowVsDeep) { const bool exhaustive_validation = IsCordBtreeExhaustiveValidationEnabled(); auto cleanup = absl::MakeCleanup([exhaustive_validation] { SetCordBtreeExhaustiveValidation(exhaustive_validation); }); CordRep* flat = MakeFlat("abc"); CordRepBtree* tree = CordRepBtree::Create(flat); constexpr size_t max_cap = CordRepBtree::kMaxCapacity; const size_t n = max_cap * max_cap * 2; for (size_t i = 0; i < n; ++i) { tree = CordRepBtree::Append(tree, MakeFlat("Hello world")); } flat->length = 100; SetCordBtreeExhaustiveValidation(false); EXPECT_FALSE(CordRepBtree::IsValid(tree)); EXPECT_TRUE(CordRepBtree::IsValid(tree, true)); EXPECT_FALSE(CordRepBtree::IsValid(tree, false)); CordRepBtree::AssertValid(tree); CordRepBtree::AssertValid(tree, true); #if defined(GTEST_HAS_DEATH_TEST) EXPECT_DEBUG_DEATH(CordRepBtree::AssertValid(tree, false), ".*"); #endif SetCordBtreeExhaustiveValidation(true); EXPECT_FALSE(CordRepBtree::IsValid(tree)); EXPECT_FALSE(CordRepBtree::IsValid(tree, true)); EXPECT_FALSE(CordRepBtree::IsValid(tree, false)); #if defined(GTEST_HAS_DEATH_TEST) EXPECT_DEBUG_DEATH(CordRepBtree::AssertValid(tree), ".*"); EXPECT_DEBUG_DEATH(CordRepBtree::AssertValid(tree, true), ".*"); #endif flat->length = 3; CordRep::Unref(tree); } TEST_P(CordRepBtreeTest, Rebuild) { for (size_t size : {3u, 8u, 100u, 10000u, 1000000u}) { SCOPED_TRACE(absl::StrCat("Rebuild @", size)); std::vector<CordRepFlat*> flats; for (size_t i = 0; i < size; ++i) { flats.push_back(CordRepFlat::New(2)); flats.back()->Data()[0] = 'x'; flats.back()->length = 1; } size_t split_count = 0; size_t split_limit = 3; auto it = flats.begin(); CordRepBtree* left = nullptr; CordRepBtree* right = CordRepBtree::New(*it); while (++it != flats.end()) { if (++split_count >= split_limit) { split_limit += split_limit / 16; left = left ? CordRepBtree::Append(left, right) : right; right = CordRepBtree::New(*it); } else { right = CordRepBtree::Append(right, *it); } } left = left ? CordRepBtree::Append(left, right) : right; AutoUnref ref; left = ref.Add(CordRepBtree::Rebuild(ref.RefIf(shared(), left))); ASSERT_TRUE(CordRepBtree::IsValid(left)); bool ok = true; it = flats.begin(); CordVisitReps(left, [&](CordRep* edge) { if (edge->tag < FLAT) return; ok = ok && (it != flats.end() && *it++ == edge); }); EXPECT_TRUE(ok && it == flats.end()) << "Rebuild edges mismatch"; } } CordRepBtree::ExtractResult ExtractLast(CordRepBtree* input, size_t cap = 1) { return CordRepBtree::ExtractAppendBuffer(input, cap); } TEST(CordRepBtreeTest, ExtractAppendBufferLeafSingleFlat) { CordRep* flat = MakeFlat("Abc"); CordRepBtree* leaf = CordRepBtree::Create(flat); EXPECT_THAT(ExtractLast(leaf), EqExtractResult(nullptr, flat)); CordRep::Unref(flat); } TEST(CordRepBtreeTest, ExtractAppendBufferNodeSingleFlat) { CordRep* flat = MakeFlat("Abc"); CordRepBtree* leaf = CordRepBtree::Create(flat); CordRepBtree* node = CordRepBtree::New(leaf); EXPECT_THAT(ExtractLast(node), EqExtractResult(nullptr, flat)); CordRep::Unref(flat); } TEST(CordRepBtreeTest, ExtractAppendBufferLeafTwoFlats) { std::vector<CordRep*> flats = CreateFlatsFromString("abcdef", 3); CordRepBtree* leaf = CreateTree(flats); EXPECT_THAT(ExtractLast(leaf), EqExtractResult(flats[0], flats[1])); CordRep::Unref(flats[0]); CordRep::Unref(flats[1]); } TEST(CordRepBtreeTest, ExtractAppendBufferNodeTwoFlats) { std::vector<CordRep*> flats = CreateFlatsFromString("abcdef", 3); CordRepBtree* leaf = CreateTree(flats); CordRepBtree* node = CordRepBtree::New(leaf); EXPECT_THAT(ExtractLast(node), EqExtractResult(flats[0], flats[1])); CordRep::Unref(flats[0]); CordRep::Unref(flats[1]); } TEST(CordRepBtreeTest, ExtractAppendBufferNodeTwoFlatsInTwoLeafs) { std::vector<CordRep*> flats = CreateFlatsFromString("abcdef", 3); CordRepBtree* leaf1 = CordRepBtree::Create(flats[0]); CordRepBtree* leaf2 = CordRepBtree::Create(flats[1]); CordRepBtree* node = CordRepBtree::New(leaf1, leaf2); EXPECT_THAT(ExtractLast(node), EqExtractResult(flats[0], flats[1])); CordRep::Unref(flats[0]); CordRep::Unref(flats[1]); } TEST(CordRepBtreeTest, ExtractAppendBufferLeafThreeFlats) { std::vector<CordRep*> flats = CreateFlatsFromString("abcdefghi", 3); CordRepBtree* leaf = CreateTree(flats); EXPECT_THAT(ExtractLast(leaf), EqExtractResult(leaf, flats[2])); CordRep::Unref(flats[2]); CordRep::Unref(leaf); } TEST(CordRepBtreeTest, ExtractAppendBufferNodeThreeFlatsRightNoFolding) { CordRep* flat = MakeFlat("Abc"); std::vector<CordRep*> flats = CreateFlatsFromString("defghi", 3); CordRepBtree* leaf1 = CordRepBtree::Create(flat); CordRepBtree* leaf2 = CreateTree(flats); CordRepBtree* node = CordRepBtree::New(leaf1, leaf2); EXPECT_THAT(ExtractLast(node), EqExtractResult(node, flats[1])); EXPECT_THAT(node->Edges(), ElementsAre(leaf1, leaf2)); EXPECT_THAT(leaf1->Edges(), ElementsAre(flat)); EXPECT_THAT(leaf2->Edges(), ElementsAre(flats[0])); CordRep::Unref(node); CordRep::Unref(flats[1]); } TEST(CordRepBtreeTest, ExtractAppendBufferNodeThreeFlatsRightLeafFolding) { CordRep* flat = MakeFlat("Abc"); std::vector<CordRep*> flats = CreateFlatsFromString("defghi", 3); CordRepBtree* leaf1 = CreateTree(flats); CordRepBtree* leaf2 = CordRepBtree::Create(flat); CordRepBtree* node = CordRepBtree::New(leaf1, leaf2); EXPECT_THAT(ExtractLast(node), EqExtractResult(leaf1, flat)); EXPECT_THAT(leaf1->Edges(), ElementsAreArray(flats)); CordRep::Unref(leaf1); CordRep::Unref(flat); } TEST(CordRepBtreeTest, ExtractAppendBufferNoCapacity) { std::vector<CordRep*> flats = CreateFlatsFromString("abcdef", 3); CordRepBtree* leaf = CreateTree(flats); size_t avail = flats[1]->flat()->Capacity() - flats[1]->length; EXPECT_THAT(ExtractLast(leaf, avail + 1), EqExtractResult(leaf, nullptr)); EXPECT_THAT(ExtractLast(leaf, avail), EqExtractResult(flats[0], flats[1])); CordRep::Unref(flats[0]); CordRep::Unref(flats[1]); } TEST(CordRepBtreeTest, ExtractAppendBufferNotFlat) { std::vector<CordRep*> flats = CreateFlatsFromString("abcdef", 3); auto substr = MakeSubstring(1, 2, flats[1]); CordRepBtree* leaf = CreateTree({flats[0], substr}); EXPECT_THAT(ExtractLast(leaf), EqExtractResult(leaf, nullptr)); CordRep::Unref(leaf); } TEST(CordRepBtreeTest, ExtractAppendBufferShared) { std::vector<CordRep*> flats = CreateFlatsFromString("abcdef", 3); CordRepBtree* leaf = CreateTree(flats); CordRep::Ref(flats[1]); EXPECT_THAT(ExtractLast(leaf), EqExtractResult(leaf, nullptr)); CordRep::Unref(flats[1]); CordRep::Ref(leaf); EXPECT_THAT(ExtractLast(leaf), EqExtractResult(leaf, nullptr)); CordRep::Unref(leaf); CordRepBtree* node = CordRepBtree::New(leaf); CordRep::Ref(node); EXPECT_THAT(ExtractLast(node), EqExtractResult(node, nullptr)); CordRep::Unref(node); CordRep::Unref(node); } } } ABSL_NAMESPACE_END }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_rep_btree.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/strings/internal/cord_rep_btree_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
db90c9df-2043-44fd-a8f2-b28813345dea
cpp
tensorflow/tensorflow
quantize_and_dequantize
tensorflow/lite/delegates/gpu/gl/kernels/quantize_and_dequantize.cc
tensorflow/lite/delegates/gpu/cl/kernels/quantize_and_dequantize_test.cc
#include "tensorflow/lite/delegates/gpu/gl/kernels/quantize_and_dequantize.h" #include <any> #include <memory> #include <string> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace gl { namespace { class QuantizeAndDequantize : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::string code = R"( value_0 = clamp(value_0, vec4($quant_min$), vec4($quant_max$)); value_0 = (value_0 - vec4($quant_min$)) / vec4($quant_scale$); value_0 = floor(value_0 + vec4(0.5)); value_0 = value_0 * vec4($quant_scale$) + vec4($quant_min$); )"; const auto& attr = std::any_cast<const QuantizeAndDequantizeAttributes&>(ctx.op_attr); *generated_code = { {{"quant_min", attr.min}, {"quant_max", attr.max}, {"quant_scale", attr.scale}}, {}, {}, uint3(), uint3(), code, IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewQuantizeAndDequantizeNodeShader() { return std::make_unique<QuantizeAndDequantize>(); } } } }
#include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/quantize_and_dequantize_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, QuantAndDequant_Dim2Bits8) { auto status = QuantAndDequant_Dim2Bits8Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, QuantAndDequant_Dim3Bits8_NegativeRange) { auto status = QuantAndDequant_Dim3Bits8_NegativeRangeTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, QuantAndDequant_Dim3Bits16) { auto status = QuantAndDequant_Dim3Bits16Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, QuantAndDequant_Dim2Bits16_NegativeRange) { auto status = QuantAndDequant_Dim2Bits16_NegativeRangeTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/gl/kernels/quantize_and_dequantize.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/delegates/gpu/cl/kernels/quantize_and_dequantize_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
678376f5-040b-442d-b9eb-167c86ddc768
cpp
tensorflow/tensorflow
set_ops
tensorflow/core/ops/set_ops.cc
tensorflow/core/ops/set_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference.h" namespace tensorflow { using shape_inference::DimensionHandle; using shape_inference::InferenceContext; using shape_inference::ShapeHandle; REGISTER_OP("SetSize") .Input("set_indices: int64") .Input("set_values: T") .Input("set_shape: int64") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("size: int32") .SetShapeFn(shape_inference::UnknownShape); REGISTER_OP("DenseToDenseSetOperation") .Input("set1: T") .Input("set2: T") .Attr("set_operation: string") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("result_indices: int64") .Output("result_values: T") .Output("result_shape: int64") .SetShapeFn([](InferenceContext* c) { if (c->num_inputs() != 2) { return errors::InvalidArgument("len(inputs) != 2."); } DimensionHandle output_rank; ShapeHandle input0_shape = c->input(0); TF_RETURN_IF_ERROR(c->WithRankAtLeast(input0_shape, 2, &input0_shape)); if (c->RankKnown(input0_shape)) { const int32_t input0_rank = c->Rank(input0_shape); ShapeHandle input1_shape = c->input(1); TF_RETURN_IF_ERROR( c->WithRank(input1_shape, input0_rank, &input1_shape)); if (c->RankKnown(input1_shape)) { const int32_t rank = c->Rank(input1_shape); ShapeHandle group0_shape; TF_RETURN_IF_ERROR( c->Subshape(input0_shape, 0, rank - 1, &group0_shape)); ShapeHandle group1_shape; TF_RETURN_IF_ERROR( c->Subshape(input1_shape, 0, rank - 1, &group1_shape)); ShapeHandle unused_shape; TF_RETURN_IF_ERROR( c->Merge(group0_shape, group1_shape, &unused_shape)); } output_rank = c->MakeDim(input0_rank); } else { ShapeHandle input1_shape = c->input(1); TF_RETURN_IF_ERROR(c->WithRankAtLeast(input1_shape, 2, &input1_shape)); if (c->RankKnown(input1_shape)) { output_rank = c->MakeDim(c->Rank(input1_shape)); } else { output_rank = c->UnknownDim(); } } c->set_output(0, c->Matrix(c->UnknownDim(), output_rank)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(output_rank)); return absl::OkStatus(); }); REGISTER_OP("DenseToSparseSetOperation") .Input("set1: T") .Input("set2_indices: int64") .Input("set2_values: T") .Input("set2_shape: int64") .Attr("set_operation: string") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("result_indices: int64") .Output("result_values: T") .Output("result_shape: int64") .SetShapeFn([](InferenceContext* c) { if (c->num_inputs() != 4) { return errors::InvalidArgument("len(inputs) != 4."); } ShapeHandle input1_shape_shape = c->input(3); TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, c->input(1), c->input(2), input1_shape_shape)); DimensionHandle input1_rank_dim = c->Dim(input1_shape_shape, 0); DimensionHandle output_rank_dim; ShapeHandle input0_shape = c->input(0); TF_RETURN_IF_ERROR(c->WithRankAtLeast(input0_shape, 2, &input0_shape)); if (c->RankKnown(input0_shape)) { const int32_t input0_rank = c->Rank(input0_shape); TF_RETURN_IF_ERROR( c->WithValue(input1_rank_dim, input0_rank, &input1_rank_dim)); output_rank_dim = c->MakeDim(input0_rank); } else if (c->ValueKnown(input1_rank_dim)) { output_rank_dim = input1_rank_dim; } else { output_rank_dim = c->UnknownDim(); } c->set_output(0, c->Matrix(c->UnknownDim(), output_rank_dim)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(output_rank_dim)); return absl::OkStatus(); }); REGISTER_OP("SparseToSparseSetOperation") .Input("set1_indices: int64") .Input("set1_values: T") .Input("set1_shape: int64") .Input("set2_indices: int64") .Input("set2_values: T") .Input("set2_shape: int64") .Attr("set_operation: string") .Attr("validate_indices: bool = true") .Attr("T: {int8, int16, int32, int64, uint8, uint16, string}") .Output("result_indices: int64") .Output("result_values: T") .Output("result_shape: int64") .SetShapeFn([](InferenceContext* c) { if (c->num_inputs() != 6) { return errors::InvalidArgument("len(inputs) != 6."); } ShapeHandle input0_shape_shape = c->input(2); ShapeHandle input1_shape_shape = c->input(5); TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, c->input(0), c->input(1), input0_shape_shape)); TF_RETURN_IF_ERROR(shape_inference::ValidateSparseTensor( c, c->input(3), c->input(4), input1_shape_shape)); DimensionHandle input0_rank_dim = c->Dim(input0_shape_shape, 0); DimensionHandle input1_rank_dim = c->Dim(input1_shape_shape, 0); DimensionHandle output_rank_dim; if (c->ValueKnown(input0_rank_dim)) { const int64_t input0_rank = c->Value(input0_rank_dim); if (input0_rank < 2) { return errors::InvalidArgument("Input 0, expected rank >= 2, got ", input0_rank, "."); } TF_RETURN_IF_ERROR( c->WithValue(input1_rank_dim, input0_rank, &input1_rank_dim)); output_rank_dim = input0_rank_dim; } else if (c->ValueKnown(input1_rank_dim)) { const int64_t input1_rank = c->Value(input1_rank_dim); if (input1_rank < 2) { return errors::InvalidArgument("Input 1, expected rank >= 2, got ", input1_rank, "."); } output_rank_dim = input1_rank_dim; } else { output_rank_dim = c->UnknownDim(); } c->set_output(0, c->Matrix(c->UnknownDim(), output_rank_dim)); c->set_output(1, c->Vector(c->UnknownDim())); c->set_output(2, c->Vector(output_rank_dim)); return absl::OkStatus(); }); }
#include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/shape_inference_testutil.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { TEST(SetOpsTest, DenseToDenseShape_InvalidNumberOfInputs) { ShapeInferenceTestOp op("DenseToDenseSetOperation"); op.input_tensors.resize(3); INFER_ERROR("Wrong number of inputs passed", op, "?;?;?"); } TEST(SetOpsTest, DenseToDenseShape) { ShapeInferenceTestOp op("DenseToDenseSetOperation"); INFER_OK(op, "?;?", "[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "?;[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "?;[2]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "[?,?];[?,?,?]"); INFER_ERROR("Shape must be rank 3 but is rank 2", op, "[?,?,?];[?,?]"); INFER_ERROR("Shape must be rank 2 but is rank 3", op, "[2,1];[2,1,2]"); INFER_ERROR("Shape must be rank 3 but is rank 2", op, "[2,1,2];[2,1]"); INFER_OK(op, "[?,?];?", "[?,2];[?];[2]"); INFER_OK(op, "?;[?,?]", "[?,2];[?];[2]"); INFER_OK(op, "[?,?];[?,?]", "[?,2];[?];[2]"); INFER_OK(op, "[?,?,?,?];?", "[?,4];[?];[4]"); INFER_OK(op, "?;[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[?,?,?,?];[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[5,3,2,1];?", "[?,4];[?];[4]"); INFER_OK(op, "?;[5,3,2,1]", "[?,4];[?];[4]"); INFER_OK(op, "[5,3,2,1];[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[?,?,?,?];[5,3,2,1]", "[?,4];[?];[4]"); INFER_OK(op, "[5,3,2,1];[?,?,?,?]", "[?,4];[?];[4]"); INFER_ERROR("Dimension 0 in both shapes must be equal", op, "[4,?,2,?];[3,1,?,5]"); INFER_ERROR("Dimension 2 in both shapes must be equal", op, "[4,3,2,1];[4,3,3,1]"); INFER_OK(op, "[4,5,6,7];[?,?,?,?]", "[?,4];[?];[4]"); INFER_OK(op, "[4,5,6,7];[?,?,?,4]", "[?,4];[?];[4]"); INFER_OK(op, "[?,?,?,?];[4,5,6,7]", "[?,4];[?];[4]"); INFER_OK(op, "[4,?,2,?];[?,1,?,5]", "[?,4];[?];[4]"); INFER_OK(op, "[4,5,6,7];[4,?,6,?]", "[?,4];[?];[4]"); INFER_OK(op, "[4,5,6,7];[4,5,6,4]", "[?,4];[?];[4]"); } TEST(SetOpsTest, DenseToSparseShape_InvalidNumberOfInputs) { ShapeInferenceTestOp op("DenseToSparseSetOperation"); op.input_tensors.resize(5); INFER_ERROR("Wrong number of inputs passed", op, "?;?;?;?;?"); } TEST(SetOpsTest, DenseToSparseShape) { ShapeInferenceTestOp op("DenseToSparseSetOperation"); INFER_OK(op, "?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "?;[?,?];[?];[?]", "[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];?;?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[?];[5,3];[5];[3]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];?;?;?"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];[?,?];[?];[?]"); INFER_ERROR("Shape must be at least rank 2 but is rank 1", op, "[2];[5,3];[5];[3]"); INFER_OK(op, "[?,?];?;?;?", "[?,2];[?];[2]"); INFER_OK(op, "[?,?];[?,?];[?];[?]", "[?,2];[?];[2]"); INFER_OK(op, "?;[?,2];[?];[2]", "[?,d3_0];[?];[d3_0]"); INFER_OK(op, "?;[5,2];[5];[2]", "[?,d3_0];[?];[d3_0]"); INFER_OK(op, "[?,?];[5,2];[5];[2]", "[?,2];[?];[2]"); INFER_OK(op, "[4,3];[5,2];[5];[2]", "[?,2];[?];[2]"); INFER_ERROR("elements in index (5) and values (6) do not match", op, "?;[5,3];[6];[3]"); INFER_ERROR("rank (3) and shape rank (4) do not match", op, "?;[5,3];[5];[4]"); } TEST(SetOpsTest, SparseToSparseShape_InvalidNumberOfInputs) { ShapeInferenceTestOp op("SparseToSparseSetOperation"); op.input_tensors.resize(7); INFER_ERROR("Wrong number of inputs passed", op, "?;?;?;?;?;?;?"); } TEST(SetOpsTest, SparseToSparseShape) { ShapeInferenceTestOp op("SparseToSparseSetOperation"); INFER_OK(op, "?;?;?;?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "[?,?];[?];[?];[?,?];[?];[?]", "[?,?];[?];[?]"); INFER_OK(op, "?;?;?;[?,?];[?];[?]", "[?,?];[?];[?]"); INFER_OK(op, "[?,?];[?];[?];?;?;?", "[?,?];[?];[?]"); INFER_OK(op, "[?,2];[?];[2];?;?;?", "[?,d2_0];[?];[d2_0]"); INFER_OK(op, "?;?;?;[?,2];[?];[2]", "[?,d5_0];[?];[d5_0]"); INFER_OK(op, "[?,2];[?];[2];[?,?];[?];[?]", "[?,d2_0];[?];[d2_0]"); INFER_OK(op, "[?,?];[?];[?];[?,2];[?];[2]", "[?,d5_0];[?];[d5_0]"); INFER_OK(op, "[?,2];[?];[2];[?,2];[?];[2]", "[?,d2_0];[?];[d2_0]"); } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/set_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/ops/set_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
721cbde5-7ea7-4461-a9c7-5f9a290fb85e
cpp
google/cel-cpp
copy_on_write
internal/copy_on_write.h
internal/copy_on_write_test.cc
#ifndef THIRD_PARTY_CEL_CPP_INTERNAL_COPY_ON_WRITE_H_ #define THIRD_PARTY_CEL_CPP_INTERNAL_COPY_ON_WRITE_H_ #include <algorithm> #include <atomic> #include <memory> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" namespace cel::internal { template <typename T> class ABSL_ATTRIBUTE_TRIVIAL_ABI CopyOnWrite final { private: struct Rep final { Rep() = default; template <typename... Args, typename = std::enable_if_t<std::is_constructible_v<T, Args...>>> explicit Rep(Args&&... args) : value(std::forward<Args>(value)...) {} Rep(const Rep&) = delete; Rep(Rep&&) = delete; Rep& operator=(const Rep&) = delete; Rep& operator=(Rep&&) = delete; std::atomic<int32_t> refs = 1; T value; void Ref() { const auto count = refs.fetch_add(1, std::memory_order_relaxed); ABSL_DCHECK_GT(count, 0); } void Unref() { const auto count = refs.fetch_sub(1, std::memory_order_acq_rel); ABSL_DCHECK_GT(count, 0); if (count == 1) { delete this; } } bool Unique() const { const auto count = refs.load(std::memory_order_acquire); ABSL_DCHECK_GT(count, 0); return count == 1; } }; public: static_assert(std::is_copy_constructible_v<T>, "T must be copy constructible"); static_assert(std::is_destructible_v<T>, "T must be destructible"); template <typename = std::enable_if_t<std::is_default_constructible_v<T>>> CopyOnWrite() : rep_(new Rep()) {} CopyOnWrite(const CopyOnWrite<T>& other) : rep_(other.rep_) { rep_->Ref(); } CopyOnWrite(CopyOnWrite<T>&& other) noexcept : rep_(other.rep_) { other.rep_ = nullptr; } ~CopyOnWrite() { if (rep_ != nullptr) { rep_->Unref(); } } CopyOnWrite<T>& operator=(const CopyOnWrite<T>& other) { ABSL_DCHECK_NE(this, std::addressof(other)); other.rep_->Ref(); rep_->Unref(); rep_ = other.rep_; return *this; } CopyOnWrite<T>& operator=(CopyOnWrite<T>&& other) noexcept { ABSL_DCHECK_NE(this, std::addressof(other)); rep_->Unref(); rep_ = other.rep_; other.rep_ = nullptr; return *this; } T& mutable_get() ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_DCHECK(rep_ != nullptr) << "Object in moved-from state."; if (ABSL_PREDICT_FALSE(!rep_->Unique())) { auto* rep = new Rep(static_cast<const T&>(rep_->value)); rep_->Unref(); rep_ = rep; } return rep_->value; } const T& get() const ABSL_ATTRIBUTE_LIFETIME_BOUND { ABSL_DCHECK(rep_ != nullptr) << "Object in moved-from state."; return rep_->value; } void swap(CopyOnWrite<T>& other) noexcept { using std::swap; swap(rep_, other.rep_); } private: Rep* rep_; }; template <typename T> void swap(CopyOnWrite<T>& lhs, CopyOnWrite<T>& rhs) noexcept { lhs.swap(rhs); } } #endif
#include "internal/copy_on_write.h" #include <cstdint> #include "internal/testing.h" namespace cel::internal { namespace { TEST(CopyOnWrite, Basic) { CopyOnWrite<int32_t> original; EXPECT_EQ(&original.mutable_get(), &original.get()); { auto duplicate = original; EXPECT_EQ(&duplicate.get(), &original.get()); EXPECT_NE(&duplicate.mutable_get(), &original.get()); } EXPECT_EQ(&original.mutable_get(), &original.get()); } } }
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/copy_on_write.h
https://github.com/google/cel-cpp/blob/4552db5798fb0853b131b783d8875794334fae7f/internal/copy_on_write_test.cc
4552db5798fb0853b131b783d8875794334fae7f
3d9b2f2f-d60b-4eec-b8fb-be7dca0e0400
cpp
tensorflow/tensorflow
bad_indices_policy
tensorflow/core/util/bad_indices_policy.cc
tensorflow/core/util/bad_indices_policy_test.cc
#include "tensorflow/core/util/bad_indices_policy.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" namespace tensorflow { constexpr char kDefault[] = "DEFAULT"; constexpr char kErrorStr[] = "ERROR"; constexpr char kIgnoreStr[] = "IGNORE"; absl::StatusOr<BadIndicesPolicy> BadIndicesPolicyFromString( absl::string_view str) { if (str.empty()) return BadIndicesPolicy::kDefault; if (str == kDefault) return BadIndicesPolicy::kDefault; if (str == kErrorStr) return BadIndicesPolicy::kError; if (str == kIgnoreStr) return BadIndicesPolicy::kIgnore; return absl::InvalidArgumentError( absl::StrCat("Unknown bad indices handling attribute: ", str)); } }
#include "tensorflow/core/util/bad_indices_policy.h" #include <gmock/gmock.h> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { constexpr absl::string_view kDefault = "DEFAULT"; constexpr absl::string_view kErrorStr = "ERROR"; constexpr absl::string_view kIgnoreStr = "IGNORE"; class BadIndicesPolicyFromStringTest : public ::testing::Test { protected: void TestValidInput(absl::string_view input, BadIndicesPolicy expected) { absl::StatusOr<BadIndicesPolicy> result = BadIndicesPolicyFromString(input); ASSERT_TRUE(result.ok()); EXPECT_EQ(result.value(), expected); } }; TEST_F(BadIndicesPolicyFromStringTest, EmptyString) { TestValidInput("", BadIndicesPolicy::kDefault); } TEST_F(BadIndicesPolicyFromStringTest, DefaultKeyword) { TestValidInput(kDefault, BadIndicesPolicy::kDefault); } TEST_F(BadIndicesPolicyFromStringTest, ErrorKeyword) { TestValidInput(kErrorStr, BadIndicesPolicy::kError); } TEST_F(BadIndicesPolicyFromStringTest, IgnoreKeyword) { TestValidInput(kIgnoreStr, BadIndicesPolicy::kIgnore); } TEST_F(BadIndicesPolicyFromStringTest, InvalidInput) { absl::StatusOr<BadIndicesPolicy> result = BadIndicesPolicyFromString("unknown"); ASSERT_FALSE(result.ok()); EXPECT_THAT(result.status().message(), ::testing::HasSubstr("Unknown bad indices handling attribute")); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/bad_indices_policy.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/util/bad_indices_policy_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
9cd2f506-a605-4a5f-9004-2be24156c63f
cpp
tensorflow/tensorflow
immutable_constant_op
tensorflow/core/kernels/immutable_constant_op.cc
tensorflow/core/kernels/immutable_constant_op_test.cc
#include "tensorflow/core/kernels/immutable_constant_op.h" #include <unordered_set> #include "tensorflow/core/framework/types.pb.h" namespace tensorflow { namespace { class MemmappedTensorAllocator : public Allocator { public: MemmappedTensorAllocator() {} Status InitializeFromRegion(const string& name, Env* env) { const auto status = env->NewReadOnlyMemoryRegionFromFile(name, &memory_region_); if (!status.ok()) { return status; } return absl::OkStatus(); } string Name() override { return "MemmappedTensorAllocator"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { if ((reinterpret_cast<intptr_t>(memory_region_->data())) % alignment != 0) { allocation_status_ = errors::Internal("Readonly memory region has wrong alignment"); return nullptr; } if (num_bytes > memory_region_->length()) { allocation_status_ = errors::Internal( "Readonly memory region has wrong length (", memory_region_->length(), ") when allocating ", num_bytes); return nullptr; } return const_cast<void*>(memory_region_->data()); } void DeallocateRaw(void* ptr) override { if (ptr != memory_region_->data()) { LOG(ERROR) << "Deallocating not allocated region for readonly memory region"; } if (delete_on_deallocate_) { delete this; } } const Status& allocation_status() const { return allocation_status_; } void set_delete_on_deallocate() { delete_on_deallocate_ = true; } bool AllocatesOpaqueHandle() const override { return true; } private: std::unique_ptr<ReadOnlyMemoryRegion> memory_region_; Status allocation_status_; bool delete_on_deallocate_ = false; MemmappedTensorAllocator(const MemmappedTensorAllocator&) = delete; void operator=(const MemmappedTensorAllocator&) = delete; }; } ImmutableConstantOp::ImmutableConstantOp(OpKernelConstruction* context) : OpKernel(context) { OP_REQUIRES_OK(context, context->GetAttr(kMemoryRegionNameAttr, &region_name_)); OP_REQUIRES_OK(context, context->GetAttr(kDTypeAttr, &dtype_)); OP_REQUIRES(context, dtype_ != DT_RESOURCE && dtype_ != DT_VARIANT, errors::InvalidArgument( "Resource and variant dtypes are invalid for this op.")); OP_REQUIRES_OK(context, context->GetAttr(kShapeAttr, &shape_)); } void ImmutableConstantOp::Compute(OpKernelContext* ctx) { std::unique_ptr<MemmappedTensorAllocator> allocator( new MemmappedTensorAllocator()); OP_REQUIRES_OK(ctx, allocator->InitializeFromRegion(region_name_, ctx->env())); OP_REQUIRES(ctx, dtype_ != DT_STRING, errors::Unimplemented("Sorry, DT_STRING is not currently " "supported for ImmutableConstOp.")); ctx->set_output(0, Tensor(allocator.get(), dtype_, shape_)); OP_REQUIRES_OK(ctx, allocator->allocation_status()); allocator.release()->set_delete_on_deallocate(); } ImmutableConstantOp::~ImmutableConstantOp() {} constexpr char const* ImmutableConstantOp::kDTypeAttr; constexpr char const* ImmutableConstantOp::kShapeAttr; constexpr char const* ImmutableConstantOp::kMemoryRegionNameAttr; REGISTER_KERNEL_BUILDER(Name("ImmutableConst").Device(DEVICE_CPU), ImmutableConstantOp); }
#include "tensorflow/core/kernels/immutable_constant_op.h" #include <algorithm> #include <tuple> #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/null_file_system.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tensorflow/core/public/session.h" namespace tensorflow { namespace { constexpr size_t kTestAlignment = 4096; constexpr size_t kTestTensorSize = 4; constexpr size_t kTestTensorSizeBytes = kTestTensorSize * sizeof(float); class TestReadOnlyMemoryRegion : public ReadOnlyMemoryRegion { public: TestReadOnlyMemoryRegion() = delete; explicit TestReadOnlyMemoryRegion(uint64 length) : memptr_(cpu_allocator()->AllocateRaw(kTestAlignment, length)), length_(length) {} ~TestReadOnlyMemoryRegion() override { cpu_allocator()->DeallocateRaw(memptr_); } const void* data() override { return memptr_; } float* GetWritableDataStart() { return reinterpret_cast<float*>(memptr_); } uint64 length() override { return length_; } protected: void* memptr_; uint64 length_; }; class TestFileSystem : public NullFileSystem { public: ~TestFileSystem() override = default; using NullFileSystem::NewReadOnlyMemoryRegionFromFile; Status NewReadOnlyMemoryRegionFromFile( const string& fname, TransactionToken* token, std::unique_ptr<ReadOnlyMemoryRegion>* result) override { float val = 0; StringPiece scheme, host, path; io::ParseURI(fname, &scheme, &host, &path); if (path == "/2") { val = 2.0f; } else if (path == "/3") { val = 3.0f; } else { val = 0.0f; } auto region = new TestReadOnlyMemoryRegion(kTestTensorSizeBytes); std::fill_n(region->GetWritableDataStart(), kTestTensorSize, val); result->reset(region); return absl::OkStatus(); } }; REGISTER_FILE_SYSTEM("test", TestFileSystem); struct ImmutableConstantOpTest {}; TEST(ImmutableConstantOpTest, Simple) { const TensorShape kTestTensorShape({4, 1}); const TensorShape kTestTensorShapeT({1, 4}); auto root = Scope::NewRootScope().ExitOnError(); auto node1 = ops::ImmutableConst(root, DT_FLOAT, kTestTensorShape, "test: auto node2 = ops::ImmutableConst(root, DT_FLOAT, kTestTensorShapeT, "test: auto result = ops::MatMul(root, node1, node2); GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); SessionOptions session_options; session_options.env = Env::Default(); session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_opt_level(OptimizerOptions::L0); std::unique_ptr<Session> session(NewSession(session_options)); ASSERT_TRUE(session != nullptr) << "Failed to create session"; TF_ASSERT_OK(session->Create(graph_def)) << "Can't create test graph"; std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run({}, {result.node()->name() + ":0"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_EQ(outputs.front().flat<float>()(0), 2.0f * 3.0f); EXPECT_EQ(outputs.front().flat<float>()(1), 2.0f * 3.0f); EXPECT_EQ(outputs.front().flat<float>()(2), 2.0f * 3.0f); EXPECT_EQ(outputs.front().flat<float>()(kTestTensorSize - 1), 2.0f * 3.0f); } TEST(ImmutableConstantOpTest, ExecutionError) { const TensorShape kBadTensorShape({40, 100}); const TensorShape kTestTensorShapeT({1, 4}); auto root = Scope::DisabledShapeInferenceScope().ExitOnError(); auto node1 = ops::ImmutableConst(root, DT_FLOAT, kBadTensorShape, "test: auto node2 = ops::ImmutableConst(root, DT_FLOAT, kTestTensorShapeT, "test: auto result = ops::MatMul(root, node1, node2); GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); SessionOptions session_options; session_options.env = Env::Default(); std::unique_ptr<Session> session(NewSession(session_options)); ASSERT_TRUE(session != nullptr) << "Failed to create session"; TF_ASSERT_OK(session->Create(graph_def)) << "Can't create test graph"; std::vector<Tensor> outputs; EXPECT_EQ( session->Run({}, {result.node()->name() + ":0"}, {}, &outputs).code(), error::INTERNAL); } Status CreateTempFileFloat(Env* env, float value, uint64 size, string* filename) { const string dir = testing::TmpDir(); *filename = io::JoinPath(dir, strings::StrCat("file_", value)); std::unique_ptr<WritableFile> file; TF_RETURN_IF_ERROR(env->NewWritableFile(*filename, &file)); for (uint64 i = 0; i < size; ++i) { StringPiece sp(static_cast<char*>(static_cast<void*>(&value)), sizeof(value)); TF_RETURN_IF_ERROR(file->Append(sp)); } TF_RETURN_IF_ERROR(file->Close()); return absl::OkStatus(); } TEST(ImmutableConstantOpTest, FromFile) { const TensorShape kFileTensorShape({1000, 1}); Env* env = Env::Default(); auto root = Scope::NewRootScope().ExitOnError(); string two_file, three_file; TF_ASSERT_OK(CreateTempFileFloat(env, 2.0f, 1000, &two_file)); TF_ASSERT_OK(CreateTempFileFloat(env, 3.0f, 1000, &three_file)); auto node1 = ops::ImmutableConst(root, DT_FLOAT, kFileTensorShape, two_file); auto node2 = ops::ImmutableConst(root, DT_FLOAT, kFileTensorShape, three_file); auto result = ops::MatMul(root, node1, node2, ops::MatMul::TransposeB(true)); GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); SessionOptions session_options; session_options.config.mutable_graph_options() ->mutable_optimizer_options() ->set_opt_level(OptimizerOptions::L0); std::unique_ptr<Session> session(NewSession(session_options)); ASSERT_TRUE(session != nullptr) << "Failed to create session"; TF_ASSERT_OK(session->Create(graph_def)) << "Can't create test graph"; std::vector<Tensor> outputs; TF_ASSERT_OK(session->Run({}, {result.node()->name() + ":0"}, {}, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_EQ(outputs.front().flat<float>()(0), 2.0f * 3.0f); EXPECT_EQ(outputs.front().flat<float>()(1), 2.0f * 3.0f); EXPECT_EQ(outputs.front().flat<float>()(2), 2.0f * 3.0f); } Status CreateTempFileBadString(Env* env, char value, uint64 size, const string suffix, string* filename) { const string dir = testing::TmpDir(); *filename = io::JoinPath(dir, strings::StrCat("file_", suffix)); std::unique_ptr<WritableFile> file; TF_RETURN_IF_ERROR(env->NewWritableFile(*filename, &file)); TF_RETURN_IF_ERROR(file->Append(std::string(size, value))); TF_RETURN_IF_ERROR(file->Close()); return absl::OkStatus(); } TEST(ImmutableConstantOpTest, FromFileStringUnimplmented) { const TensorShape kFileTensorShape({1}); Env* env = Env::Default(); auto root = Scope::NewRootScope().ExitOnError(); string bad_file; TF_ASSERT_OK(CreateTempFileBadString(env, '\xe2', 128, "bad_e2", &bad_file)); auto result = ops::ImmutableConst(root, DT_STRING, kFileTensorShape, bad_file); GraphDef graph_def; TF_ASSERT_OK(root.ToGraphDef(&graph_def)); SessionOptions session_options; session_options.env = Env::Default(); std::unique_ptr<Session> session(NewSession(session_options)); ASSERT_TRUE(session != nullptr) << "Failed to create session"; TF_ASSERT_OK(session->Create(graph_def)) << "Can't create test graph"; std::vector<Tensor> outputs; EXPECT_EQ( session->Run({}, {result.node()->name() + ":0"}, {}, &outputs).code(), error::UNIMPLEMENTED); } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/immutable_constant_op.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/kernels/immutable_constant_op_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
a7c4e7e1-4c9d-4e25-9452-ecf7b7547ffd
cpp
google/arolla
memory_allocation
arolla/memory/memory_allocation.h
arolla/memory/memory_allocation_test.cc
#ifndef AROLLA_UTIL_MEMORY_ALLOCATION_H_ #define AROLLA_UTIL_MEMORY_ALLOCATION_H_ #include <utility> #include "absl/log/check.h" #include "arolla/memory/frame.h" #include "arolla/util/memory.h" namespace arolla { class MemoryAllocation { public: MemoryAllocation() = default; explicit MemoryAllocation(const FrameLayout* layout) : layout_(layout), alloc_(AlignedAlloc(layout->AllocAlignment(), layout->AllocSize())) { layout_->InitializeAlignedAlloc(alloc_.get()); } MemoryAllocation(const MemoryAllocation&) = delete; MemoryAllocation& operator=(const MemoryAllocation&) = delete; MemoryAllocation(MemoryAllocation&&) = default; MemoryAllocation& operator=(MemoryAllocation&& other) { if (alloc_ != nullptr) { layout_->DestroyAlloc(alloc_.get()); } layout_ = other.layout_; alloc_ = std::move(other.alloc_); return *this; } ~MemoryAllocation() { if (alloc_ != nullptr) { layout_->DestroyAlloc(alloc_.get()); } } bool IsValid() const { return alloc_ != nullptr; } FramePtr frame() { DCHECK(IsValid()); return FramePtr(alloc_.get(), layout_); } ConstFramePtr frame() const { DCHECK(IsValid()); return ConstFramePtr(alloc_.get(), layout_); } private: const FrameLayout* layout_ = nullptr; MallocPtr alloc_ = nullptr; }; } #endif
#include "arolla/memory/memory_allocation.h" #include <memory> #include <utility> #include "gtest/gtest.h" #include "arolla/memory/frame.h" namespace arolla { namespace { struct DeleteCounter { ~DeleteCounter() { ++deletions; } static int deletions; }; int DeleteCounter::deletions = 0; TEST(MemoryAllocationTest, TestEmptyValues) { FrameLayout::Builder builder; auto slot = builder.AddSlot<std::unique_ptr<DeleteCounter>>(); auto layout = std::move(builder).Build(); ASSERT_EQ(DeleteCounter::deletions, 0); MemoryAllocation alloc(&layout); EXPECT_TRUE(alloc.IsValid()); auto owned_ptr = std::make_unique<DeleteCounter>(); auto ptr = owned_ptr.get(); alloc.frame().Set(slot, std::move(owned_ptr)); EXPECT_EQ(alloc.frame().Get(slot).get(), ptr); MemoryAllocation new_alloc(std::move(alloc)); EXPECT_TRUE(new_alloc.IsValid()); EXPECT_FALSE(alloc.IsValid()); EXPECT_EQ(new_alloc.frame().Get(slot).get(), ptr); EXPECT_EQ(DeleteCounter::deletions, 0); MemoryAllocation newer_alloc(&layout); EXPECT_TRUE(newer_alloc.IsValid()); newer_alloc.frame().Set(slot, std::make_unique<DeleteCounter>()); newer_alloc = std::move(new_alloc); EXPECT_TRUE(newer_alloc.IsValid()); EXPECT_FALSE(new_alloc.IsValid()); EXPECT_EQ(newer_alloc.frame().Get(slot).get(), ptr); EXPECT_EQ(DeleteCounter::deletions, 1); } } }
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/memory/memory_allocation.h
https://github.com/google/arolla/blob/1ca990dbeca224035efdabffecc7f3738df6b52c/arolla/memory/memory_allocation_test.cc
1ca990dbeca224035efdabffecc7f3738df6b52c
7d716e0e-d273-409d-bedb-bdd18c59e153
cpp
google/quiche
qpack_encoder
quiche/quic/core/qpack/qpack_encoder.cc
quiche/quic/core/qpack/qpack_encoder_test.cc
#include "quiche/quic/core/qpack/qpack_encoder.h" #include <algorithm> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/qpack/qpack_index_conversions.h" #include "quiche/quic/core/qpack/qpack_instruction_encoder.h" #include "quiche/quic/core/qpack/qpack_required_insert_count.h" #include "quiche/quic/core/qpack/value_splitting_header_list.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { const float kDrainingFraction = 0.25; } QpackEncoder::QpackEncoder( DecoderStreamErrorDelegate* decoder_stream_error_delegate, HuffmanEncoding huffman_encoding, CookieCrumbling cookie_crumbling) : huffman_encoding_(huffman_encoding), cookie_crumbling_(cookie_crumbling), decoder_stream_error_delegate_(decoder_stream_error_delegate), decoder_stream_receiver_(this), encoder_stream_sender_(huffman_encoding), maximum_blocked_streams_(0), header_list_count_(0) { QUICHE_DCHECK(decoder_stream_error_delegate_); } QpackEncoder::~QpackEncoder() {} QpackEncoder::Representation QpackEncoder::EncodeIndexedHeaderField( bool is_static, uint64_t index, QpackBlockingManager::IndexSet* referred_indices) { if (!is_static) { referred_indices->insert(index); } return Representation::IndexedHeaderField(is_static, index); } QpackEncoder::Representation QpackEncoder::EncodeLiteralHeaderFieldWithNameReference( bool is_static, uint64_t index, absl::string_view value, QpackBlockingManager::IndexSet* referred_indices) { if (!is_static) { referred_indices->insert(index); } return Representation::LiteralHeaderFieldNameReference(is_static, index, value); } QpackEncoder::Representation QpackEncoder::EncodeLiteralHeaderField( absl::string_view name, absl::string_view value) { return Representation::LiteralHeaderField(name, value); } QpackEncoder::Representations QpackEncoder::FirstPassEncode( QuicStreamId stream_id, const quiche::HttpHeaderBlock& header_list, QpackBlockingManager::IndexSet* referred_indices, QuicByteCount* encoder_stream_sent_byte_count) { const QuicByteCount initial_encoder_stream_buffered_byte_count = encoder_stream_sender_.BufferedByteCount(); const bool can_write_to_encoder_stream = encoder_stream_sender_.CanWrite(); Representations representations; representations.reserve(header_list.size()); const uint64_t known_received_count = blocking_manager_.known_received_count(); uint64_t smallest_non_evictable_index = std::min( blocking_manager_.smallest_blocking_index(), known_received_count); const uint64_t draining_index = header_table_.draining_index(kDrainingFraction); const bool blocking_allowed = blocking_manager_.blocking_allowed_on_stream( stream_id, maximum_blocked_streams_); bool dynamic_table_insertion_blocked = false; bool blocked_stream_limit_exhausted = false; for (const auto& header : ValueSplittingHeaderList(&header_list, cookie_crumbling_)) { absl::string_view name = header.first; absl::string_view value = header.second; QpackEncoderHeaderTable::MatchResult match_result = header_table_.FindHeaderField(name, value); switch (match_result.match_type) { case QpackEncoderHeaderTable::MatchType::kNameAndValue: { if (match_result.is_static) { representations.push_back(EncodeIndexedHeaderField( match_result.is_static, match_result.index, referred_indices)); break; } if (match_result.index >= draining_index) { if (!blocking_allowed && match_result.index >= known_received_count) { blocked_stream_limit_exhausted = true; } else { representations.push_back(EncodeIndexedHeaderField( match_result.is_static, match_result.index, referred_indices)); smallest_non_evictable_index = std::min(smallest_non_evictable_index, match_result.index); header_table_.set_dynamic_table_entry_referenced(); break; } } else { if (!blocking_allowed) { blocked_stream_limit_exhausted = true; } else if (QpackEntry::Size(name, value) > header_table_.MaxInsertSizeWithoutEvictingGivenEntry( std::min(smallest_non_evictable_index, match_result.index))) { dynamic_table_insertion_blocked = true; } else { if (can_write_to_encoder_stream) { encoder_stream_sender_.SendDuplicate( QpackAbsoluteIndexToEncoderStreamRelativeIndex( match_result.index, header_table_.inserted_entry_count())); uint64_t new_index = header_table_.InsertEntry(name, value); representations.push_back(EncodeIndexedHeaderField( match_result.is_static, new_index, referred_indices)); smallest_non_evictable_index = std::min(smallest_non_evictable_index, match_result.index); header_table_.set_dynamic_table_entry_referenced(); break; } } } QpackEncoderHeaderTable::MatchResult match_result_name_only = header_table_.FindHeaderName(name); if (match_result_name_only.match_type != QpackEncoderHeaderTable::MatchType::kName || (match_result_name_only.is_static == match_result.is_static && match_result_name_only.index == match_result.index)) { representations.push_back(EncodeLiteralHeaderField(name, value)); break; } match_result = match_result_name_only; ABSL_FALLTHROUGH_INTENDED; } case QpackEncoderHeaderTable::MatchType::kName: { if (match_result.is_static) { if (blocking_allowed && QpackEntry::Size(name, value) <= header_table_.MaxInsertSizeWithoutEvictingGivenEntry( smallest_non_evictable_index)) { if (can_write_to_encoder_stream) { encoder_stream_sender_.SendInsertWithNameReference( match_result.is_static, match_result.index, value); uint64_t new_index = header_table_.InsertEntry(name, value); representations.push_back(EncodeIndexedHeaderField( false, new_index, referred_indices)); smallest_non_evictable_index = std::min<uint64_t>(smallest_non_evictable_index, new_index); break; } } representations.push_back(EncodeLiteralHeaderFieldWithNameReference( match_result.is_static, match_result.index, value, referred_indices)); break; } if (!blocking_allowed) { blocked_stream_limit_exhausted = true; } else if (QpackEntry::Size(name, value) > header_table_.MaxInsertSizeWithoutEvictingGivenEntry( std::min(smallest_non_evictable_index, match_result.index))) { dynamic_table_insertion_blocked = true; } else { if (can_write_to_encoder_stream) { encoder_stream_sender_.SendInsertWithNameReference( match_result.is_static, QpackAbsoluteIndexToEncoderStreamRelativeIndex( match_result.index, header_table_.inserted_entry_count()), value); uint64_t new_index = header_table_.InsertEntry(name, value); representations.push_back(EncodeIndexedHeaderField( match_result.is_static, new_index, referred_indices)); smallest_non_evictable_index = std::min(smallest_non_evictable_index, match_result.index); header_table_.set_dynamic_table_entry_referenced(); break; } } if ((blocking_allowed || match_result.index < known_received_count) && match_result.index >= draining_index) { representations.push_back(EncodeLiteralHeaderFieldWithNameReference( match_result.is_static, match_result.index, value, referred_indices)); smallest_non_evictable_index = std::min(smallest_non_evictable_index, match_result.index); header_table_.set_dynamic_table_entry_referenced(); break; } representations.push_back(EncodeLiteralHeaderField(name, value)); break; } case QpackEncoderHeaderTable::MatchType::kNoMatch: { if (!blocking_allowed) { blocked_stream_limit_exhausted = true; } else if (QpackEntry::Size(name, value) > header_table_.MaxInsertSizeWithoutEvictingGivenEntry( smallest_non_evictable_index)) { dynamic_table_insertion_blocked = true; } else { if (can_write_to_encoder_stream) { encoder_stream_sender_.SendInsertWithoutNameReference(name, value); uint64_t new_index = header_table_.InsertEntry(name, value); representations.push_back(EncodeIndexedHeaderField( false, new_index, referred_indices)); smallest_non_evictable_index = std::min<uint64_t>(smallest_non_evictable_index, new_index); break; } } representations.push_back(EncodeLiteralHeaderField(name, value)); break; } } } const QuicByteCount encoder_stream_buffered_byte_count = encoder_stream_sender_.BufferedByteCount(); QUICHE_DCHECK_GE(encoder_stream_buffered_byte_count, initial_encoder_stream_buffered_byte_count); if (encoder_stream_sent_byte_count) { *encoder_stream_sent_byte_count = encoder_stream_buffered_byte_count - initial_encoder_stream_buffered_byte_count; } if (can_write_to_encoder_stream) { encoder_stream_sender_.Flush(); } else { QUICHE_DCHECK_EQ(encoder_stream_buffered_byte_count, initial_encoder_stream_buffered_byte_count); } ++header_list_count_; if (dynamic_table_insertion_blocked) { QUIC_HISTOGRAM_COUNTS( "QuicSession.Qpack.HeaderListCountWhenInsertionBlocked", header_list_count_, 1, 1000, 50, "The ordinality of a header list within a connection during the " "encoding of which at least one dynamic table insertion was " "blocked."); } else { QUIC_HISTOGRAM_COUNTS( "QuicSession.Qpack.HeaderListCountWhenInsertionNotBlocked", header_list_count_, 1, 1000, 50, "The ordinality of a header list within a connection during the " "encoding of which no dynamic table insertion was blocked."); } if (blocked_stream_limit_exhausted) { QUIC_HISTOGRAM_COUNTS( "QuicSession.Qpack.HeaderListCountWhenBlockedStreamLimited", header_list_count_, 1, 1000, 50, "The ordinality of a header list within a connection during the " "encoding of which unacknowledged dynamic table entries could not be " "referenced due to the limit on the number of blocked streams."); } else { QUIC_HISTOGRAM_COUNTS( "QuicSession.Qpack.HeaderListCountWhenNotBlockedStreamLimited", header_list_count_, 1, 1000, 50, "The ordinality of a header list within a connection during the " "encoding of which the limit on the number of blocked streams did " "not " "prevent referencing unacknowledged dynamic table entries."); } return representations; } std::string QpackEncoder::SecondPassEncode( QpackEncoder::Representations representations, uint64_t required_insert_count) const { QpackInstructionEncoder instruction_encoder(huffman_encoding_); std::string encoded_headers; instruction_encoder.Encode( Representation::Prefix(QpackEncodeRequiredInsertCount( required_insert_count, header_table_.max_entries())), &encoded_headers); const uint64_t base = required_insert_count; for (auto& representation : representations) { if ((representation.instruction() == QpackIndexedHeaderFieldInstruction() || representation.instruction() == QpackLiteralHeaderFieldNameReferenceInstruction()) && !representation.s_bit()) { representation.set_varint(QpackAbsoluteIndexToRequestStreamRelativeIndex( representation.varint(), base)); } instruction_encoder.Encode(representation, &encoded_headers); } return encoded_headers; } std::string QpackEncoder::EncodeHeaderList( QuicStreamId stream_id, const quiche::HttpHeaderBlock& header_list, QuicByteCount* encoder_stream_sent_byte_count) { QpackBlockingManager::IndexSet referred_indices; Representations representations = FirstPassEncode(stream_id, header_list, &referred_indices, encoder_stream_sent_byte_count); const uint64_t required_insert_count = referred_indices.empty() ? 0 : QpackBlockingManager::RequiredInsertCount(referred_indices); if (!referred_indices.empty()) { blocking_manager_.OnHeaderBlockSent(stream_id, std::move(referred_indices)); } return SecondPassEncode(std::move(representations), required_insert_count); } bool QpackEncoder::SetMaximumDynamicTableCapacity( uint64_t maximum_dynamic_table_capacity) { return header_table_.SetMaximumDynamicTableCapacity( maximum_dynamic_table_capacity); } void QpackEncoder::SetDynamicTableCapacity(uint64_t dynamic_table_capacity) { encoder_stream_sender_.SendSetDynamicTableCapacity(dynamic_table_capacity); bool success = header_table_.SetDynamicTableCapacity(dynamic_table_capacity); QUICHE_DCHECK(success); } bool QpackEncoder::SetMaximumBlockedStreams(uint64_t maximum_blocked_streams) { if (maximum_blocked_streams < maximum_blocked_streams_) { return false; } maximum_blocked_streams_ = maximum_blocked_streams; return true; } void QpackEncoder::OnInsertCountIncrement(uint64_t increment) { if (increment == 0) { OnErrorDetected(QUIC_QPACK_DECODER_STREAM_INVALID_ZERO_INCREMENT, "Invalid increment value 0."); return; } if (!blocking_manager_.OnInsertCountIncrement(increment)) { OnErrorDetected(QUIC_QPACK_DECODER_STREAM_INCREMENT_OVERFLOW, "Insert Count Increment instruction causes overflow."); } if (blocking_manager_.known_received_count() > header_table_.inserted_entry_count()) { OnErrorDetected(QUIC_QPACK_DECODER_STREAM_IMPOSSIBLE_INSERT_COUNT, absl::StrCat("Increment value ", increment, " raises known received count to ", blocking_manager_.known_received_count(), " exceeding inserted entry count ", header_table_.inserted_entry_count())); } } void QpackEncoder::OnHeaderAcknowledgement(QuicStreamId stream_id) { if (!blocking_manager_.OnHeaderAcknowledgement(stream_id)) { OnErrorDetected( QUIC_QPACK_DECODER_STREAM_INCORRECT_ACKNOWLEDGEMENT, absl::StrCat("Header Acknowledgement received for stream ", stream_id, " with no outstanding header blocks.")); } } void QpackEncoder::OnStreamCancellation(QuicStreamId stream_id) { blocking_manager_.OnStreamCancellation(stream_id); } void QpackEncoder::OnErrorDetected(QuicErrorCode error_code, absl::string_view error_message) { decoder_stream_error_delegate_->OnDecoderStreamError(error_code, error_message); } }
#include "quiche/quic/core/qpack/qpack_encoder.h" #include <limits> #include <string> #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/qpack/qpack_instruction_encoder.h" #include "quiche/quic/core/qpack/value_splitting_header_list.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/qpack/qpack_encoder_peer.h" #include "quiche/quic/test_tools/qpack/qpack_test_utils.h" using ::testing::_; using ::testing::Eq; using ::testing::Return; using ::testing::StrictMock; namespace quic { namespace test { namespace { constexpr uint64_t kTooManyBytesBuffered = 1024 * 1024; std::string PrintToString(const testing::TestParamInfo<HuffmanEncoding>& info) { switch (info.param) { case HuffmanEncoding::kEnabled: return "HuffmanEnabled"; case HuffmanEncoding::kDisabled: return "HuffmanDisabled"; } QUICHE_NOTREACHED(); return "InvalidValue"; } class MockDecoderStreamErrorDelegate : public QpackEncoder::DecoderStreamErrorDelegate { public: ~MockDecoderStreamErrorDelegate() override = default; MOCK_METHOD(void, OnDecoderStreamError, (QuicErrorCode error_code, absl::string_view error_message), (override)); }; class QpackEncoderTest : public QuicTestWithParam<HuffmanEncoding> { protected: QpackEncoderTest() : huffman_encoding_(GetParam()), encoder_(&decoder_stream_error_delegate_, huffman_encoding_, CookieCrumbling::kEnabled), encoder_stream_sent_byte_count_(0) { encoder_.set_qpack_stream_sender_delegate(&encoder_stream_sender_delegate_); encoder_.SetMaximumBlockedStreams(1); } ~QpackEncoderTest() override = default; bool HuffmanEnabled() const { return huffman_encoding_ == HuffmanEncoding::kEnabled; } std::string Encode(const quiche::HttpHeaderBlock& header_list) { return encoder_.EncodeHeaderList( 1, header_list, &encoder_stream_sent_byte_count_); } const HuffmanEncoding huffman_encoding_; StrictMock<MockDecoderStreamErrorDelegate> decoder_stream_error_delegate_; StrictMock<MockQpackStreamSenderDelegate> encoder_stream_sender_delegate_; QpackEncoder encoder_; QuicByteCount encoder_stream_sent_byte_count_; }; INSTANTIATE_TEST_SUITE_P(HuffmanEncoding, QpackEncoderTest, ::testing::ValuesIn({HuffmanEncoding::kEnabled, HuffmanEncoding::kDisabled}), PrintToString); TEST_P(QpackEncoderTest, Empty) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; std::string output = Encode(header_list); std::string expected_output; ASSERT_TRUE(absl::HexStringToBytes("0000", &expected_output)); EXPECT_EQ(expected_output, output); } TEST_P(QpackEncoderTest, EmptyName) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list[""] = "foo"; std::string output = Encode(header_list); std::string expected_output; if (HuffmanEnabled()) { ASSERT_TRUE(absl::HexStringToBytes("0000208294e7", &expected_output)); } else { ASSERT_TRUE(absl::HexStringToBytes("00002003666f6f", &expected_output)); } EXPECT_EQ(expected_output, output); } TEST_P(QpackEncoderTest, EmptyValue) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list["foo"] = ""; std::string output = Encode(header_list); std::string expected_output; if (HuffmanEnabled()) { ASSERT_TRUE(absl::HexStringToBytes("00002a94e700", &expected_output)); } else { ASSERT_TRUE(absl::HexStringToBytes("000023666f6f00", &expected_output)); } EXPECT_EQ(expected_output, output); } TEST_P(QpackEncoderTest, EmptyNameAndValue) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list[""] = ""; std::string output = Encode(header_list); std::string expected_output; ASSERT_TRUE(absl::HexStringToBytes("00002000", &expected_output)); EXPECT_EQ(expected_output, output); } TEST_P(QpackEncoderTest, Simple) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list["foo"] = "bar"; std::string output = Encode(header_list); std::string expected_output; if (HuffmanEnabled()) { ASSERT_TRUE(absl::HexStringToBytes("00002a94e703626172", &expected_output)); } else { ASSERT_TRUE( absl::HexStringToBytes("000023666f6f03626172", &expected_output)); } EXPECT_EQ(expected_output, output); } TEST_P(QpackEncoderTest, Multiple) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list["foo"] = "bar"; header_list["ZZZZZZZ"] = std::string(127, 'Z'); std::string output = Encode(header_list); std::string expected_output_hex; if (HuffmanEnabled()) { expected_output_hex = "0000" "2a94e703626172"; } else { expected_output_hex = "0000" "23666f6f03626172"; } expected_output_hex += "27005a5a5a5a5a5a5a" "7f005a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a" "5a5a5a5a5a5a5a5a5a"; std::string expected_output; ASSERT_TRUE(absl::HexStringToBytes(expected_output_hex, &expected_output)); EXPECT_EQ(expected_output, output); } TEST_P(QpackEncoderTest, StaticTable) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); { quiche::HttpHeaderBlock header_list; header_list[":method"] = "GET"; header_list["accept-encoding"] = "gzip, deflate, br"; header_list["location"] = ""; std::string output = Encode(header_list); std::string expected_output; ASSERT_TRUE(absl::HexStringToBytes("0000d1dfcc", &expected_output)); EXPECT_EQ(expected_output, output); } { quiche::HttpHeaderBlock header_list; header_list[":method"] = "POST"; header_list["accept-encoding"] = "compress"; header_list["location"] = "foo"; std::string output = Encode(header_list); std::string expected_output; if (HuffmanEnabled()) { ASSERT_TRUE(absl::HexStringToBytes("0000d45f108621e9aec2a11f5c8294e7", &expected_output)); } else { ASSERT_TRUE(absl::HexStringToBytes( "0000d45f1008636f6d70726573735c03666f6f", &expected_output)); } EXPECT_EQ(expected_output, output); } { quiche::HttpHeaderBlock header_list; header_list[":method"] = "TRACE"; header_list["accept-encoding"] = ""; std::string output = Encode(header_list); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("00005f000554524143455f1000", &expected_output)); EXPECT_EQ(expected_output, output); } } TEST_P(QpackEncoderTest, DecoderStreamError) { EXPECT_CALL(decoder_stream_error_delegate_, OnDecoderStreamError(QUIC_QPACK_DECODER_STREAM_INTEGER_TOO_LARGE, Eq("Encoded integer too large."))); QpackEncoder encoder(&decoder_stream_error_delegate_, huffman_encoding_, CookieCrumbling::kEnabled); encoder.set_qpack_stream_sender_delegate(&encoder_stream_sender_delegate_); std::string input; ASSERT_TRUE(absl::HexStringToBytes("ffffffffffffffffffffff", &input)); encoder.decoder_stream_receiver()->Decode(input); } TEST_P(QpackEncoderTest, SplitAlongNullCharacter) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list["foo"] = absl::string_view("bar\0bar\0baz", 11); std::string output = Encode(header_list); std::string expected_output; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("0000" "2a94e703626172" "2a94e703626172" "2a94e70362617a", &expected_output)); } else { ASSERT_TRUE( absl::HexStringToBytes("0000" "23666f6f03626172" "23666f6f03626172" "23666f6f0362617a", &expected_output)); } EXPECT_EQ(expected_output, output); } TEST_P(QpackEncoderTest, ZeroInsertCountIncrement) { EXPECT_CALL( decoder_stream_error_delegate_, OnDecoderStreamError(QUIC_QPACK_DECODER_STREAM_INVALID_ZERO_INCREMENT, Eq("Invalid increment value 0."))); encoder_.OnInsertCountIncrement(0); } TEST_P(QpackEncoderTest, TooLargeInsertCountIncrement) { EXPECT_CALL( decoder_stream_error_delegate_, OnDecoderStreamError(QUIC_QPACK_DECODER_STREAM_IMPOSSIBLE_INSERT_COUNT, Eq("Increment value 1 raises known received count " "to 1 exceeding inserted entry count 0"))); encoder_.OnInsertCountIncrement(1); } TEST_P(QpackEncoderTest, InsertCountIncrementOverflow) { QpackEncoderHeaderTable* header_table = QpackEncoderPeer::header_table(&encoder_); header_table->SetMaximumDynamicTableCapacity(4096); header_table->SetDynamicTableCapacity(4096); header_table->InsertEntry("foo", "bar"); encoder_.OnInsertCountIncrement(1); EXPECT_CALL(decoder_stream_error_delegate_, OnDecoderStreamError( QUIC_QPACK_DECODER_STREAM_INCREMENT_OVERFLOW, Eq("Insert Count Increment instruction causes overflow."))); encoder_.OnInsertCountIncrement(std::numeric_limits<uint64_t>::max()); } TEST_P(QpackEncoderTest, InvalidHeaderAcknowledgement) { EXPECT_CALL( decoder_stream_error_delegate_, OnDecoderStreamError(QUIC_QPACK_DECODER_STREAM_INCORRECT_ACKNOWLEDGEMENT, Eq("Header Acknowledgement received for stream 0 " "with no outstanding header blocks."))); encoder_.OnHeaderAcknowledgement( 0); } TEST_P(QpackEncoderTest, DynamicTable) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder_.SetMaximumBlockedStreams(1); encoder_.SetMaximumDynamicTableCapacity(4096); encoder_.SetDynamicTableCapacity(4096); quiche::HttpHeaderBlock header_list; header_list["foo"] = "bar"; header_list.AppendValueOrAddHeader("foo", "baz"); header_list["cookie"] = "baz"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3fe11f", &set_dyanamic_table_capacity)); std::string insert_entries_hex; if (HuffmanEnabled()) { insert_entries_hex = "62" "94e7"; } else { insert_entries_hex = "43" "666f6f"; } insert_entries_hex += "03626172" "80" "0362617a" "c5" "0362617a"; std::string insert_entries; ASSERT_TRUE(absl::HexStringToBytes(insert_entries_hex, &insert_entries)); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entries)))); std::string expected_output; ASSERT_TRUE(absl::HexStringToBytes( "0400" "828180", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list)); EXPECT_EQ(insert_entries.size(), encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, SmallDynamicTable) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder_.SetMaximumBlockedStreams(1); encoder_.SetMaximumDynamicTableCapacity(QpackEntry::Size("foo", "bar")); encoder_.SetDynamicTableCapacity(QpackEntry::Size("foo", "bar")); quiche::HttpHeaderBlock header_list; header_list["foo"] = "bar"; header_list.AppendValueOrAddHeader("foo", "baz"); header_list["cookie"] = "baz"; header_list["bar"] = "baz"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3f07", &set_dyanamic_table_capacity)); std::string insert_entry; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("62" "94e7" "03626172", &insert_entry)); } else { ASSERT_TRUE( absl::HexStringToBytes("43" "666f6f" "03626172", &insert_entry)); } EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData( Eq(absl::StrCat(set_dyanamic_table_capacity, insert_entry)))); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0200" "80" "40" "0362617a" "55" "0362617a" "23626172" "0362617a", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list)); EXPECT_EQ(insert_entry.size(), encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, BlockedStream) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder_.SetMaximumBlockedStreams(1); encoder_.SetMaximumDynamicTableCapacity(4096); encoder_.SetDynamicTableCapacity(4096); quiche::HttpHeaderBlock header_list1; header_list1["foo"] = "bar"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3fe11f", &set_dyanamic_table_capacity)); std::string insert_entry1; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("62" "94e7" "03626172", &insert_entry1)); } else { ASSERT_TRUE( absl::HexStringToBytes("43" "666f6f" "03626172", &insert_entry1)); } EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entry1)))); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0200" "80", &expected_output)); EXPECT_EQ(expected_output, encoder_.EncodeHeaderList( 1, header_list1, &encoder_stream_sent_byte_count_)); EXPECT_EQ(insert_entry1.size(), encoder_stream_sent_byte_count_); quiche::HttpHeaderBlock header_list2; header_list2["foo"] = "bar"; header_list2.AppendValueOrAddHeader("foo", "baz"); header_list2["cookie"] = "baz"; header_list2["bar"] = "baz"; std::string entries; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("0000" "2a94e7" "03626172" "2a94e7" "0362617a" "55" "0362617a" "23626172" "0362617a", &entries)); } else { ASSERT_TRUE( absl::HexStringToBytes("0000" "23666f6f" "03626172" "23666f6f" "0362617a" "55" "0362617a" "23626172" "0362617a", &entries)); } EXPECT_EQ(entries, encoder_.EncodeHeaderList( 2, header_list2, &encoder_stream_sent_byte_count_)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); encoder_.OnInsertCountIncrement(1); std::string insert_entries; ASSERT_TRUE(absl::HexStringToBytes( "80" "0362617a" "c5" "0362617a" "43" "626172" "0362617a", &insert_entries)); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq(insert_entries))); ASSERT_TRUE( absl::HexStringToBytes("0500" "83828180", &expected_output)); EXPECT_EQ(expected_output, encoder_.EncodeHeaderList( 3, header_list2, &encoder_stream_sent_byte_count_)); EXPECT_EQ(insert_entries.size(), encoder_stream_sent_byte_count_); std::string expected2; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("0200" "80" "2a94e7" "0362617a" "55" "0362617a" "23626172" "0362617a", &expected2)); } else { ASSERT_TRUE( absl::HexStringToBytes("0200" "80" "23666f6f" "0362617a" "55" "0362617a" "23626172" "0362617a", &expected2)); } EXPECT_EQ(expected2, encoder_.EncodeHeaderList( 4, header_list2, &encoder_stream_sent_byte_count_)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); encoder_.OnInsertCountIncrement(2); std::string expected3; ASSERT_TRUE( absl::HexStringToBytes("0400" "828180" "23626172" "0362617a", &expected3)); EXPECT_EQ(expected3, encoder_.EncodeHeaderList( 5, header_list2, &encoder_stream_sent_byte_count_)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); encoder_.OnHeaderAcknowledgement(3); std::string expected4; ASSERT_TRUE( absl::HexStringToBytes("0500" "83828180", &expected4)); EXPECT_EQ(expected4, encoder_.EncodeHeaderList( 6, header_list2, &encoder_stream_sent_byte_count_)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, Draining) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list1; header_list1["one"] = "foo"; header_list1["two"] = "foo"; header_list1["three"] = "foo"; header_list1["four"] = "foo"; header_list1["five"] = "foo"; header_list1["six"] = "foo"; header_list1["seven"] = "foo"; header_list1["eight"] = "foo"; header_list1["nine"] = "foo"; header_list1["ten"] = "foo"; uint64_t maximum_dynamic_table_capacity = 0; for (const auto& header_field : header_list1) { maximum_dynamic_table_capacity += QpackEntry::Size(header_field.first, header_field.second); } maximum_dynamic_table_capacity += QpackEntry::Size("one", "foo"); encoder_.SetMaximumDynamicTableCapacity(maximum_dynamic_table_capacity); encoder_.SetDynamicTableCapacity(maximum_dynamic_table_capacity); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(_)); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0b00" "89888786858483828180", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list1)); quiche::HttpHeaderBlock header_list2; header_list2["one"] = "foo"; ASSERT_TRUE(absl::HexStringToBytes("09", &expected_output)); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq(expected_output))); ASSERT_TRUE( absl::HexStringToBytes("0c00" "80", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list2)); quiche::HttpHeaderBlock header_list3; header_list3.AppendValueOrAddHeader("two", "foo"); header_list3.AppendValueOrAddHeader("two", "bar"); std::string entries = "0000" "2374776f"; if (HuffmanEnabled()) { entries += "8294e7"; } else { entries += "03666f6f"; } entries += "2374776f" "03626172"; ASSERT_TRUE(absl::HexStringToBytes(entries, &expected_output)); EXPECT_EQ(expected_output, Encode(header_list3)); } TEST_P(QpackEncoderTest, DynamicTableCapacityLessThanMaximum) { encoder_.SetMaximumDynamicTableCapacity(1024); encoder_.SetDynamicTableCapacity(30); QpackEncoderHeaderTable* header_table = QpackEncoderPeer::header_table(&encoder_); EXPECT_EQ(1024u, header_table->maximum_dynamic_table_capacity()); EXPECT_EQ(30u, header_table->dynamic_table_capacity()); } TEST_P(QpackEncoderTest, EncoderStreamWritesDisallowedThenAllowed) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(kTooManyBytesBuffered)); encoder_.SetMaximumBlockedStreams(1); encoder_.SetMaximumDynamicTableCapacity(4096); encoder_.SetDynamicTableCapacity(4096); quiche::HttpHeaderBlock header_list1; header_list1["foo"] = "bar"; header_list1.AppendValueOrAddHeader("foo", "baz"); header_list1["cookie"] = "baz"; std::string entries; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("0000" "2a94e7" "03626172" "2a94e7" "0362617a" "55" "0362617a", &entries)); } else { ASSERT_TRUE( absl::HexStringToBytes("0000" "23666f6f" "03626172" "23666f6f" "0362617a" "55" "0362617a", &entries)); } EXPECT_EQ(entries, Encode(header_list1)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); ::testing::Mock::VerifyAndClearExpectations(&encoder_stream_sender_delegate_); EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list2; header_list2["foo"] = "bar"; header_list2.AppendValueOrAddHeader("foo", "baz"); header_list2["cookie"] = "baz"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3fe11f", &set_dyanamic_table_capacity)); std::string insert_entries_hex; if (HuffmanEnabled()) { insert_entries_hex = "62" "94e7"; } else { insert_entries_hex = "43" "666f6f"; } insert_entries_hex += "03626172" "80" "0362617a" "c5" "0362617a"; std::string insert_entries; ASSERT_TRUE(absl::HexStringToBytes(insert_entries_hex, &insert_entries)); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entries)))); std::string expected_output; ASSERT_TRUE(absl::HexStringToBytes( "0400" "828180", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list2)); EXPECT_EQ(insert_entries.size(), encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, EncoderStreamWritesAllowedThenDisallowed) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder_.SetMaximumBlockedStreams(1); encoder_.SetMaximumDynamicTableCapacity(4096); encoder_.SetDynamicTableCapacity(4096); quiche::HttpHeaderBlock header_list1; header_list1["foo"] = "bar"; header_list1.AppendValueOrAddHeader("foo", "baz"); header_list1["cookie"] = "baz"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3fe11f", &set_dyanamic_table_capacity)); std::string insert_entries_hex; if (HuffmanEnabled()) { insert_entries_hex = "62" "94e7"; } else { insert_entries_hex = "43" "666f6f"; } insert_entries_hex += "03626172" "80" "0362617a" "c5" "0362617a"; std::string insert_entries; ASSERT_TRUE(absl::HexStringToBytes(insert_entries_hex, &insert_entries)); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entries)))); std::string expected_output; ASSERT_TRUE(absl::HexStringToBytes( "0400" "828180", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list1)); EXPECT_EQ(insert_entries.size(), encoder_stream_sent_byte_count_); ::testing::Mock::VerifyAndClearExpectations(&encoder_stream_sender_delegate_); EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(kTooManyBytesBuffered)); quiche::HttpHeaderBlock header_list2; header_list2["foo"] = "bar"; header_list2["bar"] = "baz"; header_list2["cookie"] = "baz"; ASSERT_TRUE( absl::HexStringToBytes("0400" "82" "23626172" "0362617a" "80", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list2)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, UnackedEntryCannotBeEvicted) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder_.SetMaximumBlockedStreams(2); encoder_.SetMaximumDynamicTableCapacity(40); encoder_.SetDynamicTableCapacity(40); QpackEncoderHeaderTable* header_table = QpackEncoderPeer::header_table(&encoder_); EXPECT_EQ(0u, header_table->inserted_entry_count()); EXPECT_EQ(0u, header_table->dropped_entry_count()); quiche::HttpHeaderBlock header_list1; header_list1["foo"] = "bar"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3f09", &set_dyanamic_table_capacity)); std::string insert_entries1; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("62" "94e7" "03626172", &insert_entries1)); } else { ASSERT_TRUE( absl::HexStringToBytes("43" "666f6f" "03626172", &insert_entries1)); } EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entries1)))); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0200" "80", &expected_output)); EXPECT_EQ(expected_output, encoder_.EncodeHeaderList( 1, header_list1, &encoder_stream_sent_byte_count_)); EXPECT_EQ(1u, header_table->inserted_entry_count()); EXPECT_EQ(0u, header_table->dropped_entry_count()); encoder_.OnStreamCancellation( 1); quiche::HttpHeaderBlock header_list2; header_list2["bar"] = "baz"; ASSERT_TRUE( absl::HexStringToBytes("0000" "23626172" "0362617a", &expected_output)); EXPECT_EQ(expected_output, encoder_.EncodeHeaderList( 2, header_list2, &encoder_stream_sent_byte_count_)); EXPECT_EQ(1u, header_table->inserted_entry_count()); EXPECT_EQ(0u, header_table->dropped_entry_count()); } TEST_P(QpackEncoderTest, UseStaticTableNameOnlyMatch) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder_.SetMaximumBlockedStreams(2); encoder_.SetMaximumDynamicTableCapacity(4096); encoder_.SetDynamicTableCapacity(4096); quiche::HttpHeaderBlock header_list; header_list[":method"] = "bar"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3fe11f", &set_dyanamic_table_capacity)); std::string insert_entry1; ASSERT_TRUE( absl::HexStringToBytes("cf" "03626172", &insert_entry1)); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entry1)))); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0200" "80", &expected_output)); EXPECT_EQ(expected_output, encoder_.EncodeHeaderList( 1, header_list, &encoder_stream_sent_byte_count_)); EXPECT_EQ(insert_entry1.size(), encoder_stream_sent_byte_count_); EXPECT_EQ(expected_output, encoder_.EncodeHeaderList( 2, header_list, &encoder_stream_sent_byte_count_)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); ASSERT_TRUE( absl::HexStringToBytes("0000" "5f00" "03626172", &expected_output)); EXPECT_EQ(expected_output, encoder_.EncodeHeaderList( 3, header_list, &encoder_stream_sent_byte_count_)); } TEST_P(QpackEncoderTest, UseDynamicTableNameOnlyMatch) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list1; header_list1["one"] = "foo"; header_list1["two"] = "foo"; header_list1["three"] = "foo"; header_list1["four"] = "foo"; header_list1["five"] = "foo"; header_list1["six"] = "foo"; header_list1["seven"] = "foo"; header_list1["eight"] = "foo"; header_list1["nine"] = "foo"; header_list1["ten"] = "foo"; uint64_t maximum_dynamic_table_capacity = 0; for (const auto& header_field : header_list1) { maximum_dynamic_table_capacity += QpackEntry::Size(header_field.first, header_field.second); } maximum_dynamic_table_capacity += QpackEntry::Size("one", "bar"); encoder_.SetMaximumDynamicTableCapacity(maximum_dynamic_table_capacity); encoder_.SetDynamicTableCapacity(maximum_dynamic_table_capacity); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(_)); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0b00" "89888786858483828180", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list1)); quiche::HttpHeaderBlock header_list2; header_list2["one"] = "bar"; ASSERT_TRUE(absl::HexStringToBytes( "89" "03626172", &expected_output)); EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq(expected_output))); ASSERT_TRUE( absl::HexStringToBytes("0c00" "80", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list2)); quiche::HttpHeaderBlock header_list3; header_list3["one"] = "foo"; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("0c00" "40" "8294e7", &expected_output)); } else { ASSERT_TRUE( absl::HexStringToBytes("0c00" "40" "03666f6f", &expected_output)); } EXPECT_EQ(expected_output, Encode(header_list3)); } TEST_P(QpackEncoderTest, CookieCrumblingEnabledNoDynamicTable) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list["cookie"] = "foo; bar"; std::string expected_output; if (HuffmanEnabled()) { ASSERT_TRUE( absl::HexStringToBytes("0000" "55" "8294e7" "55" "03626172", &expected_output)); } else { ASSERT_TRUE( absl::HexStringToBytes("0000" "55" "03666f6f" "55" "03626172", &expected_output)); } EXPECT_EQ(expected_output, Encode(header_list)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, CookieCrumblingEnabledDynamicTable) { EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder_.SetMaximumBlockedStreams(1); encoder_.SetMaximumDynamicTableCapacity(4096); encoder_.SetDynamicTableCapacity(4096); quiche::HttpHeaderBlock header_list; header_list["cookie"] = "foo; bar"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3fe11f", &set_dyanamic_table_capacity)); std::string insert_entries; if (HuffmanEnabled()) { ASSERT_TRUE(absl::HexStringToBytes( "c5" "8294e7" "c5" "03626172", &insert_entries)); } else { ASSERT_TRUE(absl::HexStringToBytes( "c5" "03666f6f" "c5" "03626172", &insert_entries)); } EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entries)))); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0300" "81" "80", &expected_output)); EXPECT_EQ(expected_output, Encode(header_list)); EXPECT_EQ(insert_entries.size(), encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, CookieCrumblingDisabledNoDynamicTable) { QpackEncoder encoder(&decoder_stream_error_delegate_, huffman_encoding_, CookieCrumbling::kDisabled); EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); quiche::HttpHeaderBlock header_list; header_list["cookie"] = "foo; bar"; std::string expected_output; if (HuffmanEnabled()) { ASSERT_TRUE(absl::HexStringToBytes( "0000" "55" "8694e7fb5231d9", &expected_output)); } else { ASSERT_TRUE(absl::HexStringToBytes( "0000" "55" "08666f6f3b20626172", &expected_output)); } EXPECT_EQ(expected_output, encoder.EncodeHeaderList( 1, header_list, &encoder_stream_sent_byte_count_)); EXPECT_EQ(0u, encoder_stream_sent_byte_count_); } TEST_P(QpackEncoderTest, CookieCrumblingDisabledDynamicTable) { QpackEncoder encoder(&decoder_stream_error_delegate_, huffman_encoding_, CookieCrumbling::kDisabled); encoder.SetMaximumBlockedStreams(1); encoder.set_qpack_stream_sender_delegate(&encoder_stream_sender_delegate_); EXPECT_CALL(encoder_stream_sender_delegate_, NumBytesBuffered()) .WillRepeatedly(Return(0)); encoder.SetMaximumBlockedStreams(1); encoder.SetMaximumDynamicTableCapacity(4096); encoder.SetDynamicTableCapacity(4096); quiche::HttpHeaderBlock header_list; header_list["cookie"] = "foo; bar"; std::string set_dyanamic_table_capacity; ASSERT_TRUE(absl::HexStringToBytes("3fe11f", &set_dyanamic_table_capacity)); std::string insert_entries; if (HuffmanEnabled()) { ASSERT_TRUE(absl::HexStringToBytes( "c5" "8694e7fb5231d9", &insert_entries)); } else { ASSERT_TRUE(absl::HexStringToBytes( "c5" "08666f6f3b20626172", &insert_entries)); } EXPECT_CALL(encoder_stream_sender_delegate_, WriteStreamData(Eq( absl::StrCat(set_dyanamic_table_capacity, insert_entries)))); std::string expected_output; ASSERT_TRUE( absl::HexStringToBytes("0200" "80", &expected_output)); EXPECT_EQ(expected_output, encoder.EncodeHeaderList( 1, header_list, &encoder_stream_sent_byte_count_)); EXPECT_EQ(insert_entries.size(), encoder_stream_sent_byte_count_); } } } }
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_encoder.cc
https://github.com/google/quiche/blob/6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6/quiche/quic/core/qpack/qpack_encoder_test.cc
6fe69b2cf77d5fc175a729bc7a6c322a6388b8b6
6fe4dcda-4ff4-4489-95e2-6a94fa8eb7a6
cpp
abseil/abseil-cpp
memory
absl/memory/memory.h
absl/memory/memory_test.cc
#ifndef ABSL_MEMORY_MEMORY_H_ #define ABSL_MEMORY_MEMORY_H_ #include <cstddef> #include <limits> #include <memory> #include <new> #include <type_traits> #include <utility> #include "absl/base/macros.h" #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN template <typename T> std::unique_ptr<T> WrapUnique(T* ptr) { static_assert(!std::is_array<T>::value, "array types are unsupported"); static_assert(std::is_object<T>::value, "non-object types are unsupported"); return std::unique_ptr<T>(ptr); } using std::make_unique; template <typename T> auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) { return (ptr != nullptr) ? std::addressof(*ptr) : nullptr; } inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; } template <typename T, typename D> std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) { return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>(); } template <typename T> std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) { return std::weak_ptr<T>(ptr); } using std::pointer_traits; using std::allocator_traits; namespace memory_internal { template <template <typename> class Extract, typename Obj, typename Default, typename> struct ExtractOr { using type = Default; }; template <template <typename> class Extract, typename Obj, typename Default> struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> { using type = Extract<Obj>; }; template <template <typename> class Extract, typename Obj, typename Default> using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type; template <typename Alloc> using GetIsNothrow = typename Alloc::is_nothrow; } template <typename Alloc> struct allocator_is_nothrow : memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc, std::false_type> {}; #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW template <typename T> struct allocator_is_nothrow<std::allocator<T>> : std::true_type {}; struct default_allocator_is_nothrow : std::true_type {}; #else struct default_allocator_is_nothrow : std::false_type {}; #endif namespace memory_internal { template <typename Allocator, typename Iterator, typename... Args> void ConstructRange(Allocator& alloc, Iterator first, Iterator last, const Args&... args) { for (Iterator cur = first; cur != last; ++cur) { ABSL_INTERNAL_TRY { std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), args...); } ABSL_INTERNAL_CATCH_ANY { while (cur != first) { --cur; std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); } ABSL_INTERNAL_RETHROW; } } } template <typename Allocator, typename Iterator, typename InputIterator> void CopyRange(Allocator& alloc, Iterator destination, InputIterator first, InputIterator last) { for (Iterator cur = destination; first != last; static_cast<void>(++cur), static_cast<void>(++first)) { ABSL_INTERNAL_TRY { std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), *first); } ABSL_INTERNAL_CATCH_ANY { while (cur != destination) { --cur; std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); } ABSL_INTERNAL_RETHROW; } } } } ABSL_NAMESPACE_END } #endif
#include "absl/memory/memory.h" #include <sys/types.h> #include <cstddef> #include <memory> #include <string> #include <type_traits> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" namespace { using ::testing::ElementsAre; using ::testing::Return; class DestructorVerifier { public: DestructorVerifier() { ++instance_count_; } DestructorVerifier(const DestructorVerifier&) = delete; DestructorVerifier& operator=(const DestructorVerifier&) = delete; ~DestructorVerifier() { --instance_count_; } static int instance_count() { return instance_count_; } private: static int instance_count_; }; int DestructorVerifier::instance_count_ = 0; TEST(WrapUniqueTest, WrapUnique) { { auto dv = new DestructorVerifier; EXPECT_EQ(1, DestructorVerifier::instance_count()); std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv); EXPECT_EQ(1, DestructorVerifier::instance_count()); } EXPECT_EQ(0, DestructorVerifier::instance_count()); } struct InitializationVerifier { static constexpr int kDefaultScalar = 0x43; static constexpr int kDefaultArray = 0x4B; static void* operator new(size_t n) { void* ret = ::operator new(n); memset(ret, kDefaultScalar, n); return ret; } static void* operator new[](size_t n) { void* ret = ::operator new[](n); memset(ret, kDefaultArray, n); return ret; } int a; int b; }; struct ArrayWatch { void* operator new[](size_t n) { allocs().push_back(n); return ::operator new[](n); } void operator delete[](void* p) { return ::operator delete[](p); } static std::vector<size_t>& allocs() { static auto& v = *new std::vector<size_t>; return v; } }; TEST(RawPtrTest, RawPointer) { int i = 5; EXPECT_EQ(&i, absl::RawPtr(&i)); } TEST(RawPtrTest, SmartPointer) { int* o = new int(5); std::unique_ptr<int> p(o); EXPECT_EQ(o, absl::RawPtr(p)); } class IntPointerNonConstDeref { public: explicit IntPointerNonConstDeref(int* p) : p_(p) {} friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) { return a.p_ != nullptr; } int& operator*() { return *p_; } private: std::unique_ptr<int> p_; }; TEST(RawPtrTest, SmartPointerNonConstDereference) { int* o = new int(5); IntPointerNonConstDeref p(o); EXPECT_EQ(o, absl::RawPtr(p)); } TEST(RawPtrTest, NullValuedRawPointer) { int* p = nullptr; EXPECT_EQ(nullptr, absl::RawPtr(p)); } TEST(RawPtrTest, NullValuedSmartPointer) { std::unique_ptr<int> p; EXPECT_EQ(nullptr, absl::RawPtr(p)); } TEST(RawPtrTest, Nullptr) { auto p = absl::RawPtr(nullptr); EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); EXPECT_EQ(nullptr, p); } TEST(RawPtrTest, Null) { auto p = absl::RawPtr(nullptr); EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); EXPECT_EQ(nullptr, p); } TEST(RawPtrTest, Zero) { auto p = absl::RawPtr(nullptr); EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); EXPECT_EQ(nullptr, p); } TEST(ShareUniquePtrTest, Share) { auto up = absl::make_unique<int>(); int* rp = up.get(); auto sp = absl::ShareUniquePtr(std::move(up)); EXPECT_EQ(sp.get(), rp); } TEST(ShareUniquePtrTest, ShareNull) { struct NeverDie { using pointer = void*; void operator()(pointer) { ASSERT_TRUE(false) << "Deleter should not have been called."; } }; std::unique_ptr<void, NeverDie> up; auto sp = absl::ShareUniquePtr(std::move(up)); } TEST(WeakenPtrTest, Weak) { auto sp = std::make_shared<int>(); auto wp = absl::WeakenPtr(sp); EXPECT_EQ(sp.get(), wp.lock().get()); sp.reset(); EXPECT_TRUE(wp.expired()); } TEST(AllocatorNoThrowTest, DefaultAllocator) { #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW EXPECT_TRUE(absl::default_allocator_is_nothrow::value); #else EXPECT_FALSE(absl::default_allocator_is_nothrow::value); #endif } TEST(AllocatorNoThrowTest, StdAllocator) { #if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value); #else EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value); #endif } TEST(AllocatorNoThrowTest, CustomAllocator) { struct NoThrowAllocator { using is_nothrow = std::true_type; }; struct CanThrowAllocator { using is_nothrow = std::false_type; }; struct UnspecifiedAllocator {}; EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value); EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value); EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/memory/memory.h
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/memory/memory_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
da101305-6d44-451a-9a8c-94414305ae64
cpp
tensorflow/tensorflow
variadic_op_splitter
third_party/xla/xla/service/gpu/transforms/variadic_op_splitter.cc
third_party/xla/xla/service/gpu/transforms/variadic_op_splitter_test.cc
#include "xla/service/gpu/transforms/variadic_op_splitter.h" #include <cstdint> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace gpu { namespace { constexpr int32_t kMaxParameters = 128; absl::StatusOr<bool> SplitConcatenate(HloInstruction* concat, HloComputation* comp) { auto operands = concat->operands(); std::vector<HloInstruction*> operands_to_split(operands.begin(), operands.end()); while (operands_to_split.size() > 1) { std::vector<HloInstruction*> new_operands; absl::Span<HloInstruction*> operands_span(operands_to_split); for (int64_t offset = 0; offset < operands_to_split.size(); offset += kMaxParameters) { if (offset > 0 && offset + kMaxParameters > operands_to_split.size()) { new_operands.insert(new_operands.end(), operands_to_split.begin() + offset, operands_to_split.end()); } else { Shape new_shape = concat->shape(); int64_t concat_dimension_size = 0; for (int64_t i = 0; i < kMaxParameters && offset + i < operands_to_split.size(); ++i) { concat_dimension_size += operands_to_split[i + offset]->shape().dimensions( concat->concatenate_dimension()); } new_shape.set_dimensions(concat->concatenate_dimension(), concat_dimension_size); auto new_concat = comp->AddInstruction(concat->CloneWithNewOperands( new_shape, operands_span.subspan(offset, kMaxParameters))); new_operands.push_back(new_concat); } } operands_to_split = new_operands; } TF_RETURN_IF_ERROR(comp->ReplaceInstruction(concat, operands_to_split[0])); return true; } std::vector<HloInstruction*> GetRelevantVariadicOps(HloComputation* comp) { std::vector<HloInstruction*> ops; for (HloInstruction* instr : comp->instructions()) { if (instr->opcode() == HloOpcode::kConcatenate && instr->operand_count() > kMaxParameters) { ops.push_back(instr); } } return ops; } } absl::StatusOr<bool> VariadicOpSplitter::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { bool changed = false; for (HloComputation* comp : module->MakeNonfusionComputations(execution_threads)) { for (HloInstruction* op : GetRelevantVariadicOps(comp)) { TF_ASSIGN_OR_RETURN(bool result, SplitConcatenate(op, comp)); changed |= result; } } return changed; } } }
#include "xla/service/gpu/transforms/variadic_op_splitter.h" #include <cstdint> #include <vector> #include <gtest/gtest.h> #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/literal_util.h" #include "xla/service/hlo_parser.h" #include "xla/service/pattern_matcher.h" #include "xla/shape_util.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "xla/xla_data.pb.h" namespace xla { namespace gpu { namespace { using match::Concatenate; class VariadicOpSplitterTest : public HloTestBase {}; TEST_F(VariadicOpSplitterTest, DontSplit) { auto module = ParseAndReturnVerifiedModule(R"( HloModule TestModule ENTRY TestComputation { p0 = f16[30,41] parameter(0) p1 = f16[30,41] parameter(1) ROOT result = f16[60, 41] concatenate(p0, p1), dimensions={0} })") .value(); EXPECT_FALSE(VariadicOpSplitter().Run(module.get()).value()); } TEST_F(VariadicOpSplitterTest, SplitInto2) { auto builder = HloComputation::Builder(TestName()); auto operand = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int32_t>({42}))); std::vector<HloInstruction*> concat_operands(255, operand); builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(S32, {255}), concat_operands, 0)); auto module = CreateNewVerifiedModule(); auto entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(VariadicOpSplitter().Run(module.get()).value()); EXPECT_TRUE(Match(entry_computation->root_instruction(), Concatenate().WithNumOperands(128).WithOperand( 0, Concatenate().WithNumOperands(128)))); } TEST_F(VariadicOpSplitterTest, SplitInto3) { auto builder = HloComputation::Builder(TestName()); auto operand = builder.AddInstruction( HloInstruction::CreateConstant(LiteralUtil::CreateR1<int32_t>({42}))); std::vector<HloInstruction*> concat_operands(256, operand); builder.AddInstruction(HloInstruction::CreateConcatenate( ShapeUtil::MakeShape(S32, {256}), concat_operands, 0)); auto module = CreateNewVerifiedModule(); auto entry_computation = module->AddEntryComputation(builder.Build()); EXPECT_TRUE(VariadicOpSplitter().Run(module.get()).value()); EXPECT_TRUE(Match(entry_computation->root_instruction(), Concatenate(Concatenate().WithNumOperands(128), Concatenate().WithNumOperands(128)))); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/variadic_op_splitter.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/third_party/xla/xla/service/gpu/transforms/variadic_op_splitter_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
bdacba29-a14b-4563-ba5a-c2c9730812a0
cpp
google/tensorstore
google_service_account_auth_provider
tensorstore/internal/oauth2/google_service_account_auth_provider.cc
tensorstore/internal/oauth2/google_service_account_auth_provider_test.cc
#include "tensorstore/internal/oauth2/google_service_account_auth_provider.h" #include <functional> #include <memory> #include <string> #include <string_view> #include <utility> #include "absl/strings/cord.h" #include "absl/time/time.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/http/http_response.h" #include "tensorstore/internal/http/http_transport.h" #include "tensorstore/internal/oauth2/bearer_token.h" #include "tensorstore/internal/oauth2/oauth_utils.h" #include "tensorstore/internal/oauth2/refreshable_auth_provider.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_oauth2 { using ::tensorstore::Result; using ::tensorstore::internal_http::HttpRequestBuilder; using ::tensorstore::internal_http::HttpResponse; constexpr char kOAuthV4Url[] = "https: constexpr char kOAuthScope[] = "https: GoogleServiceAccountAuthProvider::GoogleServiceAccountAuthProvider( const AccountCredentials& creds, std::shared_ptr<internal_http::HttpTransport> transport, std::function<absl::Time()> clock) : RefreshableAuthProvider(std::move(clock)), creds_(creds), uri_(kOAuthV4Url), scope_(kOAuthScope), transport_(std::move(transport)) {} Result<HttpResponse> GoogleServiceAccountAuthProvider::IssueRequest( std::string_view method, std::string_view uri, absl::Cord payload) { return transport_ ->IssueRequest( HttpRequestBuilder(method, std::string{uri}) .AddHeader("Content-Type: application/x-www-form-urlencoded") .BuildRequest(), internal_http::IssueRequestOptions(std::move(payload))) .result(); } Result<BearerTokenWithExpiration> GoogleServiceAccountAuthProvider::Refresh() { const auto now = GetCurrentTime(); TENSORSTORE_ASSIGN_OR_RETURN( auto body, internal_oauth2::BuildSignedJWTRequest( creds_.private_key, internal_oauth2::BuildJWTHeader(creds_.private_key_id), internal_oauth2::BuildJWTClaimBody(creds_.client_email, scope_, uri_, now, 3600 ))); TENSORSTORE_ASSIGN_OR_RETURN( auto response, IssueRequest("POST", uri_, absl::Cord(std::move(body)))); TENSORSTORE_RETURN_IF_ERROR(HttpResponseCodeToStatus(response)); TENSORSTORE_ASSIGN_OR_RETURN(auto result, internal_oauth2::ParseOAuthResponse( response.payload.Flatten())); return BearerTokenWithExpiration{std::move(result.access_token), now + absl::Seconds(result.expires_in)}; } } }
#include "tensorstore/internal/oauth2/google_service_account_auth_provider.h" #include <memory> #include <utility> #include <vector> #include <gtest/gtest.h> #include "absl/container/flat_hash_map.h" #include "tensorstore/internal/oauth2/fake_private_key.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Result; using ::tensorstore::internal_http::HttpResponse; using ::tensorstore::internal_oauth2::GetFakePrivateKey; using ::tensorstore::internal_oauth2::GoogleServiceAccountAuthProvider; using ::tensorstore::internal_oauth2::GoogleServiceAccountCredentials; const char kServiceAccountInfo[] = R"({ "token_type" : "123", "access_token": "abc", "expires_in": 456 })"; const GoogleServiceAccountCredentials kCreds{ "a1a111aa1111a11a11a11aa111a111a1a1111111", GetFakePrivateKey(), "https: "[email protected]", }; constexpr char kBody[] = "grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer&" "assertion=" "eyJhbGciOiJSUzI1NiIsImtpZCI6ImExYTExMWFhMTExMWExMWExMWExMWFhMTExYTExMWExYT" "ExMTExMTEiLCJ0eXAiOiJKV1QifQ." "eyJhdWQiOiJodHRwczovL3d3dy5nb29nbGVhcGlzLmNvbS9vYXV0aDIvdjQvdG9rZW4iLCJleH" "AiOjE1NDc2Njk3MDMsImlhdCI6MTU0NzY2NjEwMywiaXNzIjoiZm9vLWVtYWlsQGZvby1wcm9q" "ZWN0LmlhbS5nc2VydmljZWFjY291bnQuY29tIiwic2NvcGUiOiJodHRwczovL3d3dy5nb29nbG" "VhcGlzLmNvbS9hdXRoL2Nsb3VkLXBsYXRmb3JtIn0.gvM1sjnFXwQkBTTqobnTJqE8ZCrAR-" "SEevEZB4Quqxd836v7iHjnWBiOkUCZl_o5wQouz5pFuhkQ1BlhhAZNih_Ko2yxBi0W_NuhI-" "18We8gSMhi8pwfNu6WqNqXkHlQAJebhJQH23yP_A2dxU3Z50maUJaAl9G0e60CIynsaeW-" "o7QneaPxPEWjOi--XMvkOu-z8eD0CXx1dUrlzINDxWzJFoXzCk2_NZ9-" "UPzHWai68qKo2FjbtTT3fEPA-L1IN908OWhuN2UHdvPrg_" "h13GO7kY3K7TsWotsgsLon2KxWYaDpasaY_ZqCIXCeS4jW89gVtsOB3E6B-xdR1Gq-9g"; class TestAuthProvider : public GoogleServiceAccountAuthProvider { public: TestAuthProvider(const GoogleServiceAccountCredentials& creds) : GoogleServiceAccountAuthProvider(creds, nullptr, [this] { return this->time; }), time(absl::FromUnixSeconds(1547666103)), idx(0) {} virtual Result<HttpResponse> IssueRequest(std::string_view method, std::string_view uri, absl::Cord body) { request.push_back(std::make_pair(std::string(uri), std::string(body))); if (responses.count(idx) != 0) { return responses[idx++]; } return HttpResponse{}; } absl::Time time; int idx; absl::flat_hash_map<int, HttpResponse> responses; std::vector<std::pair<std::string, std::string>> request; }; TEST(GoogleServiceAccountAuthProviderTest, InitialState) { TestAuthProvider auth({"a", "b", "c", "d"}); EXPECT_FALSE(auth.IsValid()); EXPECT_TRUE(auth.IsExpired()); } TEST(GoogleServiceAccountAuthProviderTest, BadKeys) { TestAuthProvider auth({"a", "b", "c", "d"}); auto result = auth.GetToken(); EXPECT_FALSE(result.ok()) << result.status(); EXPECT_EQ(0, auth.request.size()); } TEST(OAuth2AuthProviderTest, NoResponse) { TestAuthProvider auth(kCreds); auto result = auth.GetToken(); EXPECT_FALSE(result.ok()) << result.status(); ASSERT_EQ(1, auth.request.size()); EXPECT_EQ("https: auth.request[0].first); EXPECT_EQ(kBody, auth.request[0].second); } TEST(GoogleServiceAccountAuthProviderTest, Status200) { TestAuthProvider auth(kCreds); auth.responses = { {0, {200, absl::Cord(kServiceAccountInfo), {}}}, {1, {200, absl::Cord(kServiceAccountInfo), {}}}, }; { auto result = auth.GetToken(); EXPECT_EQ(1, auth.idx); EXPECT_TRUE(result.ok()) << result.status(); EXPECT_EQ(1, auth.request.size()); EXPECT_EQ(auth.time + absl::Seconds(456), result->expiration); EXPECT_EQ("abc", result->token); } EXPECT_FALSE(auth.IsExpired()); EXPECT_TRUE(auth.IsValid()); auth.time += absl::Seconds(600); { auto result = auth.GetToken(); EXPECT_EQ(2, auth.idx); EXPECT_TRUE(result.ok()) << result.status(); EXPECT_EQ(2, auth.request.size()); EXPECT_EQ(auth.time + absl::Seconds(456), result->expiration); EXPECT_EQ("abc", result->token); } } }
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/oauth2/google_service_account_auth_provider.cc
https://github.com/google/tensorstore/blob/4f887a6430414cd6088e1743555015b10f116d50/tensorstore/internal/oauth2/google_service_account_auth_provider_test.cc
4f887a6430414cd6088e1743555015b10f116d50
14b90607-2c26-427d-a00b-7fb9d69a4c4b
cpp
abseil/abseil-cpp
randen
absl/random/internal/randen.cc
absl/random/internal/randen_test.cc
#include "absl/random/internal/randen.h" #include "absl/base/internal/raw_logging.h" #include "absl/random/internal/randen_detect.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace random_internal { namespace { struct RandenState { const void* keys; bool has_crypto; }; RandenState GetRandenState() { static const RandenState state = []() { RandenState tmp; #if ABSL_RANDOM_INTERNAL_AES_DISPATCH if (HasRandenHwAesImplementation() && CPUSupportsRandenHwAes()) { tmp.has_crypto = true; tmp.keys = RandenHwAes::GetKeys(); } else { tmp.has_crypto = false; tmp.keys = RandenSlow::GetKeys(); } #elif ABSL_HAVE_ACCELERATED_AES tmp.has_crypto = true; tmp.keys = RandenHwAes::GetKeys(); #else tmp.has_crypto = false; tmp.keys = RandenSlow::GetKeys(); #endif return tmp; }(); return state; } } Randen::Randen() { auto tmp = GetRandenState(); keys_ = tmp.keys; #if ABSL_RANDOM_INTERNAL_AES_DISPATCH has_crypto_ = tmp.has_crypto; #endif } } ABSL_NAMESPACE_END }
#include "absl/random/internal/randen.h" #include <cstring> #include "gtest/gtest.h" #include "absl/meta/type_traits.h" namespace { using absl::random_internal::Randen; TEST(RandenTest, CopyAndMove) { static_assert(std::is_copy_constructible<Randen>::value, "Randen must be copy constructible"); static_assert(absl::is_copy_assignable<Randen>::value, "Randen must be copy assignable"); static_assert(std::is_move_constructible<Randen>::value, "Randen must be move constructible"); static_assert(absl::is_move_assignable<Randen>::value, "Randen must be move assignable"); } TEST(RandenTest, Default) { constexpr uint8_t kGolden[] = { 0xee, 0xd3, 0xe6, 0x0e, 0x09, 0x34, 0x65, 0x6c, 0xc6, 0x33, 0x53, 0x9d, 0x9b, 0x2b, 0x4e, 0x04, 0x77, 0x39, 0x43, 0x4e, 0x13, 0x4f, 0xc1, 0xc3, 0xee, 0x10, 0x04, 0xd9, 0x7c, 0xf4, 0xa9, 0xdd, 0x10, 0xca, 0xd8, 0x7f, 0x08, 0xf3, 0x7b, 0x88, 0x12, 0x29, 0xc7, 0x45, 0xf5, 0x80, 0xb7, 0xf0, 0x9f, 0x59, 0x96, 0x76, 0xd3, 0xb1, 0xdb, 0x15, 0x59, 0x6d, 0x3c, 0xff, 0xba, 0x63, 0xec, 0x30, 0xa6, 0x20, 0x7f, 0x6f, 0x60, 0x73, 0x9f, 0xb2, 0x4c, 0xa5, 0x49, 0x6f, 0x31, 0x8a, 0x80, 0x02, 0x0e, 0xe5, 0xc8, 0xd5, 0xf9, 0xea, 0x8f, 0x3b, 0x8a, 0xde, 0xd9, 0x3f, 0x5e, 0x60, 0xbf, 0x9c, 0xbb, 0x3b, 0x18, 0x78, 0x1a, 0xae, 0x70, 0xc9, 0xd5, 0x1e, 0x30, 0x56, 0xd3, 0xff, 0xb2, 0xd8, 0x37, 0x3c, 0xc7, 0x0f, 0xfe, 0x27, 0xb3, 0xf4, 0x19, 0x9a, 0x8f, 0xeb, 0x76, 0x8d, 0xfd, 0xcd, 0x9d, 0x0c, 0x42, 0x91, 0xeb, 0x06, 0xa5, 0xc3, 0x56, 0x95, 0xff, 0x3e, 0xdd, 0x05, 0xaf, 0xd5, 0xa1, 0xc4, 0x83, 0x8f, 0xb7, 0x1b, 0xdb, 0x48, 0x8c, 0xfe, 0x6b, 0x0d, 0x0e, 0x92, 0x23, 0x70, 0x42, 0x6d, 0x95, 0x34, 0x58, 0x57, 0xd3, 0x58, 0x40, 0xb8, 0x87, 0x6b, 0xc2, 0xf4, 0x1e, 0xed, 0xf3, 0x2d, 0x0b, 0x3e, 0xa2, 0x32, 0xef, 0x8e, 0xfc, 0x54, 0x11, 0x43, 0xf3, 0xab, 0x7c, 0x49, 0x8b, 0x9a, 0x02, 0x70, 0x05, 0x37, 0x24, 0x4e, 0xea, 0xe5, 0x90, 0xf0, 0x49, 0x57, 0x8b, 0xd8, 0x2f, 0x69, 0x70, 0xa9, 0x82, 0xa5, 0x51, 0xc6, 0xf5, 0x42, 0x63, 0xbb, 0x2c, 0xec, 0xfc, 0x78, 0xdb, 0x55, 0x2f, 0x61, 0x45, 0xb7, 0x3c, 0x46, 0xe3, 0xaf, 0x16, 0x18, 0xad, 0xe4, 0x2e, 0x35, 0x7e, 0xda, 0x01, 0xc1, 0x74, 0xf3, 0x6f, 0x02, 0x51, 0xe8, 0x3d, 0x1c, 0x82, 0xf0, 0x1e, 0x81, }; alignas(16) uint8_t state[Randen::kStateBytes]; std::memset(state, 0, sizeof(state)); Randen r; r.Generate(state); EXPECT_EQ(0, std::memcmp(state, kGolden, sizeof(state))); } }
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/randen.cc
https://github.com/abseil/abseil-cpp/blob/03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4/absl/random/internal/randen_test.cc
03b8d6ea3dc6a0b8c6bcf42503c2053754dab2e4
2137774c-d1b0-416b-93a9-b2e5d467fb5e
cpp
tensorflow/tensorflow
table
tensorflow/lite/kernels/table.cc
tensorflow/lite/kernels/table_test.cc
#include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/internal/reference/integer_ops/lut.h" #include "tensorflow/lite/kernels/internal/tensor.h" #include "tensorflow/lite/kernels/kernel_util.h" namespace tflite { namespace ops { namespace custom { namespace table { constexpr int kInputTensor = 0; constexpr int kTable = 1; constexpr int kOutputTensor = 0; TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* table; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kTable, &table)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); TF_LITE_ENSURE(context, input->type == kTfLiteInt8 || input->type == kTfLiteInt16); TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); TF_LITE_ENSURE_TYPES_EQ(context, output->type, table->type); if (input->type == kTfLiteInt16) { TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0); TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0); } TF_LITE_ENSURE_EQ(context, NumDimensions(table), 1); if (input->type == kTfLiteInt8) { TF_LITE_ENSURE_EQ(context, NumElements(table), LUTSize<int8_t>()); } else { TF_LITE_ENSURE_EQ(context, input->type, kTfLiteInt16); TF_LITE_ENSURE_EQ(context, NumElements(table), LUTSize<int16_t>()); } return context->ResizeTensor(context, output, TfLiteIntArrayCopy(input->dims)); } TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { const TfLiteTensor* input; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input)); const TfLiteTensor* table; TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kTable, &table)); TfLiteTensor* output; TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, kOutputTensor, &output)); switch (input->type) { case kTfLiteInt8: reference_integer_ops::LookupTable( GetTensorData<int8_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), GetTensorData<int8_t>(table), GetTensorData<int8_t>(output)); return kTfLiteOk; case kTfLiteInt16: reference_integer_ops::LookupTable( GetTensorData<int16_t>(input), MatchingFlatSize(GetTensorShape(input), GetTensorShape(output)), GetTensorData<int16_t>(table), GetTensorData<int16_t>(output)); return kTfLiteOk; default: TF_LITE_UNSUPPORTED_TYPE(context, input->type, "Table"); } return kTfLiteOk; } } TfLiteRegistration* Register_TABLE() { static TfLiteRegistration r = {nullptr, nullptr, table::Prepare, table::Eval}; return &r; } } } }
#include <cmath> #include <limits> #include <type_traits> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/kernels/internal/common.h" #include "tensorflow/lite/kernels/test_util.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_TABLE(); namespace { using ::testing::ElementsAreArray; class TableOpModel : public SingleOpModel { public: TableOpModel(const TensorData& input, const TensorData& table, const TensorData& output) { input_ = AddInput(input); table_ = AddInput(table); output_ = AddOutput(output); SetCustomOp("Table", {}, Register_TABLE); BuildInterpreter({GetShape(input_), GetShape(table_)}); } template <typename T> std::vector<T> GetOutput() { return ExtractVector<T>(output_); } template <typename integer_dtype> std::vector<float> GetDequantizedOutput() { return Dequantize<integer_dtype>(ExtractVector<integer_dtype>(output_), GetScale(output_), GetZeroPoint(output_)); } int input() { return input_; } int table() { return table_; } int output() { return output_; } protected: int input_; int table_; int output_; }; template <typename T> inline float GetLUTTolerance(float input_min, float input_max, float output_min, float output_max) { static_assert( std::is_same<T, int8_t>::value || std::is_same<T, int16_t>::value, "T must be an int8_t or int16_t."); const float range_sum = (input_max - input_min) + (output_max - output_min); if (std::is_same<T, int8_t>::value) { return range_sum / 256.0f; } else { return range_sum / 512.0f; } } template <typename T> void TableWithExpLUTTest() { float input_min = -0.5f; float input_max = 0.8f; if (std::is_same<T, int16_t>::value) { input_min = -0.8f; input_max = 0.8f * std::numeric_limits<T>::max() / static_cast<float>(std::numeric_limits<T>::max() + 1); } float output_min = 0.0f; float output_max = 2.4f; if (std::is_same<T, int16_t>::value) { output_min = -2.4f; output_max = 2.4f * std::numeric_limits<T>::max() / static_cast<float>(std::numeric_limits<T>::max() + 1); } const float kQuantizedTolerance = GetLUTTolerance<T>(input_min, input_max, output_min, output_max); TableOpModel m({GetTensorType<T>(), {1, 2, 3, 1}, input_min, input_max}, {GetTensorType<T>(), {LUTSize<T>()}}, {GetTensorType<T>(), {}, output_min, output_max}); T table[LUTSize<T>()]; LUTPopulate<T>( m.GetScale(m.input()), m.GetZeroPoint(m.input()), m.GetScale(m.output()), m.GetZeroPoint(m.output()), [](float v) { return std::exp(v); }, table); m.QuantizeAndPopulate<T>(m.input(), {-0.5f, -0.2f, 0.0f, 0.1f, 0.3f, 0.8f}); m.PopulateTensor<T>(m.table(), 0, table, table + LUTSize<T>()); m.Invoke(); EXPECT_THAT(m.GetDequantizedOutput<T>(), ElementsAreArray(ArrayFloatNear( {std::exp(-0.5f), std::exp(-0.2f), std::exp(0.0f), std::exp(0.1f), std::exp(0.3f), std::exp(0.8f)}, kQuantizedTolerance))); } TEST(TableOpTest, Int8ExpLUT) { TableWithExpLUTTest<int8_t>(); } TEST(TableOpTest, Int16ExpLUT) { TableWithExpLUTTest<int16_t>(); } } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/table.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/kernels/table_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
5ae6834d-0580-44a1-8bd2-af4b865d5c58
cpp
tensorflow/tensorflow
toco_port
tensorflow/lite/toco/toco_port.cc
tensorflow/lite/toco/toco_port_test.cc
#include "tensorflow/lite/toco/toco_port.h" #include <cstring> #include <string> #include "absl/status/status.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/toco/toco_types.h" #if defined(__ANDROID__) && defined(__ARM_ARCH_7A__) namespace std { double round(double x) { return ::round(x); } } #endif namespace toco { namespace port { void CopyToBuffer(const std::string& src, char* dest) { memcpy(dest, src.data(), src.size()); } #ifdef PLATFORM_GOOGLE void CopyToBuffer(const absl::Cord& src, char* dest) { src.CopyToArray(dest); } #endif } } #if defined(PLATFORM_GOOGLE) && !defined(__APPLE__) && \ !defined(__ANDROID__) && !defined(_WIN32) #include "base/init_google.h" #include "file/base/file.h" #include "file/base/filesystem.h" #include "file/base/helpers.h" #include "file/base/options.h" #include "file/base/path.h" namespace toco { namespace port { void InitGoogle(const char* usage, int* argc, char*** argv, bool remove_flags) { ::InitGoogle(usage, argc, argv, remove_flags); } void InitGoogleWasDoneElsewhere() { } void CheckInitGoogleIsDone(const char* message) { ::CheckInitGoogleIsDone(message); } namespace file { tensorflow::Status ToStatus(const absl::Status& uts) { if (!uts.ok()) { return tensorflow::Status(absl::StatusCode(::util::RetrieveErrorCode(uts)), uts.message()); } return absl::OkStatus(); } toco::port::file::Options ToOptions(const ::file::Options& options) { CHECK_EQ(&options, &::file::Defaults()); return Options(); } tensorflow::Status Writable(const std::string& filename) { File* f = nullptr; const auto status = ::file::Open(filename, "w", &f, ::file::Defaults()); if (f) { QCHECK_OK(f->Close(::file::Defaults())); } return ToStatus(status); } tensorflow::Status Readable(const std::string& filename, const file::Options& options) { return ToStatus(::file::Readable(filename, ::file::Defaults())); } tensorflow::Status Exists(const std::string& filename, const file::Options& options) { auto status = ::file::Exists(filename, ::file::Defaults()); return ToStatus(status); } tensorflow::Status GetContents(const std::string& filename, std::string* contents, const file::Options& options) { return ToStatus(::file::GetContents(filename, contents, ::file::Defaults())); } tensorflow::Status SetContents(const std::string& filename, const std::string& contents, const file::Options& options) { return ToStatus(::file::SetContents(filename, contents, ::file::Defaults())); } std::string JoinPath(const std::string& a, const std::string& b) { return ::file::JoinPath(a, b); } } } } #else #include <fcntl.h> #include <sys/stat.h> #include <sys/types.h> #include <cstdio> #if defined(_WIN32) #include <io.h> #else #include <unistd.h> #endif #if defined(PLATFORM_GOOGLE) #include "base/commandlineflags.h" #endif namespace toco { namespace port { #if defined(_WIN32) #define close _close #define open _open #define read _read constexpr int kFileCreateMode = _S_IREAD | _S_IWRITE; constexpr int kFileReadFlags = _O_RDONLY | _O_BINARY; constexpr int kFileWriteFlags = _O_WRONLY | _O_BINARY | _O_CREAT; #else constexpr int kFileCreateMode = 0664; constexpr int kFileReadFlags = O_RDONLY; constexpr int kFileWriteFlags = O_CREAT | O_WRONLY; #endif static bool port_initialized = false; void InitGoogleWasDoneElsewhere() { port_initialized = true; } void InitGoogle(const char* usage, int* argc, char*** argv, bool remove_flags) { if (!port_initialized) { #if defined(PLATFORM_GOOGLE) ParseCommandLineFlags(argc, argv, remove_flags); #endif port_initialized = true; } } void CheckInitGoogleIsDone(const char* message) { CHECK(port_initialized) << message; } namespace file { tensorflow::Status Writable(const string& filename) { FILE* f = fopen(filename.c_str(), "w"); if (f) { fclose(f); return tensorflow::OkStatus(); } return tensorflow::errors::NotFound("not writable"); } tensorflow::Status Readable(const string& filename, const file::Options& options) { FILE* f = fopen(filename.c_str(), "r"); if (f) { fclose(f); return tensorflow::OkStatus(); } return tensorflow::errors::NotFound("not readable"); } tensorflow::Status Exists(const string& filename, const file::Options& options) { struct stat statbuf; int ret = stat(filename.c_str(), &statbuf); if (ret == -1) { return tensorflow::errors::NotFound("file doesn't exist"); } return tensorflow::OkStatus(); } tensorflow::Status GetContents(const string& path, string* output, const file::Options& options) { output->clear(); int fd = open(path.c_str(), kFileReadFlags); if (fd == -1) { return tensorflow::errors::NotFound("can't open() for read"); } const int kBufSize = 1 << 16; char buffer[kBufSize]; while (true) { int size = read(fd, buffer, kBufSize); if (size == 0) { close(fd); return tensorflow::OkStatus(); } else if (size == -1) { close(fd); return tensorflow::errors::Internal("error during read()"); } else { output->append(buffer, size); } } CHECK(0); return tensorflow::errors::Internal("internal error"); } tensorflow::Status SetContents(const string& filename, const string& contents, const file::Options& options) { int fd = open(filename.c_str(), kFileWriteFlags, kFileCreateMode); if (fd == -1) { return tensorflow::errors::Internal("can't open() for write"); } size_t i = 0; while (i < contents.size()) { size_t to_write = contents.size() - i; ssize_t written = write(fd, &contents[i], to_write); if (written == -1) { close(fd); return tensorflow::errors::Internal("write() error"); } i += written; } close(fd); return tensorflow::OkStatus(); } string JoinPath(const string& base, const string& filename) { if (base.empty()) return filename; string base_fixed = base; if (!base_fixed.empty() && base_fixed.back() == '/') base_fixed.pop_back(); string filename_fixed = filename; if (!filename_fixed.empty() && filename_fixed.front() == '/') filename_fixed.erase(0, 1); return base_fixed + "/" + filename_fixed; } } } } #endif
#include "tensorflow/lite/toco/toco_port.h" #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/toco/toco_types.h" #include <gmock/gmock.h> #include <gtest/gtest.h> namespace toco { namespace port { namespace { #ifdef PLATFORM_GOOGLE #define TFLITE_PREFIX "third_party/tensorflow/lite/" #else #define TFLITE_PREFIX "tensorflow/lite/" #endif TEST(TocoPortTest, Exists) { EXPECT_TRUE( file::Exists(TFLITE_PREFIX "toco/toco_port_test.cc", file::Defaults()) .ok()); EXPECT_FALSE( file::Exists("non-existent_file_asldjflasdjf", file::Defaults()).ok()); } TEST(TocoPortTest, Readable) { EXPECT_TRUE( file::Readable(TFLITE_PREFIX "toco/toco_port_test.cc", file::Defaults()) .ok()); EXPECT_FALSE( file::Readable("non-existent_file_asldjflasdjf", file::Defaults()).ok()); } TEST(TocoPortTest, JoinPath) { EXPECT_EQ("part1/part2", file::JoinPath("part1", "part2")); EXPECT_EQ("part1/part2", file::JoinPath("part1/", "part2")); EXPECT_EQ("part1/part2", file::JoinPath("part1", "/part2")); EXPECT_EQ("part1/part2", file::JoinPath("part1/", "/part2")); } } } } int main(int argc, char** argv) { ::tflite::LogToStderr(); ::testing::InitGoogleTest(&argc, argv); ::toco::port::InitGoogleWasDoneElsewhere(); return RUN_ALL_TESTS(); }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/toco_port.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/lite/toco/toco_port_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea
af8c8af1-7b5b-4942-b777-1f91251c6e5a
cpp
tensorflow/tensorflow
ifrt_program_ops
tensorflow/core/tfrt/ops/ifrt_program_ops.cc
tensorflow/core/tfrt/kernels/ifrt_program_ops_test.cc
#include "tensorflow/core/framework/common_shape_fns.h" #include "tensorflow/core/framework/op.h" namespace tensorflow { namespace tfrt_stub { REGISTER_OP("IfrtCall") .Input("args: Tin") .Output("results: Tout") .Attr("Tin: list(type) >= 0") .Attr("Tout: list(type) >= 0") .Attr("program_id: int") .Attr("variable_arg_indices: list(int)") .SetIsStateful() .SetShapeFn(tensorflow::shape_inference::UnknownShape) .Doc(R"( Calls an IFRT program identified by the given program id. This op looks up a `ServingExecutable` from `ServingExecutableRegistry` using the program id, calls the executable with the op's inputs as arguments, and returns its results as the op's outputs. Note that this op is not part of a stable interface. Users must not use this op in their SavedModel and instead rely on Ifrt Serving's mechanism that automatically inserts this op with graph rewrite. program_id: int64 id that can be used to look up compiled programs from ServingExecutableRegistry`. variable_arg_indices: must be in sorted ascending order. The argument at position variable_arg_indices[k] in tpu program is already loaded as an ifrt array and the input `args[variable_arg_indices[k]]` is the key to look for this loaded array. )"); REGISTER_OP("IfrtLoadVariable") .Input("variable: Tin") .Output("array_key: Tout") .Output("tensor: Tout") .Attr("Tin: type") .Attr("Tout: type") .Attr("used_by_host: bool") .SetIsStateful() .SetShapeFn(tensorflow::shape_inference::UnknownShape) .Doc(R"( This op loads a restored variable tensor as a tensor future. It is areplacement of `tf.ReadVariableOp`. This op returns a scalar string tensor containing the restored variable name, which is composed from `container_name` and `shared_name` from a `var_handle` and can be used as a key within the runtime, as well as a future for the tensor. Note that this op is not part of a stable interface. Users must not use this op in their SavedModel and instead rely on Ifrt Serving's mechanism that automatically inserts this op with graph rewrite. variable: the variable handle of the variable tensor to be loaded. array_key: the key to be used to look up the loaded array by the 'IfrtCall' op. tensor: the future of the loaded tensor. The future contains a valid tensor if `use_by_host` is true. 'used_by_host': a boolean indicating whether the variable is used by the host OP or excelusively by the TPU. )"); } }
#include <cstdint> #include <memory> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/framework/serving_device_selector.h" #include "xla/tsl/framework/test_util/mock_serving_device_selector.h" #include "xla/tsl/lib/core/status_test_util.h" #include "tensorflow/core/framework/fake_input.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_matcher.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/kernels/ops_testutil.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/tfrt/ifrt/ifrt_executable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable_test_util.h" #include "tsl/platform/status.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tfrt_stub { namespace { using tensorflow::ifrt_serving::ServingExecutableRegistry; using tensorflow::ifrt_serving::test_utils::GetMlirModulePath; using tensorflow::ifrt_serving::test_utils::IfrtServingExecutableTestHelper; using tensorflow::test::AsTensor; using tensorflow::test::TensorEq; using ::testing::Return; class IfrtCallOpTest : public OpsTestBase { protected: Status Init(int64_t program_id, int num_inputs, DataType input_type, const std::vector<int>& variable_arg_indices, const std::vector<DataType>& output_type_list) { TF_CHECK_OK(NodeDefBuilder("op", "IfrtCall") .Input(FakeInput(num_inputs, input_type)) .Attr("program_id", program_id) .Attr("variable_arg_indices", variable_arg_indices) .Attr("Tout", output_type_list) .Finalize(node_def())); return InitOp(); } }; TEST_F(IfrtCallOpTest, Basic) { int64_t program_id = 123; TF_ASSERT_OK(Init( program_id, 2, DT_INT32, {}, {DT_INT32})); tsl::test_util::MockServingDeviceSelector selector; IfrtServingExecutableTestHelper helper(&selector); EXPECT_CALL(selector, ReserveDevice(absl::StrCat(program_id))) .Times(1) .WillOnce(Return(tsl::DeviceReservation(0, nullptr))); auto executable = helper.MakeExecutable(program_id, GetMlirModulePath("executable.mlir")); TF_ASSERT_OK_AND_ASSIGN( ServingExecutableRegistry::Handle handle, ServingExecutableRegistry::Register(program_id, std::move(executable))); auto handle_cleaner = gtl::MakeCleanup([&handle] { handle.Release(); }); AddInputFromArray<int32_t>(TensorShape({1, 3}), {1, 2, 3}); AddInputFromArray<int32_t>(TensorShape({3, 1}), {1, 2, 3}); for (int i = 0; i < helper.num_cores() + 1; ++i) { TF_ASSERT_OK(RunOpKernel()); } Tensor expected_out = AsTensor<int32_t>({14}, TensorShape({1, 1})); EXPECT_THAT(*GetOutput(0), TensorEq(expected_out)); } } } }
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/ops/ifrt_program_ops.cc
https://github.com/tensorflow/tensorflow/blob/4a29233a7b7c1a3a4294e4ccdd1772f9083944ea/tensorflow/core/tfrt/kernels/ifrt_program_ops_test.cc
4a29233a7b7c1a3a4294e4ccdd1772f9083944ea