bourdoiscatie's picture
Update README.md
655c849
|
raw
history blame
5.17 kB
---
language:
- fr
license:
- cc-by-nc-4.0
size_categories:
- 1M<n<10M
task_categories:
- summarization
tags:
- textual-simplification
- DFP
- french prompts
annotations_creators:
- found
language_creators:
- found
multilinguality:
- monolingual
source_datasets:
- bisect
---
# bisect_fr_prompt_textual_simplification
## Summary
**bisect_fr_prompt_textual_simplification** is a subset of the [**Dataset of French Prompts (DFP)**](https://huggingface.co/datasets/CATIE-AQ/DFP).
It contains **9,889,420** rows that can be used for a textual simplification task.
The original data (without prompts) comes from the dataset [BiSECT](https://huggingface.co/datasets/GEM/BiSECT) by Kim et al. where only the French part has been kept.
A list of prompts (see below) was then applied in order to build the input and target columns and thus obtain the same format as the [xP3](https://huggingface.co/datasets/bigscience/xP3) dataset by Muennighoff et al.
## Prompts used
### List
20 prompts were created for this dataset. The logic applied consists in proposing prompts in the indicative tense, in the form of tutoiement and in the form of vouvoiement.
```
'Simplifier la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Simplifie la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Simplifiez la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Alléger la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Allège la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Allégez la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Clarifier la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Clarifie la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'Clarifiez la phrase suivante en la divisant tout en conservant son sens complet : "'+source+'" Version simplifiée : ',
'"'+source+'" La phrase ci-dessus est trop compliquée. Fournir une version simplifiée composée de plusieurs phrases : ',
'"'+source+'" La phrase ci-dessus est trop compliquée. Fournis une version simplifiée composée de plusieurs phrases : ',
'"'+source+'" La phrase ci-dessus est trop compliquée. Fournissez une version simplifiée composée de plusieurs phrases : ',
'"'+source+'" Cette phrase est difficile à comprendre. Une version plus simple avec une signification équivalente est la suivante : ',
'"'+source+'" Cette phrase est difficile à comprendre. Une version moins complexe avec une signification équivalente est la suivante : ',
'"'+source+'" Cette phrase est difficile à comprendre. Une version plus légère avec une signification équivalente est la suivante : ',
'"'+source+'" Cette phrase est difficile à comprendre. Une version épurée avec une signification équivalente est la suivante : ',
'"'+source+'" Cette phrase est lourde. Une version plus simple avec une signification équivalente est la suivante : ',
'"'+source+'" Cette phrase est lourde. Une version moins complexe avec une signification équivalente est la suivante : ',
'"'+source+'" Cette phrase est lourde. Une version plus légère avec une signification équivalente est la suivante : ',
'"'+source+'" Cette phrase est lourde. Une version épurée avec une signification équivalente est la suivante : '
```
### Features used in the prompts
In the prompt list above, `source` and `targets` have been constructed from:
```
bisect = load_dataset('GEM/BiSECT','fr')
source = bisect['train'][i]['source'].replace(' . ','. ').replace(' .','. ').replace(' , ',', ').replace(', ',', ').replace('_SPLIT_','')[:-1]
targets = bisect['train'][i]['target'].replace(' . ','. ').replace(' .','. ').replace(' , ',', ').replace(', ',', ').replace(' _SPLIT_','')[:-1]
```
# Splits
- `train` with 9,820,700 samples
- `valid` with 48,000 samples
- `test` with 20,720 samples
# How to use?
```
from datasets import load_dataset
dataset = load_dataset("CATIE-AQ/bisect_fr_prompt_textual_simplification")
```
# Citation
## Original data
> @inproceedings{bisect2021,
title={BiSECT: Learning to Split and Rephrase Sentences with Bitexts},
author={Kim, Joongwon and Maddela, Mounica and Kriz, Reno and Xu, Wei and Callison-Burch, Chris},
booktitle={Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year={2021}
}
## This Dataset
> @misc {centre_aquitain_des_technologies_de_l'information_et_electroniques_2023,
author = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
title = { DFP (Revision 1d24c09) },
year = 2023,
url = { https://huggingface.co/datasets/CATIE-AQ/DFP },
doi = { 10.57967/hf/1200 },
publisher = { Hugging Face }
}
## License
cc-by-nc-4.0