problem
stringlengths 103
1.17k
| answer
int64 1
991
| id
int64 1
120
|
---|---|---|
There are $2022$ equally spaced points on a circular track $\gamma$ of circumference $2022$. The points are labeled $A_1, A_2, \ldots, A_{2022}$ in some order, each label used once. Initially, Bunbun the Bunny begins at $A_1$. She hops along $\gamma$ from $A_1$ to $A_2$, then from $A_2$ to $A_3$, until she reaches $A_{2022}$, after which she hops back to $A_1$. When hopping from $P$ to $Q$, she always hops along the shorter of the two arcs $\widehat{PQ}$ of $\gamma$; if $\overline{PQ}$ is a diameter of $\gamma$, she moves along either semicircle.
Determine the maximal possible sum of the lengths of the $2022$ arcs which Bunbun traveled, over all possible labellings of the $2022$ points.
[i]Kevin Cong[/i] | 222 | 1 |
For a pair $ A \equal{} (x_1, y_1)$ and $ B \equal{} (x_2, y_2)$ of points on the coordinate plane, let $ d(A,B) \equal{} |x_1 \minus{} x_2| \plus{} |y_1 \minus{} y_2|$. We call a pair $ (A,B)$ of (unordered) points [i]harmonic[/i] if $ 1 < d(A,B) \leq 2$. Determine the maximum number of harmonic pairs among 100 points in the plane. | 750 | 2 |
Draw a $2004 \times 2004$ array of points. What is the largest integer $n$ for which it is possible to draw a convex $n$-gon whose vertices are chosen from the points in the array? | 561 | 3 |
At a university dinner, there are 2017 mathematicians who each order two distinct entrées, with no two mathematicians ordering the same pair of entrées. The cost of each entrée is equal to the number of mathematicians who ordered it, and the university pays for each mathematician's less expensive entrée (ties broken arbitrarily). Over all possible sets of orders, what is the maximum total amount the university could have paid? | 9 | 5 |
Let $f:X\rightarrow X$, where $X=\{1,2,\ldots ,100\}$, be a function satisfying:
1) $f(x)\neq x$ for all $x=1,2,\ldots,100$;
2) for any subset $A$ of $X$ such that $|A|=40$, we have $A\cap f(A)\neq\emptyset$.
Find the minimum $k$ such that for any such function $f$, there exist a subset $B$ of $X$, where $|B|=k$, such that $B\cup f(B)=X$. | 69 | 6 |
Consider pairs $(f,g)$ of functions from the set of nonnegative integers to itself such that
[list]
[*]$f(0) \geq f(1) \geq f(2) \geq \dots \geq f(300) \geq 0$
[*]$f(0)+f(1)+f(2)+\dots+f(300) \leq 300$
[*]for any 20 nonnegative integers $n_1, n_2, \dots, n_{20}$, not necessarily distinct, we have $$g(n_1+n_2+\dots+n_{20}) \leq f(n_1)+f(n_2)+\dots+f(n_{20}).$$
[/list]
Determine the maximum possible value of $g(0)+g(1)+\dots+g(6000)$ over all such pairs of functions.
[i]Sean Li[/i] | 440 | 7 |
Let $S$ be a set, $|S|=35$. A set $F$ of mappings from $S$ to itself is called to be satisfying property $P(k)$, if for any $x,y\in S$, there exist $f_1, \cdots, f_k \in F$ (not necessarily different), such that $f_k(f_{k-1}(\cdots (f_1(x))))=f_k(f_{k-1}(\cdots (f_1(y))))$.
Find the least positive integer $m$, such that if $F$ satisfies property $P(2019)$, then it also satisfies property $P(m)$. | 595 | 8 |
Let $a_1,a_2,\cdots,a_{41}\in\mathbb{R},$ such that $a_{41}=a_1, \sum_{i=1}^{40}a_i=0,$ and for any $i=1,2,\cdots,40, |a_i-a_{i+1}|\leq 1.$ Determine the greatest possible value of
$(1)a_{10}+a_{20}+a_{30}+a_{40};$
$(2)a_{10}\cdot a_{20}+a_{30}\cdot a_{40}.$ | 10 | 9 |
Find out the maximum value of the numbers of edges of a solid regular octahedron that we can see from a point out of the regular octahedron.(We define we can see an edge $AB$ of the regular octahedron from point $P$ outside if and only if the intersection of non degenerate triangle $PAB$ and the solid regular octahedron is exactly edge $AB$. | 9 | 10 |
Let $\{ z_n \}_{n \ge 1}$ be a sequence of complex numbers, whose odd terms are real, even terms are purely imaginary, and for every positive integer $k$, $|z_k z_{k+1}|=2^k$. Denote $f_n=|z_1+z_2+\cdots+z_n|,$ for $n=1,2,\cdots$
(1) Find the minimum of $f_{2020}$.
(2) Find the minimum of $f_{2020} \cdot f_{2021}$. | 2 | 11 |
Find the smallest positive number $\lambda$, such that for any $12$ points on the plane $P_1,P_2,\ldots,P_{12}$(can overlap), if the distance between any two of them does not exceed $1$, then $\sum_{1\le i<j\le 12} |P_iP_j|^2\le \lambda$. | 48 | 12 |
$101$ people, sitting at a round table in any order, had $1,2,... , 101$ cards, respectively.
A transfer is someone give one card to one of the two people adjacent to him.
Find the smallest positive integer $k$ such that there always can through no more than $ k $ times transfer, each person hold cards of the same number, regardless of the sitting order. | 925 | 13 |
Let $G$ be a simple graph with 100 vertices such that for each vertice $u$, there exists a vertice $v \in N \left ( u \right )$ and $ N \left ( u \right ) \cap N \left ( v \right ) = \o $. Try to find the maximal possible number of edges in $G$. The $ N \left ( . \right )$ refers to the neighborhood. | 822 | 14 |
Suppose $a_i, b_i, c_i, i=1,2,\cdots ,n$, are $3n$ real numbers in the interval $\left [ 0,1 \right ].$ Define $$S=\left \{ \left ( i,j,k \right ) |\, a_i+b_j+c_k<1 \right \}, \; \; T=\left \{ \left ( i,j,k \right ) |\, a_i+b_j+c_k>2 \right \}.$$ Now we know that $\left | S \right |\ge 2018,\, \left | T \right |\ge 2018.$ Try to find the minimal possible value of $n$. | 18 | 15 |
$ S$ is a non-empty subset of the set $ \{ 1, 2, \cdots, 108 \}$, satisfying:
(1) For any two numbers $ a,b \in S$ ( may not distinct), there exists $ c \in S$, such that $ \gcd(a,c)\equal{}\gcd(b,c)\equal{}1$.
(2) For any two numbers $ a,b \in S$ ( may not distinct), there exists $ c' \in S$, $ c' \neq a$, $ c' \neq b$, such that $ \gcd(a, c') > 1$, $ \gcd(b,c') >1$.
Find the largest possible value of $ |S|$. | 79 | 16 |
Find the largest positive integer $m$ which makes it possible to color several cells of a $70\times 70$ table red such that [list] [*] There are no two red cells satisfying: the two rows in which they are have the same number of red cells, while the two columns in which they are also have the same number of red cells; [*] There are two rows with exactly $m$ red cells each. [/list] | 32 | 17 |
For a positive integer $M$, if there exist integers $a$, $b$, $c$ and $d$ so that:
\[ M \leq a < b \leq c < d \leq M+49, \qquad ad=bc \]
then we call $M$ a GOOD number, if not then $M$ is BAD. Please find the greatest GOOD number and the smallest BAD number. | 576 | 18 |
A positive integer $n$ is known as an [i]interesting[/i] number if $n$ satisfies
\[{\ \{\frac{n}{10^k}} \} > \frac{n}{10^{10}} \]
for all $k=1,2,\ldots 9$.
Find the number of interesting numbers. | 991 | 20 |
Define the sequences $(a_n),(b_n)$ by
\begin{align*}
& a_n, b_n > 0, \forall n\in\mathbb{N_+} \\
& a_{n+1} = a_n - \frac{1}{1+\sum_{i=1}^n\frac{1}{a_i}} \\
& b_{n+1} = b_n + \frac{1}{1+\sum_{i=1}^n\frac{1}{b_i}}
\end{align*}
1) If $a_{100}b_{100} = a_{101}b_{101}$, find the value of $a_1-b_1$;
2) If $a_{100} = b_{99}$, determine which is larger between $a_{100}+b_{100}$ and $a_{101}+b_{101}$. | 199 | 22 |
Let $\angle XOY = \frac{\pi}{2}$; $P$ is a point inside $\angle XOY$ and we have $OP = 1; \angle XOP = \frac{\pi}{6}.$ A line passes $P$ intersects the Rays $OX$ and $OY$ at $M$ and $N$. Find the maximum value of $OM + ON - MN.$ | 2 | 24 |
Suppose $A_1,A_2,\cdots ,A_n \subseteq \left \{ 1,2,\cdots ,2018 \right \}$ and $\left | A_i \right |=2, i=1,2,\cdots ,n$, satisfying that $$A_i + A_j, \; 1 \le i \le j \le n ,$$ are distinct from each other. $A + B = \left \{ a+b|a\in A,\,b\in B \right \}$. Determine the maximal value of $n$. | 33 | 25 |
Let $S = \{(x,y) | x = 1, 2, \ldots, 1993, y = 1, 2, 3, 4\}$. If $T \subset S$ and there aren't any squares in $T.$ Find the maximum possible value of $|T|.$ The squares in T use points in S as vertices. | 183 | 27 |
A graph $G(V,E)$ is triangle-free, but adding any edges to the graph will form a triangle. It's given that $|V|=2019$, $|E|>2018$, find the minimum of $|E|$ . | 33 | 28 |
Find the minimum positive integer $n\ge 3$, such that there exist $n$ points $A_1,A_2,\cdots, A_n$ satisfying no three points are collinear and for any $1\le i\le n$, there exist $1\le j \le n (j\neq i)$, segment $A_jA_{j+1}$ pass through the midpoint of segment $A_iA_{i+1}$, where $A_{n+1}=A_1$ | 6 | 29 |
For each prime $p$, a polynomial $P(x)$ with rational coefficients is called $p$-good if and only if there exist three integers $a, b$, and $c$ such that $0 \leq a<b<c<\frac{p}{3}$ and $p$ divides all the numerators of $P(a)$, $P(b)$, and $P(c)$, when written in simplest form. Compute the number of ordered pairs $(r, s)$ of rational numbers such that the polynomial $x^{3}+10x^{2}+rx+s$ is $p$-good for infinitely many primes $p$. | 12 | 31 |
Somewhere in the universe, $n$ students are taking a 10-question math competition. Their collective performance is called laughable if, for some pair of questions, there exist 57 students such that either all of them answered both questions correctly or none of them answered both questions correctly. Compute the smallest $n$ such that the performance is necessarily laughable. | 253 | 32 |
On each cell of a $200 \times 200$ grid, we place a car, which faces in one of the four cardinal directions. In a move, one chooses a car that does not have a car immediately in front of it, and slides it one cell forward. If a move would cause a car to exit the grid, the car is removed instead. The cars are placed so that there exists a sequence of moves that eventually removes all the cars from the grid. Across all such starting configurations, determine the maximum possible number of moves to do so. | 950 | 33 |
A sequence of real numbers $a_{0}, a_{1}, \ldots$ is said to be good if the following three conditions hold. (i) The value of $a_{0}$ is a positive integer. (ii) For each non-negative integer $i$ we have $a_{i+1}=2 a_{i}+1$ or $a_{i+1}=\frac{a_{i}}{a_{i}+2}$. (iii) There exists a positive integer $k$ such that $a_{k}=2014$. Find the smallest positive integer $n$ such that there exists a good sequence $a_{0}, a_{1}, \ldots$ of real numbers with the property that $a_{n}=2014$. | 60 | 34 |
Let $f$ be a monic cubic polynomial satisfying $f(x)+f(-x)=0$ for all real numbers $x$. For all real numbers $y$, define $g(y)$ to be the number of distinct real solutions $x$ to the equation $f(f(x))=y$. Suppose that the set of possible values of $g(y)$ over all real numbers $y$ is exactly $\{1,5,9\}$. Compute the sum of all possible values of $f(10)$. | 970 | 35 |
Kelvin and 15 other frogs are in a meeting, for a total of 16 frogs. During the meeting, each pair of distinct frogs becomes friends with probability $\frac{1}{2}$. Kelvin thinks the situation after the meeting is cool if for each of the 16 frogs, the number of friends they made during the meeting is a multiple of 4. Say that the probability of the situation being cool can be expressed in the form $\frac{a}{b}$, where $a$ and $b$ are relatively prime. Find $a$. | 167 | 36 |
Find the largest real $C$ such that for all pairwise distinct positive real $a_{1}, a_{2}, \ldots, a_{2019}$ the following inequality holds $$\frac{a_{1}}{\left|a_{2}-a_{3}\right|}+\frac{a_{2}}{\left|a_{3}-a_{4}\right|}+\ldots+\frac{a_{2018}}{\left|a_{2019}-a_{1}\right|}+\frac{a_{2019}}{\left|a_{1}-a_{2}\right|}>C$$ | 10 | 38 |
Let $\zeta=\cos \frac{2 \pi}{13}+i \sin \frac{2 \pi}{13}$. Suppose $a>b>c>d$ are positive integers satisfying $$\left|\zeta^{a}+\zeta^{b}+\zeta^{c}+\zeta^{d}\right|=\sqrt{3}$$ Compute the smallest possible value of $1000 a+100 b+10 c+d$. | 521 | 39 |
On a party with 99 guests, hosts Ann and Bob play a game (the hosts are not regarded as guests). There are 99 chairs arranged in a circle; initially, all guests hang around those chairs. The hosts take turns alternately. By a turn, a host orders any standing guest to sit on an unoccupied chair $c$. If some chair adjacent to $c$ is already occupied, the same host orders one guest on such chair to stand up (if both chairs adjacent to $c$ are occupied, the host chooses exactly one of them). All orders are carried out immediately. Ann makes the first move; her goal is to fulfill, after some move of hers, that at least $k$ chairs are occupied. Determine the largest $k$ for which Ann can reach the goal, regardless of Bob's play. | 34 | 40 |
Compute $\lim _{n \rightarrow \infty} \frac{1}{\log \log n} \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \log k$. | 1 | 42 |
It is midnight on April 29th, and Abigail is listening to a song by her favorite artist while staring at her clock, which has an hour, minute, and second hand. These hands move continuously. Between two consecutive midnights, compute the number of times the hour, minute, and second hands form two equal angles and no two hands overlap. | 700 | 43 |
Let $n$ be a fixed positive integer. Determine the smallest possible rank of an $n \times n$ matrix that has zeros along the main diagonal and strictly positive real numbers off the main diagonal. | 3 | 47 |
The 30 edges of a regular icosahedron are distinguished by labeling them $1,2,\dots,30$. How many different ways are there to paint each edge red, white, or blue such that each of the 20 triangular faces of the icosahedron has two edges of the same color and a third edge of a different color? | 224 | 50 |
Alice and Bob play a game on a board consisting of one row of 2022 consecutive squares. They take turns placing tiles that cover two adjacent squares, with Alice going first. By rule, a tile must not cover a square that is already covered by another tile. The game ends when no tile can be placed according to this rule. Alice's goal is to maximize the number of uncovered squares when the game ends; Bob's goal is to minimize it. What is the greatest number of uncovered squares that Alice can ensure at the end of the game, no matter how Bob plays? | 290 | 51 |
Compute
\[
\log_2 \left( \prod_{a=1}^{2015} \prod_{b=1}^{2015} (1+e^{2\pi i a b/2015}) \right)
\]
Here $i$ is the imaginary unit (that is, $i^2=-1$). | 725 | 53 |
Say that a polynomial with real coefficients in two variables, $x,y$, is \emph{balanced} if
the average value of the polynomial on each circle centered at the origin is $0$.
The balanced polynomials of degree at most $2009$ form a vector space $V$ over $\mathbb{R}$.
Find the dimension of $V$. | 50 | 56 |
Suppose that a positive integer $N$ can be expressed as the sum of $k$ consecutive positive integers \[ N = a + (a+1) +(a+2) + \cdots + (a+k-1) \] for $k=2017$ but for no other values of $k>1$. Considering all positive integers $N$ with this property, what is the smallest positive integer $a$ that occurs in any of these expressions? | 16 | 57 |
For a nonnegative integer $n$ and a strictly increasing sequence of real numbers $t_0,t_1,\dots,t_n$, let $f(t)$ be the corresponding real-valued function defined for $t \geq t_0$ by the following properties: \begin{enumerate} \item[(a)] $f(t)$ is continuous for $t \geq t_0$, and is twice differentiable for all $t>t_0$ other than $t_1,\dots,t_n$; \item[(b)] $f(t_0) = 1/2$; \item[(c)] $\lim_{t \to t_k^+} f'(t) = 0$ for $0 \leq k \leq n$; \item[(d)] For $0 \leq k \leq n-1$, we have $f''(t) = k+1$ when $t_k < t< t_{k+1}$, and $f''(t) = n+1$ when $t>t_n$. \end{enumerate} Considering all choices of $n$ and $t_0,t_1,\dots,t_n$ such that $t_k \geq t_{k-1}+1$ for $1 \leq k \leq n$, what is the least possible value of $T$ for which $f(t_0+T) = 2023$? | 29 | 58 |
For each positive integer $n$, let $k(n)$ be the number of ones in the binary representation of $2023 \cdot n$. What is the minimum value of $k(n)$? | 3 | 59 |
There are $2022$ users on a social network called Mathbook, and some of them are Mathbook-friends. (On Mathbook, friendship is always mutual and permanent.)
Starting now, Mathbook will only allow a new friendship to be formed between two users if they have [i]at least two[/i] friends in common. What is the minimum number of friendships that must already exist so that every user could eventually become friends with every other user? | 31 | 62 |
A sequence of real numbers $a_0, a_1, . . .$ is said to be good if the following three conditions hold.
(i) The value of $a_0$ is a positive integer.
(ii) For each non-negative integer $i$ we have $a_{i+1} = 2a_i + 1 $ or $a_{i+1} =\frac{a_i}{a_i + 2} $
(iii) There exists a positive integer $k$ such that $a_k = 2014$.
Find the smallest positive integer $n$ such that there exists a good sequence $a_0, a_1, . . .$ of real numbers with the property that $a_n = 2014$. | 60 | 66 |
We colour all the sides and diagonals of a regular polygon $P$ with $43$ vertices either
red or blue in such a way that every vertex is an endpoint of $20$ red segments and $22$ blue segments.
A triangle formed by vertices of $P$ is called monochromatic if all of its sides have the same colour.
Suppose that there are $2022$ blue monochromatic triangles. How many red monochromatic triangles
are there? | 859 | 67 |
Alice drew a regular $2021$-gon in the plane. Bob then labeled each vertex of the $2021$-gon with a real number, in such a way that the labels of consecutive vertices differ by at most $1$. Then, for every pair of non-consecutive vertices whose labels differ by at most $1$, Alice drew a diagonal connecting them. Let $d$ be the number of diagonals Alice drew. Find the least possible value that $d$ can obtain. | 18 | 70 |
Ten distinct positive real numbers are given and the sum of each pair is written (So 45 sums). Between these sums there are 5 equal numbers. If we calculate product of each pair, find the biggest number $k$ such that there may be $k$ equal numbers between them. | 4 | 71 |
An economist and a statistician play a game on a calculator which does only one
operation. The calculator displays only positive integers and it is used in the following
way: Denote by $n$ an integer that is shown on the calculator. A person types an integer,
$m$, chosen from the set $\{ 1, 2, . . . , 99 \}$ of the first $99$ positive integers, and if $m\%$ of the
number $n$ is again a positive integer, then the calculator displays $m\%$ of $n$. Otherwise,
the calculator shows an error message and this operation is not allowed. The game consists of doing alternatively these operations and the player that cannot do the operation
looses. How many numbers from $\{1, 2, . . . , 2019\}$ guarantee the winning strategy for the
statistician, who plays second?
For example, if the calculator displays $1200$, the economist can type $50$, giving the number
$600$ on the calculator, then the statistician can type $25$ giving the number $150$. Now, for
instance, the economist cannot type $75$ as $75\%$ of $150$ is not a positive integer, but can
choose $40$ and the game continues until one of them cannot type an allowed number | 951 | 72 |
The cells of a $8 \times 8$ table are initially white. Alice and Bob play a game. First Alice paints $n$ of the fields in red. Then Bob chooses $4$ rows and $4$ columns from the table and paints all fields in them in black. Alice wins if there is at least one red field left. Find the least value of $n$ such that Alice can win the game no matter how Bob plays. | 13 | 75 |
Turbo the snail plays a game on a board with $2024$ rows and $2023$ columns. There are hidden monsters in $2022$ of the cells. Initially, Turbo does not know where any of the monsters are, but he knows that there is exactly one monster in each row except the first row and the last row, and that each column contains at most one monster.
Turbo makes a series of attempts to go from the first row to the last row. On each attempt, he chooses to start on any cell in the first row, then repeatedly moves to an adjacent cell sharing a common side. (He is allowed to return to a previously visited cell.) If he reaches a cell with a monster, his attempt ends and he is transported back to the first row to start a new attempt. The monsters do not move, and Turbo remembers whether or not each cell he has visited contains a monster. If he reaches any cell in the last row, his attempt ends and the game is over.
Determine the minimum value of $n$ for which Turbo has a strategy that guarantees reaching the last row on the $n$-th attempt or earlier, regardless of the locations of the monsters.
[i] | 3 | 76 |
Find the smallest number $n$ such that there exist polynomials $f_1, f_2, \ldots , f_n$ with rational coefficients satisfying \[x^2+7 = f_1\left(x\right)^2 + f_2\left(x\right)^2 + \ldots + f_n\left(x\right)^2.\]
[i] | 5 | 84 |
Lucy starts by writing $s$ integer-valued $2022$-tuples on a blackboard. After doing that, she can take any two (not necessarily distinct) tuples $\mathbf{v}=(v_1,\ldots,v_{2022})$ and $\mathbf{w}=(w_1,\ldots,w_{2022})$ that she has already written, and apply one of the following operations to obtain a new tuple:
\begin{align*}
\mathbf{v}+\mathbf{w}&=(v_1+w_1,\ldots,v_{2022}+w_{2022}) \\
\mathbf{v} \lor \mathbf{w}&=(\max(v_1,w_1),\ldots,\max(v_{2022},w_{2022}))
\end{align*}
and then write this tuple on the blackboard.
It turns out that, in this way, Lucy can write any integer-valued $2022$-tuple on the blackboard after finitely many steps. What is the smallest possible number $s$ of tuples that she initially wrote? | 3 | 86 |
A $\pm 1$-[i]sequence[/i] is a sequence of $2022$ numbers $a_1, \ldots, a_{2022},$ each equal to either $+1$ or $-1$. Determine the largest $C$ so that, for any $\pm 1$-sequence, there exists an integer $k$ and indices $1 \le t_1 < \ldots < t_k \le 2022$ so that $t_{i+1} - t_i \le 2$ for all $i$, and $$\left| \sum_{i = 1}^{k} a_{t_i} \right| \ge C.$$ | 506 | 87 |
We are given an infinite deck of cards, each with a real number on it. For every real number $x$, there is exactly one card in the deck that has $x$ written on it. Now two players draw disjoint sets $A$ and $B$ of $100$ cards each from this deck. We would like to define a rule that declares one of them a winner. This rule should satisfy the following conditions:
1. The winner only depends on the relative order of the $200$ cards: if the cards are laid down in increasing order face down and we are told which card belongs to which player, but not what numbers are written on them, we can still decide the winner.
2. If we write the elements of both sets in increasing order as $A =\{ a_1 , a_2 , \ldots, a_{100} \}$ and $B= \{ b_1 , b_2 , \ldots , b_{100} \}$, and $a_i > b_i$ for all $i$, then $A$ beats $B$.
3. If three players draw three disjoint sets $A, B, C$ from the deck, $A$ beats $B$ and $B$ beats $C$ then $A$ also beats $C$.
How many ways are there to define such a rule? Here, we consider two rules as different if there exist two sets $A$ and $B$ such that $A$ beats $B$ according to one rule, but $B$ beats $A$ according to the other.
[i] | 100 | 88 |
Players $A$ and $B$ play a game on a blackboard that initially contains 2020 copies of the number 1 . In every round, player $A$ erases two numbers $x$ and $y$ from the blackboard, and then player $B$ writes one of the numbers $x+y$ and $|x-y|$ on the blackboard. The game terminates as soon as, at the end of some round, one of the following holds:
[list]
[*] $(1)$ one of the numbers on the blackboard is larger than the sum of all other numbers;
[*] $(2)$ there are only zeros on the blackboard.
[/list]
Player $B$ must then give as many cookies to player $A$ as there are numbers on the blackboard. Player $A$ wants to get as many cookies as possible, whereas player $B$ wants to give as few as possible. Determine the number of cookies that $A$ receives if both players play optimally. | 7 | 89 |
Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of
$$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$
[i]Israel[/i] | 8 | 90 |
For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions. | 24 | 94 |
Among a group of 120 people, some pairs are friends. A [i]weak quartet[/i] is a set of four people containing exactly one pair of friends. What is the maximum possible number of weak quartets ? | 280 | 99 |
In each square of a garden shaped like a $2022 \times 2022$ board, there is initially a tree of height $0$. A gardener and a lumberjack alternate turns playing the following game, with the gardener taking the first turn:
[list]
[*] The gardener chooses a square in the garden. Each tree on that square and all the surrounding squares (of which there are at most eight) then becomes one unit taller.
[*] The lumberjack then chooses four different squares on the board. Each tree of positive height on those squares then becomes one unit shorter.
[/list]
We say that a tree is [i]majestic[/i] if its height is at least $10^6$. Determine the largest $K$ such that the gardener can ensure there are eventually $K$ majestic trees on the board, no matter how the lumberjack plays. | 380 | 100 |
Determine the least possible value of $f(1998),$ where $f:\Bbb{N}\to \Bbb{N}$ is a function such that for all $m,n\in {\Bbb N}$,
\[f\left( n^{2}f(m)\right) =m\left( f(n)\right) ^{2}. \] | 120 | 101 |
Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$
[i] | 3 | 103 |
There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game.
In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps:
(a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$.
(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group.
Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning.
[i]Czech Republic[/i] | 960 | 108 |
Find the least positive integer $n$ for which there exists a set $\{s_1, s_2, \ldots , s_n\}$ consisting of $n$ distinct positive integers such that
\[ \left( 1 - \frac{1}{s_1} \right) \left( 1 - \frac{1}{s_2} \right) \cdots \left( 1 - \frac{1}{s_n} \right) = \frac{51}{2010}.\]
[i] | 39 | 110 |
Find the largest possible integer $k$, such that the following statement is true:
Let $2009$ arbitrary non-degenerated triangles be given. In every triangle the three sides are coloured, such that one is blue, one is red and one is white. Now, for every colour separately, let us sort the lengths of the sides. We obtain
\[ \left. \begin{array}{rcl}
& b_1 \leq b_2\leq\ldots\leq b_{2009} & \textrm{the lengths of the blue sides }\\
& r_1 \leq r_2\leq\ldots\leq r_{2009} & \textrm{the lengths of the red sides }\\
\textrm{and } & w_1 \leq w_2\leq\ldots\leq w_{2009} & \textrm{the lengths of the white sides }\\
\end{array}\right.\]
Then there exist $k$ indices $j$ such that we can form a non-degenerated triangle with side lengths $b_j$, $r_j$, $w_j$.
[i] | 1 | 112 |
2500 chess kings have to be placed on a $100 \times 100$ chessboard so that
[b](i)[/b] no king can capture any other one (i.e. no two kings are placed in two squares sharing a common vertex);
[b](ii)[/b] each row and each column contains exactly 25 kings.
Find the number of such arrangements. (Two arrangements differing by rotation or symmetry are supposed to be different.)
[i] | 2 | 113 |
Ten gangsters are standing on a flat surface, and the distances between them are all distinct. At twelve o’clock, when the church bells start chiming, each of them fatally shoots the one among the other nine gangsters who is the nearest. At least how many gangsters will be killed? | 7 | 114 |
Call a rational number [i]short[/i] if it has finitely many digits in its decimal expansion. For a positive integer $m$, we say that a positive integer $t$ is $m-$[i]tastic[/i] if there exists a number $c\in \{1,2,3,\ldots ,2017\}$ such that $\dfrac{10^t-1}{c\cdot m}$ is short, and such that $\dfrac{10^k-1}{c\cdot m}$ is not short for any $1\le k<t$. Let $S(m)$ be the set of $m-$tastic numbers. Consider $S(m)$ for $m=1,2,\ldots{}.$ What is the maximum number of elements in $S(m)$? | 807 | 115 |
In the plane we consider rectangles whose sides are parallel to the coordinate axes and have positive length. Such a rectangle will be called a [i]box[/i]. Two boxes [i]intersect[/i] if they have a common point in their interior or on their boundary. Find the largest $ n$ for which there exist $ n$ boxes $ B_1$, $ \ldots$, $ B_n$ such that $ B_i$ and $ B_j$ intersect if and only if $ i\not\equiv j\pm 1\pmod n$.
[i] | 6 | 119 |
In Vila Par, all the truth coins weigh an even quantity of grams and the false coins weigh an odd quantity of grams. The eletronic device only gives the parity of the weight of a set of coins. If there are $2020$ truth coins and $2$ false coins, determine the least $k$, such that, there exists a strategy that allows to identify the two false coins using the eletronic device, at most, $k$ times. | 21 | 120 |
README.md exists but content is empty.
- Downloads last month
- 25