File size: 12,781 Bytes
4f32d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c8432e
4f32d2f
 
 
7c8432e
4f32d2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c8432e
4f32d2f
 
 
 
 
 
4e86f55
4f32d2f
 
 
 
 
4e86f55
 
4f32d2f
 
 
 
4e86f55
 
4f32d2f
 
 
4e86f55
 
4f32d2f
 
4e86f55
 
 
 
 
 
 
 
 
4f32d2f
 
4e86f55
 
4f32d2f
 
 
 
4e86f55
 
4f32d2f
 
 
 
 
 
 
 
 
 
 
4e86f55
 
892cef6
 
 
 
 
 
 
 
 
 
 
4e86f55
 
4f32d2f
 
 
 
 
4e86f55
4f32d2f
 
4e86f55
 
4f32d2f
 
4e86f55
 
4f32d2f
 
4e86f55
4f32d2f
 
 
 
4e86f55
4f32d2f
 
4e86f55
4f32d2f
 
 
 
4e86f55
4f32d2f
 
 
 
4e86f55
 
4f32d2f
 
 
 
 
 
 
 
 
4e86f55
 
 
 
e7ecc21
 
84e07e2
e7ecc21
4f32d2f
 
4e86f55
 
 
138e069
4e86f55
 
 
 
 
 
 
 
 
 
 
138e069
4e86f55
be6cd97
 
 
 
 
 
 
 
138e069
be6cd97
 
4e86f55
be6cd97
 
4e86f55
be6cd97
4e86f55
be6cd97
 
4e86f55
 
 
 
 
 
 
 
 
 
 
 
 
 
138e069
 
4e86f55
 
87abb6c
4e86f55
87abb6c
 
be6cd97
4f32d2f
4e86f55
be6cd97
4f32d2f
4e86f55
 
 
 
 
 
4f32d2f
 
 
 
 
 
 
 
 
 
 
 
 
4e86f55
4f32d2f
 
 
 
 
 
 
 
 
4e86f55
4f32d2f
 
 
 
 
 
 
 
 
 
 
a9564e7
 
 
 
 
 
 
 
4f32d2f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
dataset_info:
- config_name: BindingDB_filtered
  features:
  - name: Index 
    dtype: string
  - name: Drug_ID
    dtype: string
  - name: Drug
    dtype: string
  - name: Target_ID
    dtype: string
  - name: Target
    dtype: string
  - name: Y
    dtype: float32
  splits:
  - name: train
    num_examples: 24700
- config_name: LeakyPDB
  features:
  - name: Index 
    dtype: string
  - name: header
    dtype: string
  - name: Drug
    dtype: string
  - name: category
    dtype: string
  - name: Target
    dtype: string
  - name: resolution
    dtype: float32
  - name: date
    dtype: string
  - name: type
    dtype: string
  - name: new_split
    dtype: string
  - name: CL1
    dtype: bool
  - name: CL2
    dtype: bool
  - name: CL3
    dtype: bool
  - name: remove_for_balancing_val
    dtype: bool
  - name: kd/ki
    dtype: string
  - name: Y
    dtype: float32
  - name: covalent
    dtype: bool
  splits:
  - name: train
    num_examples: 19443
- config_name: Mpro
  features:
  - name: Index 
    dtype: string
  - name: Drug
    dtype: string
  - name: Y
    dtype: float32
  - name: Target
    dtype: string
  splits:
  - name: train
    num_examples: 2062
- config_name: USP7
  features:
  - name: Index 
    dtype: string
  - name: Y
    dtype: float32
  - name: Drug
    dtype: string
  - name: Target
    dtype: string
  splits:
  - name: train
    num_examples: 1799
- config_name: MCL1
  features:
  - name: Index 
    dtype: string
  - name: Y
    dtype: float32
  - name: Drug
    dtype: string
  - name: Target
    dtype: string
  splits:
  - name: train
    num_examples: 25
- config_name: HIF2A
  features:
  - name: Index 
    dtype: string
  - name: Y
    dtype: float32
  - name: Drug
    dtype: string
  - name: Target
    dtype: string
  splits:
  - name: train
    num_examples: 37
- config_name: SYK
  features:
  - name: Index 
    dtype: string
  - name: Y
    dtype: float32
  - name: Drug
    dtype: string
  - name: Target
    dtype: string
  splits:
  - name: train
    num_examples: 44

configs:
- config_name: BindingDB_filtered
  data_files:
  - split: train
    path: BindingDB_filtered/train/data-*
- config_name: LeakyPDB
  data_files:
  - split: train
    path: LeakyPDB/train/data-*
- config_name: Mpro
  data_files:
  - split: train
    path: Mpro/train/data-*
- config_name: USP7
  data_files:
  - split: train
    path: USP7/train/data-*
- config_name: MCL1
  data_files:
  - split: train
    path: MCL1/train/data-*
- config_name: HIF2A
  data_files:
  - split: train
    path: HIF2A/train/data-*
- config_name: SYK
  data_files:
  - split: train
    path: SYK/train/data-*

license: cc-by-4.0
pretty_name: BALM-Benchmark
tags:
  - chemistry
  - deep learning
  - protein-ligand binding affinity
  - biology
size_categories:
  - 10K<n<100K
---

# Dataset Card for BALM-Benchmark

<!-- Provide a quick summary of the dataset. -->

**BALM-Benchmark** is a curated collection of datasets designed to advance machine learning and deep learning model research for protein-ligand binding affinity prediction. This benchmark consolidates several key datasets including BindingDB, LP-PDBBind, and specific protein-ligand systems like USP7, MPro, SYK, HIF2A, and MCL1, each chosen for its distinct data characteristics and evaluation. 

This dataset collection has been refined and standardized, making it readily accessible for deep learning model training and testing on [Hugging Face](https://huggingface.co/datasets/BALM/BALM-benchmark), providing a structured foundation for advancements in target-based drug discovery.

- **Dataset Repository:** https://huggingface.co/datasets/BALM/BALM-benchmark
- **Code Repository:** https://github.com/meyresearch/BALM
- **Paper:** https://www.biorxiv.org/content/10.1101/2024.11.01.621495v1
- **License:** CC-BY-4.0

## Dataset Details
To benchmark our models, we utilized several publicaly available datasets, encompassing diverse protein-ligand interactions and binding affinity values. Key datasets include BindingDB (1D data with protein sequnces and SMILES), LP-PDBBind (containing 3D complexes), and other target-specific datasets such as USP7, MPro, and three targets from the protein-ligand free energy benchmark (SYK, HIF2A, and MCL1). These datasets capture a wide range of binding affinity measurements, allowing us to evaluate and compare model performance against traditional docking and free energy methods. All datasets have been meticulously cleaned and are available on Hugging Face as `BALM-Benchmark`.

### BindingDB
BindingDB provides experimental binding affinity data (Kd values) for protein-ligand interactions. We focused on K_d values due to inconsistencies in other affinity types. After filtering for computational efficiency and data consistency, the dataset comprises around 25,000 interactions with ~1,070 unique targets and 9,200 ligands. We implemented four data splits (Random, Cold Target, Cold Drug, and Scaffold) to evaluate generalizability on test set  with splits based on unseen proteins, ligands and ligand scaffolds, guided by the Murcko scaffold approach.

### LP-PDBBind
Derived from PDBBind v2020, LP-PDBBind is a curated collection of ~20,000 protein-ligand structures with experimental binding data. This dataset was reorganized to reduce similarity across splits and cleaned to remove covalently bound ligands and rare atomic elements. To ensure model reliability, we used Clean Level 1 (CL1) for training and the higher-quality CL2 data for validation and testing as recomended [here](https://pubmed.ncbi.nlm.nih.gov/37645037/). Here we provide 1D data, for 3D complexes please download from [here](https://github.com/THGLab/LP-PDBBind/).

### USP7
The USP7 dataset, developed by [Shen et al.](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00675-8), contains binding data for USP7 inhibitors from ChEMBL. After processing to remove assay limits, it includes 1,799 ligands with experimentally measured affinities, provided as IC50 values and converted to pIC50 for consistency.

### MPro
Collected as part of the [COVID Moonshot project](https://www.science.org/doi/10.1126/science.abo7201), the MPro dataset focuses on inhibitors targeting the SARS-CoV-2 main protease. The final cleaned dataset includes 2,062 ligands with IC50 values, converted to pIC50 for stability in training.

### Protein-Ligand Free Energy Benchmark
Selected from the protein-ligand free energy benchmark by [Hahn et al.](https://livecomsjournal.org/index.php/livecoms/article/view/v4i1e1497) with 21 target systems, we selected three targets to evaluate the deep learning model: MCL1, HIF2A, and SYK. These targets offer diverse interactions, allowing for robust comparison with alchemical free energy methods. The datasets contain 37, 25, and 43 ligands, respectively, for benchmarking model predictions against established free energy methods.

### Dataset Columns

- **BindingDB_filtered**:
    - **Index** (`string`): Index of the ligand-target pair.
    - **Drug_ID** (`string`): Index of the ligand from the TDC.
    - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
    - **Target_ID** (`string`): Index of the target protein from the TDC.
    - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
    - **Y** (`float32`): binding affinity value in pKd.
- **Mpro**:
    - **Index** (`string`): Index of the ligand-target pair. 
    - **Y** (`float32`): binding affinity value in pIC50.
    - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
    - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
- **USP7**:
    - **Index** (`string`): Index of the ligand-target pair. 
    - **Y** (`float32`): binding affinity value in pIC50.
    - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
    - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
- **LeakyPDB**:
    - **Index** (`string`): Identifier for each ligand-target pair in the dataset.
    - **pdb_id** (`string`): Unique identifier for the protein structure in the Protein Data Bank (PDB).
    - **Drug** (`string`): SMILES string representing the ligand's chemical structure.
    - **category** (`string`): Classification category for the ligand-protein complex.
    - **Target** (`string`): Protein sequence, represented as a sequence of amino acids.
    - **resolution** (`float32`): Structural resolution of the protein-ligand complex, typically measured in angstroms.
    - **date** (`string`): Date of structural determination or deposition in the PDB.
    - **type** (`string`): Type or family classification of the protein.
    - **new_split** (`string`): Specifies the split category for the LP-PDBBind dataset.
    - **CL1** (`bool`): Boolean indicating whether the complex belongs to Clean Level 1 (CL1) in the LP-PDBBind dataset.
    - **CL2** (`bool`): Boolean indicating whether the complex belongs to Clean Level 2 (CL2) in the LP-PDBBind dataset.
    - **CL3** (`bool`): Boolean indicating whether the complex belongs to Clean Level 3 (CL3) in the LP-PDBBind dataset.
    - **remove_for_balancing_val** (`bool`): Boolean indicating if the entry is excluded for balancing in validation sets.
    - **kd/ki** (`string`): Original binding affinity measurement (Kd or Ki) with units (uM or nM).
    - **Y** (`float32`): Binding affinity value provided in log scale (pKd).
    - **covalent** (`bool`): Boolean indicating if the ligand is covalently bound to the protein.
- **HIF2A, MCL1, and SYK**:
    - **Index** (`string`): Index of the ligand-target pair. 
    - **Y** (`float32`): binding affinity value in pKi (for MCL1) and pIC50 (for HIF2A, and SYK).
    - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
    - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).



### Dataset Sources

- **BindingDB_filtered**: Derived from [Therapeutics Data Commons (TDC)](https://tdcommons.ai/), with additional filtering and cleaning to enhance consistency and computational efficiency.
- **LeakyPDB**: Collected from the [LP-PDBBind repository](https://github.com/THGLab/LP-PDBBind/) and described in [this publication](https://pubmed.ncbi.nlm.nih.gov/37645037/).
- **HIF2A, MCL1, and SYK**: Sourced from the protein-ligand benchmark dataset available on [GitHub](https://github.com/openforcefield/protein-ligand-benchmark) and detailed in the [LiveCoMS journal](https://livecomsjournal.org/index.php/livecoms/article/view/v4i1e1497).
- **Mpro**: Data for SARS-CoV-2 main protease (Mpro) inhibitors sourced from [Science](https://www.science.org/doi/10.1126/science.abo7201).
- **USP7**: Collected from ChEMBL and curated as described in this [Journal of Cheminformatics article](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00675-8).


## Uses

BALM-Benchmark was initially created as a part of the BALM project (https://github.com/meyresearch/BALM) which fine-tunes Protein and Ligand Language Models by optimizing the distance between protein and ligand embeddings in a shared space using the cosine similarity metric that directly represents experimental binding affinity.
Nevertheless, BALM-Benchmark can be used by itself, just like any other HuggingFace dataset:

```python
from datasets import load_dataset

# For instance, you want to load SYK data. Change the second argument into SYK
syk_data = load_dataset("BALM/BALM-benchmark", "SYK", split="train")
```

<!-- As mentioned in the [Dataset Sources](#dataset-sources), the available datasets are:

- `BindingDB_filtered`
- `CATS`
- `HIF2A`
- `HSP90`
- `LeakyPDB`
- `MCL1`
- `Mpro`
- `SYK`
- `USP7` -->

Notice that all datasets only have one split (`train`). This is intentional such that the users can define their own splits, and can experiment with more random seeds for robustness.
We highly recommend checking out different strategies for splitting the data (e.g., BindingDB) in [our BALM code repository](https://github.com/meyresearch/BALM/blob/refactor/balm/datasets/bindingdb_filtered.py#L157-L169).

## Citation

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

```
@article{Gorantla2024,
  author = {Gorantla, Rohan and Gema, Aryo Pradipta and Yang, Ian Xi and Serrano-Morr{\'a}s, {\'A}lvaro and Suutari, Benjamin and Jim{\'e}nez, Jordi Ju{\'a}rez and Mey, Antonia S. J. S.},
  title = {Learning Binding Affinities via Fine-tuning of Protein and Ligand Language Models},
  year = {2024},
  doi = {10.1101/2024.11.01.621495},
  publisher = {Cold Spring Harbor Laboratory},
  journal = {bioRxiv}
}
```

## Dataset Card Contact

- Rohan Gorantla ([email protected])
- Aryo Pradipta Gema ([email protected])
- Antonia Mey ([email protected])