rgorantla04 commited on
Commit
4e86f55
·
verified ·
1 Parent(s): a7caa63

Updated with the benchmark details

Browse files
Files changed (1) hide show
  1. README.md +88 -126
README.md CHANGED
@@ -17,47 +17,6 @@ dataset_info:
17
  splits:
18
  - name: train
19
  num_examples: 24700
20
- - config_name: CATS
21
- features:
22
- - name: Index
23
- dtype: string
24
- - name: Drug
25
- dtype: string
26
- - name: Target
27
- dtype: string
28
- - name: Y
29
- dtype: float32
30
- splits:
31
- - name: train
32
- num_examples: 393
33
- - config_name: HIF2A
34
- features:
35
- - name: Index
36
- dtype: string
37
- - name: Y
38
- dtype: float32
39
- - name: Drug
40
- dtype: string
41
- - name: Target
42
- dtype: string
43
- splits:
44
- - name: train
45
- num_examples: 37
46
- - config_name: HSP90
47
- features:
48
- - name: Index
49
- dtype: string
50
- - name: Drug
51
- dtype: string
52
- - name: IC50 (nM)
53
- dtype: float32
54
- - name: Target
55
- dtype: string
56
- - name: Y
57
- dtype: float32
58
- splits:
59
- - name: train
60
- num_examples: 147
61
  - config_name: LeakyPDB
62
  features:
63
  - name: Index
@@ -95,33 +54,46 @@ dataset_info:
95
  splits:
96
  - name: train
97
  num_examples: 19443
98
- - config_name: MCL1
99
  features:
100
  - name: Index
101
  dtype: string
102
- - name: Y
103
- dtype: float32
104
  - name: Drug
105
  dtype: string
 
 
106
  - name: Target
107
  dtype: string
108
  splits:
109
  - name: train
110
- num_examples: 25
111
- - config_name: Mpro
112
  features:
113
  - name: Index
114
  dtype: string
 
 
115
  - name: Drug
116
  dtype: string
 
 
 
 
 
 
 
 
 
117
  - name: Y
118
  dtype: float32
 
 
119
  - name: Target
120
  dtype: string
121
  splits:
122
  - name: train
123
- num_examples: 2062
124
- - config_name: SYK
125
  features:
126
  - name: Index
127
  dtype: string
@@ -133,8 +105,8 @@ dataset_info:
133
  dtype: string
134
  splits:
135
  - name: train
136
- num_examples: 44
137
- - config_name: USP7
138
  features:
139
  - name: Index
140
  dtype: string
@@ -146,48 +118,44 @@ dataset_info:
146
  dtype: string
147
  splits:
148
  - name: train
149
- num_examples: 1799
 
150
  configs:
151
  - config_name: BindingDB_filtered
152
  data_files:
153
  - split: train
154
  path: BindingDB_filtered/train/data-*
155
- - config_name: CATS
156
- data_files:
157
- - split: train
158
- path: CATS/train/data-*
159
- - config_name: HIF2A
160
  data_files:
161
  - split: train
162
- path: HIF2A/train/data-*
163
- - config_name: HSP90
164
  data_files:
165
  - split: train
166
- path: HSP90/train/data-*
167
- - config_name: LeakyPDB
168
  data_files:
169
  - split: train
170
- path: LeakyPDB/train/data-*
171
  - config_name: MCL1
172
  data_files:
173
  - split: train
174
  path: MCL1/train/data-*
175
- - config_name: Mpro
176
  data_files:
177
  - split: train
178
- path: Mpro/train/data-*
179
  - config_name: SYK
180
  data_files:
181
  - split: train
182
  path: SYK/train/data-*
183
- - config_name: USP7
184
- data_files:
185
- - split: train
186
- path: USP7/train/data-*
187
  license: cc-by-4.0
188
  pretty_name: BALM-Benchmark
189
  tags:
190
  - chemistry
 
 
191
  - biology
192
  size_categories:
193
  - 10K<n<100K
@@ -197,14 +165,31 @@ size_categories:
197
 
198
  <!-- Provide a quick summary of the dataset. -->
199
 
200
- BALM-Benchmark is a comprehensive benchmark suite that combines multiple seminal binding affinity prediction datasets in one place.
201
- ...
 
 
202
 
203
  ## Dataset Details
204
 
205
- ### Dataset Description
206
 
207
- <!-- Provide a longer summary of what this dataset is. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
  - **Dataset Repository:** https://huggingface.co/datasets/BALM/BALM-benchmark
210
  - **Code Repository:** https://github.com/meyresearch/BALM
@@ -220,73 +205,50 @@ BALM-Benchmark is a comprehensive benchmark suite that combines multiple seminal
220
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
221
  - **Target_ID** (`string`): Index of the target protein from the TDC.
222
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
223
- - **Y** (`float32`): binding affinity value in pKd.
224
- - **CATS**:
225
- - **Index** (`string`): Index of the ligand-target pair.
226
- - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
227
- - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
228
- - **Y** (`float32`): binding affinity value in pKd.
229
- - **HIF2A**:
230
- - **Index** (`string`): Index of the ligand-target pair.
231
- - **Y** (`float32`): binding affinity value in pKd.
232
- - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
233
- - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
234
- - **HSP90**:
235
- - **Index** (`string`): Index of the ligand-target pair.
236
- - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
237
- - **IC50 (nM)** (`float32`): binding affinity value in IC50.
238
- - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
239
- - **Y** (`float32`): binding affinity value in pKd.
240
- - **LeakyPDB**:
241
- - **Index** (`string`): Index of the ligand-target pair.
242
- - **header** (`string`): TBA
243
- - **smiles** (`string`): TBA
244
- - **category** (`string`): TBA
245
- - **seq** (`string`): TBA
246
- - **resolution** (`float32`): TBA
247
- - **date** (`string`): TBA
248
- - **type** (`string`): TBA
249
- - **new_split** (`string`): TBA
250
- - **CL1** (`bool`): TBA
251
- - **CL2** (`bool`): TBA
252
- - **CL3** (`bool`): TBA
253
- - **remove_for_balancing_val** (`bool`): TBA
254
- - **kd/ki** (`string`): TBA
255
- - **value** (`float32`): TBA
256
- - **covalent** (`bool`): TBA
257
- - **MCL1**:
258
- - **Index** (`string`): Index of the ligand-target pair.
259
- - **Y** (`float32`): binding affinity value in pKd.
260
- - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
261
- - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
262
  - **Mpro**:
263
  - **Index** (`string`): Index of the ligand-target pair.
264
- - **Y** (`float32`): binding affinity value in pKd.
265
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
266
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
267
- - **SYK**:
268
  - **Index** (`string`): Index of the ligand-target pair.
269
- - **Y** (`float32`): binding affinity value in pKd.
270
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
271
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
272
- - **USP7**:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273
  - **Index** (`string`): Index of the ligand-target pair.
274
- - **Y** (`float32`): binding affinity value in pKd.
275
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
276
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
277
 
278
 
 
279
  ### Dataset Sources
280
 
281
- - **BindingDB_filtered**:
282
- - **CATS**:
283
- - **HIF2A**:
284
- - **HSP90**:
285
- - **LeakyPDB**:
286
- - **MCL1**:
287
- - **Mpro**:
288
- - **SYK**:
289
- - **USP7**:
290
 
291
  ## Uses
292
 
@@ -300,7 +262,7 @@ from datasets import load_dataset
300
  syk_data = load_dataset("BALM/BALM-benchmark", "SYK", split="train")
301
  ```
302
 
303
- As mentioned in the [Dataset Sources](#dataset-sources), the available datasets are:
304
 
305
  - `BindingDB_filtered`
306
  - `CATS`
@@ -310,7 +272,7 @@ As mentioned in the [Dataset Sources](#dataset-sources), the available datasets
310
  - `MCL1`
311
  - `Mpro`
312
  - `SYK`
313
- - `USP7`
314
 
315
  Notice that all datasets only have one split (`train`). This is intentional such that the users can define their own splits, and can experiment with more random seeds for robustness.
316
  We highly recommend checking out different strategies for splitting the data (e.g., BindingDB) in [our BALM code repository](https://github.com/meyresearch/BALM/blob/refactor/balm/datasets/bindingdb_filtered.py#L157-L169).
 
17
  splits:
18
  - name: train
19
  num_examples: 24700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  - config_name: LeakyPDB
21
  features:
22
  - name: Index
 
54
  splits:
55
  - name: train
56
  num_examples: 19443
57
+ - config_name: Mpro
58
  features:
59
  - name: Index
60
  dtype: string
 
 
61
  - name: Drug
62
  dtype: string
63
+ - name: Y
64
+ dtype: float32
65
  - name: Target
66
  dtype: string
67
  splits:
68
  - name: train
69
+ num_examples: 2062
70
+ - config_name: USP7
71
  features:
72
  - name: Index
73
  dtype: string
74
+ - name: Y
75
+ dtype: float32
76
  - name: Drug
77
  dtype: string
78
+ - name: Target
79
+ dtype: string
80
+ splits:
81
+ - name: train
82
+ num_examples: 1799
83
+ - config_name: MCL1
84
+ features:
85
+ - name: Index
86
+ dtype: string
87
  - name: Y
88
  dtype: float32
89
+ - name: Drug
90
+ dtype: string
91
  - name: Target
92
  dtype: string
93
  splits:
94
  - name: train
95
+ num_examples: 25
96
+ - config_name: HIF2A
97
  features:
98
  - name: Index
99
  dtype: string
 
105
  dtype: string
106
  splits:
107
  - name: train
108
+ num_examples: 37
109
+ - config_name: SYK
110
  features:
111
  - name: Index
112
  dtype: string
 
118
  dtype: string
119
  splits:
120
  - name: train
121
+ num_examples: 44
122
+
123
  configs:
124
  - config_name: BindingDB_filtered
125
  data_files:
126
  - split: train
127
  path: BindingDB_filtered/train/data-*
128
+ - config_name: LeakyPDB
 
 
 
 
129
  data_files:
130
  - split: train
131
+ path: LeakyPDB/train/data-*
132
+ - config_name: Mpro
133
  data_files:
134
  - split: train
135
+ path: Mpro/train/data-*
136
+ - config_name: USP7
137
  data_files:
138
  - split: train
139
+ path: USP7/train/data-*
140
  - config_name: MCL1
141
  data_files:
142
  - split: train
143
  path: MCL1/train/data-*
144
+ - config_name: HIF2A
145
  data_files:
146
  - split: train
147
+ path: HIF2A/train/data-*
148
  - config_name: SYK
149
  data_files:
150
  - split: train
151
  path: SYK/train/data-*
152
+
 
 
 
153
  license: cc-by-4.0
154
  pretty_name: BALM-Benchmark
155
  tags:
156
  - chemistry
157
+ - deep learning
158
+ - protein-ligand binding affinity
159
  - biology
160
  size_categories:
161
  - 10K<n<100K
 
165
 
166
  <!-- Provide a quick summary of the dataset. -->
167
 
168
+ **BALM-Benchmark** is a curated collection of datasets designed to advance machine learning and deep learning model research for protein-ligand binding affinity prediction. This benchmark consolidates several key datasets including BindingDB, LP-PDBBind, and specific protein-ligand systems like USP7, MPro, SYK, HIF2A, and MCL1, each chosen for its distinct data characteristics and evaluation.
169
+
170
+ This dataset collection has been refined and standardized, making it readily accessible for deep learning model training and testing on [Hugging Face](https://huggingface.co/datasets/BALM/BALM-benchmark), providing a structured foundation for advancements in target-based drug discovery.
171
+
172
 
173
  ## Dataset Details
174
 
 
175
 
176
+ To benchmark our models, we utilized several publicaly available datasets, encompassing diverse protein-ligand interactions and binding affinity values. Key datasets include BindingDB (1D data with protein sequnces and SMILES), LP-PDBBind (containing 3D complexes), and other target-specific datasets such as USP7, MPro, and three targets from the protein-ligand free energy benchmark (SYK, HIF2A, and MCL1). These datasets capture a wide range of binding affinity measurements, allowing us to evaluate and compare model performance against traditional docking and free energy methods. All datasets have been meticulously cleaned and are available on Hugging Face as `BALM-Benchmark`.
177
+
178
+ ### BindingDB
179
+ BindingDB provides experimental binding affinity data (Kd values) for protein-ligand interactions. We focused on $K_d$ values due to inconsistencies in other affinity types. After filtering for computational efficiency and data consistency, the dataset comprises around 25,000 interactions with ~1,070 unique targets and 9,200 ligands. We implemented four data splits (Random, Cold Target, Cold Drug, and Scaffold) to evaluate generalizability, with splits based on ligand or protein novelty and structural dissimilarity, guided by the Murcko scaffold approach.
180
+
181
+ ### LP-PDBBind
182
+ Derived from PDBBind v2020, LP-PDBBind is a curated collection of ~20,000 protein-ligand structures with experimental binding data. This dataset was reorganized to reduce similarity across splits and cleaned to remove covalently bound ligands and rare atomic elements. To ensure model reliability, we used Clean Level 1 (CL1) for training and the higher-quality CL2 data for validation and testing as recomended [here](https://pubmed.ncbi.nlm.nih.gov/37645037/). Here we provide 1D data, for 3D complexes please download from [here](https://github.com/THGLab/LP-PDBBind/).
183
+
184
+ ### USP7
185
+ The USP7 dataset, developed by [Shen et al.](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00675-8), contains binding data for USP7 inhibitors from ChEMBL. After processing to remove assay limits, it includes 1,799 ligands with experimentally measured affinities, provided as IC50 values and converted to pIC50 for consistency.
186
+
187
+ ### MPro
188
+ Collected as part of the [COVID Moonshot project](https://www.science.org/doi/10.1126/science.abo7201), the MPro dataset focuses on inhibitors targeting the SARS-CoV-2 main protease. The final cleaned dataset includes 2,062 ligands with IC50 values, converted to pIC50 for stability in training.
189
+
190
+ ### Protein-Ligand Free Energy Benchmark
191
+ Selected from the protein-ligand free energy benchmark by [Hahn et al.](https://livecomsjournal.org/index.php/livecoms/article/view/v4i1e1497), this dataset includes three targets: MCL1, HIF2A, and SYK. These targets offer diverse interactions, allowing for robust comparison with alchemical free energy methods. The datasets contain 37, 25, and 43 ligands, respectively, for benchmarking model predictions against established free energy methods.
192
+
193
 
194
  - **Dataset Repository:** https://huggingface.co/datasets/BALM/BALM-benchmark
195
  - **Code Repository:** https://github.com/meyresearch/BALM
 
205
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
206
  - **Target_ID** (`string`): Index of the target protein from the TDC.
207
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
208
+ - **Y** (`float32`): binding affinity value in $pK_d$.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209
  - **Mpro**:
210
  - **Index** (`string`): Index of the ligand-target pair.
211
+ - **Y** (`float32`): binding affinity value in pIC50.
212
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
213
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
214
+ - **USP7**:
215
  - **Index** (`string`): Index of the ligand-target pair.
216
+ - **Y** (`float32`): binding affinity value in pIC50.
217
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
218
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
219
+ - **LeakyPDB**:
220
+ - **Index** (`string`): Identifier for each ligand-target pair in the dataset.
221
+ - **pdb_id** (`string`): Unique identifier for the protein structure in the Protein Data Bank (PDB).
222
+ - **Drug** (`string`): SMILES string representing the ligand's chemical structure.
223
+ - **category** (`string`): Classification category for the ligand-protein complex.
224
+ - **Target** (`string`): Protein sequence, represented as a sequence of amino acids.
225
+ - **resolution** (`float32`): Structural resolution of the protein-ligand complex, typically measured in angstroms.
226
+ - **date** (`string`): Date of structural determination or deposition in the PDB.
227
+ - **type** (`string`): Type or family classification of the protein.
228
+ - **new_split** (`string`): Specifies the split category for the LP-PDBBind dataset.
229
+ - **CL1** (`bool`): Boolean indicating whether the complex belongs to Clean Level 1 (CL1) in the LP-PDBBind dataset.
230
+ - **CL2** (`bool`): Boolean indicating whether the complex belongs to Clean Level 2 (CL2) in the LP-PDBBind dataset.
231
+ - **CL3** (`bool`): Boolean indicating whether the complex belongs to Clean Level 3 (CL3) in the LP-PDBBind dataset.
232
+ - **remove_for_balancing_val** (`bool`): Boolean indicating if the entry is excluded for balancing in validation sets.
233
+ - **kd/ki** (`string`): Original binding affinity measurement (Kd or Ki), typically with units.
234
+ - **Y** (`float32`): Binding affinity value provided in log scale ($pK_d$).
235
+ - **covalent** (`bool`): Boolean indicating if the ligand is covalently bound to the protein.
236
+ - **HIF2A, MCL1, and SYK**:
237
  - **Index** (`string`): Index of the ligand-target pair.
238
+ - **Y** (`float32`): binding affinity value in pKi (for MCL1) and pIC50 (for HIF2A, and SYK).
239
  - **Drug** (`string`): Ligand sequence (i.e., SMILES string).
240
  - **Target** (`string`): Protein sequence (i.e., sequence of amino acids).
241
 
242
 
243
+
244
  ### Dataset Sources
245
 
246
+ - **BindingDB_filtered**: Derived from [Therapeutics Data Commons (TDC)](https://tdcommons.ai/), with additional filtering and cleaning to enhance consistency and computational efficiency.
247
+ - **LeakyPDB**: Collected from the [LP-PDBBind repository](https://github.com/THGLab/LP-PDBBind/) and described in [this publication](https://pubmed.ncbi.nlm.nih.gov/37645037/).
248
+ - **HIF2A, MCL1, and SYK**: Sourced from the protein-ligand benchmark dataset available on [GitHub](https://github.com/openforcefield/protein-ligand-benchmark) and detailed in the [LiveCoMS journal](https://livecomsjournal.org/index.php/livecoms/article/view/v4i1e1497).
249
+ - **Mpro**: Data for SARS-CoV-2 main protease (Mpro) inhibitors sourced from [Science](https://www.science.org/doi/10.1126/science.abo7201).
250
+ - **USP7**: Collected from ChEMBL and curated as described in this [Journal of Cheminformatics article](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-022-00675-8).
251
+
 
 
 
252
 
253
  ## Uses
254
 
 
262
  syk_data = load_dataset("BALM/BALM-benchmark", "SYK", split="train")
263
  ```
264
 
265
+ <!-- As mentioned in the [Dataset Sources](#dataset-sources), the available datasets are:
266
 
267
  - `BindingDB_filtered`
268
  - `CATS`
 
272
  - `MCL1`
273
  - `Mpro`
274
  - `SYK`
275
+ - `USP7` -->
276
 
277
  Notice that all datasets only have one split (`train`). This is intentional such that the users can define their own splits, and can experiment with more random seeds for robustness.
278
  We highly recommend checking out different strategies for splitting the data (e.g., BindingDB) in [our BALM code repository](https://github.com/meyresearch/BALM/blob/refactor/balm/datasets/bindingdb_filtered.py#L157-L169).