Datasets:
metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 406785
num_examples: 8954
- name: test
num_bytes: 49545
num_examples: 1076
download_size: 199496
dataset_size: 456330
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 2422
num_examples: 64
download_size: 4037
dataset_size: 2422
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
task_categories:
- text-classification
language:
- en
hwu64
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
hwu64 = Dataset.from_datasets("AutoIntent/hwu64")
Source
This dataset is taken from original work's github repository jianguoz/Few-Shot-Intent-Detection
and formatted with our AutoIntent Library:
# define utils
import requests
from autointent import Dataset
def load_text_from_url(github_file: str):
return requests.get(github_file).text
def convert_hwu64(hwu_utterances, hwu_labels):
intent_names = sorted(set(hwu_labels))
name_to_id = dict(zip(intent_names, range(len(intent_names)), strict=False))
n_classes = len(intent_names)
assert len(hwu_utterances) == len(hwu_labels)
classwise_utterance_records = [[] for _ in range(n_classes)]
intents = [
{
"id": i,
"name": name,
}
for i, name in enumerate(intent_names)
]
for txt, name in zip(hwu_utterances, hwu_labels, strict=False):
intent_id = name_to_id[name]
target_list = classwise_utterance_records[intent_id]
target_list.append({"utterance": txt, "label": intent_id})
utterances = [rec for lst in classwise_utterance_records for rec in lst]
return {"intents": intents, split: utterances}
# load
file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/train/label"
labels = load_text_from_url(file_url).split("\n")[:-1]
file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/train/seq.in"
utterances = load_text_from_url(file_url).split("\n")[:-1]
# convert
hwu64_train = convert_hwu64(utterances, labels, "train")
file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/test/label"
labels = load_text_from_url(file_url).split("\n")[:-1]
file_url = "https://raw.githubusercontent.com/jianguoz/Few-Shot-Intent-Detection/refs/heads/main/Datasets/HWU64/test/seq.in"
utterances = load_text_from_url(file_url).split("\n")[:-1]
# convert
hwu64_test = convert_hwu64(utterances, labels, "test")
hwu64_train["test"] = hwu64_test["test"]
dataset = Dataset.from_dict(hwu64_train)