ArchitRastogi commited on
Commit
c251e77
·
verified ·
1 Parent(s): cf7adea
Files changed (1) hide show
  1. README.md +78 -3
README.md CHANGED
@@ -1,3 +1,78 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Italian-BERT-FineTuning-Embeddings
2
+
3
+ This repository contains a comprehensive dataset designed for fine-tuning BERT-based Italian embedding models. The dataset aims to enhance performance on tasks such as **information retrieval**, **semantic search**, and **embeddings generation**.
4
+
5
+ ---
6
+
7
+ ## Dataset Overview
8
+
9
+ This dataset leverages the **C4 dataset** (Italian subset) and employs advanced techniques like **sliding window segmentation** and **in-document sampling** to create high-quality, diverse examples from large Italian documents.
10
+
11
+ ### Data Format
12
+
13
+ The dataset is stored in `.jsonl` format with the following fields:
14
+ - `query`: A query or sentence fragment.
15
+ - `positive`: A relevant text segment closely associated with the query.
16
+ - `hard_negative`: A challenging non-relevant text segment, similar in context but unrelated to the query.
17
+
18
+ #### Example:
19
+ ```json
20
+ {
21
+ "query": "Stanchi di non riuscire a trovare il partner perfetto?.",
22
+ "positive": "La cosa principale da fare è pubblicare il proprio annuncio e aspettare una risposta.",
23
+ "hard_negative": "Quale rapporto tra investimenti IT e sicurezza?"
24
+ }
25
+ ```
26
+ ---
27
+
28
+ ### Dataset Statistics
29
+
30
+ - **Training Set**: 1.13 million rows (~4.5 GB)
31
+ - **Test Set**: 9.09 million rows (~0.5 GB)
32
+
33
+ ---
34
+
35
+ ### Dataset Construction
36
+
37
+ This dataset was built using the following methodologies:
38
+
39
+ 1. **Sliding Window Segmentation**
40
+ Extracting overlapping text segments to preserve contextual information and maximize coverage of the source material.
41
+
42
+ 2. **In-Document Sampling**
43
+ Sampling relevant (`positive`) and challenging non-relevant (`hard_negative`) examples within the same document to ensure robust and meaningful examples.
44
+
45
+ **Why C4?**
46
+ The C4 dataset was selected due to its vast collection of high-quality Italian text, providing a rich source for creating varied training samples.
47
+
48
+ ---
49
+
50
+ ## Fine-Tuned Model
51
+
52
+ A fine-tuned BERT-based Italian embedding model trained on this dataset is available:
53
+ **[Fine-Tuned Model Repository](<will-be-added>)**
54
+
55
+ ### Model Base:
56
+ - **[dbmdz/bert-base-italian-xxl-uncased](<https://huggingface.co/dbmdz/bert-base-italian-xxl-uncased>)**
57
+
58
+ ---
59
+
60
+ ## Licensing and Usage
61
+
62
+ This dataset is licensed under the **Apache 2.0 License**. If you use this dataset or the fine-tuned model in your research or applications, please provide appropriate credit:
63
+
64
+ > **Archit Rastogi**
65
+ > Email: [[email protected]](mailto:[email protected])
66
+
67
+ ---
68
+
69
+ ## Contact
70
+
71
+ For any questions, feedback, or collaboration inquiries, feel free to reach out:
72
+
73
+ **Archit Rastogi**
74
75
+
76
+ ---
77
+
78
+ Feel free to suggest improvements. Your feedback is highly appreciated!