File size: 7,390 Bytes
bf2104d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b30503
 
 
 
 
2d8cbfe
 
bf2104d
 
 
 
05c8c48
bf2104d
 
 
 
 
 
 
 
 
326c02b
 
 
 
 
 
95da5ea
326c02b
 
 
 
95da5ea
326c02b
 
 
bf2104d
 
05c8c48
bf2104d
 
 
 
 
9b87f22
bf2104d
c217bda
fb57336
68ee986
 
 
 
 
bf2104d
 
3b30503
 
 
 
 
 
 
 
 
 
 
2d8cbfe
3b30503
 
 
 
 
 
 
 
 
 
2d8cbfe
bf2104d
 
3b30503
 
 
 
 
 
 
 
 
bf2104d
 
 
 
05c8c48
bf2104d
 
 
 
 
 
cf4fb4b
9a24dfc
466b3f2
 
 
 
9a24dfc
 
da411b2
9a24dfc
 
52d9bd6
466b3f2
 
695d893
 
32f5c61
 
 
 
 
 
9a24dfc
 
 
 
 
 
 
 
 
58eb4ae
 
 
 
 
32f5c61
9a24dfc
 
 
 
 
 
32f5c61
389b8ce
9a24dfc
466b3f2
bf2104d
 
9a24dfc
bf2104d
5ff66e2
 
aad8398
32f5c61
be5726f
bf2104d
9a24dfc
 
 
 
 
 
bf2104d
 
32f5c61
 
68ee986
389b8ce
66f74a6
 
 
aad8398
 
68ee986
 
 
4ac75fb
 
 
a258b81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import random

import datasets
import pandas as pd

_CITATION = """\
@misc{black2023vader,
      title={VADER: Video Alignment Differencing and Retrieval}, 
      author={Alexander Black and Simon Jenni and Tu Bui and Md. Mehrab Tanjim and Stefano Petrangeli and Ritwik Sinha and Viswanathan Swaminathan and John Collomosse},
      year={2023},
      eprint={2303.13193},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
"""

_DESCRIPTION = """\
ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs.
"""

_HOMEPAGE = "https://github.com/AlexBlck/vader"

_LICENSE = "cc-by-4.0"

_METADATA_URL = "https://huggingface.co/datasets/AlexBlck/ANAKIN/raw/main/metadata.csv"

_FOLDERS = {
    "all": ("full", "trimmed", "edited", "masks"),
    "no-full": ("trimmed", "edited", "masks"),
    "has-masks": ("trimmed", "edited", "masks"),
    "full-masks": ("full", "trimmed", "edited", "masks"),
}


class Anakin(datasets.GeneratorBasedBuilder):
    """ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="all",
            version=VERSION,
            description="Full video, trimmed video, edited video, masks (if exists), and edit description",
        ),
        datasets.BuilderConfig(
            name="no-full",
            version=VERSION,
            description="Trimmed video, edited video, masks (if exists), and edit description",
        ),
        datasets.BuilderConfig(
            name="has-masks",
            version=VERSION,
            description="Only samples that have masks. Without full length video.",
        ),
        datasets.BuilderConfig(
            name="full-masks",
            version=VERSION,
            description="Only samples that have masks. With full length video.",
        ),
    ]

    DEFAULT_CONFIG_NAME = "all"

    def _info(self):
        if self.config.name == "all":
            features = datasets.Features(
                {
                    "full": datasets.Value("string"),
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "start-time": datasets.Value("int32"),
                    "end-time": datasets.Value("int32"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        elif self.config.name == "no-full":
            features = datasets.Features(
                {
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        elif self.config.name == "has-masks":
            features = datasets.Features(
                {
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        elif self.config.name == "full-masks":
            features = datasets.Features(
                {
                    "full": datasets.Value("string"),
                    "trimmed": datasets.Value("string"),
                    "edited": datasets.Value("string"),
                    "masks": datasets.Sequence(datasets.Image()),
                    "task": datasets.Value("string"),
                    "start-time": datasets.Value("int32"),
                    "end-time": datasets.Value("int32"),
                    "manipulation-type": datasets.Value("string"),
                    "editor-id": datasets.Value("string"),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        metadata_dir = dl_manager.download(_METADATA_URL)
        folders = _FOLDERS[self.config.name]

        random.seed(47)
        root_url = "https://huggingface.co/datasets/AlexBlck/ANAKIN/resolve/main/"
        df = pd.read_csv(metadata_dir)
        if "full" in folders:
            df = df[df["full-available"] == True]
        if "-masks" in self.config.name:
            df = df[df["has-masks"] == True]

        ids = df["video-id"].to_list()
        random.shuffle(ids)

        train_end = int(len(ids) * 0.7)
        val_end = int(len(ids) * 0.8)
        split_ids = {
            datasets.Split.TRAIN: ids[:train_end],
            datasets.Split.VALIDATION: ids[train_end:val_end],
            datasets.Split.TEST: ids[val_end:],
        }

        data_dir = {}
        mask_dir = {}

        for split in [
            datasets.Split.TRAIN,
            datasets.Split.VALIDATION,
            datasets.Split.TEST,
        ]:
            data_urls = [
                {
                    f"{folder}": root_url + f"{folder}/{idx}.mp4"
                    for folder in folders
                    if folder != "masks"
                }
                for idx in split_ids[split]
            ]
            data_dir[split] = dl_manager.download(data_urls)
            mask_dir[split] = {
                idx: dl_manager.iter_archive(
                    dl_manager.download(root_url + f"masks/{idx}.zip")
                )
                for idx in split_ids[split]
                if df[df["video-id"] == idx]["has-masks"].values[0]
            }

        return [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "files": data_dir[split],
                    "masks": mask_dir[split],
                    "df": df,
                    "ids": split_ids[split],
                    "return_time": "full" in folders,
                },
            )
            for split in [
                datasets.Split.TRAIN,
                datasets.Split.VALIDATION,
                datasets.Split.TEST,
            ]
        ]

    def _generate_examples(self, files, masks, df, ids, return_time):
        for key, (idx, sample) in enumerate(zip(ids, files)):
            entry = df[df["video-id"] == idx]
            if idx in masks.keys():
                sample["masks"] = [
                    {"path": p, "bytes": im.read()} for p, im in masks[idx]
                ]
            else:
                sample["masks"] = None
            sample["task"] = entry["task"].values[0]
            sample["manipulation-type"] = entry["manipulation-type"].values[0]
            sample["editor-id"] = entry["editor-id"].values[0]
            if return_time:
                sample["start-time"] = entry["start-time"].values[0]
                sample["end-time"] = entry["end-time"].values[0]
            yield key, sample