AlexBlck commited on
Commit
05c8c48
·
1 Parent(s): 7dd02af
Files changed (1) hide show
  1. ANAKIN.py +3 -29
ANAKIN.py CHANGED
@@ -3,8 +3,6 @@ import random
3
  import datasets
4
  import pandas as pd
5
 
6
- # TODO: Add BibTeX citation
7
- # Find for instance the citation on arxiv or on the dataset repo/website
8
  _CITATION = """\
9
  @misc{black2023vader,
10
  title={VADER: Video Alignment Differencing and Retrieval},
@@ -16,20 +14,14 @@ _CITATION = """\
16
  }
17
  """
18
 
19
- # TODO: Add description of the dataset here
20
- # You can copy an official description
21
  _DESCRIPTION = """\
22
  ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs.
23
  """
24
 
25
- # TODO: Add a link to an official homepage for the dataset here
26
  _HOMEPAGE = "https://github.com/AlexBlck/vader"
27
 
28
- # TODO: Add the licence for the dataset here if you can find it
29
  _LICENSE = "cc-by-4.0"
30
 
31
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
32
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
33
  _METADATA_URL = "https://huggingface.co/datasets/AlexBlck/ANAKIN/raw/main/metadata.csv"
34
 
35
  _FOLDERS = {
@@ -40,9 +32,8 @@ _FOLDERS = {
40
  }
41
 
42
 
43
- # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
44
  class Anakin(datasets.GeneratorBasedBuilder):
45
- """TODO: Short description of my dataset."""
46
 
47
  VERSION = datasets.Version("1.0.0")
48
 
@@ -69,10 +60,9 @@ class Anakin(datasets.GeneratorBasedBuilder):
69
  ),
70
  ]
71
 
72
- DEFAULT_CONFIG_NAME = "all" # It's not mandatory to have a default configuration. Just use one if it make sense.
73
 
74
  def _info(self):
75
- # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
76
  if self.config.name == "all":
77
  features = datasets.Features(
78
  {
@@ -124,28 +114,14 @@ class Anakin(datasets.GeneratorBasedBuilder):
124
  }
125
  )
126
  return datasets.DatasetInfo(
127
- # This is the description that will appear on the datasets page.
128
  description=_DESCRIPTION,
129
- # This defines the different columns of the dataset and their types
130
- features=features, # Here we define them above because they are different between the two configurations
131
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
132
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
133
- # supervised_keys=("sentence", "label"),
134
- # Homepage of the dataset for documentation
135
  homepage=_HOMEPAGE,
136
- # License for the dataset if available
137
  license=_LICENSE,
138
- # Citation for the dataset
139
  citation=_CITATION,
140
  )
141
 
142
  def _split_generators(self, dl_manager):
143
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
144
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
145
-
146
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
147
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
148
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
149
  metadata_dir = dl_manager.download(_METADATA_URL)
150
  folders = _FOLDERS[self.config.name]
151
 
@@ -213,9 +189,7 @@ class Anakin(datasets.GeneratorBasedBuilder):
213
 
214
  def _generate_examples(self, files, masks, df, ids, return_time):
215
  for key, (idx, sample) in enumerate(zip(ids, files)):
216
- print(idx)
217
  entry = df[df["video-id"] == idx]
218
- print(entry)
219
  if idx in masks.keys():
220
  sample["masks"] = [
221
  {"path": p, "bytes": im.read()} for p, im in masks[idx]
 
3
  import datasets
4
  import pandas as pd
5
 
 
 
6
  _CITATION = """\
7
  @misc{black2023vader,
8
  title={VADER: Video Alignment Differencing and Retrieval},
 
14
  }
15
  """
16
 
 
 
17
  _DESCRIPTION = """\
18
  ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs.
19
  """
20
 
 
21
  _HOMEPAGE = "https://github.com/AlexBlck/vader"
22
 
 
23
  _LICENSE = "cc-by-4.0"
24
 
 
 
25
  _METADATA_URL = "https://huggingface.co/datasets/AlexBlck/ANAKIN/raw/main/metadata.csv"
26
 
27
  _FOLDERS = {
 
32
  }
33
 
34
 
 
35
  class Anakin(datasets.GeneratorBasedBuilder):
36
+ """ANAKIN is a dataset of mANipulated videos and mAsK annotatIoNs."""
37
 
38
  VERSION = datasets.Version("1.0.0")
39
 
 
60
  ),
61
  ]
62
 
63
+ DEFAULT_CONFIG_NAME = "all"
64
 
65
  def _info(self):
 
66
  if self.config.name == "all":
67
  features = datasets.Features(
68
  {
 
114
  }
115
  )
116
  return datasets.DatasetInfo(
 
117
  description=_DESCRIPTION,
118
+ features=features,
 
 
 
 
 
119
  homepage=_HOMEPAGE,
 
120
  license=_LICENSE,
 
121
  citation=_CITATION,
122
  )
123
 
124
  def _split_generators(self, dl_manager):
 
 
 
 
 
 
125
  metadata_dir = dl_manager.download(_METADATA_URL)
126
  folders = _FOLDERS[self.config.name]
127
 
 
189
 
190
  def _generate_examples(self, files, masks, df, ids, return_time):
191
  for key, (idx, sample) in enumerate(zip(ids, files)):
 
192
  entry = df[df["video-id"] == idx]
 
193
  if idx in masks.keys():
194
  sample["masks"] = [
195
  {"path": p, "bytes": im.read()} for p, im in masks[idx]