File size: 1,665 Bytes
4ce3449 58b025f 4ce3449 58b025f 2aa3c68 58b025f 238142b 55f6cce 58b025f 2aa3c68 f092391 02500d3 f092391 02500d3 f092391 2aa3c68 23e9a45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: mit
language:
- en
tags:
- membership inference
- privacy
pretty_name: MIMIR
size_categories:
- 1K<n<10K
---
# MIMIR
These datasets serve as a benchmark designed to evaluate membership inference attack (MIA) methods, specifically in detecting pretraining data from extensive large language models.
## 📌 Applicability
The datasets can be applied to any model trained on The Pile, including (but not limited to):
- GPTNeo
- Pythia
- OPT
## Loading the datasets
To load the dataset:
```python
from datasets import load_dataset
dataset = load_dataset("Al-not-AI/mimir", "pile_cc", split="ngram_7_0.2")
```
- Available Names: `arxiv`, `dm_mathematics`, `github`, `hackernews`, `pile_cc`, `pubmed_central`, `wikipedia_(en)`, `full_pile`, `c4`, `temporal_arxiv`, `temporal_wiki`
- Available Splits: `ngram_7_0.2`, `ngram_13_0.2`, `ngram_13_0.8` (for most sources), 'none' (for other sources)
- Available Features: `member` (str), `nonmember` (str), `member_neighbors` (List[str]), `nonmember_neighbors` (List[str])
This dataset is forked from a respository linked with this paper:
```bibtex
@inproceedings{duan2024membership,
title={Do Membership Inference Attacks Work on Large Language Models?},
author={Michael Duan and Anshuman Suri and Niloofar Mireshghallah and Sewon Min and Weijia Shi and Luke Zettlemoyer and Yulia Tsvetkov and Yejin Choi and David Evans and Hannaneh Hajishirzi},
year={2024},
booktitle={Conference on Language Modeling (COLM)},
}
```
The only cahange is in the processing script, the feature elements are now `input` and `label` (indicates whether the input datapoint is member or nonmember), |