iamgroot42 commited on
Commit
58b025f
·
verified ·
1 Parent(s): 4ce3449

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -0
README.md CHANGED
@@ -1,3 +1,54 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - membership inference
7
+ - privacy
8
+ pretty_name: MIMIR
9
+ size_categories:
10
+ - 1K<n<10K
11
  ---
12
+
13
+ # MIMIR
14
+
15
+ These datasets serve as a benchmark designed to evaluate membership inference attack (MIA) methods, specifically in detecting pretraining data from extensive large language models.
16
+
17
+ ## 📌 Applicability
18
+
19
+ The datasets can be applied to any model trained on The Pile, including (but not limited to):
20
+ - GPTNeo
21
+ - Pythia
22
+ - OPT
23
+
24
+ ## Loading the datasets
25
+ To load the dataset:
26
+
27
+ ```python
28
+ from datasets import load_dataset
29
+
30
+ dataset = load_dataset("iamgroot42/mimir", split=f"pile_cc")
31
+ ```
32
+
33
+ - Available Splits: `arxiv`, `wikipedia_en`, `pile_cc`, `dm_mathematics`, `pubmed_central`, `full_pile`, ...
34
+ - Labels:
35
+ - _0_: Refers to the unseen data during pretraining.
36
+ - _1_: Refers to the seen data.
37
+
38
+ ## 🛠️ Codebase
39
+ For evaluating MIA methods on our datasets, visit our [GitHub repository](http://github.com/iamgroot42/mimir).
40
+
41
+ ## ⭐ Citing our Work
42
+
43
+ If you find our codebase and datasets beneficial, kindly cite our work:
44
+
45
+ ```bibtex
46
+ @inproceedings{duan2024disentangling,
47
+ title={Disentangling Challenges in Membership Inference for Large Language Models},
48
+ author={},
49
+ booktitle={,
50
+ year={2024}
51
+ }
52
+ ```
53
+
54
+