id.resp_p
int64
0
65.5k
proto
stringclasses
3 values
conn_state
stringclasses
13 values
orig_pkts
int64
0
66M
orig_ip_bytes
int64
0
1.91B
resp_ip_bytes
int64
0
350M
label
stringclasses
2 values
8,081
tcp
S0
2
80
0
Malicious
37,215
tcp
S0
2
80
0
Malicious
52,869
tcp
S0
2
80
0
Malicious
8,080
tcp
S0
2
80
0
Malicious
80
tcp
S0
2
80
0
Malicious
666
tcp
S0
6
360
0
Malicious
8,081
tcp
REJ
2
80
80
Benign
37,215
tcp
REJ
2
80
80
Malicious
666
tcp
S0
2
120
0
Malicious
52,869
tcp
REJ
2
80
80
Malicious
80
tcp
RSTO
4
160
88
Benign
80
tcp
S0
6
360
0
Malicious
80
tcp
REJ
2
80
80
Benign
80
tcp
RSTO
6
240
176
Benign
666
tcp
REJ
2
120
80
Malicious
123
udp
SF
2
152
152
Benign
0
icmp
OTH
2
136
0
Benign
1
icmp
OTH
2
112
0
Benign
1
icmp
OTH
2
144
0
Benign
10
icmp
OTH
2
136
0
Benign
666
tcp
REJ
6
360
80
Malicious
13
icmp
OTH
2
112
0
Benign
1
icmp
OTH
2
136
0
Benign
0
icmp
OTH
2
112
0
Benign
8,080
tcp
REJ
2
80
80
Benign
0
icmp
OTH
2
192
0
Benign
80
tcp
S0
4
160
0
Malicious
22
tcp
OTH
136
9,088
9,152
Benign
8,081
tcp
RSTO
4
160
88
Benign
8,081
tcp
S0
6
360
0
Malicious
13
icmp
OTH
2
136
0
Benign
52,869
tcp
S0
4
160
0
Malicious
22
tcp
SF
20
1,376
1,512
Benign
666
tcp
REJ
4
240
80
Malicious
37,215
tcp
S0
4
160
0
Malicious
3
icmp
OTH
2
136
0
Benign
8,081
tcp
RSTO
4
160
80
Benign
13
icmp
OTH
2
140
0
Benign
8,081
tcp
RSTO
8
320
264
Benign
17,576
tcp
REJ
2
88
80
Benign
17,576
tcp
RSTOS0
2
80
0
Benign
53
udp
S0
2
134
0
Benign
53
udp
SF
2
146
146
Benign
53
udp
SF
2
134
131
Benign
53
udp
SF
1
67
131
Benign
53
udp
S0
1
67
0
Benign
53
udp
SF
1
73
73
Benign
123
udp
S0
1
76
0
Benign
53
udp
SF
1
67
67
Benign
443
tcp
S0
3
180
0
Malicious
53
udp
SF
1
67
83
Benign
443
tcp
S0
1
60
0
Malicious
123
udp
SF
2
152
76
Benign
53
udp
S0
1
73
0
Benign
53
udp
SF
2
132
82
Benign
53
udp
SF
1
66
82
Benign
123
udp
SF
1
76
76
Benign
22
tcp
OTH
0
0
88
Benign
123
udp
S0
2
152
0
Benign
123
udp
SF
10
760
760
Benign
123
udp
SF
8
608
608
Benign
123
udp
SF
7
532
532
Benign
5,355
udp
SF
1
73
146
Benign
123
udp
SF
6
456
456
Benign
53
udp
SF
1
67
122
Benign
443
tcp
SF
8,295
348,808
366,587
Malicious
53
udp
S0
2
132
0
Benign
443
tcp
RSTR
3
1,600
224
Malicious
53
udp
S0
1
66
0
Benign
53
udp
S0
1
71
0
Benign
53
udp
SF
1
71
87
Benign
53
udp
S0
2
142
0
Benign
53
udp
S0
2
146
0
Benign
53
udp
SF
1
73
148
Benign
53
udp
SF
1
67
179
Benign
443
tcp
S1
8,872
372,893
388,975
Malicious
53
udp
SF
3
201
198
Benign
53
udp
SF
2
134
83
Benign
22
tcp
OTH
3
192
752
Benign
443
tcp
SF
6,793
285,885
301,794
Malicious
443
tcp
REJ
2
120
40
Malicious
53
udp
SF
2
132
132
Benign
53
udp
SF
2
142
142
Benign
53
udp
SF
2
134
134
Benign
0
icmp
OTH
68
5,672
0
Benign
443
tcp
S2
5,895
248,182
257,816
Malicious
443
tcp
S1
4,485
189,231
200,386
Malicious
8,081
tcp
S0
1
40
0
Malicious
37,215
tcp
S0
1
40
0
Malicious
52,869
tcp
S0
1
40
0
Malicious
8,080
tcp
S0
1
40
0
Benign
80
tcp
S0
1
40
0
Malicious
666
tcp
S0
3
180
0
Malicious
666
tcp
S0
1
60
0
Malicious
37,215
tcp
REJ
1
40
40
Malicious
8,080
tcp
REJ
1
40
40
Benign
8,080
tcp
RSTO
2
80
44
Benign
8,080
tcp
S0
3
180
0
Benign
1
icmp
OTH
1
56
0
Benign
0
icmp
OTH
1
56
0
Benign

Aposemat IoT-23 - a Labeled Dataset with Malcious and Benign Iot Network Traffic

Homepage: https://www.stratosphereips.org/datasets-iot23

This dataset contains a subset of the data from 20 captures of Malcious network traffic and 3 captures from live Benign Traffic on Internet of Things (IoT) devices. Created by Sebastian Garcia, Agustin Parmisano, & Maria Jose Erquiaga at the Avast AIC laboratory with the funding of Avast Software, this dataset is one of the best in the field for Intrusion Detection Systems (IDS) for IoT Devices (Comparative Analysis of IoT Botnet Datasets).

The selection of the subset was determined by Aqeel Ahmed on Kaggle and contains 6 million samples. The Kaggle upload, nor this one, have employed data balancing. The Kaggle card does not contain methodology to understand what criteria was used to select these samples. If you want ensure best practice, use this dataset to mock-up processing the data into a model before using the full dataset with data balancing. This will require processing the 8GB of conn.log.labelled files.

This dataset only notes if the data is Malcious or Benign. The original dataset labels the type of malcious traffic aswell. This means this processing of the dataset is only suited for binary classification.

This dataset only contains the 6 most important columns: responder's port, transport layer protocol, connection state, number of packets sent by the originator, number of IP level bytes that the originator sent, number of IP level bytes that the responder sent, and the malicious or bengin label. These columns were determined from research done by Alani & Miri in "Towards an Explainable Universal Feature Set for IoT Intrusion Detection." They determined that these columns alone give 98% accuracy. This means a light weight model can contain these column alone and still have non-trivial results. This dataset only contains 2.5k rows, as the duplicates have been dropped.

Feature information:

All features originate from the Zeek processing performed by the dataset creators. See notes here for caviats for each column.

Expand for feature names, descriptions, and datatypes

Name: id.resp_p
Description: The responder’s port number.
Data type: int64 - uint64 in original

Name: proto
Description: The transport layer protocol of the connection.
Data type: string - enum(unknown_transport, tcp, udp, icmp). Only TCP and UDP in subset

Name: conn_state
Description: Value indicating connection state. (S0, S1, SF, REJ, S2, S3, RSTO, RSTR, RSTOS0, RSTRH, SH, SHR, OTH)
Data type: optional string

Name: orig_pkts
Description: Number of packets that the originator sent.
Data type: optional int64 - uint64 in original

Name: orig_ip_bytes
Description: Number of IP level bytes that the originator sent.
Data type: optional int64 - uint64 in original

Name: resp_ip_bytes
Description: Number of IP level bytes that the responder sent.
Data type: optional int64 - uint64 in original

Name: label
Description: Specifies if data point is benign or malicious.
Data type: string - enum(Malicious, Benign)

Citation

If you are using this dataset for your research, please reference it as “Sebastian Garcia, Agustin Parmisano, & Maria Jose Erquiaga. (2020). IoT-23: A labeled dataset with malicious and benign IoT network traffic (Version 1.0.0) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4743746”

Downloads last month
103

Models trained or fine-tuned on 19kmunz/iot-23-preprocessed-minimumcolumns