Edit model card

bert-base-uncased-finetuned-advanced-srl_arg

This model is a fine-tuned version of bert-base-uncased on the English Universal Propbank dataset for the Semantics Role Labeling (SRL) task. It achieves the following results on the evaluation set:

  • Loss: 0.0914
  • Precision: 0.8664
  • Recall: 0.8673
  • F1: 0.8669
  • Accuracy: 0.9812

Model description

This more advanced SRL model uses similar apporach as the Augment method described in NegBERT (Khandelwal, et al. 2020). That is, adding a special token ([V]) immediately before the predicate:

This [V] is a sentence.

Note that the special token and the predicate is considered a whole. That is, the actual sentence is like

'This' '[V] is' 'a' 'sentence' '.'

Usages

The model labels semantics roles given input sentences. See usage examples at https://github.com/dannashao/bertsrl/blob/main/Evaluation.ipynb

Training and evaluation data

The English Universal Proposition Bank v1.0 data. See details at https://github.com/UniversalPropositions/UP-1.0

Training procedure

See details at https://github.com/chuqiaog/Advanced_NLP_group_1/blob/main/A3/A3_main.ipynb

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0457 1.0 2655 0.0849 0.8447 0.8644 0.8544 0.9792
0.0322 2.0 5310 0.0883 0.8586 0.8679 0.8632 0.9806
0.0234 3.0 7965 0.0914 0.8664 0.8673 0.8669 0.9812

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dannashao/bert-base-uncased-finetuned-advanced-srl_arg

Finetuned
(2064)
this model

Dataset used to train dannashao/bert-base-uncased-finetuned-advanced-srl_arg