walloc / README.md
Jacobellis Dan (dgj335)
entropy coding
6a8d727
|
raw
history blame
2.34 kB
!pip install walloc PyWavelets pytorch-wavelets
!wget "https://r0k.us/graphics/kodak/kodak/kodim05.png"
import os
import torch
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from IPython.display import display
from torchvision.transforms import ToPILImage, PILToTensor
from walloc.walloc import Walloc
class Args: pass
device = "cpu"
checkpoint = torch.load("v0.6.1.pth",map_location="cpu")
args = checkpoint['args']
codec = Walloc(
    channels = args.channels,
    J = args.J,
    N = args.N,
    latent_dim = args.latent_dim,
    latent_bits = 5
)
codec.load_state_dict(checkpoint['model_state_dict'])
codec = codec.to(device)
img = Image.open("kodim05.png")
img

png

with torch.no_grad():
    codec.eval()
    x = PILToTensor()(img).to(torch.float)
    x = (x/255 - 0.5).unsqueeze(0).to(device)
    x_hat, _, _ = codec(x)
ToPILImage()(x_hat[0]+0.5)

png

with torch.no_grad():
    codec.eval()
    X = codec.wavelet_analysis(x,J=codec.J)
    Y = codec.encoder(X)
    X_hat = codec.decoder(Y)
    x_hat = codec.wavelet_synthesis(X_hat,J=codec.J)

print(f"dimensionality reduction: {x.numel()/Y.numel()}x")
dimensionality reduction: 12.0x
Y.unique()
tensor([-15., -14., -13., -12., -11., -10.,  -9.,  -8.,  -7.,  -6.,  -5.,  -4.,
         -3.,  -2.,  -1.,   0.,   1.,   2.,   3.,   4.,   5.,   6.,   7.,   8.,
          9.,  10.,  11.,  12.,  13.,  14.,  15.])
plt.hist(Y.flatten().numpy(),range=(-17.5,17.5),bins=35);

png

grid_size = 4
n_channels, H, W = Y[0].shape
combined_image = Image.new('L', (W * grid_size, H * grid_size))
size_bytes = 0
for i, channel in enumerate(Y[0]):
    channel = (channel+16).to(torch.uint8)
    row = i // grid_size
    col = i % grid_size
    channel = ToPILImage()(channel)
    combined_image.paste(channel, (col * W, row * H))
combined_image

png

combined_image.save('tmp.png')
print("compression_ratio: ", x.numel()/os.path.getsize("tmp.png"))
compression_ratio:  20.75383532723434