Text Generation
Transformers
gemma
chat
dpo
fine-tuning
function-calling
instruct
rlhf
sft
tool-calling
Inference Endpoints
pandora-7b-chat / README.md
danilopeixoto's picture
add model
0f64ac7 unverified
---
pretty_name: Pandora 7B Chat
base_model: google/gemma-7b
datasets:
- danilopeixoto/pandora-instruct
- danilopeixoto/pandora-tool-calling
- danilopeixoto/pandora-rlhf
task_categories:
- text-generation
tags:
- chat
- dpo
- fine-tuning
- function-calling
- instruct
- rlhf
- sft
- tool-calling
license: bsd-3-clause
---
# Pandora 7B Chat
Pandora 7B Chat is a Large Language Model (LLM) designed for chat applications.
Pandora is fine-tuned with publicly available datasets, including a tool-calling dataset for agent-based tasks and a Reinforcement Learning from Human Feedback (RLHF) dataset with Direct Preference Optimization (DPO) training for preference alignment.
The fine-tuning process incorporates Low-Rank Adaptation (LoRA) with the [MLX framework](https://ml-explore.github.io/mlx/build/html/index.html), optimized for Apple Silicon.
The model is based on the [google/gemma-7b](https://huggingface.co/google/gemma-7b) model.
![Pandora](assets/pandora.jpeg)
## Datasets
Datasets used for fine-tuning stages:
- [danilopeixoto/pandora-instruct](https://huggingface.co/datasets/danilopeixoto/pandora-instruct)
- [danilopeixoto/pandora-tool-calling](https://huggingface.co/datasets/danilopeixoto/pandora-tool-calling)
- [danilopeixoto/pandora-rlhf](https://huggingface.co/datasets/danilopeixoto/pandora-rlhf)
## Evaluation
Evaluation on [MT-Bench](https://arxiv.org/abs/2306.05685) multi-turn benchmark:
![Benchmark](assets/benchmark.svg)
## Usage
Install package dependencies:
```shell
pip install mlx-lm
```
Generate response:
```python
from mlx_lm import load, generate
model, tokenizer = load('danilopeixoto/pandora-7b-chat')
prompt = '''<|start|>system
You are Pandora, a helpful AI assistant.
<|end|>
<|start|>user
Hello!
<|end|>
<|start|>'''
response = generate(model, tokenizer, prompt)
print(response)
```
The model supports the following prompt templates:
**Question-answering with system messages**
```txt
<|start|>system
{system_message}
<|end|>
<|start|>user
{user_message}
<|end|>
<|start|>assistant
{assistant_message}
<|end|>
```
**Tool calling**
```txt
<|start|>system
{system_message}
<|end|>
<|start|>system:tools
{system_tools_message}
<|end|>
<|start|>user
{user_message}
<|end|>
<|start|>assistant:tool_calls
{assistant_tool_calls_message}
<|end|>
<|start|>tool
{tool_message}
<|end|>
<|start|>assistant
{assistant_message}
<|end|>
```
> **Note** The variables `system_tools_message`, `assistant_tool_calls_message`, and `tool_message` must contain valid YAML.
An example of a tool-calling prompt:
```python
prompt = '''<|start|>system
You are Pandora, a helpful AI assistant.
<|end|>
<|start|>system:tools
- description: Get the current weather based on a given location.
name: get_current_weather
parameters:
type: object
properties:
location:
type: string
description: The location name.
required:
- location
<|end|>
<|start|>user
What is the weather in Sydney, Australia?
<|end|>
<|start|>assistant:tool_calls
- name: get_current_weather
arguments:
location: Sydney, Australia
<|end|>
<|start|>tool
name: get_current_weather
content: 72°F
<|end|>
<|start|>'''
```
## Examples
**OpenGPTs**
![OpenGPTs](assets/opengpts.png)
## Copyright and license
Copyright (c) 2024, Danilo Peixoto Ferreira. All rights reserved.
Project developed under a [BSD-3-Clause license](LICENSE.md).
Gemma is provided under and subject to the [Gemma Terms of Use license](GEMMA_LICENSE.md).