distilbert-base-uncased-distilled-clinc-own-best-run

This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0833
  • Accuracy: 0.9487

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9149 1.0 318 0.5756 0.7513
0.4412 2.0 636 0.2713 0.8881
0.2366 3.0 954 0.1653 0.9229
0.1601 4.0 1272 0.1283 0.9303
0.1265 5.0 1590 0.1121 0.9365
0.1096 6.0 1908 0.1033 0.9423
0.0991 7.0 2226 0.0976 0.9406
0.0923 8.0 2544 0.0943 0.9410
0.0879 9.0 2862 0.0919 0.9445
0.0842 10.0 3180 0.0899 0.9471
0.0815 11.0 3498 0.0883 0.9461
0.0792 12.0 3816 0.0871 0.9484
0.0775 13.0 4134 0.0868 0.9458
0.0758 14.0 4452 0.0859 0.9474
0.0747 15.0 4770 0.0855 0.9487
0.0738 16.0 5088 0.0847 0.9474
0.0728 17.0 5406 0.0850 0.9465
0.0721 18.0 5724 0.0845 0.9481
0.0714 19.0 6042 0.0842 0.9484
0.0706 20.0 6360 0.0836 0.9497
0.0704 21.0 6678 0.0838 0.9490
0.0701 22.0 6996 0.0831 0.9484
0.0697 23.0 7314 0.0834 0.9490
0.0696 24.0 7632 0.0834 0.9484
0.0693 25.0 7950 0.0833 0.9487

Framework versions

  • Transformers 4.16.2
  • Pytorch 2.4.1+cu121
  • Datasets 1.16.1
  • Tokenizers 0.19.1
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train danielrsn/distilbert-base-uncased-distilled-clinc-own-best-run

Evaluation results