metadata
license: apache-2.0
tags:
- generated_from_trainer
- hf-asr-leaderboard
- hf-asr-leaderboard
datasets:
- librispeech_asr
model-index:
- name: hubert-base-libri-clean-ft100h-v3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: '8.1938'
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: LibriSpeech
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- name: Test WER
type: wer
value: '16.9783'
language:
- en
hubert-base-libri-clean-ft100h-v3
This model is a fine-tuned version of facebook/hubert-base-ls960 on the librispeech_asr dataset. It achieves the following results on the evaluation set:
- Loss: 0.1120
- Wer: 0.1332
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 8
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.201 | 0.14 | 250 | 3.9799 | 1.0 |
2.8893 | 0.28 | 500 | 3.4838 | 1.0 |
2.8603 | 0.42 | 750 | 3.3505 | 1.0 |
2.7216 | 0.56 | 1000 | 2.1194 | 0.9989 |
1.3372 | 0.7 | 1250 | 0.8124 | 0.6574 |
0.8238 | 0.84 | 1500 | 0.5712 | 0.5257 |
0.6449 | 0.98 | 1750 | 0.4442 | 0.4428 |
0.5241 | 1.12 | 2000 | 0.3442 | 0.3672 |
0.4458 | 1.26 | 2250 | 0.2850 | 0.3186 |
0.3959 | 1.4 | 2500 | 0.2507 | 0.2882 |
0.3641 | 1.54 | 2750 | 0.2257 | 0.2637 |
0.3307 | 1.68 | 3000 | 0.2044 | 0.2434 |
0.2996 | 1.82 | 3250 | 0.1969 | 0.2313 |
0.2794 | 1.96 | 3500 | 0.1823 | 0.2193 |
0.2596 | 2.1 | 3750 | 0.1717 | 0.2096 |
0.2563 | 2.24 | 4000 | 0.1653 | 0.2000 |
0.2532 | 2.38 | 4250 | 0.1615 | 0.1971 |
0.2376 | 2.52 | 4500 | 0.1559 | 0.1916 |
0.2341 | 2.66 | 4750 | 0.1494 | 0.1855 |
0.2102 | 2.8 | 5000 | 0.1464 | 0.1781 |
0.2222 | 2.94 | 5250 | 0.1399 | 0.1732 |
0.2081 | 3.08 | 5500 | 0.1450 | 0.1707 |
0.1963 | 3.22 | 5750 | 0.1337 | 0.1655 |
0.2107 | 3.36 | 6000 | 0.1344 | 0.1633 |
0.1866 | 3.5 | 6250 | 0.1339 | 0.1611 |
0.186 | 3.64 | 6500 | 0.1311 | 0.1563 |
0.1703 | 3.78 | 6750 | 0.1307 | 0.1537 |
0.1819 | 3.92 | 7000 | 0.1277 | 0.1555 |
0.176 | 4.06 | 7250 | 0.1280 | 0.1515 |
0.1837 | 4.2 | 7500 | 0.1249 | 0.1504 |
0.1678 | 4.34 | 7750 | 0.1236 | 0.1480 |
0.1624 | 4.48 | 8000 | 0.1194 | 0.1456 |
0.1631 | 4.62 | 8250 | 0.1215 | 0.1462 |
0.1736 | 4.76 | 8500 | 0.1192 | 0.1451 |
0.1752 | 4.9 | 8750 | 0.1206 | 0.1432 |
0.1578 | 5.04 | 9000 | 0.1151 | 0.1415 |
0.1537 | 5.18 | 9250 | 0.1185 | 0.1402 |
0.1771 | 5.33 | 9500 | 0.1165 | 0.1414 |
0.1481 | 5.47 | 9750 | 0.1152 | 0.1413 |
0.1509 | 5.61 | 10000 | 0.1152 | 0.1382 |
0.146 | 5.75 | 10250 | 0.1133 | 0.1385 |
0.1464 | 5.89 | 10500 | 0.1139 | 0.1371 |
0.1442 | 6.03 | 10750 | 0.1162 | 0.1365 |
0.128 | 6.17 | 11000 | 0.1147 | 0.1371 |
0.1381 | 6.31 | 11250 | 0.1148 | 0.1378 |
0.1343 | 6.45 | 11500 | 0.1113 | 0.1363 |
0.1325 | 6.59 | 11750 | 0.1134 | 0.1355 |
0.1442 | 6.73 | 12000 | 0.1142 | 0.1358 |
0.1286 | 6.87 | 12250 | 0.1133 | 0.1352 |
0.1349 | 7.01 | 12500 | 0.1129 | 0.1344 |
0.1338 | 7.15 | 12750 | 0.1131 | 0.1328 |
0.1403 | 7.29 | 13000 | 0.1124 | 0.1338 |
0.1314 | 7.43 | 13250 | 0.1141 | 0.1335 |
0.1283 | 7.57 | 13500 | 0.1124 | 0.1332 |
0.1347 | 7.71 | 13750 | 0.1107 | 0.1332 |
0.1195 | 7.85 | 14000 | 0.1119 | 0.1332 |
0.1326 | 7.99 | 14250 | 0.1120 | 0.1332 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1