text-summarization-T5
This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:
- Loss: 2.6883
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.8764 | 0.0627 | 100 | 3.6376 |
3.6129 | 0.1255 | 200 | 3.2631 |
3.3392 | 0.1882 | 300 | 3.0248 |
3.207 | 0.2509 | 400 | 2.9294 |
3.1548 | 0.3137 | 500 | 2.8725 |
3.0969 | 0.3764 | 600 | 2.8333 |
3.0718 | 0.4391 | 700 | 2.8018 |
3.0476 | 0.5018 | 800 | 2.7803 |
3.0431 | 0.5646 | 900 | 2.7651 |
3.0216 | 0.6273 | 1000 | 2.7538 |
3.0003 | 0.6900 | 1100 | 2.7440 |
3.0018 | 0.7528 | 1200 | 2.7363 |
2.9993 | 0.8155 | 1300 | 2.7289 |
2.9833 | 0.8782 | 1400 | 2.7236 |
2.9827 | 0.9410 | 1500 | 2.7181 |
2.9737 | 1.0037 | 1600 | 2.7145 |
2.968 | 1.0664 | 1700 | 2.7107 |
2.967 | 1.1291 | 1800 | 2.7074 |
2.9709 | 1.1919 | 1900 | 2.7042 |
2.9593 | 1.2546 | 2000 | 2.7011 |
2.9628 | 1.3173 | 2100 | 2.6987 |
2.9573 | 1.3801 | 2200 | 2.6969 |
2.955 | 1.4428 | 2300 | 2.6947 |
2.9483 | 1.5055 | 2400 | 2.6934 |
2.9546 | 1.5683 | 2500 | 2.6923 |
2.9492 | 1.6310 | 2600 | 2.6910 |
2.9493 | 1.6937 | 2700 | 2.6903 |
2.9482 | 1.7564 | 2800 | 2.6896 |
2.9524 | 1.8192 | 2900 | 2.6890 |
2.9399 | 1.8819 | 3000 | 2.6886 |
2.9347 | 1.9446 | 3100 | 2.6883 |
Framework versions
- PEFT 0.14.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 75
Model tree for danfarh2000/text-summarization-T5
Base model
google-t5/t5-small