text-summarization-T5

This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
3.8764 0.0627 100 3.6376
3.6129 0.1255 200 3.2631
3.3392 0.1882 300 3.0248
3.207 0.2509 400 2.9294
3.1548 0.3137 500 2.8725
3.0969 0.3764 600 2.8333
3.0718 0.4391 700 2.8018
3.0476 0.5018 800 2.7803
3.0431 0.5646 900 2.7651
3.0216 0.6273 1000 2.7538
3.0003 0.6900 1100 2.7440
3.0018 0.7528 1200 2.7363
2.9993 0.8155 1300 2.7289
2.9833 0.8782 1400 2.7236
2.9827 0.9410 1500 2.7181
2.9737 1.0037 1600 2.7145
2.968 1.0664 1700 2.7107
2.967 1.1291 1800 2.7074
2.9709 1.1919 1900 2.7042
2.9593 1.2546 2000 2.7011
2.9628 1.3173 2100 2.6987
2.9573 1.3801 2200 2.6969
2.955 1.4428 2300 2.6947
2.9483 1.5055 2400 2.6934
2.9546 1.5683 2500 2.6923
2.9492 1.6310 2600 2.6910
2.9493 1.6937 2700 2.6903
2.9482 1.7564 2800 2.6896
2.9524 1.8192 2900 2.6890
2.9399 1.8819 3000 2.6886
2.9347 1.9446 3100 2.6883

Framework versions

  • PEFT 0.14.0
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
75
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for danfarh2000/text-summarization-T5

Base model

google-t5/t5-small
Adapter
(38)
this model

Dataset used to train danfarh2000/text-summarization-T5