metadata
license: apache-2.0
datasets:
- cybersectony/PhishingEmailDetection
library_name: transformers
language:
- en
base_model:
- distilbert/distilbert-base-uncased
tags:
- Phishing
- Email
- URL
- Detection
A distilBERT based Phishing Email Detection Model
Model Overview
This model is specifically fine-tuned for detecting phishing emails using the Hugging Face Trainer API.
Key Specifications
- Base Architecture: DistilBERT
- Task: Multilabel Classification
- Fine-tuning Framework: Hugging Face Trainer API
- Training Duration: 3 epochs
Performance Metrics
- F1-score: 97.717
- Accuracy: 97.716
- Precision: 97.736
- Recall: 97.717
Dataset Details
This model was trained using a Phishing Email Detection Dataset.
Usage Guide
Installation
pip install transformers
pip install torch
Quick Start
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("your-username/model-name")
model = AutoModelForSequenceClassification.from_pretrained("your-username/model-name")
def predict_email(email_text):
# Preprocess and tokenize
inputs = tokenizer(
email_text,
return_tensors="pt",
truncation=True,
max_length=512
)
# Get prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get probabilities for each class
probs = predictions[0].tolist()
# Create labels dictionary
labels = {
"legitimate_email": probs[0],
"phishing_url": probs[1],
"legitimate_url": probs[2],
"phishing_url_alt": probs[3]
}
# Determine the most likely classification
max_label = max(labels.items(), key=lambda x: x[1])
return {
"prediction": max_label[0],
"confidence": max_label[1],
"all_probabilities": labels
}
Example Usage
# Example usage
email = """
Dear User,
Your account security needs immediate attention. Please verify your credentials.
Click here: http://suspicious-link.com
"""
result = predict_email(email)
print(f"Prediction: {result['prediction']}")
print(f"Confidence: {result['confidence']:.2%}")
print("\nAll probabilities:")
for label, prob in result['all_probabilities'].items():
print(f"{label}: {prob:.2%}")