deit-base-patch16-224_rice-disease-02_112024

This model is a fine-tuned version of facebook/deit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3063
  • Accuracy: 0.9148

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.8862 1.0 212 0.7092 1.2580
0.8631 2.0 424 0.8190 0.6676
0.5449 3.0 636 0.8523 0.5124
0.4396 4.0 848 0.8736 0.4459
0.3852 5.0 1060 0.8816 0.4026
0.3488 6.0 1272 0.8902 0.3763
0.324 7.0 1484 0.8942 0.3588
0.3072 8.0 1696 0.9062 0.3420
0.2928 9.0 1908 0.9055 0.3330
0.2826 10.0 2120 0.9082 0.3231
0.2732 11.0 2332 0.9115 0.3172
0.2669 12.0 2544 0.3119 0.9128
0.2619 13.0 2756 0.3086 0.9155
0.258 14.0 2968 0.3068 0.9155
0.2566 15.0 3180 0.3063 0.9148

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
22
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cvmil/deit-base-patch16-224_rice-disease-02

Finetuned
(263)
this model