roberta-el-ner4
This model is a fine-tuned version of cvcio/roberta-el-news on the elNER dataset. It achieves the following results on the evaluation set:
- Loss: 0.0564
- Precision: 0.9116
- Recall: 0.9218
- F1: 0.9167
- Accuracy: 0.9883
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
More information needed
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.1723 | 1.87 | 250 | 0.0716 | 0.7937 | 0.8657 | 0.8281 | 0.9786 |
0.0372 | 3.73 | 500 | 0.0497 | 0.8587 | 0.9215 | 0.8890 | 0.9852 |
0.0243 | 5.6 | 750 | 0.0524 | 0.8746 | 0.9263 | 0.8997 | 0.9867 |
0.0114 | 7.46 | 1000 | 0.0564 | 0.9116 | 0.9218 | 0.9167 | 0.9883 |
0.0071 | 9.33 | 1250 | 0.0602 | 0.9019 | 0.9309 | 0.9161 | 0.9881 |
0.0037 | 11.19 | 1500 | 0.0667 | 0.9074 | 0.9306 | 0.9188 | 0.9885 |
0.003 | 13.06 | 1750 | 0.0688 | 0.9001 | 0.9306 | 0.9151 | 0.9883 |
0.0019 | 14.93 | 2000 | 0.0724 | 0.9082 | 0.9229 | 0.9155 | 0.9883 |
0.0022 | 16.79 | 2250 | 0.0745 | 0.9159 | 0.9169 | 0.9164 | 0.9878 |
0.0016 | 18.66 | 2500 | 0.0727 | 0.9068 | 0.9249 | 0.9158 | 0.9880 |
0.0018 | 20.52 | 2750 | 0.0732 | 0.9088 | 0.9272 | 0.9179 | 0.9887 |
0.0014 | 22.39 | 3000 | 0.0767 | 0.9017 | 0.9243 | 0.9129 | 0.9876 |
0.0012 | 24.25 | 3250 | 0.0745 | 0.9072 | 0.9206 | 0.9139 | 0.9882 |
0.0011 | 26.12 | 3500 | 0.0790 | 0.8995 | 0.9297 | 0.9144 | 0.9878 |
0.0008 | 27.99 | 3750 | 0.0786 | 0.9081 | 0.9275 | 0.9177 | 0.9883 |
0.0011 | 29.85 | 4000 | 0.0775 | 0.9091 | 0.9277 | 0.9183 | 0.9885 |
0.0011 | 31.72 | 4250 | 0.0851 | 0.9005 | 0.9269 | 0.9135 | 0.9879 |
0.0007 | 33.58 | 4500 | 0.0848 | 0.9041 | 0.9223 | 0.9131 | 0.9876 |
0.0006 | 35.45 | 4750 | 0.0842 | 0.9082 | 0.9263 | 0.9172 | 0.9881 |
0.0005 | 37.31 | 5000 | 0.0851 | 0.9085 | 0.9266 | 0.9175 | 0.9881 |
0.0004 | 39.18 | 5250 | 0.0878 | 0.9035 | 0.9272 | 0.9152 | 0.9879 |
0.0004 | 41.04 | 5500 | 0.0856 | 0.9091 | 0.9275 | 0.9182 | 0.9885 |
0.0004 | 42.91 | 5750 | 0.0870 | 0.9099 | 0.9255 | 0.9176 | 0.9884 |
0.0005 | 44.78 | 6000 | 0.0860 | 0.9010 | 0.9269 | 0.9138 | 0.9882 |
0.0004 | 46.64 | 6250 | 0.0851 | 0.9114 | 0.9246 | 0.9179 | 0.9884 |
0.0003 | 48.51 | 6500 | 0.0899 | 0.9058 | 0.9252 | 0.9154 | 0.9884 |
0.0002 | 50.37 | 6750 | 0.0898 | 0.9050 | 0.9294 | 0.9171 | 0.9882 |
0.0002 | 52.24 | 7000 | 0.0890 | 0.9104 | 0.9252 | 0.9177 | 0.9884 |
0.0002 | 54.1 | 7250 | 0.0898 | 0.9052 | 0.9260 | 0.9155 | 0.9879 |
0.0002 | 55.97 | 7500 | 0.0894 | 0.9080 | 0.9263 | 0.9171 | 0.9883 |
0.0001 | 57.84 | 7750 | 0.0910 | 0.9046 | 0.9277 | 0.9160 | 0.9883 |
0.0003 | 59.7 | 8000 | 0.0903 | 0.9041 | 0.9283 | 0.9161 | 0.9882 |
Eval results
Precision | Recall | F1 | Accuracy | |
---|---|---|---|---|
eval | 0.9116 | 0.9218 | 0.9167 | 0.9883 |
test | 0.9022 | 0.9107 | 0.9064 | 0.9861 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
Authors
Dimitris Papaevagelou - @andefined
About Us
Civic Information Office is a Non Profit Organization based in Athens, Greece focusing on creating technology and research products for the public interest.
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.