roberta-el-ner18 / README.md
andefined's picture
Initial commit
40aeb47
---
language: el
license: gpl-3.0
tags:
- generated_from_trainer
- roberta
- Greek
- ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-el-ner4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-el-ner18
This model is a fine-tuned version of [cvcio/roberta-el-news](https://huggingface.co/cvcio/roberta-el-news) on the [elNER](https://github.com/nmpartzio/elNER) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1380
- Precision: 0.9138
- Recall: 0.9289
- F1: 0.9213
- Accuracy: 0.9832
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
More information needed
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 60.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.4245 | 1.87 | 250 | 0.1622 | 0.7727 | 0.8096 | 0.7907 | 0.9597 |
| 0.0798 | 3.73 | 500 | 0.0841 | 0.8587 | 0.9005 | 0.8791 | 0.9776 |
| 0.0487 | 5.6 | 750 | 0.0812 | 0.8850 | 0.9140 | 0.8992 | 0.9806 |
| 0.0222 | 7.46 | 1000 | 0.0855 | 0.9001 | 0.9180 | 0.9089 | 0.9819 |
| 0.0141 | 9.33 | 1250 | 0.0903 | 0.9023 | 0.9230 | 0.9125 | 0.9827 |
| 0.0079 | 11.19 | 1500 | 0.1006 | 0.9067 | 0.9258 | 0.9161 | 0.9823 |
| 0.0063 | 13.06 | 1750 | 0.1020 | 0.9049 | 0.9296 | 0.9171 | 0.9826 |
| 0.0039 | 14.93 | 2000 | 0.1097 | 0.9078 | 0.9246 | 0.9161 | 0.9820 |
| 0.004 | 16.79 | 2250 | 0.1119 | 0.9084 | 0.9239 | 0.9161 | 0.9825 |
| 0.0024 | 18.66 | 2500 | 0.1166 | 0.9086 | 0.9268 | 0.9177 | 0.9828 |
| 0.0029 | 20.52 | 2750 | 0.1192 | 0.9106 | 0.9260 | 0.9182 | 0.9825 |
| 0.0023 | 22.39 | 3000 | 0.1161 | 0.9085 | 0.9284 | 0.9183 | 0.9829 |
| 0.0022 | 24.25 | 3250 | 0.1238 | 0.9078 | 0.9281 | 0.9178 | 0.9825 |
| 0.0021 | 26.12 | 3500 | 0.1232 | 0.9082 | 0.9239 | 0.9160 | 0.9821 |
| 0.0013 | 27.99 | 3750 | 0.1253 | 0.9050 | 0.9296 | 0.9172 | 0.9824 |
| 0.0012 | 29.85 | 4000 | 0.1247 | 0.9075 | 0.9284 | 0.9179 | 0.9827 |
| 0.0014 | 31.72 | 4250 | 0.1263 | 0.9063 | 0.9237 | 0.9149 | 0.9823 |
| 0.0012 | 33.58 | 4500 | 0.1295 | 0.9028 | 0.9272 | 0.9148 | 0.9827 |
| 0.001 | 35.45 | 4750 | 0.1341 | 0.9107 | 0.9305 | 0.9205 | 0.9831 |
| 0.001 | 37.31 | 5000 | 0.1296 | 0.9122 | 0.9298 | 0.9209 | 0.9833 |
| 0.0013 | 39.18 | 5250 | 0.1273 | 0.9058 | 0.9249 | 0.9153 | 0.9823 |
| 0.0007 | 41.04 | 5500 | 0.1296 | 0.9053 | 0.9261 | 0.9156 | 0.9824 |
| 0.0007 | 42.91 | 5750 | 0.1326 | 0.9083 | 0.9303 | 0.9192 | 0.9830 |
| 0.0006 | 44.78 | 6000 | 0.1328 | 0.9088 | 0.9270 | 0.9178 | 0.9828 |
| 0.0006 | 46.64 | 6250 | 0.1362 | 0.9103 | 0.9314 | 0.9207 | 0.9831 |
| 0.0004 | 48.51 | 6500 | 0.1351 | 0.9132 | 0.9288 | 0.9209 | 0.9830 |
| 0.0005 | 50.37 | 6750 | 0.1325 | 0.9138 | 0.9270 | 0.9204 | 0.9830 |
| 0.0005 | 52.24 | 7000 | 0.1330 | 0.9115 | 0.9272 | 0.9193 | 0.9832 |
| 0.0005 | 54.1 | 7250 | 0.1356 | 0.9119 | 0.9270 | 0.9194 | 0.9833 |
| 0.0004 | 55.97 | 7500 | 0.1367 | 0.9132 | 0.9274 | 0.9202 | 0.9832 |
| 0.0003 | 57.84 | 7750 | 0.1380 | 0.9141 | 0.9288 | 0.9214 | 0.9832 |
| 0.0004 | 59.7 | 8000 | 0.1380 | 0.9138 | 0.9289 | 0.9213 | 0.9832 |
### Eval results
| | Precision | Recall | F1 | Accuracy |
|:----:|:---------:|:------:|:------:|:--------:|
| eval | 0.9138 | 0.9289 | 0.9213 | 0.9832 |
| test | 0.9097 | 0.9232 | 0.9164 | 0.9808 |
### Framework versions
- Transformers 4.29.2
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
## Authors
Dimitris Papaevagelou - [@andefined](https://huggingface.co/andefined)
## About Us
[Civic Information Office](https://cvcio.org/) is a Non Profit Organization based in Athens, Greece focusing on creating technology and research products for the public interest.