Added comparison to null distribution for stats

#9
by davidjwen - opened
Files changed (1) hide show
  1. in_silico_perturber_stats.py +337 -0
in_silico_perturber_stats.py ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Geneformer in silico perturber stats generator.
3
+
4
+ Usage:
5
+ from geneformer import InSilicoPerturberStats
6
+ ispstats = InSilicoPerturberStats(mode="goal_state_shift",
7
+ combos=0,
8
+ anchor_gene=None,
9
+ cell_states_to_model={"disease":(["dcm"],["ctrl"],["hcm"])})
10
+ ispstats.get_stats("path/to/input_data",
11
+ None,
12
+ "path/to/output_directory",
13
+ "output_prefix")
14
+ """
15
+
16
+
17
+ import os
18
+ import logging
19
+ import numpy as np
20
+ import pandas as pd
21
+ import pickle
22
+ import statsmodels.stats.multitest as smt
23
+ from pathlib import Path
24
+ from scipy.stats import ranksums
25
+ from tqdm.notebook import trange
26
+
27
+ from .tokenizer import TOKEN_DICTIONARY_FILE
28
+
29
+ GENE_NAME_ID_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
30
+
31
+ logger = logging.getLogger(__name__)
32
+
33
+ # invert dictionary keys/values
34
+ def invert_dict(dictionary):
35
+ return {v: k for k, v in dictionary.items()}
36
+
37
+ # read raw dictionary files
38
+ def read_dictionaries(dir, cell_or_gene_emb):
39
+ dict_list = []
40
+ for file in os.listdir(dir):
41
+ # process only _raw.pickle files
42
+ if file.endswith("_raw.pickle"):
43
+ with open(f"{dir}/{file}", "rb") as fp:
44
+ cos_sims_dict = pickle.load(fp)
45
+ if cell_or_gene_emb == "cell":
46
+ cell_emb_dict = {k: v for k,
47
+ v in cos_sims_dict.items() if v and "cell_emb" in k}
48
+ dict_list += [cell_emb_dict]
49
+ return dict_list
50
+
51
+ # get complete gene list
52
+ def get_gene_list(dict_list):
53
+ gene_set = set()
54
+ for dict_i in dict_list:
55
+ gene_set.update([k[0] for k, v in dict_i.items() if v])
56
+ gene_list = list(gene_set)
57
+ gene_list.sort()
58
+ return gene_list
59
+
60
+ def n_detections(token, dict_list):
61
+ cos_sim_megalist = []
62
+ for dict_i in dict_list:
63
+ cos_sim_megalist += dict_i.get((token, "cell_emb"),[])
64
+ return len(cos_sim_megalist)
65
+
66
+ def get_fdr(pvalues):
67
+ return list(smt.multipletests(pvalues, alpha=0.05, method="fdr_bh")[1])
68
+
69
+ def isp_stats(cos_sims_df, dict_list, cell_states_to_model):
70
+ random_tuples = []
71
+ for i in trange(cos_sims_df.shape[0]):
72
+ token = cos_sims_df["Gene"][i]
73
+ for dict_i in dict_list:
74
+ random_tuples += dict_i.get((token, "cell_emb"),[])
75
+ goal_end_random_megalist = [goal_end for goal_end,alt_end,start_state in random_tuples]
76
+ alt_end_random_megalist = [alt_end for goal_end,alt_end,start_state in random_tuples]
77
+ start_state_random_megalist = [start_state for goal_end,alt_end,start_state in random_tuples]
78
+
79
+ # downsample to improve speed of ranksums
80
+ if len(goal_end_random_megalist) > 100_000:
81
+ random.seed(42)
82
+ goal_end_random_megalist = random.sample(goal_end_random_megalist, k=100_000)
83
+ if len(alt_end_random_megalist) > 100_000:
84
+ random.seed(42)
85
+ alt_end_random_megalist = random.sample(alt_end_random_megalist, k=100_000)
86
+ if len(start_state_random_megalist) > 100_000:
87
+ random.seed(42)
88
+ start_state_random_megalist = random.sample(start_state_random_megalist, k=100_000)
89
+
90
+ names=["Gene",
91
+ "Gene_name",
92
+ "Ensembl_ID",
93
+ "Shift_from_goal_end",
94
+ "Shift_from_alt_end",
95
+ "Goal_end_vs_random_pval",
96
+ "Alt_end_vs_random_pval"]
97
+ cos_sims_full_df = pd.DataFrame(columns=names)
98
+
99
+ for i in trange(cos_sims_df.shape[0]):
100
+ token = cos_sims_df["Gene"][i]
101
+ name = cos_sims_df["Gene_name"][i]
102
+ ensembl_id = cos_sims_df["Ensembl_ID"][i]
103
+ token_tuples = []
104
+
105
+ for dict_i in dict_list:
106
+ token_tuples += dict_i.get((token, "cell_emb"),[])
107
+
108
+ goal_end_cos_sim_megalist = [goal_end for goal_end,alt_end,start_state in token_tuples]
109
+ alt_end_cos_sim_megalist = [alt_end for goal_end,alt_end,start_state in token_tuples]
110
+
111
+ mean_goal_end = np.mean(goal_end_cos_sim_megalist)
112
+ mean_alt_end = np.mean(alt_end_cos_sim_megalist)
113
+
114
+ pval_goal_end = ranksums(goal_end_random_megalist,goal_end_cos_sim_megalist).pvalue
115
+ pval_alt_end = ranksums(alt_end_random_megalist,alt_end_cos_sim_megalist).pvalue
116
+
117
+ data_i = [token,
118
+ name,
119
+ ensembl_id,
120
+ mean_goal_end,
121
+ mean_alt_end,
122
+ pval_goal_end,
123
+ pval_alt_end]
124
+
125
+ cos_sims_df_i = pd.DataFrame(dict(zip(names,data_i)),index=[i])
126
+ cos_sims_full_df = pd.concat([cos_sims_full_df,cos_sims_df_i])
127
+
128
+ cos_sims_full_df["Goal_end_FDR"] = get_fdr(list(cos_sims_full_df["Goal_end_vs_random_pval"]))
129
+ cos_sims_full_df["Alt_end_FDR"] = get_fdr(list(cos_sims_full_df["Alt_end_vs_random_pval"]))
130
+
131
+ return cos_sims_full_df
132
+
133
+ def isp_stats_vs_null(cos_sims_df, dict_list, null_dict_list):
134
+ cos_sims_full_df = cos_sims_df.copy()
135
+
136
+ # I think pre-initializing is faster than concatenating
137
+ cos_sims_full_df["Shift_avg"] = np.empty(cos_sims_df.shape[0], dtype=float)
138
+ cos_sims_full_df["Shift_pval"] = np.empty(cos_sims_df.shape[0], dtype=float)
139
+ cos_sims_full_df["Null_avg"] = np.empty(cos_sims_df.shape[0], dtype=float)
140
+ cos_sims_full_df["N_Detections"] = np.empty(cos_sims_df.shape[0], dtype="uint_32")
141
+ cos_sims_full_df["N_Detections_null"] = np.empty(cos_sims_df.shape[0], dtype="uint_32")
142
+
143
+ for i in trange(cos_sims_df.shape[0]):
144
+ token = cos_sims_df["Gene"][i]
145
+ name = cos_sims_df["Gene_name"][i]
146
+ ensembl_id = cos_sims_df["Ensembl_ID"][i]
147
+ token_shifts = []
148
+ null_shifts = []
149
+
150
+ for dict_i in dict_list:
151
+ token_tuples += dict_i.get((token, "cell_emb"),[])
152
+
153
+ for dict_i in null_dict_list:
154
+ null_tuples += dict_i.get((token, "cell_emb"),[])
155
+
156
+ cos_sims_full_df.loc[i, "Shift_pvalue"] = ranksums(token_shifts,
157
+ null_shifts, nan_policy="omit").pvalue
158
+ cos_sims_full_df.loc[i, "Shift_avg"] = np.mean(token_shifts)
159
+ cos_sims_full_df.loc[i, "Null_avg"] = np.mean(null_shifts)
160
+ cos_sims_full_df.loc[i, "N_Detections"] = len(token_shifts)
161
+ cos_sims_full_df.loc[i, "N_Detections_null"] = len(null_shifts)
162
+
163
+ cos_sims_full_df["Shift_FDR"] = get_fdr(cos_sims_full_df["Shift_pvalue"])
164
+ return cos_sims_full_df
165
+
166
+ class InSilicoPerturberStats:
167
+ valid_option_dict = {
168
+ "mode": {"goal_state_shift","vs_null","vs_random"},
169
+ "combos": {0,1,2},
170
+ "anchor_gene": {None, str},
171
+ "cell_states_to_model": {None, dict},
172
+ }
173
+ def __init__(
174
+ self,
175
+ mode="vs_random",
176
+ combos=0,
177
+ anchor_gene=None,
178
+ cell_states_to_model=None,
179
+ token_dictionary_file=TOKEN_DICTIONARY_FILE,
180
+ gene_name_id_dictionary_file=GENE_NAME_ID_DICTIONARY_FILE,
181
+ ):
182
+ """
183
+ Initialize in silico perturber stats generator.
184
+
185
+ Parameters
186
+ ----------
187
+ mode : {"goal_state_shift","vs_null","vs_random"}
188
+ Type of stats.
189
+ "goal_state_shift": perturbation vs. random for desired cell state shift
190
+ "vs_null": perturbation vs. null from provided null distribution dataset
191
+ "vs_random": perturbation vs. random gene perturbations in that cell (no goal direction)
192
+ combos : {0,1,2}
193
+ Whether to perturb genes individually (0), in pairs (1), or in triplets (2).
194
+ anchor_gene : None, str
195
+ ENSEMBL ID of gene to use as anchor in combination perturbations.
196
+ For example, if combos=1 and anchor_gene="ENSG00000148400":
197
+ anchor gene will be perturbed in combination with each other gene.
198
+ cell_states_to_model: None, dict
199
+ Cell states to model if testing perturbations that achieve goal state change.
200
+ Single-item dictionary with key being cell attribute (e.g. "disease").
201
+ Value is tuple of three lists indicating start state, goal end state, and alternate possible end states.
202
+ token_dictionary_file : Path
203
+ Path to pickle file containing token dictionary (Ensembl ID:token).
204
+ gene_name_id_dictionary_file : Path
205
+ Path to pickle file containing gene name to ID dictionary (gene name:Ensembl ID).
206
+ """
207
+
208
+ self.mode = mode
209
+ self.combos = combos
210
+ self.anchor_gene = anchor_gene
211
+ self.cell_states_to_model = cell_states_to_model
212
+
213
+ self.validate_options()
214
+
215
+ # load token dictionary (Ensembl IDs:token)
216
+ with open(token_dictionary_file, "rb") as f:
217
+ self.gene_token_dict = pickle.load(f)
218
+
219
+ # load gene name dictionary (gene name:Ensembl ID)
220
+ with open(gene_name_id_dictionary_file, "rb") as f:
221
+ self.gene_name_id_dict = pickle.load(f)
222
+
223
+ if anchor_gene is None:
224
+ self.anchor_token = None
225
+ else:
226
+ self.anchor_token = self.gene_token_dict[self.anchor_gene]
227
+
228
+ def validate_options(self):
229
+ for attr_name,valid_options in self.valid_option_dict.items():
230
+ attr_value = self.__dict__[attr_name]
231
+ if type(attr_value) not in {list, dict}:
232
+ if attr_value in valid_options:
233
+ continue
234
+ valid_type = False
235
+ for option in valid_options:
236
+ if (option in [int,list,dict]) and isinstance(attr_value, option):
237
+ valid_type = True
238
+ break
239
+ if valid_type:
240
+ continue
241
+ logger.error(
242
+ f"Invalid option for {attr_name}. " \
243
+ f"Valid options for {attr_name}: {valid_options}"
244
+ )
245
+ raise
246
+
247
+ if self.cell_states_to_model is not None:
248
+ if (len(self.cell_states_to_model.items()) == 1):
249
+ for key,value in self.cell_states_to_model.items():
250
+ if (len(value) == 3) and isinstance(value, tuple):
251
+ if isinstance(value[0],list) and isinstance(value[1],list) and isinstance(value[2],list):
252
+ if len(value[0]) == 1 and len(value[1]) == 1:
253
+ all_values = value[0]+value[1]+value[2]
254
+ if len(all_values) == len(set(all_values)):
255
+ continue
256
+ else:
257
+ logger.error(
258
+ "Cell states to model must be a single-item dictionary with " \
259
+ "key being cell attribute (e.g. 'disease') and value being " \
260
+ "tuple of three lists indicating start state, goal end state, and alternate possible end states. " \
261
+ "Values should all be unique. " \
262
+ "For example: {'disease':(['start_state'],['ctrl'],['alt_end'])}")
263
+ raise
264
+ if self.anchor_gene is not None:
265
+ self.anchor_gene = None
266
+ logger.warning(
267
+ "anchor_gene set to None. " \
268
+ "Currently, anchor gene not available " \
269
+ "when modeling multiple cell states.")
270
+
271
+ def get_stats(self,
272
+ input_data_directory,
273
+ null_dist_data_directory,
274
+ output_directory,
275
+ output_prefix):
276
+ """
277
+ Get stats for in silico perturbation data and save as results in output_directory.
278
+
279
+ Parameters
280
+ ----------
281
+ input_data_directory : Path
282
+ Path to directory containing cos_sim dictionary inputs
283
+ null_dist_data_directory : Path
284
+ Path to directory containing null distribution cos_sim dictionary inputs
285
+ output_directory : Path
286
+ Path to directory where perturbation data will be saved as .csv
287
+ output_prefix : str
288
+ Prefix for output .dataset
289
+ """
290
+
291
+ if self.mode not in ["goal_state_shift", "vs_null"]:
292
+ logger.error(
293
+ "Currently, only modes available are stats for goal_state_shift \
294
+ and comparing vs a null distribution.")
295
+ raise
296
+
297
+ self.gene_token_id_dict = invert_dict(self.gene_token_dict)
298
+ self.gene_id_name_dict = invert_dict(self.gene_name_id_dict)
299
+
300
+ # obtain total gene list
301
+ gene_list = get_gene_list(dict_list)
302
+
303
+ # initiate results dataframe
304
+ cos_sims_df_initial = pd.DataFrame({"Gene": gene_list,
305
+ "Gene_name": [self.token_to_gene_name(item) \
306
+ for item in gene_list], \
307
+ "Ensembl_ID": [self.gene_token_id_dict[genes[1]] \
308
+ if isinstance(genes,tuple) else \
309
+ self.gene_token_id_dict[genes] \
310
+ for genes in gene_list]}, \
311
+ index=[i for i in range(len(gene_list))])
312
+
313
+ dict_list = read_dictionaries(input_data_directory, "cell")
314
+ if self.mode == "goal_state_shift":
315
+ cos_sims_df = isp_stats(cos_sims_df_initial, dict_list, self.cell_states_to_model)
316
+
317
+ # quantify number of detections of each gene
318
+ cos_sims_df["N_Detections"] = [n_detections(i, dict_list) for i in cos_sims_df["Gene"]]
319
+
320
+ # sort by shift to desired state
321
+ cos_sims_df = cos_sims_df.sort_values(by=["Shift_from_goal_end",
322
+ "Goal_end_FDR"])
323
+ elif self.mode == "vs_null":
324
+ dict_list = read_dictionaries(input_data_directory, "cell")
325
+ null_dict_list = read_dictionaries(null_dist_data_directory, "cell")
326
+ cos_sims_df = isp_stats_vs_null(cos_sims_df_initial, dict_list,
327
+ null_dict_list)
328
+
329
+ # save perturbation stats to output_path
330
+ output_path = (Path(output_directory) / output_prefix).with_suffix(".csv")
331
+ cos_sims_df.to_csv(output_path)
332
+
333
+ def token_to_gene_name(self, item):
334
+ if isinstance(item,int):
335
+ return self.gene_id_name_dict.get(self.gene_token_id_dict.get(item, np.nan), np.nan)
336
+ if isinstance(item,tuple):
337
+ return tuple([self.gene_id_name_dict.get(self.gene_token_id_dict.get(i, np.nan), np.nan) for i in item])