David Wen
added quality of life improvements; fixed gene similarities with cell_states_to_model
4b4547f
import itertools as it | |
import logging | |
import pickle | |
import re | |
from collections import defaultdict | |
from typing import List | |
from pathlib import Path | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import torch | |
from datasets import Dataset, load_from_disk | |
from transformers import ( | |
BertForMaskedLM, | |
BertForSequenceClassification, | |
BertForTokenClassification, | |
) | |
GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary.pkl" | |
TOKEN_DICTIONARY_FILE = Path(__file__).parent / "token_dictionary.pkl" | |
ENSEMBL_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl" | |
sns.set() | |
logger = logging.getLogger(__name__) | |
# load data and filter by defined criteria | |
def load_and_filter(filter_data, nproc, input_data_file): | |
data = load_from_disk(input_data_file) | |
if filter_data is not None: | |
data = filter_by_dict(data, filter_data, nproc) | |
return data | |
def filter_by_dict(data, filter_data, nproc): | |
for key, value in filter_data.items(): | |
def filter_data_by_criteria(example): | |
return example[key] in value | |
data = data.filter(filter_data_by_criteria, num_proc=nproc) | |
if len(data) == 0: | |
logger.error("No cells remain after filtering. Check filtering criteria.") | |
raise | |
return data | |
def filter_data_by_tokens(filtered_input_data, tokens, nproc): | |
def if_has_tokens(example): | |
return len(set(example["input_ids"]).intersection(tokens)) == len(tokens) | |
filtered_input_data = filtered_input_data.filter(if_has_tokens, num_proc=nproc) | |
return filtered_input_data | |
def logging_filtered_data_len(filtered_input_data, filtered_tokens_categ): | |
if len(filtered_input_data) == 0: | |
logger.error(f"No cells in dataset contain {filtered_tokens_categ}.") | |
raise | |
else: | |
logger.info(f"# cells with {filtered_tokens_categ}: {len(filtered_input_data)}") | |
def filter_data_by_tokens_and_log( | |
filtered_input_data, tokens, nproc, filtered_tokens_categ | |
): | |
# filter for cells with anchor gene | |
filtered_input_data = filter_data_by_tokens(filtered_input_data, tokens, nproc) | |
# logging length of filtered data | |
logging_filtered_data_len(filtered_input_data, filtered_tokens_categ) | |
return filtered_input_data | |
def filter_data_by_start_state(filtered_input_data, cell_states_to_model, nproc): | |
# confirm that start state is valid to prevent futile filtering | |
state_key = cell_states_to_model["state_key"] | |
state_values = filtered_input_data[state_key] | |
start_state = cell_states_to_model["start_state"] | |
if start_state not in state_values: | |
logger.error( | |
f"Start state {start_state} is not present " | |
f"in the dataset's {state_key} attribute." | |
) | |
raise | |
# filter for start state cells | |
def filter_for_origin(example): | |
return example[state_key] in [start_state] | |
filtered_input_data = filtered_input_data.filter(filter_for_origin, num_proc=nproc) | |
return filtered_input_data | |
def slice_by_inds_to_perturb(filtered_input_data, cell_inds_to_perturb): | |
if cell_inds_to_perturb["start"] >= len(filtered_input_data): | |
logger.error( | |
"cell_inds_to_perturb['start'] is larger than the filtered dataset." | |
) | |
raise | |
if cell_inds_to_perturb["end"] > len(filtered_input_data): | |
logger.warning( | |
"cell_inds_to_perturb['end'] is larger than the filtered dataset. \ | |
Setting to the end of the filtered dataset." | |
) | |
cell_inds_to_perturb["end"] = len(filtered_input_data) | |
filtered_input_data = filtered_input_data.select( | |
[i for i in range(cell_inds_to_perturb["start"], cell_inds_to_perturb["end"])] | |
) | |
return filtered_input_data | |
# load model to GPU | |
def load_model(model_type, num_classes, model_directory, mode): | |
if mode == "eval": | |
output_hidden_states = True | |
elif mode == "train": | |
output_hidden_states = False | |
if model_type == "Pretrained": | |
model = BertForMaskedLM.from_pretrained( | |
model_directory, | |
output_hidden_states=output_hidden_states, | |
output_attentions=False, | |
) | |
elif model_type == "GeneClassifier": | |
model = BertForTokenClassification.from_pretrained( | |
model_directory, | |
num_labels=num_classes, | |
output_hidden_states=output_hidden_states, | |
output_attentions=False, | |
) | |
elif model_type == "CellClassifier": | |
model = BertForSequenceClassification.from_pretrained( | |
model_directory, | |
num_labels=num_classes, | |
output_hidden_states=output_hidden_states, | |
output_attentions=False, | |
) | |
# if eval mode, put the model in eval mode for fwd pass | |
if mode == "eval": | |
model.eval() | |
model = model.to("cuda") | |
return model | |
def quant_layers(model): | |
layer_nums = [] | |
for name, parameter in model.named_parameters(): | |
if "layer" in name: | |
layer_nums += [int(name.split("layer.")[1].split(".")[0])] | |
return int(max(layer_nums)) + 1 | |
def get_model_input_size(model): | |
return int(re.split("\(|,", str(model.bert.embeddings.position_embeddings))[1]) | |
def flatten_list(megalist): | |
return [item for sublist in megalist for item in sublist] | |
def measure_length(example): | |
example["length"] = len(example["input_ids"]) | |
return example | |
def downsample_and_sort(data, max_ncells): | |
num_cells = len(data) | |
# if max number of cells is defined, then shuffle and subsample to this max number | |
if max_ncells is not None: | |
if num_cells > max_ncells: | |
data = data.shuffle(seed=42) | |
num_cells = max_ncells | |
data_subset = data.select([i for i in range(num_cells)]) | |
# sort dataset with largest cell first to encounter any memory errors earlier | |
data_sorted = data_subset.sort("length", reverse=True) | |
return data_sorted | |
def get_possible_states(cell_states_to_model): | |
possible_states = [] | |
for key in ["start_state", "goal_state"]: | |
possible_states += [cell_states_to_model[key]] | |
possible_states += cell_states_to_model.get("alt_states", []) | |
return possible_states | |
def forward_pass_single_cell(model, example_cell, layer_to_quant): | |
example_cell.set_format(type="torch") | |
input_data = example_cell["input_ids"] | |
with torch.no_grad(): | |
outputs = model(input_ids=input_data.to("cuda")) | |
emb = torch.squeeze(outputs.hidden_states[layer_to_quant]) | |
del outputs | |
return emb | |
def perturb_emb_by_index(emb, indices): | |
mask = torch.ones(emb.numel(), dtype=torch.bool) | |
mask[indices] = False | |
return emb[mask] | |
def delete_indices(example): | |
indices = example["perturb_index"] | |
if any(isinstance(el, list) for el in indices): | |
indices = flatten_list(indices) | |
for index in sorted(indices, reverse=True): | |
del example["input_ids"][index] | |
example["length"] = len(example["input_ids"]) | |
return example | |
# for genes_to_perturb = "all" where only genes within cell are overexpressed | |
def overexpress_indices(example): | |
indices = example["perturb_index"] | |
if any(isinstance(el, list) for el in indices): | |
indices = flatten_list(indices) | |
for index in sorted(indices, reverse=True): | |
example["input_ids"].insert(0, example["input_ids"].pop(index)) | |
example["length"] = len(example["input_ids"]) | |
return example | |
# for genes_to_perturb = list of genes to overexpress that are not necessarily expressed in cell | |
def overexpress_tokens(example, max_len): | |
# -100 indicates tokens to overexpress are not present in rank value encoding | |
if example["perturb_index"] != [-100]: | |
example = delete_indices(example) | |
[ | |
example["input_ids"].insert(0, token) | |
for token in example["tokens_to_perturb"][::-1] | |
] | |
# truncate to max input size, must also truncate original emb to be comparable | |
if len(example["input_ids"]) > max_len: | |
example["input_ids"] = example["input_ids"][0:max_len] | |
example["length"] = len(example["input_ids"]) | |
return example | |
def calc_n_overflow(max_len, example_len, tokens_to_perturb, indices_to_perturb): | |
n_to_add = len(tokens_to_perturb) - len(indices_to_perturb) | |
n_overflow = example_len + n_to_add - max_len | |
return n_overflow | |
def truncate_by_n_overflow(example): | |
new_max_len = example["length"] - example["n_overflow"] | |
example["input_ids"] = example["input_ids"][0:new_max_len] | |
example["length"] = len(example["input_ids"]) | |
return example | |
def remove_indices_from_emb(emb, indices_to_remove, gene_dim): | |
# indices_to_remove is list of indices to remove | |
indices_to_keep = [ | |
i for i in range(emb.size()[gene_dim]) if i not in indices_to_remove | |
] | |
num_dims = emb.dim() | |
emb_slice = [ | |
slice(None) if dim != gene_dim else indices_to_keep for dim in range(num_dims) | |
] | |
sliced_emb = emb[emb_slice] | |
return sliced_emb | |
def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim): | |
output_batch_list = [ | |
remove_indices_from_emb(emb_batch[i, :, :], idxes, gene_dim - 1) | |
for i, idxes in enumerate(list_of_indices_to_remove) | |
] | |
# add padding given genes are sometimes added that are or are not in original cell | |
batch_max = max([emb.size()[gene_dim - 1] for emb in output_batch_list]) | |
output_batch_list_padded = [ | |
pad_xd_tensor(emb, 0.000, batch_max, gene_dim - 1) for emb in output_batch_list | |
] | |
return torch.stack(output_batch_list_padded) | |
# removes perturbed indices | |
# need to handle the various cases where a set of genes is overexpressed | |
def remove_perturbed_indices_set( | |
emb, | |
perturb_type: str, | |
indices_to_perturb: List[List], | |
tokens_to_perturb: List[List], | |
original_lengths: List[int], | |
input_ids=None, | |
): | |
if perturb_type == "overexpress": | |
num_perturbed = len(tokens_to_perturb) | |
if num_perturbed == 1: | |
indices_to_perturb_orig = [ | |
idx if idx != [-100] else [None] for idx in indices_to_perturb | |
] | |
if all(v is [None] for v in indices_to_perturb_orig): | |
return emb | |
else: | |
indices_to_perturb_orig = [] | |
for idx_list in indices_to_perturb: | |
indices_to_perturb_orig.append( | |
[idx if idx != [-100] else [None] for idx in idx_list] | |
) | |
else: | |
indices_to_perturb_orig = indices_to_perturb | |
emb = remove_indices_from_emb_batch(emb, indices_to_perturb_orig, gene_dim=1) | |
return emb | |
def make_perturbation_batch( | |
example_cell, perturb_type, tokens_to_perturb, anchor_token, combo_lvl, num_proc | |
) -> tuple[Dataset, List[int]]: | |
if combo_lvl == 0 and tokens_to_perturb == "all": | |
if perturb_type in ["overexpress", "activate"]: | |
range_start = 1 | |
elif perturb_type in ["delete", "inhibit"]: | |
range_start = 0 | |
indices_to_perturb = [ | |
[i] for i in range(range_start, example_cell["length"][0]) | |
] | |
# elif combo_lvl > 0 and anchor_token is None: | |
## to implement | |
elif combo_lvl > 0 and (anchor_token is not None): | |
example_input_ids = example_cell["input_ids"][0] | |
anchor_index = example_input_ids.index(anchor_token[0]) | |
indices_to_perturb = [ | |
sorted([anchor_index, i]) if i != anchor_index else None | |
for i in range(example_cell["length"][0]) | |
] | |
indices_to_perturb = [item for item in indices_to_perturb if item is not None] | |
else: | |
example_input_ids = example_cell["input_ids"][0] | |
indices_to_perturb = [ | |
[example_input_ids.index(token)] if token in example_input_ids else None | |
for token in tokens_to_perturb | |
] | |
indices_to_perturb = [item for item in indices_to_perturb if item is not None] | |
# create all permutations of combo_lvl of modifiers from tokens_to_perturb | |
if combo_lvl > 0 and (anchor_token is None): | |
if tokens_to_perturb != "all": | |
if len(tokens_to_perturb) == combo_lvl + 1: | |
indices_to_perturb = [ | |
list(x) for x in it.combinations(indices_to_perturb, combo_lvl + 1) | |
] | |
else: | |
all_indices = [[i] for i in range(example_cell["length"][0])] | |
all_indices = [ | |
index for index in all_indices if index not in indices_to_perturb | |
] | |
indices_to_perturb = [ | |
[[j for i in indices_to_perturb for j in i], x] for x in all_indices | |
] | |
length = len(indices_to_perturb) | |
perturbation_dataset = Dataset.from_dict( | |
{ | |
"input_ids": example_cell["input_ids"] * length, | |
"perturb_index": indices_to_perturb, | |
} | |
) | |
if length < 400: | |
num_proc_i = 1 | |
else: | |
num_proc_i = num_proc | |
if perturb_type == "delete": | |
perturbation_dataset = perturbation_dataset.map( | |
delete_indices, num_proc=num_proc_i | |
) | |
elif perturb_type == "overexpress": | |
perturbation_dataset = perturbation_dataset.map( | |
overexpress_indices, num_proc=num_proc_i | |
) | |
perturbation_dataset = perturbation_dataset.map(measure_length, num_proc=num_proc_i) | |
return perturbation_dataset, indices_to_perturb | |
# perturbed cell emb removing the activated/overexpressed/inhibited gene emb | |
# so that only non-perturbed gene embeddings are compared to each other | |
# in original or perturbed context | |
def make_comparison_batch(original_emb_batch, indices_to_perturb, perturb_group): | |
all_embs_list = [] | |
# if making comparison batch for multiple perturbations in single cell | |
if perturb_group is False: | |
# squeeze if single cell | |
if original_emb_batch.ndim == 3 and original_emb_batch.size()[0] == 1: | |
original_emb_batch = torch.squeeze(original_emb_batch) | |
original_emb_list = [original_emb_batch] * len(indices_to_perturb) | |
# if making comparison batch for single perturbation in multiple cells | |
elif perturb_group is True: | |
original_emb_list = original_emb_batch | |
for original_emb, indices in zip(original_emb_list, indices_to_perturb): | |
if indices == [-100]: | |
all_embs_list += [original_emb[:]] | |
continue | |
emb_list = [] | |
start = 0 | |
if any(isinstance(el, list) for el in indices): | |
indices = flatten_list(indices) | |
# removes indices that were perturbed from the original embedding | |
for i in sorted(indices): | |
emb_list += [original_emb[start:i]] | |
start = i + 1 | |
emb_list += [original_emb[start:]] | |
all_embs_list += [torch.cat(emb_list)] | |
len_set = set([emb.size()[0] for emb in all_embs_list]) | |
if len(len_set) > 1: | |
max_len = max(len_set) | |
all_embs_list = [pad_2d_tensor(emb, None, max_len, 0) for emb in all_embs_list] | |
return torch.stack(all_embs_list) | |
def pad_list(input_ids, pad_token_id, max_len): | |
input_ids = np.pad( | |
input_ids, | |
(0, max_len - len(input_ids)), | |
mode="constant", | |
constant_values=pad_token_id, | |
) | |
return input_ids | |
def pad_xd_tensor(tensor, pad_token_id, max_len, dim): | |
padding_length = max_len - tensor.size()[dim] | |
# Construct a padding configuration where all padding values are 0, except for the padding dimension | |
# 2 * number of dimensions (padding before and after for every dimension) | |
pad_config = [0] * 2 * tensor.dim() | |
# Set the padding after the desired dimension to the calculated padding length | |
pad_config[-2 * dim - 1] = padding_length | |
return torch.nn.functional.pad( | |
tensor, pad=pad_config, mode="constant", value=pad_token_id | |
) | |
def pad_tensor(tensor, pad_token_id, max_len): | |
tensor = torch.nn.functional.pad( | |
tensor, pad=(0, max_len - tensor.numel()), mode="constant", value=pad_token_id | |
) | |
return tensor | |
def pad_2d_tensor(tensor, pad_token_id, max_len, dim): | |
if dim == 0: | |
pad = (0, 0, 0, max_len - tensor.size()[dim]) | |
elif dim == 1: | |
pad = (0, max_len - tensor.size()[dim], 0, 0) | |
tensor = torch.nn.functional.pad( | |
tensor, pad=pad, mode="constant", value=pad_token_id | |
) | |
return tensor | |
def pad_3d_tensor(tensor, pad_token_id, max_len, dim): | |
if dim == 0: | |
raise Exception("dim 0 usually does not need to be padded.") | |
if dim == 1: | |
pad = (0, 0, 0, max_len - tensor.size()[dim]) | |
elif dim == 2: | |
pad = (0, max_len - tensor.size()[dim], 0, 0) | |
tensor = torch.nn.functional.pad( | |
tensor, pad=pad, mode="constant", value=pad_token_id | |
) | |
return tensor | |
def pad_or_truncate_encoding(encoding, pad_token_id, max_len): | |
if isinstance(encoding, torch.Tensor): | |
encoding_len = encoding.size()[0] | |
elif isinstance(encoding, list): | |
encoding_len = len(encoding) | |
if encoding_len > max_len: | |
encoding = encoding[0:max_len] | |
elif encoding_len < max_len: | |
if isinstance(encoding, torch.Tensor): | |
encoding = pad_tensor(encoding, pad_token_id, max_len) | |
elif isinstance(encoding, list): | |
encoding = pad_list(encoding, pad_token_id, max_len) | |
return encoding | |
# pad list of tensors and convert to tensor | |
def pad_tensor_list( | |
tensor_list, | |
dynamic_or_constant, | |
pad_token_id, | |
model_input_size, | |
dim=None, | |
padding_func=None, | |
): | |
# determine maximum tensor length | |
if dynamic_or_constant == "dynamic": | |
max_len = max([tensor.squeeze().numel() for tensor in tensor_list]) | |
elif isinstance(dynamic_or_constant, int): | |
max_len = dynamic_or_constant | |
else: | |
max_len = model_input_size | |
logger.warning( | |
"If padding style is constant, must provide integer value. " | |
f"Setting padding to max input size {model_input_size}." | |
) | |
# pad all tensors to maximum length | |
if dim is None: | |
tensor_list = [ | |
pad_tensor(tensor, pad_token_id, max_len) for tensor in tensor_list | |
] | |
else: | |
tensor_list = [ | |
padding_func(tensor, pad_token_id, max_len, dim) for tensor in tensor_list | |
] | |
# return stacked tensors | |
if padding_func != pad_3d_tensor: | |
return torch.stack(tensor_list) | |
else: | |
return torch.cat(tensor_list, 0) | |
def gen_attention_mask(minibatch_encoding, max_len=None): | |
if max_len is None: | |
max_len = max(minibatch_encoding["length"]) | |
original_lens = minibatch_encoding["length"] | |
attention_mask = [ | |
[1] * original_len + [0] * (max_len - original_len) | |
if original_len <= max_len | |
else [1] * max_len | |
for original_len in original_lens | |
] | |
return torch.tensor(attention_mask, device="cuda") | |
# get cell embeddings excluding padding | |
def mean_nonpadding_embs(embs, original_lens, dim=1): | |
# create a mask tensor based on padding lengths | |
mask = torch.arange(embs.size(dim), device=embs.device) < original_lens.unsqueeze(1) | |
if embs.dim() == 3: | |
# fill the masked positions in embs with zeros | |
masked_embs = embs.masked_fill(~mask.unsqueeze(2), 0.0) | |
# compute the mean across the non-padding dimensions | |
mean_embs = masked_embs.sum(dim) / original_lens.view(-1, 1).float() | |
elif embs.dim() == 2: | |
masked_embs = embs.masked_fill(~mask, 0.0) | |
mean_embs = masked_embs.sum(dim) / original_lens.float() | |
return mean_embs | |
# get cell embeddings when there is no padding | |
def compute_nonpadded_cell_embedding(embs, cell_emb_style): | |
if cell_emb_style == "mean_pool": | |
return torch.mean(embs, dim=embs.ndim - 2) | |
# quantify shifts for a set of genes | |
def quant_cos_sims( | |
perturbation_emb, | |
original_emb, | |
cell_states_to_model, | |
state_embs_dict, | |
emb_mode="gene", | |
): | |
if emb_mode == "gene": | |
cos = torch.nn.CosineSimilarity(dim=2) | |
elif emb_mode == "cell": | |
cos = torch.nn.CosineSimilarity(dim=1) | |
# if emb_mode == "gene", can only calculate gene cos sims | |
# against original cell anyways | |
if cell_states_to_model is None or emb_mode == "gene": | |
cos_sims = cos(perturbation_emb, original_emb).to("cuda") | |
elif cell_states_to_model is not None and emb_mode == "cell": | |
possible_states = get_possible_states(cell_states_to_model) | |
cos_sims = dict(zip(possible_states, [[] for _ in range(len(possible_states))])) | |
for state in possible_states: | |
cos_sims[state] = cos_sim_shift( | |
original_emb, | |
perturbation_emb, | |
state_embs_dict[state].to("cuda"), # required to move to cuda here | |
cos, | |
) | |
return cos_sims | |
# calculate cos sim shift of perturbation with respect to origin and alternative cell | |
def cos_sim_shift(original_emb, perturbed_emb, end_emb, cos): | |
origin_v_end = cos(original_emb, end_emb) | |
perturb_v_end = cos(perturbed_emb, end_emb) | |
return perturb_v_end - origin_v_end | |
def concatenate_cos_sims(cos_sims): | |
if isinstance(cos_sims, list): | |
return torch.cat(cos_sims) | |
else: | |
for state in cos_sims.keys(): | |
cos_sims[state] = torch.cat(cos_sims[state]) | |
return cos_sims | |
def write_perturbation_dictionary(cos_sims_dict: defaultdict, output_path_prefix: str): | |
with open(f"{output_path_prefix}_raw.pickle", "wb") as fp: | |
pickle.dump(cos_sims_dict, fp) | |
def tensor_list_to_pd(tensor_list): | |
tensor = torch.cat(tensor_list).cpu().numpy() | |
df = pd.DataFrame(tensor) | |
return df | |
def validate_cell_states_to_model(cell_states_to_model): | |
if cell_states_to_model is not None: | |
if len(cell_states_to_model.items()) == 1: | |
logger.warning( | |
"The single value dictionary for cell_states_to_model will be " | |
"replaced with a dictionary with named keys for start, goal, and alternate states. " | |
"Please specify state_key, start_state, goal_state, and alt_states " | |
"in the cell_states_to_model dictionary for future use. " | |
"For example, cell_states_to_model={" | |
"'state_key': 'disease', " | |
"'start_state': 'dcm', " | |
"'goal_state': 'nf', " | |
"'alt_states': ['hcm', 'other1', 'other2']}" | |
) | |
for key, value in cell_states_to_model.items(): | |
if (len(value) == 3) and isinstance(value, tuple): | |
if ( | |
isinstance(value[0], list) | |
and isinstance(value[1], list) | |
and isinstance(value[2], list) | |
): | |
if len(value[0]) == 1 and len(value[1]) == 1: | |
all_values = value[0] + value[1] + value[2] | |
if len(all_values) == len(set(all_values)): | |
continue | |
# reformat to the new named key format | |
state_values = flatten_list(list(cell_states_to_model.values())) | |
cell_states_to_model = { | |
"state_key": list(cell_states_to_model.keys())[0], | |
"start_state": state_values[0][0], | |
"goal_state": state_values[1][0], | |
"alt_states": state_values[2:][0], | |
} | |
elif set(cell_states_to_model.keys()).issuperset( | |
{"state_key", "start_state", "goal_state"} | |
): | |
if ( | |
(cell_states_to_model["state_key"] is None) | |
or (cell_states_to_model["start_state"] is None) | |
or (cell_states_to_model["goal_state"] is None) | |
): | |
logger.error( | |
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model." | |
) | |
raise | |
if ( | |
cell_states_to_model["start_state"] | |
== cell_states_to_model["goal_state"] | |
): | |
logger.error("All states must be unique.") | |
raise | |
if "alt_states" in set(cell_states_to_model.keys()): | |
if cell_states_to_model["alt_states"] is not None: | |
if not isinstance(cell_states_to_model["alt_states"], list): | |
logger.error( | |
"cell_states_to_model['alt_states'] must be a list (even if it is one element)." | |
) | |
raise | |
if len(cell_states_to_model["alt_states"]) != len( | |
set(cell_states_to_model["alt_states"]) | |
): | |
logger.error("All states must be unique.") | |
raise | |
else: | |
cell_states_to_model["alt_states"] = [] | |
else: | |
logger.error( | |
"cell_states_to_model must only have the following four keys: " | |
"'state_key', 'start_state', 'goal_state', 'alt_states'." | |
"For example, cell_states_to_model={" | |
"'state_key': 'disease', " | |
"'start_state': 'dcm', " | |
"'goal_state': 'nf', " | |
"'alt_states': ['hcm', 'other1', 'other2']}" | |
) | |
raise | |
class GeneIdHandler: | |
def __init__(self, raise_errors=False): | |
def invert_dict(dict_obj): | |
return {v:k for k,v in dict_obj.items()} | |
self.raise_errors = raise_errors | |
with open(TOKEN_DICTIONARY_FILE, 'rb') as f: | |
self.gene_token_dict = pickle.load(f) | |
self.token_gene_dict = invert_dict(self.gene_token_dict) | |
with open(ENSEMBL_DICTIONARY_FILE, 'rb') as f: | |
self.id_gene_dict = pickle.load(f) | |
self.gene_id_dict = invert_dict(self.id_gene_dict) | |
def ens_to_token(self, ens_id): | |
if not self.raise_errors: | |
return self.gene_token_dict.get(ens_id, ens_id) | |
else: | |
return self.gene_token_dict[ens_id] | |
def token_to_ens(self, token): | |
if not self.raise_errors: | |
return self.token_gene_dict.get(token, token) | |
else: | |
return self.token_gene_dict[token] | |
def ens_to_symbol(self, ens_id): | |
if not self.raise_errors: | |
return self.gene_id_dict.get(ens_id, ens_id) | |
else: | |
return self.gene_id_dict[ens_id] | |
def symbol_to_ens(self, symbol): | |
if not self.raise_errors: | |
return self.id_gene_dict.get(symbol, symbol) | |
else: | |
return self.id_gene_dict[symbol] | |
def token_to_symbol(self, token): | |
return self.ens_to_symbol(self.token_to_ens(token)) | |
def symbol_to_token(self, symbol): | |
return self.ens_to_token(self.symbol_to_ens(symbol)) | |