metadata
language:
- es
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- ctam8736/papi_asr
metrics:
- wer
model-index:
- name: Whisper Small Papi/Es
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Papi ASR Test
type: ctam8736/papi_asr
args: 'config: es, split: test'
metrics:
- name: Wer
type: wer
value: 22.26516425326875
Whisper Small Papi/Es
This model is a fine-tuned version of openai/whisper-tiny on the Papi ASR Test dataset. It achieves the following results on the evaluation set:
- Loss: 0.2038
- Wer: 22.2652
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8909 | 0.34 | 200 | 0.8337 | 59.4875 |
0.4264 | 0.69 | 400 | 0.4114 | 33.3977 |
0.2452 | 1.03 | 600 | 0.2663 | 26.1676 |
0.1953 | 1.38 | 800 | 0.2188 | 24.0369 |
0.1699 | 1.72 | 1000 | 0.2038 | 22.2652 |
Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0