Spaetzle
Collection
German-English models, mostly merged, some sft/dpo
β’
117 items
β’
Updated
β’
1
This is a merge of the following models:
It attempts a compromise in usefulness for German and English tasks.
For GGUF quants see cstr/llama3-8b-spaetzle-v33-GGUF,
It achieves on EQ-Bench v2_de as q4km (old version without pre-tokenizer-fix) quants 66.59 (171 of 171 parseable) and 73.17 on v2 (english) (171/171).
For the int4-inc quants:
Benchmark | Score |
---|---|
Average | 66.13 |
ARC-c | 59.81 |
ARC-e | 85.27 |
Boolq | 84.10 |
HellaSwag | 62.47 |
Lambada | 73.28 |
MMLU | 64.11 |
OpenbookQA | 37.2 |
Piqa | 80.30 |
TruthfulQA | 50.21 |
Winogrande | 73.72 |
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
mlabonne/Daredevil-8B π | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 |
cstr/llama3-8b-spaetzle-v33 π | 55.26 | 42.61 | 73.9 | 59.28 | 45.25 |
mlabonne/Daredevil-8B-abliterated π | 55.06 | 43.29 | 73.33 | 57.47 | 46.17 |
NousResearch/Hermes-2-Theta-Llama-3-8B π | 54.28 | 43.9 | 72.62 | 56.36 | 44.23 |
openchat/openchat-3.6-8b-20240522 π | 53.49 | 44.03 | 73.67 | 49.78 | 46.48 |
mlabonne/Llama-3-8B-Instruct-abliterated-dpomix π | 52.26 | 41.6 | 69.95 | 54.22 | 43.26 |
meta-llama/Meta-Llama-3-8B-Instruct π | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
failspy/Meta-Llama-3-8B-Instruct-abliterated-v3 π | 51.21 | 40.23 | 69.5 | 52.44 | 42.69 |
mlabonne/OrpoLlama-3-8B π | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
meta-llama/Meta-Llama-3-8B π | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
models:
- model: cstr/llama3-8b-spaetzle-v20
# no parameters necessary for base model
- model: cstr/llama3-8b-spaetzle-v31
parameters:
density: 0.65
weight: 0.25
- model: cstr/llama3-8b-spaetzle-v28
parameters:
density: 0.65
weight: 0.25
- model: cstr/llama3-8b-spaetzle-v26
parameters:
density: 0.65
weight: 0.15
merge_method: dare_ties
base_model: cstr/llama3-8b-spaetzle-v20
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/llama3-8b-spaetzle-v33"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])