cssupport's picture
Update README.md
6b5c384
metadata
license: apache-2.0
language:
  - en
pipeline_tag: feature-extraction

Model Card for Model ID

This model is an example on how to handle multi-target regression problem using llms. Model takes in tweet,stock ticker, month, last_price and volume for a stock (around the tweet was publish) and returns 1,2,3 and 7 day returns and 10 day annualized volatility. Model uses feature vectors output by the tweet text (mobile-bert output), numerical (last price and volume), and categorical(stock ticker and month) sub-components then are concatenated into a single feature vector which is fed into a final ouput layers. Used google/mobilebert-uncased for text feature extraction (MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks). This is again a very very light model (100mb), used following dataset from Kaggle called Tweet Sentiment's Impact on Stock Returns (by THE DEVASTATOR). Disclaimer: This model should not be used for trading. Data source is not verified, assumption is that data is synthetically generated. This is just an example how to handle multi-target regression problem. Contact us for more info: [email protected]

Model Details

Model Description

Model takes in tweet,stock ticker, month, last_price and volume for a stock (around the tweet was publish) and returns 1,2,3 and 7 day returns and 10 day annualized volatility. Model uses feature vectors output by the tweet text (mobile-bert output), numerical (last price and volume), and categorical(stock ticker and month) sub-components then are concatenated into a single feature vector which is fed into a final ouput layers. Model is trainded on 600k rows.

Model Sources

Please refer google/mobilebert-uncased for Model Sources.

How to Get Started with the Model

Use the code below to get started with the model. hugging face library is currently not working (will fix it an update the model card). You will need to download the model and then load it manually. Use the code below

from transformers import AutoTokenizer
from sklearn.preprocessing import LabelEncoder
import torch
from sklearn.preprocessing import LabelEncoder
import joblib


# Initialize the BERT tokenizer
tokenizer = AutoTokenizer.from_pretrained('google/mobilebert-uncased')
# Load the model
model = torch.load('pytorch_model.pt')
#load the stock enoder
#list of ticker supported - ['21CF', 'ASOS', 'AT&T', 'Adobe', 'Allianz', 'Amazon', 'American Express', 'Apple', 'AstraZeneca', 'Audi', 'Aviva', 'BASF', 'BMW', 'BP', 'Bank of America', 'Bayer', 'BlackRock', 'Boeing', 'Burberry', 'CBS', 'CVS Health', 'Cardinal Health', 'Carrefour', 'Chevron', 'Cisco', 'Citigroup', 'CocaCola', 'Colgate', 'Comcast', 'Costco', 'Danone', 'Deutsche Bank', 'Disney', 'Equinor', 'Expedia', 'Exxon', 'Facebook', 'FedEx', 'Ford', 'GSK', 'General Electric', 'Gillette', 'Goldman Sachs', 'Google', 'Groupon', 'H&M', 'HP', 'HSBC', 'Heineken', 'Home Depot', 'Honda', 'Hyundai', 'IBM', 'Intel', 'JPMorgan', 'John Deere', "Kellogg's", 'Kroger', "L'Oreal", 'Mastercard', "McDonald's", 'Microsoft', 'Morgan Stanley', 'Nestle', 'Netflix', 'Next', 'Nike', 'Nissan', 'Oracle', 'P&G', 'PayPal', 'Pepsi', 'Pfizer', 'Reuters', 'Ryanair', 'SAP', 'Samsung', 'Santander', 'Shell', 'Siemens', 'Sony', 'Starbucks', 'TMobile', 'Tesco', 'Thales', 'Toyota', 'TripAdvisor', 'UPS', 'Verizon', 'Viacom', 'Visa', 'Vodafone', 'Volkswagen', 'Walmart', 'Wells Fargo', 'Yahoo', 'adidas', 'bookingcom', 'eBay', 'easyJet', 'salesforce.com']
stock_encoder = joblib.load("stock_encoder.pkl")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


def preprocess_text(raw_text):
    tweet_data = tokenizer.batch_encode_plus(
        [raw_text],
        padding=True,
        return_attention_mask=True,
        truncation=True,
        max_length=512
    )
    return tweet_data['input_ids'][0], tweet_data['attention_mask'][0]


def make_prediction(tweet, stock, month, last_price, volume):
    # Preprocess the Data
    input_ids, attention_mask = preprocess_text(tweet)
    
    # LAST_PRICE, PX_VOLUME
    numerical_data = np.array([last_price, volume])  
    #STOCK and MONTH
    categorical_data = np.array([stock_encoder.transform([stock])[0], month]) 
    
    # Convert them into PyTorch tensors
    input_ids = torch.tensor([input_ids]).to(device)
    attention_mask = torch.tensor([attention_mask]).to(device)
    numerical_data = torch.tensor([numerical_data], dtype=torch.float32).to(device)
    categorical_data = torch.tensor([categorical_data], dtype=torch.float32).to(device)

    # Run the model
    with torch.no_grad():
        output_one_day, output_two_day, output_three_day, output_seven_day, output_vol_10d = model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            numerical_data=numerical_data,
            categorical_data=categorical_data
        )

    # Convert to readable format (in this example, convert to percentages)
    output_one_day = (output_one_day.item() * 100)  # Convert tensor to Python float and then to percentage
    output_two_day = (output_two_day.item() * 100)
    output_three_day = (output_three_day.item() * 100)
    output_seven_day = (output_seven_day.item() * 100)

    return output_one_day, output_two_day, output_three_day, output_seven_day, output_vol_10d

tweet = "Check out BURGUNDY REED AND BARTON 13 PC SET OF SLIVERWARE FORKS SPOONS KNIFES GRAVY SPOON   via @eBay"
stock = "eBay"
month = 9
last_price = 38.46
volume = 9964979.0
output_one_day, output_two_day, output_three_day, output_seven_day, output_vol_10d = make_prediction(
    tweet, stock, month, last_price, volume)

# Print outputs
print(f"1 Day Return: {output_one_day}%")
print(f"2 Day Return: {output_two_day}%")
print(f"3 Day Return: {output_three_day}%")
print(f"7 Day Return: {output_seven_day}%")
print(f"10 Day Volatility: {output_vol_10d}")

Uses

Disclaimer: This model should not be used for trading. Data source is not verified, assumption is that data is synthetically generated. This is just an example how to handle multi-target regression problem.

Direct Use

Could used in application where natural language is to be converted into SQL queries.

Disclaimer: This model should not be used for trading. Data source is not verified, assumption is that data is synthetically generated. This is just an example how to handle multi-target regression problem.

Out-of-Scope Use

Disclaimer: This model should not be used for trading. Data source is not verified, assumption is that data is synthetically generated. This is just an example how to handle multi-target regression problem. [More Information Needed]

Bias, Risks, and Limitations

Disclaimer: This model should not be used for trading. Data source is not verified, assumption is that data is synthetically generated. This is just an example how to handle multi-target regression problem.

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. Disclaimer: This model should not be used for trading. Data source is not verified, assumption is that data is synthetically generated. This is just an example how to handle multi-target regression problem.

Technical Specifications

Model Architecture and Objective

google/mobilebert-uncased

Compute Infrastructure

Hardware

one P6000 GPU

Software

Pytorch and HuggingFace