whisper-medium-bemgen-combined-model

This model is a fine-tuned version of openai/whisper-medium on the bemgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4200
  • Wer: 0.3332

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.7922 0.1980 200 0.8807 0.6663
1.3451 0.3960 400 0.6738 0.5310
1.1869 0.5941 600 0.5800 0.4613
0.9659 0.7921 800 0.5199 0.4211
0.8946 0.9901 1000 0.4816 0.3967
0.6349 1.1881 1200 0.4725 0.3726
0.6238 1.3861 1400 0.4549 0.3603
0.6244 1.5842 1600 0.4495 0.3648
0.5724 1.7822 1800 0.4362 0.3451
0.6594 1.9802 2000 0.4200 0.3332
0.3207 2.1782 2200 0.4395 0.3353
0.301 2.3762 2400 0.4479 0.3275
0.2863 2.5743 2600 0.4369 0.3358

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
8
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for csikasote/whisper-medium-bemgen-combined-model

Finetuned
(498)
this model

Evaluation results